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Abstract. We propose and investigate a method for identifying timescales of
dissipation in nonequilibrium steady states modeled as discrete-state Markov jump
processes. The method is based on how the irreversibility—measured by the statistical
breaking of time-reversal symmetry—varies under temporal coarse-graining. We
observe a sigmoidal-like shape of the irreversibility as a function of the coarse-graining
time whose functional form we derive for systems with a fast driven transition. This
theoretical prediction allows us to develop a method for estimating the dissipative time
scale from time-series data by fitting estimates of the irreversibility to our predicted
functional form. We further analyze the accuracy and statistical fluctuations of this
estimate.
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1. Introduction

Dissipation, the irrecoverable loss of energy by a system to its surroundings, is a

defining feature of nonequilibrium steady states. Typically, it is quantified by the

entropy production rate ⌃ [1]. This single number, however, elides over the details of

the microscopic dynamics: di↵erent systems may have the same entropy production

rate although their microscopic details may di↵er. This observation suggests that

the development of more refined characterizations of dissipation could aid in our

understanding of the nature of nonequilibrium steady states.

One way to characterize a physical process is to identify the characteristic time

and length scales on which it operates [2, 3]. For dissipation, we are then aiming to

probe the characteristics of the microscopic dynamics that result in energy loss to the

surroundings. However, nonequilibrium steady states continually exchange energy with

their environment, making it somewhat unclear how to tweeze apart, without a model,

the various processes that contribute to dissipation. In this article, we introduce a

method to identify and measure these timescales by exploiting the deep connection

between irreversibility and dissipation.

One of the central results of stochastic thermodynamics has been the formulation

of a quantitative connection between the entropy production rate ⌃ and the statistical

irreversibility (time-reversal asymmetry) of the dynamics as measured by the relative

entropy between the probability P (�t) of a microscopic trajectory �t of length t and the

probability P (�̃t) of the time-reversed trajectory �̃t [4, 5, 6, 7, 8, 9],

⌃ = lim
t!1

kB

t
D[P (�t)||P (�̃t)], (1)

where kB is the Boltzmann constant, which we will set to one for the remainder of

this paper for notational simplicity. The relative entropy between two probability

distributions p and q, D(p||q) =
R

p(x) ln[p(x)/q(x)]dx, is an information-theoretic

measure of distinguishability. For this reason, we can interpret the relative entropy

in Eq. (1) as a measure of the distinguishability between the forward and reverse

trajectories, namely, the irreversibility. Furthermore, the entropy production rate

itself can be linked to energy dissipation, once we have identified the thermodynamic

reservoirs in the environment. For example, when a system is coupled to two heat

baths at temperatures T1 > T2, the entropy production rate ⌃ = (1/T2 � 1/T1)Q̇ is

proportional to the heat flow from reservoir 1 to 2. A useful implication of (1) is

that the detection of a nonzero irreversibility from experimental time-series data allows

one to deduce that a system is out of equilibrium, just from observations of dynamic

fluctuations [10, 11, 12, 13, 14, 15, 16]. However, it has been observed in theoretical and

experimental studies that the amount of irreversibility detected is sensitive to the types

and numbers of observed variables as well as to the data acquisition rate [17, 18, 19].

Although the data-dependence of the measured irreversibility has been considered

a nuisance, here we are going to attempt to exploit it to identify a dissipative timescale.

To this end, imagine coarse-graining the dynamics in time by removing all information
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on a timescale shorter than ⌧ . Examples include making stroboscopic observations at

intervals of length ⌧ or obtaining data as local time averages over windows of width ⌧ .

From an experimental point of view, such coarse graining is quite natural as one can

never make measurements with infinite precision. No matter the procedure, we assume

the result is a collection of N sequential observations that we can collect into a coarse-

grained trajectory �⌧
N , from which we can determine the observed irreversibility above

the timescale ⌧

�(⌧) = lim
N!1

1

N⌧
D [P (�⌧

N)||P (�̃⌧
N)] . (2)

Under the mild assumption that coarse-graining commutes with time reversal, the

observed irreversibility bounds the entropy production from below, �(⌧)  ⌃ [20, 21, 22].

