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Abstract Nonclassical continuum mechanics theories
have seen a rise in implementation over the past several
years due to the increased research into micro-/
nanoelectromechanical systems (MEMS/NEMS), mi-
cro-/nanoresonators, carbon nanotubes (CNTs), etc.
Typically, these systems exist in the range of several
nanometers to the micro-scale. There are several avail-
able theories that can capture phenomena inherent to
nanoscale structures. Of the available theories, re-
searchers utilize Eringen’s nonlocal theory most fre-
quently because of its ease of implementation and seem-
ingly accurate results for specific loading conditions and
boundary conditions. Eringen’s integral nonlocal theo-
ry, which leads to a set of integro-partial differential
equations, is difficult to solve; therefore, the integral
form was reduced to a set of singular partial differential
equations using a Green-type attenuation function.
However, a so-called paradox has arisen between the
integral and differential formulations of Eringen’s non-
local elasticity. For certain boundary and loading con-
ditions, instead of the expected softening effect inherent
in nonlocal particle interactions, some researchers have

found a stiffening effect. Still, others have found no
variation from those results found using classical theo-
ries. As such, the discrepancies between the integral and
differential forms have been the subject of debate for
nearly two decades, with several proposed resolutions
published in recent years. This paper serves to review
and consolidate existing theories in nonlocal elasticity
along with selected theories in nonclassical continuum
mechanics, the utilization of Eringen’s nonlocal elastic-
ity in beams, shells, and plates, the existing discrepan-
cies and proposed solutions, and recommendations for
future work.
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Abbreviations
C-C Clamped-clamped
CCCC All clamped plate boundary conditions
CCFF Two sides clamped, two sides free bound-

ary conditions
C-F Clamped-free (cantilever)
C-FP Cantilever beam with concentrated load

P at the free end
C-H Clamped-hinged
CNC Carbon nanocone
CNT Carbon nanotube
CPT Classical plate theory
DQM Differential quadrature method
DWCNT Double-walled carbon nanotube
EBT Euler-Bernoulli beam theory
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FEM Finite element method
FGM Functionally graded material
FOPT First-order plate theory
H-H Hinged-hinged
HHCC Two sides hinged, two sides clamped

boundary conditions
HHHH All hinged plate boundary conditions
HOPT Higher-order plate theory
HSDT Higher-order shear deformation theory
KPT Kirchhoff’s plate theory
MEMS Micro-electromechanical system
MPT Mindlin’s plate theory
MWCNT Multiwalled carbon nanotube
NEMS Nanoelectromechanical system
SDM Stress-driven model
SGM Strain gradient method
SLGS Single-layer graphene sheets
SSSD Simply supported beam with uniformly

distributed load
SWCNT Single-walled carbon nanotube
TBT Timoshenko beam theory
WRA Weighted residual approach

Nomenclature
A Cross-sectional area
C Compliance tensor
E Young’s modulus
e0 Material parameter
f Body force
F Distributed loading
I Second area moment of inertia
L Length
lc Nonlocal length scale parameter
M Bending moment
m0 Mass density
P Concentrated point force
Q Shear force
q Axial force
T Kinetic energy
U Potential energy
u Displacement field
V Elastic domain
w Transverse displacement
α Regularizing parameter: gradient model
δ Dirac delta
ε Strain field
κ Nonlocal parameter
λ Elastic modulus
μ Shear modulus

ξ Volume fraction
ρ Material density
σ Nonlocal stress tensor
τ Local stress tensor
ω Frequency

Introduction

In recent years, the applications andmodeling of nanoscale
materials and structures, such as micro-electromechanical
systems (MEMS), nanoelectromechanical systems
(NEMS), nanoscale sensors, actuators, gyroscopes, carbon
nanotubes (CNTs), and nanoplates have expanded signif-
icantly (Arash andWang 2012; Askari et al. 2017; Eltaher
et al. 2016). It is vital to develop accurate mathematical
models that can capture additional degrees of freedom
present at the nanoscale such as macro-/micro-rotations,
translations, and deformations inherent to the nanoscale.
As such, there are several theories in nonclassical contin-
uummechanics aimed at capturing these characteristics. In
this effort, a brief review on the existing theories in non-
classical continuummechanics is presented for the sake of
demonstrating the complexity of these theories and the use
of them from a structural mechanics, dynamics, and ma-
terials points of view. Then, one of the most widely
utilized theories, Eringen’s nonlocal elasticity, is discussed
in detail. Eringen’s work in the field of nonclassical con-
tinuum mechanics is extensive and should not be
overlooked, spanning from the mid-1960s up until the
mid-2000s (Eringen 1966; Eringen 1972; Eringen and
Edelen 1972; Eringen 1974; Eringen 1976; Eringen
1977; Eringen 1983; Eringen 2002; Eringen 2006).

Eringen’s nonlocal elasticity theory was initially pro-
posed in the 1970s to account for the long-range inter-
atomic interactions in nanostructures (Eringen 1972;
Eringen 1974; Eringen 1976; Eringen 1977). In
Eringen’s nonlocal theory, the size-dependent phenome-
na are manifested through what is termed the nonlocal
parameter, also named the small-scale or size-dependent
parameter. Eringen’s nonlocal theory relies on
representing particles as a point mass subject only to
translation, in which the stress of any point is influenced
by the strain of all other points in the medium, and thus
can be considered a strain-driven model. To further ex-
plain, any reference point in an elastic domaipdeln expe-
riences a neighboring interaction with other nearby
points. This theory exists in an integral form, which leads
to a set of integro-partial differential equations that are
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difficult to solve. The integral form is referred to as
strongly nonlocal, since it relies on an integral and thus
includes all neighboring points in the medium. From a
certain Green-type attenuation function (kernel function),
Eringen (1983) converted the nonlocal integral theory
into differential form. The differential nonlocal theory
and other gradient-type theories are termed weakly non-
local as they rely on derivatives instead of the integral.

The reduction to the differential model has not been
accepted with full accuracy for certain boundary and
loading conditions. For example, in the case of bounded
domains that require the addition of constitutive bound-
ary conditions to obtain a closed-form solution for a
stress field induced by a given strain field, the differen-
tial theory is ill-posed and cannot be considered correct.
It has been shown by researchers, in general, that in-
creasing nonlocal effects in the model lead to an overall
reduction in the effective stiffness of the system. This
softening is accompanied by a decrease of the natural
frequencies, a decrease in critical buckling loads, and an
increase in the maximum deflection of the structure (Xu
et al. 2016). However, there are reported discrepancies
between the expected results of the integral and differ-
ential models, in which several researchers have found a
hardening effect, different from expected softening ef-
fect, or no variations from those found using classical
theories when modifying the nonlocal parameter
(Peddieson et al. 2003).

The conversion of the integral model to the differen-
tial model was originally developed without full consid-
eration of the boundary conditions, thus the so-called
paradox becomes apparent in boundary-valued prob-
lems. Clarification is needed to determine if this model
is valid for certain boundary conditions. There are cases
in which there is a mathematically ill-posed problem,
but the results are accepted in the literature (softening as
expected). On the contrary, there are cases in which
authors claim to resolve the ill-posed problem, but then
obtain unexpected results (hardening). For example,
when the differential form of Eringen’s theory is applied
to beams, hardening effects were observed, particularly
for the bending, critical buckling loads, and the funda-
mental natural frequency of nanocantilever beams
(Khodabakhshi and Reddy 2015; Murmu and Pradhan
2009a, b). Another inconsistency is in the effects of the
nonlocal parameter for cantilever beams with concen-
trated forces (Peddieson et al. 2003).

Possible causes of the so-called paradox have been
attributed to the common misrepresentation of the

shear and moment boundary conditions at the free
end. Additionally, one research effort (Romano and
Barretta 2017a, b) recently discussed that Eringen’s
nonlocal elasticity theory, when applied to boundary-
valued problems, is ill-posed. The existence of a
solution implies a serious discrepancy between the
constitutive equations and the governing equations of
motion. Through the derivation of Eringen’s nonlocal
elasticity, the stress field changes from a local to a
nonlocal one by means of the nonlocal parameter.
However, when deriving the equations of motion for
a system by, for example, the Hamilton’s principle,
the boundary conditions are not affected by the non-
local parameter. Thus, the resulting system is com-
posed of nonlocal equations of motion and local (size-
independent) boundary conditions. While the bound-
ary conditions are not affected by the nonlocal param-
eter in the differential model, clamped-clamped and
simply supported–simply supported boundary condi-
tions without the inclusion of uniformly distributed
loads are generally considered well-defined for differ-
ential models in terms of their anticipated results.
However, even these cases are considered ill-posed
solutions because of the discrepancy between the con-
stitutive and equilibrium equations.

Attempts have been made to resolve the existing
resultant inconsistencies from different physical and
mathematical points of view through the following
methods:

& Laplace transformation of the integral model (Tuna
and Kirca 2016a; b)

& Laplace transform of the differential model for
nanocantilever beams with end forces (Özgür
Yayli and Yerel Kandemir 2017)

& Weighted residual approach (WRA) in which the
classical strain and kinetic energy are replaced into
the nonlocal governing equations of motion (Xu
et al. 2016)

& Two types of Rayleigh-Ritz method with polynomi-
al and combination of polynomial and trigonometric
as admissible functions (Fakher and Hosseini-
Hashemi 2017)

& Normalized kernel employed in Eringen’s integral
nonlocal elasticity model which corresponds to a
finite domain (Koutsoumaris et al. 2017)

& Iterative nonlocal residual approach in which the
local field with an imposed nonlocal residual is
utilized to solve the field equation (Shaat et al. 2017)
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Other attempts were made in which the classical
boundary conditions were modified to nonclassical
boundary conditions, particularly in the representation
of the shear and moment in nanocantilever beams (Lu
et al. 2006; Wang et al. 2007; Reddy and Pang 2008;
Barretta et al. 2016). It is noted that, in general, incon-
sistencies arise in both the differential and the integral
models. For instance, when the integral form is applied
to a cantilever beam subjected to a point load at the free
end, it was shown that the nonlocal model predicts no
nonlocal effects by a cantilever subjected to any combi-
nation of concentrated loads (Peddieson et al. 2003).
Similar results are shown in the theory known as the
two-phase integral model when simply supported–
simply supported boundary conditions are considered
(Khodabakhshi and Reddy 2015).

