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Abstract

As the internet becomes intertwined into every aspect of human life, the security of the Internet of Things (IoT) is also becoming
increasingly critical. IoT devices are becoming the primary data source for a variety of smart-city applications, where critical
decisions are based on this collected data. If malicious actors gain control of and/or tamper with the data being transmitted, the
integrity of an entire smart city will be compromised. However, through monitoring IoT devices’ behavior, anomalies can be detected
and isolated to avoid any negative impact on decision-making. This behavioral monitoring process will complement traditional trust
management approaches, since more accurate trust values can be calculated without the need to rely on a majority consensus. In
this work, we present a BEhavior-As-a-Service for Trust management (BEAST) that implements a deep learning-based behavioral
model to accurately classify IoT devices’ interactions in the system. Through the implementation of the Elo rating system, these
classifications will be presented as a vector of behaviors per device, which dynamically reflects each device’s trust in the system.
This work presents an analysis of our methodology as well as a threat model. Using simulations, a real-world use case is presented
showing the interactions between IoT-based devices. Our results show that our BEAST model is able to dynamically evaluate each
IoT device’s trust, as well as capture and mitigate multiple threats targeting the trust in the system.
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1. Introduction

The rapid growth of connected devices comprising the Inter-
net of Things (IoT) is transforming traditional elements of city
life into next-generation intelligent smart cities where decisions
are based on data being collected by IoT devices in real-time.
As IoT devices deployment becomes more popular in differ-
ent smart-city setups, these devices will make their way into
every aspect of human life. This increase in IoT devices will
also provide attackers with a new avenue to compromise critical
infrastructure [1, 2, 3, 4, 5].

Among the key components contributing to smart-city initia-
tives is the intelligent transportation system (ITS), including con-
nected vehicles. Connected vehicle technologies enable vehicles
to communicate with their peers (V2V), roadside units (RSUs)
(V2R), and other infrastructure (V2I) to share vital transportation
information such as current road conditions, congested traffic,
and vehicular collisions [6, 7]. If every vehicle had the neces-
sary sensors and the ability to produce warning messages, the
National Highway Traffic Safety Administration (NHTSA) pre-
dicts that the vehicles would prevent between 400,000-600,000
crashes, prevent between 190,000-270,000 injuries, and save
close to 1,000 lives each year [8]. These technologies could
prevent nearly 80% of all non-alcohol-related incidents [8], mak-
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ing it imperative to protect the data transmitted between these
vehicles.

Although monitoring of malicious IoT devices is only in
its infancy, the number of attackers is expected to drastically
rise equally as the popularity of IoT rises [3, 4, 5]. IoT is the
heart of smart cities, and because smart cities are constantly
evolving with new trends and technology, it is vital to rethink
cybersecurity designs to cope with this dynamic and evolving
environment. Traditional cybersecurity approaches, such as
asymmetric encryption through public key infrastructure, are
not suitable in such setups considering IoT devices’ limitations
(computational power, battery, etc.) and the real-time require-
ments of smart cities [9, 10, 11]. For instance, ITS has a high
mobility characteristic that brings additional challenges such
as frequently changing topology, evaluation of the credibility
of the devices and the messages, and inability to apply strong
cryptographic measures to cope with the real-time requirement
of ITS [12]. In such a collaborative environment, it is vital to
provide a way to represent the bonding level among these de-
vices as they share messages in the system. This can be achieved
by managing the trust between devices in the network based
on the accuracy of shared messages, which can relay a metric
that represents a bonding level to other devices in the network.
This approach was proposed to deal with the aforementioned
challenges [13, 14, 15, 16, 17, 18].

Trust management has proved to be effective against the chal-
lenges that smart cities and ITS suffer from because trust manage-
ment relies on a peer-driven network where devices themselves
are responsible for detecting when another vehicle or device is
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behaving maliciously. Trust itself is the evaluation of different
aspects of a device that together represents the confidence, faith,
and level of expectation of the device. Forming trust among
devices in the network implicitly reflects the confidence level
of the data being shared by such devices. For example, receiv-
ing data from a highly trusted device will provide a measure of
assurance that the data is expected to be accurate.

However, traditional trust management systems rely on a
majority consensus to determine accuracy. Additional challenges
arise, such as when attackers work together to inject the network
with malicious data to compromise devices by distorting the trust
values of other devices in the network, and/or raising/lowering
the trust values of a specific device to spoof certain changes in
the network [19, 20, 21, 22]. Also, devices can manipulate the
system by initially sending out accurate data to build a high trust
level, then impact the system by sending misleading information
that other devices will accept with confidence as it came from a
highly trusted device [23]. Clearly, relying on peer-determined
consensus is not enough to mitigate threats, making it both
critical and urgent to design and implement a more robust trust
management approach that is capable of sustaining the smart
cities’ requirements and at the same time monitoring devices’
activities in real-time.

In this work, we present a dynamic and adaptable BEhavior-
As-a-Service for Trust management (BEAST) in IoT Devices 1

to support the real-time requirements of IoT applications. Our
approach builds a framework to generate a multidimensional
behavioral model (behavioral vector), taking into account appli-
cations requirement along with the reported messages to identify
different behaviors in concert with different incidents and reports
generated by IoT devices. This behavioral vector will later be
mapped to a trust value indicating the trustworthiness of the
devices in the network. This provides a proactive dynamic layer
of defense that enables the system to vet all devices that are
participating and therefore be able to block devices trying to
inject anomalous data that could manipulate system decisions.

This framework enables designers of highly automated sys-
tems, such as smart cities, to make decisions in real-time with
high confidence in the data being received.

The remainder of the paper is organized as follows: We
discuss related work in Section 2, followed by our motivations
and contributions in Section 3, and the problem statement in
Section 4. The threat model is presented and discussed in Section
5. Our BEhavior-As-a-Service for Trust management (BEAST)
approach is described in Section 6. Next, Section 7 describes
the system evaluation and experimental results. Finally, we
conclude the paper in Section 8.

2. Related Work

This section provides a brief overview of Trust management
concept and the trends in research that have led to the innovation
of our work presented here.

1This work is an extension of our previous work: “Behavioral Model based
Trust Management design for IoT at Scale(BLAST)” [18]

The concept of trust was ingrained in the field of sociology
where it was defined as “the extent to which one party is willing
to participate in a given action with a given partner, considering
the risks and incentives involved,” as provided and adapted by
[24, 25, 26]. While, trust management is the approach of evaluat-
ing trust such that it can be applied to computer systems enabling
reputations to be built between peers to allow highly automated
systems to make decisions with high levels of confidence —
adapted by [12, 13, 14, 15].