At each level of coarse-graining, we remove information about the dynamics at timescales

shorter than ⌧ , implying that the relative entropy �(⌧) remains sensitive to any

irreversible processes operating on timescales longer than ⌧ . These arguments suggest

that the variation of �(⌧) with coarse-graining scale ⌧ is potentially sensitive to

a characteristic timescale relevant to dissipation. Indeed, this was observed in an

experimental study of the actomyosin network of a starfish oocyte [15]. The fluctuations

of endogenous probe particles embedded in the cortex were measured and used to

compute �(⌧). The observed irreversibility as a function of ⌧ was found to peak at a

value consistent with the rate of turnover of adenosine triphosphate (ATP) by the myosin

motors responsible for the nonequilibrium fluctuations in the network. In this article,

we use simple models of nonequilibrium steady states with well-defined characteristic

timescales to analyze this dependence of the observed irreversibility on coarse-graining

timescale ⌧ in an e↵ort to understand what can be inferred from measurements of �(⌧).

It is worth noting that coarse-graining irreversibility as a means to characterize

dissipation is not unique to this study and represents a potentially powerful approach

to assessing the properties of dissipation in nonequilibrium steady states. Indeed,

similar observations were exploited in Ref. [23, 24] where the authors coarse-grained

progressively larger interdependencies among a set of interacting degrees of freedom.

This allowed them to identify how the complexity of interactions among the system’s

degrees of freedom contributes to dissipation.

Our approach to identify dissipative timescales complements other proposals in the

literature that decompose the dissipation at distinct locations and length scales. Like

in our present work, the authors of Ref. [25] begin their analysis with the connection

between dissipation and irreversibility embodied in Eq. (1). They then identify a local

irreversibility by computing the observed irreversibility within small grids of a spatially

extended system. Applications of this methodology to active fluids identified regions

where irreversibility was prominent, either as a consequence of mobility-induced phase

separation or the inclusion of fixed asymmetric obstacles, such as chevrons. Alternative

approaches aim to decompose the irreversibility into distinct frequency and wave number

components. For instance, the authors of Ref. [26], suggest evaluating the relative

entropy rate by replacing the true microscopic dynamics by a Gaussian di↵usion process
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with the same power spectrum. The resulting approximate relative entropy rate depends

solely on the power spectrum and can be decomposed into frequency and wavenumber

contributions. This allows one to identify time and length scales from the shape

of this decomposition. A similar though distinct approach has been proposed based

on the Harada-Sasa equality [27] that decomposes the dissipation into frequency and

wavenumber dependent violations of the fluctuation-dissipation theorem [28, 29]. While

o↵ering a principled identification of spatiotemporal scales for di↵usive dynamics, the

Harada-Sasa equality is known to fail for discrete-state Markov models [30, 31].

We begin in Sec. 2 by introducing our models of interest and collecting their

relevant properties. Then in Sec. 3, we numerically and theoretically analyze a model

with a single dissipative timescale. We observe that for highly dissipative systems the

observed irreversibility �(⌧) has a simple functional form that we are able to predict

using a perturbation theory. This functional form then serves as an ansatz whose fit

to experimental or numerical data can be used to estimate the dissipative timescale.

The performance of this estimation procedure is analyzed numerically in Sec. 4, before

concluding in Sec. 5.

2. Coarse-graining Markov jump processes

Our focus will be systems that can be modeled as discrete-state Markov jump processes.

