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ABSTRACT

A primary goal of computer experiments is to reconstruct the function given by the computer
code via scattered evaluations. Traditional isotropic Gaussian process models suffer from the curse
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of dimensionality, when the input dimension is relatively high given limited data points. Gaussian

process models with additive correlation functions are scalable to dimensionality, but they are
more restrictive as they only work for additive functions. In this work, we consider a projection
pursuit model, in which the nonparametric part is driven by an additive Gaussian process regres-
sion. We choose the dimension of the additive function higher than the original input dimension,
and call this strategy “dimension expansion”. We show that dimension expansion can help
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approximate more complex functions. A gradient descent algorithm is proposed for model train-
ing based on the maximum likelihood estimation. Simulation studies show that the proposed

method outperforms the traditional Gaussian process models.

1. Introduction

Contemporary practices in engineering and physical sciences
have made increasing use of (deterministic) computer simula-
tions, in disciplines including aerospace designs, material sci-
ence, and biomedical studies. One of the central research topics
is to build an accurate surrogate model to emulate computer
simulations. Gaussian process regression (Rasmussen and
Williams, 2006; Santner et al., 2003) is one of the most popular
surrogate models. Various modifications and extensions of the
standard Gaussian process regression models have been pro-
posed to address the specific needs in practical situations. An
incomplete list of these methods includes composite Gaussian
processes (Ba and Joseph, 2012), treed Gaussian processes
(Gramacy and Lee, 2008), non-stationary models (Heaton
et al, 2017), transformed approximately additive Gaussian
processes (Lin and Roshan Joseph, 2020), etc.

Data analysis for computer simulations usually suffers
from the “small data” issue, because the computer simulation
runs can be highly costly. For example, each run of a typical
computational fluid dynamics model for aerospace engineer-
ing takes a few days or even weeks to run (Mak et al, 2018).
Many computer simulations also pose the curse of dimension-
ality problem, in the sense that the input dimension is rela-
tively high so that building an accurate surrogate model based
on limited data points becomes more challenging. Classic
approaches for dimension reduction in computer experiments
include sensitivity analysis (Oakley and O’Hagan, 2004;
Saltelli et al., 2010; Durrande et al., 2013), ridge approxima-
tion (Pinkus, 1997; Hokanson and Constantine, 2018; Glaws
et al., 2020). Variable selection for Gaussian processes models

is considered in Linkletter et al. (2006), Constantine et al.
(2014) and Gu (2019). In Gaussian process regression, it is
also known that some correlation structures perform better in
high-dimensional scenarios (Stein, 1999). Recently, additive
Gaussian process models have received considerable attention
(Lebarbier, 2005; Duvenaud et al., 2011; Durrande et al., 2012;
Tripathy et al., 2016; Deng et al., 2017; Delbridge et al., 2020).
Although these models are more scalable to the input dimen-
sion, their capability of model fitting is lower because these
models can only reconstruct additive functions precisely.

In this work, we propose a novel surrogate modeling
technique based on the projection pursuit methodology
(Friedman and Stuetzle, 1981) and additive Gaussian process
models. Gaussian Process Regression (GPR) can provide
prediction variance as opposed to projection pursuit (neural
networks). Additionally, unlike the conventional estimation
approaches for projection pursuit (Ferraty et al, 2013;
Gilboa et al.,, 2013; Li et al., 2016), we suggest choosing a
large number of intermediate nodes to introduce more
model flexibility. Then we use the Maximum Likelihood
(ML) estimation to identify the model parameters. A gradi-
ent descent algorithm is proposed to search the maximum
of the likelihood function. In this work, we also find an
error bound of the prediction error for Gaussian process
regression with additive Matérn correlation functions. Our
theoretical results show that the prediction error of additive
Gaussian process models is much lower than that given by
isotropic Gaussian process models for high-dimensional
problems, provided that a design with nice projection prop-
erties, such as a Latin hypercube design, is adopted.
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This article is organized as follows. In Section 2, we
review the background of GPR with isotropic and additive
Matérn correlation functions. In Section 3, we introduce the
proposed methodology, called the Projection Pursuit
Gaussian Process Regression (PPGPR). An algorithm of the
proposed method is given at the end of Section 3. In
Sections 4 and 5, we conduct simulation studies to demon-
strate the use of the proposed method, and show that the
proposed method outperforms some existing methods. In
Section 6, we shows that the performance of the proposed
method is satisfactory through a real-world application.
Concluding remarks are made in Section 7.

