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Abstract: Organs-on-chips (OoCs) are miniature microfluidic systems, which have arguably become 17 

a class of advanced in vitro models. Deep learning as an emerging topic in machine learning, has 18 

the ability to extract the hidden statistical relationship from the input data. Recently, these two areas 19 

have become integrated to conduct synergy for accelerating drug screening. This review provides a 20 

brief description of the basic concepts of deep learning used in OoCs, and exemplifies the successful 21 

use cases for different types of OoCs. These microfluidic chips are of potential to be assembled as 22 

highly potent human-on-chips with complex physiological or pathological functions. Finally, we 23 

discuss the future supply with perspectives and potential challenges in terms of combining OoCs 24 

and deep learning for image processing and automation designs. 25 
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 27 

1. Introduction 28 

Current drug research and development have faced the dilemma of long durations, 29 

large investments, and low rates of success. Preclinical drug development usually in- 30 

volves testing in static, planar cell cultures and animal models. However, conventional 31 

cell culturing oftentimes cannot reproduce the complex physiology and pathology of the 32 

human body, and animal models have drawbacks, such as species differences, high cost, 33 

low throughput, and ethics [1,2]. For example, patient-derived xenografts (PDXs) directly 34 

transplant tumor tissues from patients to immunocompromised mice without culturing, 35 

and hence the biological specificities of the tumors are maintained to the greatest extent. 36 

However, the PDX models have very low success rates of transplantation. In addition, the 37 

applications of animal models are subject to the associated high costs, low throughput, 38 

and ethical issues in the early stages of drug discovery [3,4]. These reasons lead to a great 39 

risk of failure in human clinical trials of candidate compounds. Although significant pro- 40 

gress has been made in computational biology, in vitro biology, and toxicology, most 41 

drugs have still failed to pass clinical trials due to the lack of efficacy and the problem of 42 

unwanted toxicity [5]. 43 

To provide effective alternatives for drug screening at the preclinical stage, the con- 44 

cept of micro cell culture analogs (microCCAs) was initially proposed [6], which later on 45 
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evolved into the terminology of organs-on-chips (OoCs) or microphysiological systems 46 

(MPSs) [7]. 47 

The OoC is a miniature device for dynamic three-dimensional (3D) cell culturing, and 48 

they have the merits of streamlined operations and small volumes. The OoC simulates the 49 

environment of the target human organ on the chip, in order to study and control the 50 

biological behaviors of cells in the process of culturing in vitro. Although the OoCs may 51 

not completely replace animal experiments in most scenarios, they play an increasingly 52 

important role in the fields of toxicity assessment, disease modeling, and drug screening, 53 

among others [8]. 54 

OoCs have the strong advantages of rapid responses and desirable throughput, and 55 

thus generate massive data. Researchers with biomedical background may find it difficult 56 

to manually analyze these data in short periods. Consequently, it is urgent to develop an 57 

automated tool that can assist or even replace researchers to conduct data analysis, so as 58 

to improve the efficiency and accuracy of the experiment. Artificial intelligence (AI) [9] 59 

has the strong abilities of feature representation and data mining, thereby achieving re- 60 

markable success in computer vision [10], text recognition [11], and natural language pro- 61 

cessing [12]. Nowadays, deep learning of AI has started to be applied to device design, 62 

real-time monitoring, and image-processing in OoCs [13]. The integration of deep learn- 63 

ing and OoCs offers a powerful tool for the exploration and analysis of the massive image- 64 

based data, which consequently enhances intelligence of OoCs and stimulates their great 65 

potential in higher-throughput drug screening. 66 

To provide a comprehensive overview of all relevant applications of deep learning 67 

and OoCs in higher-throughput drug screening, we used Google Scholar to search papers 68 

published in journals, conferences, and ArXiv in the past 10 years (2013-2022), including 69 

deep learning methods applied to different tasks such as synthesis, segmentation, recon- 70 

struction, classification, and detection. We divided the reviewed papers into 7 categories 71 

according to the following applications: lung-on-a-chip, liver-on-a-chip, heart-on-a-chip, 72 

gut-on-a-chip, brain-on-a-chip, kidney-on-a-chip, and skin-on-a-chip. Descriptive statis- 73 

tics of these papers based on years, tasks, and practical cases can be found in Figure 1. 74 
 75 

  76 
Figure 1. Breakdown of the publications included in this review according to the year of publication, 77 
task addressed in deep learning (Section 3), and application cases (Section 4). The number of publi- 78 
cations for 2022 has been extrapolated from the publications published in or before April. 79 

 80 
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 81 

Summarizing, with this review we aim to: 82 

• Show that deep learning has started to be explored in OoCs for higher-through- 83 

put drug screening. 84 

• Highlight the critical deep learning tasks in OoCs and the successful use cases 85 

that solve or improve the efficiency of drug screening in the real world. 86 

• Describe the potential applications and future challenges between deep learning 87 

and OoCs. 88 

 89 

The remainder of the paper is structured as follows. We begin with a brief introduc- 90 

tion of the principles of deep learning and widely used network structures in Section 2. 91 

Image-processing tasks based on various deep learning methods are described in Section 92 

3. Section 4 summarizes existing examples where different deep learning methods are ap- 93 

plied to OoC systems, including but not limited to lung-on-a-chip and liver-on-a-chip, 94 

among others. Section 5 discusses the prospective applications and the future challenges 95 

of deep learning in OoCs. 96 

2. Overview of Deep Learning Methods 97 

This section introduces the concepts, techniques, and architectures of deep learning 98 

methods widely applied in high-throughput drug screening, especially the biomedical 99 

applications and microscopy fields. The included deep learning methods are Neural Net- 100 

work (NN) [14], Deep Neural Network (DNN) [15], Convolutional Neural Network 101 

(CNN) [16], Recurrent Neural Network (RNN) [17], Generative Adversarial Network 102 

(GAN) [18], and Auto-Encoder (AE) [19]. 103 

Based on the availability of label information, deep learning methods can be divided 104 

into supervised and unsupervised learning. In supervised learning, given a dataset 105 

𝐷 = {𝒙𝒏, 𝒚𝒏}𝑛=1
𝑁  of 𝑁 samples where 𝒙 is the observation, and 𝒚 is the label, supervised 106 

learning methods are generally aims to optimize a regressor and classifier. When we feed 107 

data into the general supervised model 𝒚̂ = 𝑓(𝒙; 𝑾, 𝑩) , we try to minimize the loss 108 

𝐿(𝒚, 𝒚̂)  between the predicted value 𝒚̂  and ground truth value 𝒚  and optimize the 109 

model parameters, including a set of weights 𝑾 = {𝑤1, 𝑤2, ⋯ , 𝑤𝑖 , ⋯ , 𝑤𝐾},  and a set of bi- 110 

ases 𝑩 = {𝑏1, 𝑏2, ⋯ , 𝑏𝑖 , ⋯ , 𝑏𝐾} during the training. In unsupervised learning, the dataset 111 