Trust management is applied to systems that require high
confidence in their decisions but also require these decisions to
be made quickly. Most trust management algorithms explore
this trade-off to optimize the confidence in data and timeliness
of a decision [27]. This is the reason that trust management is
often applied to critical infrastructure that has real-time require-
ments such as smart cities [28], connected vehicles [11, 29],
smart grids [30], among others [31, 32, 33]. Additionally, trust
has been shown to mitigate several security threats such as Dis-
tributed Denial of Service (DDoS), Sybil, replayed messages,
and impersonation attacks [12]. However, protecting against
such attacks is not enough because malicious actors can also
seek to attack the trust management scheme itself by sending
falsified data [34, 35], bad-mouthing peers [36], breakout fraud
[37], or collusion attacks [38]. These attacks are significantly
more dangerous to trust management algorithms since they have
the ability to impact the integrity of the system by means of
inflating the malicious actors’ trust to a point where it becomes
trustworthy even though it is behaving maliciously.

For trust management algorithms to work, it is necessary
to ensure the trust-value-calculation component is calibrated
such that, upon calculation, the device’s trust value accurately
reflects its overall trust in the network. Generally, trust values
are a single percentage value that represents the likelihood that
a device is telling the truth (i.e., a device with 100% trust will
always tell the truth) [12, 28].

Several methodologies for calculating trust have been pro-
posed recently. The first is algorithmic, where a device’s trust
value is incremented by a specified amount when a message is
evaluated to be trustworthy and, conversely, decremented the
specified amount upon a negative evaluation [14, 38]. While
this trivial approach has been shown to reflect the relationships
between devices, it is often insufficient since it enables attackers
to game the system (e.g., they could attempt to build a high trust
value and begin behaving maliciously without suffering severe
consequences [39]).

Other trust management approaches have designed extensive
trust-value-calculation components that integrate several factors
[40, 41]. These factors can include a device’s direct and indirect
trust [42, 43] or other factors such as the participation rate, how
long the device has been in the system, and/or the criticality of
the messages sent [39].

One multi-factor approach is to calculate trust based on how
a device is behaving in the system [39]. By applying weights to
the specific factors, it allows additional flexibility in calculating
trust such that specific factors can be more favored in the overall
trust calculation. Additionally, obtaining a true trust value allows
for the application with the use of the trust management to have
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the ability to decide a threshold for determining the level of
trustworthiness for allowing devices to participate in the system
or be removed instantly.

Fuzzy logic has been used in these multi-factor trust-value-
calculation components, not necessarily to calculate a single
value but instead classify a device trust as either trustworthy or
untrustworthy [44, 45]. While it has been shown that combining
several factors to form a single classification is an effective
means of trust management [46, 47], not having a true trust value
eliminates the flexibility necessary to support real-time-based
applications’ setups, which enables highlighting devices that
fell below a specific trustworthiness level indicating that these
devices are not well fit to be part of the system and therefore
need to be quarantined or removed from the system.

As previously mentioned, the increase or decrease in the
trust of a device is based on the fact as to whether a message is
evaluated to be legitimate or malicious [12, 28]. However, in the
literature, these messages are vastly different and mainly unique
to the application to which they are being applied, regardless, the
general classification for trust management evaluating message
techniques is broken into three categories: entity-oriented, data-
oriented, and hybrid [11, 12]. Entity-oriented trust classification
is based on the principle of monitoring the device itself, namely
monitoring the metadata of the messages (IP address, MAC
address, message size, etc) while data-oriented trust is focused
on monitoring the specific data contained within the payload of a
message [12]. While entity-oriented trust models have shown to
be effective at mitigating attacks such as DDoS, reply, and Sybil
attacks, such models are not enough because a new generation
of threats has emerged aiming to mislead and manipulating trust
management algorithms themselves [39]; as such it is necessary
to design a data-oriented trust approach.

Recent work in trust management has applied machine learn-
ing to assist with increasing the accuracy of message evaluation
as well as decreasing the time to process a message [48, 49]. By
using anomaly detection or classification techniques, trust man-
agement algorithms are able to determine whether a message
is trustworthy [37, 50]. However, most anomaly detection trust
methods are focused on an entity-oriented approach; yet, it is
critical to shift the focus to a data-oriented approach to ensure
trust management systems are secure against all threats.

Other IoT data verification/trustworthiness mechanisms have
been proposed including real-time software visualizations tools
to monitor accuracy[51], data validation and error cleaning
scheme to remove erroneous data [52], and data fusion technique
to verify calibration of sensors to ensure accurate data is col-
lected [48]. However, these trust management approaches offer
a multifaceted approach that not only determines the trustwor-
thiness of the data but that of the device itself. Because of these
additional features, we are convinced that trust management is
overall a better approach for verifying data trustworthiness.

3. Motivations and Contributions

Our motivations behind this work, and after studying the lit-
erature, are characterized by the following observations: (i) Tra-
ditional trust management systems are primarily focused on

entity-oriented data and classifying devices as trustworthy or
untrustworthy. Other approaches that consider a data-oriented
approach heavily rely on a consensus of the data to determine on
whether the message is trustworthy. Both of these types of trust
management are prone to threats that directly target trust evalua-
tion such as breakout fraud and colluding attacks. (ii) Current
trust management implementations [11, 31, 32, 33, 53] also do
not meet the real-time requirement of highly automated systems
such as smart cities. It often takes several instances of malicious
behavior before the application can safely and reliably prevent
harm from devices that suddenly begin acting maliciously. Thus,
it is vital to find a new implementation that can better prevent
threats manipulating the trust management approach, while also
maintaining the ability to process and mitigate the effects of
malicious actors in real-time. (iii) The collaborative IoT environ-
ment increases the potential for cybersecurity threats that affect
the way these devices communicate with one another and the
system’s decisions being made, which could potentially be life
threatening human. (iv) The behavior of the IoT devices could
change over time and could negatively affect the collaborative
decisions in the area, thus skewing the decisions and affecting
the outcome of the system while also impacting people’s wellbe-
ing. (v) The real-time requirement of IoT application is vital to
the decision-making process, which makes it even more impor-
tant to accurately detect and predict outcomes based on reported
data from devices within the applications network [54, 55].