2. Review on GPR

In this section, we review a simple version of the Gaussian
process emulation (Santner et al., 2003). Let Z be a station-

ary Gaussian process on R with mean zero, variance o2,
and correlation function ®. Given scattered evaluations
(x1,Z(x1)), ..., (x4, Z(x,,)), one can reconstruct Z using its
conditional expectation

Z(x) = E(Z(%)|Z(x1)5 ..s Z(x,)) = rT () K'Y, (1)

for x € R? where r(x):= (®(x —x1),...D(x — x,)) , K =
(D5 — x)) and k=1,..,n
Y = (Z(x1), . Z(x4)) "

and

for j=1,..,n

2.1. Curse of dimensionality in GPR with isotropic
Matern correlation

The curse of dimensionality is one of the fundamental chal-
lenges in various high-dimensional statistical and machine
learning problems. In this section, we review how the curse
of dimensionality can affect the prediction performance
of GPR.

The prediction error of the GPR is

Z(x) = Z(x) = Z(x) = E(Z(x)|Z(x1), .. Z(x)),

which is a function of x. Tuo and Wang (2020) study the
rate of convergence of the prediction error under different
function norms, under the assumption that the Gaussian
process has an isotropic Matérn correlation function
(Santner et al., 2003), defined as

Vs 1,9) = i VPRI K 2Vl @

where v > 0 is the smoothness parameter, K, is the modified
Bessel function of the second kind, ¢ >0 is the
scale parameter.

To explain the curse of dimensionality issue posed by the
isotropic Matérn correlation functions, we refer to Theorem
3.3 of Tuo and Wang (2020), which states a lower bound of
the maximum of the prediction error of an isotropic
Gaussian process. For simplicity, we consider the expected

maximum prediction error. Suppose the input region of
interest is €, and then the expected maximum prediction
error is Esup,.q|Z(x) — Z(x)|. Here the expectation is
taken over the randomness of the Gaussian process Z(-).
Theorem 3.3 of Tuo and Wang (2020) implies

Esup |Z(x) — Z(x)| > Con™"/%\/log n, (3)
xeQ

for a constant C independent of n, ¢ and the choice of the
experimental design.

The lower bound in (3) shows that the uniform error of
a GPR predictor with an isotropic Matérn correlation is no
less than a multiple of #n~*/¢,/logn. This rate grows dra-
matically as d increases with a fixed v. Therefore, when a
Gaussian process model with an isotropic Matérn correl-
ation is considered, its prediction suffers from the curse of
dimensionality, in the sense that, for a high-dimensional
problem, acquiring extra data points cannot improve the
prediction accuracy as effectively as in lower-dimen-
sional problems.

In GPR, the curse of dimensionality is inevitable if the
underlying function is indeed a realization of a Gaussian
process with isotropic Matérn correlation. The reason
behind this is that the reproducing kernel Hilbert spaces
generated by these correlation functions are too large in
high-dimensional circumstances. Fortunately, in most real
applications, we confront much “simpler” high-dimensional
functions. These functions admit a certain “sparse repre-
sentation”, and therefore, at least theoretically, can be recov-
ered at a much higher rate of convergence. In Section 2.2,
we examine a special and simple structure of this kind.

2.2. Additive models: Accuracy and limitations

A scalable GPR approach proceeds by equipping an additive
correlation function. Denote x = (x(1>, ...,x(d)). We consider
the following function:

d
(I)(x) = %Z(Dl (X(j)), (4)
j=1

where ®@; denotes a one-dimensional correlation function. It
is easily seen that @ is positive definite if @; is positive def-
inite. Thus, one can consider Gaussian process models with
correlation (4). This approach is called the additive Gaussian
process regression (Lebarbier, 2005; Duvenaud et al., 2011;
Deng et al., 2017).

Compared with isotropic models, additive models are
much more scalable to the dimensionality. It can be shown
that the rate of convergence of the uniform error is inde-
pendent of d. Specifically, if @, is a Matérn correlation func-
tion with smoothness v, the uniform prediction error in (3)

can have a rate of convergence O(n"’\/ log n); see our the-

oretical results in the Supplementary Materials.