Throughout this review, the existing methods for
applying Eringen’s nonlocal elasticity theory to static
and dynamic systems, such as beams, shells, and plates,
are consolidated. Then, the proposed solutions are cate-
gorized and discussed in detail based on their assump-
tions, formulations, and results. Great efforts have been
made by these researchers to study these paradoxes from
physical, theoretical, and mathematical points of view.
In this review paper, we aim to provide the reader with a
strong foundation for reviewing nonclassical continuum
mechanics, nonlocal elasticity in nanostructures, and
what has been termed by many researchers as the
boundary condition paradox. Final comments are made
on the possible limits of applicability and robustness of
the proposed solutions.

Existing theories in nonclassical continuum
mechanics

Classical continuum theories of elasticity state that a
point mass is an appropriate representation of a particle
within a bulk, macro-scale material. When acted upon
by an external force, the point mass exhibits a macro-
translation that is independent of the other particles in
the medium. In nanomaterials, the size of the bulk
material approaches the size of its internal structures,
such that particles cannot be represented as a point mass,
in which the deformation and rotation of the particle are
neglected. Thus, it has been shown that classical con-
tinuum theories result in inaccurate representations of
the static and dynamic behaviors of nanomaterials and
nanostructures. When the external characteristic length

is approximately equal to the internal characteristic
length of the material, nonclassical continuum theories
must be used to accurately model and predict the system
response (Askari et al. 2017).

Size-dependent models have been of great interest to
researchers because of the recent growth in the use of
nanomaterials for MEMS and NEMS devices. Nonclas-
sical continuum mechanics theories are used to describe
the long-range and/or short-range interactions between
material particles in a domain. These theories include
Cosserat theory (Cosserat and Cosserat 1909), micro-
structure theory (Mindlin 1963), second-strain gradient
theory (Mindlin 1965), Eringen’s nonlocal theory
(Eringen 1972), first-strain gradient theory (Mindlin
and Eshel 1968), asymmetric nonlocal theory
(Demiray 1977), classical couple stress theory
(Mindlin and Tiersten 1962; Toupin 1962), modified
couple stress theory (Yang et al. 2002), consistent cou-
ple stress theory (Hadjesfandiari and Dargush 2011),
second-order rotation gradient theory (Shaat and
Abdelkefi 2016), and a general nonlocal theory (Shaat
and Abdelkefi 2017). Each of these theories is catego-
rized in terms of their assumptions on particle represen-
tation. The most encompassing theories represent mate-
rial particles as volume elements that can experience
micro-rotations, micro-deformations, and translations
(Mindlin 1963; Mindlin 1965). However, these theories
are extremely complex and computationally expensive
when used to model dynamical systems. Other theories
consider extremely rigid material particles that exhibit
micro-rotation and translation only (Cosserat and
Cosserat 1909; Mindlin and Tiersten 1962; Toupin
1962; Yang et al. 2002; Hadjesfandiari and Dargush
2011; Shaat and Abdelkefi 2016). Each theory has a
specific number of additional constants required to en-
compass the structural behavior of the material. These
constants are needed in addition to the classical material
parameters to determine the characteristics and response
of the nanostructure, such as Young’s modulus,
Poisson’s ratio, or Lamé constants. Another consider-
ation when choosing a nonlocal theory for a particular
application is the micro-structure of the nanomaterial.
Nanomaterials can have a crystalline, granular, or amor-
phous structure (Eringen 1972; Shaat and Abdelkefi
2017; Chen et al. 2004; Maranganti and Sharma 2007;
Polyzos and Fotiadis 2012; Chen and Lee 2003). It is
important to select the most appropriate theory account-
ing for the material’s unique characteristics. For exam-
ple, nanocrystalline diamond has extremely rigid
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crystals that are unlikely to undergo micro-deforma-
tions. Therefore, a theory that neglects the effects of
micro-deformationsmay be considered. Table 1 outlines
the nonclassical continuum theories listed above in
terms of material particle representation, kinematic var-
iables, number of additional parameters needed, and
applicability for materials, respectively (Shaat and
Abdelkefi 2016).

Though significant efforts were made to develop
each model from a material science point of view, many
problemsmay exist in applying these models to physical
systems. For example, one of the greatest challenges
with working with theories, such as the micro-structure
theory (Mindlin 1963), which requires 16 additional
parameters, is how to accurately determine the addition-
al parameters and give them a physical meaning. In
many of the higher-order theories, experimental data
or atomistic simulations that would provide information
about the macro-/micro-rotations, deformations, transla-
tions, and their gradients are needed. This information
comes in the form of dispersion relations that may not
always provide direct physical interpretation of the con-
stants. In addition, the boundary conditions needed for
higher-order models are in excess of the number of
natural boundary conditions of the system. For this
reason, many researchers have chosen to use Eringen’s
nonlocal elasticity theory because it requires only one
additional parameter and when using the differential
form, the resulting order of the equations of motion
matches the number of available natural boundary
conditions.

In addition to the models and theories presented in
Table 1, it is important to mention that several other
weakly nonlocal theories exist. Of the weakly nonlocal
theories, separate from Eringen’s, it appears that the
most widely studied ones are gradient elasticity theories
and their modifications. The bulk of studies considering
gradient elasticity were conducted by Aifantis and his
colleagues (Aifantis 2016; 2011a, b; Askes and Aifantis
2011; Aifantis 1999a; b; Gutkin and Aifantis 1999;
Lazar et al. 2005; Askes et al. 2007; Aifantis 2009;
Askes and Aifantis 2009; Forest and Aifantis 2010;
Lurie et al. 2011; Aifantis 2011b; Mokios and Aifantis
2012; Xu et al. 2013; Sun and Aifantis 2014; Aifantis
2014; Xu et al. 2014; Yue et al. 2015; Lurie et al. 2017;
De Domenico et al. 2018; Gurtin et al. 2010; Aifantis
1984; Aifantis 1987; Lazar et al. 2006). In these studies,
Aifantis (2016) often discusses the need to resort to
higher-order gradients of the key constitutive variables

to model the evolution of deformation and fracture when
homogenous material states become unstable and the
governing equations lead to pathological or unphysical
behavior. Additionally, Aifantis (2016) paid tribute to
Eringen and discussed the similarities between
Eringen’s nonlocal theory and the gradient approach or
strain gradient theory. Both rely on the introduction of a
characteristic material parameter or internal length that
may account for effects of underlying micro-structures
in complex media or the interaction of bulk and surface
points in nanoscale volumes. However, rather than
Eringen’s reduced constitutive equation that incorpo-
rates the Laplacian of stress in the linear expression of
Hooke’s Law (eliminating stress singularities), the gra-
dient theory relies on a generalization of the classical
Hooke’s law by an extra term containing the Laplacian
of strain (eliminating strain singularities) (Fleck and
Hutchinson 2001).

Some other efforts related to gradient elasticity in-
clude discussions on Laplacian-based gradient elasticity
theories (Askes and Aifantis 2011), gradient deforma-
tion models and various scales (Aifantis 1999a), and a
strain gradient interpretation of size effects (Aifantis
1999b). In 2005, special classes of static theories of
gradient elasticity, nonlocal elasticity, gradient micro-
polar elasticity, and nonlocal micro-polar elasticity were
discussed (Gutkin and Aifantis 1999). Other efforts in
gradient elasticity focused on wave dispersions (Askes
and Aifantis 2011; Askes et al. 2007; Askes and Aifantis
2009; De Domenico et al. 2018; Lazar et al. 2006).

Many of these theories are rather robust and have
numerous applications on size effects and elimination
of elastic singularities. A few other examples of gra-
dient models include the Fleck-Hutchinson and the
Gao-Nix-Huang strain gradient theories (Fleck and
Hutchinson 2001; Gurtin and Anand 2009; Fleck and
Hutchinson 2001; Gudmundson 2004; Aifantis and
Willis 2005). Additionally, there are improved gradient
theories that consider surface effects (Aifantis and
Willis 2005; Voyiadjis and Al-Rub 2005; Al-Rub
and Voyiadjis 2006; Zhu and Karihaloo 2008). Note
that several of these studies were motivated by works
on the thermodynamic basis of gradient theory (Gurtin
et al. 2010) and the review chapter ion the internal
length gradient material mechanics across scales and
disciplines. A further detailed review on several other
weakly nonlocal and strain gradient theories is out of
the scope of this effort, but related works on these can
be found in (Aifantis 2003).

J Nanopart Res (2021) 23: 66 Page 5 of 27 66



Table 1 A summary of the available nonclassical continuum theories and their applicability for materials (Shaat and Abdelkefi 2016)

Theory Material particle representation Kinematic variables No. Applicability for material

Cosserat theory
(Cosserat and
Cosserat 1909)

Volume element has
micro-rotations and macro--
displacements.

Macro-strain, the gradient of the
micro-rotation, and the difference
between the micro-rotation and the
macro-rotation.

4 - Single molecular crystal
materials with nearly rigid
molecules (Chen et al. 2004;
Chen and Lee 2003).

- Polycrystalline materials with
rigid crystals.

- Amorphous materials with short
nonlocal-range effects.

Microstructure
theory (Mindlin
1963)

Volume element has
micro-deformations (micro--
strains and micro-rotations)
and macro-displacements.

Macro-strain, the gradient of the
micro-deformation, and the
difference between the
micro-deformation and the macro--
deformation.

16 - Single molecular crystal
materials (Chen et al. 2004;
Chen and Lee 2003).

- Polycrystalline materials.
- Amorphous materials with short

nonlocal-range effects.

Second-strain
gradient theory
(Mindlin 1965)

Volume element with
higher-order deformations,
micro-strains, micro--
rotations, and macro--
displacements.

Macro-strain, the first-strain gradient,
and the second-strain gradient.

16 - Single crystal materials that
exhibit short-range acoustic
phonons (Polyzos and Fotiadis
2012).

- Amorphous materials with short
nonlocal-range effects
(Polyzos and Fotiadis 2012).

- It may be applied for
polycrystalline materials
(Maranganti and Sharma
2007).

Eringen’s nonlocal
elasticity theory
(Eringen 1972)

Mass point with only
translational motions.

Macro-strain and the nonlocal residual
at each point.

1 - Single crystal materials that
exhibit long-range acoustic
phonons (Chen et al. 2004;
Chen and Lee 2003).

- Amorphous materials
(Maranganti and Sharma
2007).

