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Abstract Obesity is a major risk factor for cardiovascular disease, stroke, and type 2 diabetes 
(T2D). Excessive accumulation of fat in the abdomen further increases T2D risk. Abdominal obesity 
is measured by calculating the ratio of waist-to-hip circumference adjusted for the body-mass index 
(WHRadjBMI), a trait with a significant genetic inheritance. Genetic loci associated with WHRadjBMI 
identified in genome-wide association studies are predicted to act through adipose tissues, but 
many of the exact molecular mechanisms underlying fat distribution and its consequences for T2D 
risk are poorly understood. Further, mechanisms that uncouple the genetic inheritance of abdom-
inal obesity from T2D risk have not yet been described. Here we utilize multi-omic data to predict 
mechanisms of action at loci associated with discordant effects on abdominal obesity and T2D risk. 
We find six genetic signals in five loci associated with protection from T2D but also with increased 
abdominal obesity. We predict the tissues of action at these discordant loci and the likely effector 
Genes (eGenes) at three discordant loci, from which we predict significant involvement of adipose 
biology. We then evaluate the relationship between adipose gene expression of eGenes with adipo-
genesis, obesity, and diabetic physiological phenotypes. By integrating these analyses with prior 
literature, we propose models that resolve the discordant associations at two of the five loci. While 
experimental validation is required to validate predictions, these hypotheses provide potential 
mechanisms underlying T2D risk stratification within abdominal obesity.

Editor's evaluation
This study presents a valuable finding on five genome-wide association study loci displaying discor-
dant effects on T2D and abdominal obesity. The evidence supporting the claims of the authors 
is solid, although further experiments are required to describe the mechanisms through which a 
genetic variant can confer increased abdominal obesity while offering protection from T2D risk. The 
work will be of interest to researchers working within the fields of variant-to-function analysis and 
endocrinology.

Introduction
Metabolic syndrome (MetSyn) is a cluster of dysregulated metabolic conditions that tend to occur 
together to increase the risk for cardiometabolic disorders such as type 2 diabetes (T2D) (Lusis, 2006). 
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This cluster includes insulin resistance (IR), abdominal obesity, elevated serum triglycerides (TG) levels, 
low high-density lipoprotein cholesterol levels, as well as elevated systolic and diastolic blood pres-
sure. Obesity, or the excessive accumulation of fat that presents a risk to health, is a major contributor 
to MetSyn (Lusis, 2006; Feero et al., 2010). Obesity, which is typically defined as a body mass index 
(BMI) above 30, has reached unprecedented levels of prevalence, and its role as a central regulator of 
disease risk makes it an appealing therapeutic target (Feero et al., 2010). Several recently developed 
T2D therapeutics have even successfully targeted obesity; SGLT2 inhibitors and GLP-1 agonists have 
been reported to result in a 2–6 kg reduction of body weight and reduced IR (Brown et al., 2021).

Despite the promise of these obesity-centered therapeutic strategies, there has also been a 
growing body of evidence describing a rare phenotype known as metabolically healthy obesity (MHO) 
(Blüher, 2020). MHO describes a group of phenotypes in which individuals with obesity are protected 
from adverse metabolic effects (Smith et al., 2019). While no formal definition of MHO exists, it is 
often described as either obesity with less than three components of MetSyn, or obesity without IR 
as computed by the homeostasis model assessment of insulin resistance (HOMA-IR) (Smith et al., 
2019). Mechanisms proposed to mediate this include depressed ectopic fat accumulation, subcu-
taneous adipose tissue (SAT) expansion plasticity, and shifts in fat storage from the abdomen to the 
legs (Blüher, 2020; Smith et al., 2019; Loos and Kilpeläinen, 2018). In recent years the ability of 
abdominal obesity to mediate cardiometabolic disease risk has gained attention. People with MHO 
have less intra-abdominal fat accumulation compared to people with metabolically unhealthy obesity 
(Klöting et al., 2010; Karelis et al., 2005; Chen et al., 2015; Jennings et al., 2008; Hayes et al., 
2010; Koster et al., 2010). Intra-abdominal fat accumulation can be approximated through the ratio 
of waist-to-hip circumference (WHR) adjusted for BMI (WHRadjBMI). WHRadjBMI is a causal factor 
that increases susceptibility for T2D, but the genetic and molecular mechanisms underlying fat distri-
bution remain largely unknown (Emdin et al., 2017; Gill et al., 2021; Li et al., 2021). Understanding 
the mechanisms mediating WHRadjBMI, MHO, and T2D is critical to our understanding of disease 
pathogenesis and to clinical strategies to treat MetSyn.

Most of the genetic mechanisms of MHO described have been associated with increased BMI 
without increased disease risk. For example, the missense variant rs373863828 in CREB3 regulatory 
factor has been shown to increase BMI without a corresponding increase in HOMA-IR and circulating 
TG, or a decrease in circulating adiponectin (Minster et al., 2016). Ob/ob mice with overexpression 
of adiponectin but lacking in leptin are shown to accumulate considerable fat mass without a corre-
sponding increase in insulin sensitivity (Kim et al., 2007). In contrast, the genetic loci associated with 
increased WHRadjBMI but without increased disease risk have not yet been described. To date, all 
genes that have been shown to increase fat accumulation into abdominal fat depots have also been 
shown to increase the risk for T2D (Fathzadeh et al., 2020; Small et al., 2018; Yang et al., 2022; 
Gesta et al., 2011; Loh et al., 2020; Loh et al., 2015).