Despite the above advantages, the limitations of additive
models are also evident. Only additive functions, i.e., the func-
tions that can be decomposed as the sum of functions such that
each of them relies on only one entry of x, can be accurately
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Figure 1. Contour plots of f(x,y) = xy + x? and the reconstructed functions by additive and isotropic GPR using a same 25-point random design between -1 and
1. It can be seen that the isotropic model has a much better prediction performance.

Figure 2. Network structure of PPGPR.

reconstructed. This assumption is not true for most of the prac-
tical problems. Consider a two-dimensional input (x, ¥). A sim-
ple non-additive function is f(x, y) = xy + x*. Figure 1 shows
that the additive model cannot fit this function well, while the
isotropic model works in this case.

3. PPGPR

In this section, we propose a general approach to recon-
struct multi-dimensional functions that admits more compli-
cated sparse representations. To this end, we consider a
model which is more flexible than additive Gaussian process
models. Specifically, we employ the projection pursuit
regression method (Friedman and Stuetzle, 1981) to model
the underlying function as

y(x) = f(wlx, wlix, .., whx), (5)

where wy, ..., wy are unknown vectors, M is a positive inte-
ger, and f is an additive function in the sense that f can be
written as

fwixwyx, oo wyx) = i(wix) + fo(wyx) + - + fu(wyx),
(6)

with unknown univariate functions fi, ..., fir. In other words,
this model first applies a linear transformation on the input
space, and then use an additive function to fit the responses.

A projection pursuit model can be represented by a four-
layer network shown in Figure 2, which is similar to a
neural network model. Neural networks have been widely
used to enhance the precision of nonparametric regression
(Psichogios and Ungar, 1992; Hinton and Salakhutdinov,
2006; LeCun et al.,, 2015; Goodfellow et al., 2016); Khoo
et al. (2017) and Tripathy and Bilionis (2018) employ deep
neural networks to reduce the dimension of data; Wilson
et al. (2011) combine neural networks with GPR method to
tackle multi-task problems. The main difference between the
projection pursuit method and neural networks lies in the
activation functions. In neural networks, the activation func-
tions are chosen as a fixed function, such as rectified linear
unit (ReLU) functions. In contrast, the projection pursuit
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Figure 3. Two different representations of f(x,y) = xy -+ x? via projection pursuit.

method uses estimated activation functions. In this work, we
call the two hidden layers the transformation layers.

When M =1, the projection pursuit model reduces to a
single index model, which provides a parsimonious way to
implement multivariate non-parametric regression. By
imposing suitable priors on the parameters, Choi et al
(2011), Gramacy and Lian (2012) and Hu et al. (2013) use
the Bayesian approach to estimate the parameters of the sin-
gle index model. In Wang et al. (2010), a dimension reduc-
tion method is applied to choose the number of nodes and
then the link function is estimated using GPR. In this work,
we consider projection pursuit models with M > 1, which
are much more flexible than single index models.

Given a sufficiently large M, it is known that the projec-
tion pursuit model can approximate any continuous func-
tion arbitrarily well (Hastie et al, 2009). For example, the
non-additive function f(x,y) = xy + x> can be represented
by projection pursuit as shown in Figure 3. Figure 3 also
shows that the representation is not unique.

The non-uniqueness of the projected pursuit representa-
tion suggests that each of the “directions” w; may not be
essential. In contrast, these vectors exhibit a “synergistic
effect”, so that they need to be estimated jointly. Consider
the example shown in Figure 3(a). Taking the direction x +
¥/2 along is not helpful in obtaining the underlying function
xy + x?; this direction makes sense only when it is paired by
the direction y. This phenomenon differs from the classic
results in linear models, in which the significant directions
(usually defined by the principal components) are fixed, and
their importance is ordered by the corresponding
eigenvalues.

Understanding this difference between the linear and
nonlinear models helps build a better projection pursuit
regression model. Traditionally, the projection pursuit
method is usually regarded as a dimension reduction
approach (Ferraty et al, 2013; Gilboa et al., 2013), and
greedy algorithms are usually applied to identify w;’s (James
and Silverman, 2005; Muller and Yao, 2008; Gilboa et al.,
2013). These strategies have the following deficiencies: (i) it
is often hard to accurately approximate the underlying func-
tions through dimension reduction (M < d). For example,
the function f(x,y) = xy + x* cannot be recovered through
a one-dimensional factor. (ii) Greedy algorithms, which pro-
ceed by picking the current “most significant” direction in
each step, cannot perform well when there is no order of
importance in the directions, as in the example shown in
Figure 3. In this work, we propose a method, which con-
ducts a dimension expansion (M > d) to improve the
approximation power substantially.

