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Abstract

Partially saturated flow in a porous medium is typically modeled
by the Richards equation, which is nonlinear, parabolic and pos-
sibly degenerated. This paper presents domain decomposition-based
numerical schemes for the Richards equation, in which different time
steps can be used in different subdomains. Two global-in-time domain
decomposition methods are derived in mixed formulations: the first
method is based on the physical transmission conditions and the sec-
ond method is based on equivalent Robin transmission conditions.
For each method, we use substructuring techniques to rewrite the
original problem as a nonlinear problem defined on the space-time
interfaces between the subdomains. Such a space-time interface prob-
lem is linearized using Newton’s method and then solved iteratively
by GMRES; each GMRES iteration involves parallel solution of time-
dependent problems in the subdomains. Numerical experiments in two
dimensions are carried out to verify and compare the convergence
and accuracy of the proposed methods with local time stepping.
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1 Introduction

Porous media flows appear in many applications of societal relevance, such as
groundwater remediation, environmental contamination, nuclear waste geolog-
ical repositories, CO2 sequestration and enhanced oil recovery. Mathematical
modeling and numerical simulation are key technologies for understanding the
physical behaviour of such systems, as they have the minimal environmental
impact and cost. The problems are challenging for the numerical simulation
since they involve coupled, nonlinear partial differential equations on a com-
plex domain, which is actually a union of several subdomains with different
hydrogeological properties or even with different models. Thus the time scales
may vary significantly across various geological layers involved in the simula-
tion. It is computationally inefficient to use a single time step in the whole
domain and one should use a different time step in each subdomain. This can
be achieved by using global-in-time domain decomposition (GT-DD) meth-
ods with nonmatching grids in time. The idea of GT-DD is to decouple the
dynamic system into dynamic subsystems defined on the subdomains (result-
ing from a spatial decomposition), then solve time-dependent problems in each
subdomain at each iteration and exchange the information over the space-time
interfaces between subdomains. Note that GT-DD is different from classical
DD methods applied to evolution problems where the model equations are first
discretized implicitly in time, then DD iterations are performed at each time
step as for the stationary case. Consequently, a uniform time step is usually
considered in the classical approach.

GT-DD methods can be classified into two groups: Schur-type and Schwarz-
type methods. The former is based on physical transmission conditions and
the latter is based on more general transmission conditions such as Robin or
Ventcel conditions. An important class of global-in-time Schwarz methods is
the Optimized Schwarz Waveform Relaxation (OSWR) algorithm where addi-
tional coefficients involved in the transmission conditions are optimized to
improve convergence rates [5, 6, 22]. Both global-in-time Schur and Schwarz
methods have been extensively studied for linear flow and transport problems
in porous media with different types of spatial discretizations and with non-
matching time grids in [12, 13, 22–25, 29, 30, 33–35, 41]. Instead, the literature
for nonlinear problems using the GT-DD approach is less rich. In this con-
text we refer to [26] for the rigorous convergence analysis of such problems.
A nested iteration method based on OSWR and Newton linearization was
proposed in [28] for the nonlinear reactive transport equation. Using a simi-
lar approach, though with physical transmission conditions, a global-in-time
Schur method was developed in [36] for the coupled nonlinear Stokes-Darcy
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system. We also mention [16, 17, 27, 54, 55] where classical DD methods for
nonlinear elliptic equations were developed.

In this work, we aim to derive nonlinear GT-DD methods with nonover-
lapping subdomains for the Richards equation [4, 32, 49, 50] to model flow
in partially saturated porous media. The Richards equation is a degenerate
elliptic-parabolic nonlinear equation whose well-posedness and numerical solu-
tions have been extensively analyzed in the literature (see, e.g., [2, 18, 44,
47, 52]). Due to the low regularity of the solution, this equation is often dis-
cretized in time by the backward Euler method (see, e.g., [45]) and in space
by various schemes. In this sense, we refer to [3, 48, 51, 56, 57], where mixed
finite elements are employed, or [20, 38] for finite volume schemes, and to
[43] for the a posteriori error analysis. To solve the nonlinear problem at each
time step, different linearization strategies have been proposed such as New-
ton’s method [7, 14], Picard’s method [15, 40], the Jäger-Kačur method [37],
the L-scheme [39, 46], or the scheme combining the L-scheme with Newton’s
approach [42]. In addition, to reduce the size of the problem and perform par-
allel simulations, some DD methods have been studied for the stationary or
time-discretized Richards equation. Nonlinear Dirichlet-Neumann and Robin
algorithms were proposed and analyzed in [8, 9] for quasilinear elliptic prob-
lems and in [10, 11] for the semi-discrete Richards equation at each time step.
In [53], a linear DD method was introduced by combining the L-scheme idea
with Robin transmission conditions. The convergence of the scheme is proved
under some mild restrictions on the time step size. These DD schemes for the
Richards equation use pressure formulations and assume the same time steps
in the subdomains.

Due to strong heterogeneity of the porous medium, it is desirable to use
different time steps in different regions of the domain. We develop in this work
global-in-time Schur and Schwarz methods with mixed formulations as the con-
servation of mass is essential for flow in porous media. Based on either physical
and Robin transmission conditions and by using substructuring techniques,
we rewrite the original problem as a nonlinear space-time problem defined
on the interfaces between the subdomains. Such an interface problem is lin-
earized using Newton’s method and then solved iteratively by GMRES; each
GMRES iteration involves parallel solution of time-dependent problems in the
subdomains. Thus nonconforming time grids can be used to adapt to different
time scales in the subdomains. To discretize the Richards equation in the sub-
domains at each Newton/GMRES iteration, we use the Euler implicit-mixed
finite element (EI-MFE) scheme [3, 48, 51]. The proposed GT-DD methods
are fully implicit, so that different and large time step sizes can be used for
long-term simulations as often needed in some applications in geosciences. We
shall validate numerically the convergence and accuracy of the proposed GT-
DD methods with local time stepping on two test cases with continuous and
discontinuous parameters and known exact solutions. The numerical effect of
Robin parameters on the convergence of nonlinear and linear iterative schemes
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will also be discussed. Convergence analysis of the methods, theoretical opti-
mized Robin parameters as well as further numerical experiments on more
realistic problems will be investigated in a separate work. We remark that
OSWR algorithms based on Robin or Ventcel transmission conditions were
considered in [1] for two-phase flow discretized in space by finite volumes and
in time by backward Euler. Such algorithms are a special case of the global-in-
time Schwarz methods where one uses Jacobi iteration (instead of GMRES)
to solve the linearized interface problem.

The rest of this paper is organized as follows. In Section 2, the model
initial boundary value problem of Richards equation is introduced along with
its numerical solution using the EI-MFE scheme and Newton linearization. An
important part of the paper is Section 3 where two GT-DD methods are derived
using either physical or equivalent Robin transmission conditions. For each
method, a nonlinear space-time interface problem is formulated and is solved
via a nested iterative algorithm. The fully discrete interface and subdomain
problems are discussed in Section 4 with nonconforming time discretization.
In Section 5, numerical experiments are presented to study the accuracy and
convergence behaviors of the proposed algorithms. Finally, some concluding
remarks are given in Section 6.