𝐷 = {𝒙𝒏}𝑛=1
𝑁  excludes the label information focuses on tasks including, clustering, dimen- 112 

sionality reduction and representation learning. For example, representation learning 113 

uses AE to minimize the reconstruction loss 𝐿(𝒙, 𝒙) between the original data 𝒙 and the 114 

reconstructed one 𝒙 to enable the encoder to learn latent representation of the data in a 115 

lower-dimensional space. 116 

2.1. NN and DNN 117 

NN is the foundation of modern deep learning methods, as well as the state-of-the- 118 

art machine learning model since 1980s. A typical NN consists of an input layer, one or 119 

more hidden layers, an output layer, and neurons within each layer. Each neuron connects 120 

to another one and has an associated activation 𝑎, a set of weights 𝑾 and a set of biases 121 

𝑩. At the final layer of the network, a probability of classification 𝑃(𝑦|𝒙; 𝑾, 𝑩) is calcu- 122 

lated by passing the activation through a softmax function. 123 

𝑃(𝑦|𝒙; 𝑾, 𝑩) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝒙; 𝑾, 𝑩) =
𝑒𝑤𝑖

𝑇𝒙+𝒃𝒊

∑ 𝑒𝑤𝑘
𝑇𝒙+𝒃𝒌𝐾

𝑘=1

, (1) 

where 𝑤𝑖  indicates the weight vector leading to the output neuron associated with the 124 

class 𝑦 = 𝑖. 125 

The probability function above is parameterized by 𝑾 and 𝑩 on dataset 𝐷. A com- 126 

mon approach to solving the function is the Maximum Likelihood Estimate (MLE) [20] 127 
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with stochastic gradient descent, which, in practice, is equivalent to minimizing the neg- 128 

ative log-likelihood [21]: 129 

arg min
θ

− ∑ log[𝑃(𝑦𝑛|𝒙𝒏; 𝑾, 𝑩)]

𝑁

𝑛=1

. (2) 

The obtained softmax score will be further used in binary cross entropy for binary 130 

classification, and the categorical cross entropy for multiple classifications [22–25]. 131 

While NN models were invented decades before, issues such as local optimum lead 132 

to poor performance and hard training. To that end, four strategies are widely utilized 133 

during training. i) Mini-batch [26,27]: Mini-batch only utilizes a batch of data instead of 134 

full data during each update to reduce the memory usage and improve the training effi- 135 

ciency. ii) Stochastic gradient descent (SGD) [28,29]: The SGD strategy adds random fac- 136 

tors in gradient calculation which is generally fast and benefits the model generalization. 137 

In addition, the randomness may help avoid local minimum and continue searching for 138 

global minimum. iii) Simulated annealing [30,31]: At each step, simulated annealing will 139 

accept a suboptimal solution with a probability that decays over iterations -- another prac- 140 

tical approach to avoiding the local minimum. iv) Different initialization parameters [32]: 141 

This approach suggests to initialize multiple neural networks with different parameter 142 

values and choose the parameters with the smallest errors as the final solution. 143 

2.2. CNN 144 

CNN is a popular variation of DNN with convolutional layers inspired by the recep- 145 

tive field mechanism in biology. Compared to conventional DNN, CNN has two unique 146 

merits. First, the full connection architecture in DNN layers usually leads to parametric 147 

expansion, along with local optimum and vanishing gradient problems. CNN on the other 148 

hand mainly uses convolution layers, which drastically reduces the number of parameters 149 

to be learned through the weight-sharing. Second, CNN and its convolution layers and 150 

pooling layers are particularly suitable for image feature learning or grid data in general. 151 

Convolution layers can maximize local information and retains plane structure infor- 152 

mation while the pooling layers (i.e., mean pooling and max pooling) aggregate the pixel 153 

values of neighborhoods via a permutation invariant function. This architecture allows for 154 

translation invariance and again reduces the number of weights in the CNN. Specifically, 155 

at Layer 𝑙, the 𝑘-th feature map 𝒙𝑘
𝑙  is formulated as: 156 

𝒙𝑘
𝑙 = 𝜎(𝑤𝑘

𝑙−1 ∗ 𝒙𝑙−1 + 𝑏𝑘
𝑙−1), (3) 

where, 𝒙𝑙−1 is the output feature map at Layer 𝑙 − 1, and 𝜎 represents an element-wise 157 

non-linear transform function. Top layers of CNN are usually implemented by fully con- 158 

nected and thus weights are no longer shared. Similar to DNN, the activations at the last 159 

layer are fed to a softmax function to compute the probability of each class. The objective 160 

function of training is solved by MLE. 161 

2.3. RNN 162 

While CNN has been widely applied to grid data, e.g., 2D images, it fails to explicitly 163 

model the temporal changes over time in time series data. To that end, RNN establishes 164 

weight connections between neurons in each hidden layer which allows the output at time 165 

𝑡 to be used as the input for time (𝑡 + 1). Therefore, RNN is suitable for multi-variate 166 

time series, e.g., language translations, natural language processing [9], video analysis 167 

where the input to RNN is a high-dimensional sequence {𝒙𝟏, 𝒙𝟐, ⋯ , 𝒙𝑇}. Then, the hidden 168 

state 𝒉𝑇  over time 𝑇 is passed through one or more fully connected layers. Last, the out- 169 

put will be fed into a softmax function [33] to calculate a probability of classification: 170 

[33] 171 
𝑃(𝑦|𝒙𝟏, 𝒙𝟐, ⋯ , 𝒙𝑇; 𝑼, 𝑾, 𝑩) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝒉𝑇 ; 𝑼, 𝑾, 𝑩), (4) 
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where 𝑼 represents the state -input weights of recurrent cells, 𝑾 denotes the state -state 172 

weights of recurrent cells, and 𝑩 is a set of biases.  173 

While RNN is capable of modeling time-series data, it suffers from the long-term 174 

dependencies problem [34], resulting in gradient vanishing and gradient explosion. Fol- 175 

low-up solutions, e.g., leak unit (i.e., linear self-connection unit) partially addressed the 176 

issue but also has two deficiencies. One is that the manually set weights are not optimal 177 

in the memory system. The other is that the leak unit lacks a forgetting function, and is 178 

prone to information overload. Therefore, gated unit was introduced capable of forgetting 179 

the past states that are fully used by the recurrent cells. Successful implementation with 180 

gated units includes Long Short-Term Memory (LSTM) [35] and Gated Recurrent Unit 181 

networks (GRU) [36]. 182 

2.4. GAN 183 

AI Generated Content (AIGC) has been widely discussed recently, and one of the 184 

popular AIGC tools is GAN. Besides content generation, e.g., artwork, style translation, 185 

GAN plays key roles in general data augmentation where data is relatively expensive to 186 

collect. Once properly trained, GAN is able to generate data under the same distribution 187 

but does not exist before. These “high-fidelity” data can be used as additional training 188 

data in addition to the augmentation by rotation, crop, and varying illumination. 189 