~Gx+y)

O E
O~

(b)

——

®
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When M > d, the projection pursuit model is in general
non-identifiable; see Figure 3 for an example. The learning out-
come on w;’s are meaningless, and we only focus on the predic-
tion of the underlying response at untried input points. Our
numerical experience shows that as long as M is large enough,
the prediction performance of the proposed method is not
heavily dependent on the specific value of M. We recommend
choosing M close to, but slightly less than, the sample size n.

In this work, we propose a novel approach, called the
PPGPR. To reconstruct the underlying function, we need
to: (i) estimate the weight parameters w = (wy, wy, ..., Wy);
(ii) reconstruct the combination function f given w using
Gaussian process regression (Rasmussen and Williams,
2006; Santner et al., 2003). Recall that the design matrix is
denoted as X = (xl,xz,...,xn)T, x; €R? for i=1,2,...,n,
and the response as Y = (f(x1),f(x2),...f(x,))". Now we
employ the idea of GPR to assume that f is a realization
of a Gaussian process. Specifically, we assume that the
Gaussian process has mean zero and an additive correl-
ation function (4). We believe that the mean zero assump-
tion is not too restrictive because the model is already
non-identifiable.

The training of the proposed method proceeds by an
iterative approach. First, we choose an initial weight param-
eter w. Then we compute the initial correlation matrix

(,)—< Z(Dwk Xi — Xj ))

based on the initial w. Next, we invoke (1) to reconstruct
the underlying function f as

O )
where ¢ is a nugget term to enhance the numerical stability.

Our goal is to seek for w* which maximizes the log-
likelihood function of GPR (Santner et al., 2003), that is,

mM%n(l(w))

i

T (wlx)(Ky, + 01)7'Y.

= min(Y'(K,, 4 6I)"'Y + logdet(K,, + I)).

(8)

We refer I(w) to the model loss. The gradient of I(w) with
respect to wy is

:——ZZ (YK ! —K ly

i=1 j=1

K,)(x = x)7,

8wk

+ Tr( )
for k =1,2,...,M. The derivative of the matrix K,, can be
computed using the following facts. The derivative of the
Matérn correlation function is (Wendland, 2004)
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Then the gradient descent method can be applied here to
find the minimizer via iteratively updating

l(w)
8Wk ’

Wi < W —1

where 7 is the step length for the gradient descent algorithm,
and is referred to as the learning rate in the rest of this article.

When the algorithm converges or a stopping criterion is
met, one can again reconstruct the underlying function using
(7). Algorithm 1 lists the detailed steps of the proposed train-
ing method, each iteration (epoch) includes calculating the
gradient for all weights and renewing the weights. To avoid
overfitting, an early-stopping criterion (Prechelt, 1998) should
be implemented when choosing P (the number of epochs).

In addition to P, there are other hyper-parameters in the
proposed methodology, including M,# and the hyper-
parameters of the covariance function. We refer the activity
of adjusting these parameters to the tuning process. Below is
a list of our general recommendations for tuning:

e The proposed method does not use the ML estimators
(Santner et al., 2003) to estimate the hyper-parameters of the
GP covariance because the ML estimators are likely to overfit
with relatively small sample sizes (Santner et al., 2003).

e Determining a proper learning rate # through cross-valid-
ation such that it maintains a stable training process (i.e.,
the model loss decreases neither too sharply nor too slowly).

e Increasing the size of representation nodes M until the
performance on the testing points starts to deteriorate. In
practice, we recommend considering M in the range
[4d, 8d] in a d-dimensional problem.

e Adopting early stopping policies (Prechelt, 1998) in the
training process when choosing P to avoid overfitting.

e Using cross-validation to choose the hyper-parameters of
the covariance function.

More discussion regarding the tuning process is provided
through a numerical study in Section 4.1.

