FLOPS FOR COMPLETE INTERSECTION CALABI-YAU THREEFOLDS

CALLUM BRODIE, ANDREI CONSTANTIN, ANDRE LUKAS, AND FABIAN RUEHLE

ABSTRACT. We study flops of Calabi-Yau threefolds realised as Kéhler-favourable complete intersections in
products of projective spaces (CICYs) and identify two different types. The existence and the type of the
flops can be recognised from the configuration matrix of the CICY, which also allows for constructing such
examples. The first type corresponds to rows containing only 1s and 0s, while the second type corresponds
to rows containing a single entry of 2, followed by 1s and 0s. We give explicit descriptions for the manifolds
obtained after the flop and show that the second type of flop always leads to isomorphic manifolds, while
the first type in general leads to non-isomorphic flops. The singular manifolds involved in the flops are
determinantal varieties in the first case and more complicated in the second case. We also discuss manifolds
admitting an infinite chain of flops and show how to identify these from the configuration matrix. Finally,
we point out how to construct the divisor images and Picard group isomorphisms under both types of flops.
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1. INTRODUCTION

Flops play an important role in the classification of three-dimensional varieties, as well as in the study of
topological transitions in string theory. Due to a theorem of Kawamata [1], it is known that all birational
maps between three-dimensional minimal models can be expressed as compositions of simple flops in which
a single irreducible curve is changed. In string theory flops correspond to mild topological transitions that
could in principle be dynamically realised in the very early stages of the cosmological evolution.

Locally, a simple flop corresponds to a codimension two surgery, in which a P! curve is collapsed and
replaced by a P! in a “transverse” direction. On a smooth threefold a general flop can be locally deformed
into a disjoint union of simple flops. The best known example of a simple flop is due to Atiyah [2], which we
review here. The discussion starts with a singular hypersurface Xging C C* defined by the equation

zy—2t=0.
1
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The point (z,y,z,t) = (0,0,0,0) is an ordinary double point (an A; singularity) and can be blown-up to
P! x P'. However, this is not the smallest possible resolution. Instead of blowing-up the singular point
directly, one can blow-up along the line y = t = 0, which replaces the origin (0,0,0,0) with a P!, producing
a non-singular threefold X+ described by the following two equations in C* x P!

(75)(2)=s

where [u; : ug] are homogeneous coordinates on P!. Another way of resolving Xing is to blow-up along the
line z = z = 0, which produces another non-singular threefold X ~, described by two other equations in
C* x P!,

= (2)()-=0

where [v1 : v2] are homogeneous coordinates on P1. The threefold X ~ is isomorphic to X T away from the P!
and hence isomorphic in codimension one. The Atiyah flop is the birational map relating X and X . The
example shows that there is no minimal resolution of X,e, but rather two small resolutions related by a
flop.

More generally, Kollar and Mori have shown [3] that the singular manifold X, arising in a flop has a
hypersurface singularity and hence can be locally described as f = 0, where in appropriate coordinates f
vanishes at the origin and

(1.3) f(x) =23 + g(x2, x3,24) .

The flop is then induced by the automorphism x; — —x1 of the singular threefold Xun,. The Atiyah flop
corresponds to the function f(z) = 2% + x3 + 23 + 2%, while a flop involving an Aj>; singularity corresponds
to the function f(z) = 23 + 23 + 22 + 25 .

Locally flops can be distinguished by two invariants. The first of these is the normal bundle of the
exceptional curve C. Laufer [4] showed that the only normal bundles that can occur are Oc(—1) ® Oc(—1),
Oc(—2) ® Oc(0) and Oc(—3) ® Oc(1). All flops of type (—1, —1) are locally equivalent to the Atyiah flop,
those of type (—2,0) are equivalent to Reid’s pagoda flop involving an Ay~ singularity and all other flops are
in class (—3,1). The second invariant is the length of the flop. All the flops involving Ay singularities, that
is those of type (—1,—1) and (—2,0), have length 1, while flops involving Dy, Fgs, E; and Fg singularities
have lengths between 2 and 6 (the flops with FEg, E7 and Eg singularities currently being conjectural) [5].

Going beyond such local aspects is difficult in general. In particular, given a global description of X it is
difficult to find a global description of X ~. The purpose of the present work is to provide such a description
in the case of flops for which X is a Calabi-Yau threefold realised as a generic Kihler-favourable complete
intersection in a product of projective spaces (a CICY threefold). For a definition of Kéhler favourability
see Section 2.3. We note in passing that many of the ideas presented below appear to generalise to cases
where X T is a Calabi-Yau threefold realised as a complete intersection inside a toric ambient space, and this
generalisation will be the subject of future work.

1.1. Results. Throughout this paper X will be a CICY threefold. We will write the product of projective
spaces in which X is defined as P™ x @, where P is itself a product of projective spaces. We will also assume
that the embedding of X in P™ x Pis Kahler-favourable, i.e. the Kéhler cone of X can be identified with that
of the embedding product of projective spaces. In particular, the Kéhler cone of X will be finitely-generated.
The multi-degrees of the equations defining X will be collected in a configuration matrix, as reviewed in
Section 2.2 below.

Manifolds described by the same configuration matrix belong to the same deformation family and we
will refer to two smooth members of such a deformation family as ‘isomorphic’, which is hence strictly an
isomorphism only in the category of smooth manifolds (by Wall’s theorem [6]), i.e. a diffeomorphism.

In Section 3 we give a simple criterion, proven in Prop. 3.1, for determining from the configuration matrix
which boundaries of the Kahler cone are also boundaries of the effective cone and which ones may correspond
to flops. In Sections 4 and 5 we show that, for generic defining polynomials, all the boundaries that are not
boundaries of the effective cone do correspond to flops and we explicitly construct the flopped threefolds.



FLOPS FOR COMPLETE INTERSECTION CALABI-YAU THREEFOLDS 3

Theorem. Let X be a Kihler-favourable CICY threefold with generic defining equations. The configuration
matriz of X indicates the presence (or absence) of flops and in particular that flops occur only in the following
two cases:

Type 1: The configuration matriz is of the form

s PR}
q  q2 -+ gn41 Gnt2 .- 4K
In this case, the CICY threefold can be flopped in the P direction
(a) to an isomorphic Calabi-Yau threefold, if 1 = G = ... = @nt1,

(b) to a typically, but not necessarily, different Calabi-Yau threefold, otherwise.