As complex traits with both environmental and genetic risk factors, abdominal obesity and T2D 
have been the subject of multiple genome-wide association studies (GWAS). While GWAS have iden-
tified hundreds of genetic loci associated with abdominal obesity and T2D, moving from association 
to mechanism at a locus is not trivial. The use of colocalization analysis (COLOC), which identifies 
loci that contain shared genetic architecture for multiple traits of interest, can inform mechanistic 
hypotheses moving from association to function by integrating data from multiple studies (Hukku 
et al., 2021; Wallace, 2013; Wallace et al., 2012; Wallace, 2020). For example, the colocalization of 
a GWAS signal with genetic regulation of genes at quantitative trait loci (QTLs) implies a mechanistic 
relationship between the regulated gene and GWAS trait (Hormozdiari et al., 2016). Another recently 
developed approach named Tissue of ACTion scores for Investigating Complex trait-Associated Loci 
(TACTICAL) (Torres et al., 2020) incorporates gene expression data, and epigenetic annotations with 
GWAS associations to predict the causal eGenes and tissues of action at GWAS loci. These methods 
have been used to inform data-driven mechanistic predictions at GWAS loci that have been experi-
mentally validated and can recall previously validated loci as positive controls.

To advance the understanding of mechanisms linking body fat distribution to T2D risk, independent 
of overall obesity, we used COLOC and TACTICAL to predict the mechanisms of action at genetic 
loci associated with both T2D and WHR, both adjusted for the BMI. Using the most recent GWAS 
summary statistics, QTL summary statistics, tissue-specific gene expression data, and high-resolution 
epigenetic annotations, we predicted the shared genetic architecture of T2DadjBMI and WHRadjBMI 
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at 79 genetic loci. Here, we present the identification of five loci that contained association signals 
with discordant effects on abdominal fat and T2D risk, meaning that the allele of the lead variant 
associated with protection from T2D was associated with increased abdominal fat accumulation. We 
predicted the eGenes and tissues of action at these five loci and explored the relationship between 
adipose eGene expression with cellular and physiological phenotypes. Here, we provide data-driven 
hypotheses about predicted candidate causal eGenes at GWAS loci with associations that recall meta-
bolically healthy abdominal obesity.

Results
Colocalization analysis of genetic loci associated with T2D and body 
fat distribution predicts colocalization of discordant T2DadjBMI and 
WHRadjBMI association signals at six association signals
To identify genetic loci which contained pleiotropic association signals for both T2DadjBMI and 
WHRadjBMI, we performed colocalization analysis (Figure  1A). This analysis yielded 79 genetic 
loci where a single variant was significantly associated with both T2DadjBMI and WHRadjBMI. We 
obtained the 99% credible set of variants in colocalized loci (Supplementary file 1) and discovered 

Figure 1. Analysis summary and discordant variant characteristics. (A) Summary of analysis pipeline and generated results. Details of data sources 
are available in Supplementary file 1. (B) Effect size (WHRadjBMI) and odds ratio (T2DadjBMI) of lead genetic variant at discordant association 
signals. (C) Phenome-wide association study (PheWAS) of lead discordant genetic variant effect sizes on glycemic and anthropometric traits. From left 
to right: random glucose (RG), fasting glucose (FG), FG adjusted for body mass index (BMI) (FGadjBMI), fasting insulin adjusted for BMI (FIadjBMI), 
glycated hemoglobin (HBA1C), pancreatic fat percentage (PF), trunk fat ratio (TFR), visceral adipose tissue (VAT), VAT adjusted for BMI and height 
(VATadjBMIHeight), VAT to abdominal subcutaneous adipose tissue (VATtoASAT), VAT to gluteofemoral fat (VATtoFGAT), waist circumference, waist 
circumference adjusted for BMI (WCadjBMI), waist-to-hip ratio (WHR), and BMI. (D) Variant effect prediction of 99% credible set variants in discordant 
genetic loci.

The online version of this article includes the following source data for figure 1:

Source data 1. Genetic, transcriptomic, and epigenomic data sources in Figure 1.

https://doi.org/10.7554/eLife.79834
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the presence of 143 variants in five loci associated with discordant effects on T2DadjBMI and WHRad-
jBMI. We also discovered 851 SNPs in 73 loci with the expected concordant effects on both traits. 
Although almost all of the representative lead discordant variants reached genome-wide significance, 
two associations reached nominal significance (p<5e-05). Because of recent work demonstrating 
that even variants with only nominal and local significance in GWAS can also have functional rele-
vance to GWAS traits, we included variants prioritized in the 99% credible set but with only nominal 
significance (Li et al., 2020a). We then performed fine-mapping of the causal variants in each locus 
containing a discordant association signal while relaxing the assumption of a single causal variant per 
locus. In four of the five loci, this fine-mapping recalled only one likely candidate causal signal. In the 
5q21.1 locus, SuSiE identified a secondary association signal that was also associated with discordant 
effects on T2DadjBMI and WHRadjBMI (Figure 1B and Supplementary file 2). To parse the associa-
tions between specific components of WHRadjBMI, including WC, HC, WHR, and BMI, with both T2D 
and T2DadjBMI, we performed multi-trait colocalization analysis with Hyprcoloc of the associations at 
discordant loci (Supplementary file 3). At three of the five discordant loci, the discordant association 
signals were also colocalized with WHRadjBMI component traits waist circumference (WC) and WHR.