2 Model problem and its numerical solution

For a bounded domain Ω of Rd (d ≥ 1) with Lipschitz continuous boundary
∂Ω and some fixed time T > 0, consider the Richards equation [32, 49, 50] to
model flow in saturated-unsaturated porous media:

∂tΘ(ψ)−∇ · (K(Θ(ψ))∇(ψ + z)) = f in Ω× (0, T ). (2.1)

Here ψ is the pressure head, Θ the fluid saturation, K the hydraulic conduc-
tivity of the porous medium, z the vertical height (against the gravitational
direction) and f the source term. The medium is assumed to be isotropic, i.e.
K is a scalar function. We refer to [4] for different formulas for K(Θ) and
Θ(ψ) based on laboratory experiments. It should be noted that Θ(ψ) is strictly
increasing and bounded in unsaturated regions (where Θ is less than a maxi-
mal saturation ΘS), while it is constant in saturated regions (where Θ = ΘS).
Thus, (2.1) is generally a degenerate elliptic-parabolic equation.

We rewrite (2.1) in an equivalent mixed form by introducing the vector
field QQQ for the fluid flux:

∂tΘ(ψ) +∇ ·QQQ = f in Ω× (0, T ),
QQQ = −K(Θ(ψ))∇(ψ + z) in Ω× (0, T ).

(2.2)

Our model problem consists of equation (2.2) together with the following
boundary and initial conditions:

ψ = 0 on ∂Ω× (0, T ), ψ(t = 0) = ψ0 in Ω. (2.3)
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For simplicity, we have imposed homogeneous Dirichlet conditions on the
boundary (for more general boundary conditions, see [10, 52]). Throughout
the paper, the following assumptions are imposed:

(A1) The function Θ is monotonically increasing and Lipschitz continuous;
there exist two constants ΘR and ΘS such that 0 < ΘR ≤ Θ(x) ≤ ΘS ≤ 1 for
all x ∈ R.

(A2) The function K is strictly monotonically increasing and Lipschitz continu-
ous; there exist two constants K0 and K1 such that 0 < K0 ≤ K(x) ≤ K1 <∞
for all x ∈ R.

(A3) The source term f ∈ L2(0, T ; L2(Ω)); the initial pressure head ψ0 is
bounded and positive, and ψ0 ∈ L2(Ω).

To write the weak form of (2.2)-(2.3), we denote by (·, ·) the inner product
on L2(Ω), and for a measurable subset S ⊂ Ω, we write (·, ·)S (respectively,
〈·, ·〉∂S) to indicate the inner product on S (respectively, ∂S). Let ezezez := ∇z
be the constant gravitational vector. Due to the lacking regularity of the solu-
tion [2, 44], we consider the following mixed variational formulation of (2.2)
as proposed in [3]:

Find (ψ,QQQ) ∈ L2
(
0, T ; L2(Ω)

)
× L2

(
0, T ; (L2(Ω))d

)
such that, for all

t ∈ (0, T ),
∫ t

0
QQQ(τ) dτ ∈ L2 (0, T ; H(div,Ω)) and

(Θ(ψ(t)), µ) +

(
∇ ·
∫ t

0

QQQ(τ) dτ, µ

)
=

(∫ t

0

f(τ) dτ, µ

)
+ (Θ(ψ0), µ) ,

∀µ ∈ L2(Ω),

(2.4a)

(
K−1 (Θ(ψ))QQQ,vvv

)
− (ψ,∇ · vvv) + (ezezez, vvv) = 0, ∀vvv ∈ H(div,Ω). (2.4b)

Problem (2.4) is well-posed, i.e. there exists a unique solution to (2.4),
as analyzed in detail in [2, 3, 44]. Our focus here is the numerical solutions
of (2.4). We consider the EI-MFE scheme [3, 48, 51] for the discretization
of problem (2.4); specifically, (2.4) is discretized in time by backward Euler
and in space by mixed finite elements based on the lowest order Raviart-
Thomas space. For completeness, we present the EI-MFE method as well as the
linearization technique to find the numerical solution of the resulting nonlinear
discrete problem iteratively. The algorithm will be used to solve the Richards
equation in the subdomains as derived in the next sections.

Let T be a partition of the time interval (0, T ) into sub-intervals 0 = t0 <
t1 < . . . < tN = T , with a time step size ∆t = T/N for some integer N > 0. In
space, assume that Ω is a polygon and let Kh be a finite element partition of Ω
into d-dimensional simplicial elements, where h is the mesh size. The discrete
spaces for the scalar and vector variables are defined as

Mh :=
{
µ ∈ L2(Ω) : µ|K = constant, ∀K ∈ Kh

}
,

Σh := {vvv ∈ H(div,Ω) : vvv|K = aaa+ bxxx, ∀K ∈ Kh} .
(2.5)

The nonlinear fully discrete problem for (2.4) is given by (see [3]):
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For each n = 1, . . . , N , find (ψnh ,QQQ
n
h) ∈ Mh × Σh, the approximation of

(ψ(tn),QQQ(tn)), such that(
Θ(ψnh)−Θ(ψn−1

h )

∆t
, µ

)
+ (∇ ·QQQnh, µ) = (f(tn), µ) , ∀µ ∈Mh, (2.6a)(

K−1 (Θ(ψnh))QQQnh, vvv
)
− (ψnh ,∇ · vvv) + (ezezez, vvv) = 0, ∀vvv ∈ Σh. (2.6b)

Different linearization techniques have been studied for solving (2.6), the
reader is referred to [39] and the references therein for further details. In this
work, we use Newton’s method, which reads as: For each n = 1, . . . , N,

(1) set ψn,0h := ψn−1
h and QQQn,0h := QQQn−1

h .

(2) at each iteration l = 1, 2, . . . , find (ψn,lh ,QQQn,lh ) ∈Mh × Σh such that(
Θ′(ψn,l−1

h )(ψn,lh − ψ
n,l−1
h )

∆t
, µ

)
+
(
∇ ·QQQn,lh , µ

)
= (f(tn), µ)

−

(
Θ(ψn,l−1

h )−Θ(ψn−1
h )

∆t
, µ

)
, ∀µ ∈Mh,

(2.7a)

(
K−1(Θ(ψn,l−1

h ))QQQn,lh , vvv
)
−
(
ψn,lh ,∇ · vvv

)
+ (ezezez, vvv)

+
(

(K−1)′(Θ(ψn,l−1
h ))Θ′(ψn,l−1

h )(ψn,lh − ψ
n,l−1
h )QQQn,l−1

h , vvv
)

= 0, ∀vvv ∈ Σh.