Type 2: The configuration matriz is of the form
Pry2 1 ... 1 o ... 0
(1'5) [ m —+ — —+ — — ] E]
Plp P2 ... Pn Pnt1 - Pk

including the case with no ‘1’ entries in the first row. In this case the manifold can be flopped along the P™
direction to an isomorphic Calabi- Yau threefold.

We would like to point out that unlike the flops involving a row of Type 1, flops involving a row of
Type 2 are not related to the configuration matrix splittings discussed in Refs. [T-9] in the context of conifold
transitions.

The proof of the above statement also shows that there are no Kahler cone boundaries at which a divisor
shrinks and the Calabi-Yau volume remains non-vanishing. We note in passing that the flop associated to
a row of Type 1 can be seen from a GLSM description, while flops of Type 2 appear to require one to go
beyond a standard GLSM analysis.

Rows of the two types above are not rare, but in fact make up the vast majority of rows appearing
in configuration matrices in the classification of Kahler-favourable CICYs [7,10,11]. Indeed, among the
30,924 rows which appear in these configuration matrices, there are 28,531 rows of Type 1 and 2,272 rows of
Type 2, totaling 30,803 rows. Hence almost every boundary of the Kdhler cones of Kihler-favourable CICYs
corresponds to a flop.

Infinite flop chains. When the configuration matrix contains multiple rows of Type 1(a) or 2, the CICY
admits multiple flops to isomorphic manifolds, and hence infinite chains of flops. One finds this occurs for 505
of the 4874 Kahler-favourable CICYs. In this case, the extended Kahler cone consists of an infinite number
of sub-cones, and when h1(X) > 2 it has infinitely many edges. The simplest case occurs for h1'}(X) = 2,
when both boundaries of the Kahler cone correspond to flops to isomorphic threefolds, occurring for e.g.

16 P32 1 1 P11 111 P30 1 1
(1.6) PPi2 1 1] PAl1 111 1] P52 1 1|’
and the envelope of the extended Kahler cone is an irrational two-dimensional cone - see also Refs. [12-16].

In Section 4 we prove the following result, which is the content of Thm. 4.4 and Cor. 4.11 of Prop. 4.10.

Theorem. For a CICY threefold flop X --+ X' on a row of Type 1 of the configuration matriz (1.4), the
flopped manifold can be described as a complete intersection inside a toric ambient space, namely

1 1
1 1

1 ... Tpe1 Y|P ... Payi Papo ... P
1.7 1 ... 1 0]1 ... 1 0 .. 0
—q1 ... —Gnyg1 O 0 ... 0 Guy2 ... Gk

where y represents collectively the coordinates on the product of projective spaces P appearing in the second
row of the configuration matriz (1.4) while O stands for their unchanged weights. The isomorphism relating
the Picard groups of the original and flopped Cualabi- Yau threefolds X and X' can be written as

n+l —
k=1 9k 1

v 7 (g )
(1.8) Pic(X) =+ Pic(X"): ¥ — v,
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where diwisor classes on X are written with respect to the basis of (the pullbacks to X of) the hyperplane
classes of the projective space factors in the embedding space, and on X' with respect to the basis of (the
pullbacks to X' of ) the classes corresponding to the rows of the weight system in Equation (1.7).

Note that the Kéahler cone of the flopped manifold may in general be difficult to obtain.

Counting the number of collapsing curves (rows of Type 1). In Section 4.1 we show that the singular
threefold involved in a CICY flop on a row of Type 1 of the configuration matrix (1.4) can be deformed to a
smooth CICY threefold X” with configuration matrix

= +1 . o -
(1.9) []P’ ‘ Z?:l 4 Qni2 - qK]
to complete a conifold transition, as in the well-known story of splittings in Refs. [7-9]. The contracting
curves are all in the same curve class, and their number num (]P’l), corresponding to the genus-zero Gromov-

Witten invariant, is determined by the difference in Euler characteristics between the original CICY X and
the CICY X° on the deformation branch,

(1.10) num (P') = 1 (x(X) — x(X")).

In Section 5 we prove the following result, which is the content of Thm. 5.6 and Cor. 5.5 of Prop. 5.4.

Theorem. For a CICY threefold flop X --+ X’ on a row of Type 2 of the configuration matriz (1.5), the
flopped Calabi- Yau threefold X' is always isomorphic to the threefold X. The isomorphism induced on the
Picard group of X by the flop is

(jl + 22222 CTI@ 1

where divisor classes on X are written with respect to the basis of (the pullbacks to X of) the hyperplane
classes of the projective space factors in the embedding space. The Kdahler cone of the flopped manifold is
generated by

(1.12) <(-1,2(Z§k) — @), (0,1,0,...,0), ..., (0,...,0,1))>.
k=1

, , ( -1 0 )
(1.11) Pic(X) — Pic(X) : ¥ — v,

The singular manifold at the intermediate point of the flop can be deformed to a complete intersection in a
toric ambient space described as

£ |
Yid 025 G o dx
to complete a conifold transition to a Calabi-Yau X°, where y represents collectively the coordinates on the

product of projective spaces P in the second row of the configuration matriz (1.5) while O stands for their
unchanged weights.

(1.13)

Counting the number of collapsing curves (rows of Type 2). In contrast to the case of flops on
rows of Type 1, in the case of flops on rows of Type 2 some curves are in a class [C] while others are in the
class 2[C]. In Section 5.4 we show that the numbers num (P[lc]) and num (P;[C]) of contracting curves in each
class are given by the two relations

mm (Ple) + mum(Pyep) = 3 (x(X) = x(X")

1.14 n
( ) num(]P’[lc]) + 2num(]P’%[C]) = %Q(X) . (— 2,40+ 22@) .
k=2

Note that num(]P’[lc]), num(]P’é[C]) are genus-zero Gromov-Witten invariants of the original CICY [17].
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FR is supported by startup funding from Northeastern University.
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2. BACKGROUND

2.1. Flops for Calabi-Yau threefolds. Formally, a simple flop between two smooth Calabi-Yau threefolds
Xt and X~ is a birational map which is an isomorphism away from smooth rational curves C™ and C~ on
XT and X~ respectively. The curves CT and C~ can be contracted to points in X and X ~, respectively,
to produce the same singular threefold Xgin,. What distinguishes a flop from, say, the identity map, is the
condition that X contains a divisor D with a positive intersection D+ -C™ > 0 such that the corresponding
divisor D~ on X~ under the identification X+ — CT = X~ — C~ has a negative intersection D~ - C~ < 0.
The divisor D7 is not unique. This is summarised in the following global characterisation of a flop between
two smooth Calabi-Yau threefolds (see e.g. Ref. [18] for a general definition of a flop between two normal
varieties).