To that end, we summarize our contribution as follows:
(1) Construct a behavioral model:
This model will focus on monitoring each IoT device’s reported
data to form a localized behavioral model based on geographical
location and standard behavior of devices in that area. This
approach involves monitoring each device’s data to gather an
understanding of a specific geographical location and the typical
behavior of the devices that participate there. Monitoring IoT
device’s data is vital to the real-time nature of the system because
to detect and mitigate threats in real-time, the system needs to
have the most recent data available. Collecting data must be
done for a relatively small geographical area so that the system’s
ability to perform operations and respond in real-time is not
affected. This behavioral model forms the foundation of the
remainder of the work and can be expanded upon by creating
many different behavioral models that each correspond to its
own geographical area.
(2) Develop a behavioral pattern identification process:
Through the consistent monitoring of devices’ behavior and us-
ing deep learning neural networks, it will be possible to detect,
classify, and mitigate any abnormal behavior in the system in
real-time. Using the behavioral model and the continued moni-
toring of devices’ data, the system will go through a behavioral
pattern identification process in which a device’s current behav-
ior will be compared against the known behavioral model. Any
device that does not reasonably match the standard or expected
behavior is determined to be an anomaly and will have its be-
havioral value adjusted accordingly. The analysis will provide
critical insight into the detection and, more importantly, enable
accurate mitigation of threats in the system.
(3) Formulate an Elo-based behavioral vector for trust man-
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Table 1: Threats related to the impacted surface

Impact surface Breakout fraud On-Off attack Colluding attack Illusion-based attacks
Misleading impact X - X X
Response accuracy impact X X X X
Immediate system impact X - X X
Prolonged system impact - X X -

agement:
This component will focus on evaluating the behavior of a de-
vice by using the behavioral pattern identification process to
determine a device’s trust value. To further aid in determining
the perceived trustworthiness of a device, an Elo-based formula
will be used to derive a distinct behavioral value that correlates
to a given device’s likelihood of following the established pat-
tern. Devices will have the ability to transmit messages with
numerous ranks each having a unique meaning, so each device
will have a behavioral value associated with each rank forming
a behavioral vector. This behavioral vector can then be used in
future implementations of trust management systems to more
accurately formulate a device’s overall trustworthiness.

4. Problem Statement

In this section, we define the terms being used throughout
the discussion and formulate the problem statement.

Definition 4.1 (Trust/trustworthiness). In this work, trust is a
numerical value that distinctly represents a specific device’s
likelihood of providing accurate information on the environment
around it.

Definition 4.2 (Message). The data that an IoT device transmits
to other devices.

Definition 4.3 (Message rank). An identifier value that is asso-
ciated with each message that corresponds to the criticality of
data contained within the message itself.

Definition 4.4 (Device’s behavior). A value associated with
each device that classifies how a device behaves for a given
message rank.

Definition 4.5 (Behavioral vector). A collection of behavioral
values that uniquely represent the behavior of a device for all
available message ranks.

Definition 4.6 (Device’s trust level). A calculation of the behav-
ioral vector that is represented as a single value for the overall
trust of a given device.

Our problem statement can be summarized as follows: Given
an IoT-based system setup, our goal is to design and implement a
dynamic trust management service through evaluating the trust-
worthiness of the IoT devices considering the messages being
transmitted and their ranks along with the devices’ behavior in
the system. This service will facilitate the ability to reduce the
impact of malicious actors manipulating the system and boost
the confidence level in the data being collected.

5. Threat Model

Malicious attacks can impact how IoT entities communicate
with each other and can affect trust building in a given network,
which could have a negative impact on the system. For instance,
in IoT-based connected vehicles setup, these issues could lead
to negative effects on human safety.

In this study, we focus on a set of threats with different
targeted effects on a system:
Threat 1 – Breakout Fraud: A breakout fraud attack occurs
when a device attempts to first build trust in the network by
providing accurate information, but at a given point in time,
it begins acting maliciously by transmitting false data to other
devices. This attack aims to take advantage of the fact that the
device has earned a high trust value, implying that other devices
in the network will most likely accept its data. At such a juncture,
the malicious device will be able to successfully inject malicious
data into the system, which can negatively impact the system’s
operations.
Threat 2 – Selective Behavior IoT devices can act maliciously
with a high probability that they randomly switch from send-
ing accurate messages to inaccurate messages and back again.
Selective behavior attacks seek to maintain a high trust value
such that, upon injecting malicious data, it is more likely for
the data to be accepted (other devices will apply this data to
a decision-making process). However, upon evaluating these
messages, the device’s trust will be lowered. Thus, the device
will opt to switch back to sending accurate messages for a short
period of time.
Threat 3 – Illusion-Based Attacks Illusion-based attacks rep-
resent a threat that occurs when devices have knowledge of the
data that relates to critical messages. With that knowledge, ma-
licious devices can create the illusion of a critical incident by
forcing their data to model those critical messages. This attack
is especially dangerous since it has the potential to deceive pro-
tocols that are in place to prevent the injection of malicious data.
For example, by creating an illusion-based attack and circum-
venting protection protocols, the smart-city system would accept
the data and be inclined to make decisions based on this new
information. But, because this information is actually inaccurate,
the smart city or connected vehicle network could potentially
make decisions that would negatively impact the overall condi-
tion of the network.
Threat 4 – Colluding Attacks In traditional trust management
implementations that use a majority-based consensus mecha-
nism [23], there is the potential for a colluding attack or an
overrule of the majority attack. This occurs when a number
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Table 2: Communication messages are categorized into ranks based upon the
severity of the information present in a given message. Four ranks are presented,
starting from rank 0 representing no information to be shared, all the way to rank
3 providing critical information that alerts others to the detection of a car crash.

Rank V2V Message
0 General alert – Corresponding to specific sensor data such as rain detection
1 Object on road – Incident message informing others of an object detected

on the road
2 Emergency vehicle – Message regarding the detection of an approaching

emergency vehicle
3 Car collision – Incident message alerting others of a car collision

of malicious devices reach consensus and the totality of those
devices’ trust values outweighs the actual trustworthy devices
(such that the malicious information is accepted as accurate).
One example is as follows: one device has a 100% trust value
while four other malicious devices each has 26% trust. If the
four devices with lower trust agree, then their weighted trust
values are higher than the trust value of the one telling the truth;
thus, the consensus has now been compromised. This is a se-
rious problem with traditional trust management approaches.
Specifically, smart cities and connected vehicles rely on the sys-
tem being able to make real-time decisions when necessary. By
not being able to detect the presence of malicious devices in
the network, malicious devices in turn will artificially inflate
their trust values, which can be used to propagate malicious data
throughout the network.

5.1. Impact Level

To supplement the threat descriptions, we summarize the
threat impact surfaces in Table 1.
• Misleading Impact: This impact is classified as having an
overall misleading effect on the system. This could be because
of an artificially inflated trust value or a message that deceives
other devices in the system into reacting in a certain manner.
• Response Accuracy Impact: These threats seek to communi-
cate specific information such that when processed, the system
will respond inaccurately to the events that are truly occurring.
• Immediate System Impact: Threats that have the potential
to quickly and severely harm the system are said to have an
immediate system impact. Usually, this will occur when the
malicious device intends to cause as much damage as possible
while knowing that it will be detected and removed from the
system quickly.
• Prolonged System Impact: Threats that remain in the system
won’t necessarily cause immediate harm but instead seek to
remain in the system until such a point that it will have the
potential to cause a significant impact over a longer period of
time.