Their dynamics are captured by how the vector of probabilities p(t) = {p1(t), . . . , pn(t)}
over the states i = 1, . . . , n evolves with time t [32],

ṗ(t) = Ŵp(t), (3)

where the o↵-diagonal elements of the transition rate matrix Wij give the transition

probabilities per unit time to jump from j ! i and the diagonal elements Wii =

�
P

j 6=i Wji are fixed by probability conservation. We will further assume that Wij 6= 0

only if Wji 6= 0, which as we will see guarantees a well-defined entropy production

rate [1].

The formal solution of (3) with initial condition p(0) is given by the matrix

exponential

p(t) = eŴ tp(0). (4)

We will assume that our dynamics are ergodic such that (4) tends to a unique steady-

state distribution ⇡ = {⇡1, . . . , ⇡n} given as the solution of Ŵ⇡ = 0.

Our interest lies in the thermodynamics of the steady state. For such Markov

processes, the entropy production rate ⌃ can be readily obtained (say by direct

evaluation of (1)) [33],

⌃ =
X

i 6=j

Wij⇡j ln
Wij

Wji
. (5)

The link to energy dissipation can be made once we have identified the reservoirs coupled

to the system that supply the energy (and particles) required for transitions between the
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states. Formally, this is implemented by assuming that the transition rates satisfy a local

detailed balance condition [33]: for example, if the transition from k ! l is mediated by

a single thermal reservoir at inverse temperature �, then we require ln(Wkl/Wlk) = �qkl,

where qkl is the heat flow into the reservoir accompanying the transition.

Now, a natural and analytically tractable method for coarse-graining continuous-

time dynamics are stroboscopic observations every ⌧ . The output is a collection of N

observations �⌧
N = {i1, . . . , iN}. Such stroboscopic measurements are attractive because

the resulting coarse-grained dynamics is a discrete-time Markov chain with the same

steady-state distribution ⇡. The transition probabilities Mij(⌧) are given as the solution

of (3) with Kronecker delta initial condition pq(0) = �qj:

M̂(⌧) = eŴ ⌧ . (6)

For such observed dynamics, we can readily evaluate the relative entropy rate per unit

time in Eq. (2) to obtain the observed irreversibility. Note that the probability to

observe the trajectory �⌧
N = {i1, . . . , iN} beginning in the steady-state is determined by

the transition probabilities via

P (i1, . . . , iN) = MiN iN�1 · · · Mi2i1⇡i1 . (7)

Thus, comparing the forward and reverse trajectory �̃⌧
N = {iN , . . . , ii}, we find that

�(⌧) = lim
N!1

1

N⌧

X

i1,...,iN

MiN iN�1 · · · Mi2i1⇡i1 ln
MiN iN�1 · · · Mi2i1⇡i1

Mi1i2 · · · MiN�1iN⇡iN

(8)

= lim
N!1

1

N⌧

"
(N � 1)

X

i,j

Mij⇡j ln
Mij

Mji
+
X

i,j

Mij⇡j ln
⇡j

⇡i

#
. (9)

Upon taking the limit, and noting that only transitions between di↵erent states

contribute, we arrive at

�(⌧) =
1

⌧

X

i 6=j

Mij⇡j ln
Mij

Mji
. (10)

Before proceeding to our analysis of the observed irreversibility, it is worth noting

a few algebraic properties of the transition rate matrix that will be helpful in our

theoretical calculations [32]. First, Ŵ need not be symmetric, which implies that each

eigenvalue �↵ can have associated with it a distinct right u↵ and left v↵ eigenvector

given as the solutions of

Ŵu↵ = ��↵u↵ (11)

v↵,T Ŵ = ��↵v↵,T . (12)

We have included a minus sign for later convenience in order that all eigenvalues have

a non-negative real part [32]. While the eigenvectors need not exist, for simplicity we

assume that they do and that they form a complete basis: that is, the eigenvectors

can be chosen to satisfy u↵ · v� = �↵� such that they verify the completeness relationP
↵ u

↵v↵,T = Î, with Î being the identity matrix. Furthermore, we choose to label

the eigenvalue of Ŵ corresponding to the steady state distribution as �0 = 0. The
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remaining n�1 eigenvalues can be ordered using their real part from smallest to largest