The vanilla GAN is a generative model that conducts direct sampling or inference 190 

from the desired data distribution without the Markov Chain learning mechanism [37]. 191 

The GAN consists of two NNs: the generator 𝐺 and the discriminator 𝐷. Two networks 192 

compete and eventually reach a balance when 𝐺 receives the random noise and generates 193 

data 𝒙𝒈 that 𝐷 fails to distinguish from the actual data 𝒙𝒓. The training objectives of 𝐺 194 

and 𝐷 is a “min-max” game between their respective loss function. Essentially, 𝐷 is try- 195 

ing to detect the forged area, and hence 𝐷 maximizes the loss function 𝐿𝐷: 196 

 197 

𝐿𝐷  = max
𝐷

𝐸𝒙𝒓~𝒑𝒓(𝒙)[log 𝐷(𝒙𝒓)] + 𝐸𝒙𝒈~𝒑𝒈(𝒙) [log (1 − 𝐷(𝒙𝒈))] . (5) 

Once 𝐷’s learning is finished, 𝐷 is fixed and 𝐺 training starts. Since 𝐺 is to gener- 198 

ate the data under the same distribution, its training minimizes the following: 199 

𝐿𝐺  = min
𝐺

E𝒙𝒈~𝒑𝒈(𝒙) [log (1 − 𝐷(𝒙𝒈))]. (6) 

Overall, 𝐷  and 𝐺 's networks are trained alternately until converged. In general, 200 

GAN is adopted for data generation or unsupervised learning [38]. Recent work has pro- 201 

posed to add a gradient penalty [24] to the critic loss to avoid the problems of exploding 202 

and vanishing gradients in GAN. 203 

2.5. AE 204 

Representation learning recently has been playing an increasingly important roles in 205 

pre-training, thanks to the cheap unlabeled data. Among them, AE is one of the most fun- 206 

damental models learned in unsupervised manner. AE uses an encoder to map the input 207 

data 𝒙 into a latent vector, and has a decoder to reconstruct the input data 𝒙 from the 208 

latent vector. Since the dimension of the latent vector is usually small, the latent vector is 209 

usually treated as features or learned representation with compression. 210 

For an encoder with a hidden layer, the input data is passed through a non-linear 211 

function which is formulated as: 212 

𝒛 = 𝑓(𝑾1𝒙 + 𝑩𝟏), (7) 

where 𝒛 stands for the latent vector, 𝑓 denotes the non-linear function of the encoder, 213 

𝑾1 represents the weight matrix, and 𝑩𝟏 is the bias matrix. Then, the latent vector is fed 214 

to the decoder, which contains a hidden layer: 215 
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 216 

𝒙 = 𝑔(𝑾2𝒛 + 𝑩𝟐), (8) 

where 𝒙 stands for the reconstructed input, 𝑔 denotes the non-linear function of the de- 217 

coder, 𝑾2 represents the weight matrix, and 𝑩𝟐 is the bias matrix. The parameters of the 218 

AE are optimized by minimizing the mean square error (MSE) loss function [39], equiva- 219 

lent to minimizing the differences between decoder output 𝒙̂ and the encoder input 𝒙. 220 

There are take-away regarding the usage of AE. First, AE is data-specific, or in other 221 

word, data-dependent, meaning the efficacy of compression depends on the similarity to 222 

the training datasets. Second, the AE conducts lossy compression, and the output of its 223 

decoder is degraded compared to the original input. Third, AE is learned from training 224 

datasets regardless of labels. However, when labels are available, class-specific encoders 225 

can be learned without additional work. Last, AE is mainly used for unsupervised pre- 226 

training followed by supervised fine-tuning [25], to resolve the problem of initializing 227 

weights, vanishing gradient, and model generalization. 228 

3. Deep Learning Potentially Useful for OoCs 229 

Several key technologies arise from the various OoCs, which are categorized into 5 230 

canonical tasks: synthesis, segmentation, reconstruction, classification, and detection. 231 

Since the technical combination of deep learning and OoCs is at the proof of concept (PoC) 232 

so far, we provide the following application prospects for consideration. 233 

3.1. Image-Synthesis (Super-Resolution, Data-Augmentation) 234 

Image-synthesis is one of the first areas in which deep learning made a major contri- 235 

bution to the field of OoCs. Biological experiments based on OoCs oftentimes utilize light- 236 

based time-lapse microscopy (TLM) to observe cell movements and other structural alter- 237 

ations, and a high spatial resolution is critical for capturing cell dynamics and interactions 238 

from data recorded by the TLM [40]. However, due to the high costs of advanced devices, 239 

high-resolution images and videos are not always acquired. To improve the image reso- 240 

lution, we [41] trained a GAN model to enhance the spatial resolution of mini-microscopic 241 

images and regular-microscopic images acquired with different optical microscopes un- 242 

der various magnifications. To address the issue of video resolution, Pasquale Cascarano 243 

et al. [42] extended the deep image prior (DIP) [43] in image super-resolution to the recur- 244 

sive deep prior video (RDPV) for video frames, so as to improve the spatial resolution of 245 

TLM videos. The author of the DIP demonstrated that a randomly initialized CNN could 246 

be used as a hand-crafted prior with excellent results in a super-resolution task. Based on 247 

this, the same prior could also be adopted for restoring images, which were hard to collect 248 

paired training data. Instead of searching for the answer in the image space, the DIP 249 

searched in the space of the CNN’s parameters. The DIP was utilized to fit a low-resolu- 250 

tion image, which converted a super-resolution task to a conditional image generation 251 

problem. The needed information for CNN’s parameter optimization were low-resolution 252 

images and the hand-crafted prior produced by the CNN. Similar to DIP, the utilized 253 

CNN architecture in the RDPV was built as an encoder-decoder framework. The RDPV 254 

was fed with one low-resolution frame from a TLM video at a time and applied the 255 

knowledge of previous super-resolved frames to reconstruct the new one through a re- 256 

cursively updating the weights of the CNN. Figure 2A depicts an example of video frame 257 

reconstruction with RDPV. When using the TLM video improved by the RDPV, the re- 258 

searchers can effectively decrease the error of cell localization, successfully detect the clear 259 

edges of cells, and draw a precise trajectory for cell tracking. 260 

In addition, when observing the cell movements and cell-cell interactions, the TLM 261 

is desirable to increase the frame rate for reconstructing accurately cell-interaction dynam- 262 

ics. However, high frame rates increase photobleaching and phototoxicity, so as to affect 263 

the cell growth and imaging quality. The balance between high resolution and carried 264 
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information content is required to reduce the overall data volume. Comes et al. [44] built 265 

a multi-scale GAN to generate interleaved frames of the predicted cell moving and in- 266 

serted them into the original videos for providing high-throughput videos. This GAN ar- 267 

chitecture not only increased the temporal resolution of original videos but also preserved 268 

the biological information in the original videos. Figure 2B shows the flowchart of work 269 

[44]. 270 

 271 

 272 
A B 

 

 