Algorithm 1: Behavior-based Enhanced Trust manage-
ment System

1 V← set of all vehicles
2 Rank ← set of all ranks
3 MR← [ ]
4 for v < V do
5 Initialize(v)

6 for v ∈ V do
7 (mv, rmv )← generateMessage(v)
8 MR← (mv, rmv )

9 for each (mi, rmi ) ∈ MR do
10 Oelo ← calculateOpponentElo(V, rmi )
11 nnr ← NN(mi)
12 if rmi = nnr then
13 B⃗v(i)← Update(True, Oelo)

14 else
15 B⃗v(i)← Update(False, Oelo)

16 MR← ∅

6. Behavior as a Service for Trust management in IoT
Devices (BEAST)

Our approach is carried through four consecutive phases2

as depicted in Fig. 1. Starting with the Data Collection and
Behavioral Model Construction phase, which presents how de-
vices collect their data and how the data is compiled to form the
behavioral model. The second phase is the Behavioral Pattern
Identification Process that presents how deep learning is used
to classify devices’ behavior. Following that is the third phase,
Behavioral Assessment, which describes how the accuracy of
the message is used to develop a novel Elo-based behavioral
vector that will be used in the following phase [58]. The last
phase is Trust Modification, in which each device’s new trust
value will be derived from the behavioral vector. Our approach
is summarized in Algorithm 1.

In this work, we chose connected vehicles as our case study
to demonstrate the applicability of our proposed framework.

Phase 1 – Data Collection and Behavioral Model Construc-
tion:

6.1. Data Collection

This phase focuses on collecting driving statistics data of each
vehicle within a localized geographical region. This includes
each vehicle’s driving speed, acceleration, braking rate, etc (See
Table. 3). Additionally, data to be collected includes surrounding
information reported by vehicles such as road conditions, which
will be transmitted as ranked messages, which are presented

2An assumption is made that devices participating in this system have un-
dergone an enrollment procedure [56, 57] to verify the identity of the device as
well as provide the necessary application components (described in this section)
such that the device is able to contribute.
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Figure 1: Multiple consecutive phases of the Behavior-based Enhanced Trust management System (BEAST)

in Table 2. These ranks will be used to reflect how critical the
situation being reported is, where higher-ranked messages will
represent a more critical situation compared to that with lower-
ranked message. The focus is to collect data that is informative
and leads to a safer environment.
The driving statistics and associated ranks will then be prop-
agated to a nearby RSU for further processing. This is done
to alleviate the load on the connected vehicle from processing
data while allowing the RSU to conduct a deeper analysis of the
collected data. As data is supplied, the RSU will collect and
compile the driving statistics and apply deep learning algorithms
to construct a neural network that will represent a behavioral
model that is the foundation for the next phase. This behavioral
model will accurately represent how vehicles in the localized
geographical region typically behave in regard to the driving
statistics under specific conditions.

6.2. Behavioral Model Construction

In this study we utilized the TensorFlow library to build a se-
quential feed-forward neural network that acted as the behavioral
model. Table 3 represents a few data points that were used, from
which we extracted seven inputs (excluding the timestamp). Ad-
ditionally, four outputs were identified and are described in Table
2.
In this work, we follow traditional design by implementing the
rectified linear activation function ReLU for the hidden nodes as
given in Eq. 1, where x is the input to a neuron [59]:

y =

x if x > 0
0 if x ≤ 0

(1)

The softmax activation function was used only by the output
layer as a way to perform multi-class classification [60]. The
equation to calculate the sigma of the softmax activation func-
tion is presented in Eq. 2, were zi is the input vector, ezi is the
standard exponential function for the input vector, K is the num-
ber of classes in the multi-class classifier, and ez j is the standard
exponential function for the output vector:

σ(zi) =
ezi∑K

j=1 ez j
f or i = 1, 2, . . . ,K (2)

Table 3: SUMO simulation data snapshot showing the simulation time (sec),
the vehicle ID, the vehicle’s position, speed, location (x,y), acceleration, speed,
brake rate and the message being reported by that vehicle

timestep time 0 1 1
vehicle id 0 0 1
vehicle position 5 7 5
vehicle speed 0 2.12 0
vehicle x 2841.33 2840.47 604.42
vehicle y 2724.56 2722.62 2961.69
motionState acceleration 0 2120 0
motionState speed 0 212 0

Another critical component we considered when designing a
neural network is the loss function, which was used during
training such that it can be minimized, generally to yield higher
accuracy. For the purposes of this work, Tensorflow Kera’s
categorical cross entropy was selected as it is a common used
loss function for multi-class output data [61]. The equation for
categorical cross entropy is provided in Eq 3, where M is the
total number of classes, y is the indicator if class c is correct for
observation o, and p is the probably that o is of type c:

−

M∑
c=1

yo,c ln(po,c) (3)

The last component needed is the optimizer. Optimizers essen-
tially determine how biases, weights, and loss functions work
together to increase the overall accuracy of the model, and Adam
is generally considered the best algorithm and was used in this
design [62]. Adam essentially focuses on modifying the gradi-
ent decent algorithm to use the average of the gradients. This
allows the model’s loss to be minimized quicker than traditional
methods [63].
Knowing our inputs and outputs, activation functions, loss al-
gorithms, and optimizations it is possible to brute-force the
architecture of a neural network to yield sufficient accuracy to
satisfy the requirements of this study.
This neural network was trained via an iterative approach (pre-
sented in algorithm 2) where a trivial model was constructed
with only the input layer, one hidden layer with one neuron, and
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the output layer. The model was compiled, fit, and an evaluation
was performed with regard to loss and accuracy. The second
step was to increment the number of neurons in the hidden layer.
This brute-force methodology was followed until there was a
model with five hidden layers and 100 neurons per hidden layer.
The model that yielded the best loss and accuracy was saved
and used through the remainder of this study. The algorithm
described above is presented in Algorithm 2.

Algorithm 2: Iterative Neural Network Development

1 Let NN be the neural network model
2 input units← 7
3 output units← 4
4 for hidden layer i < 5 do
5 for number neurons n < 100 do
6 Create NN with n neurons to i hidden layers
7 fit(NN)
8 evaluate(NN)

Phase 2 – Behavioral Pattern Identification Process: The
behavioral model represents how vehicles typically behave in
a given area. In this phase, the incoming vehicle data will be
input into the behavioral model to calculate the expected rank of
the message. This will allow for a comparison of the vehicle’s
driving statistics to the expected behavior.
Malicious vehicles will often inject data into the network with
the purpose of causing havoc; malfunctioning vehicles will not
realize they are submitting inaccurate information, which makes
the detection of these intended or unintended threats in real-
time critical. These devices must be punished and effectively
removed prior to causing any harm. By monitoring the exchange
of data and using deep learning-based behavioral model, the
vehicle’s data can be classified to determine whether the driving
statistics of the device matches the rank based on the behavioral
model. If the driving statistics do not match, then the model will
output a classification for the message that implies the vehicle
is malfunctioning, being malicious, or for any of the following
reasons:

• A malfunctioning sensor would produce incorrect readings.
For instance, connected vehicles would send data that does
not match their driving pattern [64].

