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Abstract: Organs-on-chips (OoCs) are miniature microfluidic systems, which have arguably become
a class of advanced in vitro models. Deep learning as an emerging topic in machine learning, has
the ability to extract the hidden statistical relationship from the input data. Recently, these two areas
have become integrated to conduct synergy for accelerating drug screening. This review provides a
brief description of the basic concepts of deep learning used in OoCs, and exemplifies the successful
use cases for different types of OoCs. These microfluidic chips are of potential to be assembled as
highly potent human-on-chips with complex physiological or pathological functions. Finally, we
discuss the future supply with perspectives and potential challenges in terms of combining OoCs
and deep learning for image processing and automation designs.
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1. Introduction

Current drug research and development have faced the dilemma of long durations,
large investments, and low rates of success. Preclinical drug development usually in-
volves testing in static, planar cell cultures and animal models. However, conventional
cell culturing oftentimes cannot reproduce the complex physiology and pathology of the
human body, and animal models have drawbacks, such as species differences, high cost,
low throughput, and ethics [1,2]. For example, patient-derived xenografts (PDXs) directly
transplant tumor tissues from patients to immunocompromised mice without culturing,
and hence the biological specificities of the tumors are maintained to the greatest extent.
However, the PDX models have very low success rates of transplantation. In addition, the
applications of animal models are subject to the associated high costs, low throughput,
and ethical issues in the early stages of drug discovery [3,4]. These reasons lead to a great
risk of failure in human clinical trials of candidate compounds. Although significant pro-
gress has been made in computational biology, in vitro biology, and toxicology, most
drugs have still failed to pass clinical trials due to the lack of efficacy and the problem of
unwanted toxicity [5].

To provide effective alternatives for drug screening at the preclinical stage, the con-
cept of micro cell culture analogs (microCCAs) was initially proposed [6], which later on
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evolved into the terminology of organs-on-chips (OoCs) or microphysiological systems
(MPSs) [7].

The OoC is a miniature device for dynamic three-dimensional (3D) cell culturing, and
they have the merits of streamlined operations and small volumes. The OoC simulates the
environment of the target human organ on the chip, in order to study and control the
biological behaviors of cells in the process of culturing in vitro. Although the OoCs may
not completely replace animal experiments in most scenarios, they play an increasingly
important role in the fields of toxicity assessment, disease modeling, and drug screening,
among others [8].

Oo0Cs have the strong advantages of rapid responses and desirable throughput, and
thus generate massive data. Researchers with biomedical background may find it difficult
to manually analyze these data in short periods. Consequently, it is urgent to develop an
automated tool that can assist or even replace researchers to conduct data analysis, so as
to improve the efficiency and accuracy of the experiment. Artificial intelligence (AI) [9]
has the strong abilities of feature representation and data mining, thereby achieving re-
markable success in computer vision [10], text recognition [11], and natural language pro-
cessing [12]. Nowadays, deep learning of Al has started to be applied to device design,
real-time monitoring, and image-processing in OoCs [13]. The integration of deep learn-
ing and OoCs offers a powerful tool for the exploration and analysis of the massive image-
based data, which consequently enhances intelligence of OoCs and stimulates their great
potential in higher-throughput drug screening.

To provide a comprehensive overview of all relevant applications of deep learning
and OoCs in higher-throughput drug screening, we used Google Scholar to search papers
published in journals, conferences, and ArXiv in the past 10 years (2013-2022), including
deep learning methods applied to different tasks such as synthesis, segmentation, recon-
struction, classification, and detection. We divided the reviewed papers into 7 categories
according to the following applications: lung-on-a-chip, liver-on-a-chip, heart-on-a-chip,
gut-on-a-chip, brain-on-a-chip, kidney-on-a-chip, and skin-on-a-chip. Descriptive statis-
tics of these papers based on years, tasks, and practical cases can be found in Figure 1.

Number of publications Number of publications

Synthesis 297
2022 93
Segmentation 156
2021 249
Reconstruction 101
2020 17
Classification 1 50
2019 100
Detection |7
. T T T
2018 8 0 100 200 300
2017 4 61 Number of publications
Lung-on-a-chip 26
20161 31 . )
Liver-on-a-chip 24
2015 4 5 Heart-on-a-chip | 23
Gut-on-a-chip - 20
201442 Brain-on-a-chip 4 11
Kidney-on-a-chip 8
20134 3B ) )
Skin-on-a-chip
T T T T T T T
0 50 100 150 200 250 0 10 20

Figure 1. Breakdown of the publications included in this review according to the year of publication,
task addressed in deep learning (Section 3), and application cases (Section 4). The number of publi-

cations for 2022 has been extrapolated from the publications published in or before April.
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81

Summarizing, with this review we aim to: 82
e Show that deep learning has started to be explored in OoCs for higher-through- 83
put drug screening. 84

e Highlight the critical deep learning tasks in OoCs and the successful use cases 85
that solve or improve the efficiency of drug screening in the real world. 86

e Describe the potential applications and future challenges between deep learning 87
and OoCs. 88

89

The remainder of the paper is structured as follows. We begin with a brief introduc- 90
tion of the principles of deep learning and widely used network structures in Section 2. 91
Image-processing tasks based on various deep learning methods are described in Section 92
3. Section 4 summarizes existing examples where different deep learning methods are ap- 93
plied to OoC systems, including but not limited to lung-on-a-chip and liver-on-a-chip, 94
among others. Section 5 discusses the prospective applications and the future challenges 95
of deep learning in OoCs. 9%

2. Overview of Deep Learning Methods 97

This section introduces the concepts, techniques, and architectures of deep learning 98
methods widely applied in high-throughput drug screening, especially the biomedical 99
applications and microscopy fields. The included deep learning methods are Neural Net- 100
work (NN) [14], Deep Neural Network (DNN) [15], Convolutional Neural Network 101
(CNN) [16], Recurrent Neural Network (RNN) [17], Generative Adversarial Network 102
(GAN) [18], and Auto-Encoder (AE) [19]. 103

Based on the availability of label information, deep learning methods can be divided 104
into supervised and unsupervised learning. In supervised learning, given a dataset 105
D = {x,,, ¥.}n_1 of N samples where x is the observation, and y is the label, supervised 106
learning methods are generally aims to optimize a regressor and classifier. When we feed 107
data into the general supervised model ¥ = f(x; W,B), we try to minimize the loss 108
L(y,9) between the predicted value ¥ and ground truth value y and optimize the 109
model parameters, including a set of weights W = {wy,wy,---,w;,---,wg}, and aset of bi- 110
ases B ={by,by,-:-, b;, -+, bx} during the training. In unsupervised learning, the dataset 111
D = {x,}}_; excludes the label information focuses on tasks including, clustering, dimen- 112
sionality reduction and representation learning. For example, representation learning 113
uses AE to minimize the reconstruction loss L(x,X) between the original data x and the 114
reconstructed one X to enable the encoder to learn latent representation of the dataina 115
lower-dimensional space. 116

