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Abstract
This paper presents an immersed, isogeometric finite element framework to predict the response of multi-material, multi-
physics problemswith complex geometries using locally refined discretizations. To circumvent the need to generate conformal
meshes, this work uses an extended finite element method (XFEM) to discretize the governing equations on non-conforming,
embedding meshes. A flexible approach to create truncated hierarchical B-splines discretizations is presented. This approach
enables the refinement of each state variable field individually to meet field-specific accuracy requirements. To obtain an
immersed geometry representation that is consistent across all hierarchically refined B-spline discretizations, the geometry is
immersed into a single mesh, the XFEM background mesh, which is constructed from the union of all hierarchical B-spline
meshes. An extraction operator is introduced to represent the truncated hierarchical B-spline bases in terms of Lagrange shape
functions on the XFEM background mesh without loss of accuracy. The truncated hierarchical B-spline bases are enriched
using a generalized Heaviside enrichment strategy to accommodate small geometric features and multi-material problems.
The governing equations are augmented by a formulation of the face-oriented ghost stabilization enhanced for locally refined
B-spline bases.We present examples for two- and three-dimensional linear elastic and thermo-elastic problems. The numerical
results validate the accuracy of our framework. The results also demonstrate the applicability of the proposed framework to
large, geometrically complex problems.

Keywords Immersed finite element method · Extended isogeometric analysis · Multi-material problems · Multi-physics
problems · Truncated hierarchical B-splines · Lagrange extraction

1 Introduction

Finite element analysis is frequently used to predict the
response of systems described by partial differential equa-
tions defined over a spatial domain. In classical finite element
methods, the domain is discretized using a single mesh that
conforms to the external boundaries and internal material
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interfaces. For problems with complex shapes and multiple
material phases, the construction of this conformal mesh is
often a major bottleneck in the analysis process, see Bazilevs
et al. [3]. Conformal mesh generation may also hamper the
automation of the finite element analysis for problems with
changing geometry as encountered in, for example, phase-
change problems with dynamically evolving interfaces or
shape and topology optimization.

The state variable fields may exhibit large spatial gradi-
ents at boundaries and material interfaces, as well as in the
vicinity of small geometric features. To resolve these spa-
tial gradients, a sufficiently fine discretization is needed.
While uniformly fine discretization may yield an accu-
rate approximation, the associated computational cost may
exceed practical limits. A locally refined mesh balances
discretization needs and computational cost. However, gen-
erating locally refined meshes for standard finite element
methods further increases the complexity of mesh genera-
tion.
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Many engineering and science applications involve mul-
tiple, often coupled state variable fields. For such problems,
each field may require differently refined discretizations. For
example, consider the two-material, thermo-elastic problem
of a circle embedded in a rectangular plate shown in Fig. 1a.
We assume that the circle is made of a material with a finite
coefficient of thermal expansion (CTE), while the plate’s
CTE is zero. The plate is subject to a spatially varying heat
flux along its right edge and clamped at its left edge. The
heat flux increases the temperature in the system, causing the
circle to expand which generates stresses in both the plate
and circle due to the CTE mismatch. To predict the stress
field at the material interface with high accuracy, accurate
approximations of both the temperature and displacement
fields are required. The contour of the norm of the diffusive
flux is shown in Fig. 1b and the contour of the Von Mises
stress field in Fig. 1c. The regions with large spatial gra-
dients differ between the displacement and the temperature
field. Separately adapting the discretizations associated with
each field enables a sufficient resulution of each field while
minimizing the overall computational cost. An example of
such discretizations for the temperature and displacement
fields is depicted in Fig. 2a, b, respectively.

Lagrange polynomials are the standard choice for basis
functions in finite elements. The element-local nature of
this class of basis functions and their interpolatory prop-
erty facilitate a convenient and efficient implementation and
enforcement of Dirichlet boundary and interface conditions.
However, Lagrange basis functions limit the inter-element
continuity to C0, irrespective of the polynomial order of the
approximation within the element. The lack of higher-order
inter-element continuity affects the efficiency of Lagrange
bases, measured by the number of degrees of freedomneeded
to achieve a desired accuracy; see for example Evans et al.
[20].

In this work, we propose a computational framework that
addresses the issues encounteredwith standard finite element
approaches as outlined above. This framework synthesizes
the following concepts which will be further discussed in
detail below.An immersedfinite element approach is adopted
to eliminate the need for conformal mesh generation. Higher
order B-spline basis functions are used to increase the dis-

cretization efficiency over Lagrange bases. For each state
variable, a truncated hierarchically refined B-spline basis is
generated to meet field-specific accuracy requirements.

Immersed BoundaryMethods (IBMs) have gained in pop-
ularity in recent years, see Babuška and Melenk [2], Peskin
[38], Mittal and Iaccarino [32]. The general idea of these
methods is to immerse the geometry of the physical domain
into a computational domain with a much simpler geome-
try. Thus, the geometries of the physical and computational
domains are decoupled. The geometric simplicity of the com-
putational domain allows for the convenient generation of
IBMbackgroundmeshes, such as tensor grids. The geometry
is immersed into the IBMbackgroundmesh,which simplifies
the discretization of the state variable fields.

In this work, we focus on finite element formulations
of IBMs. Immersed Finite Element Methods (IFEMs), also
referred to as geometrically unfitted or embedded domain
finite element methods, include the Finite Cell Method, see
Parvizian et al. [37], Düster et al. [16], Schillinger and
Ruess [43], theCutFEM[39], theGeneralized Finite Element
Method (GFEM) [15,47], and the eXtended Finite Element
Method (XFEM), see Belytschko and Black [4], Belytschko
et al. [5]. In this paper, we consider specifically the latter
approach. The XFEM augments the standard finite element
basis with additional basis functions to represent discontinu-
ities of the state variable field within an XFEM background
element that is intersected by a boundary or an interface. The
augmented finite element basis satisfies the partition of unity
(PU) property. In this work, we adopt aHeaviside enrichment
strategy for its flexibility in modeling interface and boundary
conditions of multi-material problems with complex geome-
tries, see Noël et al. [36].

Traditionally, Heaviside enriched XFEM approaches dis-
cretize state variable fields by Lagrange basis functions
which are defined on the XFEM background mesh. In this
paper, we adopt higher order B-splines for discretizing state
variable fields. The advantages of B-splines basis func-
tions for finite element methods have been demonstrated in
the context of Isogeometric Analysis (IGA), see Hughes et
al. [26]. While IGA was originally developed to eliminate
the discrepancy between CAD geometry representation and
finite element analysis, Evans et al. [20] showed that B-spline

Fig. 1 Illustration of an example thermo-elastic problem

123



Computational Mechanics (2023) 71:1179–1203 1181

Fig. 2 Example of locally
refined discretizations for the
thermo-elastic problem depicted
in Fig. 1a

Fig. 3 Union of the locally refined meshes depicted in Fig. 2a, b

basis functions in general improve accuracy, robustness, and
computational efficiency. In this work, we further utilize the
refineability property of B-splines, see Garau and Vázquez
[21].

B-spline basis functions were studied with IFEMs by
Schillinger et al. [44], Schillinger and Rank [42], Schillinger
and Ruess [43], Verhoosel et al. [50], Elfverson et al. [18],
Divi et al. [14], Noël et al. [35]. Nguyen [33] introduced
B-spline approximations to the XFEM and coined the term
X-IGA. These works demonstrated that integrating higher
order B-splines discretizations into IFEM approaches yields
improved accuracy and computational efficiency compared
to the use of Lagrange basis functions.

The ability to locally refine B-splines enables the conve-
nient construction of locally refined approximation spaces,
see Giannelli et al. [23], Buffa and Giannelli [7], Bracco et
al. [6]. While standard hierarchical B-spline bases do not
fulfill the PU property, truncating the bases restores the PU
property [23]. Truncated Hierarchical B-spline (THB) basis
functions form a sparse, strongly stable basis [23] and are
employed in this work.

This paper contributes to the work on IFEMs as follows.
We introduce a versatile discretization approach based on
THBs defined on locally refined tensor meshes. Each state
variable can be discretized individually by choosing the poly-
nomial order and the local refinement independently from
the discretization of other fields. This approach leads to an
explicit control over the accuracy of the field approximations
and the computational cost of the analysis. Computation-
ally efficient algorithms and data structures are introduced
to enable the application of this discretization approach to
large-scale problems in two and three dimensions using par-

allel computing. To integrate the locally refined B-spline
discretization approach into the XFEM, a single union mesh
is generated from the individual B-spline meshes. Figure 3
shows the union mesh generated for the two locally refined
meshes presented in Fig. 2. The union mesh serves as the
XFEMbackgroundmesh inwhich the geometry is immersed.
To increase the geometry resolution, the XFEM background
mesh can be additionally refined. We introduce an exact
extraction operator that expresses THBs in terms of Lagrange
basis functions over each element of the XFEM background
mesh.