• Injection of falsified information can negatively impact the
system’s abilities to make the best decisions. A malicious
vehicle could be attempting to inject data to have subse-
quent vehicles rerouted so it would have the road to itself
[65].

• General malicious behavior can alter the system’s ability
to detect truly malicious behavior. For example, driving
behavior that does not comply with the road rules (such
as speed limit) could impact the ability to determine the
standard behavior of the road [66].

In the event that the behavioral pattern identification process
relates the driving statistics back to the original rank, the vehicle
reported, then the message is deemed accurate and trustworthy,

thus increasing the vehicle’s behavioral value for that rank. But,
if the message rank is different than what the vehicle reported,
the message is deemed to be an anomaly and thus the vehicle’s
trust value will be decreased accordingly. Additionally, mes-
sages that are found to be trustworthy will be appended to the
behavioral model training set, such that over time behavior has
the opportunity to change and will not become stale.
Phase 3 – Behavioral Assessment:
There are two general means of calculating Elo, or the rating
of a player or in our implementation a device’s trustworthiness
[58, 67]. The original Elo system was developed by Arpad Elo
in the 1950s to calculate the strength of chess players [58]. This
model applies a statistical methodology that takes into account
the opponent’s strength to determine the strength of the player,
this methodology will be discussed in more detail below. The
second means of calculating Elo is called the Glicko system,
developed by Mark Glickman [67]. This system was designed
as a way to more accurately reflect new players’ ratings, the
idea being that newer players are more likely to increase their
skill level more quickly than players who have played thousands
of games. Thus the Glicko system puts extra emphasis on the
number of games played.

Algorithm 3: Initialize(v)

1 Rank ← set of all ranks
2 B⃗v ← |B0, B1, B2, . . . , BRank−1|

3 for r ∈ Rank do
4 Br ← 800

5 V← v

For the purposes of this work, it was determined that the original
implementation of Elo is best suited due to the fact that allowing
new devices to more quickly build trust means that the system
is more vulnerable to breakout fraud. And in this regard, the
opponent’s Elo was calculated as shown in Algorithm 4. As
devices enter the system, they will be considered neutral entities
that will each have a neutral trust value, meaning an initial value
that all devices begin with that is not too high or low such that the
device has the ability to both build and lose trust. Further, upon
introduction to the system, each vehicle will have a behavioral
vector initialized (Algorithm.3). This behavioral vector will
consist of n unique behavioral values that correspond to how a
specific vehicle’s behavior corresponds to a certain rank, where
n is the number of possible message ranks as presented in Table
2. The implementation of this behavioral value will be via an
application of the Elo rating system [58].

Algorithm 4: calculateOpponentElo(V, mr)

1 TR ← 0
2 for each v ∈ V do
3 TR += B⃗v(mr)

4 Oelo ← TR/|V |
5 return Oelo
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As messages shared by a vehicle are analyzed and evaluated
through the behavioral pattern identification process, the behav-
ioral vector’s indices (bi) represent that device’s trustworthiness
level for the given rank or index and will be continuously in-
creased or decreased according to how the vehicle’s behavior
corresponds when that rank is applied to a message.
The behavioral vector (V⃗b) consists of n behavioral values for a
given rank (bi) such that

V⃗b =< b0, b1, b2, . . . , bn > . (4)

Each index of behavioral value is calculated via the same math-
ematical formulas of the Elo system after being initialized, as
shown in Algorithm 3 [58].

Algorithm 5: Update(Result, Rb)

1 Ra ← behavior of device a
2 Rb ← be the behavior of device b
3 Ea ← expected outcome, that is defined as the

following:
4 Ea ← 1/(1 + 10(Rb−Ra)/400)
5 if Result then
6 S a ← 1

7 else
8 S a ← 0

9 K ← 32
10 Let R′a be the new behavior of device a, be defined by:
11 R′a ← Ra + K(S a − Ea)
12 Return R′a

Eq. 5 represents the likelihood that device A will tell the truth.
This equation takes into account the rating of device A (Ra) and
the rating of device B (Rb) to make this calculation:

Ea = 1/(1 + 10(Rb−Ra)/400). (5)

As we consider the rankings of device A and device B, we will
be able to calculate the expected Elo score for device A, which
reflects the likelihood that device A is telling the truth.
Eq. 6 shows the formula used to update device A’s rating. Where
R′a is the new rating of device A. Ra is their current rating. K
is the multiplier for a change in Elo, and S a is the actual score
device A achieved (1 if they win or the message was benign, 0
if they lose or the message was malicious). This is to say that
if a device were to have the behavioral pattern identification
process to determine if the message was true and accurate, then
the behavioral vector with the index equal to the rank associ-
ated with that message will be increased by Eq. 6. Conversely,
if the behavioral pattern identification process determines the
message to be inaccurate or malicious, both the predicted rank
of the process and the rank of the message the vehicle sent will
be decreased in accordance with the following equation. The
decrease for both the predicted rank and the message rank aligns
with how difficult it is to build and lose trust, as presented in
[68]. This process is presented in Algorithm 5.

R′a = Ra + K(S a − Ea) (6)

Phase 4 – Trust Modification: As previously mentioned, the
behavioral vector will be the instantaneous representation of
the device’s behavior for all available ranks; however, this be-
havioral vector must be integrated with trust to achieve a more
accurate representation of the device’s trustworthiness. After de-
termining whether the device has matched the expected behavior
or is an anomaly (either malfunctioning or malicious), the RSU
will calculate the device’s trust value with respect to the 2-norm,
as this is a standard method of measuring a vector as given in
equation 7:

T = ||V⃗b||2. (7)

6.3. Generality discussion

The steps described above can be applied to any system that
is driven by peer communication and relies on the evaluation of
this data. Additionally, any of the steps can be modified in place
as long as the primary goal of each phase is accomplish. That is,
BEAST is designed as a service acting as a framework where the
specifics of each phase are suggestions but can be interchanged
if desired by the system designer. Of the five components of
this design, phase one (data collection and behavioral model
construction) is the most fundamental upon which the remainder
of the system is built. When applying this design to a new
system, the only requirement is to have taken the necessary steps
to ensure data collection is in place and construct a behavioral
model that is able to accurately reflect the behavior of devices.
Once this has been conducted, the final setup requires routing
the data being transmitted through the behavioral model for
evaluation. The output of this behavioral pattern identification
process (evaluation of a message as benign or malicious) is used
in the latter phases (three through five) to increase or decrease
the trust of a device and label it as trustworthy or untrustworthy.