We next investigated the genetic and physiological consequences of discordant variants. We 
performed a phenome-wide association study (PheWAS) for anthropometric and glycemic traits with 
the most highly powered GWAS available (Figure 1—source data 1; Costanzo et al., 2023). We 
used the most highly powered GWAS or GWAS meta-analysis for each trait included in our PheWAS 
and queried the summary statistics for the associations of each lead discordant variant (Figure 1C). 
This query revealed consistent significant associations with discordance across anthropometric and 
glycemic traits in each locus. At the association signal in the 5q11.2 region, association signals exem-
plified this metabolic discordance. Represented by genetic variant rs459193, the association signal 
was associated with increased abdominal obesity in nearly every metric, but also with protection from 

Figure 2. Predicting functional tissues and effector genes at discordant loci. (A) Tissue-specific enrichment of chromatin states of variants in the 99% 
credible set of colocalized variants. (B) Tissue of action scores for association signals in the five discordant loci. Orange coloration indicates predicted 
adipose tissue of action at the locus, and blue coloration indicates shared tissue of action assignment at the locus. (C) Summary table of the expression 
quantitative trait loci (eQTL) and splicing QTL (sQTL) colocalizations with waist-to-hip circumference adjusted for the body mass index (WHRadjBMI) 
and T2DadjBMI for discordant loci. The expression effect direction is with respect to the protective type 2 diabetes allele. (D) Expression of predicted 
effector genes in discordant loci across cell types. From left to right: adipocyte progenitor stem cells (ASPC), lymphatic endothelial cells (LEC), smooth 
muscle cells (SMC), and natural killer cells (nk). Data was obtained from Emont et al., 2022.

The online version of this article includes the following source data for figure 2:

Source data 1. Genetic, transcriptomic, and epigenomic data sources used in Figure 2.

https://doi.org/10.7554/eLife.79834
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T2D in nearly every metric. At all lead discordant variants, effects were consistent with a phenotype of 
increased abdominal obesity but protection from T2D.

We then queried the variant effect predictor (VEP) to discover genetic variant annotations (McLaren 
et  al., 2016; Figure 1D and Supplementary file 4). VEP predicted that discordant variants over-
whelmingly lie in noncoding regions of the genome, with only one missense variant in a coding region. 
Because the vast majority of discordant variants lie in noncoding regions, it is likely their function lies 
in altering genetic regulation of proximal genes (Civelek and Lusis, 2014). Therefore, we investigated 
the coincidence of these discordant variants with the genetic regulation of proximal genes with func-
tional prediction methods.

Integration of molecular QTLs and genomic annotations to predict 
functional genes in tissues of action at discordant genetic loci
To investigate the role of eGenes in physiological phenotypes and cellular phenotypes, we evaluated 
the correlation of adipose tissue eGene expression and T2D-relevant phenotypes since these correla-
tions can reveal biologically relevant functional relationships (Civelek et al., 2017). To predict the 
genes and tissues of function at discordant loci, we used publicly available multi-omic data from meta-
bolically relevant tissue-specific resources to predict functional mechanisms underlying associations. 
We first interrogated where the 143 discordant variants in the credible set were located in relation to 
tissue-specific chromatin state data in pancreatic islet, adipose, liver, and skeletal muscle tissues (Kim 
et al., 2007). We computed the enrichment of colocalized association signals in various chromatin 
state annotations in each of these tissues (Figure 2A). We noted the specific enrichment of adipose 
tissue chromatin states of high activity, such as active transcription start sites, enhancer regions, and 
areas of transcriptional activity. For every other tissue, the leading annotations represented areas of 
decreased transcriptional activity. We additionally queried 3D chromatin data for discordant variant 
enhancer/promoter contact but did not find any significant interactions (Figure 2—source data 1). 
We then used these enrichment scores, chromatin states, and gene expression data to predict the 
functional tissues at each colocalized locus (Supplementary file 5). We predicted that adipose tissue 
was classified as the candidate tissue of action (TOA) at three loci, and skeletal muscle and liver tissue 
shared classification with adipose tissue at the remaining two discordant loci (Figure 2B).