   273 
Figure 2. Application of DL in TLM videos for improving the accuracy rate of detecting cell migra- 274 
tions and interactions in OoC experiments. A and B are directly cropped from the corresponding 275 
papers [42] and [44], respectively. (A) Super-resolution method for TLM video frames. This method 276 
utilizes un-trained NN to obtain super-resolved images while fitting the input low-resolution video 277 
frames without paired training data. (B) Data augmentation for TLM videos. The proposed method 278 
generates interleaved video frames for providing high-throughput TLM videos. These two methods 279 
can effectively improve the accuracy of cell tracking. 280 

3.2. Image-Segmentation 281 

Some OoC experiments need to segment the cell populations from the images for 282 

different analyzing tasks. Stoecklein and colleagues [45] utilized a CNN to segment nerve 283 

cell images into three categories consisting of axon (blue), myelin (red), and background 284 

(black). As shown in Figure 3, a target fluid flow shape was input to the CNN, which 285 

outputs a predicted pillar sequence. This predicted pillar sequence was fed into a forward 286 

model to predict the sequence flow shape, which was compared with the original target 287 

fluid flow shape by computing the pixel match rate (PMR) [46]. 288 

The U-Net [47–49] was successfully applied in various image segmentation tasks, es- 289 

pecially for cell detection and shape measurements in biomedical images. The authors [50] 290 

developed a plug-in for the ImageJ software [51], to conduct a flexible single-cell segmen- 291 

tation. This plug-in can produce the segmentation mask from an input cell image. 292 

 293 
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Figure 3. Application of deep learning for cell-segmentation. This photograph is directly cropped 294 
from the corresponding papers [45]. (A) Segmentation for nerve cells. (B) A segmentation example 295 
in the U-Net software. 296 

3.3. Image-Reconstruction 297 

Lim et al. [52] reconstructed all pixels of red blood cells (RBCs) [53] by using a DNN- 298 

based network, which greatly eliminates the introduced distortions due to the ill-posed 299 

measurements acquired from the limited numerical apertures (NAs) [54] of the optical 300 

system. This network has been validated to exactly compute the 2D projections for recon- 301 

structing the 3D refractive index distributions. 302 

3.4. Image-Classification 303 

A 

 
B 

 
Figure 4. Application of deep learning in classification. A and B are directly cropped from the cor- 304 
responding papers [55] and [56], respectively. (A) The work [55] utilized AlexNET to classify the 305 
cell motility behaviors by implementing transfer learning on the input cell trajectories. (B) Schematic 306 
of the designed system and the real-time moving object detector (R-MOD) in work [56]. 307 

 308 

Classification is one of the most widely used technologies in deep learning. The im- 309 

age labels are adopted to train a classifier, which can successfully extract hierarchical im- 310 

age features. In Figure 4A, Mencattini et al. [55] developed a CNN (AlexNET) [57] to per- 311 

form experimental classification on an atlas of cell trajectories via a predefined taxonomy 312 

(e.g., drug and no-drug). They reposted that the cell trajectories were detected from the 313 

video sequences acquired by the TLM in a Petri dish [58] or in an OoC platform [55]. This 314 

method supported to accurately classify single-cell trajectories according to the presence 315 

or not of the drugs. This method was inspired by the successful application of deep 316 
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learning for style recognition in paintings and artistic style transfer [59]. This method re- 317 

veals the universal motility styles of cells, which are identified by deep learning in discov- 318 

ering the unknown information from cell trajectories. 319 

Because of motion blur, it is extremely difficult to acquire a high-quality image of a 320 

flowing cell. To address it, the researchers [56] proposed to construct high-throughput 321 

imaging flow cytometry (IFC) by integrating a specialized light source and additional de- 322 

tectors with conventional flow cytometry (FC) [60] (Figure 4B). The complementary 323 

metal-oxide semiconductor (CMOS) camera [61] on the microscope collects image se- 324 

quences of the microfluidic channel through which cell suspension was flowed. The multi- 325 

tracking technology was utilized to the original region-of-interest (ROI) image frame, so 326 

as to crop the single-cell images from the video sequence. The cropped single-cell images 327 

were passed to a classifier based on supervised learning for identifying the cell type. Since 328 

multiple cells could be detected and tracked simultaneously, the proposed method could 329 

maintain high throughput at low flow rate by increasing the concentration of cells. 330 
 331 

3.5. Image-Detection 332 

To understand the anatomic and dynamic properties of cells, it is necessary to ana- 333 

lyze the massive amounts of time-lapse image data of live cells to this end. Tracking of 334 

large numbers of cells is a common manner to analyze the dynamic behavior of cell clus- 335 

ters. On a tumor-on-a-chip device [2], CellHunter [62] was proposed for tracking and mo- 336 

tion analysis of cells and particles in time-lapse microscopy images. By using CellHunter, 337 

the effective movement of dendritic cells toward tumor cells was assessed. 338 

Currently, most detection methods are based on supervised or semi-supervised 339 

learning and need tremendous datasets with labels or annotations. However, the process 340 

of labeling training images is largely manual, which is time-consuming. Some unsuper- 341 

vised learning approaches without manual annotations are proposed to tackle this limita- 342 

tion. The authors [63] studied the OoC for the culture of complex airway models. They 343 

built connections between microscopic and macroscopic associated objects by embedding 344 

the fuzzy C-means cluster algorithm [64] into the cycle generative adversarial network 345 

(Cycle GAN) [65]. This network took advantage of transfer learning for toxoplasma de- 346 

tection, and achieved high accuracy and effectiveness in toxoplasma microscopic images. 347 

4. Case Studies in OoC Applications 348 

 349 

Table 1: Summary of different applications of deep learning used for OoCs. 350 
Network Platform Function Refs 
CNN OoC Improve the spatial resolution of TLM videos 

for observing cell dynamics and interactions. 
[42] 

GAN OoC Providing high-throughput videos with more 
cell content, for reconstructing accurately 
cell-interaction dynamics. 

[44] 

CNN OoC Segment nerve cell images into axon, myelin, 
and background. 

[45] 

AlexNET OoC Classify the treated cancer cells and untreated 
cancer cells according to their trajectories. 

[55] 

NN Lung-on-a-chip Predict the toxicity for drug discovery via im-
age analysis. 

[66] 

GAN, 
CNN 

Gut-on-a-chip Enhance the resolution of confocal fluores-
cence photographs and conduct a better anal-
ysis of protein expression. 

[67] 

CNN, 
RNN 

Brain-on-a-chip, 
Brain organoid-
on-a-chip 

Read the data for analysis in both HCS and 
HTS via deep learning, rather than in a labor-
intensive manner. 

[68] 

CNN Kidney-on-a-chip Improve early prediction of DIKI. [69–72] 
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CNN Skin-on-a-chip Classify the skin cells into healthy or un-
healthy based on metabolic parameters ac-
quired from sensors. 