Additionally, to promote the longevity of this design, it is
critical to enable the behavioral model to be updated to support
the growth and changes in the network. This step is represented
in our feedback loop in Fig. 1. Without this feedback loop,
the behavioral model would become stale and the nature of the
system would change the behavioral model would flag every
interaction as an anomaly and thus all devices would be consid-
ered untrustworthy. To further support this design as a service,
the method and frequency of updates to the behavioral model as
well as recompiling and distribution to devices is configurable
by the application designer.

7. System Design and Evaluation

As previously mentioned, this approach can be applied to
any system that focuses on peer communication and data evalua-
tion. Thus, for the purposes of this study, the team selected a use
case of connected vehicles. This was selected since BEAST can
reliably evaluate the data that vehicle to vehicle (V2V) communi-
cation shares, thus greatly increasing the overall safety of smart
cities where these connected vehicles are deployed. This is sup-
ported by the National Highway Traffic Safety Administration
(NHTSA); they describe V2V communication messages as basic
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Table 4: Relation of rank to the expected driving pattern described below. These
vehicle speeds and braking rates are SUMO-specific values that are uniquely
represented by the simulation. The values used to identify each rank, is derived
from the distribution of data points from over 500 unique simulations.

Rank Driving Patterns
0 Vehicle in motion: Vehicle is traveling without impact
1 Braking occurs (1-2): Vehicle speed must be less than 1200
2 Heavy braking (2-3): Vehicle speed must be less than 800
3 Major braking (3-4, 5): Vehicle speed must be less than 400

safety messages (BSMs) that correspond to messages passed be-
tween vehicles regarding dynamic information such as heading,
speed, and location as well as warning messages that alert other
vehicles of dangerous circumstances [8]. Additionally, there are
other safety applications that depend on the sensors with which
connected vehicles are equipped [69]. Potential messages or
warnings include the following (as defined by the NHTSA [8]):
• Intersection Movement Assist (IMA): Alerts drivers when
it is unsafe to merge into an intersection.
• Left Turn Assist (LTA): Warns the driver that it is unsafe
to make a left turn because there is oncoming traffic and thus a
potential for collision.
• Emergency Electronic Brake Light: An alert that triggers
when a driver is applying the brakes. This is useful when a lead
vehicle might not be visible to a trailing vehicle because of a
blind curve or severe weather conditions.
• Forward Collision Warning: Warns the driver of potential
collision with a leading vehicle. Such a warning would also
be beneficial to other drivers and infrastructure because it is a
measurement of how close vehicles are following.
• Do-Not-Pass Warning: Communication warning a following
vehicle that it is not safe to pass. This is attributed to a number
of reasons (e.g., oncoming traffic is approaching, so it is not safe
to pass at present).

Because connected vehicles is a relatively new research area,
and few exist in production environments, real-world data is
not readily available for the demands of this work. Simulation
of Urban Mobility (SUMO) and OpenStreetMap (OSM) were
used to design and simulate connected-vehicle-related scenar-
ios. Large-scale road networks were implemented and designed
with an abundance of cars to log and output driving statistics
and vehicles’ shared messages to form the dataset used for the
reaminder of this work [70, 71, 72].

Through the use of SUMO, numerous reported statistic “fea-
tures” such as speed, position, acceleration, and braking were
generated. Samples of these statistics are shown in Table 3.

As mentioned, in addition to the reported features, the col-
lected data will also contain a ranked message that correlates the
driving statistics to warning (or BSMs) and incident messages.
Correlation of message ranks to a particular communication
message is shown in Table 2, and the distinction created by these
particular messages is presented in Table 4.

A message rank of 0 does not correspond to any message in
particular. This form of message does not have any impact on
the system but is implemented such that the vehicle is able to
transmit its current driving statistics to the infrastructure so that
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Figure 2: An architectural diagram of the sequential feed-forward neural network
used as the behavioral model for this work.

the smart city is aware of the current statistics of drivers on the
road. These types of messages are considered warning messages
that represent NHTSA’s BSMs. These messages should not war-
rant any drastic changes in driving patterns. They are primarily
for the other drivers and infrastructure to be made aware of the
current environment. In real-world applications, these messages
could also be derived from another sensor. Specifically, these
sensors may include rain detectors, light detection for headlights,
detection of ice, or an ultrasonic sensor or camera that is able to
detect and identify objects on the shoulder of the road, such as
a traffic sign or a pedestrian [73], or even come from a sensor
monitoring the acceleration of said vehicle or other information
such as the blinker indicating a lane change. There also exist
incident messages (ranks 1-3), where it is expected to force a
substantial change in the current driving pattern to accommodate
the reason for the message. Messages with high ranks indicate
the seriousness of the incident, which will impact the system
and help efficiently implement traffic rerouting when necessary
[74].

7.1. Behavioral Model Construction Evaluation

The architecture of the sequential feed-forward neural net-
work that is used as the behavioral model for this work is pre-
sented in Fig. 2. As previously mentioned, our data set is ob-
tained from several SUMO simulations to develop a baseline
of how vehicles would behave in a given geographical area. To
describe this behavior, the team captured seven input features:
the position of the vehicle within the map or corresponds to a
specific road that the vehicle is on, the average speed of the
vehicle since the last message, both the latitude and longitudi-
nal coordinates of the vehicle to obtain specifically where the
vehicle is on the road, the current acceleration of the vehicle,
the current speed of the vehicle, and lastly how hard this vehi-
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Table 5: BEAST Neural Network Model Accuracy Evaluation

Rank Correct Predictions False Predictions Accuracy
0 141,662 451 99.68%
1 58,495 211 98.67%
2 15,691 257 98.39%
3 66,202 212 99.68%
Total 282,050 1,131 99.60%

Table 6: BEAST Neural Network Model Time Evaluation

Vehicle type Number of messages Time (sec)
Malicious 249 3.53
New vehicle 599 8.66
Threat Model Analysis 249 3.42
Total 1097 15.61

cle is braking at the given moment. This information provides
specifics regarding the current position of the vehicle as well as
the specific driving statistics. These two components are both
necessary for the evaluation of behavior because the location of
the vehicle can impact how it behaves (i.e., a vehicle is on the
interstate it generally is driving much faster than on a highway)
and of course, it is necessary to monitor the driving statistics of
the vehicle to insure the vehicle is behaving similarly to other ve-
hicles in the network. Using the iterative approach as described
in Section 6.2, the model that yielded the highest accuracy was
a model with one hidden layer with 59 neurons (Fig. 2). These
neurons used the ReLU activation function and were fed into
the output layer with four neurons using the softmax activation
function to obtain the class from the result of the neural network.

7.2. Behavioral Model Performance Evaluation

The performance evaluation for BEAST’s neural network
model is divided into two separate evaluations: an accuracy
analysis as well as a time complexity analysis.