(2.7b)

The system (2.7) is solved with the same time step size on the whole spa-
tial domain. In the next section, we consider a different approach based on
nonoverlapping domain decomposition to reduce the size of the problem and
to allow local time stepping, which is computationally efficient for problems
with discontinuous physical coefficients.

3 Global-in-time domain decomposition and
nested iterative methods

For the ease of presentation, we consider a decomposition of Ω into two
nonoverlapping subdomains Ω1 and Ω2 separated by an interface Γ:

Ω1 ∩ Ω2 = ∅; Γ = ∂Ω1 ∩ ∂Ω2 ∩ Ω, Ω = Ω1 ∪ Ω2 ∪ Γ.

The formulations given below can be generalized straightforwardly to the case
of many subdomains. For i = 1, 2, let nnni denote the unit outward pointing
normal vector field on ∂Ωi, and for any scalar or vector-valued function v
defined on Ω, let vi be the restriction of v to Ωi. Solving problem (2.2)-(2.3)
is equivalent to solve the corresponding problems in the subdomains:
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∂tΘi(ψi) +∇ ·QQQi = fi in Ωi × (0, T ),
QQQi = −Ki(Θi(ψi))∇(ψi + z) in Ωi × (0, T ),
ψi = 0 on (∂Ωi ∩ ∂Ω)× (0, T ),

ψi(0) = ψi,0 in Ωi,

(3.1)

for i = 1, 2, together with the following transmission conditions on the space-
time interface:

ψ1 = ψ2

QQQ1 ·nnn1 +QQQ2 ·nnn2 = 0
on Γ× (0, T ) . (3.2)

Equivalently, one can also impose the Robin transmission conditions:

−QQQ1 ·nnn1 + α1,2ψ1 = QQQ2 ·nnn2 + α1,2ψ2

−QQQ2 ·nnn2 + α2,1ψ2 = QQQ1 ·nnn1 + α2,1ψ1
on Γ× (0, T ) , (3.3)

where α1,2 and α2,1 are some positive numbers. Based on either the physical or
Robin transmission conditions, we derive two methods, namely the global-in-
time Schur (GT-Schur) and global-in-time Schwarz (GT-Schwarz) methods, in
the following. Each method relies on a reformulation of the coupled subdomain
problems as a space–time interface problem, through the use of trace operators.

3.1 Global-in-time Schur (GT-Schur) method

We first introduce the interface space Λ := H
1/2
00 (Γ) and its dual space

Λ∗ :=
(
H

1/2
00 (Γ)

)′
. Denote by 〈·, ·〉Γ the duality pairing between Λ∗ and Λ. The

space-time interface operators associated with GT-Schur are time-dependent
Dirichlet-to-Neumann or Steklov-Poincaré operators defined as:

SDtN
i : L2(0, T ; Λ) −→ L2(0, T ; Λ∗), SDtN

i (λ) = QQQi(λ) ·nnni|Γ×(0,T ), (3.4)

for i = 1, 2, where (ψi(λ),QQQi(λ)) is the solution to the following subdomain
problem with Dirichlet boundary conditions on the space-time interface Γ ×
(0, T ):

∂tΘi(ψi) +∇ ·QQQi = fi in Ωi × (0, T ),
QQQi = −Ki(Θi(ψi))∇(ψi + z) in Ωi × (0, T ),
ψi = λ on Γ× (0, T ),
ψi = 0 on (∂Ωi ∩ ∂Ω)× (0, T ),

ψi(0) = ψi,0 in Ωi.

(3.5)

The weak formulation of (3.5) is given by:

Find (ψi,QQQi) ∈ L2
(
0, T ; L2(Ωi)

)
× L2

(
0, T ; (L2(Ωi))

d
)

such that, for all

t ∈ (0, T ),
∫ t

0
QQQi(τ) dτ ∈ L2 (0, T ; H(div,Ωi)) and

(Θi(ψi(t)), µ) +

(
∇ ·
∫ t

0

QQQi(τ) dτ, µ

)
=

(∫ t

0

fi(τ) dτ, µ

)
+ (Θi(ψi,0), µ) , ∀µ ∈ L2(Ωi),

(3.6)
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K−1
i (Θi(ψi))QQQi, vvv

)
− (ψi,∇ · vvv) + (ezezez, vvv) = −〈λ,vvv ·nnni〉Γ,

∀vvv ∈ H(div,Ωi).
(3.7)

As the continuity of the pressure (3.2)1 is imposed via λ, there remains to
enforce the normal flux continuity (3.2)2, which leads to the interface problem:

Find λ ∈ L2(0, T ; Λ) such that:∫ T

0

〈Υ(λ), η〉Γ ds = 0, ∀η ∈ L2(0, T ; Λ), (3.8)

where Υ(λ) := SDtN
1 (λ) + SDtN

2 (λ) is the jump of the normal fluxes across the
space-time interface. Problem (3.8) is time-dependent and nonlinear, and will
be solved by a nested iterative method. Applying Newton’s algorithm to (3.8)
yields the following linear system at each iteration k:∫ T

0

〈
Υ′(λk)(λk+1 − λk), η

〉
Γ
ds =

∫ T

0

〈
−Υ(λk), η

〉
Γ
ds, ∀η ∈ L2(0, T ; Λ),

(3.9)
with

Υ′(λ)(g) = SDtN,lin
1,λ (g) + SDtN,lin

2,λ (g), and SDtN,lin
i,λ (g) = wwwi(g) ·nnni|Γ×(0,T ),

for i = 1, 2, where (ξi(g),wwwi(g)) ∈ L2
(
0, T ; L2(Ωi)

)
× L2

(
0, T ; (L2(Ωi))

d
)
,

with
∫ t

0
wwwi(τ) dτ ∈ L2 (0, T ; H(div,Ωi)) for all t ∈ (0, T ), is the solution to the

linearized subdomain problem:

(Θ′i(ψi(t))ξi(t), µ) +

(
∇ ·
∫ t

0

wwwi(τ) dτ, µ

)
= 0, ∀µ ∈ L2(Ωi), (3.10)(

K−1
i (Θi(ψi))wwwi, vvv

)
+
(
(K−1

i )′(Θi(ψi)Θ
′
i(ψi)ξiQQQi, vvv

)
− (ξi,∇ · vvv)

= −〈g,vvv ·nnni〉Γ − (ezezez, vvv) , ∀vvv ∈ H(div,Ωi).

(3.11)

Note that (ψi,QQQi) = (ψi(λ),QQQi(λ)) is the solution of (3.6)-(3.7), for i = 1, 2.
The nested iteration algorithm for solving (3.8) is summarized in Algorithm 1.

Algorithm 1 - Nested Iteration for GT-Schur method

Input: λ0 initial guess, ε tolerance and Niter maximum number of iterations.
Output: λk

k = 0, error = 0,
while k < Niter and error > ε, do:

1: Compute Υ(λk) = SDtN
1 (λk) + SDtN

2 (λk) by solving the nonlinear subdo-
main problems (3.6)-(3.7), for i = 1, 2, with λ = λk.
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2: Solve the following linearized interface problem with a Krylov-type method
(e.g., GMRES):∫ T

0

〈
Υ′(λk)(gk), η

〉
Γ

=

∫ T

0

〈
−Υ(λk), η

〉
Γ
, ∀η ∈ L2(0, T ; Λ),

where the left-hand side is given by

Υ′(λk)(gk) = SDtN,lin
1,λk (gk) + SDtN,lin

2,λk (gk).