Definition 2.1. Let X and X~ be smooth Calabi-Yau threefolds and
7T+ZX+—>Xsing, T X7 = Xging

be small contractions, mapping a finite number of curves CZ-+ on Xt and C; on X~ to the same singular points
pi € Xsing and being isomorphisms away from these curves. The map (7)) tort : XT—{CF} - X~ —{C;}
is an isomorphism and so defines a birational map

G XT -5 X .

Then ¢ is a flop if there exists a divisor D* on X+ such that for every i, DT -C" > 0 and D~ -C; < 0,
where D~ is the divisor on X~ to which D% is mapped.

This definition implies the following commutative diagram:

(2.1) W\ %

In general X and X~ are topologically distinct. Since a flop is an isomorphism in codimension one, if
X has trivial canonical divisor class, so too will X ~, and hence the Calabi-Yau condition is preserved under
a flop. Moreover, X~ and X share the same Hodge numbers. However, finer topological invariants, such
as the intersection numbers and the second Chern class of the manifold, do change under a flop. Concretely,
if D7 is a divisor on X+ and D~ the corresponding divisor on X ~, the triple self-intersection form and the
co-form on H?(X+,Z) = H?(X~,Z) change in the following way:

N
(2.2) (D7)* = (D*)* = S (DT -C)?
i=1 N
(2.3) ca(X7)- D™ =cp(XT) DY +2) D¢,
i=1
where Cfr , C;r s ,C;{, are the isolated exceptional P! curves contracted in the flop. In general, these curves

either belong to a single primitive homology class [C] € Ho(X 1, Z) or some belong to [C] and some to 2[C].
We will denote by n; < N the number of curves in the class [C] and by na < N the number in 2[C]. The
class [C] is perpendicular, with respect to the intersection form on X, to a codimension one face of the
Kéhler cone K(XT). This face is a wall separating (X ) from the image of the Kahler cone K(X ™) of the
flopped manifold under the identification H?(X ™+, R) = H?(X ~,R).

2.2. CICYs and configuration matrices. A Complete-Intersection Calabi-Yau (CICY) manifold is con-

structed as the common vanishing locus of a number of polynomials inside a product of complex projective

spaces. Conventionally, a CICY is represented by a configuration matrix,

L 77 q}<

(2.4) X~ : SR
Prm | g ... 4R

Here the ambient space is A = P™ x ... x P" and each column describes one of the defining polynomials

{P1,...,Px}. Assuch, the entry q; represents the degree of the polynomial P; with respect to the coordinates
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of the projective space P". A configuration matrix in fact describes a family of manifolds, corresponding to
the different possible choices of the defining polynomials. In the below, we will always consider generic choices,
which are known to give smooth manifolds by Bertini’s Theorem. However, we note that special choices of the
defining polynomials can result in smooth manifolds whose geometrical properties are qualitatively different
from the generic case. (We will see an example of this at the end of Section 3.)

The dimension of the CICY is equal to the dimension of the ambient space minus the number of polyno-
mials, dim(X) = Y"I"  n; — K, and for most of the present discussion dim(X) = 3. The requirement that
the manifold be Calabi-Yau corresponds to the condition that the entries in each row should add up to one
plus the dimension of the corresponding projective space, i.e. Zszl qg =n; + 1. In the simplest examples,
there is only one projective space in the ambient space and only one defining polynomial, as in

(2.5) [P2[3], [P*[4], [PY5],
which respectively describe an elliptic curve, a K3 surface, and a Calabi-Yau threefold. Below we will make

use of the following CICY threefolds, taken from the CICY list 7, 10], which contains 7890 configuration
matrices:

Xrgs8 ~ - Pl[x] 5 ) ] : Fl(g)(y)% +F2(3)(y) x2 =10
L P ] 2 P e+ 6P ) =0 [
(26) X7887 ~ [ P;[x] 2 ] . { H(4)(y) LL‘% +H(4)(y) T1To +H(4)(y) ,T% -0 } ,
L P [y] 4 1 2 3
Yo ~ [ 5l |5 1] D)2 + QP zrzs + .+ QP B =0 |
L R (y) 21+ By (y) e + By (y) a5 = 0

In these configuration matrices we have written explicitly the variable names for the coordinates in the
projective spaces. We also included in brackets the explicit defining equations, in which the superscripts on
the functions indicate their degrees, while the subscripts are mere labels.

2.3. Favourable embeddings and Kahler favourability. The Picard group of a projective space is
generated by a single element, the hyperplane class H, thus Pic(P™) = (H;). Hence, the Picard group of the
ambient space A is generated as

(2.7) Pic(A) = (Hy , ..., Hy),

where by abuse of notation H; now represents the pullbacks of the hyperplane class of P to A by the
projection map. Given a CICY manifold X C A, the H; restrict to divisor classes on X, which we write
as D;. If Pic(X)®R = (Dq, ..., Dy,) @R, so that h1(X) = hb1(A) = m, the embedding is said to be
favourable. If, in addition, the K&hler cone of X can be identified with the K&hler cone of A, we say that
the description is Kdhler-favourable. In this case the Kahler cone of X, denoted by K(X), corresponds to the
positive quadrant in Pic(X) ® R with respect to the basis {D;}. In the below, we will only consider Kéhler-
favourable embeddings. Note that the vast majority of CICY threefolds can be favourably embedded [11].

With respect to the basis {D;}, the triple intersection numbers of X are denoted by d;jx = D; - D; - Dy,
The dual set of curve classes will be denoted by {C1,...Cy,}, such that D; - C; = d; ;.