First-strain gradient
theory (Mindlin
and Eshel 1968)

Volume element has
micro-strains,
micro-rotations, and
macro-displacements.

Macro-strain and the first-strain gradi-
ent.

5 - Single crystal material that
exhibit short-range acoustic
phonons (Polyzos and Fotiadis
2012).

- Amorphous materials with short
nonlocal-range effects
(Polyzos and Fotiadis 2012).

- It may be applied for
polycrystalline materials.

Asymmetric nonlocal
elasticity theory
(Demiray 1977)

Volume element with
translational and rigid
rotational motions.

Macro-strain, the nonlocal residual at
each point, and the relative rotation.

2 - Diatomic single crystal
materials that exhibit
long-range acoustic and exter-
nal optical phonons (Demiray
1977).

- Amorphous materials.

Classical couple
stress theory
(Mindlin and
Tiersten 1962;
Toupin 1962)

Volume element has
micro-rotations and macro--
displacements.

Macro-strain and the rotation gradient. 2 - Single crystal material that
exhibit short-range acoustic
phonons.

- Amorphous materials with short
nonlocal-range effects.

- Polycrystalline materials.
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Eringen’s nonlocal elasticity theory

Eringen’s integral nonlocal elasticity theory:
assumptions and formulations

One of the most popular developed theories in
nonclassical continuum mechanics is Eringen’s
nonlocal elasticity theory. In his model, Eringen
proposed a point mass representation subject to
translation only in the medium for the material
particle. Furthermore, the stress experienced by
one particle is influenced by the strain of every
particle in the medium. This effect diminishes as
the space between the particles increases. This
relationship is expressed by Eringen (1983)’s non-
local integral as:

σij xð Þ ¼ ∫
V
k x−x

��� ���;κ� �
τ ij x
� �

dV ð1Þ

where σij(x) denotes the stress at point x, τij is the
local stress at reference point x, k x−xj jð ;κÞ repre-
sents the kernel function, and κ is the nonlocal
parameter. The nonlocal parameter κ depends on

the product of the material parameter, e0, and the
length scale parameter, a. The kernel function k
x−xj jð ;κÞ is a decaying function that represents

the long-range interactions between particles. The
standard kernel function used is:

k x−x
��� ���;κ� �

¼ 1

2κ
e−

x−x

��� ���
κ ð2Þ

The nonlocal material parameter, e0, should be deter-
mined experimentally by matching the acoustic disper-
sion curves of a material. Determination of the nonlocal
material parameter is discussed further when a general
form of Eringen’s nonlocal elasticity theory is reviewed
in “Eringen’s differential nonlocal theory: a conversion
from the integral formulation.” It is important to men-
tion that the original integral formulation is often re-
ferred to as the strain-driven model with an exponential
kernel, where the nonlocal stress is output as a convo-
lution between the local response to the elastic strain
and a scalar kernel dependent on the nonlocal parameter.
Thus, nonlocal models are referred to as strain-driven
when the source field is the elastic strain and referred to

Table 1 (continued)

Theory Material particle representation Kinematic variables No. Applicability for material

Modified couple
stress theory
(Yang et al. 2002)

Volume element has
micro-rotations and macro--
displacements.

Macro-strain and the symmetric part of
the rotation gradient.

1 - Single crystal material that
exhibit short-range acoustic
phonons.

- Amorphous materials with short
nonlocal-range effects.

- Polycrystalline materials

Consistent couple
stress theory
(Hadjesfandiari
and Dargush
2011)

Volume element has
micro-rotations and macro--
displacements.

Macro-strain and the skew-symmetric
part of the rotation gradient.

1 - Single crystal material that
exhibit short-range acoustic
phonons.

- Amorphous materials with short
nonlocal-range effects.

- Polycrystalline materials

Second-order
rotation gradient
theory (Shaat and
Abdelkefi 2016)

Volume element with
micro-displacement,
micro-rotation and
higher-order rotation gradi-
ents

Macro-strain, first-order rotation
gradient, and second-order rotation
gradient

11,8,
or
5

- Amorphous materials of various
types

General nonlocal
theory (Shaat and
Abdelkefi 2017)

Mass point with only
translational motions.

Macro-strain and the nonlocal residual
at each point.

2 - Single crystal materials that
exhibit long-range acoustic
phonons.

- Amorphous materials.
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as stress-driven when the roles of the bending interac-
tion and curvature fields are swapped with those of the
original strain-driven integral model.

Eringen’s differential nonlocal theory: a conversion
from the integral formulation

In its integral form, for homogenous and isotropic bod-
ies, Eringen’s nonlocal theory leads to a set of integro-
partial differential equations for the strain or displace-
ment field that are generally difficult to solve. In certain
cases, and for certain materials, the integro-partial dif-
ferential equations may be reduced to a set of singular
partial differential equations. It should be noted that this
conversion is not valid for bounded domains where the
constitutive boundary conditions must be added in order
to gain closure of the constitutive problem of determin-
ing the stress field induced be a certain strain field. With
this in mind, Eringen (1983) introduced the differential
model for his nonlocal theory in 1983. In reducing the
integral form of Eringen’s nonlocal theory to the differ-
ential form, it was noted that the appropriate class of
kernels should be used based on certain mathematical
and physical conditions, i.e., for when a well-posed
elastostatic problem is considered. As determined in
the work of Eringen (Eringen 1972; Eringen 1974;
Eringen 1976; Eringen 1977), the stress at the reference
point x depends not only on the strain at the specified
point but also on the strain of all other points in the
domain. This is in accordance with the atomic theory of
lattice dynamics and experimental observations on pho-
non dispersion. If the effects of the strain at all other
points are neglected in the model, Eringen’s nonlocal
theory reduced to the classical theory of elasticity. The
local stress, τij is defined as (Eringen 1983):

τ ij x
� �

¼ λεrr x
� �

δij þ 2μεij x
� �

ð3Þ

where λ and μ are the material Lamé constants and

εij xð Þ ¼ 1
2

∂ui xð Þ
∂ j þ ∂u j xð Þ

∂i

� �
, such that u* xð Þ represents

the displacement field of a material particle. When con-
sidering the attenuation function and the local stress
tensor, the nonlocal stress field, σij, is obtained. The
nonlocal stress field is represented as a nonlocal field
conjugate to the fundamental field of the infinitesimal
strain measure. It can then be said that the equilibrium
equation for a nonlocal elastic field can be written as:

σji; j xð Þ þ f i xð Þ ¼ ρ xð Þ ::
ui xð Þ ð4Þ

where fi(x) represents the body force and ρ(x) denotes
the mass density. In Eringen’s nonlocal theory, the strain
energy density depends both on the local strain and the
diffused fractions of the strain, which depend on the
attenuation function at neighboring points. Consequent-
ly, the local stress field is replaced with the correspond-
ing nonlocal stress field. To get the Erignen’s differen-
tial form, a linear differential operator for a Green’s
function type attenuation kernel is used which has the
form of:

l = (1 − (e0a)
2∇2), i.e., lk x−xð Þ ¼ δ x−xð Þ (5)

where ∇2 represents the Laplace operator and δ is the
Dirac delta function. Finally, the equilibrium equation
for a nonlocal elastic continuum is expressed as:

τ ji; j þ l f i−ρ
::
ui

� � ¼ 0 ð6Þ
From Eq. (6), a set of singular differential equations

are derived and are representative of the equilibrium
equation using Eringen’s differential nonlocal elasticity.
Generally, this is a system whose solution exists and is
easy to find. However, problems still exist in applying
the natural boundary conditions of the system. Further-
more, the existence of solution does not guarantee a
well-posed problem. In studies utilizing a differential
form of nonlocal elasticity, it is important to apply
boundary conditions that do not contradict the underly-
ing physics of the system. At the same time, the bound-
ary conditionsmust mathematically agree with the phys-
ical interpretation.

Determining the nonlocal parameter for various
materials: a general nonlocal theory

After studying both Eringen’s integral and differential
nonlocal theories, Shaat and Abdelkefi (2017) made ef-
forts to provide new insights on the limits of applicability
of Eringen’s nonlocal theory from amaterial science point
of view. In doing so, a new general nonlocal theory was
developed. In several works by Eringen related to nonlo-
cal elasticity, a strong assumption was made for the rapid
attenuation of interatomic interactions (Eringen 1972;
Eringen 1983; Eringen 2002; Eringen 2006). In doing
so, the same attenuation function was considered for all
elastic moduli. Thus, all nonlocal material moduli are
determined from the same attenuation function, multiplied
by different local material moduli. This underlying
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assumption can lead to inaccurate results when consider-
ing materials whose longitudinal and transverse acoustic
dispersions cannot simultaneously be fit with one nonlocal
parameter. As such, two nonlocal parameters should be
determined when these limits have been exceeded (Shaat
and Abdelkefi 2017). To define the limits of Eringen’s
differential nonlocal theory and its use of only one
nonlocal parameter, Shaat and Abdelkefi (2017) studied
the ability to reflect the exact dispersion functions of
different materials, as moduli. It was found that Eringen’s
nonlocal theory cannot simultaneously fit the dispersion
curves of some materials, such as silicon, gold, and plat-
inum. To address this issue, a general nonlocal theory was
proposed that considers two different attenuation func-
tions such that both the longitudinal and transverse
(shear) acoustic dispersions are used to determine two
nonlocal parameters. When using Eringen’s assumption,
the nonlocal material moduli are defined as:

k x−x
��� ���� �

¼
λ x−x

��� ���� �
λ

þ
μ x−x

��� ���� �
μ

ð7Þ

Again, λ and μ are the conventional material Lamé

constants, defined in classical continuum mechanics. λ
x−xj jð Þ and μ x−xj jð Þ are the modified material moduli

for the nonlocal field. From here, for two material con-
stants, two attenuations functions should be considered,
leading to two different nonlocal parameters. In
Eringen’s nonlocal theory, it is known that the value of
e0 is found by matching the dispersions of the material.
In cases when the limits of applicability of Eringen’s
nonlocal theory have been exceeded, two distinct atten-
uation functions should be considered. To replace Eq.
(1), the general form is given as:

σij x
� �

¼ ∫
V

β1 x−x
��� ���� �

λεrr xð Þδij þ β2 x−x
��� ���� �

2μð Þεij xð Þ
� �

dV ð8Þ

where β1 x−xj jð Þ and β2 x−xj jð Þ are Green’s functions.
Two differential operators are then derived as:

L1β1 x−x
��� ���� �

¼ δ x−x
��� ���� �

and L2β2 x−x
��� ���� �

¼ δ x−x
��� ���� �

ð9Þ

The operators are given as:

L1 ¼ 1−ε1∇2
� �

and L2 ¼ 1−ε2∇2
� � ð10Þ

Then, bymultiplying the nonlocal stress tensor by the
two differential operators, the constitutive equations are

obtained as:

1−ε1∇2
� �

1−ε2∇2
� �

σij x
� �

¼ 1−ε2∇2
� �

τ ij x
� �

þ 1−ε1∇2
� �

τ ij x
� �

ð11Þ

where τ ij ¼ λεrr δij and τ ij ¼ 2μεij. Clearly, when
ε1 = ε2, the general nonlocal theory reduces to Eringen’s
nonlocal theory. To validate the proposed model, experi-
mental dispersions were obtained from the literature for
materials, such as diamond (Warren et al. 1965), silver
(Bian et al. 2008), copper (Nilssom and Rolandson 1973),
graphite (Jishi et al. 1993), gold (Lynn et al. 1973), silicon
(Cochran 1973), and platinum (Dutton et al. 1972). Results
showed that Eringen’s nonlocal theory is valid for mate-
rials such as diamond, silver, and graphite, but fails for
other materials. It should bementioned that while this does
not directly apply to the boundary condition paradox, the
utilization of the general nonlocal theory will lead to more
accurate identification of the nonlocal parameters. How-
ever, in considering this higher-order nonlocal model,
physical and mathematical problems will arise. The num-
ber of required boundary conditions in this model will
increase from four to six, and thus exceed the number of
available natural boundary conditions. It should be noted
that other efforts have also been made for the determina-
tion of the nonlocal parameter, particularly for CNTs and
graphene sheets (Duan et al. 2007; Liang and Han 2014).

Eringen’s nonlocal elasticity in shells, plates,
and beams

The use of nonlocal elasticity theories has expanded
significantly in recent years because of the extensive
applications for the modeling of MEMS, NEMS, and
CNTs. In particular, Eringen’s nonlocal elasticity has
extensively been applied to study the static and dynamic
responses and behaviors of beams, shells, and plates.
While the discrepancies and so-called paradox have most
notably discussed in beams, it is important to note the
extensive use of Eringen’s nonlocal elasticity in other
nanostructures. In each of the considered structures, the
static bending, vibrations, buckling, and/or wave propa-
gation were studied. Boundary conditions including
clamped-clamped, clamped-hinged, hinged-hinged, and
clamped-free were considered. For certain models, con-
centrated loads or distributed loads were also studied.
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On the implementation of nonlocal elasticity to shells
(CNTs), cones, plates, and graphene sheets

Most commonly, researchers have coupled the differen-
tial form of Eringen’s nonlocal theory with Euler-
Bernoulli beam theory (EBT) or Timoshenko beam
theory (TBT) to study the static and dynamic responses
of nanobeams and CNTs. While Eringen’s nonlocal
elasticity has been most extensively applied to these
systems, it has also been applied to various shell and
plate models. The shell and plate models are inherently
more complex than beam models, due to their extra
degrees of freedom. Thus, they were not studied exten-
sively in the context of addressing the boundary condi-
tions paradox for Eringen’s nonlocal elasticity. Howev-
er, they are discussed briefly in this review for the sake
of demonstrating the vast use of Eringen’s nonlocal
theory.

Several works have been performed to study the
wave propagation, vibrations, and buckling behaviors
of the structures, most often CNTs, using shell models.
These studies are outlined in Table 2. It should be noted
that few, if any, researchers address the apparent para-
dox for shell models. Because of their increased com-
plexity, it does not seem as though researchers consid-
ered the same boundary conditions that cause the issues
discussed in the beam models. Thus, a paradox is not
observed, and for the considered shell models, the in-
creasing nonlocal parameter consistently led to a soft-
ening in the material, i.e., a decrease in the fundamental
natural frequency, an increase deflection in the bending
solutions, or a decrease in the critical buckling loads of
the structure.

Shells are not the only complex structures that have
been studied using Eringen’s nonlocal elasticity. The
differential form of Eringen’s nonlocal theory has been
used to model plates and graphene sheets. These works
are summarized in Table 3. Several interesting works
exist in the modeling of the nanoscale plates. The nov-
elty in these works lies in the consideration of various
types of plate models and different solution procedures
for the governing equations of motion. Depending on
the properties, size, and structures of the plates, models,
such as the Kirchhoff’s plate theory (KPT), classical
plate theory (CPT), first-order plate theory (FOPT),
Mindlin’s plate theory (MPT), and higher-order plate
theories (HOPT) have been considered in the modeling
of nanoplates. As with the shell models, the differential
form of Eringen’s nonlocal elasticity was most

commonly implemented. Boundary conditions includ-
ing HHHH (all sides hinged), CCCC (all sides
clamped), CCHH (two sides hinged, two sides
clamped), and CCFF (two sides clamped, two sides free)
were investigated. It is interesting to note that in the
models of the plates with one or two free edge boundary
conditions, the softening behavior was still consistently
observed, unlike the paradoxical cantilever beam.

For the convenience of the reader, Table 4 is provid-
ed to summarize Eringen’s nonlocal elasticity in shells
and plates. The research efforts are categorized by the
types of analyses performed, including wave propaga-
tion, vibrations, bending, and buckling of shells and
plates.

Eringen’s nonlocal elasticity in beam models:
the so-called boundary condition paradox

The coupling of Eringen’s differential nonlocal theory
with Euler-Bernoulli beam theory or Timoshenko beam
theory yields the simplest models for integrating
Eringen’s nonlocal elasticity. Due to its simplicity, the
differential constitutive model has received great atten-
tion and has been used in dislocation mechanics, com-
posite materials, damage and fracture mechanics, and
other related fields. Most often, the differential form of
Eringen’s nonlocal elasticity has been used to study the
static and dynamic responses of beams and CNTs con-
sidering small-scale effects (Ghavanloo and Fazelzadeh
2014; Sudak 2003; Wang 2005; Wang and Varadan
2006; Wang et al. 2006; Reddy 2007; Heireche et al.
2008; Murmu and Pradhan 2009a, b; Amara et al. 2010;
Kiani 2013; Zhu and Dai 2012; Wang and Li 2014;
Şimşek 2014; Zhang 2017; Thai 2012; Arash andWang
2014). In addition, several reviews have been published
regarding nonlocal elasticity in beams and CNTs and
contain valuable and useful references therein (Arash
and Wang 2012; Arash and Wang 2014; Askari et al.
2017; Eltaher et al. 2016).

While the above research efforts did not explicitly
address the ill-posed nature of Eringen’s nonlocal elas-
ticity and the paradox, it is important to include them for
the convenience of the reader. However, the goals of this
effort are to highlight the discrepancies that arise for
varying boundary conditions in nonlocal elasticity and
to create a timeline of the progression of the proposed
solution procedures. In addition, researchers who have
addressed the underlying causes of the paradox have
been included, most notably specifying the
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Table 2 A summary of nonlocal elasticity in nanoshells and nanocones

Ref. Keywords Approach and findings

Zhang et al. (2004) - Differential
- Shell
- H-H
- Buckling

Developed a cylindrical shell model for the axial buckling
of MWCNTs with H-H boundary conditions. They found
softening in the beam when increasing the nonlocal
parameter using the differential form.

Wang (2006) - Differential
- Flugge shell
- Wave propagation

Proposed a nonlocal elastic shell model to study the
small-scale effect in axisymmetric wave propagation in
CNTs. Two coupled radial and longitudinal modes and
one decoupled torsional mode were developed from the
model.

Wang and Varadan (2007) - Differential
- Shell
- Wave propagation
- Vibrations

Investigated the small-scale effect of wave dispersion
relations for different CNT wavenumbers in the
longitudinal and circumferential directions. They were
able to demonstrate the potential of a nonlocal shell theory
to study the vibrations and phonon dispersion relations
of CNTs.

Hu et al. (2008) - Differential
- Shell
- Wave propagation

Investigated the transverse and torsional wave propagations
in SWCNTs and DWCNTs and found that the nonlocal
elastic shell theory provided a better prediction of the
dispersion relationships than the classical shell theory
for large enough wavenumbers.

Yang and Lim (2011) - Differential
- Shell
- Wave propagation

Proposed an analytical nonlocal shell model to investigate the
axisymmetric wave propagation in CNTs. They claim that
their results confirm that the analytical shell model can
predict the stiffness of nonlocal CNTs.

Ansari and Arash (2013) - Differential
- Flugge shell
- H-H
- Vibrations

Studied the vibrations of DWCNTs, modeled as Flugge
shells and considering the differential form of Eringen’s
nonlocal theory. They applied different boundary conditions
to the inner and outer tubes with overall H-H boundary
conditions. They observed the softening behavior.

Fotouhi et al. (2013) - Differential
- Nanocone
- H-H
- Vibrations

Applied the thin shell theory and the differential form of
Eringen’s nonlocal elasticity to study the vibrations of
nanocones with H-H boundary conditions. They observed
the softening behavior.

Ghavanloo and Fazelzadeh 2014 - Differential
- Shell
- Vibrations
- Legendre polynomials

Investigated the axisymmetric vibrations of spherical shell-like
nanostructures using the differential form of Eringen’s
nonlocal elasticity. They presented a new prediction formula
for the axisymmetric vibration of nanospherical membrane
shell by employing Legendre and Legendre polynomials.

Ansari and Torabi (2016) - Differential
- Nanocone
- Vibrations
- Variational DQM
- Softening

Employed the variational DQM to study the free vibrations
of carbon nanocones (CNCs) embedded in an elastic
foundation based on the differential form of Eringen’s
nonlocal elasticity. They investigated the effects of the
nonlocal parameter, boundary conditions, semi-apex angle,
and Winkler and Pasternak coefficients on the vibrational
behavior and observed the softening behavior.
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Table 3 A summary of nonlocal elasticity in nanoplates and graphene sheets

Ref. Keywords Approach and findings

Pradhan and Phadikar
(2009)

- Differential
- CPT
- Graphene sheet
- Vibrations

Used Navier’s approach to study the small-scale effects of vibration on multilayer
graphene sheets embedded in a matrix modeled using differential Eringen’s non-
local elasticity and classical plate theory (CPT). They found that the nonlocal
parameter has a significant effect on plate behavior.