�0  �1  · · ·  �n�1. A useful consequence of these assumptions is that the transition

matrix M̂(⌧) can be decomposed as

M̂(⌧) = ⇡1T +
n�1X

↵=1

e��↵⌧u↵v↵,T . (13)

3. Observed irreversibility with a dissipative timescale

3.1. Model with single dissipative transition

To test our hypothesis that the observed irreversibility contains information about the

dissipative timescales, we consider models containing a single dissipative transition with

rate ⌫.

With this in mind, our transition rate matrix can be divided into two parts, an

undriven or equilibrium part Ŵ eq and a driven or nonequilibrium part Ŵ neq,

Ŵ = Ŵ eq + ⌫Ŵ neq, (14)

with ⌫ setting the relative scale. We choose the equilibrium transition rates to have an

Arrhenius form,

W eq
ij = e�(Bij�Ej) (15)

with symmetric ‘energy barriers’ Bij = Bji and ‘state energies’ Ej. If Ŵ = Ŵ eq (⌫ = 0),

then the system would relax to a steady state characterized by an equilibrium Gibbs

distribution ⇡eq
j / e�Ej with weights determined by the dimensionless energies Ej. It

is for this reason that we say Ŵ eq describes undriven or equilibrium-like dynamics.

Every transition will be an equilibrium transition except for transitions between 1 $ 2

(W eq
12 = W eq

21 = 0), which we will drive out of equilibrium. Thus, we choose all the

o↵-diagonal elements of Ŵ neq to be zero, apart from those entries corresponding to the

transition 1 $ 2. Here, driving is implemented by adding an asymmetric force F to the

Arrhenius form,

W neq
12 = e�(Bneq�E2�F/2) (16)

W neq
21 = e�(Bneq�E1+F/2), (17)

with a barrier Bneq.

By construction, the sole source of nonequilibrium driving comes from the

asymmetry of the driving force in Ŵ neq. This e↵ect becomes explicit when calculating

the entropy production rate (5) for this model

⌃ = ⌫(W neq
21 ⇡1 � W neq

12 ⇡2)F = J12F, (18)

where we have introduced the probability flux between states 1 and 2, J12 = ⌫(W neq
21 ⇡1�

W neq
12 ⇡2). Thus, nonzero F is required to have nonequilibrium systems in steady state.
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3.2. Numerical analysis

For our system with a single driven transition, we can determine closed-form expressions

for the transition matrix M̂(⌧), and from (10) the observed irreversibility �(⌧). To gain

insight, we focus on a system with n = 4 states and make the simplifying choice of

setting all Ej = Bij = Bneq = 0. This assumption sets the timescale W eq
ij = 1 against

which the rates W neq
12 = (W neq

21 )�1 = eF/2 are compared. The resulting expressions for

�(⌧) are plotted in figure 1 for a representative value of the driving force (F = 5) as

a function of timescale ⌫ and coarse-graining scale ⌧ . In figure 1(a), we see that for

every value of the timescale ⌫, as we vary ⌧ the observed irreversibility displays a cross

over from the steady-state entropy production rate ⌃ (the left limit) to zero. Moreover,

the shape of this crossover is sensitive to the value of ⌫. For ⌫  1 (blue tones), the

dissipative transition rate limits ⌃ (inset). As ⌫ increases, not only does the value of ⌃

increase, but the knee of �(⌧) shifts in location and steepness. However, when ⌫ � 1, we

see that ⌃ is no longer limited by ⌫, rather by the driving force (inset). As we continue

to increase ⌫ in this regime (red tones), the dominant e↵ect on �(⌧) is to simply shift the

knee leftward, while maintaining the same relative shape. These observations become

more pronounced in figures 1(b)&(c), where we normalize the observed irreversibility

by the entropy production rate, �(⌧)/⌃. Such normalization highlights the qualitative

change in the ⌫ dependence above and below ⌫ = 1.