To predict effector genes (eGenes) regulated by discordant variants, we next predicted the colo-
calization of QTLs with the WHRadjBMI and T2DadjBMI GWAS. Colocalization of a GWAS association 
signal with a genetic regulatory association signal can be used to prioritize mechanisms underlying 
association. We obtained expression QTL (eQTL) and splicing QTL (sQTL) summary statistics from 
multiple cohorts and tissue groups (Figure 2—source data 1). We extracted eQTL summary statistics 
for all genes within 1 Mb of the lead variant of all discordant colocalized loci from adipose, pancreatic, 
skeletal muscle, and liver tissues. We extracted sQTL summary statistics for all genes within 1 Mb of 
the lead variant of all discordant colocalized loci for adipose tissue data that was available. We used 
Summary-based Mendelian Randomization (SMR) and ​Coloc.​abf to perform GWAS-QTL colocaliza-
tion and used the framework developed by Hukku et al. to reconcile the results of SMR and ​Coloc.​
abf. In this framework, colocalization found using ​Coloc.​abf but not with SMR potentially represents 
signals with horizontal pleiotropy, whereas colocalization found through SMR but not through ​Coloc.​
abf potentially represents locus-level colocalization (Hukku et al., 2021). Colocalization found using 
both methods represents the identification of candidate causal effector transcripts. Our colocaliza-
tion analysis revealed seven candidate causal effector transcripts at three of the five discordant loci 
(Figure 2C). With ​Coloc.​abf, we predicted four putative eGenes in these two loci. At the 2p21 locus, 
we predicted THADA-AS (SAT, VAT) to be the sole eGene. At the 5q21.1 locus, we predicted GIN1 
(SAT), PAM (SAT & SKM), and PPIP5K2 (SAT) to be the eGenes. The association signal at rs6860588 
was associated with a novel alternative splicing isoform of PAM in SAT, which skips the 14th exon. 
Using SMR, we predicted four eGenes at two discordant loci. At the 5q21.1 locus, we predicted that 
the genetic association signal represented by rs6860588 was also associated with the regulation of 
EIF3KP1 (SAT, VAT, SKM, PANC), PPIP5K2 (SAT), and GIN1 (SAT, SKM, PANC). At the discordant asso-
ciation signal in the 19q13.11 locus, we predicted that the genetic association signal represented by 
variant rs3786897 was also associated with the regulation of PEPD (SAT, VAT). As the colocalization 
transcripts GIN1 and PPIP5K2 were replicated with both methods (Supplementary files 6 and 7), 
these represent high-confidence predictions of potentially causal effector transcripts underlying the 

https://doi.org/10.7554/eLife.79834
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genetic association with discordance in the 5q21.1 locus. We queried white adipose tissue single-
cell RNA sequencing data (Emont et al., 2022) for discordant association signal eGenes and found 
that eGenes were expressed in adipocytes and adipocyte progenitor stem cells (ASPCs) (Figure 2D). 
Because body fat distribution associations are driven by ASPCs and adipocytes in adipose tissues (Lu 
et al., 2016; Locke et al., 2015; Hansen et al., 2023), we reasoned that exploring adipose expression 
data could help to explain discordant associations. This multi-omic data enabled us to make high-
confidence consensus predictions of tissues and eGenes of action at discordant loci.

Adipose gene expression analysis of discordant loci eGenes reveals 
dynamic expression in adipogenesis and relationships with metabolic 
physiology
To investigate the role of eGenes in physiological phenotypes and cellular phenotypes, we then evalu-
ated the gene expression dynamics of eGenes in adipose tissue. Correlations between relevant tissue 
gene expression and metabolic phenotypes can reveal biologically relevant functional relationships 
(Civelek et al., 2017). We used SAT transcriptomic data from the 426 men of the METSIM cohort to 
investigate how adipose tissue expression of discordant locus eGenes was related to 23 metabolic 
phenotypes underlying T2D and abdominal fat accumulation (Figure 3—source data 1; Brotman 
et al., 2022; Laakso et al., 2017). We extracted adipose tissue gene expression data for eGenes. 
Gene expression data were available for six of the seven eGenes. We additionally extracted splice 
junction expression data for the only gene with a colocalized splice junction, PAM. We then computed 
the biweight midcorrelation of transcript counts or splice junction counts with 23 metabolic pheno-
types. We found significant (false discovery rate [FDR] <0.05) correlations of adipose tissue gene 
expression of three genes with 13 phenotypes (Figure 3A). We found that adipose tissue expression 
of THADA-AS, PEPD, and GIN1 was significantly correlated with inflammatory, glycemic, and anthro-
pometric phenotypes. SAT THADA-AS expression was positively correlated with IR, abdominal fat 
accumulation, and serum triglyceride levels, but with higher levels of plasma interleukin-1 receptor 
antagonist (IL-1RA) and C-reactive protein (CRP). IL-1RA plays a protective role in resolving inflam-
mation (Volarevic et al., 2010), and elevated levels have been linked to prediabetes (Luotola, 2022; 
Grossmann et al., 2015). CRP has been used as a biomarker of increased inflammation in chronic 
diseases (Herwald and Egesten, 2021). The eQTL and GWAS data are associated with decreased 
expression of THADA-AS, which is consistent with the protection from IR in the correlation data but 
not with the increased abdominal obesity and inflammation. We are unable to resolve this correla-
tion evidence with the discordance, but because the METSIM cohort was collected using single-end 
RNA sequencing, parsing the correlations of THADA and THADA-AS is difficult (Li et al., 2013). SAT 
expression of GIN1 was correlated with higher plasma adiponectin. Adiponectin, secreted by adipo-
cytes, increases insulin sensitivity, and this provides a mechanism for protection from T2D (Achari and 
Jain, 2017). This expression is consistent with the QTL and GWAS data, providing a direct poten-
tial mechanism linking the eQTL to protection from T2D. SAT PEPD expression was also positively 
correlated with plasma IL-1RA levels. The QTL at this locus is associated with decreased expression 
of PEPD, providing another direct potential mechanism linking the eQTL to protection from T2D. 
Through this correlation analysis, we were able to predict the physiological consequences of eGenes 
at three discordant loci.