2.1. NN and DNN 117

NN is the foundation of modern deep learning methods, as well as the state-of-the- 118
art machine learning model since 1980s. A typical NN consists of an input layer, one or 119
more hidden layers, an output layer, and neurons within each layer. Each neuron connects 120
to another one and has an associated activation a, a set of weights W and a set of biases 121
B. At the final layer of the network, a probability of classification P(y|x; W,B) is calcu- 122
lated by passing the activation through a softmax function. 123

T
eWi xtb;

P(y|x; W,B) = softmax(x; W,B) = )

YK, eWhx+bi’
where w; indicates the weight vector leading to the output neuron associated with the 124
class y =i. 125

The probability function above is parameterized by W and B ondataset D. A com- 126
mon approach to solving the function is the Maximum Likelihood Estimate (MLE) [20] 127
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(33]

with stochastic gradient descent, which, in practice, is equivalent to minimizing the neg-
ative log-likelihood [21]:

N
argmin — > 10g[P (i W, B)]. @
n=1

The obtained softmax score will be further used in binary cross entropy for binary
classification, and the categorical cross entropy for multiple classifications [22-25].

While NN models were invented decades before, issues such as local optimum lead
to poor performance and hard training. To that end, four strategies are widely utilized
during training. i) Mini-batch [26,27]: Mini-batch only utilizes a batch of data instead of
full data during each update to reduce the memory usage and improve the training effi-
ciency. ii) Stochastic gradient descent (SGD) [28,29]: The SGD strategy adds random fac-
tors in gradient calculation which is generally fast and benefits the model generalization.
In addition, the randomness may help avoid local minimum and continue searching for
global minimum. iii) Simulated annealing [30,31]: At each step, simulated annealing will
accept a suboptimal solution with a probability that decays over iterations -- another prac-
tical approach to avoiding the local minimum. iv) Different initialization parameters [32]:
This approach suggests to initialize multiple neural networks with different parameter
values and choose the parameters with the smallest errors as the final solution.

2.2. CNN

CNN is a popular variation of DNN with convolutional layers inspired by the recep-
tive field mechanism in biology. Compared to conventional DNN, CNN has two unique
merits. First, the full connection architecture in DNN layers usually leads to parametric
expansion, along with local optimum and vanishing gradient problems. CNN on the other
hand mainly uses convolution layers, which drastically reduces the number of parameters
to be learned through the weight-sharing. Second, CNN and its convolution layers and
pooling layers are particularly suitable for image feature learning or grid data in general.
Convolution layers can maximize local information and retains plane structure infor-
mation while the pooling layers (i.e., mean pooling and max pooling) aggregate the pixel
values of neighborhoods via a permutation invariant function. This architecture allows for
translation invariance and again reduces the number of weights in the CNN. Specifically,
at Layer [, the k-th feature map x} is formulated as:

xl, = o(wit « 27t + b, ©)

where, x!~? is the output feature map at Layer | — 1, and o represents an element-wise

non-linear transform function. Top layers of CNN are usually implemented by fully con-
nected and thus weights are no longer shared. Similar to DNN, the activations at the last
layer are fed to a softmax function to compute the probability of each class. The objective
function of training is solved by MLE.

2.3. RNN

While CNN has been widely applied to grid data, e.g., 2D images, it fails to explicitly
model the temporal changes over time in time series data. To that end, RNN establishes
weight connections between neurons in each hidden layer which allows the output at time
t to be used as the input for time (t + 1). Therefore, RNN is suitable for multi-variate
time series, e.g., language translations, natural language processing [9], video analysis
where the input to RNN is a high-dimensional sequence {x;, x,:-, xr}. Then, the hidden
state hy over time T is passed through one or more fully connected layers. Last, the out-
put will be fed into a softmax function [33] to calculate a probability of classification:

171
P(y|xq1, x5, , x7; U, W,B) = softmax(h;; U, W, B), (4)

128
129

130
131
132
133
134
135
136
137
138
139
140
141
142
143

144

145
146
147
148
149
150
151
152
153
154
155
156

157
158
159
160
161

162

163
164
165
166
167
168
169
170



Biosensors 2022, 12, x FOR PEER REVIEW 5 of 28

where U represents the state -input weights of recurrent cells, W denotes the state -state 172
weights of recurrent cells, and B is a set of biases. 173

While RNN is capable of modeling time-series data, it suffers from the long-term 174
dependencies problem [34], resulting in gradient vanishing and gradient explosion. Fol- 175
low-up solutions, e.g., leak unit (i.e., linear self-connection unit) partially addressed the 176
issue but also has two deficiencies. One is that the manually set weights are not optimal 177
in the memory system. The other is that the leak unit lacks a forgetting function, and is 178
prone to information overload. Therefore, gated unit was introduced capable of forgetting 179
the past states that are fully used by the recurrent cells. Successful implementation with 180
gated units includes Long Short-Term Memory (LSTM) [35] and Gated Recurrent Unit 181
networks (GRU) [36]. 182

2.4. GAN 183

Al Generated Content (AIGC) has been widely discussed recently, and one of the 184
popular AIGC tools is GAN. Besides content generation, e.g., artwork, style translation, 185
GAN plays key roles in general data augmentation where data is relatively expensive to 186
collect. Once properly trained, GAN is able to generate data under the same distribution 187
but does not exist before. These “high-fidelity” data can be used as additional training 188
data in addition to the augmentation by rotation, crop, and varying illumination. 189

The vanilla GAN is a generative model that conducts direct sampling or inference 190
from the desired data distribution without the Markov Chain learning mechanism [37]. 191
The GAN consists of two NNs: the generator ¢ and the discriminator D. Two networks 192
compete and eventually reach a balance when G receives the random noise and generates 193
data x, that D fails to distinguish from the actual data x,.. The training objectives of G = 194
and D is a “min-max” game between their respective loss function. Essentially, D is try- 195

ing to detect the forged area, and hence D maximizes the loss function Lp: 196
197
Lp = maxEy,_p,[l0g D ()] + Exypyi [log (1 - D(x,))]. ®)
Once D’s learning is finished, D is fixed and G training starts. Since G is to gener- 198
ate the data under the same distribution, its training minimizes the following: 199
L; = mGin EXgNPg(x) [lOg (1 — D(xg))]. 6)

Overall, D and G's networks are trained alternately until converged. In general, 200
GAN is adopted for data generation or unsupervised learning [38]. Recent work has pro- 201
posed to add a gradient penalty [24] to the critic loss to avoid the problems of exploding 202
and vanishing gradients in GAN. 203