3. CLASSIFICATION OF KAHLER CONE BOUNDARIES FOR CICYS

Let X be a Kéahler-favourable CICY threefold, so that the Kéhler cone K(X) is the positive quadrant
in the basis of divisor classes {D;} that descend from the ambient projective spaces. Let B; denote the
boundary of the Kéhler cone such that B; = (D1,...D;—1,D;t1,...Dy,) is dual to the curve class C;, that
is B; = (C;)*. This gives a one-to-one correspondence between the i'" row of the configuration matrix, the
boundary B;, and the curve class C;. Each boundary B; then falls into one of the three categories:

(1) Flop wall. As the Kéhler form on X approaches a flop wall, the volumes of the curves in C; go to
zero, while the volumes of all divisors and the volume of X remain non-zero.

(2) Zariski wall. As the Kahler form on X approaches a Zariski wall, the volume of a divisor D in X
goes to zero, either by collapsing to a curve or to a point, while the volume of X remains non-zero.

(3) Effective cone boundary. As the Kéhler form on X approaches an effective cone boundary, the volume
of X goes to zero. Indeed, for any divisor class D lying on such a boundary, D? = 0.
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Our purpose in this section is to give a simple criterion for determining from the configuration matrix
which boundaries of the Kéhler cone may correspond to flops.

Proposition 3.1. Let X be a Kdhler-favourable CICY threefold. The configuration matriz of X indicates
the possibility of flop transitions and in particular that flops can only occur in the following two cases:

Type 1: The configuration matriz is of the form

P 1 1 ... 1 0 ... 0
(3.1) [ i R ( ]
Plqa @& ..o @uy1 Gni2 - 0K

Type 2: The configuration matriz is of the form

Prl2 1 ... 1 0 ... 0
(32) |: = — — — — :|a
Plp1 P2 ... Pn Pny1 ... DK

including the case with no ‘1’ entries in the first row.

Proof. We begin by determining which Kahler cone walls are not effective cone boundaries. If B; is a
boundary of the effective cone, the cubic form vanishes on every D € B;, that is D3 = 0. In particular, from
the definition of B;, this implies the following condition on the triple intersection numbers:

(33) djklEDj-Dk-Dl:(), V],k,l#l

We will now derive the implications of these conditions for the CICY. The triple intersection numbers follow
straightforwardly from the configuration matrix and are given by the ambient space intersection

K m
(3.4) djw = H; - He - H - ] < ngT> :
1

s=1 \r=

which restricts the intersection H; - Hj, - H; to X by further intersecting with the divisor classes Z:;l q; H,
which correspond to the defining polynomials. Since the number of defining polynomials is K =n; + ...+
nm — 3, the intersection product in Equation (3.4) contains only terms with nq + ... 4+ n, factors and the
only non-zero contributions come from terms of the form

ni no Nom
H™ -Hy?-...-H})m™ .

For intersection numbers d;; with 7, k,1 # i the contribution H." can only come from the polynomial part
of Equation (3.4). Hence, a non-zero d;; with j, k,1 # i requires at least n; polynomials which depend on
the coordinates of the i projective space. This happens if the i*" row is, up to permutations of columns, of
one of the following two types:

Typel:[P" |1 ... 1 0 ... 0],
N————’
(35) n+1
Type2:[P* |2 1 ... 1 0 ... 0].
n—1

Conversely, if the i*t row is not of this form, then the conditions (3.3) are satisfied since the number of H;
factors in Equation (3.4) is always less than n;. In this case the boundary B; is a boundary of the effective
cone. Thus only the above two types of rows can lead to Kahler cone boundaries which correspond to flops
or Zariski walls. g

In Sections 4 and 5 we will show that, for generic defining polynomials, all of these boundaries in fact
correspond to flops. In particular, this implies that the K&ahler cone of a generic Kahler-favourable CICY
never has a Zariski wall. For non-generic choices of the defining polynomials, it can happen that the flopping
P's coalesce into a divisor, which then contracts to a curve, the flop wall becoming a Zariski wall. An explicit
example of this is given in Section 4.1 of Ref. [14], while some general analysis can be found in Section 3.3 of
Ref. [19]. We leave a systematic treatment of this phenomenon in the case of CICYs to future work.
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4. PERFORMING FLOPS ON ROWS OF TYPE 1

A configuration matrix containing a row of Type 1 in the classification of Section 3 is, up to permutations
of rows and columns, of the form

Pn 1 ... 1 0 ... 0
(4.1) X ~ [ “lal | L S )
Pyl |@@ - Gut1 G2 - G
Here = [x1 : 22 : ... : Tny1] stands for the coordinates on the first projective space of dimension n while

Ply] represents the product of the remaining projective spaces with coordinates collectively denoted by y.
Hence, the ambient space is of the form A = P" x P. The vector i collects the entries in the i*" column of
the configuration matrix after dropping the first row.

Below, we will denote the CICY and the associated flopped Calabi-Yau by X and X', respectively, instead
of the symbols Xt and X~ from Definition (2.1), to notationally differentiate the CICY from the flopped
manifold, the latter of which will not generically have a CICY description.

4.1. The contraction map. We show that for generic defining equations the threefold (4.1) admits a flop
along the P" direction. We do this by explicitly constructing the contraction map.

Proposition 4.1. A generic Kdahler-favourable CICY threefold whose configuration matriz contains a row
of Type 1 admits a small contraction m: X — Xging, where Xging has isolated singularities.

Proof. The last K —n—1 equations in the configuration matrix in Equation (4.1) define a complete intersection
Y inside P[y],

(4.2) Yo~ { Pyl | Gorz .- dx } ;

(unless K = n+1, in which case simply Y = ]f”[y]) which one can check is a fourfold. The first n+ 1 equations
of the configuration matrix are linear equations in P™[z], with coefficients varying over Y. Generically they
have no common solution. However, over a codimension one locus of Y the rank of this linear system drops
by one, leading to a single solution in P"[z]. Hence the CICY X is almost everywhere isomorphic to a
hypersurface inside the manifold Y. However over a codimension-four locus of Y, i.e. at a set of points, the
rank of the linear system drops by two, and the linear system determines an entire P! locus inside P"[x].
Hence, X is the small resolution of a hypersurface in Y at a number of singular points.
To describe this more explicitly, we write out the first n 4+ 1 equations of the configuration matrix,

(43)  FP@o+  + P @) =0, . RSV + 4+ BT @) o = 0.