The enrichment strategy of Makhija and Maute [30], Vil-
lanueva and Maute [51], Noël et al. [36] is generalized
to enrich the locally refined THB basis functions consid-
ering their support for a given intersection geometry. The
XFEM problem is augmented by an X-IGA formulation of
the face-oriented ghost stabilization from Noël et al. [36].
The governing equations are integrated by standard quadra-
ture rules on a geometry-conforming integration mesh that is
constructed by cutting XFEM background elements that are
intersected by the external boundaries or internal material
interfaces. Boundary and interface conditions are enforced
weakly by Nitsche’s method. We illustrate the main charac-
teristics and features of the proposed XFEM framework by
numerical examples considering linear elastic and thermo-
elastic problems.We study the convergence of geometric and
state variable discretization errors with uniform and local
mesh refinement for different B-spline orders. To demon-
strate the applicability of our XFEM framework to complex
multi-material, multi-physics problems, we apply our XFEM
framework to the thermo-elastic analysis of a 3D polycrys-
talline micro-structure.

This paper is organized as follows: Sect. 2 outlines the
Heaviside-enriched XFEM framework. Section3 recalls the
fundamentals of hierarchical B-splines as well as their trun-
cation to restore the PU property. Section4 details the
meshing algorithms and data structures. Section5 summa-
rizes the governing equations, Nitsche’s formulation, and
face-oriented ghost stabilization for linear thermo-elasticity.
Numerical two and three dimensional examples are presented
in Sect. 6. The main findings are summarized in Sect. 7,
together with recommendations for future work.
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2 The extended finite element method

In this work, we adopt the XFEM to perform analysis on
non-conforming background meshes. We follow the basic
concepts of a generalized Heaviside enrichment strategy,
introduced by Terada et al. [48]. In this section, the basic
concepts of the XFEM as relevant for this work are briefly
described.

We start from a non-conforming finite element approx-

imation space with THB basis functions
{
Bj

}ñ
j=1 that are

defined on a locally refined discretization. To approximate
the state variable fields in different material phases, each
basis function is enriched. The enrichment of a particular
basis function depends on the number of topologically dis-
connected regions of all material phases in the support of
this basis function. The approach is illustrated in Fig. 4 for
a configuration with two material phases, Ω1 and Ω2. The
support of the basis function B is depicted by the dashed red
line. It spans three topologically disconnected regions, each
occupied by one of the two material phases. Therefore, the
basis function is enriched three times.

This approach is applicable to any number of mate-
rial phases, intersection configurations, and basis function
support. To define the enriched basis, we introduce the
indicator function ψ�

j . This function is equal to 1 for
points located within the portion of the support of the j th
basis function corresponding to the enrichment level � and
equal to zero elsewhere. The enriched basis then is simply{
Bjψ

�
j : j ∈ {1, . . . , ñ} and � ∈ {

1, . . . , L j
}}

where L j is

the maximum number of enrichment levels for basis function
Bj . Since the original THB basis satisfies the PU principle,
so does the enriched THB basis.

The enriched finite element approximation of a vector-
valued state variable uh(x) can be written in terms of the
enriched THB basis as follows:

uh(x) =
ñ∑

j=1

⎛

⎝
L j∑

l=1

ψ�
j (x) Bj (x) c�

j

⎞

⎠ , (1)

where c�
j is the coefficient associated to the j th original THB

basis function and the j th enrichment level. The indicator
functionψ�

j enforces that only one set of enriched basis func-
tions is used to describe the state variable at each point in the
domain. A more detailed description of the enrichment strat-
egy can be found in Noël et al. [36].

The Heaviside enriched XFEM formulation outlined
above enables themodeling ofC−1 intra-element discontinu-
ities of state variables within a non-conforming background
element. Essential boundary conditions can be enforced
weakly by, for example, Nitsche’s method [9,34] or the sta-
bilized Lagrange multiplier method [22].

Immersing geometry into the XFEM background mesh
can result in basis functions with small support within the
geometric domain, leading to poorly conditioned systems of
discretized governing equations. Various strategies to miti-
gate this issue have been studied in the literature, such as
the face-oriented ghost stabilization [8,10,36], basis function
removal [18,19], and pre-conditioning [13,29]. In this work,
we extend the face-oriented ghost stabilization to hierarchi-
cally refined B-spline discretizations; as further described in
Sect. 5.2.

3 Hierarchical B-splines

This section focuses on hierarchical B-splines for a locally
refined discretization of state variable fields. First, the basic
concepts of B-splines in one and multiple dimensions are
recalled. Then the B-spline refinement and the construction
of non-truncated (HB) and truncated hierarchical B-spline
(THB) bases are described.

3.1 B-spline basis functions

In 1D, we define a knot vector Ξ = {ξ1, ξ2, . . . , ξn+p+1},
for which ξ ∈ R and ξ1 ≤ ξ2 ≤ · · · ≤ ξn+p+1. A univariate
B-spline basis function Ni,p(ξ) of degree p is constructed
recursively starting from the piecewise constant basis func-
tion:

Ni,0(ξ) =
{
1, if ξi ≤ ξ ≤ ξi+1,

0, otherwise,
(2)

and using the Cox de Boor recursion formula [12] for higher
degrees, p > 0:

Ni,p(ξ) = ξ − ξi

ξi+p − ξi
Ni,p−1(ξ)

+ ξi+p+1 − ξ

ξi+p+1 − ξi+1
Ni+1,p−1(ξ).

(3)

To guarantee aC p−1 continuity over the entire computational
domain, none of the interior knots should be repeated. The
corresponding B-spline basis exhibits a C p−1 continuity at
every knot in the interior of the domain, while it is C∞ con-
tinuous in between the knots. A knot span is defined as the
half open interval [ξi , ξi+1) and a B-spline element is defined
as a non-empty knot span.

In 2D and 3D, tensor-product B-spline basis functions
Bi,p(ξ) are constructed by applying the tensor-product oper-
ation to univariateB-spline basis functions in each parametric
direction. Denoting the parametric space dimension as dp,
a tensor-product B-spline basis is constructed starting from
dp knot vectors Ξm = {ξm1 , ξm2 , · · · , ξmnm+pm+1} with pm
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Fig. 4 Basis function enrichment for a two-material problem

being the polynomial degree and nm the number of basis
functions in the parametric direction m = 1, . . . , dp . A
tensor-product B-spline basis function is generated from dp
univariate B-spline basis functions Nm

im ,pm
(ξm) in each para-

metric direction m as follows:

Bi,p(ξ) =
dp∏

m=1

Nm
im ,pm (ξm), (4)

where the position in the tensor-product structure is given
by the index vector i = {i1, . . . , idp }, and the vector p =
{p1, . . . , pdp } defines the polynomial degree in each direc-
tion. Similarly to the univariate case, an element is defined
as the tensor-product of dp non-empty knot spans. Addition-
ally, a B-spline space V is defined as the span of B-spline
basis functions.

3.2 B-spline refinement

Hierarchical refinement of uniform B-splines is achieved by
subdivision.AunivariateB-spline basis function is expressed
as a linear combination of p + 2 contracted, translated, and
scaled copies of itself:

Np(ξ) = 2−p
p+1∑

j=0

(
p + 1

j

)
Np(2ξ − j), (5)

where the binomial coefficient is defined as:

(
p + 1

j

)
= (p + 1)!

j !(p + 1 − j)! . (6)

Figure 5 shows the refinement of a quadratic univariate B-
spline basis function obtained by subdivision.

The subdivision in Eq. (4) for a univariate B-spline basis
can be extended to tensor-product B-spline basis functions
Bp as follows, see Schillinger et al. [44]:

Bp(ξ) =
∑

j

(
d∏

m=1

2−pm

(
pm + 1

jm

)
Npm (2ξm − jm)

)

, (7)

Fig. 5 Subdivision of a quadratic B-spline basis function (black) into
p + 2 contracted B-spline basis functions (blue) of half the knot span
width. (Color figure online)

Fig. 6 Hierarchically refined mesh

where the indexvector j = {i1, . . . , idp } collects the positions
in the tensor-product structure.

3.3 Hierarchical B-splines

To define a hierarchical mesh of depth n, a sequence of sub-
domains Ω l is introduced:

Ωn−1 ⊆ Ωn−2 ⊆ · · · ⊆ Ω0 = Ω, (8)

where each subdomain Ω l is a refined sub-region of Ω l−1.
Consequently, Ω is equal to the union of all the subdomains
Ω l .
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To build a hierarchical B-spline basis, a sequence of
tensor-product B-spline spaces is introduced:

V0 ⊂ V1 ⊂ V2 ⊂ V3 ⊂ · · · . (9)

Each B-spline space V l has a corresponding basis Bl and a
corresponding mesh Kl of tensor-product elements.

A hierarchical B-spline basisH is constructed recursively
based on the sequence of B-spline bases Bl that span the
domains Ω l . In an initial step, the basis functions defined
on the coarsest level, l = 0, are collected and assigned to
H0. The hierarchical B-spline basis Hl+1 is constructed by
taking the union of all basis functions B inHl whose support
is not fully enclosed inΩ l+1 and all basis functions B inBl+1

whose support lies in Ω l+1. The recursive algorithm reads
[21]:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

H0 =: B0

Hl+1 =: {B ∈ Hl | supp(B) � Ω l+1} ∪
{B ∈ Bl+1 | supp(B) ⊆ Ω l+1},
for l = 0, . . . , n − 2,

(10)

where the index l denotes the level of refinement. Basis func-
tions collected in H, where H := Hn−1, are called active,
while basis functions in Bl not present in H are said to be
inactive.