That means each Krylov-iteration involves solution of linearized prob-
lems (3.10)-(3.11) to compute the matrix-free vector product on the
left-hand side.

3: Update λk+1 = λk + gk, k = k + 1, error = ‖gk‖L2(0,T ; Λ).

Remark 1 To accelerate the convergence of GMRES when solving the linearized inter-
face problem (3.9), we use the time-dependent Neumann-Neumann preconditioner,

P−1
NN , as proposed in [34] for the linear diffusion equation. Such a preconditioner

involves solving the linearized subdomain problems (similarly to (3.10)-(3.11)) but
with Neumann boundary conditions on the space-time interface. Specifically, at each
Newton iteration k and for ϑ ∈ L2(0, T ; Λ∗), we have

P−1
NN,λk (ϑ) = SNtD,lin

1,λk (ϑ) + SNtD,lin
2,λk (ϑ),

where
SNtD,lin
i,λk (ϑ) = ξi(ϑ)|Γ×(0,T ), i = 1, 2,

is the time-dependent Neumann-to-Dirichlet operator, and (ξi(ϑ),wwwi(ϑ)) ∈
L2

(
0, T ; L2(Ωi)

)
× L2

(
0, T ; (L2(Ωi))

d
)

satisfies

i)
∫ t

0
wwwi(τ) dτ ∈ L2 (0, T ; H(div,Ωi)) for all t ∈ (0, T );

ii) wwwi ·nnni|Γ×(0,T ) = ϑ and

(Θ′i(ψi(t))ξi(t), µ) +

(
∇ ·
∫ t

0

wwwi(τ) dτ, µ

)
= 0, ∀µ ∈ L2(Ωi),(

K−1
i (Θi(ψi))wwwi, vvv

)
+
(
(K−1

i )′(Θi(ψi)Θ
′
i(ψi)ξiQQQi, vvv

)
− (ξi,∇ · vvv)

= − (ezezez, vvv) , ∀vvv ∈ HΓ
0 (div,Ωi),

where HΓ
0 (div,Ωi) := {vvv ∈ H(div,Ωi) : vvv ·nnni|Γ = 0}.

3.2 Global-in-time Schwarz (GT-Schwarz) method

With Robin transmission conditions, the interface operators are of Robin-to-
Robin type and are defined as

SRtR
i : L2(0, T ; L2(Γ)) −→ L2(0, T ; L2(Γ)),

ξ 7→
(

1 +
αj,i
αi,j

)
QQQi(ξ) ·nnni|Γ×(0,T ) +

αj,i
αi,j

ξ,
(3.12)
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for i = 1, 2, and j = 3−i, where (ψi(ξ),QQQi(ξ)) is the solution to the subdomain
problem with Robin boundary conditions on the space-time interface:

∂tΘi(ψi) +∇ ·QQQi = fi in Ωi × (0, T ),
QQQi = −Ki(Θi(ψi))∇(ψi + z) in Ωi × (0, T ),

−QQQi(ξ) ·nnni + αi,jψi = ξ on Γ× (0, T ),
ψi = 0 on (∂Ωi ∩ ∂Ω)× (0, T ),

ψi(0) = ψi,0 in Ωi.
(3.13)

The weak formulation of (3.13) is given by:

Find (ψi,QQQi) ∈ L2
(
0, T ; L2(Ωi)

)
× L2

(
0, T ; (L2(Ωi))

d
)

such that, for all

t ∈ (0, T ),
∫ t

0
QQQi(τ) dτ ∈ L2 (0, T ; H(div,Ωi)) and

(Θi(ψi(t)), µ) +

(
∇ ·
∫ t

0

QQQi(τ) dτ, µ

)
=

(∫ t

0

fi(τ) dτ, µ

)
+ (Θi(ψi,0), µ) , ∀µ ∈ L2(Ωi),

(3.14)

(
K−1
i (Θi(ψi))QQQi, vvv

)
− (ψi,∇ · vvv) + (ezezez, vvv) +

〈
1

αi,j
QQQi ·nnni, vvv ·nnni

〉
Γ

= −
〈

1

αi,j
ξ,vvv ·nnni

〉
Γ

, ∀vvv ∈ H(div,Ωi).

(3.15)

The space-time interface problem is obtained by enforcing the Robin
transmission conditions (3.3):

Find ξξξ = (ξ1, ξ2) ∈ L2(0, T ; L2(Γ))2 such that∫ T

0

〈ΥR(ξξξ), ζζζ〉Γ = 0, ∀ζζζ = (ζ1, ζ2) ∈ L2(0, T ; L2(Γ))2, (3.16)

where ΥR(ξξξ) =
(
ξ1 − SRtR

2 (ξ2), ξ2 − SRtR
1 (ξ1)

)
represents the jumps of the

Robin terms associated with each subdomain. To solve the nonlinear prob-
lem (3.16), we again apply Newton’s method and obtain the linearized interface
problem:∫ T

0

〈
JJJΥR

(ξξξk)(ξξξk+1 − ξξξk), ζζζ
〉

Γ
ds =

∫ T

0

〈
−ΥR(ξξξk), ζζζ

〉
Γ
ds,

∀ζζζ ∈ (L2(0, T ; L2(Γ)))2,

(3.17)

with JJJΥR
(ξξξ)(rrr) =

(
r1 − SRtR,lin

2,ξ2
(r2), r2 − SRtR,lin

1,ξ1
(r1)

)
, and

SRtR,lin
i,ξi

(r) =

(
1 +

αj,i
αi,j

)
wwwi(r) ·nnni|Γ×(0,T ) +

αj,i
αi,j

r,
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for i = 1, 2, where (ξi(r),wwwi(r)) ∈ L2
(
0, T ; L2(Ωi)

)
× L2

(
0, T ; (L2(Ωi))

d
)
,

with
∫ t

0
wwwi(τ) dτ ∈ L2 (0, T ; H(div,Ωi)) for all t ∈ (0, T ), is the solution to the

linearized subdomain problem:

(Θ′i(ψi(t))ξi(t), µ) +

(
∇ ·
∫ t

0

wwwi(τ) dτ, µ

)
= 0, ∀µ ∈ L2(Ωi), (3.18)(

K−1
i (Θi(ψi))wwwi, vvv

)
+
(
(K−1

i )′(Θi(ψi))Θ
′
i(ψi))ξiQQQi, vvv

)
− (ξi,∇ · vvv)

+

〈
1

αi,j
wwwi ·nnni, vvv ·nnni

〉
Γ

= −
〈

1

αi,j
r,vvv ·nnni

〉
Γ

− (ezezez, vvv) , ∀vvv ∈ H(div,Ωi).