Reddy (2010) - Differential
- EOMs
- EBT, TBT, KPT, CPT,

FOPT, HOPT, MPT

Derived the differential nonlocal equations of motion for nanoplates without
considering specific boundary conditions. They also considered EBT, TBT,
Kirchhoff’s plate theory, classical plate theory, first-order plate theory, higher-order
plate theory, and Mindlin plate theory
.

Wang et al. (2011) - Differential
- Elastic plate theory
- Graphene sheets
- Vibrations
- HHHH
- Softening

Studied the mechanisms of the nonlocal effect on the transverse vibrations of 2D
nanoplates using the differential form and the elastic plate theory. They found that
the nonlocal effect stems from the distributed transverse force due to the curvature
change and surface stress from the atom-atom interactions. For all hinged boundary
conditions, they found nonlocal nanoplates to be softer than local ones.

Pradhan and Kumar
(2011)

- Differential
- Orthotropic SLGS- CPT
- DQM
- Vibrations
- Softening

Performed a vibration analysis of orthotropic single-layered graphene sheets using
differential nonlocal elasticity and classical plate theory. They varied the boundary
conditions, considering different combinations of boundary conditions and found a
decrease in the natural frequency for increasing nonlocal parameter.

Civalek and Akgöz
(2013)

-Differential
- Thin Plate Theory
-Winkler-Pasternak
- Vibrations
- Softening

Performed a free vibration analysis of micro-scaled annular sector and sector shaped
graphene on an elastic matrix using differential nonlocal elasticity. The elastic
matrix was modeled via the Winkler-Pasternak elastic foundations. They utilized
the thin plate theory and employed the discrete singular convolution method for
numerical solutions.

Hosseini-Hashemi
et al. (2013)

- Differential
- Mindlin’s plate theory
- Vibration
- Softening

Used the differential form of Eringen’s nonlocal theory into Mindlin plate theory to
consider the small-scale effects on the free vibration of rectangular nanoplates.
They applied mixed Levy-type boundary conditions and found a decrease in the
natural frequency for all boundary conditions and increasing values of the nonlocal
parameter.

Liu et al. (2013) - Differential
- Kirchhoff’s Plate Theory
- HHHH
- Vibrations
- Softening

Studied the thermos-electro-mechanical free vibration of piezoelectric nanoplates
using the differential nonlocal elasticity and Kirchhoff’s plate theory. They as-
sumed all simply supported boundary conditions, a biaxial force, external electric
voltage, and a uniform temperature change. They found a decrease in the natural
frequency for increasing values of the nonlocal parameter.

Nami and
Janghorban (2014)

- Differential
- Strain gradient theory
- Kirchhoff’s plate theory
- HHHH
- Vibrations

Investigated the resonance behaviors of functionally graded micro-/nanoplates using
both the differential nonlocal elasticity and strain gradient theory on Kirchhoff’s
plate theory. Simply supported boundary conditions were considered and the
effects of the gradient parameter, aspect ratio, and nonlocal parameter were studied.

Daneshmehr and
Rajabpoor (2014)

- Differential
- FG nanoplates
- DQM
- Buckling
- Softening

Presented a higher-order plate theory (HOPT) for the buckling analysis of FG
nanoplates. They implemented the generalized DQM to solve the buckling analy-
sis. Their results were compared with those of classical plate theory and first-order
shear deformation plate theory.
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disagreement between the constitutive and equilibrium
equations and the existence of a solution for Eringen’s
integral model. It should be mentioned that methods
used by researchers include variations of the differential
model by the derivation of variationally consistent
boundary conditions and potential and kinetic energy
approaches, a two-phase model, a stress-driven model, a
gradient model, and iterative and finite element–based
solutions of the integral model. A summary of nonlocal
elasticity in beams when addressing the boundary con-
dition paradox is presented in Table 5.

Paradoxes in nonlocal elasticity: existing proposed
methods and solutions

After presenting a brief review of Eringen’s nonlocal
theory in beams, shells, and plates, the boundary condi-
tion paradox should be deeply discussed. As shown in
Table 5, there are researchers who observed the paradox
and researchers who proposed solutions to the paradox.
Note that the proposed solutions are approached from
different points of view: the goal of some researchers is
to address the ill-posedness of Eringen’s nonlocal elas-
ticity, while others attempt to reach results of consistent

Table 3 (continued)

Ref. Keywords Approach and findings

Zang et al. (2014) - Differential
- Nanoplate
- Surface effects
- Wave propagation

Considered surface effects and differential nonlocal elasticity to study the wave
propagation of nanoplates and found softening without addressing specific
boundary conditions.

Jung and Han (2014) - Differential
- HSDT
- Vibrations
- Softening

Investigated the small-scale effect on the transient analysis of nanoscale plates.
Applied the differential form of Eringen’s nonlocal elasticity and a higher-order
shear deformation plate theory. They concluded that the results of the nanoscale
plate can be used as a benchmark test for transient analysis of the dynamic
response.

Liang and Han
(2014)

- Differential
- MD simulations
- Bending
- Scaling parameter

Presented a model for the explicit expression of the nonlocal scaling parameter and
obtained the exact closed form solution for the nonlocal scaling parameter for
zigzag and armchair graphene sheets with CCHH boundary conditions. They
verified their model with MD simulations.

Ke et al. (2015) - Differential
- MPT
- Vibration
- Softening

Investigated the thermos-electro-mechanical vibration of the rectangular piezoelectric
nanoplate with various boundary conditions. They employed Mindlin’s plate
theory and the differential form of Eringen’s nonlocal elasticity and examined the
effects of the nonlocal parameter, boundary conditions, and aspect ratio on the
natural frequencies and mode shapes of the nanoplate.

Pilafkan et al. (2017) - Differential
- CPT
- DQM
- Buckling
- Softening

Studied the biaxial buckling behavior of a SLGS using the differential form of
Eringen’s nonlocal elasticity, classical plate theory, and a generalized DQM. By
considering three types of boundary conditions, namely HHHH, CCCC, HHCC,
they found a decrease in the critical buckling load for increasing values of the
nonlocal parameter.

Faroughi et al. (2017) - Two-phase
- Bending
- Free vibration
- Finite element

Presented the Ritz formulation, for the two-phase integro-differential form of
Eringen’s nonlocal elasticity. The formulations were applied to study the static
bending and the free vibrations of the Kirchoff plate model.

Sari et al. (2018) - Differential
- Kirchhoff’s plate theory
- FGM
- Buckling
- Softening

Studied the buckling behavior of functionally graded nanoplates with varying
boundary conditions. They used Kirchhoff’s plate theory and the differential form
of Eringen’s nonlocal elasticity and found a decrease in the critical buckling load
for increasing values of the nonlocal parameter with all boundary conditions.
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softening with the increasing of the nonlocal parameter.
Furthermore, there are several subcategories of methods
for addressing the paradox, but they can be broken up
into two main groups, namely, integral methods and
differential methods.

Before tackling the solution procedures, it should
be noted that there have been several efforts focused
on discussing nonlocal elasticity in general and dif-
ferent formulations of nonlocal elasticity in beam
problems including (Lim 2010; Challamel et al.
2014; Demir and Civalek 2017; Romano et al.
2018; Oskouie et al. 2018).

Finite element and iterative procedures

The first class of solution procedures used to address
paradoxes arising from Eringen’s nonlocal elasticity is
developed using the integral form. Several researchers
have attempted to solve the integral by finite element–
based or iterative procedures (Koutsoumaris et al. 2017;
Polizzotto 2001; Tuna and Kirca 2017a, 2017b;
Barretta and Marotti de Sciarra 2015; Norouzzadeh
and Ansari 2017; Norouzzadeh et al. 2017). Other
researchers have attempted to rigorously transform the
integral formulation to the differential one with

boundary conditions that admit the problem to be
well-posed (Fernández-Sáez et al. 2016).

For example, in one work (Fernández-Sáez et al.
2016), they claimed that for a general loading case, the
solution of the integral model can be found by adding
the solutions of an associated differential problem and of
two integral equations. Furthermore, they concluded
that for a given value of the nonlocal parameter, the
solutions of the integral equations may be stated in terms
of two canonical functions and that the solution is valid
for any loading case. Moreover, they reported that the
integral and differential forms of Eringen’s model are
the same if they satisfy the mathematical condition
given by (Polyanin and Manzhirov 2008). In that case,
the integral model was claimed to be properly trans-
formed to the differential counterpart. Applying these
techniques, they were able to show that the cantilever
paradox was “resolved” by using the integral formula-
tion of Eringen’s nonlocal elasticity. To be clear, solving
the nonlocal integral model based on an exponential
kernel function is still ill-posed.

Laplace transform of the integral model

In an effort to solve Eringen’s integral model, a few
researchers applied the Laplace transform to the

Table 4 Analysis and categorization of Eringen’s nonlocal elasticity in shells and plates

Analysis Shells and cones Plates and graphene sheets

Wave propagation - Wang et al. (2006)
- Wang and Varadan (2007)
- Hu et al. (2008)
- Yang and Lim (2011)

- Zang et al. (2014)

Vibrations - Wang and Varadan (2007)
- Ansari and Arash (2013)
- Fotouhi et al. (2013)
- Ghavanloo and Fazelzadeh (2014)
- Ansari and Torabi (2016)

- Pradhan and Phadikar (2009)
- Wang et al. (2011)
- Pradhan and Kumar (2011)
- Civalek and Akgöz (2013)
- Hosseini-Hashemi et al. (2013)
- Liu et al. (2013)
- Nami and Janghorban (2014)
- Jung and Han (2014)
- Ke et al. (2015)

Buckling - Zhang et al. (2004) - Daneshmehr and Rajabpoor (2014)
- Pilafkan et al. (2017)
- Sari et al. (2018)

Bending – - Reddy (2010)
- Liang and Han (2014)
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Table 5 A summary of nonlocal elasticity in nanobeams addressing the boundary condition paradox

Ref. Keywords Approach and findings

Peddieson et al.
(2003)

- Differential
- EBT
- C-F
- Bending
- Concentrated load

Utilized the differential form of Eringen with EBT to study the deflection of cantilever with
concentrated load. The results show that the nonlocal findings are equal to the local ones
for these loading and boundary conditions.