Associated with a hierarchical B-spline basis is a hierar-
chically refined mesh

K := ∪n−1
l=0

{
K ∈ Kl : K ∈ Ω l and K /∈ Ω l+1

}
(11)

whereinΩn is taken to be the empty set.An example of a hier-
archically refined mesh associated with a two-dimensional
hierarchical B-spline basis is displayed in Fig. 6. A hier-
archical B-spline basis is smooth over each element of its
associated hierarchically refined mesh.

A hierarchical B-spline basis H is illustrated for a one-
dimensional example in Fig. 7. The top row shows a one-
dimensional hierarchically refined mesh. Below the mesh,
the basis functions for three refinement levels are shown.
Following the recursion rule of Eq. (10), a B-spline basis
H is created through an initialization step with all bases in
the subdomain Ω0 refined to a level l = 0. All bases in
the subdomain Ω l+1 with higher refinement level l + 1 are
added recursively, while existing basis functions of level l
fully enclosed in Ω l+1 are discarded. The active B-spline
basis functions H are shown in black, while the inactive B-
spline basis functions are shown in gray.

Hanging nodes are a byproduct of h-refinement in hier-
archical refined meshes and are naturally handled by the
B-spline bases. In contrast, hanging nodes in classic finite

Fig. 7 One-dimensional hierarchical B-spline basis attained using three
levels of refinement

elements require extra treatments, such as the introduction
of multi-point constraints.

3.4 Truncated B-splines

By construction, the hierarchical B-spline basis presented
above does not fulfill the PU property. The truncated hier-
archical B-spline basis constitutes an alternative to the
hierarchical B-spline basis that does satisfy the PU property.
Truncation also reduces the number of overlapping functions
on adjacent hierarchical levels, see Giannelli et al. [23]. Con-
sidering a basis function Bl , part of Bl and defined on the
domain Ω l , its representation in terms of the finer basis of
level l + 1 is given as:

Bl =
∑

Bl+1∈Bl+1

cl+1
Bl+1

(
Bl

)
Bl+1, (12)

where cl+1
Bl+1 is the coefficient associated to a basis function

Bl+1.
The truncation of this basis function Bl , whose support

overlaps with the support of finer basis functions Bl+1, part
of Bl+1 and defined on Ω l+1, is attained as follows [21,23]:

truncl+1(Bl) =
∑

Bl+1∈Bl+1,

supp(Bl+1)�Ωl+1

cl+1
Bl+1

(
Bl

)
Bl+1,

= Bl −
∑

supp(Bl+1)⊆Ωl+1

cl+1
Bl+1

(
Bl

)
Bl+1.

(13)

Following the creation of a hierarchical B-spline basisH,
a THB basis T is constructed recursively by considering the
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truncation in Eq. (13), see Giannelli et al. [23], Garau and
Vázquez [21]:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

T 0 =: B0

T l+1 =: {truncl+1(B) | B in T l ∧ supp(B) � Ω l+1}
∪ {B ∈ Bl+1 | supp(B) ⊆ Ω l+1},
for l = 0, . . . , n − 2.

(14)

The truncated basis T spans the same space as the non-
truncated basis H and it admits a strong stability property
[24]. Moreover, the smaller support results in a reduction
in the number of nonzero basis functions per element and
consequently a sparser system of linear equations in a finite
element analysis.

The effect of the truncation is illustrated in Fig. 8. A
univariate truncated and non-truncated basis T and H are
juxtaposed. The first and second levels correspond to Ω0

and Ω1 respectively, while the bottom level represents the
combination of the functions on these two levels. The com-
parison shows the reduced support of the truncated B-spline
basis functions.

4 Implementation details

This section details the implementation of the THB dis-
cretization described above. A computationally efficient
approach is introduced to represent hierarchically refined
meshes via a poly-tree data structure. Local mesh refinement
strategies are outlined. A methodology for expressing THB
basis functions associated with multiple, differently refined
meshes in terms of Lagrange shape functions over each ele-
ment in a union background mesh is presented.

4.1 Poly-tree data structure for hierarchically
refined B-spline discretizations

The generation of a large hierarchical refined mesh can be
expensive due to the high memory consumption, especially
when creating all possible elements for each refinement
level. The cost is compoundedwhen creatingmultiple, differ-
ently refined hierarchical meshes. In this paper, we present
a computationally and memory efficient approach to build
differently refined meshes.

We first construct a Poly-Tree (PT) data structure, i.e., a
quadtree in 2D and an octree in 3D. The PTdata structure rep-
resents a set of hierarchically refined meshes. The tree depth
corresponds to a refinement level l with the base level, 0,
representing a coarse uniform tensor mesh. The nodes of this
PT data structure are labeled PT cells and used to construct
discretizations of state variable fields. Note that the PT cells
are not associated with any specific set of basis functions.

PT cells with higher refinement levels l > 0 are created
recursively. Starting from level 0, the PT cells are recursively
subdivided into 4 and 8 PT cells in 2D and 3D, respectively.
Considering a PT cell at a refinement level l, the PT cell
at refinement level l − 1 from which the PT cell is created
is referred to as its parent. The PT cells at refinement level
l + 1 created by subdivision of a PT cell at level l are called
its children. The PT cells are only created once and only as
needed.

Toefficiently representmultiple, differently refinedmeshes
with the same PT data structure, we introduce the concept of
PT cell activation states. Each PT cell has multiple activation
states which are represented by Activation Indices (AI).

Possible activation states for a particular AI are either
active, refined, or inactive. Active PT cells for a specific AI
have refined parent PT cells and inactive children PT cells.

AlthoughPTcells are only constructedonce, the activation
state concept allows for the creation of multiple, differently
refined meshes. A single activation state can be stored as a
binary number with only two bits. Thus, the activation states
for all AIs of a PT cell are stored in 2 · #AIs bits. An illus-
tration of a single quad-tree data structure with two AIs is
presented in Fig. 9. The coloring of the PT cells indicates
the activation state for a specific AI. For a particular AI, PT
cells in blue, red, and white are active, refined, and inactive,
respectively. Blue framed PT cells on the zero level illustrate
the resulting mesh of active PT cells on a given AI. This
enables the efficient construction of differently refined hier-
archical B-spline discretizations based on a single PT data
structure and a set of AIs. To see this, let Ω l

I be the union
of active and refined cells associated with level l and AI I .
Then, we can create a hierarchical B-spline basis HI and a
corresponding hierarchically refined mesh KI for AI I from
the sequence

Ωn−1
I ⊆ Ωn−2

I ⊆ · · · ⊆ Ω0
I = Ω. (15)

The resulting hierarchically refined meshKI is precisely the
set of active PT cells for AI I .

In our PT data structure, we only store PT cells that are
either active or refined for at least oneAI I . The element edge
length h0PTcell,m for parametric direction m and on the coars-
est level 0 is computed based on the given mesh size and the
number of coarsest elements in each dimension, both of them
are predefined by the user. The size of mesh elements corre-
sponding to PT cells on levels l > 0 may be computed based
on the coarsest element edge length and the refinement level
via hlPTcells,m = 2−l h0PTcell,m . Basis functions are assigned to
mesh elements based on a pre-defined elemental basis func-
tion ordering. The elemental basis function ordering in this
work follows the Exodus II standard [46].
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Fig. 8 Comparison of univariate HB-spline (left) and THB-spline basis functions (right)

Fig. 9 One hierarchical refined
quad-tree data structure with
two sets of AIs

4.2 Local refinement strategies

To generate a PT data structure that supports different hier-
archically refined meshes, the PT is recursively refined for
each AI and corresponding refinement criteria. The refine-
ment procedure is described in Algorithm 1. For a specific
AI, active PT cells are flagged for refinement based on cho-
sen refinement criteria. Adjacent PT cells can also be flagged
for refinement to increase the size of the refined region.
Moreover, additional active PT cells for the current AI may
be flagged considering mesh regularity requirements as dis-
cussed inSect. 4.2.1. In case thePTdata structure is generated
in parallel using a domain decomposition strategy, flaggedPT
cells are communicated across adjacent subdomains to guar-

antee consistent refinement. Refinement is then performed
by creating new children PT cells through subdividing all
flagged PT cells unless the children PT cells do already exist.
New PT cells are initialized with an inactive activation state
for all AIs. For the AI currently considered for refinement,
the activation state of the children PT cells is set to active
while the parent PT cell is set to refined.
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Algorithm 1 Refinement algorithm
1: for Activation Index (AIs) do
2: Flag PT cells based on refinement criteria for AI
3: Collect flagged PT cells into queue for refinement
4: while changes in refinement queue do
5: for all PT cells in queue for refinement do
6: Apply refinement buffer Algorithm 2
7: Collect flagged PT cells in queue for refinement
8: end for
9: end while
10: Communicate refinement queue
11: if Refined children PT cell does not exist then
12: Create refined children PT cells
13: Initialize new PT cells as inactive for all AIs
14: end if
15: Flag children PT cells as active for AI
16: Flag parent PT cell as refined for AI
17: end for

4.2.1 Mesh regularity requirements

For construction of THB bases as discussed in Sect. 3, mesh
regularity requirements need to be considered when con-
structing the PT data structure. The difference in refinement
level between adjacent PT cells in the refined PT is limited
to one. Furthermore, all active neighbor PT cells inside a so-
called buffer zone of an active PT cell on level l must be of
level greater or equal l − 1, see Eq. (14).