The first evaluation metric for BEAST’s neural network
model is an accuracy analysis. Since this multi-class model is
able to predict the rank of the message, it is necessary to compare
the actual and predicted values. The specific rank accuracy is
presented in Table 5. The model can overall accurately predict
message ranks with over 99% accuracy. Table 5 shows how each
actual message rank compares to the predicted rank. This matrix
shows that rank 0 messages are generally predicted to be rank 0,
with less than 0.5% being classified as rank 1. Similarly, rank
1 messages are primarily classified as rank 1, still having only
1.5% being classified incorrectly. This general trend continues,
indicating that this model is able to accurately predict message
rank values.

The time complexity analysis is shown in Table 6. This
table displays how many messages each simulation incorporated,
as well as how much time (in seconds) it took to process each
simulation. It should be noted that the time presented in this
table includes the overhead of vehicles to process the message
and transmit it to the central node. Even so, it can be seen that
in the malicious and threat model analysis simulation it took
approximately 3.5 seconds to process 250 messages, while in the

new vehicle analysis simulation it took 8.66 seconds to process
almost 600 messages.

Therefore, to process the 1097 messages in 15.61 seconds
leads to a processing time of 70.28 messages per second or con-
versely 0.014 seconds per message3. This data shows that this
approach is able to meet the necessary real-time and scalability
requirements, as a single node is able to process 70 vehicles
sending one message every second. To extrapolate this further,
if vehicles were to instead send a message every minute instead
of every second, a single node could process 4200 vehicles
simultaneously without building a queue.

7.3. BEAST Evaluation

To evaluate our proposed system, we designed test use cases
to demonstrate the capabilities of our proposed approach to
mitigate the threats described in the threat model (Section 5).

Our evaluation is demonstrated via three use cases represent-
ing different scenarios in the system. The base use case is where
vehicles are participating in the system and being evaluated as
behaving normally (benignly) or maliciously. The new vehicle
use case demonstrates how our proposed approach addresses
new devices entering the system and how trust is gained, and
the threat model use case covers each of the threats presented in
Section 5, as well as how our proposed approach handles that
threat.

Each of these use cases was simulated to contain five ve-
hicles, where each vehicle remained in the system for at least
50-time units (minutes) such that enough time has passed for
the messages to be transmitted, processed, and trust values to be
modified thoroughly enough to gain an accurate simulation of
the events that occurred.

7.3.1. Base use case
This use case demonstrates how both trustworthy and mali-

cious devices will transmit messages and have their behavioral
values modified across their lifetimes. This is clearly shown in
Fig. 3a as devices 1, 2, and 3 have their trust values trending
upward with a few minor decreases, which can be attributed to
an event such as the vehicles driving too fast for the indicated
message rank.

Looking at vehicles 1, 2, and 3 specifically, it can be seen
in Fig. 3b and Fig. 3c that their behavior for these two ranks
steadily increases, indicating that the devices were transmitting
lots of rank 0 and rank 1 messages. Further, these messages were
deemed accurate by the deep learning neural network model, in-
creasing their behavior for these ranks accordingly. Conversely,
looking at Fig. 3d and Fig. 3e, it can be seen that the behavior
for rank 3 did not increase but instead maintained their current
behavioral values. This is because the vehicles did not send
messages with this rank and thus did not have their behavior ad-
justed. These trust values presented in Fig. 3a are calculated via
the equation presented in Eq. 7, or the 2-norm of the behavioral
values for each message rank. This shows that even if vehicles

3This performance resulted from an AMD Ryzen 5600X x86-64 processor at
3.8GHz and NVIDIA GeForce 2080Ti.
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(a) Overall trust value changes over time driven by the behavioral values. The x-axis is represented by time in minutes, which is equivalent to the number of messages sent,
while the y-axis corresponds to the device’s trust value represented by Elo.
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Figure 3: Base use case: results from a simulation with five devices, three of which have benign behavior and two of which are behaving maliciously. The x-axis is the
time of the simulation (minutes), while y-axis represents the trust value of the device (Elo).

are to only send messages of a specific rank, it will impact their
overall trust value while not impacting the behavior value for
ranks, for which the vehicle did not send messages.

Looking at the two malicious devices (vehicle 4 and vehicle
5) it can be seen in Fig. 3a that their trust values steadily decrease
throughout the simulation. Specifically looking at Fig. 3b, we
can see that vehicle 4 and 5 had no changes, indicating that they
did not send any messages with rank 0. Similarly, in Fig. 3c we
can see that vehicle 4 had several decreases indicating that all of
the messages the vehicle sent were deemed to be malicious and
thus have its behavior decreased. With ranks 0, 1, and 2, vehicle
5 had no changes to its behavior, indicating it sent no messages,
while vehicle 4 had several messages sent. However, vehicle 5
sent several messages of rank 3 all of which were determined to
be malicious and thus negatively impacted vehicle 5’s behavioral
value and overall trust value. Looking at the behavioral values
represented by Figs. 3b, 3c, 3d, and 3e, it can be seen that they
directly correspond to the vehicle’s trust values presented in Fig.
3a.

7.3.2. New vehicle use-case
Our results for this case are shown in Fig. 4. These results

demonstrate the rate at which the vehicle’s trust values can in-
crease across the lifetime in the system. This simulation contains
five total vehicles. Three (vehicles 1, 2, and 3) entered the simu-
lation at time zero with a trust value of approximately 1600 (the
2-norm of a vector length 4 with values of 800). It can be seen in
the behavioral value figures (Figs. 4b and 4c) that these vehicles
primarily send rank 0 and rank 1 messages as their behavioral
values drastically increase over this time frame, while rank 2 and
rank 3 (Figs. 4d and 4e) primarily maintain their initial behavior
values, or had slight decreases which can be explained by the
vehicle potentially driving too fast for the given message. Again,
according to the method for calculating the trust value, it is just
the 2-norm of the behavioral value vector (represented by Eq. 7).
It is clear that the these vehicles’ trust values also increase.

It can be seen in Fig. 4a that at time 50, a new vehicle
(vehicle 4) enters the system with the original neutral trust value
of approximately 1,600, at which point it will closely mimic
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(a) Results from a simulation with five devices, three of which have a benign behavior and two of which are behaving maliciously. The x-axis is represented by time in
minutes, which is equivalent to the number of messages sent, while the y-axis corresponds to the device’s trust value represented by Elo.
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Figure 4: New Vehicle: The x-axis is the time of the simulation (minutes), while they-axis represents the trust value of the device (Elo).

what was described above where it will send accurate messages
of rank 0 and 1, allowing its overall trust value also to increase.
This process is repeated again at time 100 with another vehicle
(vehicle 5). Overall, it can be seen that all trust values are
generally trending upward, indicating benign behavior, but the
critical part to note is the rate at which each of the vehicles’
trust is increasing. When comparing the rate of trust value
increase of vehicles 1, 2, and 3 to that of vehicle 5, it becomes
clear that vehicle 5 is increasing significantly faster. This is
because the method for increasing or decreasing a vehicle’s
behavioral value is using the Elo rating system. As was discussed
in Section 6 - Phase 3, the ’opponent’ vehicles (vehicle 1, 2, 3,
and 4) already had higher trust values, so vehicle 5 was able to
effectively play against higher rated devices and thus increase
its Elo more quickly than vehicle 1, 2, and 3 were able. Because
the ’opponents’ values, in that case, were equal to their own, the
Elo increase was not as drastic.