10�5 10�4 10�3 10�2 10�1 100 101
0.0

0.5

1.0

1.5

2.0

2.5

10�5 10�4 10�3 10�2 10�1 100 101
0.00

0.25

0.50

0.75

1.00

10�5 10�4 10�3 10�2 10�1 100 101
0.00

0.25

0.50

0.75

1.00

10�2 100 102
0.00

1.25

2.50

�

⌫

⌧ ⌧ ⌧

�
(⌧

)

�
(⌧

)/
�

�
(⌧

)/
�

⌫  1 ⌫ � 1

(a) (b) (c)

increasing ⌫

increasin
g ⌫

Figure 1. (a) Observed irreversibility �(⌧) as a function of coarse-graining scale ⌧ for
various values of the dissipative transition rate, from ⌫ = 10�2 (blue) to ⌫ = 102 (red)
in increments of 100.5, color coded along the temperature spectrum. Inset: steady-state
entropy production rate ⌃ as a function of driven transition rate ⌫. (b) Normalized
observed irreversibility �(⌧)/⌃ as a function of coarse-graining scale ⌧ for slow driven
transitions ⌫  1. (c) Normalized observed irreversibility �(⌧)/⌃ as a function of
coarse-graining scale ⌧ for fast driven transitions ⌫ � 1. Parameters: n = 4, Ej = 0,
Bij = 0, Bneq = 0, and F = 5.

This analysis reveals that even for this relatively simple model, the shape of �(⌧) is

sensitive to the interplay between the timescale ⌫ and the strength of thermodynamic

driving F . The exception is when the driven transitions occur on a fast enough timescale

(here ⌫ > 1), such that the driving force is the limiting factor determining the entropy

production rate. In such a limit, the shape of �(⌧) does not vary with timescale ⌫, only
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the location of the knee.

3.3. Functional form of the observed irreversibility

When the dissipative transition rate is large, we have observed a rather stable shape of

the observed irreversibility. To understand this simple dependence of �(⌧) on ⌫ we will

now analyze the observed irreversibility perturbatively for ⌫ � 1. An additional goal

of this section will be finding a su�ciently generic functional form for �(⌧) that can be

leveraged in Sec. 4 as a data-fitting method to estimate the dissipative timescale.

To this end, we will need to approximate M̂(⌧) for fast driven transitions, which

is facilitated by looking at the four eigenvalues of the transition rate matrix Ŵ in our

4-state model with ⌫ and F the only nonzero parameters:

�0 = 0 (19)

�1 = �2 = 4 (20)

�3 = 2 + 2⌫ cosh(F/2). (21)

Clearly, for ⌫ � 1, one eigenvalue is much larger than the others and scales with

the driven transition rate, �3 ⇠ ⌫. Thus, at least for times up to the dissipative

timescale ⌧ ⇠ 1/⌫ the dynamics will be dominated by the largest eigenvalue. We

can now approximate M̂(⌧) and the observed irreversibility on this timescale assuming

a single large dominant eigenvalue. This approximation can be done in some generality,

so that our theoretical analysis will apply beyond the simple model analyzed in the

previous subsection.

We begin the derivation by considering a transition rate matrix Ŵ whose largest

eigenvalue is much larger than all other eigenvalues, � ⌘ �n�1 � �↵. For notational

convenience, we also introduce the projector P̂ = un�1vn�1,T onto the eigenspace of �.