[73] 

 351 

 352 

Table 1 is the summary for representative applications of deep learning used for dif- 353 

ferent OoCs. Although at the very early stage and hence limited demonstrations to date, 354 

the combination of OoCs and deep learning brings in a breakthrough for drug screening 355 

and related applications [74]. Given the appropriate data quantity and data quality, deep 356 

learning approaches can potentially be used throughout the drug screening pipeline to 357 

reduce attrition. In addition, OoCs with AI boost the capacity in high-throughput drug 358 

screening, and to some extent reduce the ethical and legal regulation problems in animal 359 

models due to the possibility of avoiding some animal experiments. Figure 5A depicts a 360 

full system that integrates OoCs with multi-sensors for automatically monitoring mi- 361 

crotissue behaviors [75]. The data acquired from physical/chemical and bioelectrochemi- 362 

cal sensing modules will be analyzed by AI modules, which are designed for image pro- 363 

cessing, signal abnormal diagnosis, data classification and prediction. This multi-sensor 364 

information fusion was not previously available but nowadays will be applied for poten- 365 

tially enhancing the efficiency of drug screening. The detailed structure of the integrated 366 

multi-OoCs is provided in Figure 5B, including microbioreactors for housing organoids, 367 

a breadboard for microfluidic routing via pneumatic valves, a reservoir, bubble traps, 368 

physical sensors for measuring microenvironment parameters, and electrochemical bio- 369 

sensors for detecting soluble biomarkers secreted by the microtissue. 370 

 371 
A 

 
B 

 
Figure 5. The idea of automated monitoring and analysis platform integrated multiple OoCs with 372 
sensors, for maintaining appropriate temperature and CO2 level. (A) The schematic of a multi-OoCs 373 
platform in a benchtop incubator, which is connecting with automated pneumatic valve controller, 374 
electronics for operating physical sensors, potentiostat for measuring electrochemical signals, and a 375 
computer for central programmed integration of all commands. (B) The in-house designed multi- 376 
OoCs platform contains a breadboard, microbioreactors, medium reservoir, a physical sensing suite, 377 
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one or multiple electrochemical sensors, and bubble traps. This photograph is derived from the re- 378 
search article [75]. 379 

4.1. Lung-on-a-Chip 380 

 381 

  
Figure 6. Alveolar–capillary barrier in vivo mimicked in a lung-on-a-chip model. (A) The exchange 382 
of O2 and CO2 occurs in the human lungs, especially in the alveoli. (B) Cross-section of the lung 383 
model on microfluidic chip, where two different channels are separated by a thin, porous mem- 384 
brane. This figure is reproduced from the work [76]. 385 

 386 

There is a pressing need for effective therapeutics for coronavirus disease 2019 387 

(COVID-19), which is a respiratory disease caused by severe acute respiratory syndrome 388 

coronavirus 2 (SARS-CoV-2) virus [77–79]. The SARS-CoV-2 virus several tissues includ- 389 

ing the lung, where the unique three-dimensional (3D) structure of its functional units is 390 

critical for proper respiratory function. The lung-on-a-chip is an in vitro lung model, which 391 

essentially recapitulates the distinct tissue structure and the dynamic mechanical and bi- 392 

ological interactions between the different cell types. Figure 6 depicts the design of a lung- 393 

on-a-chip, which successfully replicates the physiology and pathology of the human lungs 394 

for culturing immortalized cell lines or primary human cells from patients [76]. As shown 395 

in the cross-section of lung model of Figure 6B, human alveolar epithelial cells at the up- 396 

per channel and human pulmonary microvascular endothelial cells at the lower channel 397 

were separated by the extracellular matrix (ECM)-coated membrane. Once confluent, the 398 

media was aspirated from the upper channel to cultivate alveolar cells at air-liquid inter- 399 

face, and a syringe pump is connected to the lower channel to continuously infuse the 400 

media. 401 

Deep learning can be introduced into the lung-on-a-chip to accelerate drug develop- 402 

ment for COVID-19 and beyond. Sun et al. [66] reported that the lung-on-a-chip with deep 403 

learning has been utilized in COVID-19 infection studies, which is depicted in Figure 7. 404 

In Figure 7A, small-molecule immunosuppressants can inhibit the JAK/STAT pathway 405 

intracellularly and have been suggested for use against COVID-19-associated HLH. These 406 

small molecules bind to PDMS channel walls. In Figure 7B, biologics adsorb to PDMS 407 

channel walls, and the antiadsorptive coating is a method to prevent adsorption. In Figure 408 

7C, lung-on-a-chip is integrated with automated liquid-handling and continuous flow, 409 

which would provide a new solution for streamlining drug discovery and increasing 410 

throughput for screening lead compounds. In Figure 7D, deep learning algorithms (e.g., 411 

NNs) can aid drug discovery through molecular docking and design, image-analysis, and 412 

toxicity predictions. Effective usage includes generating and seeking out sufficiently large 413 

datasets to train algorithms to make accurate predictions. 414 

 415 
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 416 
Figure 7. Application of deep learning in lung-on-a-chip and upcoming advances. This figure is 417 
directly reproduced from the corresponding paper [66]. (A) Small lipophilic molecules bind to sur- 418 
faces such as PDMS channel walls and can be characterized by the Langmuir–Freundlich isotherm. 419 
(B) Biologics such as antibodies and recombinant proteins adsorb to PDMS channel walls. (C) Inte- 420 
grating lung-on-a-chip with automated liquid-handling and continuous flow. (D) AI algorithms 421 
such as NNs can aid drug discovery through molecular docking and design, image-analysis, and 422 
toxicity predictions. 423 

4.2. Liver-on-a-Chip 424 

Drug-induced liver injury (DILI) is a major cause of drug failure [80]. Drug metabo- 425 

lism leads to bio-transformations of pharmaceutical substances that alter drug efficacy, 426 

toxicity, as well as drug interactions. The liver is the primary site of drug metabolism, but 427 

traditional liver models cannot replicate the complex physiological structure and micro- 428 

environment of the liver, especially the O2 and nutrient gradients. Therefore, many re- 429 

searchers are making efforts on developing the liver-on-a-chip and have achieved signif- 430 

icant progress in relevant technologies. Figure 8 is a schematic of a liver-on-a-chip for 431 

recapitulating liver cytoarchitecture [81]. Primary hepatocytes were grown in the upper 432 

parenchymal channel with ECM sandwich format, while the liver sinusoidal endothelial 433 

cells (LSECs), Kupffer cells, and hepatic stellate cells were populated in the lower vascular 434 

channel. 435 

 436 

 437 
Figure 8. The cross section of the liver-on-a-chip for simulating hepatic sinusoids. This figure is 438 
reproduced from the work [81].  439 

 440 

However, the field is still somewhat in its infancy in terms of the standards, proce- 441 

dures, and methods for translating the data obtained in vitro into reliable predictions ap- 442 

plicable to human body responses [82]. Some deep learning methods were built to predict 443 

a chemical’s toxic potential in silico, so as to replace in vitro high-throughput screening 444 