2.5. AE 204

Representation learning recently has been playing an increasingly important roles in 205
pre-training, thanks to the cheap unlabeled data. Among them, AE is one of the most fun- 206
damental models learned in unsupervised manner. AE uses an encoder to map the input 207
data x into a latent vector, and has a decoder to reconstruct the input data X from the 208
latent vector. Since the dimension of the latent vector is usually small, the latent vector is 209

usually treated as features or learned representation with compression. 210

For an encoder with a hidden layer, the input data is passed through a non-linear 211

function which is formulated as: 212
z=f(W;x+ By), (7)

where z stands for the latent vector, f denotes the non-linear function of the encoder, 213
W, represents the weight matrix, and B; is the bias matrix. Then, the latent vector is fed 214
to the decoder, which contains a hidden layer: 215
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216
X =g(W,z+ B,), (8)

where X stands for the reconstructed input, g denotes the non-linear function of the de- 217
coder, W, represents the weight matrix, and B, is the bias matrix. The parameters of the 218
AE are optimized by minimizing the mean square error (MSE) loss function [39], equiva- 219
lent to minimizing the differences between decoder output® and the encoder input x. 220

There are take-away regarding the usage of AE. First, AE is data-specific, or in other 221
word, data-dependent, meaning the efficacy of compression depends on the similarity to 222
the training datasets. Second, the AE conducts lossy compression, and the output of its 223
decoder is degraded compared to the original input. Third, AE is learned from training 224
datasets regardless of labels. However, when labels are available, class-specific encoders 225
can be learned without additional work. Last, AE is mainly used for unsupervised pre- 226
training followed by supervised fine-tuning [25], to resolve the problem of initializing 227
weights, vanishing gradient, and model generalization. 228

3. Deep Learning Potentially Useful for OoCs 229

Several key technologies arise from the various OoCs, which are categorized into 5 230
canonical tasks: synthesis, segmentation, reconstruction, classification, and detection. 231
Since the technical combination of deep learning and OoCs is at the proof of concept (PoC) 232
so far, we provide the following application prospects for consideration. 233

3.1. Image-Synthesis (Super-Resolution, Data-Augmentation) 234

Image-synthesis is one of the first areas in which deep learning made a major contri- 235
bution to the field of OoCs. Biological experiments based on OoCs oftentimes utilize light- 236
based time-lapse microscopy (TLM) to observe cell movements and other structural alter- 237
ations, and a high spatial resolution is critical for capturing cell dynamics and interactions 238
from data recorded by the TLM [40]. However, due to the high costs of advanced devices, 239
high-resolution images and videos are not always acquired. To improve the image reso- 240
lution, we [41] trained a GAN model to enhance the spatial resolution of mini-microscopic 241
images and regular-microscopic images acquired with different optical microscopes un- 242
der various magnifications. To address the issue of video resolution, Pasquale Cascarano 243
et al. [42] extended the deep image prior (DIP) [43] in image super-resolution to the recur- 244
sive deep prior video (RDPV) for video frames, so as to improve the spatial resolution of 245
TLM videos. The author of the DIP demonstrated that a randomly initialized CNN could 246
be used as a hand-crafted prior with excellent results in a super-resolution task. Based on = 247
this, the same prior could also be adopted for restoring images, which were hard to collect 248
paired training data. Instead of searching for the answer in the image space, the DIP 249
searched in the space of the CNN’s parameters. The DIP was utilized to fit a low-resolu- 250
tion image, which converted a super-resolution task to a conditional image generation 251
problem. The needed information for CNN’s parameter optimization were low-resolution 252
images and the hand-crafted prior produced by the CNN. Similar to DIP, the utilized 253
CNN architecture in the RDPV was built as an encoder-decoder framework. The RDPV 254
was fed with one low-resolution frame from a TLM video at a time and applied the 255
knowledge of previous super-resolved frames to reconstruct the new one through a re- 256
cursively updating the weights of the CNN. Figure 2A depicts an example of video frame 257
reconstruction with RDPV. When using the TLM video improved by the RDPV, the re- 258
searchers can effectively decrease the error of cell localization, successfully detect the clear = 259
edges of cells, and draw a precise trajectory for cell tracking. 260

In addition, when observing the cell movements and cell-cell interactions, the TLM 261
is desirable to increase the frame rate for reconstructing accurately cell-interaction dynam- 262
ics. However, high frame rates increase photobleaching and phototoxicity, so as to affect 263
the cell growth and imaging quality. The balance between high resolution and carried 264



Biosensors 2022, 12, x FOR PEER REVIEW 7 of 28

information content is required to reduce the overall data volume. Comes et al. [44] built 265
a multi-scale GAN to generate interleaved frames of the predicted cell moving and in- 266
serted them into the original videos for providing high-throughput videos. This GAN ar- 267
chitecture not only increased the temporal resolution of original videos but also preserved 268
the biological information in the original videos. Figure 2B shows the flowchart of work 269

[44]. 270
271
272
Time-lapse Super Resolution
Video Acquisition Neural Network T Organ-on-Chip 3
Low Resolution (LR) Video g
Tumor-chamber  wm Time'l—apse ili
- — Immune-chamber == Microscopy Organ on Silico
Images GAN Generated
. o Image
Drug Efficacy Evaluation il NI -

T i iene-
Organ on Chip
Predicted Experiment

Images

Cell Localization

False L Dcalwzahnns
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Edge Detection
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Cell Tracking

.

Cell Tracking
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s¥o811 pajvelag

! ' LR SR e H

273
Figure 2. Application of DL in TLM videos for improving the accuracy rate of detecting cell migra- 274
tions and interactions in OoC experiments. A and B are directly cropped from the corresponding 275
papers [42] and [44], respectively. (A) Super-resolution method for TLM video frames. This method 276
utilizes un-trained NN to obtain super-resolved images while fitting the input low-resolution video 277
frames without paired training data. (B) Data augmentation for TLM videos. The proposed method 278
generates interleaved video frames for providing high-throughput TLM videos. These two methods 279
can effectively improve the accuracy of cell tracking. 280

3.2. Image-Segmentation 281

Some OoC experiments need to segment the cell populations from the images for 282
different analyzing tasks. Stoecklein and colleagues [45] utilized a CNN to segment nerve 283
cell images into three categories consisting of axon (blue), myelin (red), and background 284
(black). As shown in Figure 3, a target fluid flow shape was input to the CNN, which 285
outputs a predicted pillar sequence. This predicted pillar sequence was fed into a forward 286
model to predict the sequence flow shape, which was compared with the original target 287
fluid flow shape by computing the pixel match rate (PMR) [46]. 288