Wang et al. (2007) - Differential
- TBT
- Cantilever
- Vibration

Studied the free vibration of nanobeams using TBT and the differential form of Eringen’s
nonlocal elasticity. They observed the hardening paradox on the cantilever beam.

Wang and Liew
(2007)

- Differential
- EBT, TBT
- Bending

Studied the scale effect on the static deformation of nanobeams using EBT and TBT and the
differential form of Eringen’s nonlocal elasticity. They observed the paradox of the
nonlocal effect disappearing for certain concentrated forces.

Challamel and Wang
2008

- Gradient
- EBT
- Vibration
- Regularizing

parameter

Overcame the boundary condition paradox with a gradient elastic model that combines the
local and nonlocal curvatures in the constitutive elastic relation. This model contains two
small-scale parameters. At a critical value, a transition is made from the softening to
hardening behavior.

Pisano et al. (2009) - Two-phase
- FEM

Implemented a nonlocal finite element, theorized by Polizzotto [65], similar to a two-phase
model. The goal of the effort was to inquire about the computational issues to establish a
basis for further developments.

Zhang et al. (2009) - Differential
- MD simulations
- TBT
- C-F
- Vibrations

Studied the flexural vibration of SWCNTs through TBT. They used Eringen’s differential
nonlocal elasticity to perform a vibration analysis of SWCNTs compared to molecular
dynamics simulations based on second-generation reactive empirical bond order potential.
They observed the hardening paradox of the cantilever beam.

Murmu and Pradhan
(2009)

- Differential
- C-F
- Vibrations

Employed the differential form of Eringen’s nonlocal elasticity to study the vibrations of
nanocantilever beams. They found that the softening/hardening phenomena depended on
the aspect ratio of the beam.

Zhang et al. (2010) - Hybrid/gradient
- Curvature
- EBT
- H-H, C-C,
- C-F
- Bending, buckling,

vibrations

Applied the hybrid/gradient nonlocal beammodel to the vibration, bending, and buckling of
EBT beams with H-H, C-C, and C-F boundary conditions. By including the nonlocal and
local curvatures in the strain energy functional, they claim that the hybrid nonlocal beam
theory could overcome the paradoxes of Eringen’s nonlocal theory.

Yang and Lim (2012) - Differential
- TBT
- Nonlocal BCs
- Buckling
- Thermal effects

Investigated the thermal buckling of nanocolumns using TBT and differential nonlocal
elasticity. They considered higher-order nonlocal boundary conditions and found that the
buckling load increases with increasing nanoscale effects, i.e., they found hardening
behavior.

Zhu and Dai (2012) - Neumann’s series
- Two-phase
- Bar
- Tension

Utilized Neumann’s series as an iterative method to solve the two-phase integral for a
nonlocal elastic bar in tension.
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Table 5 (continued)

Ref. Keywords Approach and findings

Marotti de Sciarra
(2014)

- Integral FEM
- EBT
- Bending
- Concentrated load

Consistently developed a high-order nonlocal EBT to investigate the bending of beams with
various boundary and loading conditions. They show that they overcame the paradox of
the cantilever nanobeam with the intermediate applied force by demonstrating that the
nonlocal effect was present both to the left and the right of the applied force.

Khodabakshi and
Reddy (2015)

- Two-phase
- EBT
- Bending, vibration
- C-F, H-H

Applied the two-phase model to investigate the boundary condition paradox. They found
softening for all boundary and loading conditions except for a beam with H-H boundary
conditions and a uniformly applied load. In that case, they found hardening. It is possible
that the hardening can be attributed to a numerical issue.

Wang et al. (2016) - Two-phase
- EBT
- Cantilever
- Bending

Performed an analytical study to analyze the static bending of nonlocal EBT using the
two-phase local/nonlocal model. They perform a rigorous reduction method to transform
the integral form to a differential form with mixed boundary conditions. Exact solutions
were obtained for all sets of boundary conditions, namely C-C, C-F, C-H, H-H, C-FP and
they found consistent softening.

Xu et al. (2016) - WRA
- TBT, EBT
- Nonlocal BCs
- C-F
- Vibrations
- Buckling

Attempted to address the cantilever paradox by applying a weighted residual approach
(WRA) using EBT and TBT to determine the nonclassical force resultants and nonclassical
boundary conditions. They observed the softening phenomenon when studying the
vibrations and buckling of the nanostructures.

Eptaimeros et al.
(2016)

- Two-phase
- FEM
- Cantilever

Applied the two-phase local/nonlocal model to study nanbeams with various boundary
conditions. They overcame the hardening paradox of the cantilever beam.

Tuna and Kirca
(2016a, b)

- Laplace
- Bending, buckling,

vibration
- Softening

Applied the Laplace transform to Eringen’s integral model to obtain exact solutions for the
bending, buckling, and vibrations of nanobeams. Their model was criticized and discussed
for its mathematical formulations.

Fernández-Sáez et al.
(2016)

- Integral
- EBT
- Bending

For a general loading case, they obtained the solution of the integral model by adding those
of an associated differential problem and two integral equations. They were able to
rigorously transform the integral to the differential with considering mixed boundary
conditions.

Romano and Barretta
2017a, b

- Stress-driven
- Bending
- BCs
- Hardening

Developed the stress-driven model to overcome the ill-posedness of Eringen’s strain-driven
integral elasticity. They investigated the classes of beam problems that have shown
paradoxes, including H-Hwith a uniform load, cantilever with end point load, and the C-C
beam with a uniform load. They found that though their model is said to be well-posed,
increasing the nonlocal parameter leads to an increase in the stiffness of the structure.

Zhu et al. (2017) - Two-phase
- EBT
- Reduction method
- Mixed BCs
- Buckling
- Softening

Used a reduction method to reduce integro-differential equation into a fourth order differ-
ential equation with mixed boundary conditions for the two-phase integral. They found
softening when increasing the nonlocal parameter for all boundary conditions. They also
found that they nonlocal effect can be first-order or second-order depending on the
boundary conditions.

Xu et al. (2017) - Nonlocal strain
gradient

- EBT
- WRA
- C-C, C-H, C-F

Investigated the size effects on rods with nonlocal strain gradient elasticity theory. They
derived variationally consistent boundary conditions using the weighted residual
approach. In their model, they have two material length parameters can show either
stiffening or softening for three sets of boundary conditions.
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equations of motion for the nanobeam. Özgür Yayli and
Yerel Kandemir (2017) performed a bending analysis of
a cantilever with end forces by Laplace transform of the

integral model. Most notably though, Tuna and Kirca
(2016a, b) aimed to derive the closed-form analytical
solutions for the bending, vibrations, and buckling of

Table 5 (continued)

Ref. Keywords Approach and findings

Tuna and Kirca
2017a, 2017b

- Integral
- FEM
- EBT
- Bending, buckling,

vibration

Performed a finite element–based procedure to solve Eringen’s integral nonlocal elasticity
using EBT. They studied the bending, buckling, and vibrations of nanobeams and found
that increasing the nonlocal parameter leads to the softening phenomena for all boundary
conditions.

Fernández-Sáez and
Zaera (2017)

- Two-phase
- EBT
- Vibrations

Utilized the two-phase model to address the boundary condition paradox. They used EBT
and studied the vibrations. Their results showed that they overcame the boundary condi-
tion paradox.

Barretta et al. (2018) - Stress-driven
- Vibration
- Hardening

Applied the stress-driven model to study the vibrations of nanorods and found that for all
boundary conditions, increasing the nonlocal parameter leads to an increase in the stiffness
of the nanostructure.

Faroughi et al. (2020) - General nonlocal
- Reddy beam
- Wave propagation

Studied the wave propagation of two-dimensional functionally graded nanobeams using the
general nonlocal theory and Reddy’s beam model.

Apuzzo et al. (2020) - Two-phase
- Free vibration

Defined a two-phasemodel through convex combination of local/nonlocal phases through a
mixture parameter and determined the closed-form solution for free vibrations of a
nanobeam.

Cao and Niu (2020) - Buckling
- Shear
- Unified

Presented a new exact analytical solution of buckling of sandwich beams. They considered
the shear deformation of the face-sheet for the first time in their theoretical framework.

Rahmani et al. (2020) - General nonlocal
- Reddy beam
- Vibration

Performed a comprehensive vibrational analysis of bi-directional functionally graded rotated
nanobeam. Modeled the beam using the general nonlocal theory which depends on two
nonlocal parameters. The results reveal both softening and hardening depending on the
material.

Ceballes and
Abdelkefi (2020)

- General nonlocal
- EBT
- Buckling
- Vibration

Applied the general nonlocal theory to an axially loaded nanobeam and determined logical
boundary conditions using weighted residual approach. Determined the critical buckling
loads and the pre- and post-buckling dynamic response for clamped-clamped, clamped--
hinged, and hinged-hinged boundary conditions.

Table 6 Validation of Tuna and Kirca (2016b)’s Laplace transform model with Wang et al. (2016)’s two-phase model

e0a
L ¼ 0:05 e0a

L ¼ 1:0 e0a
L ¼ 10:0

Reference Wang et al. (2016) Tuna and
Kirca (2016b)

Wang et al. (2016) Tuna and
Kirca (2016b)

Wang et al. (2016) Tuna and
Kirca (2016b)

SSSD1 0.01333 0.01333 0.13802 0.13802 12.513 12.513

SSSD2 0.04290 0.04290 0.54170 0.54170 50.041 50.041

C-FP 0.38583 0.38583 2.33333 2.33333 110.3333 110.3333

J Nanopart Res (2021) 23: 66 Page 17 of 27 66



Euler-Bernoulli and Timoshenko beams with various
loading and boundary conditions. To solve the integral,
the Fredholm type governing equations for all systems
were transformed to Volterra integral equations of the
second kind. Next, the Laplace transform was applied to
the transformed Volterra equations. The inverse Laplace
transform was used to determine the static and dynamic
responses of the nanobeams.