(3.19)

Note that (ψi,QQQi) = (ψi(ξi),QQQi(ξi)) is the solution to (3.14)-(3.15), for i = 1, 2.
The nested iteration algorithm for solving (3.16) is summarized in Algorithm 2.

Algorithm 2 - Nested Iteration for GT-Schwarz method

Input: ξξξ0 = (ξ0
1 , ξ

0
2) initial guess, ε tolerance and Niter maximum number of

iterations.
Output: ξξξk = (ξk1 , ξ

k
2 )

k = 0, error = 0,
while k < Niter and error > ε, do:

1: Compute ΥR(ξξξ) =
(
ξ1 − SRtR

2 (ξ2), ξ2 − SRtR
1 (ξ1)

)
by solving the nonlinear

subdomain problems (3.14)-(3.15) with ξ = ξki for i = 1, 2.
2: Solve the linearized interface problem with a Krylov-type method (e.g.,

GMRES):∫ T

0

〈
JJJΥR

(ξξξk)(ξξξk+1 − ξξξk), ζζζ
〉

Γ
ds =

∫ T

0

〈
−ΥR(ξξξk), ζζζ

〉
Γ
ds,

∀ζζζ ∈ (L2(0, T ; L2(Γ)))2,

where the left-hand side is given by

JJJΥR
(ξξξ)(rrr) =

(
r1 − SRtR,lin

2,ξ2
(r2), r2 − SRtR,lin

1,ξ1
(r1)

)
.

Thus each Krylov-iteration involves solution of linearized problems (3.18)-
(3.19) to compute the matrix-free vector product on the left-hand side.

3: Update ξξξk+1 = ξξξk + rrrk, k = k + 1, error = ‖rrrk‖(L2(0,T ; L2(Γ)))2 .

4 Nonconforming time discretization

The interface problems for the GT-Schur and GT-Schwarz methods are global
in time, and solving them iteratively via Newton linearization and GMRES
involves numerical solutions of nonlinear and linearized subdomain problems
over the whole time interval (0, T ). Thus independent time discretizations can
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be used in the subdomains. Let T1 and T2 be two possibly different partitions
of the time interval (0, T ) into sub-intervals (see Figure 1). We denote by Ji,n
the time interval (ti,n, ti,n−1] and by ∆ti,n := (ti,n − ti,n−1) for n = 1, . . . , Ni
and i = 1, 2.

x

t

T

0

∆t1,n
∆t2,n

Ω1 Ω2

Fig. 1: Nonconforming time grids in the subdomains.

In space, we assume that the partitions Kh,1 of subdomain Ω1 and Kh,2
of subdomain Ω2 are such that their union Kh = ∪2

i=1Kh,i forms a finite
element partition of Ω. Denote by Eh,Γ the set of edges of elements of Kh,1
or Kh,2 that lie on Γ. For simplicity, we have considered conforming spatial
discretization as our main focus in this work is the use of local time stepping.
As for the monodomain problem (cf. (2.5)), denote by Mh,i ⊂ L2(Ωi) and
Σh,i ⊂ H(div,Ωi) the discrete spaces in each subdomain, where Mh,i consists
of piecewise constant functions and Σh,i is the lowest-order Raviart-Thomas
space. The discrete interface space is given by

Λh :=
{
λ ∈ L2(Eh,Γ) : λ|E = constant on E, ∀E ∈ Eh,Γ

}
.

Numerical solutions of the subdomain problems are obtained using the EI-MFE
scheme as presented in Section 2.

For i = 1, 2, we denote by P0(Ti,Λh) the space of piecewise constant
functions in time on grid Ti with values in Λh:

P0(Ti,Λh) = {φ : (0, T )→ Λh, φ is constant on Ji,n, ∀n = 1, . . . , Ni} .
(4.1)

In order to exchange data on the space-time interface between different time
grids, we define an L2 projection Πji from P0(Ti,Λh) onto P0(Tj ,Λh) (see
[21, 30]): for φ ∈ P0(Ti,Λh), Πjiφ |Jj,n is the average value of φ on Jj,n, for
n = 1, . . . , Nj , i = 1, 2, and j = (3− i).

4.1 For GT-Schur method:

The discrete interface unknown, denoted by λh, is chosen to be piecewise con-
stant in time on one grid, either T1 or T2. For instance, let λh ∈ P0(T1,Λh)
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and let ψ1 = Π11(λh) = Id(λh). The weak continuity of the pressure in time
across the interface is fulfilled by letting

ψ2 = Π21(λh) ∈ P0(T2,Λh).

The fully discrete counterpart of the normal flux continuity, i.e. the interface
problem (3.8), is weakly enforced over the time intervals of T1 as follows:∫

J1,n

∫
Γ

[
SDtN

1 (λh) + Π12

(
SDtN

2 (Π21(λh))
)]
η dγ ds = 0, ∀η ∈ Λh, (4.2)

for n = 1, . . . , N1. Similarly for the linearized interface problem, we choose
gkh ∈ P0(T1,Λh), for k = 1, 2, . . ., and enforce weakly (3.9) over each time
interval of T1:∫

J1,n

∫
Γ

[
SDtN,lin

1,λk
h

(gkh) + Π12

(
SDtN,lin

2,Π21(λk
h)

(Π21(gkh))
)]

η dγ ds

=

∫
J1,n

∫
Γ

[
−SDtN

1 (λkh)−Π12

(
SDtN

2 (Π21(λkh))
)]
η dγ ds, ∀η ∈ Λh,

(4.3)

for n = 1, . . . , N1.

4.2 For GT-Schwarz method:

The two interface unknowns represent the Robin terms on each subdomain,
thus we let ξh,i ∈ P0(Ti,Λh) for i = 1, 2. The fully discrete counterpart of the
nonlinear interface problem (3.16) is given by∫
J1,n

∫
Γ

[
ξh,1 −Π12

(
SRtR

2 (ξh,2)
)]
ζ dγ ds = 0, ∀ζ ∈ Λh, ∀n = 1, . . . , N1, (4.4)∫

J2,n

∫
Γ

[
ξh,2 −Π21

(
SRtR

1 (ξh,1)
)]
ζ dγ ds = 0, ∀ζ ∈ Λh, ∀n = 1, . . . , N2. (4.5)

Similarly for the linearized interface problem (3.17), we let rkh,i ∈ P0(Ti,Λh)
and enforce∫

Ji,n

∫
Γ

[
rkh,i −Πij

(
SRtR,lin

j,ξkh,j

(rkh,j)
)]

ζ dγ ds

=

∫
Ji,n

∫
Γ

[
−ξh,i + Πij

(
SRtR
j (ξh,j)

)]
ζ dγ ds, ∀ζ ∈ Λh,

(4.6)

for n = 1, . . . , Ni, i = 1, 2, and j = (3− i).
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5 Numerical results

We study numerical performance of the proposed GT-Schur and GT-Schwarz
methods on two test cases: Test case 1 with continuous and constant conductiv-
ity coefficients, and Test case 2 with nonlinear and heterogeneous conductivity
functions. We consider the decomposition into two nonoverlapping subdomains
in the numerical experiments; the case of multiple subdomains will be inves-
tigated in our future work. We shall verify the accuracy in space and in time,
the convergence of nonlinear and linear iterations for the proposed methods as
well as numerical optimized Robin parameters for GT-Schwarz. Note that we
disregard gravity in our numerical experiments and the code to generate the
results below is implemented in FreeFem++ [31] in a sequential setting.