The overarching idea is that even when some vehicles have

existed in the system longer, new vehicles entering the system
will be able to gain trust quickly enough that they are able to aid
the system.

7.3.3. System under the threat model use case
This simulation introduces the threats that were presented

in Section 5 with two trustworthy devices, one behaving mali-
ciously, one performing breakout fraud, and another performing
the selective behavior attack. Our results for this case are shown
in Fig. 5. Fig. 5a presents the overall trust values (Elo) of de-
vices throughout this simulation, and it can be seen that as in
all other use cases, vehicles 1 and 2, which are behaving in a
trustworthy manner, are able to successfully increase their trust
values primarily through sending accurate rank-0 and rank-1
messages, as can be seen in Figs. 5b and 5c.

Specifically, looking at the malicious vehicle, it can be seen
in Figs. 5a that the trust value is steadily decreasing. The simula-
tion was designed in such a way that the anomalies were injected
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(a) A simulation containing the primary threats from our threat model to analyze how BEAST mitigates these threats. The x-axis is the time of the simulation (minutes),
while the y-axis represents the trust value of the device (Elo).
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Figure 5: Results from a simulation with five devices, two of which have a benign behavior and three of which are behaving maliciously, each performing their own
attack—specifically, being malicious, committing breakout fraud, and performing a selective behavior attack. The x-axis is the time of the simulation (minutes), while
the y-axis represents the trust or behavioral value of the device (Elo).

into the simulation such that the vehicle only sent messages of
rank 3; however, according to the behavioral values in Figs. 5b
and 5c, it can be seen that the neural network determined these
messages to actually be of ranks 0 and 1, thus decreasing those
behavioral values accordingly instead of decreasing the rank that
the vehicle sent.

Similarly, looking at the vehicle performing breakout fraud
(where the vehicle attempts to quickly build trust and then switch
to being malicious such that its messages will be trusted, as
mentioned in Section 5), we can see that the vehicle gains trust
similarly to both of the benign vehicles, but at the halfway point
of the simulation the vehicle suddenly begins acting maliciously
and sends only malicious messages (again of rank 3). It can
be seen that, initially, the breakout fraud vehicle sends several
rank-0 and rank-1 messages (Figs. 5b and 5c). Later, when the
behavior changes from good to bad, the vehicle starts to send

higher ranked messages, but again the neural network determines
these messages to have an actual rank of 0 or 1, thus decreasing
that behavioral value as can be seen in Figs. 5b and 5c).

Last is the vehicle performing the on-off attack (where the
vehicle will periodically switch behavior from benign to mali-
cious, as mentioned in Section 5). Fig. 5a shows that the vehicle
has its trust value increasing and decreasing periodically. Look-
ing at the specific behavior values, we can see that the vehicle
primarily sent rank 1 and rank 2 messages, since that is the
primarily behavior value with fluctuation.

These results show that the methodology introduced in this
paper is able to successfully mitigate these attacks by ensuring
devices which perform them are punished because the vehicles
that are performing the attacks discussed in Section 5 are not
able to increase their trust in any meaningful manner.
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8. Conclusion

In current trust management approaches, when a majority
of devices in the network are malicious and injecting inaccurate
data into the system, there is no method that validates the data
that these devices are sending. Instead, the system solely relies
on the consensus of data to determine accuracy and update
the trust value accordingly. This design sought to mitigate the
weaknesses from which current trust management systems suffer.
These weaknesses include the punishment of malicious actors in
real-time as well as mitigating colluding attacks, which seek to
exploit traditional consensus mechanisms.

This work has shown that the collection of a device’s data
enables the creation of a behavioral model that describes how
devices in a given geographical location behave; using a deep
learning model, it is possible to detect malicious behavior in real
time and with over 99% accuracy; and, through this detection
process, a behavioral vector can be obtained implementing an
Elo rating system to represent the device’s trustworthiness for a
given message rank. The 2-norm of this behavioral vector was
calculated and equates to the device’s trust value.

Further, the behavior-as-a-service trust management approach
was designed as a framework, which provides three distinct ser-
vices to trust management: the construction of a behavioral
model, a behavioral pattern identification process, and an Elo-
based behavioral vector for trust management. Through detailed
data collection, a behavioral model can be designed for a lo-
calized area, which accurately represents the standard behavior
of devices within the area. Then a behavioral pattern identifi-
cation system was constructed, which utilized a deep learning
model such that when new messages from devices were input,
the data would be extracted and compared to the behavioral
model that was previously created. Through this analysis of data,
any devices whose data did not match the standard or expected
behavior will be classified as an anomaly and will be punished
accordingly. Lastly, after the behavioral pattern identification
system, a behavioral vector would be calculated. This behav-
ioral vector is comprised of behavioral values each representing
a device’s trustworthiness for a given message rank. These be-
havioral values are based upon an Elo rating system, a proven
method for accurately rating skill or, in this case, trust.

The results in Section 7.3 demonstrate that, using the method-
ology described above, we were able to successfully design a
mechanism for monitoring and calculating a devices trust value.
Additionally, we were also able to mitigate threats including:
breakout fraud, selective behavior, illusion-based attacks, and
colluding attacks in real-time. Fig. 5 clearly demonstrates that
devices whom are behaving maliciously are punished accord-
ingly, and devices who commit attacks such as breakout fraud
and selective behavior are punished quickly and sufficiently
enough such that they are unable to maintain a high trust value
that would harm the system.

By designing this approach to be used as a service, the
ability to modify parameters used throughout this work is key
to the overall success of the implementations. If a designer
required a trust management implementation with more steady
trust values, then simply changing the K-value in Eq. 6 to be

smaller would yield a more consistent trust while simultaneously
increasing risk in the system as potential malicious actors would
not be punished as quickly. If the application this model were
being applied onto required incredibly high data scrutiny, then
increasing the threshold for a device to be considered trustworthy
would be to say that data will only be accepted from devices who
have 95% trust value or higher. By designing a dynamic solution,
we facilitate the modification of the values used throughout this
work such that the requirements of the application that this
solution is applied onto can be met.
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