We next evaluated if eGenes identified in adipose tissues were dynamically expressed in adipo-
genesis. Dynamic gene expression in adipogenesis could point to the regulatory and structural roles 
of eGenes in adipogenesis (Nassiri et al., 2016; Anderson et al., 2020). We obtained time series 
ASPC adipogenesis time course data and evaluated eGenes for dynamic expression. Gene expression 
data were available for five of the seven eGenes. Because the expression data was single-stranded 
and unable to resolve forward or reverse-strand sequences, we included the probe for THADA to 
represent THADA-AS. We found that all eGenes except PPIP5K2 were dynamically expressed over a 
16-day adipogenesis time course (Figure 3B), implying potential functional roles for these genes in 
regulating preadipocyte fate.

https://doi.org/10.7554/eLife.79834
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Integration of analysis to predict the functional genes and tissues of 
action at the discordant 5q21.1 locus
By predicting the mechanisms of action at discordant loci, we were able to generate specific hypoth-
eses about the genes at each locus that underlie GWAS associations. We predicted that the causal 
discordant signal at the 5q21.1 locus was represented by variant rs6860588. The T allele of rs6860588 
is associated with protection from T2D, increased abdominal obesity, decreased SAT expression 
of GIN1, increased SKM expression of PAM, decreased SAT expression of PPIP5K2, increased SAT 
expression of a PAM splice variant with a skipped exon 14, and decreased SAT expression of the 

Figure 3. Predicted physiological and cellular effects of effector genes (eGenes) on metabolic phenotypes and adipogenesis. (A) Biweight 
midcorrelation of adipose tissue eGenes expression with metabolic phenotypes (false discovery rate [FDR] <5%). From left to right: Homeostatic model 
assessment of insulin resistance (HOMA-IR), high-density lipoproteins (HDL), low-density lipoproteins (LDL), interleukin-1 receptor agonist (IL1RA), C-
reactive protein (CRP). (B) Dynamic expression of adipose tissue eGenes over 16-day adipogenesis time course in Simpson-Golabi-Behmel syndrome 
(SGBS) cells. We performed the likelihood ratio test (LRT) to evaluate if each gene was dynamically expressed over the time course. The p-value of the 
LRT is included.

The online version of this article includes the following source data for figure 3:

Source data 1. Genetic, transcriptomic, and epigenomic data sources in Figure 3.

https://doi.org/10.7554/eLife.79834
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canonical PAM splice junctions, exon 13:14 and exon 14:15 (Figure 4A; Figure 4—figure supple-
ment 1 and Figure 4—source data 1). While the eGenes, PAM, GIN1, and PPIP5K2, have not been 
studied in the context of obesity and metabolism, they have been studied for their function in other 
cell types. We found that GIN1 and PAM were dynamically expressed over the course of adipogen-
esis (Figure 3B). GIN1 has been hypothesized to be a key regulator of energy metabolism in atria (Li 
et al., 2020b), but little is known about gypsy integrases and their molecular function. PAM facilitates 
C-terminus glycine residue amidation, which can catalyze protein potency (Thomsen et al., 2018; 
Merkler, 1994). PAM additionally has been linked to metabolic phenotypes in multiple model organ-
isms, where its deficiency is associated with decreased peptide secretion and potency critical to insulin 
release, but not with increased diabetes (Chen et al., 2020a; Zieliński et al., 2016). PAM loss of func-
tion likely results in deficient peptide synthesis and secretion in adipocytes as well, and its increase 

Figure 4. Predicted model of effects associated with T allele at rs6860588. (A) β of the T allele of discordant variant rs6860588 with respect to waist-to-
hip circumference adjusted for the body mass index (WHRadjBMI), T2DadjBMI, and colocalized effector genes (eGenes). (B) Summary of associations 
with T allele at rs6860588. (C) Integrated model reconciling metabolic discordance with eGene-associated phenotypes in two tissues of action. Created 
with BioRender.com.

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. Genetic, transcriptomic, and epigenomic data sources in Figure 4 and Figure 4—figure supplements 1 and 2 .

Figure supplement 1. Discordant variant rs6860588 is associated with pleiotropic effects on gene regulation in multiple tissues.

Figure supplement 2. Discordant variant rs6752964 is associated with pleiotropic effects on gene regulation in multiple tissues.

https://doi.org/10.7554/eLife.79834
https://www.biorender.com/
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of function likely results in increased myokine signaling from skeletal muscle. Knockdown of PPIP5Ks 
results in decreased proliferation, increased mitochondrial mass, decreased inositol metabolism, and 
accelerated glycolysis in tumor cell lines (Gu et al., 2021; Gu et al., 2017; Badodi et al., 2021). We 
did not observe significant interactions between adipose PPIP5K2 expression and adipogenesis or 
metabolic phenotypes, but this does not rule out a role for PPIP5K2 in the metabolic discordance at 
5q21.1. Thus, we propose that the T allele at rs6860588 regulates a group of genes that promotes 
adipogenesis, glycolysis, and inflammation in white adipose tissue while simultaneously decreasing 
preadipocyte expansion and increasing skeletal muscle peptide secretion and potency (Figure 4B). 
This model is consistent with the TOA score and QTL analysis, which both predict skeletal muscle and 
adipose tissue contribution to the associations at the locus and reconcile the associations with abdom-
inal obesity but protection from T2D associated with the T allele of rs6860588 (Figure 4C).