Here the superscripts denote the multi-degree of the polynomials in y with respect to the projective spaces
in the product P[y]. It will be useful for the subsequent discussion to write these equations in matrix vector
form as

Fl(,qll)(y) e Fl(qﬁjrl(y) T
(4.4) 0=F(y) &= : - : :
B - B )\

Since the trivial solution does not correspond to an element in P"[z], the determinant of F'(y) must vanish,
which gives a hypersurface in P[y]. Together with the other equations in the configuration matrix, specified

by Gni2s--- K, this determines the image of X under the projection P"[z] x @[y] — @[y], which we write as
(4.5) Xing ~ [Ply] | (det F(y) =0) Gniz ... Gx]CY.

This is a singular threefold which belongs to the family

(4.6) X"~ [ﬁ[y] ‘ E;:llffg Gnt2 - (jK} .

At the locus in P[y] where the rank of F(y) further drops to n — 1, the linear system (4.4) determines an
entire P! inside P" [z]. This implies that the threefold X is a small resolution of the singular threefold Xsing
at a set S of points given by

(4.7) S~ [Blyl | ank F(y) <n—1) Gars ... G-
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(That this locus is indeed a set of points follows from general properties of determinantal varieties - see for
example Section 2 of Ref. [20] - by which the locus over which the rank of the matrix F(y) drops by two is
codimension four.) Conversely, this gives rise to the small contraction map

(4.8) 7 X = Xging -

Contracting each of these P!-curves to a point produces the singular threefold Xsing- O
Remark 4.2. The threefold X in Equation (4.1) is on the resolution branch of the conifold transition [21]
(4.9) X' = Xgng — X

Hence, when we construct the flopped space below, we will be constructing the other possible resolution
branch X’ of this conifold transition, schematically

X
s

I

4.10 X’ Xan
g
XI

The Calabi-Yau threefold X contracts to the singular variety X, upon collapsing a number of P! curves
to points. This is one half of a flop transition. The Calabi-Yau threefold X’ on the other side of the flop
also admits a contraction of P's to the same singular variety Xgne. Below we provide a general algorithm
for constructing the flopped threefold X’ explicitly. However, it is useful to start with an example.

Example 4.3. Consider a generic Calabi-Yau threefold X with configuration matrix and defining equations
given by

(4.11) X = Xrgsg ~ [

P[] | 1 1], Pi(z,y) = FO(y) o1 + F3(y) 22 = 0
Pyl |3 2 ] Py(a,y) = FE () a1 + B () a2 =0 [

The threefold X is the small resolution of X, at a set of points S, where
3 2 3 2
Xang = {y € Py | FEw) B3w) = Fw) FAw) }
3 2 3 2
s ={y e Py | FOy) = FAw) = W) = Fy) = 0} .
Locally, the singularities of X, are of the form xy — 2t = 0, so they are of the same type as in the Atiyah

flop. The manifold Xgng is a singular quintic threefold, hence the smoothed manifold X * has configuration
matrix

(4.13) X'~ [Py | 5],

and X is on the resolution branch of a conifold transition from the quintic Calabi-Yau. As in the Atiyah
flop, the normal bundle of the contracting curves C in X is

(4.14) Nc, x =0c(-1)® Oc(-1).
By analogy with the Atiyah flop it is clear that the flopped manifold should be obtained by swapping the

(4.12)

roles of F2(721) (y) and F1(32) (y), giving rise to a new manifold X’ defined by the following two equations:
3 2 3 2
wis) o—pyTa— 0 Biw) ( 7} ) - | Bl = Fiw) st + B o =0
. = = ; .
Fi'5(y)  Fas(y) T2 Py(a!,y) = Fy5(y) 21 + Fyp(y) 2 =0

These equations are no longer consistent with the original projective scalings, but rather determine a complete
intersection in an ambient toric variety, with a weight system and weights for the defining equations given by

o @ oy . ys | PPy
(4.16) X'~"1 1 0 .. 01 1
-3 -2 1 ... 110 O

The above discussion for X can be repeated for this new manifold. This shows that X’ is a resolution of the
same singular manifold Xne at the same set of points S. We will show below that X’ is indeed the result of
flopping X.
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4.2. The flopped manifold. In the above example, the equations defining X’ were obtained by taking the
transpose operation on the defining matrix of polynomials. We now generalise this observation.

Theorem 4.4. A generic CICY threefold with configuration matriz (4.1) flops along the P™ direction to a
complete intersection in a toric variety with a weight system and weights for the defining equations given by

T x y|P1’ ... Py Py ... Pg
(4.17) X'~ 1 .. 1 o1 ... 1 0 ... 0
@1 - Gy OO0 ... 0 Guy2 ... Ok
Proof. Taking the transpose in Equation (4.4) gives
FY@ o B W) 7
(4.18) 0=FT(y)a = : - : :
- - ,
F) o BRI )\ T
Since the multi-degrees 1, ¢a, . . . , Gn+1 may be different, these equations are, in general, no longer consistent

with the projective scalings on P"[x] X @[y] However, the equations can be understood as defining a complete
intersection X’ inside a toric variety, with a weight system and weights for the defining equations given by

oo x oy | P ... P, Puo ... Pg
(4.19) X'~"1 ... T 0]1 ... 1 0 ... 0
G G D0 0 G .

To the left of the vertical line are the charges of the coordinates under the various scalings, in which [J
stands for the unchanged scaling behaviour of the coordinates on ]f”[y], while to the right are the charges
of the K polynomials. We note that the entries —qi, ..., —@,+1 indicate that the projective space P"[z'] is
non-trivially fibered over the P[y].

Proving that X’ is indeed the flopped version of X involves two steps:

e Step 1: Show that there exists a small contraction 7’ : X’ — X, with a finite number of rational
fibers over the same (singular) points to which 7 : X — Xng. contracts its rational fibers.

e Step 2: Show that the birational map ¢ : X --» X’ determined by the composition (7')~"! o is a
flop, in the sense of Definition 2.1, that is there exists a divisor D on X intersecting the contracting
curves on X positively, while its image ¢(D) on X’ intersects the contracting curves on X’ negatively.

Step 1 is easy to argue, as the analysis carried out above for expressing X as the small resolution of a
threefold Xging C @[y] degenerating at a finite set of points S can also be repeated for X’. Since the discussion
relied only on the rank of F' and the polynomials P, .o,..., Pk, which are shared by X and X', it follows
that X’ is also a small resolution of the same singular threefold Xgi,g.