The buffer range dlbuffer,m for a particular active PT
cells is calculated by multiplying the PT cells size with
a user-defined buffer parameter bbuffer, i.e., dlbuffer,m =
bbuffer hlPTcells,m . When creating a B-spline basis, the width
of the buffer zone in parametric direction m must be larger
than or equal to the width of the basis function supports
in parametric dimension m. In this work each state vari-
able field is interpolated with an individual interpolation
order p. To satisfy the mesh regularity requirement for all
interpolation functions, the buffer parameter must be chosen
as bbuffer ≥ pmax, where pmax is the maximal polynomial
degree of all used bases.

The refinement procedure for enforcing a buffer zone is
summarized in Algorithm 2. The algorithm is applied to each
PT cell initially flagged for refinement in Step 2 of Algo-
rithm 1 and starts by determining its parent PT cell. The
refinement status of the parent’s neighbors, i.e., cells within
the buffer range of the considered parent, are checked. If these
neighbors are neither refined nor flagged for refinement, the
distance dm between the centers of the considered PT cell
and its neighbor’s children cells is calculated. This operation
is trivial even if these neighboring children cells do not exist
due to the PT data structure information. If any distance dm is
smaller than the buffer range dlbuffer,m , the particular neighbor
cell is flagged for refinement. The algorithm is then applied
recursively to all newly flagged neighbor cells, until no fur-
ther cells are flagged for refinement. An efficient access to

hierarchical mesh information, such as neighborhood rela-
tionships, is provided by the PT data structure discussed in
Sect. 4.4. A visual representation of Algorithm 2 is provided
in Fig. 10 for bbuffer = 1. PT cells with a green fill are cells
flagged for refinement while PT cells with a green pattern fill
are neighboring PT cells of the parent cell.

Algorithm 2 Refinement buffer algorithm
1: PT cell flagged for refinement in Algorithm 1
2: Get parent
3: Get parent’s neighbors in buffer range dlbuffer
4: if neighbor is active and not flagged for refinement then
5: Calculate distance dma considered cell and neighbors non-

existing children PT cells
6: if dm < dbuffer then
7: Flag neighbor for refinement
8: Apply refinement buffer Algorithm 2 for neighbor
9: end if
10: end if

4.3 Union backgroundmesh and extraction
operators

The framework presented above allows for a different hierar-
chically refinedB-spline discretization for each state variable
field. These discretizations are defined on locally refined
background meshes that are not aligned with the external
boundaries and material interfaces. To simplify the finite ele-
ment formation and assembly process, a union1 background
mesh Kunion is constructed from the hierarchically refined
meshes for each state variable field as follows:

Kunion := {K : K ∈ KI for some I and there is no

K ′ ∈ KJ for J �= I such that K ′
� K

}
. (16)

That is, an element of a hierarchically refined mesh for one
of the state variable fields is an element of the union back-
ground mesh if it contains no finer element belonging to a
hierarchically refined mesh for one of the other state variable
fields. An example of a union background mesh is displayed
in Fig. 3. The union background mesh is specially defined so
that the hierarchical B-spline basis functions associated with
each state variable field are smooth over each element of the
union background mesh. The union background mesh can
be conveniently created via the PT data structure by com-
bining all AIs used to generate THB background meshes. In
particular, a PT cell corresponds to an element of the union
background mesh if it is active for at least one activation

1 Note that the union background mesh is not attained via a set union of
the separate hierarchically refined meshes. Instead, elements in this set
union that fully contain smaller elements in the set union do not belong
to the union background mesh.
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Fig. 10 Visualization of refinement buffer Algorithm 2

index and active or inactive for all other activation indices.
The union backgroundmesh serves as theXFEMbackground
mesh in which the geometry is immersed. Intersected XFEM
background elements of the union background mesh are cut
to generate a body-fitted integration mesh. Each THB dis-
cretization is enriched separately considering the B-spline
interpolation and the immersed geometry represented on the
union background mesh. For details on the enrichment strat-
egy, the reader is referred to Noël et al. [36]. To increase the
geometry resolution, the union mesh can be further refined,
either locally or globally.

To facilitate operations performed on the union back-
ground mesh and on the integration mesh in the XFEM
analysis, the THB basis functions for each locally refined
backgroundmesh are represented in terms of Lagrange shape
functions on each element of the union background mesh via
Lagrange extraction, see Schillinger et al. [45], D’Angella
et al. [11]. Namely, the THB basis functions for a locally
refined background mesh can be represented element-wise
in terms of Lagrange shape functions as

Bk(ξ) =
∑

j

Bk(ξ j )N
L
j (ξ) =

∑

j

T L
jk N

L
j (ξ) (17)

where Bk is the kth THB basis function,
{
NL

j

}

j
are the

Lagrange shape functions over the element,
{
ξ j

}
j
are the

locations at which the Lagrange shape functions
{
NL

j

}

j

are interpolatory, and T L
jk = Bk(ξ j ). We refer to T L as a

Lagrange extraction operator. The Lagrange shape functions
over each element can in turn be represented in terms of
Lagrange shape functions over a child element as

NL
j (ξ) =

∑

i

N L
j (ξ̂ i )N̂

L
i (ξ̂ i ) =

∑

i

T h
i j N̂

L
i (ξ̂ i ) (18)

where
{
N̂ L
i

}

i
are the Lagrange shape functions over the child

element, ξ̂ i are the locations at which the Lagrange shape

functions
{
N̂ L
i

}

i
are interpolatory, and T h

i j = NL
j (ξ̂ i ). We

refer to T h as an h-refinement extraction operator. It follows
that the THB basis functions can be expressed in terms of the
Lagrange shape functions over the child element as

Bk(ξ) =
∑

i

Tik N̂
L
i (ξ) (19)

where

Tik =
∑

j

T L
jkT

h
i j (20)

is a Lagrange extraction operator that can be computed
using the aforementioned Lagrange and h-refinement extrac-
tion operators. This process can be repeated to represent
THB basis functions in terms of Lagrange shape func-
tions and easily computable Lagrange extraction operators
over descendent elements of the child element as well, thus
enabling us to represent the THB basis functions for each
state variable field in terms of Lagrange shape functions and
Lagrange extraction operators over each element of the union
background mesh. The extraction process from a quadratic
B-spline basis to a quadratic, once refined Lagrange basis
is illustrated in Fig. 11. Our framework limits the back-
ground element refinement to a factor of two, as presented
in Sect. 4.2.1. This consequently limits the number of h-
refinement extraction matrices to four in 2D and eight in 3D.
These matrices can be precomputed and efficiently selected
exploiting the PT data structure.

4.4 Backgroundmesh data structure

In this subsection, we discuss computational aspects of the
PT data structure for storing and managing hierarchically
refined meshes. This data structure aims at improving the
overall computational efficiency andminimizes inter-process
communication for parallel computations. The presented
implementation is limited to quadtrees in 2D and octrees
in 3D, which is sufficient for IFEMs.

Given the dimensions of the computational domain and the
number of elements in each spatial direction, the base level
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Fig. 11 Illustration of the extraction process

0 of the PT data structure is generated. Adopting a domain
decomposition approach, the PT cells are grouped into sub-
domains. The mesh is hierarchically refined, and the union
mesh is created in parallel on each processor. To facilitate
the refinement process and the construction of the Lagrange
extraction operators, we create overlapping subdomains to
build an efficient PT data structure in parallel. In many cases
a decomposition strategy assigning approximately the same
number of PT cells to each subdomain is sufficient. However,
as refinement can lead to a significant imbalance in number
of PT cells across subdomains, it may be beneficial to choose
a decomposition strategy that accounts for refinement.

At the coarsest level, 0, a unique PT cell ID can be calcu-
lated based on the global PT cell location as illustrated in the
uppermost graphic of Fig. 13. With the ID of the parent PT
cell at refinement level 0 and the position in the PT structure,
unique IDs of refined PT cells can be determined directly,
without inter-process communication and building local-to-
global ID maps. The positions of the PT structure for a two
dimensional twice refined PT cells are illustrated in Fig. 12.

Furthermore, the subdomain-local PTdata structure allows
for efficient access to cell neighborhood and hierarchy
relationships. The PT data structure also speeds up the con-
struction of extraction operators and may be used for the
identification of basis functions. Basis functions can be
uniquely identified by utilizing the PT structure in combi-
nation with the elemental Exodus II basis function index.

To reduce the communication across subdomains, an aura
of PT cells is constructed around the set of PT cells owned
by a specific processor, leading to overlapping subdomains.
The width of the aura is chosen to be bbuffer PT cells on the
coarsest refinement level with bbuffer defined as described in
Sect. 4.2.1.

The PT cells in an aura are needed to define all THB basis
functions that are nonzero over non-aura elements. There-

Fig. 12 A coarse two dimensional PT cell refined through recursive
subdivision and resulting quadtree data structure

Fig. 13 Parallel local refinement of a global 2 × 4 domain
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fore, most computations can be performed on a subdomain
level, interlaced with only a few inter-subdomain communi-
cations. This includes mesh refinement along the processor
boundaries, the construction of Lagrange extraction opera-
tors, and the evaluation of face-oriented ghost stabilization
residuals and Jacobians, see Sect. 5. To illustrate the parallel
concept, Fig. 13 presents a global two dimensional domain of
size 2×4 elements in blue. PT cells in red indicate aura cells.
The global domain is decomposed into two processor local
subdomains. Unique global PT cell IDs are calculated based
on IDs of the coarsest refinement level. Red striped PT cells
are aura cells shared with the neighboring processor. Blue
striped PT cells are cells of the inverse aura. The green cells
are flagged for refinement. Parallel consistent refinement is
guaranteed through communication of the flagged PT cell
IDs on aura and inverse aura.