Discussion
We report here the integration of multi-omic data spanning the genome, transcriptome, and epig-
enome to predict functional genes and tissues underlying genetic signals associated with abdominal 
obesity but protection from T2D. We predicted the colocalization of T2DadjBMI and WHRadjBMI 
association signals at 79 genetic loci. The protective allele of six association signals was associated 
with lower T2D risk but higher abdominal fat accumulation, independent of overall obesity (Figure 1). 
By analyzing colocalization with molecular QTLs, computing the enrichment of variants in epigenomic 
and genomic annotations, and comparing tissue-specific gene expression, we predicted the eGenes 
and tissues of action at discordant association signals (Figure 2). We found significant evidence that 
adipose tissue biology is a significant contributor at colocalized loci. We then explored the effects 
of eGenes expression in adipose tissue and preadipocytes on adipogenesis metabolic phenotypes 
(Figure 3) and proposed a model by which the genetic variant rs6860588 might confer protection 
from T2D but increased abdominal obesity (Figure 4).

The six genetic association signals associated with discordant metabolic phenotypes offer poten-
tial insight into the genetic mechanisms underlying risk stratification of T2D risk within abdominal 
obesity. While mechanisms promoting MHO have been described, most have focused on body fat 
distribution. Defining more mechanisms that promote MHO is critical as rates of obesity rise globally. 
Complicating the study of MHO is the lack of precision in its definition. Some definitions include 
obesity with less than three components of MetSyn, obesity with healthy HOMA-IR, or even obesity 
with the lack of a metabolic and cardiovascular disorder (Blüher, 2020). MHO has been controversial 
and termed an intermediate state (Caleyachetty et al., 2017; Rey-López et al., 2015; Blüher, 2017), 
but a growing body of evidence has accumulated providing evidence that genetic mechanisms influ-
ence predisposition to it. In Samoans, the common CREBRF coding variant rs12513649 increases BMI 
and overall adiposity but protects from IR (Li et al., 2020a). Additionally, IRS1, COBLL1, PLA2G6, 
and TOMM40 have been associated with higher BMI but with protective lipidemic and glycemic traits 
(Loos and Kilpeläinen, 2018). The physiological functions of these genes have been proposed to 
involve adipose tissue caloric load capacity and body fat distribution (Loos and Kilpeläinen, 2018; Lu 
et al., 2016; Kilpeläinen et al., 2011; Lotta et al., 2017).

While abdominal fat accumulation is known to be one of the strongest predictors of obesity-related 
complications (Emdin et al., 2017; Censin et al., 2019; Dale et al., 2017), our findings point to mech-
anisms that contradict this trend. Each locus must be functionally annotated before translating the 
association results to the clinic. If these discordant variants are functionally annotated and fully char-
acterized, they might have clinical utility to T2D risk allele carriers and inform personalized therapeutic 
strategies. Discovering mechanisms uncoupling abdominal obesity from T2D can aid in personalized 
therapeutic strategies and in understanding personalized risk stratification. Risk-stratified personal-
ized obesity treatment could prioritize patients that would or would not benefit significantly from 
weight-loss interventions, and use genotype as a biomarker for patients who would benefit from 
other therapeutic strategies (Klonoff, 2008; Williams et al., 2022). Thus, the importance of person-
alized risk stratification for T2D will only increase as abdominal obesity becomes more prevalent. 
Personalized risk stratification with an understanding of specific molecular, cellular, and physiological 
mechanisms will aid in the prioritization of effective therapies. This investigation provided specific 
hypotheses linking functional genes at discordant loci to tissues of action for experimental follow-up 
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in vitro and in vivo. Functional characterization of the effect of these genes on insulin uptake, pread-
ipocyte proliferation, and adipogenesis, as well as secretome characterization, will elucidate precise 
mechanisms through which these eGenes might contribute to the discordant association signals.

We predicted tissues and mechanisms of action at five loci containing six discordant association 
signals with increased abdominal obesity and protection for T2D. A particular example of a peculiar 
metabolic discordance was revealed at the 2p21 locus containing THADA and THADA-AS, repre-
sented by variant rs6752964 (Figure  4—figure supplement 2). The associations have been repli-
cated multiple times (Mahajan et  al., 2018; Zeggini et  al., 2008; Grarup et  al., 2008), but the 
exact mechanisms underlying this association are unknown. THADA plays an evolutionarily conserved 
role in intracellular calcium signaling and consequently non-shivering thermogenesis. In Drosophila 
melanogaster, thada knockout flies developed obesity and hyperphagia without altered circulating 
glucose levels (Moraru et al., 2017). In mice, pancreatic Thada knockout resulted in protection from 
T2D through the preservation of β-cell mass and improvement of β-cell function (Zhang et al., 2023). 
Mendelian randomization studies in humans have likewise found consistent links between THADA 
and adiposity, but have not yet been able to link it to diabetic phenotypes such as insulin secretion 
(Grarup et al., 2008; Simonis-Bik et al., 2010). Our investigation revealed relationships between 
THADA and THADA-AS expression with diabetic and obesity-abdominal obesity phenotypes, as 
well as dynamic expression in adipogenesis (Figure 3). Regulatory interactions whereby THADA-AS 
expression interferes with THADA transcription could provide a basis by which variant rs6752964 
might confer abdominal obesity, but protection from T2D (Brantl, 2002; Faghihi and Wahlestedt, 
2009; Wight and Werner, 2013). Further, we also found colocalization of genetic regulation of PEPD 
in adipose tissue with the discordant association signal represented by variant rs3786897. Deple-
tion of PEPD in preadipocytes has been shown to reduce adipogenic potential, decrease triglyceride 
accumulation, and phospho-Akt signaling, which is critical to insulin sensitivity (Chen et al., 2020b). 
Notably, a secondary signal represented by variant rs731839 was apparent in this locus but was not 
significant for WHRadjBMI. This signal has been associated with sex-specific effects on serum lipid 
levels in Han and Mulao populations (Lin et al., 2014). Further in vivo and in vitro work must be done 
to resolve this multi-tissue, multi-eGene locus.