[83]. One example is the Tox21 project for toxicity assays, which is a database comprised 445 

of compounds with various activities in each of the 12 different pathway assays. To this 446 

end, Capuzzi et al. [84] built Quantitative Structure-Activity Relationship (QSAR) [85] 447 
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models by using the Random Forest [86], DNNs, and various combinations of molecular 448 

descriptors and dataset-balancing protocols. However, the large experimental dataset has 449 

a higher chance of containing mislabeling either the chemical structures or their toxicity 450 

classes. To expand the availability of highly confident data, industry-driven collaborative 451 

efforts are required. In addition, Li et al. [87] reported that Johnson & Johnson used the 452 

liver-on-a-chip to test the hepatotoxicity of drugs [88]. Zhang et al. [89] reported that in- 453 

troducing AI [90] into OoCs could effectively improve the ability of data analysis of bio- 454 

medical platforms. 455 

4.3. Heart-on-a-Chip 456 

Heart diseases are the major killers threatening human health, and drug-induced car- 457 

diotoxicity is a major problem in drug development [91–93]. To resolve these two prob- 458 

lems, many researchers are devoted to studying in different manners. The heart-on-a-chip 459 

is a novel way of building heart models in vitro, and it is a promising tool for the study of 460 

heart diseases and drug screening. Figure 9A is the schematic of a heart-on-a-chip includ- 461 

ing medium reservoirs, microfluidic channels, gel-loading port, and PDMS thin mem- 462 

brane within the PDMS device [92]. Figure 9B is a screenshot of human microvascular 463 

endothelial cells (hMVECs) cultured in this microfluidic system. 464 

 465 
A 

 

B 

 
Figure 9. The heart-on-a-chip platform for culturing hMVECs. (A) Schematic of the heart-on-a-chip. 466 
(B) Perpendicular alignment of hMVECs cultured in this heart-on-a-chip (10%, 1-Hz strain). This 467 
figure is reproduced from the work [92]. 468 

 469 

Two sensing methods are mainly employed in heart-on-a-chip for physical and elec- 470 

trical measurements [94]: i) optical sensors, which are devices related to direct and calcium 471 

imaging, and fluorescent, laser-based, and colorimetric sensing; ii) electrical sensors 472 

which record the contractility of cardiomyocytes in real-time, such as impedance, strain, 473 

and crack sensing. However, these electrical sensors have limitations on the number of 474 

recording sites and the capacity of processing huge data. Hence, the sensors based on deep 475 

learning can be developed and introduced into the heart-on-a-chip for both optical and 476 

electrical-based measurements, to facilitate automated analysis and to improve the accu- 477 

racy of cardiac physical and electrical monitoring. In addition, the deep learning-based 478 

algorithms can acquire the physical properties (including size, shape, motility, and mov- 479 

ing patterns) and electrophysiological features (such as strength, velocity, and propaga- 480 

tion pattern of action potential) of numerous cells, in order to increase the accuracy of 481 

predicting both therapeutic and unexpected side effects of novel drug candidates during 482 

drug screening [95,96]. 483 

4.4 Gut-on-a-Chip 484 
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C 

 
Figure 10. The gut-on-a-chip platform for exploring the transport mechanism of Hg(II). (A) The 485 
actual design of the gut-on-a-chip platform. (B) A photograph of the gut-on-a-chip connecting with 486 
multi-sensors. (C) A confocal fluorescence photograph of a tight junction protein (red-marked ZO- 487 
1) and brush border protein (green-marked ezrin) in static (3 days; 21 days) and dynamic cultures 488 
(3 days) (scale bar 20 μm). This figure is reproduced from the work [67]. 489 

 490 

Many drugs are absorbed through the gut, and nowadays gut-microbiome research 491 

community commonly utilizes laboratory mice to study the drug performance on dis- 492 

eases. However, Marrero et al. [97] reported that animal models often failed when extrap- 493 

olated to humans due to the complex gut dynamics, the interactions of host and different 494 

microbiota components, and different immune systems between species. The latest gut- 495 

on-a-chip attempts to replicate the relationship between gut inflammation and host-mi- 496 

crobial population, so as to clarify the pathological mechanism of early intestinal diseases. 497 

Therefore, the gut-on-a-chip is a particularly necessary model to improve the knowledge 498 

of intestinal physiology and disease etiology [98]. Figure 10A is a full system integrating 499 

a gut-on-a-chip with its monitoring and culturing component [67]. Figure 10B shows the 500 

schematic of a gut-on-a-chip, which has simultaneous integration of three-electrode sen- 501 

sors and an Ag/AgCl electrode for in situ detection of Hg(II) and transepithelial electrical 502 

resistance (TEER). Figure 10C depicts the expression of the tight junction protein (ZO-1, 503 

red staining) and brush border protein (Ezrin, green staining) in static culturing (3 days 504 

and 21 days) and dynamic culturing (3 days). The immunofluorescence staining of ZO-1 505 

and Ezrin demonstrated that Caco-2 cells displayed tight junctions and brush borders. 506 

The resolution of confocal fluorescence photographs can be enhanced by involving AI al- 507 

gorithms (GAN [99], CNN [100]), and thus potentially conduct a better analysis of protein 508 

expression. 509 

Shin et al. [101] reported gut-on-a-chip devices inhabited by microbial flora. To de- 510 

velop a high-throughput system, Trietsch et al. [102] reported an array of gut-on-a-chip 511 

and demonstrated the efficiency of testing for drug toxicity. These multiplied gut-on-a- 512 

chip devices generated huge data, and hence deep learning technology is needed for data- 513 

acquisition, data-communication, and data-analysis. During data-acquisition and data- 514 

communication, as many related sensors are involved, the novel visual sensor networks 515 
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(VSNs) [103] can be used to perceive visual information (e.g., videos, images) in the ROI, 516 

so as to improve the quality of data communication. A VSN contains a set of spatially 517 

distributed visual sensor nodes with the capabilities of image processing, communication, 518 

and storage [104]. The key technologies of image processing for improving the perfor- 519 

mance of a VSN are image segmentation and super-resolution reconstruction. Therefore, 520 

many state-of-the-art AI methods based on deep learning can be transplanted into multi- 521 

plexed gut-on-a-chip devices. In addition, deep learning can also be integrated in drug 522 

testing phase, for predicting the effectiveness of the new drug and its side effects in the 523 

short and long terms. Marrero et al. [97] proposed an alternative biosensing solution, 524 

which could translate to gut-on-a-chip from other devices used in vitro or lab-on-a-chip. 525 

4.5. Brain-on-a-Chip and Brain Organoid-on-a-Chip 526 

 527 
Figure 11. Comparison of human brain avatars and the deep learning techniques for high-through- 528 
put drug screening. (A) The relationship between different brain avatars. (B) The injection-molded 529 
microfluidic chip allows the high-throughput drug screening of brain organoids-on-a-chip. (C)  530 
Deep learning is needed to conduct biological data analysis on massive data for high-throughput 531 
drug screening. The figure is reproduced from the work [105]. 532 