Then for times ⌧ . 1/�, we can approximate (13) as

M̂(⌧) ⇡ ⇡1T +
n�2X

↵=1

(1 � �↵⌧)u↵v↵,T + e��⌧ P̂ . (22)

Substituting in the completeness relation and the eigendecomposition of Ŵ , allows us

to arrive at the suggestive form

M̂(⌧) ⇡ Î + ⌧Ŵ + (e��⌧ � 1 + �⌧)P̂ . (23)

Using this approximation for the transition matrix, we can now approximate the

observed irreversibility as,

�(⌧) ⇡ 1

⌧

X

i 6=j

(⌧Wij + (e��⌧ � 1 + �⌧)Pij)⇡j ln

✓
⌧Wij + (e��⌧ � 1 + �⌧)Pij

⌧Wji + (e��⌧ � 1 + �⌧)Pji

◆
. (24)

While this is an accurate approximation in our region of interest, it remains a

complicated function of the elements of the transition rate matrix, making (24)

unsuitable for inference. We can simplify this expression further by noting that
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(e��⌧ � 1 + �⌧) ⌧ �⌧ when ⌧ . 1/�. This allows us to expand the logarithm to

second order, giving rise to

�(⌧) ⇡ ⌃ + a

✓
e��⌧ � 1 + �⌧

⌧

◆
+ b

✓
e��⌧ � 1 + �⌧

⌧

◆2

(25)

where

a =
X

i 6=j

Wij⇡j

✓
Pij

Wij
� Pji

Wji

◆
+ Pij⇡j ln

Wij

Wji
(26)

b =
X

i 6=j

1

2
Wij⇡j

"✓
Pji

Wji

◆2

�
✓

Pij

Wij

◆2
#

+ Pij⇡j

✓
Pij

Wij
� Pji

Wji

◆
. (27)

The resulting expression (25) has the advantage of making the dependence of �(⌧) on

� and ⌧ explicit, and hides all the details of the elements of the transition rate matrix

in two multiplicative constants, a and b.

To test the accuracy of our approximation, we plot the normalized observed

irreversibility �(⌧)/⌃ in figure 2 for ⌫ � 1 (solid) alongside our prediction in Eq. (25)

(dashed). As anticipated, our approximation is fairly accurate for times ⌧ . 1/� and

improves as � ⇠ ⌫ increases.

10�5 10�4 10�3 10�2 10�1 100 101

0.0

0.2

0.4

0.6

0.8

1.0
⌫ = 102

⌫ = 101

⌫ = 100

⌧

�
(⌧

)/
�

Figure 2. Normalized observed irreversibility (solid) compared to the normalization
of our approximation in Eq. (25) (dashed) for ⌫ = {100, 101, 102} (colors are the same
as in figure 1). Vertical dashed lines are ⌧ = 1/� for the respective Ŵ matrices.
Parameters: n = 4, Bij = 0, Bneq = 0, Ej = 0, and F = 5.

We see that when there is a strong timescale separation between the equilibrium

and driven transitions a simple story emerges for the observed irreversibility: as we

coarse grain past the timescale of the dissipative transition, the shape of the observed

irreversibility takes on a simple form whose scale is controlled by the largest eigenvalue

of the transition rate matrix. We can thus identify in these scenarios the (inverse)

eigenvalue 1/� as the dissipative timescale: observations faster than 1/� appear

irreversible, while observations slower appear reversible.
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4. Measuring the dissipative timescale

As mentioned in the introduction, part of our motivation for this study was the

experiments conducted in Ref. [15] where the observed irreversibility was measured.

Naturally, this raises the question of whether the analysis in the previous section can be

used as a means to extract the dissipative timescale, that is the dominant eigenvalue �

from experimental data.

4.1. Estimates using a fit ansatz

The rather simple functional form for the observed irreversibility derived in Eq. (25)

suggests a method to infer � from measured values of the normalized observed

irreversibility �(⌧)/⌃. Namely, we use (25) to inform a fitting ansatz

f(⌧) = 1 + ã

 
e��̃⌧ � 1 + �̃⌧

�̃⌧

!
+ b̃

 
e��̃⌧ � 1 + �̃⌧

�̃⌧

!2

, (28)

with fitting parameters ã, b̃ and �̃. We can then generate an estimate for the dominant

eigenvalue �̃ by fitting (28) to measured values of the normalized observed irreversibility.