The U-Net [47-49] was successfully applied in various image segmentation tasks, es- 289
pecially for cell detection and shape measurements in biomedical images. The authors [50] 290
developed a plug-in for the Image] software [51], to conduct a flexible single-cell segmen- 291

tation. This plug-in can produce the segmentation mask from an input cell image. 292
293
Target (test) fluid Simultaneous Multi-Class Predicted pillar sequence
flow shape Convolutional Neural Network (CNN-SMC) P q

» [24, 24, 24, 24,7, 23,7]

4

|
» \ Predicted sequence flow shape
£l (forward model)

-
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Figure 3. Application of deep learning for cell-segmentation. This photograph is directly cropped 294
from the corresponding papers [45]. (A) Segmentation for nerve cells. (B) A segmentation example 295
in the U-Net software. 296

3.3. Image-Reconstruction 297

Lim et al. [52] reconstructed all pixels of red blood cells (RBCs) [53] by using a DNN- 298
based network, which greatly eliminates the introduced distortions due to the ill-posed 299
measurements acquired from the limited numerical apertures (NAs) [54] of the optical 300
system. This network has been validated to exactly compute the 2D projections for recon- 301

structing the 3D refractive index distributions. 302
3.4. Image-Classification 303
A
Training Image Dataset

Condltlon 1 ™\ Feature Extraction

Classification

Condition n

Feed Forward
CNN Network
—
L ] Unknown Cell Tracks

Original image Detection and localization Tracking

fra me

ID 100 ID 101

Class 2 || Class 1
frame

] 102

C\ass 3

classn“ cation
N ‘ Microscope and
~ N ; CMOS camera
~ “ \ Computer
. ~ \ (R-MOD process)
Syringe pump _— \

= B O
Microfluidic chip o cio ;:-hamber
Figure 4. Application of deep learning in classification. A and B are directly cropped from the cor- 304
responding papers [55] and [56], respectively. (A) The work [55] utilized AlexNET to classify the 305
cell motility behaviors by implementing transfer learning on the input cell trajectories. (B) Schematic 306
of the designed system and the real-time moving object detector (R-MOD) in work [56]. 307
308
Classification is one of the most widely used technologies in deep learning. The im- 309
age labels are adopted to train a classifier, which can successfully extract hierarchical im- 310
age features. In Figure 4A, Mencattini ef al. [55] developed a CNN (AlexNET) [57] to per- 311
form experimental classification on an atlas of cell trajectories via a predefined taxonomy 312
(e.8., drug and no-drug). They reposted that the cell trajectories were detected from the 313
video sequences acquired by the TLM in a Petri dish [58] or in an OoC platform [55]. This 314
method supported to accurately classify single-cell trajectories according to the presence 315
or not of the drugs. This method was inspired by the successful application of deep 316
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learning for style recognition in paintings and artistic style transfer [59]. This method re-
veals the universal motility styles of cells, which are identified by deep learning in discov-
ering the unknown information from cell trajectories.

Because of motion blur, it is extremely difficult to acquire a high-quality image of a
flowing cell. To address it, the researchers [56] proposed to construct high-throughput
imaging flow cytometry (IFC) by integrating a specialized light source and additional de-
tectors with conventional flow cytometry (FC) [60] (Figure 4B). The complementary
metal-oxide semiconductor (CMOS) camera [61] on the microscope collects image se-
quences of the microfluidic channel through which cell suspension was flowed. The multi-
tracking technology was utilized to the original region-of-interest (ROI) image frame, so
as to crop the single-cell images from the video sequence. The cropped single-cell images
were passed to a classifier based on supervised learning for identifying the cell type. Since
multiple cells could be detected and tracked simultaneously, the proposed method could
maintain high throughput at low flow rate by increasing the concentration of cells.

3.5. Image-Detection

To understand the anatomic and dynamic properties of cells, it is necessary to ana-
lyze the massive amounts of time-lapse image data of live cells to this end. Tracking of
large numbers of cells is a common manner to analyze the dynamic behavior of cell clus-
ters. On a tumor-on-a-chip device [2], CellHunter [62] was proposed for tracking and mo-
tion analysis of cells and particles in time-lapse microscopy images. By using CellHunter,
the effective movement of dendritic cells toward tumor cells was assessed.

Currently, most detection methods are based on supervised or semi-supervised
learning and need tremendous datasets with labels or annotations. However, the process
of labeling training images is largely manual, which is time-consuming. Some unsuper-
vised learning approaches without manual annotations are proposed to tackle this limita-
tion. The authors [63] studied the OoC for the culture of complex airway models. They
built connections between microscopic and macroscopic associated objects by embedding
the fuzzy C-means cluster algorithm [64] into the cycle generative adversarial network
(Cycle GAN) [65]. This network took advantage of transfer learning for toxoplasma de-
tection, and achieved high accuracy and effectiveness in toxoplasma microscopic images.

4. Case Studies in OoC Applications

Table 1: Summary of different applications of deep learning used for OoCs.

Network | Platform Function Refs

CNN OoC Improve the spatial resolution of TLM videos | [42]
for observing cell dynamics and interactions.

GAN OoC Providing high-throughput videos with more | [44]
cell content, for reconstructing accurately
cell-interaction dynamics.

CNN OoC Segment nerve cell images into axon, myelin, | [45]
and background.

AlexNET | OoC Classify the treated cancer cells and untreated | [55]
cancer cells according to their trajectories.

NN Lung-on-a-chip Predict the toxicity for drug discovery via im- | [66]
age analysis.

GAN, Gut-on-a-chip Enhance the resolution of confocal fluores- | [67]

CNN cence photographs and conduct a better anal-
ysis of protein expression.

CNN, Brain-on-a-chip, Read the data for analysis in both HCS and | [68]

RNN Brain  organoid- | HTS via deep learning, rather than in a labor-

on-a-chip intensive manner.

CNN Kidney-on-a-chip | Improve early prediction of DIKI. [69-72]
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CNN Skin-on-a-chip Classify the skin cells into healthy or un- | [73]
healthy based on metabolic parameters ac-
quired from sensors.