For reference, the deflections of cantilever beams
with end point loading (Eq. 12), cantilever beams with
uniformly distributed loading (Eq. 13), and simply sup-
ported beams with uniformly distributed loading (Eq.
14) are given as (Tuna and Kirca 2016a):

uEz xð Þ ¼ P
EI

−
x3

6
þ Lx2

2

� �
þ Pe0a

EI
e0axþ Lxð Þ ð12Þ

uEz xð Þ ¼ q
EI

x4

24
−
Lx3

6
þ L2x2

4

� �

þ qe0a
2EI

−e0ax2 þ 2e0aLxþ L2x
� � ð13Þ

uEz xð Þ ¼ q
EI

x4

24
−
Lx3

12
þ L3x

24

� �

þ q e0að Þ2
2EI

−x2 þ Lx
� � ð14Þ

In their work, they found that applying the Laplace
transform technique to the integral model produced a
softening behavior for all cases, as predicted in the
original form of Eringen’s integral model. They validat-
ed their model with Wang et al. (2016) through present-
ing the deflection of the midpoint of the simply support-
ed beam with a uniformly distributed load (SSSD1), the
rotation of the endpoint of the simply supported beam

with a uniformly distributed load (SSSD2), and the
deflection of the endpoint of a cantilever beam with a
concentrated load (C-FP). The validation is shown in
Table 6.

While the results are consistent with the work of
Wang et al. (2016), Romano and Barretta 2016have
commented on the validity of the Laplace transform
model. It is shown that in the cantilever case with the
uniformly distributed loading, the slope field generated
from the deflection equation yields a nonphysical,
nonzero deflection at the clamped end of the beam.
The same can be said regarding the bending moment
for the simply supported beam with uniformly
distributed loading. Tuna and Kirca (2017a, b) coun-
tered the argument of Romano and Barretta (2016) by
stating that their model is valid only when x > 0, and
thus showed the generated slope field and bending
moment at x = 0 need not satisfy the physical conditions.

Weighted residual approach of the differential model

In the work of Xu et al. (2016), they aimed to solve the
free vibration cantilever hardening by considering a mod-
ified version of the differential constitutive equations
rather than the integral model. Starting from the differen-
tial form of Eringen’s nonlocal theory, they applied the
weighted residual approach to the nonlocal equations of
motion established by Reddy and Pang (2008). It should
be noted that the weighted residual approach was used by
Zhang et al. (2013) to model nonlocal simply supported
Timoshenko beams. After using the nonclassical shear
and moment equations of Reddy and Pang (2008), they
applied the Hamilton’s principle to find the kinetic and
potential energies of the system. The boundary conditions
that were found using the weighted residual approach
differ from those used by Reddy and Pang (2008) in that
the inertial term vanishes from the moment equation.

Table 7 Comparison of the model developed by Xu et al. (2016) (1) with the first three natural frequencies of a cantilever beam presented
by Lu et al. (2006) (2), Tuna and Kirca (2016b) (3), and Challamel et al. (2014) (4)

e0a
L ¼ 0 e0a

L ¼ 0:1 e0a
L ¼ 0:2

Ref. 1 2 3 4 1 2 3 4 1 2 3 4

1st 1.8751 1.8751 1.8751 1.8751 1.8792 1.7084 1.8530 1.8539 1.8919 1.5759 1.7958 1.7961

2nd 4.6941 4.6940 4.6940 4.6940 4.5474 4.1779 4.3688 4.3745 4.1924 3.7038 3.8117 3.8178

3rd 7.8548 7.8548 7.8548 7.8548 7.1459 6.6080 6.8222 6.8186 6.0674 5.5470 5.6076 5.6019
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They validated their results with several other researchers,
as shown in Table 7.

Two-phase model for Eringen’s nonlocal elasticity

The two-phase model for Eringen’s nonlocal elasticity
was originally proposed by Eringen (1972, 1987). Since
then, several researchers have utilized this model as it
overcomes the ill-posedness of Eringen’s original inte-
gral formulations (Khodabakhshi and Reddy 2015;
Eptaimeros et al. 2016; Altan 1989; Benvenuti and
Simone 2013). This model is given by:

σij xð Þ ¼ ξ1τ ij xð Þ þ ξ2 ∫
V
k x−x

��� ���;κ� �
τ ij x
� �

dV ð15Þ

where ξ1 and ξ2 are two nonnegative parameters that
represent the volume fraction of the local and nonlocal
constituents of the material or structure, respectively,
whose sum must be equal to one. It should be noted that
the case of ξ2 = 0 corresponds to a pure local model and
the case of ξ2 = 1 corresponds to the fully nonlocal
integral model. In the latter case, it can be shown that
Eringen (1983)’s original integral model is recovered.
Then, it is important to consider the linear integral
equation of the second kind, and the boundary condi-
tions that will lead to the well-posed solutions as:

y xð Þ þ A ∫
b

a
eλ x−sð Þy sð Þds ¼ f xð Þ ð16Þ

y″ xð Þ þ λ 2A−λð Þy xð Þ ¼ f ″ xð Þ−λ2 f xð Þ ð17Þ

y
0
að Þ þ λy að Þ ¼ f

0
að Þ þ λf að Þ ð18Þ

y
0
bð Þ−λy bð Þ ¼ f

0
bð Þ−λf bð Þ ð19Þ

It should be noted that the two-phase local/nonlocal
model does admit a well-posed solution but tends towards
an ill-posed formulation as the local constituent in the
model approaches 0. Moreover, any techniques that have
been applied to solve the original integral formulation
should also be applied to solve the nonlocal part of the
two-phasemodel. For future works, it would be interesting
to transform the two-phase local/nonlocal integral model
to a differential one with variationally consistent boundary

conditions to see if it is possible to reduce computational
time while maintaining the integrity of the model.

Hybrid nonlocal elasticity/gradient model

In the work of Zhang et al. (2010), the hybrid nonlocal
approach was applied to EBT to study the vibrations,
buckling, and bending of nanobeams. To overcome the
vanishing nonlocal effect of the cantilever nanobeam
with a concentrated load and the stiffening effect of
Eringen’s nonlocal theory on certain classes of beam
bending problems, the researchers used a hybrid nonlo-
cal beam model, originally proposed by Challamel and
Wang (2008) and has been discussed again in Challamel
et al. (2016). In this model, both the local and nonlocal
curvatures are included in the strain energy functional to
ensure the nonlocal parameter does not vanish from the
deflection expression. It should be noted that the hybrid
nonlocal model is also a two-phase nonlocal model with
a modified exponential kernel.

The resulting equations of motion for the hybrid/
gradient nonlocal model are of 6th order and thus re-
quire two additional nonclassical boundary conditions,
namely, that the slope of the nonlocal curvatures must
be equal to zero at both ends of the beam. To illustrate,
the equations of motion for the Euler-Bernoulli beam
are presented as (Zhang et al. 2010):

EI αlcð Þ2 d
6w

dx6
− EI−l2cP
� � d4w

dx4
− l2cρAω

2 þ P
� � d2w

dx2

þ ρAω2wþ q

¼ 0

ð20Þ

Table 8 The stress-driven model and strain gradient model for
increasing nonlocal parameters

e0a
l

Mode Stress-driven model Strain gradient model

0 I 1 1

II 1 1

0.05 I 1.05795 1.00555

II 1.10594 1.04988

0.1 I 1.13089 1.01972

II 1.31355 1.17707

J Nanopart Res (2021) 23: 66 Page 19 of 27 66



M ¼ EI
d2w

dx2
− αlcð Þ2 d

4w

dx4

� �

þ l2c ρAω2wþ q−P
d2w

dx2

� �
ð21Þ

Q ¼ EI
d3w

dx3
− αlcð Þ2 d

5w

dx5

� �

þ l2c ρAω2 dw
dx

−P
d3w

dx3

� �
ð22Þ

where lc is the nonlocal length scale parameter, α is the
nondimensional regularizing factor, q is the applied
axial load, and σ0 is the initially supplied compressive
stress. It should be noted that if α = 0 then the Eringen’s
nonlocal theory is recovered and α = 1 corresponds to
the classical local elasticity theory.

The hybrid nonlocal model produces the expected,
nonparadoxical, softening results for cantilever beams
with a uniformly distributed load, for 0 <α < 1. However,
if α is taken to be greater than 1, hardening behavior is
observed. This phenomenon was also observed for the
case of a clamped-clamped beam subjected to a uniformly
distributed load. This resolves another paradox that arises
from the use of Eringen’s nonlocal theory. It was observed
by Wang et al. (2008) that, when using the Eringen’s
differential model, the deflection of a clamped-clamped
beam under a uniformly distributed load is the same as the
deflection predicted with local elasticity theories.

Stress-driven integral model

Recently, the stress-driven integral elasticity was pro-
posed as a solution to Eringen’s strain-driven integral
elasticity by Romano and Barretta (2017a, b). Also, free
vibration analysis of Euler-Bernoulli nanobeams was
performed by Apuzzo et al. (2017) who used the novel
stress-driven nonlocal integral model. Then, the

Table 9 A summary of the bending moments and shear forces for different proposed differential solutions to the boundary condition
paradox

Bending moments (M) Shear forces (V)

Lu et al. (2006)
−EIw″ þ m0 eoað Þ 2 ::

wþ P eoað Þ 2w″ −EIw‴ þ m0 eoað Þ 2 ::
w

0 þ P eoað Þ 2w‴

Reddy (2007)
−EIw″ þ m0 eoað Þ 2 ::

wþ P eoað Þ 2w″ −EIw‴ þ m0 eoað Þ 2 ::
w

0 þ P eoað Þ 2w‴−Pw0

Xu et al. (2016) −EIw″+P(eoa)
2w″

−EIw‴ þ m0 eoað Þ 2 ::
w

0 þ P eoað Þ 2w‴−Pw0

Challamel and Wang 2008
EI w″− αlcð Þ�

2w ivð ÞÞ þ l2c m0ω
2wþ q−Pw″

� �
EI w‴− αlcð Þ�

2w vð ÞÞ þ l2c m0ω
2w

0 þ q−Pw‴
� �

Barretta et al. (2016) EIw′′−ηα(EIw′′′ −cαq+η2q′)+η2q N/A

Table 10 A summary of stress-driven and strain-driven integral and differential forms of Eringen’s nonlocal elasticity

Model Formulation

Eringen’s integral nonlocal elasticity: strain-driven
model (Eringen 1983) σij xð Þ ¼ ∫Vk x−xj jð ;κÞτ ij xð ÞdV

Modified Eringen’s integral nonlocal elasticity:
stress-driven model (Romano and Barretta 2017b) τ ij xð Þ ¼ ∫Vk x−xj jð ;κÞσij xð ÞdV

Two-phase/hybrid integral nonlocal elasticity:
strain-driven model (Wang et al. 2016) σij xð Þ ¼ ξ1 τ ij xð Þ þ ξ2 ∫Vk x−xj jð ;κÞτ ij xð ÞdV

Eringen’s differential nonlocal elasticity: strain-driven model (Eringen 1983) (1−(e0a)2∇2)σij=τij
Two-phase/hybrid differential nonlocal elasticity (Zhang et al. 2010) (1−(lc)2∇2)σij=(1−(αlc)2∇2)τij
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longitudinal vibrations of nanorods were studied using
the stress-driven model by Barretta et al. (2018) after
discussions on the underlying causes of the unavoidable
paradox in Eringen’s strain-driven form. Specifically,
Romano et al. (2017) addressed the paradox in nonlocal
nanobeams, in which the contradiction between the equi-
librium and nonlocal constitutive conditions was consid-
ered responsible for the inability to use the differential
constitutive formulation to solve the paradox.