To test the accuracy of this approach, we consider the case where measured values

of the observed irreversibility are unbiased and have infinite precision. To this end, we

generate 103 random transition rate matrices according to the model in Eqs. (14)-(17),

where the Ej, Bij and Bneq are sampled uniformly in the range [0, 1], the driving force F

is sampled uniformly on [0, 5], and the timescale ⌫ is sampled from a log-base 10 uniform

distribution from [1, 102]. For each transition rate matrix we evaluate �(⌧) numerically

at values uniformly-spaced on a log-scale over the range ⌧ 2 [⌧m, ⌧M ] = [10�5, 101]. This

forms the data that we use to fit our ansatz f(⌧) (28) using a nonlinear least-squares

fit function. We plot the estimated �̃ versus the true eigenvalue � for the 103 random

transition rate matrices in figure 3.

Clearly our estimates correlate well with the true value as the cluster of points

lie near the diagonal. However, there is a clear bias in our estimate that is uniform

on a log scale, as the estimates tend to fall just below the diagonal. Indeed, we can

estimate this bias by determining the (normalized) average deviation over our random

samples: h(� � �̃)/�i ⇡ 8%. This bias is likely due to the fact that we are fitting

a highly nonlinear function of �, and such nonlinearities are known to lead to biased

estimates [34]. Nevertheless, we can conclude in this highly-dissipative regime that

fitting the observed irreversibility to our ansatz f(⌧) does allow one to reasonably well

estimate the order of magnitude of the dissipative timescale, if not the true value.
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log(�)
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g(

�̃
)

Figure 3. Estimate of the dominant eigenvalue �̃ versus the true dominant eigenvalue
� (red dots) obtained by fitting f(⌧) (28) to the normalized observed irreversibility
�(⌧)/⌃ for 103 randomly generated transition rate matrices as described in the text.
The black line is a guide to the eye and represents perfect estimation.

4.2. Implications of finite data

Numerically or experimentally generated time-series data is finite, which can result in

bias and noise in the estimates of the observed irreversibility. In this section, we assess

how these errors due to a finite sample size propagate to our estimate of �̃.

To perform this assessment, we numerically generate continuous-time trajectories

�T of a finite duration T for random transition rate matrices using the Gillespie

algorithm [35]. We then coarse grained these trajectories by observing the system

state every ⌧ , forming the coarse-grained trajectory �⌧
N = {i1, i2, . . . iN}. From each

such coarse-grained trajectory, we estimate the observed irreversibility using a plug-in

estimator [10, 11]. Namely, we directly estimate the steady-state distribution as well

as the transition probabilities by counting the number of visits to each state and the

number of each type of transition,

⇡̃j =
1

N

NX

↵=1

�ji↵ (29)

M̃jk =
1

N � 1

N�1X

↵=1

�ji↵+1�ki↵ . (30)

These estimates are then plugged into (10) to generate our estimate of the observed

irreversibility

�̃(⌧) =
1

⌧

X

i 6=j

M̃ij⇡̃j ln
M̃ij

M̃ji

. (31)

While more sophisticated methods are available to estimate the observed irreversibil-

ity [10, 16, 19, 24, 25], we chose this method for its computational simplicity. Moreover,

our concern here is not with how to accurately estimate the observed irreversibility, but
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how errors, which are inevitable in any method, propagate to estimates of the dissipative

timescale. The estimated �̃(⌧) is normalized using �̃(⌧m), our estimate at the smallest

observation time ⌧ considered (⌧m = 10�5), and then fit by f(⌧) (28) to generate an

estimate of the timescale �̃.