Regarding the nonlinear iterative solvers for the interface problems associ-
ated with GT-Schur and GT-Schwarz, we set ε = 5 × 10−4 and stop Newton
iterations when

either

∥∥∥∥∥
2∑
i=1

QQQi ·nnni|t=T

∥∥∥∥∥
L2(Λ)

< ε, or (error < ε) , (5.1)

where

error =

{
‖gk|t=T ‖L2(Λ), for GT-Schur (cf. Algorithm 1),

‖rrrk|t=T ‖(L2(Λ))2 , for GT-Schwarz (cf. Algorithm 2).
(5.2)

For the linear iterative solvers, the tolerance for GMRES is set for both
methods to be ε = 10−7. We shall compare the convergence of GMRES for
different algorithms: GT-Schur with no preconditioner, GT-Schur with the
Neumann-Neumann (N-N) preconditioner, and GT-Schwarz. Since one itera-
tion of GT-Schur with the preconditioner costs twice as much as one iteration
of GT-Schur (without preconditioning) or GT-Schwarz (in terms of number
of subdomain solves), we report the number of subdomain solves (instead of
number of iterations) required by each algorithm to reach the same tolerance.

5.1 Test case 1 with homogeneous coefficients

The spatial domain is Ω = (0, 1)2 and the final time T = 1. We decompose Ω
into Ω1 = (0, 0.5)× (0, 1) and Ω2 = (0.5, 1)× (0, 1). The saturation functions
are quadratic, Θi(ψ) = ψ2 for i = 1, 2, and the conductivity parameters are
constant, K1 = K2 = 1. The model equation becomes

∂t(ψ
2) +∇ ·QQQ = f

QQQ = −∇ψ in Ω× (0, T ). (5.3)

We impose Dirichlet boundary conditions and choose the initial condition as
well as the right-hand side f such that the exact solution to (5.3) is given by

ψexact = 4− 2x− 4t5x(1− x)y(1− y). (5.4)
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For GT-Schwarz, the Robin parameters are α1,2 = α2,1 = 10.5. This value
gives the fastest convergence of GMRES for this test case as will be discussed
in Subsection 5.3.

We first verify the convergence rates when both spatial mesh size h and
time step size ∆t decrease. Let h = ∆t ∈ {1/10, 1/20, 1/40, 1/80, 1/160}; for
conforming time grids, ∆ti = ∆t, i = 1, 2, while for nonconforming time
grids, ∆t1 = ∆t and ∆t2 = 5/4∆t. Figure 2 shows the errors of the pressure
(in L2(Ωi)-norm) and velocity (in L2(Ωi)- and H(div,Ωi)-norms) at T = 1
with conforming and nonconforming time grids. GT-Schur and GT-Schwarz
give the same errors when ∆t1 = ∆t2, however, when the time step sizes are
not the same, the results by the two methods are slightly different. We see
that first-order convergence is preserved with nonconforming time grids, and
the errors are almost the same as those with fine time steps on the whole
domain - especially the L2 errors of pressure and velocity. The velocity errors
in H(div,Ω2)−norm with different time steps are a little larger than those
with conforming time steps, note that the time step in Ω2 is chosen to be
greater than that in Ω1. All the errors are obtained by performing 2 Newton
iterations for both GT-Schur and GT-Schwarz, which guarantees the stopping
criterion (5.1). For the convergence of GMRES, in Table 1 we show the average
numbers of subdomain solves per Newton iteration for GT-Schur without or
with the Neumann-Neumann preconditioner and GT-Schwarz. We observe that
the preconditioner significantly accelerates the convergence of GT-Schur when
the mesh size and time step size are small, and the numbers of subdomain
solves are quite independent of h and ∆t. For GT-Schwarz, the convergence
is fast and the numbers of subdomain solves slightly increase when h and ∆t
decrease. GT-Schwarz is less sensitive to the use of nonconforming time grids,
while for preconditioned GT-Schur, the convergence is a little slower with
different time steps than with uniform time steps.

h = ∆t1 1/10 1/20 1/40 1/80 1/160

Conforming time steps: ∆t1 = ∆t2

GT-Schur
with no precond. 15 24 36 57 96

with N-N precond. 21 23 23 21 21

GT-Schwarz 11 15 22 23 27

Nonconforming time steps: 5∆t1 = 4∆t2

GT-Schur
with no precond. 17 25 36 56 99

with N-N precond. 36 35 32 30 28

GT-Schwarz 11 15 19 24 29

Table 1: [Test case 1] Average numbers of linearized subdomain solves per
Newton iteration with decreasing spatial mesh sizes and time step sizes; the
tolerance for GMRES is set to be 10−7.
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Fig. 2: [Test case 1] Errors of pressure and velocity in Ω1 (left) and in Ω2

(right) at T = 1 with decreasing spatial mesh sizes and time step sizes. Each
plot shows the results with conforming time grids (red) and nonconforming
time grids using GT-Schur (blue) or GT-Schwarz (cyan).

Next, we fix the spatial mesh h = 1/200 and investigate the errors in
time only. Table 2 shows the errors at T = 1 as well as the convergence
rates of pressure and velocity by the GT-Schur and GT-Schwarz methods
with nonconforming time steps. We see that the errors in Ω2 are similar for
both methods, however, in Ω1, the L2 errors of pressure and velocity by GT-
Schwarz are slightly smaller than those by GT-Schur, while the velocity errors
in H(div,Ω1)−norm by GT-Schur is smaller than by GT-Schwarz. Neverthe-
less, all the convergence rates are close to 1 for both methods as expected.
Regarding the iterative solvers, we again perform 2 Newton iterations for all
algorithms, and report in Table 3 the average numbers of linearized subdo-
main solves per Newton iteration. Clearly, GT-Schur with no preconditioner



Springer Nature 2021 LATEX template

Nonconforming time discretization for the Richards equation 17

converges very slow, and thus preconditioning is essential. The preconditioned
GT-Schur and GT-Schwarz are comparable in terms of convergence speed, and
they are quite independent of the time step sizes.