5 Thermo-elastic model

The XIGA framework presented above is applicable to a
broad range of physical problems that are described by par-
tial differential equations. In this paper, we demonstrate the
functionality of the developed framework with static elas-
tic and thermo-elastic problems. The elastic model assumes
infinitesimal strains and a linear elastic, isotropic material
response. The thermal model accounts for linear diffusive
heat transfer. The structural response depends on the temper-
ature field through inelastic, isotropic thermal expansion. In
this section, we present the variational form of the stabilized
governing equations of the thermo-elastic model.

5.1 Governing equations

The weak form of the residual is decomposed into the fol-
lowing four contributions:

R = RT + RU + RN + RG = 0, (21)

whereRT andRU combine the volumetric contributions and
contributions of Neumann boundary conditions to the ther-
mal and structural residuals, respectively. The contributions
of Nitsche’s formulation for Dirichlet boundary conditions
are collected inRN and the contributions of the face-oriented
ghost stabilization inRG.

In the absence of body loads, the thermal and structural
residual, RT and RU, are defined over all material domains
Ωm with m = 1, . . . , Nm as follows:

RT =
Nm∑

m=1

∫

Ωm
∇δT κ ∇T dΩ −

∫

Γ m
N ,T

δT qN dΓ , (22)

and

RU =
Nm∑

m=1

∫

Ωm
δεu : σ dΩ −

∫

Γ m
N ,u

δu · fN dΓ , (23)

where T and δT are the temperature trial and test func-
tion, respectively. The isotropic thermal conductivity tensor
is denoted by κ . A heat flux qN is applied at the boundaries
Γ m
N ,T . The displacement trial and test functions are denoted

by u and δu, respectively. Traction forces, fN , are applied on
the boundaries Γ m

N ,u . The Cauchy stress tensor is denoted by
σ = D εe where D is the isotropic constitutive tensor and εe
is the total infinitesimal strain tensor with εe = εu −εT . The
mechanical strain εu is computed by εu = 1

2

(∇u + ∇uT
)
.

The thermal strain is denoted by εT = α (T − T0) I where
α is the CTE and T0 is the reference temperature.

To weakly enforce Dirichlet boundary and interface con-
ditions, we use an unsymmetric formulation of Nitsche’s
method. The associated residual, RN, is decomposed into
boundary and interface terms, separately for the thermal and
elastic subproblems as follows:

RN = RN,D
T + RN,D

u + RN,I
T + RN,I

u , (24)

where the thermal and elastic contributions from Dirichlet
boundary conditions are denoted byRN,D

T andRN,D
u , respec-

tively. The thermal and elastic contributions from interface
conditions areRN,I

T andRN,I
u , respectively. These Dirichlet

boundary residual contributions are defined as follows:

RN,D
T =

Nm∑

m=1

−
∫

Γ D,T
δT (κ ∇T) · nΓ dΓ

+
∫

Γ D,T
(κ ∇δT) · nΓ (T − TD) dΓ

+
N B
e∑

e=1

γ e
D,T

∫

Γ
D,T
e

δT (T − TD) dΓ ,

(25)

and

RN,D
u =

Nm∑

m=1

−
∫

Γ D,u
δu · σ (u) nΓ dΓ

+
∫

Γ D,u
σ (u) nΓ · (u − uD) dΓ

+
N B
e∑

e=1

γ e
D,u

∫

Γ
D,u
e

δu · (u − uD) dΓ .

(26)

The temperature TD is prescribed on the boundary Γ D,T and
the displacement uD is prescribed on Γ D,u . The vector nΓ

denotes the outward pointing normal on the boundary. The

123



Computational Mechanics (2023) 71:1179–1203 1191

summations over all N B
e elements in the union background

mesh in Eqs. (25) and (26) penalize constraint violations
along the boundaries Γ e

D,T and Γ e
D,u within the elements

of the union background mesh. We henceforth refer to the
elements of the union background mesh as background ele-
ments. The penalty parameters γ e

D,T and γ e
D,u depend on the

size of the background element, hB
e , and are defined as fol-

lows:

γD,T = cD,T
κ

hB
e

and γD,u = cD,u
E

hB
e

, (27)

where κ is the isotropic material conductive and E is the
Young’s modulus of the linear elastic material. The parame-
ters cD,T ≥ 0 and cD,u ≥ 0 control the accuracy of enforcing
the Dirichlet boundary conditions.

Continuity of temperature anddisplacementfields andbal-
ance of heat flux and tractionmust be satisfied at all interfaces
Γ m,n = Ωm∩Ωn �= ∅. Nitsche’smethod for the thermal and
structural interface conditions yields the following residual
contributions:

RN,I
T =

∑

Γ m,n

N B
e∑

e=1

−
∫

Γ
m,n
e

�δT � {κ ∇T} · nm,n dΓ

+
∫

Γ
m,n
e

{κ ∇δT} · nm,n �T� dΓ

+γ e
I ,T

∫

Γ
m,n
e

�δT� �T� dΓ , (28)

RN,I
u =

∑

Γ m,n

N B
e∑

e=1

−
∫

Γ
m,n
e

�δu� · {σ (u)} nm,n dΓ

+
∫

Γ
m,n
e

{σ (δu)} nm,n · �u� dΓ

+γ e
I ,u

∫

Γ
m,n
e

�δu� · �u�dΓ , (29)

where the jump operator is defined as �·� = (·)m − (·)n .
The numerical interface flux and traction are defined by the
averaging operator as {·} = wm(·)m + wn(·)n , where wm

and wn are weights. The vector nm,n denotes the normal
vector on the interface pointing from phasem to phase n. The
accuracy of enforcing the interface condition is controlled
by the penalty terms with γ e

I ,T and γ e
I ,u being the elemental

penalty factors.
We follow the work of Annavarapu et al. [1] and define

weights for the numerical heat flux as follows:

wm
T = meas(Ωm)/κm

meas(Ωm)/κm + meas(Ωn)/κn
,

wn
T = meas(Ωn)/κn

meas(Ωm)/κm + meas(Ωn)/κn
,

(30)

and for the numerical traction as follows:

wm
u = meas(Ωm)/Em

meas(Ωm)/Em + meas(Ωn)/En
,

wn
u = meas(Ωn)/En

meas(Ωm)/Em + meas(Ωn)/En
,

(31)

where meas(Ωk) is the surface in 2D or the volume in 3D of
the domain occupied by the phase k within the background
element. The elemental penalty factors in Eqs. (28) and (29)
are defined by:

γ e
I ,T =2 cI ,T

meas(Γ m,n)

meas(Ωm)/κm + meas(Ωn)/κn

γ e
I ,u =2 cI ,u

meas(Γ m,n)

meas(Ωm)/Em + meas(Ωn)/En
, (32)

where the operator meas(Γ m,n)measures the length in 2D or
the area in 3Dof the interfacewithin the background element.
The parameters cI ,T ≥ 0 and cI ,u ≥ 0 control the accuracy
of enforcing the interface conditions.

5.2 Face-oriented ghost stabilization

The utilized immersed method may suffer from numerical
instabilities caused by basis functions with small support
within the geometric domain. This may occur when an inter-
face moves close to the boundary of the support of a basis
function. Such configurations may result in ill-conditioning
of the system of linear equations as well as imprecise spatial
gradients of the state variable field, see de Prenter et al. [13].
Recentworks have proposed a variety of strategies tomitigate
the issues arising from basis function with a small support.
Most notable strategies are the basis function removal as pre-
sented by Elfverson et al. [18], the concept of web-splines
as presented by Höllig et al. [27] and Marussig and Hughes
[31], or face-oriented ghost stabilization introduced by Bur-
man and Hansbo [10].

This work adopts the face-oriented ghost stabilization
approach presented by Burman and Hansbo [10] and adapted
byNoël et al. [36] to fit the basis function enrichment strategy
described in Sect. 2.

LetΩm be amaterial subdomain phasem and KΩm the set
of background elements that have a non-empty intersection
with Ωm :
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Fig. 14 Set of ghost facetsF1
ghost andF2

ghost used for the face-oriented
ghost stabilization for a two-material problem

KΩm := {
K ∈ Kunion : K ∩ Ωm �= ∅}

. (33)

We define Fm
int as the set of interior facets of KΩm , i.e., the

facets F shared between two background elementsΩ
m,+
F and

Ω
m,−
F of KΩm . Let Γ̃ be the union of all material interfaces

and geometric boundaries, here defined asmaterial interfaces
between void and non-void regions. The set of ghost facets
for phase m is:

Fm
ghost :=

{
F ∈ Fm

int : Ω
m,+
F ∩ Γ̃ �= ∅ or Ω

m,−
F ∩ Γ̃ �= ∅

}
.

(34)

Consider a ghost facet Fm shared between two adjacent
background elements Ω

m,+
F and Ω

m,−
F . The normal to the

facet is nF and is chosen as nF = nm,+
F = −nm,−

F . The
material layout subdivides the elementΩm,+

F into Nm,+
F con-

nected subdomains Ω
m,+
F,i with i = 1, . . . , Nm,+

F and the

elementΩm,−
F into Nm,−

F connected subdomains Ω
m,−
F, j with

j = 1, . . . , Nm,−
F (Fig. 14).