The results for 102 random transition rate matrices are presented in figure 4 using

the same ensemble described above in Sec. 4.1 except with fixed ⌫ = 102. For each rate

matrix a trajectory of length T = 107 was generated from which �̃ was estimated. We

then repeated the procedure on the same trajectory, but instead taking the first T = 106

of the trajectory, then T = {105, 104}, allowing us to visualize how reducing the amount

of data a↵ects our estimates. Figure 4(a) displays the normalized relative entropy rates

for a representative trajectory, displaying almost no discernible disagreement on this

scale. Indeed, the expected mean deviation

h�i =

*PN
i=1 |�(⌧i) � �̃(⌧i)|PN

i=1 �(⌧i)

+
(32)

of the observed irreversibilities remain below 6.3% (Table 1).

Table 1. Percent error in the estimates of the observed irreversibility �̃(⌧) and the
dissipative time scale �̃ for various observation times T .

T 104 105 106 107 1

h�i 6.3% 1.9% 0.6% 0.2% 0.0%
h|� � �̃|/�i 35% 13% 12% 12% 12%

In figure 4(b) estimates of �̃ are compared for various observation times T =

{104, 105, 106, 107}. In addition, we include estimates from the noiseless data studied

in the previous subsection Sec. 4.1, which in the present language corresponds to a

trajectory of infinite length T = 1. For observation times T � 105, the finite sample

estimates are nearly as accurate as having perfectly accurate estimates of the observed

irreversibility. Noise appears detrimental only for the shortest studied observation time

T = 104, reaching 35%, about 3 times larger than our unavoidable error floor of ⇡ 12%

due to our nonlinear fitting method. The potential origin of this increased error can be

seen in the inset of figure 4(a) where we plot the absolute error,

�(⌧) =

����
�(⌧)

⌃
� �̃(⌧)

�̃(⌧m)

���� (33)

as a function of ⌧ for various values of T . This error is concentrated near the cross-

over where ⌧ ⇠ 1/� with additional deviations for long coarse-graining times where the

number of samples N = T/⌧ is least. This suggests that accurate estimation of the

knee region of the observed irreversibility is required when implementing our proposed

estimation method, and even small deviations can adversely a↵ect the estimate of the

dissipative timescale.



Dissipative timescales from coarse-graining irreversibility 13

Figure 4. (a) Normalized observed irreversibility estimate �̃(⌧)/�̃(⌧m) as a function of
⌧ for various observation times T for a random transition rate matrix. We have included
�(⌧)/⌃ (black) to illustrate the convergence of �̃(⌧)/�̃(⌧m). Inset: The corresponding
absolute error �(⌧) as a function of ⌧ . (b) Estimates of �̃ obtained by fitting f(⌧)
(28) to the normalized observed irreversibility estimates �̃(⌧)/�̃(⌧m) for 102 randomly
generated transition rate matrices. The diagonal black line is a guide to the eye and
represents perfect estimation.

5. Conclusion

Under coarse-graining the observed irreversibility �(⌧) displays a characteristic cross-

over from its steady state value ⌃ to zero. When there is strong timescale separation

between the driven transition and the undriven transitions, this profile takes on a simple

shape with a single characteristic timescale. Using a perturbative approach we derived

an approximate functional form and identified this dissipative scale with the largest

eigenvalue � of the transition rate matrix. Above this scale irreversibility is observable,

whereas below it irreversibility is hidden. General theoretical analysis that goes beyond

the fast driven limit remains an open question, complicated by our observation that

the functional form of the observed irreversibility can vary as we change the transition

speed and driving.

Building on our theoretical analysis, we proposed a fitting ansatz that allows us

to estimate the dissipative timescale � from time-series data. We observed that this

method reasonably well reproduces the magnitude of �, but remains biased due to the

nonlinear fitting method. The error of our estimates is further sensitive to any error

in the estimates of the observed irreversibility when data is finite. Accurate estimates

in the cross-over region are necessary to most e↵ectively use our proposed estimator.

More refined fitting forms that account for a wider range of scales may be less a↵ected

by errors in the relative entropy determination, but this remains for future research.
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