Algorithm 1 Training steps for transformation weight w

Input: design matrix X = (x1,%,...,%,), response Y =
(¥1> Y25 .- ¥u), initialized weight w = (w1, wy, ..., war), correl-
ation function @, learning rate #, number of iterations P

Output: transformation weight w

for pin1:P do
2: X' — wlX

K, — ®(X, X
4:for kin 1: M do

1 n n Tr—1 aKW 1 1 T
grady — 7MZ":1 ZJ:I(Y K, TW;(KW Y+ Tr(K, ")) (xi — x;)
6: Wi «— wy — 1 - grady
end for
8: end for

IISE TRANSACTIONS 905

4, Simulation studies

In this section, we examine the performance of the proposed
method via simulation studies. Based on four numerical
experiments, we will provide some guidelines for parameter
tuning for PPGPR in Section 4.1. In Section 4.2, we compare
the proposed method with some other prevailing algorithms
and show the advantages of the proposed method.

4.1. Choice of tuning parameters

In this section, we study how the choice of the hyper-
parameters of PPGPR can affect its prediction performance.
Recall that the hyper-parameters include the learning rate #,
the size of nodes M in the transformation layers, the num-
ber of epochs (iterations) P, the choice of the correlation
function (Matérn or Gaussian) and smoothness parameter v
if a Matérn correlation is used.

In the rest of this subsection, we will use the Borehole
function (Harper and Gupta, 1983) as the test function to
study the performance of the proposed PPGPR under differ-
ent choices of hyper-parameters. The Borehole function is
defined as

27‘CTM(H“ — Hl)

- r T, 20T, ’
10g (K) {1 + T + log (#)rvaw}

y

with the ranges for the eight variables given by r, €
(0.05,0.15), r € (100,50000), T, € (63070,115600), H,, € (900,
1110), T; € (63.1,116), H; € (700,820), L € (1120,1680) and
K,, € (9855,12045). Halton sequences' (Halton, 1964) with 40
samples are used as the training set inputs and 500 random sam-
ples are used as the testing set inputs. We consider different
choices of the tuning parameters and compare the corresponding
prediction performance in terms of the Mean Absolute
Percentage Error (MAPE) (Makridakis, 1993):

1 n
MAPE:;Z

i=1

Yi

(10)

)A’i_)’i’

where n=500 is the size of testing samples;  and y denote
the predictive value and true value of a testing sample,
respectively.

The details of the numerical experiments are described in
Sections 4.1.1-4.1.3. We choose 107 as the nugget term of (8)
in this section to avoid some numerical instability, see Peng
and Wu (2014) for more guidance on choosing nugget terms.

4.1.1. Learning rate n and number of representation
nodes M

In this experiment, a Matérn correlation function with v =

2.5 is used and training epochs P=150. We examine the

performance of PPGPR under different learning rates and

different node sizes in the transformation layers.

"Halton sequences are deterministic low discrepancy sequences used to
generate points in space for numerical experiments. The Halton sequences can
be generated efficiently by the R package SDraw.
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Figure 4 shows the MAPE of PPGPR under different
learning rates with respect to the size of representation
nodes. It can be seen that when 5 = 107!°, the MAPE is
much higher than those in the other three situations. For
n=10"% the model reaches its best performance when
M =28. The models with M =35 have lower MAPE when
n=10"7 and n=10"°. In general, the models with # =
10~ perform slightly better and more stably.

According to Hastie et al. (2009), the PPGPR model can
approximate any continuous functions as M — oo for an
appropriate choice of kernel function. The Matérn kernels
are within this class because the reproducing kernel Hilbert
space generated by any Matérn kernel contains all polyno-
mials. This explains why the performance of PPGPR grows
as M increases when M is small. However, when M is above
35, the MAPE becomes worse for most of the curves in
Figure 4, which may be due to overfitting because there are
too many hidden nodes. In practice, we suggest employing
cross-validation to select the optimal M.