 533 

It is challenging to develop new drugs for treating neurodegenerative diseases and 534 

neurodevelopmental disorders, due to the poor understanding of pathogenesis and the 535 

lack of appropriate experimental models. Animal models have drawbacks, including eth- 536 

ical concerns, genetic heterogeneity with humans, and high costs [106]. Brain-on-a-chip 537 

and brain organoids are two alternatives, which have been extensively studied [107]. As 538 

shown in Figure 11A, brain-on-a-chip is mainly developed in the field of engineering, 539 

which can construct sophisticated and complex microstructures for 3D cell cultures by 540 

using microfabrication techniques [105]. Brain organoids belong to the biological field. 541 

Cakir et al. [108] reported that vascularized brain organoids could be formed through co- 542 

culturing of brain organoid and endothelial cells. Alternatively, certain portions of stem 543 

cells within the stem cell aggregates could be differentiated into brain endothelial cells. 544 

Although brain organoids have great potential in mimicking the ultrastructure of the 545 

brain tissue, the brain-on-a-chip is good at reconstructing the characteristics of brain mi- 546 

croenvironment on the engineering platform. However, two technologies also have limi- 547 

tations in the generalization of microenvironment characteristics and structures, which 548 

means that more in-vivo related brain models are needed. In this regard, brain organoid- 549 

on-a-chip has emerged to serve as a novel “human brain avatar”, which was formed by 550 

incorporating matured brain organoids into the brain-on-a-chip with hydrogels [109]. As 551 

shown in Figure 11B, brain organoid-on-a-chip has a heterogeneous 3D structure in a sin- 552 

gle organoid, and its unit size is large, which makes it difficult to image at high magnifi- 553 

cation. Therefore, continuous imaging should be performed to visualize the height-de- 554 

pendent structures, which is essential for high-content screening. In addition, for high- 555 
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throughput screening, an automatic imaging system should be used to image multiple 556 

organoids. In both cases, it is too difficult to identify the number of massive images in a 557 

labor-intensive manner (Figure 11B). Therefore, deep learning techniques can be utilized 558 

for data analysis in both HCS and HTS, ranging from supervised learning methods (CNN, 559 

RNN) to unsupervised learning methods (deep generative models) [68]. These algorithms 560 

are capable of clustering, classification, regression, and anomaly detection (Figure 11C). 561 

Deep brain stimulation (DBS) [110] is a surgical treatment for motor symptoms of 562 

Parkinson’s disease (PD) [111], which can provide electrical stimulation to the basal gan- 563 

glia (BG) [112] region of the brain. Existing commercial DBS devices only use stimulation 564 

based on fixed frequency periodic pulses, but this device is very inefficient in terms of 565 

energy consumption. Moreover, fixed high-frequency stimulation may have side effects, 566 

such as speech impairment. To address the above problems, Gao et al. [113] proposed a 567 

deep learning method based on reinforcement learning (RL) [114] to help derive specific 568 

DBS patterns, which were able to provide effective DBS controllers and energy efficiency. 569 

This RL-based method was evaluated on a brain-on-a-chip field-programmable gate array 570 

(FPGA) [115] platform to conduct the basal ganglia model (BGM) [116]. 571 

In general, the amount of data obtained from a single brain-on-a-chip is less than 10. 572 

However, a single brain-on-a-chip requires 1-2 hours for fabrication, 4 hours for baking, 573 

and 3-4 hours for the photolithography process of master fabrication [117]. Therefore, 574 

manufacturing processes of a brain-on-a-chip is labor-intensive and time-consuming, 575 

which makes it difficult to introduce high-throughput analysis or deep learning. 576 

4.6. Kidney-on-a-Chip 577 

The kidney is an important excretory organ responsible for maintaining osmotic 578 

pressure and internal environment. Kongadzem et al. [118] reported that the kidney-on- 579 

a-chip can be used to overcome the shortcomings of traditional animal models and per- 580 

form the following operations: first, improve the drug dose of kidney diseases. Second, 581 

using the kidney-on-a-chip can help understand the increase of urea blood and other ni- 582 

trogenous waste. In addition, the kidney-on-a-chip can help the drug testing and devel- 583 

opment for kidney diseases, so as to more effectively identify the drug efficacy, drug-in- 584 

duced nephrotoxicity, and interactions. 585 

Kim et al. [119] reported a pharmacokinetic profile that could reduce nephrotoxicity 586 

of gentamicin in a perfused kidney-on-a-chip platform (Figure 12A), which provided the 587 

structure of a kidney-on-a-chip and junctional protein expression of each group. In Figure 588 

12B, the static and shear groups were measured before exposure to gentamicin, and D1 589 

and D2 groups were measured 24 hours after exposure to gentamicin. Compared with the 590 

Transwell cultures, the polarization of all groups was improved. 591 

 592 
A 
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Figure 12. The kidney-on-a-chip is developed for monitoring nephrotoxicity. (A) Schematic and 593 

actual image of the kidney-on-a-chip. (B) Biomarker expressions by the cells in the kidney-on-a- 594 
chip in different groups. The figure is reproduced from the work [119]. 595 

 596 

Since the activities, mechanics of a kidney can be stimulated by the kidney-on-a-chip, 597 

it is expected that the developed chip can function as a normal kidney component for 598 

conducting effective drug testing [118]. This will generate a large amount of data, because 599 

it is necessary to determine the parameter values required for drug efficacy from the cell 600 

measurements in the kidney-on-a-chip. Deep learning can analyze these parameters, in 601 

order to classify or predict the cell response to drugs in the chip, and then determine the 602 

drug efficacy. 603 

Nowadays, drug-induced kidney injury (DIKI) is one of the leading causes of failure 604 

of drug development programs in the clinic. Early prediction of renal toxicity potential of 605 

drugs is crucial to the success of drug candidates in the clinic. The kidney-on-a-chip de- 606 

velopment that are crucial to improve early prediction of DIKI [72]. Kulkarni et al. [120] 607 

reported that newer in silico and computational techniques such as physiologically based 608 

pharmacokinetic modeling and machine learning have demonstrated potential in assist- 609 

ing the prediction of DIKI. Several machine learning models such as random forest, sup- 610 

port vector machine, j-nearest neighbor, naïve Bayes, extreme gradient boost, regression 611 

tree, and others have been studied for the prediction of kidney injury [69–71]. Machine 612 

learning may improve DIKI predictive ability of the biomarker by automatically identify- 613 

ing nonlinear decision boundaries and classifying compounds as toxic or nontoxic with 614 

greater accuracy [71]. Potentially, the kidney-on-a-chip can simulate the certain functions 615 

of a kidney, and deep learning is more suitable for tackling massive data than machine 616 

learning. Therefore, the progress in kidney-on-a-chip platforms in combination with the 617 

ability of deep learning can be a new alternative for resolving DIKI in the future. 618 

4.7. Skin-on-a-Chip 619 

 620 
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Figure 13. The experimental setup consists of two simultaneous skin-on-a-chip. This setup contains 621 
a flow-through dynamic microfluidic device and a programmable syringe pump. The experimental 622 
samples can be collected below the diffusion system in the collection bench. The figure is repro- 623 
duced from the work [121]. 624 