Although our analysis incorporated genome, transcriptome, epigenome, and phenome data 
in multiple cohorts, and used the consensus of orthogonal methods to predict the mechanisms of 
action at discordant loci, follow-up is required to validate each prediction. Additionally, our genetic 
expression data used single-strand sequencing, and therefore parsing out the associated effects of 
sense and antisense transcripts is difficult. Finally, it is critical to discover to diversify ancestry and sex 
in genetic association studies to identify more genetic loci underlying MHO. Without experimental 
follow-up and extensive clinical studies, genotype should not be used as a diagnostic metric. CRISPR 
editing of alleles in relevant cell types to study cis-regulatory effects on genes and phenotypic effects 
on cells, and work in animal models is necessary to fully annotate these loci. In addition, it is important 
to identify the indirect and direct effects of discordant variants, as these endocrine tissues are major 
contributors to peptide and hormone secretion. Further experimental characterization is critical to 
placing these results in the proper context and providing the basis for personalized interventions for 
T2D. The predictions at these six signals provide specific hypotheses to be tested, and should they be 
validated experimentally provide knowledge of the precise mechanisms of uncoupling obesity from 
T2D risk.

Methods
GWAS-GWAS colocalization analysis
GWAS results for T2DadjBMI and WHRadjBMI were obtained from Mahajan et al., 2018, and Pulit 
et al., 2019. The set of single nucleotide polymorphisms (SNPs) within 500 kb of a genome-wide 
significant SNP in either GWAS was included in the colocalization test. Rare variants, defined as SNPs 
reported to have effect allele frequencies of less than 1% in either GWAS, were excluded. Proximal 
analysis windows (>250 kb) were merged, and the colocalization test was performed on these genetic 
loci with three methods: ​Coloc.​abf (Wallace, 2020), Hyprcoloc (Foley et al., 2021), and visual inspec-
tion of LocusCompare plots (Liu et al., 2019).

https://doi.org/10.7554/eLife.79834


 Research article﻿﻿﻿﻿﻿﻿ Computational and Systems Biology

Aberra et al. eLife 2023;12:e79834. DOI: https://doi.org/10.7554/eLife.79834 � 11 of 19

The default parameters were used for Hyprcoloc. In ​Coloc.​abf, the default parameters for p1 and 
p2 prior probabilities were used for the individual GWAS hypotheses. The parameter p12, the prior 
for single variant colocalization, was set to 5e-06 as prescribed by Wallace, 2020, to balance false 
negative and positive results. Loci were considered colocalized if the regional probability of colocal-
ization was greater than 0.70. In ​Coloc.​abf, this was the sum of the PPH3 and PPH4 statistics, and 
in Hyprcoloc this was the regional probability statistic. Loci that met colocalization criteria in either 
method were plotted using LocusCompare with the default European ancestry linkage disequilibrium 
(LD) data from 1000 Genomes (Fairley et al., 2020) and with genome build hg19. This resulted in 
121 LocusCompare plots on which visual inspection was performed to verify colocalized genetic asso-
ciation signals. If genetic loci were considered colocalized by at least two of the three colocalization 
analysis methods, we considered these consensus colocalized loci. We termed this consensus analysis 
‘COLOC’.

Discordant locus identification
We obtained the 99% credible set of SNPs from the results of Bayesian factor analysis implemented 
through ​Coloc.​abf at each locus. We calculated the Z-scores for the association test of each genetic 
variant and the GWAS trait. If the Z-score associated with SNP had the opposite sign for association 
with WHRadjBMI and T2DadjBMI with respect to the same allele and the p-value for the association 
with both traits was less than 1e-05, we considered the variant discordant. We then identified in which 
loci the SNPs were located, and queried haploReg (Ward and Kellis, 2016) LD data with the haploR 
package in R (Zhbannikov et al., 2017) to separate signals in the same loci using LD clumping (R2 > 
0.50) on the discordant variants.

Phenome-wide association study
We queried the GWAS meta-analysis associations of glycemic and anthropometric traits for each 
lead discordant variant in the Type 2 Diabetes Knowledge Portal (T2DKP) (Costanzo et al., 2023). 
We additionally obtained the summary statistics of abdominal fat MRI scans in the UK Biobank and 
queried these summary statistics for discordant variants (Liu et al., 2021).