Figure 5 shows four curves generated with a common ini-
tial w and different learning rates when M = 35. Each of them

1.0

MAPE

0.4

0.2

0.0

10 15 20 25 30 35 40

Number of nodes in transformation layer

Figure 4. MAPE under different learning rates and size of nodes in transform-
ation layers.
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Figure 5. Model loss with different learning rate.

shows the relationship between the model loss defined in (8)
and the number of iteration. From Figure 5, we find that,
107 is too low as a learning rate, because the model loss is
still high (about 5 x 10°) even after 100 iterations. This obser-
vation is also confirmed by the MAPE results in Figure 4, in
which the MAPE for M =35 corresponding to = 10710 is
much higher than those in the other ones. The model loss
curves for the other three learning rates are similar. We
believe that the choice of 7 = 10~ gives a slightly better result
than those given by 7 = 1078 or n = 1077, because the model
loss curve under 7 = 10~° decreases more smoothly than the
other two, which implies a more stable learning process
(Lawrence and Giles, 2000). According to Keskar et al. (2016),
flat minima might have higher generalization than sharp
minima. In addition, a too small model loss after training
might result in overfitting which will be shown in Section
4.1.3. Figure 4 also implies that 7 = 1077 gives the best MAPE
when M =35. In practice, the optimal learning rate relies on
the underlying function. Therefore, we recommend tuning y
via cross-validation.

4.1.2. Effects of correlation function type and parameters
In this experiment we examine the performance of PPGPR
under different correlation functions and smoothness
parameters with 7 = 10~ and P = 150.

Figure 6 shows the MAPE for PPGPR with the Matérn
correlation functions under different M and v with ¢ = 1.
It can be seen that when v = 2.5 (green line), the model
performs better than other choices. Under v = 2.5, the best
prediction performance is achieved when M = 35. Generally,
with a larger v, the reconstructed function would be
smoother, which may lead to overfitting; with a smaller v,
the reconstructed function would be less smooth, which
may result in instability or underfitting. Figure 7 shows the
MAPE for PPGPR with Gaussian correlation functions
under different M and ¢. We can see that, when M =35,
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Figure 7. MAPE under different ¢ and M for Gaussian correlation functions.

the green line (¢ = 0.5) reaches its lowest MAPE, which is
slightly better than the MAPE under other M and ¢ in this
experiment. This experiment shows that Matérn correlation
functions with v = 2.5 seem to be an appropriate choice of
the correlation functions. We also recommend using cross-
validation to determine the optimal correlation function if
computational resource permits. Table 1 shows the numer-
ical values of the lowest MAPE of PPGPR under the above
Matérn and Gaussian correlation functions.

4.1.3. Training epochs P

In this experiment the model loss and the prediction error
of PPGPR during the training process are monitored. Here
we use a Matérn correlation function with v =2.5 and =
1078, M=21.

Figures 8(a) and 8(b) plot the model loss and prediction
error against the training epochs, respectively. We can see
from Figure 8(a) that the model loss is monotonically decreas-
ing as M increases. This implies that the proposed gradient
descent algorithm works in a desired way. However, Figure
8(b) shows that the prediction error is not a monotonic func-
tion in the model loss. The model achieves its best perform-
ance when P =220, and as P further increases, the prediction
error increases. This phenomenon has been observed in other
network structures such as neural networks. In a typical
neural network training process, a slower early-stopping cri-
terion with 4% (i.e., stopping the training process when the
relative generalization improvement is less than 4%) could be
used to avoid overfitting caused by an overshot training
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Table 1. Best MAPE for PPGPR with Gaussian and Matérn correlation functions.

M ¢ v MAPE
Matérn 35 1 2.5 0.124
Gaussian 42 0.5 - 0.263

process (Prechelt, 1998). We suggest adopting a similar
approach in training the proposed PPGPR model.

4.2. Numerical comparisons

In this section we compare PPGPR with GPR, Neural
Network (NN), SVR (Supporting Vector Regression) and
GBDT (Gradient Boosting Decision Trees) using four test
functions: OTL circuit function (Ben-Ari and Steinberg,
2007), Borehole function (Harper and Gupta, 1983),
Wingweight function (Forrester et al, 2008) and Welch
function (Welch et al., 1992). The training set is chosen as
Halton series (Halton, 1964) with length p =5 x d, where d
is the dimension of the input space, and the size of testing
set is 500. The implementation details of five methods for
these experiments are shown below:

e SVR: Matérn correlation with v = 2.5.

e GBDT: Gaussian distribution and 100 trees.

e NN (deep learning): For the OTL circuit function, it has
structure (6,12,24,12,1) (meaning the node size of input
layer is 6, the second layer has 12 nodes and so on) with
learning rate 0.01 and 150 epochs. For the Borehole
function, it has structure (8,16,32,1) with learning rate
0.01 and 150 epochs. For the Wingweight function, it has
structure (10,20, 30,20, 1) with learning rate 0.1 and 200
epochs. For the Welch function, it has structure
(10,20, 30, 20, 1) with learning rate 0.1 and 200 epochs.