For Step 2, we construct in Section 5.2 a set of divisors H(; on X and ’H,EZ.) on X', with 1 <7 <n+1, such
that w(H;)) = w’(HEi)) and show in Prop. 4.10 that H; - C = 1 for any contracting curve C' on X, while
Hzi) -C" = —1 for any contracting curve C’ on X’. These divisors satisfy the final condition in Definition (2.1),

and hence the birational map from X to X’ is indeed a flop.
O

Remark 4.5. The Calabi-Yau property of X’ follows from that of X, since in each row in Equation (4.19)
the sum of the charges associated with the coordinates equals the sum of the charges associated with the
equations. In any given example, one can use techniques of toric geometry to determine the properties of the
manifold X', and in particular to verify that it has the properties expected of the flopped manifold, such as
triple intersection numbers and second Chern class related to the originals by Equation (2.3) (up to a basis
transformation), and matching Hodge numbers. The Kéhler cone of the flopped manifold X’ may, in general,
be difficult to obtain. In particular, while the Kdhler cone of X is known by the assumption that it descends
from the ambient space (Kahler-favourability), this does not necessarily imply that the same holds for X".

The description of the flopped manifold given above agrees with that obtained through GLSM reasoning,
where the flopped geometry arises as the target space of a second geometric GLSM phase. The flopped
manifold X’ is related to the original manifold X by exchanging the weights of the equations with the
weights of the coordinates on the embedding space, precisely as one would expect from a GLSM analysis.
By contrast, as we will see in Section 5, the same analysis is not obvious for flops on rows of Type 2.
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4.3. Special case: flops to isomorphic manifolds. The equations obtained from the transpose matrix
FT(y) are in general inconsistent with the projective scalings of the original ambient space P"[x] x @[y]
However, in the special case when the transpose operation leaves the multi-degrees of the polynomial entries
in F(y) unchanged, the new ambient space is the same as the original.

Proposition 4.6. The manifolds X and X' are isomorphic (i.e. diffeomorphic) if the columns underneath
the 1 entries in Equation (4.1) are identical, that is, when

(4.20) Q=G = =qnt1 -

Proof. The weight system in Equation (4.19) is equivalent to that of the original ambient space if the condition
is satisfied. In this case, the new defining equations have the same multi-degrees as the original equations
and X’ belongs to the same family as X. In particular, the coefficients of the defining equations for X’ are
simply related to those of X by taking the transpose in Equation (4.4). Hence X’ is isomorphic to X. O

Example 4.7. The CICY

(4.21) Xore1r ~ [ P

admits isomorphic flops along both P* directions.

We note that, in contrast to the general case, in the isomorphic case the Kéahler cone of X’ is known
(trivially). Its relation to that of X is given by the Picard group isomorphism discussed in Section 4.4.

4.4. Divisor images and the Picard group isomorphism. The two small contractions 7 : X — X,
and 7 : X’ — Xging discussed above are isomorphisms in codimension one. Denoting by {C(®} and {C"(®)}
the sets of contracting curves on X and X' respectively, the map

(4.22) p=@)"tor: X —{CY} = X' —{C'"}

is an isomorphism, hence divisors on X can be uniquely mapped to divisors on X’. In the present section
we carry out this analysis for two different classes of divisors that arise naturally. These will be used in the
following section to complete the proof that X and X’ are related by a flop.

We determine the mapping of divisors by matching the images of divisors on the contracted manifold Xging
under the two small contractions from X and X’. In the following we require notation for removing rows and
columns from the matrix F(y): we write Iy, (y), F7,(y), and Fy, ¢, (y) respectively for the matrices resulting
by removing from F(y) the i'" column, the i*" row, and simultaneously the i** row and ;' column.

Definition 4.8. A natural set of divisors H(; on X is given by intersecting X inside P"[z] x Bly] with the
hyperplanes given by the zero loci of the P*[z] coordinates, {z; = 0} for 1 <i <n+1,

(4.23) Hgy: {zi=0}nX.

The divisor class of H; is (1,0,...,0) in the basis {D;} defined in Section 2.2. Since the contracting
P!-curves live inside P"[x] at generic locations (which follows from the genericity assumption of Section 2.2
on the defining polynomials of X'), the divisors H ;) intersect the P's in points.

The image 7(H(;)) C Xsing is the locus in P[y] over which {z; = 0} intersects X. Looking at the defining

equation F(y) Z = 0, since the trivial vector Z = 0 is not an element in P"[z], upon setting 2; = 0 a non-trivial
solution exists if and only if rank F, (y) < n. Hence under the small contraction 7 we have the projection

(4.24) m(Hp) = [@[y] | (rank F,(y) <n) Gz - dx ] -
Note the condition rank Fg, (y) < n already implies the equation det F'(y) = 0 which enters in the description
of the contracted manifold Xgng, so the latter equation can be dropped from the description of m(H ;).

Another natural set of divisors on X is as follows.

Proposition 4.9. For every 1 <i<n+1

(4.25) Hy: {

s an effective divisor on X containing each of the collapsing curves entirely.

det Fﬂwéj (y)

Zj

—ofnx
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Proof. Since r; = 0 implies that rank Fz, (y) < n, it also implies in particular that det F7, s (y) = 0 for any
i. This means that the zero locus of x; is contained in that of det F7, & (y).

Notably, as we have indicated with the notation of a single index on H;), one can check (straightforwardly
but slightly tediously) that the locus {det Fs e;(y) [ xj = 0} N X is independent of the choice of j. Moreover,
since the locus det Fy, ¢, (y) = 0 contains the points over which the collapsing P's live (see Equation (4.7)
and observe that rank F'(y) < n implies Fy, &, (y) = 0 for any ¢, j), this divisor contains each of the collapsing
curves entirely, in contrast to the H;y divisors above which intersected them transversely. O

To determine the image m(H(;), note it is straightforward to see that setting det Fi s (y) = 0 and
demanding z; # 0 in the defining equation F(y) Z = 0 implies that rank F, (y) < n. Hence under the small
contraction m we have the projection

(4.26) m(Hw) = [Ply] | (rank Fy,(y) <n) Gozo ... dx]-

Proposition 4.10. There erxists a divisor on X intersecting the contracting curves on X positively, while
its image under the birational map ¢ : X --+ X' intersects the contracting curves on X' negatively.