We define um,+
F,i as the polynomial extension of the field

u|
Ω

m,+
F,i

to all of R
d and let um,−

F, j be the polynomial extension

of the field u|
Ω

m,−
F, j

to all of R
d .

Additionally, our formulation requires that: |∂Ω
m,+
F,i ∩

∂Ω
m,−
F, j | �= 0, and the ghost stabilization is only applied

between um,+
F,i and um,−

F, j when the boundaries of Ω
m,+
F,i and

Ω
m,−
F, j , ∂Ω

m,+
F,i and ∂Ω

m,−
F, j , respectively,meet along a portion

of the facet F with a non-zero measure, e.g., the boundaries
meet along more than a point in two dimensions and along
more than a line in three dimensions.

With the above terminology defined, the contribution of
the ghost stabilization for the displacement field to the resid-
ual equations is:

RG
u =

Nm∑

m=1

∑

F∈Fm
ghost

Nm,+
F∑

i=1

∑

J m
F,i

[∫

F
γ u
G hk̃�∂ p

n u��∂
p
n u�dΓ

]
, (35)

where the set Im
F ,i is defined as:

J m
F ,i := {k ∈ {1 . . . Nm,−

F } : |∂Ω
m,+
F,i ∩ ∂Ω

m,−
F, j | �= 0}, (36)

the jump operator �·� is defined as:

�∂
p
n u� =

(
∂
p
n u

m,+
F,i − ∂

p
n u

m,−
F, j

)
, (37)

and

�∂
p
n δu� =

(
∂
p
n δum,+

F,i − ∂
p
n δum,−

F, j

)
, (38)

where ∂kn (·) is the kth order normal derivative operator
∂kn (·) = ∇k(·) · nF where ∇k(·) is the kth order spatial
gradient. The parameter p is the polynomial order of the
approximation, i.e., the THB discretization. It should be
noted that only the pth contribution is nontrivial for the THB
discretization used in this work. The ghost penalty parame-
ter is denoted γ u

G and is defined as a multiple of the Young’s
modulus E of the considered material.

The ghost penalization for the temperature field is defined
similarly as:

RG
T =

Nm∑

m=1

∑

F∈Fm
ghost

Nm,+
F∑

i=1

∑

J m
F,i

[∫

F
γ T
G hk̃�∂ p

n T��∂
p
n T�dΓ

]
, (39)

where the jump operator is defined as:

�∂
p
n δT� =

(
∂
p
n δTm,+

F,i − ∂
p
n δTm,−

F, j

)
, (40)

and

�∂
p
n T� =

(
∂
p
n T

m,+
F,i − ∂

p
n T

m,−
F, j

)
. (41)

The ghost penalty parameters, γ u
G and γ T

G , are defined as
multiples of the Young’s modulus E and the conductivity κ

of the considered material, respectively. The parameter k̃ is
defined as k̃ = 2(p − 1) + 1 and enables control over the
influence of the ghost penalty term. Due to the application
of C p−1 continuous THB bases, only jumps in gradients of
order p must be penalized. Further details on how to choose
the ghost penalty term can be found in Burman and Hansbo
[10]. In this work we commonly choose a penalty parameter
γG = 0.001.

6 Numerical examples

In this section, we present 2D and 3D examples which
illustrate the basic concepts and computational performance
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of the proposed discretization framework. Canonical exam-
ples show that our approach yields optimal convergence
rates for linear, quadratic, and cubic B-spline approxima-
tions. An example with a stress singularity illustrates the
computational advantages of locally refined discretizations.
Finally, the analysis of a polycrystalline micro-structure
demonstrates the applicability of our framework to complex
multi-material problems.

To quantify the accuracy of theXFEManalyses, we define
the error of a generic vector state variable field v in the L2

norm and H1 semi-norm as:

||v − vh ||L2 =
√√√√

Nm∑

m=1

∫

Ωm

∣∣v − vh
∣∣2 dΩ, (42)

and

|v − vh |H1 =
√√√√

Nm∑

m=1

∫

Ωm

∣∣∇v − ∇vh
∣∣2 dΩ, (43)

where vh is the approximate field and v is the reference solu-
tion which is either the analytical solution if available or a
solution computed on a sufficiently refined discretization.

The systems of discretized governing equations are solved
by the direct solver PARDISO for 2D problems, see Kourou-
nis et al. [28]. A Generalized Minimal Residual (GMRES)
method in combination with a dual threshold incomplete LU
factorization with a degree of fill of 5.0 is used for 3D prob-
lems, see Saad [41]. The GMRES iterations are terminated
if a relative drop of 10−10 of the normalized linear resid-
ual is achieved. All geometric and material parameters are
givenwith each example in self-consistent units unless stated
otherwise.

In the following subsections, we first present examples of
single- andmulti-material problems considering either a ther-
mal or mechanical response. These examples characterize
the fundamental features of the proposed analysis frame-
work within single-physics settings. The last two examples
consider coupled thermo-elastic single- and multi-material
problems.

6.1 Two-material elastic bar

This example studies the convergence rates of the proposed
immersed B-spline discretization framework. We consider
the 3D bar shown in Fig. 15. The bar has the dimension
1.0 × 0.5 × 0.5. The left face of the bar is clamped, and the
bar experiences a body load in axial direction bx = 2x2. The
bar is composed of two linear elastic, isotropic materials,
separated by an interface which is inclined against the x-
axis. To facilitate comparison against an analytical solution,
both materials are assigned the same properties: a Young’s

modulus E = 1.0 and a Poisson’s ratio ν = 0.0. Note that
this setup allows for a 1D analytical model. The analytical
displacement in x-direction is:

u(x) = L

6E A

(
4L3x − x4

)
, (44)

where L = 1.0 is the bar length and A = 0.25 the cross-
sectional area.

To study the influence of the intersection configuration on
the finite element solution with B-spline background mesh
refinement, we rotate the interface in ten steps between π

4
and π

2 degrees. For each orientation, we increase the number
of background mesh elements from 8× 4× 4 to 128× 64×
64 B-spline elements through uniform mesh refinement. We
repeat this study for linear, quadratic, and cubic B-spline
discretizations.

In Fig. 16, we plot the mean error for all intersection
configurations and for each approximation order over the B-
spline element edge length as described in Eqs. (42) and (43).
The error bars represent the standard deviation for all inter-
section configurations per order and mesh refinement. For
each B-spline order, we visualize the convergence rate by
the triangles inserted in Fig. 16. The numerical results show
that the convergence rates of the L2 error norm agree with
the theoretical, optimal convergence rates of p + 1, where p
is the polynomial B-spline order. Similarly, the theoretical,
optimal convergence rate of p, as determined by Evans et al.
[20], Remacle et al. [39], is achieved in the H1 semi-norm
for linear, quadratic, and cubic discretizations. Our results
suggest that the proposed immersed finite element approach
recovers optimal convergence rates for sufficiently smooth
state variable fields with uniform mesh refinement.

6.2 Single-material thermal diffusion problem

Analysis problems often include regions where the state
variable fields exhibit large spatial gradients. To reduce the
local and global approximation errors, a fine discretization
is needed in these regions. The following thermal diffusion
example demonstrates the ability of the proposed immersed
finite element framework to construct and locally refine dis-
cretizations.

We solve a thermal diffusion problem as described in
Eq. (22) in an L-shaped domain, assuming a single-material
with an isotropic conductivity κ = 1, see Fig. 17. For this
problem, the exact solution in polar coordinates is given as
[17]:

T (r , θ) = r
2
3 sin

(
2

3
θ

)
(45)

The exact solution is enforced weakly to the entire boundary
of the physical domain. The origin of the coordinate system is
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Fig. 15 Three dimensional bar problem: problem setup (left); contours of displacement magnitude evaluated on coarsest discretization (right)

Fig. 16 Convergence rates in the L2 error norm and H1 semi-norm for
the presented two-material bar problem

located at the reentrant corner. Note that the spatial gradients
increase for r → 0 and are infinite at r = 0.

Using the proposed analysis framework, the physical
domain is immersed into a rectangular computational domain
as shown in Fig. 17. We compare the convergence rates for

Fig. 17 Single-material thermal diffusion problem: L-shaped domain
immersed into a rectangular computational domain (top); locally refined
B-Spline discretization around the reentrant corner and temperature
field (bottom)
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Fig. 18 Error convergence rate of temperature field with mesh refine-
ment in the L2 norm

uniform h-refinement and for local h-refinement around the
reentrant corner.

The coarsest THB background mesh has 6 × 6 elements.
Sequences of THB discretizations are constructed by uni-
form or local refinement with up to 6 refinement levels, see
Sect. 4. The offsetΔ between the computational and physical
domains is chosen as Δ = −0.127. This offset guarantees
that the L-shaped domain boundary does not align with the
THB background mesh for any mesh refinement configura-
tion.

For different B-spline order and mesh refinements, we
plot the error in the L2 norm versus the number of Degrees
Of Freedom (DOFs) in Fig. 18. Less DOFs are required to
meet a specific error requirement for local refinement when
compared to uniform refinement. This suggests that local
refinement may lead to a significant reduction in computa-
tional cost. Due to the singularity at the reentrant corner,
optimal convergence rates with mesh refinement cannot be
recovered.Moreover, this example demonstrates that the pro-
posed framework allows for combining local h-refinement
with higher order B-spline discretizations. For example,
using cubic B-spline and local refinement leads to the low-
est error for any number of DOFs. We do not present H1

semi-norm error plots as they are not meaningful due to the
singularity at the reentrant corner.