e GPR (with isotropic and product correlation functions):
We use the Dicekriging package (Roustant et al., 2012)
with isotropic and product Matérn correlation and
smoothness v = 2.5 to compute the predictive results.
The product correlation is defined as K(x)=
[T, ®1(x()), where @;(x(;)) is the same as in (4).

e PPGPR: For OTL circuit function, Matérn correlation
with v =25, M=42, n=10"°, P=150, for Borehole
function, Matérn correlation with v =2.5, M=35, n =
107°, P=150, for Wingweight function, Matérn correl-
ation with v =25 M=35 »5=10"1 P=150, for
Welch function, Matérn correlation with v = 2.5, M=7,
n=10"% P=200

The MAPE of each method above is given in Table 2. It can
be seen that the performances of SVR and GBDT are inferior
in most cases, which can be explained because these approaches
may require more training data (Smola and Scholkopf, 2004;
Ke et al, 2017). The only exception is the case of the Welch
function, where the SVR and the PPGPR result in comparable
results. We have tried our best to tune the parameters of the
NN, in order to obtain the best achievable results. It is worth
noting that the parameter tuning for NN is time-consuming. In
contrast, the tuning process of PPGPR is much easier, because
it has only one hidden layer. Also, PPGPR outperforms NN in
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Figure 8. Model loss and precision during the training process.

Table 2. MAPEs of SVR, GBDT, NN, GPR with isotropic and product correla-
tions and PPGPR for three functions. PPGPR outperforms all other methods.

OTL circuit Borehole Wingweight Welch
(d=6) (d=8) (d=10) (d = 20)
SVR 0.121 0.792 0.127 0.989
GBDT 0.130 0.407 0.142 1.778
NN 0.0334 0.222 0.240 1.113
GPR(iso) 0.0182 0.204 0.0224 1.334
GPR(pro) 0.0162 0.134 0.0199 1.058
PPGPR 0.0139 0.124 0.0184 0.994
©
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Figure 9. MAPEs of GPR and PPGPR with different size of training set for
OTL function.

all three experiments. Moreover, PPGPR can beat GPR with
isotropic and product correlation functions because the curse
of dimensionality has less impact on PPGPR. Note that GPR
with isotropic kernels performs worse than GPR with product
kernels. This is not surprising in view of the slow rate of con-
vergence for isotropic kernels shown in Section 2.1. The rate of
convergence for product kernels under a general condition is
not well-established, but they are known to outperform the iso-
tropic kernels in high-dimensional circumstances (Sacks
et al., 1989).

Additionally, we compare the performance of PPGPR and
GPR with product kernel when the size of training set
changes. Figure 9 shows the MAPEs of the proposed PPGPR
and GPR with product kernels for OTL function, when the
number of training set varies. It can be seen that when the size
of training samples is less than 48 (8d4) the PPGPR works
much better than GPR. When the size of training set increases

50 100 150 200 250 300 350 400
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(b) Precision during the training process
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Figure 10. MAPEs of PPGPR and GPR for Dette Pepelyshev (2010) curved func-
tion under Latin hypercube designs with different sample sizes.

the MAPEs of both methods decrease and the MAPE of GPR
decreases faster than PPGPR. The results in Figure 9 can
prove that the proposed PPGPR is highly suitable for a sparse
learning environment but when enough traning samples are
available the PPGPR is not recommended.

4.3. Performance of GPR and PPGPR under Latin
hypercube designs with different sizes

We compare the performance of GPR and PPGPR under
Latin hypercube designs (Helton and Davis, 2003) with differ-
ent sample sizes. We choose the Dette Pepelyshev (2010)
curved function (Dette and Pepelyshev, 2010) as the underly-
ing function. The R package 1hs is used to generate the Latin
hypercube designs using the maximin criterion (Joseph and
Hung, 2008). The size of the testing set is 500. Figure 10 shows
the MAPEs of GPR and PPGPR under the sample sizes from
40 to 120. It can be easily seen that the PPGPR has lower
MAPEs than GPR most of the time. GPR has a lower MAPE
only when the sample size is 63. Figure 10 proves the super-
iority of the proposed PPGPR over GPR under the Latin
hypercube design with different sample sizes.