351

352

Table 1 is the summary for representative applications of deep learning used for dif- 353
ferent OoCs. Although at the very early stage and hence limited demonstrations to date, 354
the combination of OoCs and deep learning brings in a breakthrough for drug screening 355
and related applications [74]. Given the appropriate data quantity and data quality, deep 356
learning approaches can potentially be used throughout the drug screening pipeline to 357
reduce attrition. In addition, OoCs with Al boost the capacity in high-throughput drug 358
screening, and to some extent reduce the ethical and legal regulation problems in animal 359
models due to the possibility of avoiding some animal experiments. Figure 5A depicts a 360
full system that integrates OoCs with multi-sensors for automatically monitoring mi- 361
crotissue behaviors [75]. The data acquired from physical/chemical and bioelectrochemi- 362
cal sensing modules will be analyzed by Al modules, which are designed for image pro- 363
cessing, signal abnormal diagnosis, data classification and prediction. This multi-sensor 364
information fusion was not previously available but nowadays will be applied for poten- 365
tially enhancing the efficiency of drug screening. The detailed structure of the integrated 366
multi-OoCs is provided in Figure 5B, including microbioreactors for housing organoids, 367
a breadboard for microfluidic routing via pneumatic valves, a reservoir, bubble traps, 368
physical sensors for measuring microenvironment parameters, and electrochemical bio- 369
sensors for detecting soluble biomarkers secreted by the microtissue. 370
371
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Extracellular
Microenvironment
monitoring

B Peristaltic Pump

Bubble Trap
1%t Organ Module

‘\f\ If‘n!“ Q ;r:f':r eé

/ (SR i boae
a e »

\ = 7 J.r

; 24 Organ Module s e Lal'C
/hysicallchemical e

Sensing Module 1

Figure 5. The idea of automated monitoring and analysis platform integrated multiple OoCs with 372
sensors, for maintaining appropriate temperature and COz level. (A) The schematic of a multi-OoCs 373
platform in a benchtop incubator, which is connecting with automated pneumatic valve controller, 374
electronics for operating physical sensors, potentiostat for measuring electrochemical signals, anda 375
computer for central programmed integration of all commands. (B) The in-house designed multi- 376
OoCs platform contains a breadboard, microbioreactors, medium reservoir, a physical sensing suite, 377
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one or multiple electrochemical sensors, and bubble traps. This photograph is derived from the re- 378

search article [75]. 379
4.1. Lung-on-a-Chip 380
381
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Figure 6. Alveolar—capillary barrier in vivo mimicked in a lung-on-a-chip model. (A) The exchange 382
of O2 and CO: occurs in the human lungs, especially in the alveoli. (B) Cross-section of the lung 383
model on microfluidic chip, where two different channels are separated by a thin, porous mem- 384
brane. This figure is reproduced from the work [76]. 385
386

There is a pressing need for effective therapeutics for coronavirus disease 2019 387
(COVID-19), which is a respiratory disease caused by severe acute respiratory syndrome 388
coronavirus 2 (SARS-CoV-2) virus [77-79]. The SARS-CoV-2 virus several tissues includ- 389
ing the lung, where the unique three-dimensional (3D) structure of its functional units is 390
critical for proper respiratory function. The lung-on-a-chip is an in vitro lung model, which ~ 391
essentially recapitulates the distinct tissue structure and the dynamic mechanical and bi- 392
ological interactions between the different cell types. Figure 6 depicts the design of alung- 393
on-a-chip, which successfully replicates the physiology and pathology of the human lungs 394
for culturing immortalized cell lines or primary human cells from patients [76]. As shown 395
in the cross-section of lung model of Figure 6B, human alveolar epithelial cells at the up- 39
per channel and human pulmonary microvascular endothelial cells at the lower channel 397
were separated by the extracellular matrix (ECM)-coated membrane. Once confluent, the 398
media was aspirated from the upper channel to cultivate alveolar cells at air-liquid inter- 399
face, and a syringe pump is connected to the lower channel to continuously infuse the 400
media. 401
Deep learning can be introduced into the lung-on-a-chip to accelerate drug develop- 402
ment for COVID-19 and beyond. Sun et al. [66] reported that the lung-on-a-chip with deep 403
learning has been utilized in COVID-19 infection studies, which is depicted in Figure 7. 404
In Figure 7A, small-molecule immunosuppressants can inhibit the JAK/STAT pathway 405
intracellularly and have been suggested for use against COVID-19-associated HLH. These 406
small molecules bind to PDMS channel walls. In Figure 7B, biologics adsorb to PDMS 407
channel walls, and the antiadsorptive coating is a method to prevent adsorption. In Figure 408
7C, lung-on-a-chip is integrated with automated liquid-handling and continuous flow, 409
which would provide a new solution for streamlining drug discovery and increasing 410
throughput for screening lead compounds. In Figure 7D, deep learning algorithms (e.g., 411
NNs) can aid drug discovery through molecular docking and design, image-analysis, and 412
toxicity predictions. Effective usage includes generating and seeking out sufficiently large 413
datasets to train algorithms to make accurate predictions. 414
415



Biosensors 2022, 12, x FOR PEER REVIEW 12 of 28

A Small Molecules
1) 2)

antilipophilic coating

3)
- 1! = g
B Biologics i D Neural Networks
[
4 - P
88, :,
l-‘;-, \j I E .._
PDMS channelwall =« = » « «
antiadsorptive coating o L _

C Lab Automation

= 5

Figure 7. Application of deep learning in lung-on-a-chip and upcoming advances. This figure is
directly reproduced from the corresponding paper [66]. (A) Small lipophilic molecules bind to sur-
faces such as PDMS channel walls and can be characterized by the Langmuir—Freundlich isotherm.
(B) Biologics such as antibodies and recombinant proteins adsorb to PDMS channel walls. (C) Inte-
grating lung-on-a-chip with automated liquid-handling and continuous flow. (D) Al algorithms
such as NNs can aid drug discovery through molecular docking and design, image-analysis, and
toxicity predictions.

4.2. Liver-on-a-Chip

Drug-induced liver injury (DILI) is a major cause of drug failure [80]. Drug metabo-
lism leads to bio-transformations of pharmaceutical substances that alter drug efficacy,
toxicity, as well as drug interactions. The liver is the primary site of drug metabolism, but
traditional liver models cannot replicate the complex physiological structure and micro-
environment of the liver, especially the O2 and nutrient gradients. Therefore, many re-
searchers are making efforts on developing the liver-on-a-chip and have achieved signif-
icant progress in relevant technologies. Figure 8 is a schematic of a liver-on-a-chip for
recapitulating liver cytoarchitecture [81]. Primary hepatocytes were grown in the upper
parenchymal channel with ECM sandwich format, while the liver sinusoidal endothelial
cells (LSECs), Kupffer cells, and hepatic stellate cells were populated in the lower vascular
channel.
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Figure 8. The cross section of the liver-on-a-chip for simulating hepatic sinusoids. This figure is
reproduced from the work [81].