Proof. On X' there are the analogous divisors to the above H ;) and H;), which we write as H Ei) and 'HE 0 and
which are related by the replacements x; — z} and F(y) — F(y)T. Following the analysis above, their images
under the small contraction 7': X’ — Xging are as in Equations (4.24) and (4.26) but with the replacement
F(y) — F(y)T. But since rank F, ;[“ (y) = rank Fj, (y), the transpose operation precisely exchanges the two
images. Hence we have a matching of divisors on the contracted manifold Xing

(4.27) m(Hu) =7"(Hiy) . m(He) =7'(Hf) ,
which determines the matching of divisors across the flop
(4.28) o(Hw)=Huy .,  o(Hw)=H -

Writing divisor classes on X with respect to the basis of the pulled-back hyperplane classes of the projective
space factors in the ambient space, and on X’ with respect to the basis of the pullbacks to X’ of the classes
corresponding to the rows of the weight system in Equation (4.19), the classes of the above divisors can be
read off from their expressions as!

X: [H(i)] :(1!6) [?{(i)] = (_ 152223 Q_"k _é’l) L]

(4.29) i1
I, r _ — r _ —

X' [H(i)]_(lu_qi) [ (s)]—(—152k=1%) -

Since the curve classes of the contracting P!'s on X and X' are proportional to curve classes dual to the first

direction in these two divisor bases, the divisors transversely intersecting the Pls have positive intersection

with the P's while the divisors containing the Pls have negative intersection, as expected. O

Corollary 4.11. The Picard group isomorphism between Pic(X) and Pic(X') is the map that exchanges the
divisor classes as [H(y)] < [H{;] and [H(y)] <> [H(;)] and which trivially maps classes with no component in
the first entry, namely

(4.30) Pic(X) — Pic(X'): @ ( Lo ) i
R 1C — F1c DU v
Yiid 1

IThe classes H (,-)] have no dependence on the label i as a consequence of the equal weights of the coordinates z;, i.e. this
would not be so in the case of a flop in which not only X’ but also X were such that it was embedded in a more general toric
ambient space. We also note that the fact that the ['HE”] are exchanged with the [H ;)] under the Picard group isomorphism

guarantees that the former too have no dependence on the label 1.
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4.5. Counting the number of contracting curves. There are at least two ways to count the number
of P's involved in the small resolution. One method is to compare the Euler characteristic of the original
manifold X with that of the smoothed contracted manifold X”. Since the Euler characteristic adds in the
surgery that replaces the nodal points with P!s, and y(P!) = 2, one has

(4.31) num(Pl) = %(X(X) - x(Xb)) )

These Euler characteristics are straightforward to compute from the configuration matrices of X and X” in
Equations (4.1) and (4.6), the latter of which follows immediately from the former.

A second method is to use the Giambelli-Thom-Porteous formula, which in our context reduces to the
following. Define the line bundle sum F = @?:11 Op(qj) and consider its restriction F to [Bly] | Gora --- Tk
Writing ¢;(F) for the (Poincare dual of the) i*® Chern class of F, the number of singular points of the variety
in Equation (4.5), or equivalently the number of P!s in the small resolution, is

N | @) ea(F) ] | calF) c(F) ~o
(4.32) num(]P)— c1(F) Cz(]:) ’— e (F) cz(F)‘ j_l;{_?(q]‘-H).

In the last expression all intersections are taken on @[y], and the product factor is a series of intersections
which implement the restriction to [P[y] | Gnt2 ... §x], in which H is a list of the hyperplane classes of each
of the projective spaces in P[y].

Example 4.12. Consider

P21 1 1 0
(433) X7807 ~ |: ]P)5 21 1 2 :|
so that F' = Ops(2) ® Ops(1) @ Ops (1) and HJK:"H (q; - ﬁ) = 2H. The Chern classes of F' are then
(4.34) ci(F)=4H, co(F)=5H?%, c3(F)=2H>.
and the number of collapsing curves is
1| 5BH?* 2H3 _
(4.35) num(P) = ’ AN sH? | (2H) = 34.

Remark 4.13. In the special case discussed in Section 4.3 when the flopped Calabi-Yau X’ is isomorphic to
the original Calabi-Yau X, one can also compute the number of collapsing P's by leveraging this isomorphism
in the relation between the second Chern class of the original and flopped manifolds in Equation (2.3). In
particular, since we know the second Chern class after the transition, we can use this relation to learn about
the contracting P! curves. Taking the intersection on the right of Equation (2.3) with H; ~ (1,0) and on
the left with ’H,EZ.) ~ ( -1, a+2>, (jk), i.e. using the Picard group isomorphism in Equation (4.30), we
have

2 ZC(“) . H(i) = CQ(X) . ’HEZ) — CQ(X) . H(l-)
(4.36) = mum(P') = 5 ea(X) - (H{;) — Hey)
= %C2(X)'(—27§1+2Z(Tk)-
k=2

Example 4.14. Consider the CICY in Equation (4.21), for which one can check that ¢o(X) = (50, 50), one
has H(;) ~ (—1,4), so that one finds num (P*) = 50.

5. PERFORMING FLOPS ON ROWS OF TYPE 2

A configuration matrix containing a row of Type 2 in the classification of Section 3 is, up to permutations
of rows and columns, of the form
P [z]
Ply]

1 ... 1 0 ... 0

(5.1) XN{ S o
a1 q2 ... 4n dny1 ... (K
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The coordinates on the first projective space are denoted by # = [z1 : @3 : ... : Z,41], while Bly] represents
the product of the remaining projective spaces with coordinates collectively denoted by y. The ambient space
is then of the form A = P" x P. The vector @ collects the entries in the i*" column of the configuration
matrix after dropping the first row.

5.1. The contraction maps. We begin the discussion of flops on rows of Type 2 by studying the small
contraction maps that can arise in this case.

Proposition 5.1. A generic Kihler-favourable CICY threefold whose configuration matriz contains a row
of Type 2 admits two small contractions 7~ , 7+ : X — Xsing, where Xging has isolated singularities. The
composition (=)~ ont induces a birational map between X and itself.