5. More numerical studies

We conduct more numerical studies to examine the computa-
tional cost of the proposed method, and the effect of initial
values of the weight w. We also compare the PPGPR with a



Table 3. Assumed design range for HE case.

m(kg/s) T/ (K) k(W/mK) TwalI(K)
Lower Bound 0.00055 270.00 2024 330
Upper Bound 0.001 303.15 360.0 400
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Table 4. RMSEs of GPR with isotropic and product correlations, TAAG and
the PPGPR.

GPR(iso)
4.20

GPR(pro)
4.26

TAAG
2.08

PPGPR
1.82

RMSE

new additive Gaussian model proposed in Delbridge et al.
(2020). We defer these results to the Supplementary Materials.

6. Approximated heat exchanger case study

In this section, we apply the proposed method PPGPR on a
Heat Exchanger (HE) application introduced by Qian et al.
(2006). The HE data in Qian et al. (2006) have two fidelities,
known as detailed data (high fidelity) and approximated
data (low fidelity). Because this work considers only the sur-
rogate modeling for single-fidelity datasets, we use only the
approximated data to implement the proposed method. The
main objective of this application is to explore the impact of
four factors, including the mass flow rate of entry air m, the
temperature of entry air Tj,, the temperature of the heat
source T,,; and the solid material thermal conductivity M,
on the total rate of steady state heat transfer y, achieved by
a heat exchanger. All design points live in a hypercube
whose upper and lower bounds are shown in Table 3. We
follow the treatment in Qian et al. (2006) to partition the
dataset into a training set of 64 samples and a testing set of
14 samples.

In this section, we compare the performance of GPR with iso-
tropic and product correlations, Transformed Approximately
Additive Gaussian Process Regression (TAAG) proposed in Lin
and Roshan Joseph (2020), and the proposed PPGPR. In Lin and
Roshan Joseph (2020) the performance was assessed in terms of
the Root Mean Square Error (RMSE), defined as

< .
RMSE = HZ (yi - yi)z’
i=1

where y; is the predicted value and y; means the true value
for every sample, n stands for the size of testing set.
Therefore, we consider RMSE of all the candidate methods.
The implementation details of the these methods are
as follows:

(11)

e GPR (with isotropic and product correlation functions):
We use the Dicekriging package (Roustant et al., 2012)
with isotropic and product Matérn correlation and
smoothness v = 2.5 to compute the predictive results.

e TAAG: The result in Lin and Roshan Joseph (2020) is
refered here.

e PPGPR: We use the Matérn correlation with smoothness
v=25and M=28, y =107°.

The results of these three methods are shown in Table 4.
It can be seen that the proposed method has a lower RMSE
than other methods.

7. Discussion

In this article, we propose a projection pursuit approach
based on GPR to fit deterministic computer outputs. The
proposed method has a better model prediction and general-
ization power when the input dimension is high, and the
sample size is small.

Despite its advantages, the proposed method has a few
issues to be addressed in future investigations. First, PPGPR
involves quite a few hyper-parameters. Although we have
provided a few guidelines regarding the choice of these
hyper-parameters, how to better choose or tune these
parameters requires further investigation. Second the current
algorithm can only handle moderate data sets, due to its
high computational cost. We believe that this issue can be
mitigated by implementing the following techniques: (i) par-
allel or GPU computation, (ii) the recent advances in scal-
able GP inference and prediction (Liu et al., 2020; Katzfuss
and Guinness, 2021; Chen et al., 2022).

In practice, uncertainty quantification is often of import-
ance in addition to a point estimation. Note that (7) can be
regarded as an original GPR with an additive kernel func-
tion. In view of this, the corresponding confidence intervals
can be obtained following a standard GPR technique.
However, our numerical experience implies that, the confi-
dent bands provided by the above approach are much wider
than those generated by the usual GPR methods. This defi-
ciency may be due to the lack of identifiablity of the pro-
posed models, as discussed in Section 3. Uncertainty
quantification for the proposed model using alternative
approaches should be considered in a future work.

Supplementary materials

In the Supplementary Materials, we present an upper bound
of uniform prediction error of GPR with an additive correl-
ation function, which implies a promising rate of convergence
of additive Gaussian process models. Also, more numerical
studies are included in the Supplementary Materials.
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