However, the field is still somewhat in its infancy in terms of the standards, proce-
dures, and methods for translating the data obtained in vitro into reliable predictions ap-
plicable to human body responses [82]. Some deep learning methods were built to predict
a chemical’s toxic potential in silico, so as to replace in vitro high-throughput screening
[83]. One example is the Tox21 project for toxicity assays, which is a database comprised
of compounds with various activities in each of the 12 different pathway assays. To this
end, Capuzzi et al. [84] built Quantitative Structure-Activity Relationship (QSAR) [85]
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models by using the Random Forest [86], DNNSs, and various combinations of molecular 448
descriptors and dataset-balancing protocols. However, the large experimental dataset has 449
a higher chance of containing mislabeling either the chemical structures or their toxicity 450
classes. To expand the availability of highly confident data, industry-driven collaborative 451
efforts are required. In addition, Li et al. [87] reported that Johnson & Johnson used the 452
liver-on-a-chip to test the hepatotoxicity of drugs [88]. Zhang et al. [89] reported that in- 453
troducing Al [90] into OoCs could effectively improve the ability of data analysis of bio- 454
medical platforms. 455

4.3. Heart-on-a-Chip 456

Heart diseases are the major killers threatening human health, and drug-induced car- 457
diotoxicity is a major problem in drug development [91-93]. To resolve these two prob- 458
lems, many researchers are devoted to studying in different manners. The heart-on-a-chip 459
is a novel way of building heart models in vitro, and it is a promising tool for the study of 460
heart diseases and drug screening. Figure 9A is the schematic of a heart-on-a-chip includ- 461
ing medium reservoirs, microfluidic channels, gel-loading port, and PDMS thin mem- 462
brane within the PDMS device [92]. Figure 9B is a screenshot of human microvascular 463

endothelial cells (hMVECs) cultured in this microfluidic system. 464
465
A Reservoir
Ariche } Channels
o

PDMS
Thin Film  PDMS ) P .
Device g h b A VA A\ el

Figure 9. The heart-on-a-chip platform for culturing hMVECs. (A) Schematic of the heart-on-a-chip. 466
(B) Perpendicular alignment of hMVECs cultured in this heart-on-a-chip (10%, 1-Hz strain). This 467
figure is reproduced from the work [92]. 468
469

Two sensing methods are mainly employed in heart-on-a-chip for physical and elec- 470
trical measurements [94]: i) optical sensors, which are devices related to direct and calcium 471
imaging, and fluorescent, laser-based, and colorimetric sensing; ii) electrical sensors 472
which record the contractility of cardiomyocytes in real-time, such as impedance, strain, 473
and crack sensing. However, these electrical sensors have limitations on the number of 474
recording sites and the capacity of processing huge data. Hence, the sensors based on deep 475
learning can be developed and introduced into the heart-on-a-chip for both optical and 476
electrical-based measurements, to facilitate automated analysis and to improve the accu- 477
racy of cardiac physical and electrical monitoring. In addition, the deep learning-based 478
algorithms can acquire the physical properties (including size, shape, motility, and mov- 479
ing patterns) and electrophysiological features (such as strength, velocity, and propaga- 480
tion pattern of action potential) of numerous cells, in order to increase the accuracy of 481
predicting both therapeutic and unexpected side effects of novel drug candidates during 482
drug screening [95,96]. 483

4.4 Gut-on-a-Chip 484
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Figure 10. The gut-on-a-chip platform for exploring the transport mechanism of Hg(II). (A) The 485
actual design of the gut-on-a-chip platform. (B) A photograph of the gut-on-a-chip connecting with 486
multi-sensors. (C) A confocal fluorescence photograph of a tight junction protein (red-marked ZO- 487
1) and brush border protein (green-marked ezrin) in static (3 days; 21 days) and dynamic cultures 488
(3 days) (scale bar 20 pm). This figure is reproduced from the work [67]. 489
490

Many drugs are absorbed through the gut, and nowadays gut-microbiome research 491
community commonly utilizes laboratory mice to study the drug performance on dis- 492
eases. However, Marrero et al. [97] reported that animal models often failed when extrap- 493
olated to humans due to the complex gut dynamics, the interactions of host and different 494
microbiota components, and different immune systems between species. The latest gut- 495
on-a-chip attempts to replicate the relationship between gut inflammation and host-mi- 496
crobial population, so as to clarify the pathological mechanism of early intestinal diseases. =~ 497
Therefore, the gut-on-a-chip is a particularly necessary model to improve the knowledge 498
of intestinal physiology and disease etiology [98]. Figure 10A is a full system integrating 499
a gut-on-a-chip with its monitoring and culturing component [67]. Figure 10B shows the 500
schematic of a gut-on-a-chip, which has simultaneous integration of three-electrode sen- 501
sors and an Ag/AgCl electrode for in situ detection of Hg(II) and transepithelial electrical 502
resistance (TEER). Figure 10C depicts the expression of the tight junction protein (ZO-1, 503
red staining) and brush border protein (Ezrin, green staining) in static culturing (3 days 504
and 21 days) and dynamic culturing (3 days). The immunofluorescence staining of ZO-1 505
and Ezrin demonstrated that Caco-2 cells displayed tight junctions and brush borders. 506
The resolution of confocal fluorescence photographs can be enhanced by involving Al al- 507
gorithms (GAN [99], CNN [100]), and thus potentially conduct a better analysis of protein 508
expression. 509
Shin et al. [101] reported gut-on-a-chip devices inhabited by microbial flora. To de- 510
velop a high-throughput system, Trietsch et al. [102] reported an array of gut-on-a-chip 511
and demonstrated the efficiency of testing for drug toxicity. These multiplied gut-on-a- 512
chip devices generated huge data, and hence deep learning technology is needed for data- 513
acquisition, data-communication, and data-analysis. During data-acquisition and data- 514
communication, as many related sensors are involved, the novel visual sensor networks 515
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(VSNs) [103] can be used to perceive visual information (e.g., videos, images) in the ROI, 516
so as to improve the quality of data communication. A VSN contains a set of spatially 517
distributed visual sensor nodes with the capabilities of image processing, communication, 518
and storage [104]. The key technologies of image processing for improving the perfor- 519
mance of a VSN are image segmentation and super-resolution reconstruction. Therefore, 520
many state-of-the-art AI methods based on deep learning can be transplanted into multi- 521
plexed gut-on-a-chip devices. In addition, deep learning can also be integrated in drug 522
testing phase, for predicting the effectiveness of the new drug and its side effects in the 523
short and long terms. Marrero et al. [97] proposed an alternative biosensing solution, 524
which could translate to gut-on-a-chip from other devices used in vitro or lab-on-a-chip. 525

4.5. Brain-on-a-Chip and Brain Organoid-on-a-Chip 526
Cc
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Figure 11. Comparison of human brain avatars and the deep learning techniques for high-through- 528

put drug screening. (A) The relationship between different brain avatars. (B) The injection-molded 529
microfluidic chip allows the high-throughput drug screening of brain organoids-on-a-chip. (C) 530
Deep learning is needed to conduct biological data analysis on massive data for high-throughput 531
drug screening. The figure is reproduced from the work [105]. 532
533