∆t1 1/5 1/10 1/20 1/40

∆t2 1/4 1/8 1/16 1/32

GT-Schur method

p1 L2 errors 3.10E-02 1.62E-02 [0.94] 8.34E-03 [0.96] 4.49E-03 [0.89]

uuu1
L2 errors 1.40E-01 7.29E-02 [0.94] 3.72E-02 [0.97] 1.88E-02 [0.98]

H-div errors 4.44E-01 2.13E-01 [1.06] 1.02E-01 [1.06] 4.99E-02 [1.03]

p2 L2 errors 2.25E-02 1.20E-02 [0.91] 6.38E-03 [0.91] 3.48E-03 [0.87]

uuu2
L2 errors 1.03E-01 5.55E-02 [0.89] 2.92E-02 [0.93] 1.52E-02 [0.94]

H-div errors 6.59E-01 3.69E-01 [0.84] 2.02E-01 [0.87] 1.10E-01 [0.88]

GT-Schwarz method

p1 L2 errors 2.73E-02 1.47E-02 [0.89] 7.83E-03 [0.91] 4.32E-03 [0.86]

uuu1
L2 errors 1.22E-01 6.50E-02 [0.91] 3.39E-02 [0.94] 1.74E-02 [0.96]

H-div errors 6.31E-01 3.37E-01 [0.90] 1.77E-01 [0.93] 9.27E-02 [0.93]

p2 L2 errors 2.26E-02 1.23E-02 [0.88] 6.56E-03 [0.91] 3.56E-03 [0.88]

uuu2
L2 errors 1.04E-01 5.66E-02 [0.88] 2.97E-02 [0.93] 1.53E-02 [0.96]

H-div errors 6.80E-01 3.78E-01 [0.85] 2.01E-01 [0.91] 1.03E-01 [0.96]

Table 2: [Test case 1] Errors of pressure and velocity in each subdomain at
T = 1 with fixed h = 1/200 and varying time step sizes ∆t1 6= ∆t2. The
corresponding convergence rates are shown in square brackets.

∆t1 1/5 1/10 1/20 1/40 1/80

∆t2 1/4 1/8 1/16 1/32 1/64

GT-Schur
with no precond. 92 89 92 96 104

with N-N precond. 33 31 28 27 27

GT-Schwarz 26 27 28 28 29

Table 3: [Test case 1] Average numbers of linearized subdomain solves per
Newton iteration with nonconforming time steps; the mesh size is fixed, h =
1/200, and the tolerance for GMRES is set to be 10−7.

5.2 Test case 2 with heterogeneous coefficients

This test case is taken from [53] where the domain of calculation Ω = (−1, 1)×
(0, 1) is decomposed into Ω1 = (−1, 0) × (0, 1) and Ω2 = (0, 1) × (0, 1). The
conductivity functions are nonlinear and given by K1(Θ1) = Θ2

1 and K2(Θ2) =
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Θ3
2. The saturation functions are

Θi(ψ) =


1

(1− ψ)
1

i+1

if ψ < 0,

1 if ψ ≥ 0,
i = 1, 2. (5.5)

The right-hand side functions are

f1(x, y, t) =
4

(1 + x2 + y2)2
− t√

(1 + t2)3(1 + x2 + y2)
, (x, y) ∈ Ω1, t > 0,

f2(x, y, t) =
2(1− y2)

(1 + y2)2
− 2t

3 3
√

(1 + t2)4(1 + y2)
, (x, y) ∈ Ω2, t > 0,

so that the exact solution is given by

ψ1(x, y, t) = 1− (1 + t2)(1 + x2 + y2), (x, y) ∈ Ω1, t > 0,
ψ2(x, y, t) = 1− (1 + t2)(1 + y2), (x, y) ∈ Ω2, t > 0.

(5.6)

Both Dirichlet and Neumann boundary conditions are imposed as follows:

ψ1 = 1− (1 + t2)(2 + y2), on x = −1, t > 0,

K1(Θ1(ψ1))∂yψ1 =

{
0, on y = 0, t > 0,

2

2 + x2
, on y = 1, t > 0,

ψ2 = 1− (1 + t2)(1 + y2), on x = 1, t > 0,

K2(Θ2(ψ2))∂yψ2 =

{
0, on y = 0, t > 0,
1, on y = 1, t > 0.

We vary the mesh size h and the nonconforming time step sizes where
h = ∆t1 ∈ {1/10, 1/20, 1/40, 1/80} and ∆t2 = 5/4∆t1. For this test case, the
Robin parameters are α1,2 = α2,1 = 2.5. The number of Newton iterations
required to reach the tolerance (5.1) and the average number of linearized
subdomain solves (for GMRES) per Newton iteration are shown in Table 4.
As the problem is highly nonlinear, more Newton iterations are needed for
both GT-Schur and GT-schwarz. For GMRES, for this heterogeneous problem,
the Neumann-Neumann preconditioner still works efficiently and the conver-
gence of preconditioned GT-Schur is almost independent of the mesh size and
time step sizes. GT-Schwarz with the numerically optimized Robin parameter
(cf. Subsection 5.3) gives fast convergence, and the number of iterations only
increases slightly when decreasing h and ∆ti. Figure 3 shows the errors of pres-
sure and velocity in each subdomain for both conforming and nonconforming
time grids. We see that GT-Schur with ∆t2 > ∆t1 gives nearly the same errors
as with ∆t2 = ∆t1, while the errors by GT-Schwarz with nonconforming time
steps are slightly larger, especially the velocity errors.
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h = ∆t1 1/10 1/20 1/40 1/80

∆t2 1/8 1/16 1/32 1/64

Number of Newton iterations

GT-Schur 4 5 6 7

GT-Schwarz 5 5 6 6

Average number of linearized subdomain solves per Newton iteration

GT-Schur
with no precond. 39 64 94 129

with N-N precond. 27 30 29 33

GT-Schwarz 16 23 27 32

Table 4: [Test case 2] Convergence results of GT-Schur and GT-Schwarz with
decreasing spatial mesh sizes and time step sizes where ∆t1 < ∆t2.

5.3 The choice of Robin parameters

We now analyze numerically the effect of Robin parameters on the convergence
of the nonlinear and linear iterative solvers for GT-Schwarz. We choose the
mesh size h = 1/10 and nonconforming time steps ∆t1 = 1/10 and ∆t2 =
1/8. Let α1,2 = α2,1 = α, and run GT-Schwarz with values of α ∈ (0, 50).
The tolerance for both nonlinear and linear iterative solvers is 10−11, and
we record the residuals with various α after fixed numbers of Newton and
GMRES iterations, namely NNewton andNGMRES. For Test case 1,NNewton = 2
and NGMRES = 15, while for Test case 2, NNewton = 5 and NGMRES = 20.
Figure 4 shows Newton and GMRES residuals after the same numbers of
nonlinear and linear iterations with different values of α. We see that for Test
case 1, α ≈ 10.5 gives the smallest GMRES residual and for Test case 2,
the value is α ≈ 2.5. These are the Robin parameters used in the previous
subsections. However, such values do not lead to the smallest Newton residuals
(cf. the red curves in Figure 4). As the number of Newton iterations is often
small, we have chosen the Robin parameters that optimize the convergence
of GMRES (i.e. the linear solver). Further investigations as well as explicit
formulas to compute the optimized Robin parameters based on the framework
of the OSWR algorithm [6, 22] shall be studied in future work.