6.3 Polycrystallinemicro-structure

The proposed analysis framework is suited tomodel complex
multi-material problems.While the previous examples estab-
lished accuracy for single-material problems, this example
demonstrates the multi-material capabilities of our approach
and studies the computational cost associated with the gen-
eration of THB and union background meshes.

Fig. 19 Locally refined XFEM analysis model of a polycrystalline
micro-structure

We consider a representative volume element of a poly-
crystallinemicro-structure and analyze its structural response.
The edge length of the volume element is 150μm. The grain
geometries as well as the grain material are defined through
a 3D image file with 149× 149× 149 voxels; see, for exam-
ple, Rodgers [40]. The voxels define 471 individual grains. To
demonstrate the multi-material capabilities, unique material
properties are assigned to each grain. The Young’s modulus
E varies in the range of [50 · 103 · · · 500 · 103]MPa and the
Poisson ratio ν in a range of [0.25 . . . 0.35].

From the 3D image, we generate a level-set field for each
phase such that the grain geometries are represented by the
zero isocontours of the level-set fields. The grain geometries
are immersed into a cubic domain, as illustrated in Fig. 19.
Note that the voxel-based grain shapes could be preprocessed
to obtain smoother grain interfaces. However, this option
is not utilized here to demonstrate the ability of the pro-
posed analysis framework to operate directly on complex
non-smooth voxel-based geometries.

The mechanical behavior of the polycrystalline micro-
structure is modeled by linear elasticity with an isotropic
material behavior. Perfect bonding is assumed at the grain
interfaces. To demonstrate the ability of performing an
XFEM analysis for this micro-structure, we apply a pres-
sure load of F = -4.0MPa on the z = 0 face and a
zero-displacementDirichlet boundary condition on the oppo-
site face. The initial uniform B-spline background mesh has
32 × 32 × 32 elements. In addition, two local refinement
steps are performed at all grain boundaries. The displace-
ment magnitude and Von Mises stress contours are shown in
Fig. 20.
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Fig. 20 XFEM analysis of polycrystalline micro-structure: displacement magnitude contours (left); Von Mises stress contours (right)

6.3.1 Scalability study

The PT data structure and domain decomposition strategy
presented in Sect. 4.4 enable an efficient, parallel implemen-
tation of the proposed discretization framework. With the
polycrystalline example, we study the overall performance
and parallel scalability of this implementation.

For the scalability study, we start with 200×200×200 PT
cells at refinement level 0 and refine locally twice around the
grain boundaries. For the demonstration of the scalability, we
purposefully exploit a finermesh than as in the previous anal-
ysis to guarantee a large ratio of interior to aura PT cells on
each processor local subdomain for a large processor count.
A small ratio of interior to aura elements negatively impacts
the scalability due to increased inter-processor communica-
tion.

The resulting THB and union background meshes have
each a total of 105, 558, 692 elements. The creation of the
PT data structure and the derived discretizations can be sub-
divided into five distinct steps, see also Sect. 4. These steps
include the refinement of the PT cells, the construction of the
THB and union background meshes, the construction of the
extraction operators, and the construction of facets needed
for ghost stabilization.

To characterize the scalability of our implementation, we
generate the THB and union background meshes in parallel,
varying the number of subdomains from 4 to 160. Figure 21
shows the execution time for the mesh generation only, i.e.,
the time needed for XFEM analyses is omitted. The com-
putations are preformed on four Intel Xeon Platinum 8160
“Skylake” nodes with 24 cores each, distributing the subdo-
mains equally across all cores.

Mostly linear scaling with the processor count is observed
for the refinement operation and the construction of the pro-
jection operators. Such behavior is expected as these steps do
not need any inter-process communication. The construction
of THB and union background meshes, as well as the con-

Fig. 21 Scalability studywith processor count of the hierarchicalmesh-
ing library, using 200 × 200 × 200 PT cells at refinement level 0 and
two refinement steps at grain boundaries

struction of facets, show a linear scaling for a low processor
count. They start to plateau with a high processor count, as
these steps require communication of IDs in the aura. The
aura size is based on refinement level l0 and the buffer size
as outlined in Sect. 4.4. Increasing the processor count while
keeping the total domain size constant increases the ratio of
aura PT cells to interior cells. This consequently increases
communication and affects scalability.

The scalability study demonstrates that a mesh with over
108 elements can be generated on just four nodes with a total
of 96 processors in less than 50s. Furthermore, when creat-
ing a higher order discretizations, the computational time for
the refinement of the background meshes and the construc-
tion of faces stays the same as neither are affected by the
interpolation order. The construction of the discretizations,
as well as the calculation of the extraction operators, needs
slightly more memory and computational time as the support
of higher order basis functions is increased.
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6.4 Thermo-elastic plate with elliptic hole

This example considers a single-material but multi-field con-
figuration. We study the problem of a thermo-elastic plate
with an elliptical inclusion under in-plane tension due to a
thermal load as illustrated in Fig. 22. By exploiting sym-
metry, we only model a quarter of the domain. The setup
consists of a solid, two-dimensional, square domain with a
length of L = 2.0 and an elliptical inclusion at the origin
with a semi-major axis of A = 0.8136 and a semi-minor axis
of B = 0.5753. These values for the semi-axes are chosen
such that the immersed interface does not align with the THB
background mesh for all refinement levels. The temperature
field is due to a uniform heat flux q = 10.0 applied along the
elliptical hole and a prescribed temperature T = 1.0 at the
right domain boundary. The matrial conductivity is κ = 1.0.
The structural response is describedby a linear thermo-elastic
model and an isotropic constitutive behavior, with a Young’s
modulus E = 1.0, a Poisson’s ratio ν = 0.3, and a coefficient
of thermal expansion α = 1.0. The reference temperature is
set to T0 = 0.0.

To study the convergence rate of the XFEM solution with
mesh refinement, we evaluate the thermal and structural
response on a series of B-spline discretizations. Starting from
the coarsest THB background mesh with 10 × 10 elements,
uniformly refined B-spline discretizations with 20 × 20,
40×40, 80×80, 160×160 and 320×320 elements are con-
sidered. The geometry of the elliptical inclusion is defined by
an analytical level set function. A reference solution is com-
puted numerically by calculating both fields on a uniformly
refined B-spline mesh that is 7 times refined, 1280 × 1280
compared to the coarsest background mesh. Numerical stud-
ies lead by the authors have shown that the computation of
the reference solution on a finer mesh does not noticeably
improve the quality of the error computation.

For all B-spline discretizations, the union background
mesh is 7 times uniformly refined relative to the coars-
est background mesh. This eliminates the geometrical error
between the coarse and the reference solution. Moreover, it
simplifies the integration of the L2 and H1 errors as both the
coarse and the reference solutions are represented on equally
refined XFEM background meshes.

To illustrate the interdependence of discretization errors in
multi-physics problems, we vary the refinement for the tem-
perature discretization while the displacement field is always
evaluated on the finest B-spline discretization, i.e., 320×320
elements. The contours of the absolute errors of the temper-
ature and displacement fields are visualized in Fig. 23 for
the case where the temperature field is discretized by linear
B-splines on a 20 × 20 element mesh. This coarse tempera-
ture field discretization leads to errors in the interior of the
elements. Therefore, the error visualization presents the char-
acteristic tiled error patterns.

The L2 and H1 semi-norm errors of the temperature and
the displacement fields are presented in Fig. 24. First, we
consider the error of the temperature field. The convergence
of the L2 error norm for linear, quadratic, and cubic B-spline
discretizations shows optimal convergence rate of p+1. For
the H1 semi-norm, we observe optimal convergence rates of
p. As expected, using a higher-order basis functions results
in smaller errors for the temperature field.

Next, we consider the error of the displacement field,
which is evaluated with linear, quadratic, and cubic basis
functions and depends on the temperature field that is dis-
cretized by either linear, quadratic, and cubic B-splines. The
errors of the displacement field in the L2 norm and H1 semi-
norm are presented in Fig. 24. The convergence rate of the
error with mesh refinement in the L2 norm is independent of
the order of the displacement field basis functions and instead
only depends on the order of the temperature field. Since the
displacement field is discretized on a much finer mesh than
the thermal field, the error of the displacement field is domi-
nated by the error of the thermal field. The same observation
can be made for the convergence rate in the H1 semi-norm.

To gain further insight, we refine simultaneously the ther-
mal and displacement fields with a specific difference in
refinement level between both fields. The THB background
element edge lengths of the thermal and displacement fields
are denoted by H and h, respectively. The study is performed
for a maximal difference in element size of H = 4h. This
study is performed for linear, quadratic, and cubic interpola-
tion orders for the thermal and the displacement fields. The
setup of the thermal problem is identical the one presented
above, see Fig. 24. The convergence rate of the displacement
field with mesh refinement in the L2 and H1 semi-norm is
presented in Fig. 25. We observe that the absolute error and
convergence rate of the displacement problem only shows
minimal differences when choosing an up to two times
coarser thermal field than the displacement field.