Furthermore, it was stated that for the ill-posed form of
Eringen’s strain-driven integral elasticity, the existence of
a solution to the integro-partial differential must lead to
the paradox. Most recently, a paradoxical behavior that
appears when analyzing the uniform temperature rise
effects on dynamic responses of functionally graded
(FG) nanobeams based on Eringen’s differential model
was overcome by Mahmoudpour et al. (2018).

Table 11 Boundary condition paradoxes in nonlocal elasticity and their proposed solutions

Solution procedure Vibrations Buckling Bending Other

Integral - Pisano et al. (2009)
- Eptaimeros et al. (2016)
- Tuna and Kirca (2017a, b)

- Tuna and Kirca
2017a, b

- Tuna and Kirca 2017a, b

Differential - Peddieson et al. (2003)
- Wang et al. (2007)
- Wang and Liew (2007)
- Zhang et al. (2009)
- Wang and Li (2014)
- Zhang (2017)

- Wang et al. (2006)
- Yang and Lim

(2011)

- Wang (2005)

Laplace - Tuna and Kirca (2016b) - Tuna and Kirca
(2016b)

- Tuna and Kirca (2016b)
- Romano and Barretta (2016)
- Tuna and Kirca (2017a, b)
- Özgür Yayli and Yerel Kandemir

(2017)

Stress-driven - Romano and Barretta
(2017a, b)

- Barretta et al. (2018)

Two-phase - Benvenuti and Simone
(2013)

- Khodabakhshi and Reddy
(2015)

- Eptaimeros et al. (2016)
- Fernández-Sáez and Zaera

(2017)

- Zhu et al. (2017) - Wang et al. (2016) - Altan (1989)
- Pisano and Fuschi

(2003)
- Zhu and Dai (2012)

Gradient - Challamel andWang (2008)
- Zhang et al. (2010)

- Zhang et al. (2010) - Zhang et al. (2010)

WRA—variationally
consistent BCs

- Xu et al. (2016) - Xu et al. (2016)

Nonlocal strain
gradient

- Xu et al. (2017)

Other - Arash and Wang
(2012)

- Eltaher et al. (2016)
- Romano et al. (2017)
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In order to obviate the ill-posedness of Eringen’s strain-
driven integral model, Romano et al. (2017) applied a
direct solution procedure in order to capture the size-
dependent phenomena in nanobeams, noting that the
elastostatic problem of nanobeams formulated by
Eringen’s strain-driven integral model admits either a
unique solution or no solution at all. This is dependent
upon whether the bending interaction field fulfills the
constitutive boundary conditions. Thus, they formulated
the stress-driven model by interchanging the roll of the
stress and strain in Eringen’s integral formulation as:

ε xð Þ ¼ ∫
V
k x−x

��� ���;κ� �
C x
� �

σij x
� �

dV ð23Þ

where C xð Þ is representative of the compliance tensor, the
inverse of the stiffness tensor found in Eringen’s strain-
driven integral elasticity. Though the roles of the stress and
strain were interchanged, it is important to understand that
the stress-driven and strain-driven models are not the
inverses of each other and will not yield similar structural
models. In fact, the results of the stress-driven model are
rather analogous to the strain gradient model used by
Polizzotto (2003), as can be seen in Table 8. It should be
noted that both the stress-driven and the strain-driven
model will produce the hardening effect.

It was shown that the stress-driven model and strain
gradient model yield similar results for low values of the
length scale parameter and that the discrepancy between
the two increases as the length scale parameter in-
creases. However, there exist major differences in the
basic assumptions for the formulation of each model. In
considering the strain gradient model, the response of
the system relies upon both the strain field and the first-
order strain gradients. For the stress-driven model, the
elastic strain field is calculated as the integral convolu-
tion of the stress field and a kernel function, as shown in
Eq. 23. Comparing the models, it is shown that for both
the strain gradient and the stress-driven model, a stiffer
elastic response was found for increasing values of the
nonlocal parameter for any prescribed kinematic bound-
ary conditions. Finally, they concluded that the bound-
ary values of the nonlocal curvature trend to one half as
the nonlocal parameter approaches zero due to the can-
celation of the kernel components that are outside the
interval of integration (Barretta et al. 2018).

While the stress-driven nonlocal model is an effec-
tive tool for analyzing the response of nanostructures,
the consistent hardening behavior does not align with

the predicted softening behavior of Eringen’s strain-
driven integral elasticity.

Summary of proposed solutions and modification
of Eringen’s nonlocal elasticity

In the previous sections, several proposed methods were
addressed which aimed at resolving the discrepancies
between nanoscale systems with varying boundary con-
ditions and loading conditions. In this section, several
methods are consolidated in Tables 9, 10, and 11. In
Table 9, the bending moments and shear forces are
presented for each of the proposed differential solution
procedures. It can easily be seen that these procedures
can lead to seriously different resultants. As such, the
methods should be used with caution and should be
considered from mathematical and physical points of
view.

In Table 10, the original formulations for different
versions of Eringen’s nonlocal elasticity are shown.
These formulations include Eringen’s integral nonlocal
elasticity (strain-driven model), the sress-driven model
presented by Romano and Barreta, the integral formu-
lation of the hybrid or two-phase model, the differential
form of Eringen’s strain-driven theory, and a differential
form of the two-phase model.

To consolidate the proposed solutions to the bound-
ary condition paradox, Table 11 is presented. It follows
from Table 11 that in recent years, there have been
several researchers tackling the problem from different
points of view. After considering the many different
analyses that can be performed using nonlocal elasticity
in beams, shells, and plates, it is vital to find a final,
agreed upon solution whose mathematical solution is
well-posed and whose results are consistent with one
another. The works of the researchers below have pro-
vided an excellent benchmark for addressing this issue.

Conclusions

Several theories in nonclassical continuum mechanics
were addressed and reviewed based upon the character-
istics of the material. After presenting the formulation of
Eringen’s integral nonlocal theory, Eringen’s differential
nonlocal theory, and a general nonlocal theory, the use of
Eringen’s theory in various nanostructures was consid-
ered. The list of works in the field of nanomechanics and
nonlocal elasticity are extensive, so an apology is made to
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those authors whose works were overlooked in this re-
view. After a review of the existing nonclassical theories
and the vast utilization of Eringen’s nonlocal elasticity
were discussed, existing paradoxes in Eringen’s nonlocal
elasticity and their possible solutions were studied in
detail. Several concluding remarks are made:

& The available theories in nonclassical continuum
mechanics are extensive, accounting for combina-
tions of the rotations, deformations, and translations
of considered elements. The appropriate theory
should be selected based on the material structure
and inherent material properties. Furthermore, many
of the higher-order theories in nonclassical continu-
um mechanics have not yet been applied to physical
systems because of the difficulty in derivations of
natural boundary conditions and in the physical
interpretation of each of the newly introduced pa-
rameters into the equations of motion.

& Of the available theories, Eringen’s strain-driven dif-
ferential nonlocal elasticity theory has been usedmost
extensively for its seemingly accurate results for cer-
tain boundary and loading conditions since its origi-
nal formulations. Specifically, the strain-driven dif-
ferential form has been used to study the wave prop-
agations, vibrations, bending, and buckling of size-
dependent beams, shells, cones, plates, and graphene
sheets or to model cracks or impurities in materials.

& In certain classes of beam problems, a so-called
paradox has arisen in which discrepancies between
the results of Eringen’s integral nonlocal theory,
Eringen’s differential nonlocal theory, which should
predict a softening phenomenon for increasing non-
local parameters, and classical (local) theories, in
which the size-dependent phenomena are not
considered.

& Some of the most notable and interesting cases that
implement Eringen’s nonlocal elasticity include the
hardening of nanocantilever beams, the nonlocal
effect for nanocantilevers with concentrated point
forces, and the nonlocal effect in simply supported
beams with uniform loads.

& In recent years, there have been several efforts fo-
cused on defining the underlying cause of the para-
dox. It has been shown that the solution to Eringen’s
integral strain-driven model with the exponential
kernel is ill-posed and that the existence of a solution
implies a discrepancy between the constitutive equa-
tions and equilibrium equations, i.e., it is claimed

that the boundary conditions are not variationally
consistent.

& Not all proposed solutions are addressed with refer-
ence to the ill-posedness of Eringen’s nonlocal elas-
ticity. Furthermore, some well-posed proposed so-
lutions do not lead to the expected softening results.

& Researchers have proposed solutions to the paradox
by attempting to solve the original integral or differ-
ential formulations with iterative, finite element–
based, and Laplace transform methods. However, it
should me mentioned that although the so-called
paradox can be solved by changing some assump-
tions, such as relaxing the kinematics or adding in
length scales, if any numerical method is based on
the same underlying assumptions as Eringen’s mod-
el, their results should of course be identical to the
analytical ones, that being said, the two-phase local/
nonlocal model, the stress-driven model, the gradient
model, and use of the weighted residual approach to
obtain variationally consistent boundary conditions
from potential and kinetic energy points of view.

& The proposedmethods for solving paradoxes arising
from Eringen’s nonlocal elasticity theory produce
significantly different results. Thus, the existence of
a paradox at all is evidence that the constitutive
boundary conditions are in contrast with the equi-
librium boundary conditions. Thus, this confirms an
ill-posed elastostatic problem where the stress field
generated from the convolution is incapable of ful-
filling the equilibrium conditions.
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