6 Conclusion

We developed two different nonlinear domain decomposition methods, namely
GT-Schur and GT-Schwarz, for partially saturated flow in a heterogeneous
porous medium where local time discretizations are allowed in different parts
of the medium. Both methods rely on a reformulation of the initial problem as
a space–time interface problem, through the use of trace operators. GT-Schur
uses the time-dependent Dirichlet-to-Neumann operator and GT-Schwarz uses
the time-dependent Robin-to-Robin operator. For each method, the nonlin-
ear interface problem is solved by a nested iteration approach which involves,
at each Newton iteration, the solution of a linearized interface problem and,
at each Krylov iteration, parallel solution of the time-dependent linearized
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Fig. 3: [Test case 2] Errors of pressure and velocity in Ω1 (left) and in Ω2

(right) at T = 1 with decreasing spatial mesh sizes and time step sizes. Each
plot shows the results with conforming time grids (red) and nonconforming
time grids using GT-Schur (blue) or GT-Schwarz (cyan).

Richards equation in each subdomain. In addition, the Neumann-Neumann
preconditioner is considered for GT-Schur to accelerate the convergence of the
linearized iterative solver. The subdomain problems are discretized in time by
backward Euler with nonmatching time grids, and in space by the lowest-order
Raviart-Thomas space on a conforming spatial mesh. The proposed methods
were numerically verified on both homogeneous and heterogeneous test cases
with known exact solutions. Numerical results show that GT-Schur with pre-
conditioner and GT-Schwarz with well-chosen Robin parameters converge fast,
and all schemes preserve orders of accuracy in space and in time with different
time step sizes. We notice that the preconditioned GT-Schur method is almost
independent of the spatial and temporal step sizes, and gives smaller errors in
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Fig. 4: Newton and GMRES residuals of GT-Schwarz as functions of the
Robin parameter α = α1,2 = α2,1 for Test case 1 (left) and Test case 2 (right).

velocity than GT-Schwarz when the subdomain time steps are different. The
effect of various Robin parameters on the convergence of Newton and GMRES
iterations was also investigated numerically. Our next steps include the study
of theoretical optimized Robin parameters, convergence analysis of GT-Schur
and GT-Schwarz and their numerical performance on more realistic test cases.
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[37] W. Jäger, J. Kačur, Solution of doubly nonlinear and degenerate
parabolic problems by relaxation schemes, RAIRO Model. Math. Anal.
Numer. 29, pp. 605-627, 1995.

[38] R.A. Klausen, F.A. Radu, G.T. Eigestad, Convergence of MPFA on tri-
angulations and for Richards’ equation, Internat. J. Numer. Methods
Fluids 58(12), pp. 1327-1351, 2008.

[39] F. List, F.A. Radu, A study on iterative methods for solving Richards’
equation, Comput. Geosci. 20 (2), pp. 341-353, 2016.

[40] P. Lott, H.Walker, C.Woodward, U. Yang, An accelerated Picard method
for nonlinear systems related to variably saturated flow, Adv.Water
Resour. 38, pp. 92-101, 2012.

[41] V. Martin, An optimized Schwarz waveform relaxation method for the
unsteady convection diffusion equation in two dimensions, Appl. Numer.
Math. 52,pp. 401-428, 2005.

[42] K. Mitra, I.S. Pop, A modified L-scheme to solve nonlinear diffusion
problems, Comput. Math. Appl. 77, pp. 1722-1738, 2019.

[43] K. Mitra, M. Vohralik, A posteriori error estimates for the Richards
equation, arXiv:2108.12507

[44] F. Otto, L1-contraction and uniqueness for quasilinear elliptic–parabolic
equations, Journal of Differential Equations 131 (1), pp. 20-38, 1996.



Springer Nature 2021 LATEX template

Nonconforming time discretization for the Richards equation 25

[45] I.S. Pop, Error estimates for a time discretization method for the
Richards’ equation. Comput. Geosci. 6, pp. 141–160, 2002.

[46] I.S. Pop, F.A. Radu, P. Knabner, Mixed finite elements for the Richards’
equation: linearization procedure, J. Comput. Appl. Math. 168, pp. 365-
373, 2004.

[47] I.S. Pop, B. Schweizer, Regularization schemes for degenerate Richards
equations and outflow conditions, Math. Models Methods Appl. Sci.
(M3AS) 21, pp. 1685-1712 (2011).

[48] F.A. Radu, I.S. Pop, P. Knabner, Error estimates for a mixed finite
element discretization of some degenerate parabolic equations, Numer.
Math. 109, pp. 285-311, 2008.

[49] L. A. Richards, Capillard conduction of liquids through porous mediums,
Physics 1 (5), pp. 318-333, 1931.

[50] L. F. Richardson, Weather prediction by numerical process, Camebridge
University Press, 1922.

[51] E. Schneid, P. Knabner, F.A. Radu, A priori error estimates for a mixed
finite element discretization of the Richards’ equation, Numer. Math. 98,
pp. 353-370, 2004.

[52] B. Schweizer, Regularization of outflow problems in unsaturated porous
media with dry regions, J. Differ. Equ. 237 (2), pp. 278-306, 2007.

[53] D. Seus, K. Mitra, I.S. Pop, F.A. Radu, C. Rohde, A linear domain
decomposition method for partially saturated flow in porous media,
Comput. Methods Appl. Mech. Engrg. 333, pp. 331-355, 2018.

[54] J.O. Skogestad, E. Keilegavlen, J.M. Nordbotten, Domain decomposition
strategies for nonlinear flow problems in porous media, J. Comput. Phys.
234, pp. 439-451, 2013.

[55] X.-C. Tai, M. Espedal, Rate of convergence of some space decomposition
methods for linear and nonlinear problems, SIAM J. Numer. Anal. 35
(4), pp. 1558-1570, 1998.

[56] C.S. Woodward, C.N. Dawson, Analysis of expanded mixed finite ele-
ment methods for a nonlinear parabolic equation modeling flow into
variably saturated porous media, SIAM J. Numer. Anal. 37(3), pp.
701-724, 2000.

[57] I. Yotov, A mixed finite element discretization on non-matching multi-
block grids for a degenerate parabolic equation arising in porous media
flow, East-West J. Numer. Math. 5, pp. 211-230, 1997.


	Introduction
	Model problem and its numerical solution
	Global-in-time domain decomposition and nested iterative methods
	Global-in-time Schur (GT-Schur) method
	Global-in-time Schwarz (GT-Schwarz) method

	Nonconforming time discretization
	For GT-Schur method:
	For GT-Schwarz method:

	Numerical results
	Test case 1 with homogeneous coefficients
	Test case 2 with heterogeneous coefficients
	The choice of Robin parameters

	Conclusion
	Acknowledgments