Multi-trait colocalization analysis
We obtained GWAS summary statistics for WC, hip circumference (HC), WHR, WHRadjBMI, T2D, and 
T2DadjBMI. We extracted summary statistics of variants within genetic loci containing a discordant 
association signal (Mahajan et al., 2018; Pulit et al., 2019) and performed multi-trait colocalization 
with Hyprcoloc (Foley et al., 2021). We considered an association signal colocalized for multiple traits 
if Hyprcoloc computed a posterior probability for both body fat distribution traits (WC, HC, WHR, and 
WHRadjBMI) and T2D or T2DadjBMI.

Fine-mapping analysis
We performed variable selection in multiple regression as implemented in the R package SuSiE 
(Wang et al., 2020). This method implements the sum of single-effects models to fine-map the causal 
variant(s) in a locus. Using the T2DadjBMI and WHRadjBMI GWAS summary statistics and the 1000 
Genomes LD data, we performed fine-mapping of loci containing a genetic variant associated with 
discordant effects on T2DadjBMI and WHRadjBMI. We used the default flag options in SuSiE and 
performed a sensitivity analysis of the results to a range of priors. We selected causal variants with a 
PPH4 greater than 0.70.

GWAS-QTL colocalization analysis
We obtained eQTL data from the Genotype-Tissue Expression (GTEx) for 49 tissues (Battle et al., 
2017), the Stockholm-Tartu Atherosclerosis Reverse Networks Engineering Task (STARNET) cohort 
for 6 tissues (Franzén et al., 2016), and the Metabolic Syndrome in Men (METSIM) for SAT (Brotman 
et al., 2022). We also obtained SAT sQTL results from the METSIM cohort. Data sources and further 
information are detailed in Figure 2—source data 1. We extracted the QTL data for each gene or 
transcript within 1 Mb of a discordant locus start or end site and independently colocalized with the 
T2DadjBMI and WHRadjBMI GWAS using ​Coloc.​abf and SMR. When implementing ​Coloc.​abf, we 
considered a signal to be colocalized if PPH4 was greater than 0.50 (a threshold used for GWAS-QTL 
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colocalization in admixed populations; Gay et  al., 2020). We repeated the analysis in SMR and 
used an FDR threshold of 5% to control for false positives. We then performed a visual inspection of 
GWAS-QTL colocalization of plots generated by LocusCompare. If a GWAS-QTL colocalization met 
these criteria, the proximal gene was termed an eGene.

fGWAS annotation enrichment analysis
We used the functional GWAS (fGWAS) (Pickrell, 2014) command-line tool to compute the enrich-
ment of associations, in particular genomic and epigenomic regions. We first obtained the chromo-
some and base-pair position of each variant in the 99% credible set from each of the 79 colocalized 
loci. We mapped the SNPs to their placement in genomic regions using bed files. We used bed files 
from tissue-specific chromatin state data (adipose, liver, pancreatic islet, and skeletal muscle) and 
genome-level coding region annotations, and mapped SNPs to their presence in these regions. From 
these maps, we performed enrichment analysis with the complete model of all annotations with the 
-fine and -xv flags on fGWAS. We used the natural log of the Bayes factor of the colocalization test 
and computed the enrichment of SNPs for presence in coding regions to genetic and epigenetic 
annotations.

TOA analysis
We conducted TOA score analysis using the credible set of SNPs from each of the 79 colocalized loci. 
TACTICAL computes the TOA score with the SNP-level Bayesian probabilities, the SNP annotation 
maps, and the annotation enrichment scores. We used the ​Coloc.​abf PPH4 scores for the SNP-level 
Bayesian probability, the fGWAS annotation enrichment scores, and the SNP annotation maps to 
compute the TOA score at all colocalized loci. We separated independent association signals in the 
same loci (LD <0.5) with HaploReg (Ward and Kellis, 2016). With TACTICAL (Torres et al., 2020), we 
integrated the credible set of SNPs with the enrichment for genome-level and tissue-specific annota-
tions. We used the default tissue classification thresholds of 0.20 to classify signals as belonging to a 
particular TOA and less than 0.10 difference to classify signals as sharing TOA assignments between 
multiple tissues.

Gene expression and phenotype correlation analysis
For each eGene, we computed the biweight midcorrelation and its significance, as implemented by 
the Weighted Genetic Coexpression Network Analysis (WGCNA) package (Langfelder and Horvath, 
2008), between gene expression with metabolic phenotypes measured in the METSIM cohort (Laakso 
et al., 2017). We controlled for false positives with a 5% FDR threshold as implemented by the q-values 
package in R (John, 2002).

Adipogenesis gene expression dynamics analysis
We obtained Simpson-Golabi-Behmel syndrome preadipocyte adipogenesis time series gene expres-
sion data from GEO (accession number GSE76131) (Nassiri et al., 2016). We evaluated the dynamic 
expression of each adipose tissue eGene by fitting the gene expression over time to a linear model and 
applying the likelihood ratio test (LRT) to compare the time-dependent models to time-independent 
null models. We considered an eGene to be dynamically expressed in adipogenesis if the p-value of 
the LRT was less than 0.05.
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