It is challenging to develop new drugs for treating neurodegenerative diseases and 534
neurodevelopmental disorders, due to the poor understanding of pathogenesis and the 535
lack of appropriate experimental models. Animal models have drawbacks, including eth- 536
ical concerns, genetic heterogeneity with humans, and high costs [106]. Brain-on-a-chip 537
and brain organoids are two alternatives, which have been extensively studied [107]. As 538
shown in Figure 11A, brain-on-a-chip is mainly developed in the field of engineering, 539
which can construct sophisticated and complex microstructures for 3D cell cultures by 540
using microfabrication techniques [105]. Brain organoids belong to the biological field. 541
Cakir et al. [108] reported that vascularized brain organoids could be formed through co- 542
culturing of brain organoid and endothelial cells. Alternatively, certain portions of stem 543
cells within the stem cell aggregates could be differentiated into brain endothelial cells. 544
Although brain organoids have great potential in mimicking the ultrastructure of the 545
brain tissue, the brain-on-a-chip is good at reconstructing the characteristics of brain mi- 546
croenvironment on the engineering platform. However, two technologies also have limi- 547
tations in the generalization of microenvironment characteristics and structures, which 548
means that more in-vivo related brain models are needed. In this regard, brain organoid- 549
on-a-chip has emerged to serve as a novel “human brain avatar”, which was formed by 550
incorporating matured brain organoids into the brain-on-a-chip with hydrogels [109]. As 551
shown in Figure 11B, brain organoid-on-a-chip has a heterogeneous 3D structure in a sin- 552
gle organoid, and its unit size is large, which makes it difficult to image at high magnifi- 553
cation. Therefore, continuous imaging should be performed to visualize the height-de- 554
pendent structures, which is essential for high-content screening. In addition, for high- 555
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throughput screening, an automatic imaging system should be used to image multiple 556
organoids. In both cases, it is too difficult to identify the number of massive imagesina 557
labor-intensive manner (Figure 11B). Therefore, deep learning techniques can be utilized 558
for data analysis in both HCS and HTS, ranging from supervised learning methods (CNN, 559
RNN) to unsupervised learning methods (deep generative models) [68]. These algorithms 560
are capable of clustering, classification, regression, and anomaly detection (Figure 11C). 561

Deep brain stimulation (DBS) [110] is a surgical treatment for motor symptoms of 562
Parkinson’s disease (PD) [111], which can provide electrical stimulation to the basal gan- 563
glia (BG) [112] region of the brain. Existing commercial DBS devices only use stimulation 564
based on fixed frequency periodic pulses, but this device is very inefficient in terms of 565
energy consumption. Moreover, fixed high-frequency stimulation may have side effects, 566
such as speech impairment. To address the above problems, Gao et al. [113] proposed a 567
deep learning method based on reinforcement learning (RL) [114] to help derive specific 568
DBS patterns, which were able to provide effective DBS controllers and energy efficiency. 569
This RL-based method was evaluated on a brain-on-a-chip field-programmable gate array 570
(FPGA) [115] platform to conduct the basal ganglia model (BGM) [116]. 571

In general, the amount of data obtained from a single brain-on-a-chip is less than 10. 572
However, a single brain-on-a-chip requires 1-2 hours for fabrication, 4 hours for baking, 573
and 3-4 hours for the photolithography process of master fabrication [117]. Therefore, 574
manufacturing processes of a brain-on-a-chip is labor-intensive and time-consuming, 575
which makes it difficult to introduce high-throughput analysis or deep learning. 576

4.6. Kidney-on-a-Chip 577

The kidney is an important excretory organ responsible for maintaining osmotic 578
pressure and internal environment. Kongadzem et al. [118] reported that the kidney-on- 579
a-chip can be used to overcome the shortcomings of traditional animal models and per- 580
form the following operations: first, improve the drug dose of kidney diseases. Second, 581
using the kidney-on-a-chip can help understand the increase of urea blood and other ni- 582
trogenous waste. In addition, the kidney-on-a-chip can help the drug testing and devel- 583
opment for kidney diseases, so as to more effectively identify the drug efficacy, drug-in- 584
duced nephrotoxicity, and interactions. 585

Kim et al. [119] reported a pharmacokinetic profile that could reduce nephrotoxicity 586
of gentamicin in a perfused kidney-on-a-chip platform (Figure 12A), which provided the 587
structure of a kidney-on-a-chip and junctional protein expression of each group. In Figure 588
12B, the static and shear groups were measured before exposure to gentamicin, and D1 589
and D2 groups were measured 24 hours after exposure to gentamicin. Compared with the 590
Transwell cultures, the polarization of all groups was improved. 591

592
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Figure 12. The kidney-on-a-chip is developed for monitoring nephrotoxicity. (A) Schematic and 593

D1 Shear Static
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actual image of the kidney-on-a-chip. (B) Biomarker expressions by the cells in the kidney-on-a- 594
chip in different groups. The figure is reproduced from the work [119]. 595
596

Since the activities, mechanics of a kidney can be stimulated by the kidney-on-a-chip, 597

it is expected that the developed chip can function as a normal kidney component for 598
conducting effective drug testing [118]. This will generate a large amount of data, because 599
it is necessary to determine the parameter values required for drug efficacy from the cell 600
measurements in the kidney-on-a-chip. Deep learning can analyze these parameters, in 601
order to classify or predict the cell response to drugs in the chip, and then determine the 602
drug efficacy. 603
Nowadays, drug-induced kidney injury (DIKI) is one of the leading causes of failure 604

of drug development programs in the clinic. Early prediction of renal toxicity potential of 605
drugs is crucial to the success of drug candidates in the clinic. The kidney-on-a-chip de- 606
velopment that are crucial to improve early prediction of DIKI [72]. Kulkarni et al. [120] 607
reported that newer in silico and computational techniques such as physiologically based 608
pharmacokinetic modeling and machine learning have demonstrated potential in assist- 609
ing the prediction of DIKI. Several machine learning models such as random forest, sup- 610
port vector machine, j-nearest neighbor, naive Bayes, extreme gradient boost, regression 611
tree, and others have been studied for the prediction of kidney injury [69-71]. Machine 612
learning may improve DIKI predictive ability of the biomarker by automatically identify- 613
ing nonlinear decision boundaries and classifying compounds as toxic or nontoxic with 614
greater accuracy [71]. Potentially, the kidney-on-a-chip can simulate the certain functions 615
of a kidney, and deep learning is more suitable for tackling massive data than machine 616
learning. Therefore, the progress in kidney-on-a-chip platforms in combination with the 617
ability of deep learning can be a new alternative for resolving DIKI in the future. 618