 625 

When the skin contacts the external environment, ultraviolet rays, pollutants, and 626 

microorganisms in the environment can cause skin diseases [122]. In recent years, drug 627 

delivery through the skin is also a research hotspot, including the screening of drugs in 628 

vitro by using the skin-on-a-chip. This miniaturized chip based on microfluidics is a plat- 629 

form to mimic the skin and its equivalents in a simple manner. Figure 13 depicts a solution 630 

for designing the skin-on-a-chip for testing drug penetration through the skin [121]. 631 

Sutterby et al. [73] reported that the skin-on-a-chip circumvented the drawbacks of 632 

traditional cell models by imparting control in the microenvironment and inducing re- 633 

lated mechanical information. The skin-on-a-chip assesses the metabolic parameters (O2, 634 

pH, and glucose and lactate) via embedded microsensors, so as to assist in the rigorous 635 

evaluation of cell health and streamline the drug testing process. This process has poten- 636 

tial to be intelligentized, since the various metabolic parameters can provide multi-source 637 

labeled dataset for training a deep network. A possible solution for this is to learn a map- 638 

ping between these metabolic parameters and their labels through deep learning, so as to 639 

classify the cells into healthy or unhealthy. In this way, deep learning can further improve 640 

the prediction accuracy of drug-absorption rate through the skin. 641 

5. Discussion 642 

Recently, researchers in different fields have started trying to solve problems in their 643 

respective fields with deep learning. Some reports show that the integration of OOCs and 644 

deep learning has broad prospects, which can further extend to develop patients-on-a- 645 

chip for precision medicine [123]. Meanwhile, there are also various challenges in the fu- 646 

ture applications of deep learning [124]. 647 

5.1. Upcoming Technical Challenges 648 

Data with automatic annotation. The development of automatic data annotation al- 649 

gorithms and tools can automatically label a large number of unlabeled data, reduce the 650 

tremendous cost of manual annotation, and enhance the efficiency of annotation and de- 651 

velopment [125]. The automatic data-annotation algorithms and tools can effectively ex- 652 

pand training and validation datasets, so as to improve the prediction accuracy of the 653 

neural networks, which are trained for classifying single-cell trajectories, tracking, and 654 

motion analyses of cell clusters and particles in time-lapse microscopy images. 655 

Automated network design. As an important branch of AutoML [126], neural archi- 656 

tecture searching (NAS) [127] has attracted more and more attention. In deep learning- 657 

based tasks of classification, detection, segmentation, and tracking, the structure of neural 658 

network has a decisive impact on the performance of the overall algorithm. The traditional 659 

structure designs of neural networks require expert knowledge and trial-and-error costs. 660 

Therefore, it is extremely difficult to manually design network structures. The NAS tries 661 

to automatically design a network structure with good performance and fast computing 662 

speed, and frees people from complex network tuning. The ideal NAS technology only 663 

requires a user-defined dataset, and the entire system can try various network structures 664 

and network connections. Through training, optimizing, and modifying these neural net- 665 

works, the system gradual outputs a desired network model. The NAS methods replace 666 

the conventional time-consuming process by avoiding “manual design-try-modify-try”. 667 

There are two main challenges during network design: intractable search space and non- 668 

transferable optimality. Different from the hyperparameter optimization (HO) [128] for 669 

network training, the NAS is adopted to optimize the parameters that define the network 670 

structure. 671 
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Multi-variate time-series. Analysis of short-term cardiovascular time series can help 672 

to achieve early detection of cardiovascular diseases. Integrated AI systems can help ex- 673 

pedite time-series analysis and improve the accuracy of time-series prediction. The key 674 

models for time-series data in computer science (like NLP) are sequence-to-sequence 675 

(seq2seq) models [129], attention models [130], transformer models [131], and graph neu- 676 

ral networks (GNN) [132]. These technologies can help explore the relationship network 677 

and correlation weights between different data points, to increase the accuracy of predic- 678 

tion and analysis. The seq2seq-based time-series anomaly detection methods can detect 679 

abnormal fragments in cardiovascular time series. Attention models generally are utilized 680 

in neural network models for sequence prediction, which makes the model pay more at- 681 

tention to the relevant parts of historical variables and current input variables. TPA-LSTM 682 

[133] is one of multivariate time series forecasting approaches, and it modifies the conven- 683 

tional attention mechanism by paying more attention to the selected important relevant 684 

variables rather than all relevant variables. The conventional multi-variate time-series 685 

anomaly detection has the following challenges, such as large amount of data, and re- 686 

quirement of real-time ability. The transformer is a seq2seq model using the self-attention 687 

mechanism, and its advantage is the ability of parallel computing. Based on this ad- 688 

vantage, the transformer can conduct quick anomaly detection in a large amount of multi- 689 

variate time-series over a wide time span. Moreover, the multi-variate time-series requires 690 

additional technologies to handle the issue of high dimensions, especially to capture the 691 

potential relationships between dimensions. The introduction of GNN is a way to model 692 

spatial dependencies or the relationship between dimensions. The survey [134] demon- 693 

strates that the combination of GNN and attention model/transformer can significantly 694 

improve performance of multi-variate time-series prediction. Therefore, using Trans- 695 

former and GNN to model multi-variate time-series data is worth further studying. In 696 

addition, multimodal input data [135,136] (e.g., statistical data of cardiovascular time se- 697 

ries, text data of subjective physician's experience, and image of electrocardiogram) can 698 

further perfect the performance of multi-variate time-series analysis system. 699 

5.2. Promising Applications 700 

Human-on-a-chip. As shown in Figure 14, a human-on-a-chip consists of multiple 701 

OoCs with different organ representations [87]. Future works can possibly focus on ana- 702 

lyzing multiscale data of each OoC (e.g., the growth, differentiation, or metabolism of 703 

cells) and their interactions by using deep learning methodologies, so as to integrate OoCs 704 

as fully controllable microfluidic platforms and achieve high-throughput assays at single- 705 

cell resolution. 706 

Rare disease-on-a-chip. Although OoCs have achieved significant progress on in 707 

vitro disease models, the drug development for rare diseases is greatly hindered due to 708 

lack of appropriate preclinical models for clinical trials [137,138]. Building rare disease- 709 

on-a-chip can generate important real-time dataset, which is hardly observable in clinical 710 

or in vivo samples [139]. Such datasets can be utilized to train a deep learning model for 711 

analyzing the changes of such rare diseases at the molecular level and further study the 712 

mechanisms of disease occurrence, along with improved capacities in drug discovery by 713 

conducting larger-scale clinical trials on OoCs not possible with small pools of patients. 714 
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 715 
Figure 14. Extracted cells (2) from a human body (1) are placed in perfusable microfluidics (3) to 716 
construct OoCs (4). Multiple OoCs are combined in a human-on-a-chip (5). This figure is directly 717 
extracted from Reference [87]. 718 
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