Lastly, we present a convergence studywherewe allow for
a difference in polynomial order. The thermal and displace-
ment field are refined simultaneously such that both fields
are on the same refinement level, i.e., H = h. Results are
presented for a polynomial order of the displacement field
pU for pU = pT and pU = pT + 1, where pT is the order
of the thermal field. The convergence rates with mesh refine-
ment of the displacement field in the L2 and H1 semi-norm
are presented in Fig. 26. We observe that choosing the ther-
mal field one polynomial order lower than the displacement
field results in the same convergence rate of the displace-
ment field in the H1 semi-norm. For this particular problem,
theoretical results are not available for the rate of the con-
vergence for the displacement field in the L2 norm, as the
well-known Aubin-Nitsche technique cannot be applied in
the thermo-elastic setting.
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Fig. 22 Thermo-elastic plate with elliptic hole under thermal load: problem setup (left); temperature contours (center); displacement magnitude
contours (right)

Fig. 23 Visualization of
absolute error of temperature
(left) and displacement field
(right)

Fig. 24 Error convergence rate of temperature and displacement fields with mesh refinement in the L2 norm (left) and H1 semi-norm (right)

This example illustrates that for multi-physics problems,
the discretization of individual fields needs to be performed
in concert. The proposed discretization framework provides
an efficient and flexible tool to select the interpolation order
and mesh refinement level for individual fields to obtain a
numerical solution that meets accuracy requirements with
minimal computational costs, i.e., with minimal number of
DOFs.

6.5 Thermo-elastic multi-material problem

This final example studies a multi-material, multi-physics
configuration. For such problems, areas with large spa-
tial gradients can vary based on the type of physics and
material. Differently locally refined discretizations for each
field reduce the computational cost while simultaneously
enabling for an accurate evaluation of the physical responses.
To demonstrate this aspect, we consider the two-material,
thermo-elastic problem of an expanding circle embedded in
a non-expanding plate, as presented in the introduction in
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Fig. 25 Error convergence rate the displacement fieldwithmesh refinement. L2 norm (left) and H1 semi-norm (right). Temperature and displacement
field are refined simultaneously

Fig. 26 Error convergence rate the displacement field with mesh refinement in the L2 norm (left) and H1 semi-norm (right) using identical
refinements for the temperature and displacement fields

Fig. 1a. The circular inclusion is occupied by a material A
and the plate by amaterial B. The temperature field is due to a
spatially varying heat load of q = 100.0·sin(10.0·y)+110.0
applied along the left domain boundary and a prescribed
temperature T = 0.0 at the right domain boundary. The
conductivities of materials A and B are identical and are
κA = κB = 1.0. The structural response of both materials is
described by a linear thermo-elastic model and an isotropic,
constitutive behavior, withYoung’smoduli EA = EB = 1.0,
Poisson’s ratios νA = νB = 0.3 and coefficients of thermal
expansion αA = 1.0 · 10−5 and αB = 10.0 · 10−5. The ref-
erence temperature is set to T0 = 0.0. Perfect bonding is
assumed at the interface between the two materials Γ AB .

An XFEM analysis is performed to approximate the stress
field at the material interface with high accuracy. We com-
pare the temperature, displacement, Von Mises stress, and
heat flux using uniformly and locally refined B-spline dis-
cretizations. A quadratic polynomial order is used for the
temperature and displacement fields. The coarsest THB

background mesh has 20 × 10 elements. For the uniform
refinement case, the discretizations of the temperature and
displacement fields are three times uniformly refined. In the
local refinement case, the discretization for the temperature
field is three times locally refined at the left domain boundary
to accurately represent the spatially varying load. In contrast,
the discretization of the displacement field is three times
locally refined around the circular material interface. The
obtained heat flux and stress distributions are presented in
in Fig. 27 and show that the temperature and displacement
fields exhibit large spatial gradients in these regions.

The number of DOFs resulting from the uniformly and
locally refined THB background meshes are presented in
Table 1. The locally refined discretization of the thermal field
reduces the number of DOFs by a factor of ∼ 17 when com-
pared to the uniform discretization. When locally refining
the displacement field, the number of DOFs is ∼ 4.6 times
smaller compared to the linear system associated with a uni-
form discretization. To accurately represent the geometry,
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Table 1 Comparison of the number of DOFs for temperature and dis-
placement field for and locally uniformly refined discretizations

Local refinement Uniform refinement

#DOFsTemp 818 13,992

#DOFsDisp 6020 27,981

Table 2 Comparison of error of the stress field at the interface Γ AB in
the L2 error norm for different refinement configurations

Local Refinement L2 error norm # DOFs

(a) Both fields at Γ AB and Γ N 1.2023e−6 10, 626

(b) Disp at Γ AB and Temp at Γ N 2.8881e−6 6838

(c) Disp at Γ AB 2.8913e−6 5764

(d) Temp at Γ N 3.8764e−4 2126

the union background mesh is four times uniformly refined,
irrespective of the B-spline discretizations of the temperature
and displacement fields.

The displacement and temperature fields, as well as the
Von Mises stress and the heat flux magnitude contours, are
shown in Fig. 27. Qualitatively, the resulting fields for uni-
form and local refinement are equivalent.

The following four locally refined configurations are
examined: (a) refinement for both the structural and ther-
mal field at Γ AB and at the Neumann boundary Γ N ; (b)
refinement of the structural field at Γ AB and refinement of
the thermal field at Γ N ; (c) refinement of the structural field
at Γ AB ; and (d) refinement of the thermal field at Γ N . In all
cases the union background mesh is chosen to be uniformly
refined.

Table 2 presents the L2 error norm of the Von-Mises stress
at the material interface Γ AB for different local refinement
configurations together with the size of the linear system.
Local refinement for the first two Configurations, (a) and
(b), yields the smallest error in the L2 error norm. How-
ever, Configuration (b) results in a significant reduction of
the computational cost as measured by the number of DOFs.

In addition, Configuration (c) yields a similar small error
as Configuration (a) and (b). This behavior might be unex-
pected but can be explained with the fine uniform refinement
of the union background mesh which allows for an accurate
integration of the spatial varying load even with a coarse
thermal discretization. Configuration (d) results in the high-
est error as only the thermal field is locally refined at the
Neumann boundary.

7 Conclusion

This paper presents an immersed isogeometric finite element
analysis framework with local mesh refinement based on
a Heaviside enriched XFEM. Hierarchical, locally refined
discretizations allow for refinement of the finite element
approximations in regions of interest, balancing accuracy
and computational cost. THB functions are utilized as they
provide an elegant way to construct suitable, locally refined
discretization spaces. Moreover, B-spline basis functions are
an appealing choice over Lagrange basis functions because
of their higher inter-element continuity and their increased
computational efficiency. In multi-material, multi-physics
problems, the resolution requirements may be different for
individual state variable fields. The proposed framework
allows for separate discretizations with different polynomial
orders for each physical field. Furthermore, each discretiza-
tion can be refined individually, both globally and locally,
to meet field-specific accuracy requirements. In contrast to
using the same polynomial order and refinement for all state
variable fields, the proposed framework may lower signifi-
cantly the computational cost. In this paper, THBbackground
meshes are refined based on geometric refinement indicators.
However, the framework permits any refinement indicators
and can be used for adaptive mesh refinement strategies.

A PT data structure and mesh generation algorithms are
presented for the efficient construction of differently refined
meshes, both in terms of run time performance and memory
needs. The concept of PT cell activation states enables using
the same data structure to construct a set of different hier-
archically refined THB background meshes. Using the PT
data structure and the activation state concept, a union back-
ground mesh is constructed such that elements of the union
background mesh are at the highest (or higher) refinement
level of all corresponding elements of the THB background
meshes. The union mesh supports the discretizations of all
THB background meshes.

The union background mesh serves as the XFEM back-
ground mesh in which the geometry is immersed. In this
paper, the geometry is represented by level set functions,
and intersected elements are cut recursively by the zero iso-
contours of the level set fields. This process yields a single
integration mesh which is aligned with the boundaries and
interfaces defined by the level set functions. In this paper,
the weak form of the governing equations is integrated by
standard quadrature rules on the integration mesh. However,
other quadrature schemes can be applied, such as the ones
proposed by Thiagarajan and Shapiro [49] andGunderman et
al. [25]. The B-spline basis functions are enriched using the
generalizedHeaviside enrichment strategy ofNoël et al. [36].
To facilitate operations performed on the union background
mesh and on the integration mesh in the XFEM analysis, the
THB basis functions are represented by Lagrange basis func-
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Fig. 27 Comparison of XFEM analysis results for locally and uniformly refined discretizations

tions defined on the union background mesh via extraction
operators. The union background mesh supports extraction
operators for each THB discretization.

Numerical examples suggest that the proposed immersed
isogeometric finite element framework generates discretiza-
tions that converge at theoretical, optimal convergence rates
with mesh refinement. The application of our framework to a
multi-material polycrystalline micro-structure shows that it
is well suited to discretize complex multi-material problems
in 3D. A scalability study demonstrates that the proposed
implementation scales with an increasing number of pro-
cessors. The coupled thermo-elastic examples highlight the
benefits of tailoring the discretization of individual state vari-
able fields to their field-specific accuracy requirements.

Future work will focus on extending the proposed frame-
work to utilize additional refinement criteria such as finite
element error estimators. Moreover, more complex physics
for which local mesh refinement is crucial, such as fluid flow
at high Reynolds numbers, will be addressed.
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