4.7. Skin-on-a-Chip 619

620
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Figure 13. The experimental setup consists of two simultaneous skin-on-a-chip. This setup contains 621
a flow-through dynamic microfluidic device and a programmable syringe pump. The experimental 622
samples can be collected below the diffusion system in the collection bench. The figure is repro- 623
duced from the work [121]. 624
625

When the skin contacts the external environment, ultraviolet rays, pollutants, and 626
microorganisms in the environment can cause skin diseases [122]. In recent years, drug 627
delivery through the skin is also a research hotspot, including the screening of drugs in 628
vitro by using the skin-on-a-chip. This miniaturized chip based on microfluidics is a plat- 629
form to mimic the skin and its equivalents in a simple manner. Figure 13 depicts a solution 630
for designing the skin-on-a-chip for testing drug penetration through the skin [121]. 631
Sutterby et al. [73] reported that the skin-on-a-chip circumvented the drawbacks of 632
traditional cell models by imparting control in the microenvironment and inducing re- 633
lated mechanical information. The skin-on-a-chip assesses the metabolic parameters (Oz2, 634
pH, and glucose and lactate) via embedded microsensors, so as to assist in the rigorous 635
evaluation of cell health and streamline the drug testing process. This process has poten- 636
tial to be intelligentized, since the various metabolic parameters can provide multi-source 637
labeled dataset for training a deep network. A possible solution for this is to learn a map- 638
ping between these metabolic parameters and their labels through deep learning, soasto 639
classify the cells into healthy or unhealthy. In this way, deep learning can further improve 640
the prediction accuracy of drug-absorption rate through the skin. 641

5. Discussion 642

Recently, researchers in different fields have started trying to solve problems in their 643
respective fields with deep learning. Some reports show that the integration of OOCs and 644
deep learning has broad prospects, which can further extend to develop patients-on-a- 645
chip for precision medicine [123]. Meanwhile, there are also various challenges in the fu- 646
ture applications of deep learning [124]. 647

5.1. Upcoming Technical Challenges 648

Data with automatic annotation. The development of automatic data annotation al- 649
gorithms and tools can automatically label a large number of unlabeled data, reduce the 650
tremendous cost of manual annotation, and enhance the efficiency of annotation and de- 651
velopment [125]. The automatic data-annotation algorithms and tools can effectively ex- 652
pand training and validation datasets, so as to improve the prediction accuracy of the 653
neural networks, which are trained for classifying single-cell trajectories, tracking, and 654
motion analyses of cell clusters and particles in time-lapse microscopy images. 655

Automated network design. As an important branch of AutoML [126], neural archi- 656
tecture searching (NAS) [127] has attracted more and more attention. In deep learning- 657
based tasks of classification, detection, segmentation, and tracking, the structure of neural 658
network has a decisive impact on the performance of the overall algorithm. The traditional 659
structure designs of neural networks require expert knowledge and trial-and-error costs. 660
Therefore, it is extremely difficult to manually design network structures. The NAS tries 661
to automatically design a network structure with good performance and fast computing 662
speed, and frees people from complex network tuning. The ideal NAS technology only 663
requires a user-defined dataset, and the entire system can try various network structures 664
and network connections. Through training, optimizing, and modifying these neural net- 665
works, the system gradual outputs a desired network model. The NAS methods replace 666
the conventional time-consuming process by avoiding “manual design-try-modify-try”. 667
There are two main challenges during network design: intractable search space and non- 668
transferable optimality. Different from the hyperparameter optimization (HO) [128] for 669
network training, the NAS is adopted to optimize the parameters that define the network 670
structure. 671
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Multi-variate time-series. Analysis of short-term cardiovascular time series can help 672
to achieve early detection of cardiovascular diseases. Integrated Al systems can help ex- 673
pedite time-series analysis and improve the accuracy of time-series prediction. The key 674
models for time-series data in computer science (like NLP) are sequence-to-sequence 675
(seq2seq) models [129], attention models [130], transformer models [131], and graph neu- 676
ral networks (GNN) [132]. These technologies can help explore the relationship network 677
and correlation weights between different data points, to increase the accuracy of predic- 678
tion and analysis. The seq2seq-based time-series anomaly detection methods can detect 679
abnormal fragments in cardiovascular time series. Attention models generally are utilized 680
in neural network models for sequence prediction, which makes the model pay more at- 681
tention to the relevant parts of historical variables and current input variables. TPA-LSTM 682
[133] is one of multivariate time series forecasting approaches, and it modifies the conven- 683
tional attention mechanism by paying more attention to the selected important relevant 684
variables rather than all relevant variables. The conventional multi-variate time-series 685
anomaly detection has the following challenges, such as large amount of data, and re- 686
quirement of real-time ability. The transformer is a seq2seq model using the self-attention 687
mechanism, and its advantage is the ability of parallel computing. Based on this ad- 688
vantage, the transformer can conduct quick anomaly detection in a large amount of multi- 689
variate time-series over a wide time span. Moreover, the multi-variate time-series requires 690
additional technologies to handle the issue of high dimensions, especially to capture the 691
potential relationships between dimensions. The introduction of GNN is a way to model 692
spatial dependencies or the relationship between dimensions. The survey [134] demon- 693
strates that the combination of GNN and attention model/transformer can significantly 694
improve performance of multi-variate time-series prediction. Therefore, using Trans- 695
former and GNN to model multi-variate time-series data is worth further studying. In 696
addition, multimodal input data [135,136] (e.g., statistical data of cardiovascular time se- 697
ries, text data of subjective physician's experience, and image of electrocardiogram) can 698
further perfect the performance of multi-variate time-series analysis system. 699

5.2. Promising Applications 700

Human-on-a-chip. As shown in Figure 14, a human-on-a-chip consists of multiple 701
OoCs with different organ representations [87]. Future works can possibly focus on ana- 702
lyzing multiscale data of each OoC (e.g., the growth, differentiation, or metabolism of 703
cells) and their interactions by using deep learning methodologies, so as to integrate OoCs 704
as fully controllable microfluidic platforms and achieve high-throughput assays at single- 705
cell resolution. 706

Rare disease-on-a-chip. Although OoCs have achieved significant progress on in 707
vitro disease models, the drug development for rare diseases is greatly hindered due to 708
lack of appropriate preclinical models for clinical trials [137,138]. Building rare disease- 709
on-a-chip can generate important real-time dataset, which is hardly observable in clinical 710
or in vivo samples [139]. Such datasets can be utilized to train a deep learning model for 711
analyzing the changes of such rare diseases at the molecular level and further study the 712
mechanisms of disease occurrence, along with improved capacities in drug discovery by 713
conducting larger-scale clinical trials on OoCs not possible with small pools of patients. 714
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