Proof. The last K —n equations in the configuration matrix in Equation (5.1) define a complete intersection
Y inside P[y],

(5:2) Vo [ Bl | Gon o i |

(unless K = n + 1, in which case simply ¥ = Iﬁ[y]) which one can check is a threefold. The first n equations
in the configuration matrix have degrees {2, 1, ..., 1} in the z-coordinates, and hence over a generic point
in Y they determine two points inside P"[z]. Hence the CICY is almost everywhere a double cover of the
manifold Y. Over a codimension-one locus inside Y, the two points inside P"[z] coincide. Further, over a
codimension-three locus inside Y, i.e. at a set of points, the n equations become degenerate, admitting as
solutions an entire P! inside P"[x]. Hence, X is the small resolution of a branched double cover of Y at a

number of singular points.

P [z]

s
y \/4

. Ply]

FIGURE 1. Any (generic, Kéhler-favourable) complete-intersection Calabi-Yau threefold whose con-
figuration matrix is as in Equation (5.1) is a small resolution of a branched double cover of P[y].

To describe this explicitly, we write out the first n equations defining X in the form

AR o AT () 1
O:fTA(y)f:(xl . Zny) ; : : ,
A ) o AT ) ) \Een
(5.3) ) )
B§?f)(y) e B§q721)+1(y) T Bt 1
0=B(y)z = : s = S
B () o B () ) \Ta B,/ \#ni

where the superscripts denote again the multi-degrees of the functions in y and the last equality should be
read as a definition of the vectors B;. Note that the matrix A is square (and symmetric) while B is an
(n — 1) x (n 4 1) matrix so that the second line describes n — 1 equations.
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Over a generic point y these equations pick out two points inside P"[z] and these solutions coincide when
the discriminant A(y) vanishes. For n > 1 one can check that this discriminant is given by

(5.4) Afy) = Z C2(A) (6(1),....0(n=1)),(p(1),.esp(n—1)) B1,o(1) B1,p(1) - - - Bn-1,0(n—1) Bn—1,p(n—1) -

a,p ESn+1

Here Co(A)(5(1),....0(n=1)).(p(1),....o(n—1)) is the cofactor of A corresponding to the 2x 2 submatrix which results
upon removing rows o(1),...,o(n — 1) and columns p(1),...,p(n — 1). The multi-degree of A is 23" | G;.
When n = 1, we only have the quadratic equation and the discriminant is given by A(y) = det A(y).

Further, for n > 1, there are points within the branch locus at which the defining equations become
degenerate, allowing a one-dimensional space of solutions. This can happen in two ways.

(1) The quadratic equation factors at a point y* € @[y] into two linears, one of which is linearly dependent
with the n — 1 linear equations defined by B, that is

(5.5) FTA(y")Z=(...)é"%  and rank (B (y*) ... Bn1(y*) @) <n-—1,

for some @ = (c1, ..., cap1)T € C*1 The equations then determine an entire P! inside P"[z].
Being defined by linear equations, this rational curve intersects a generic hyperplane in P"[z] in
precisely one point. We denote by [C] its curve class in X.

(2) The n — 1 linear equations become linearly dependent at a point y* € P[y], that is

(5.6) rank B(y*) <n —2.
In this case the equations defining the P! inside P"[x] include a quadratic, and hence the corresponding
curve is in the class 2[C].

For the special case n = 1, in which B is absent, the contracting P's occur where the three independent

components of the symmetric 2 x 2 matrix A vanish, and these P's are all in the same curve class [C].

Contracting the P's leaves a branched double cover of Y with branch locus over A(y) = 0. To explicitly
describe this double cover of Y we add an extra coordinate ¢ to the ambient space P[y] of Y, and introduce
the equation

(5.7) €~ Ay) =0.

The new ambient space is a toric variety for which the weight of £ is chosen to make the above equation
consistent. Altogether, the singular manifold resulting from the small contraction of X is then described as
a complete intersection in a toric ambient space, namely

£ y |
> @ D‘(§2—A(y):0) o1 - (K

where [J stands for the unchanged scaling behaviour of the coordinates on the H;[y], and where the K —n
equations with multi-degrees ¢,,+1 to §x are the same as those appearing in the last K —n equations in (5.1).

Since the hypersurface in Equation (5.7) is invariant under £ — —¢&, there are actually two contraction
maps from X to Xging,

(5.8) Xeing ~

¢
X emmmmmmm - X
(5.9) W\ %
Xsing

where the projections 7~ and 7T agree on the preimage of the branch locus, and outside of this they agree
upon composition with the automorphism £ — —¢ on Xing. The composition (77)tor™ induces a birational
map ¢ from X to itself. O

Below we show that ¢ is in fact a flop, by first determining in Section 5.2 the mapping of divisors under
¢, and so constructing a divisor D on X such that the collapsing curves have a positive intersection with D
and a negative intersection with the corresponding divisor D’ under ¢.
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Remark 5.2. One can check that deformations of Equation (5.7) to include a linear term in £ give rise to
smooth hypersurfaces, and hence that X, belongs to a family X > of smooth Calabi-Yau threefolds, which
are complete intersections in a toric ambient space, namely

3 y |
(5.10) X'~ —— T — -
Y @ O ‘ R R 7/
Hence the threefold X in Equation (5.1) is on the resolution branch of a conifold transition
(5.11) X" = Xgng — X

and when we construct the flopped space below, we will be constructing the other possible resolution branch
of this conifold transition.

5.2. Divisor images and the Picard group isomorphism. We begin with the following definition.
Definition 5.3. A natural set of divisors H(; on X is given by intersecting X inside P"[z] x Bly] with the
hyperplanes given by the zero loci of the P*[z] coordinates, {z; = 0} for 1 <i <n+1,

(5.12) Hyy: {oi=01nX.

Proposition 5.4. There exists a divisor on X intersecting the contracting curves positively, while its image
under ¢ intersects the contracting curves negatively.

Proof. The divisor class of H; is (1,0,...,0) in the basis {D;} defined in Section 2.2. This divisor H,
intersects the contracting P's in points, and in particular, it intersects the P's of class C' and 2C, described
in Equations (5.5) and (5.6), in one and two points respectively.

The image 77 (H(;)) C Xging is the locus in B[y] over which {z; = 0} intersects X. Note that if z; = 0
then from the equation B(y)# = 0 one has either & « &; A BiA...AB,_; or det (éi , B, e 7-§n—1) =0,

where ¢é; is the i*" unit vector. Combining this with the equation ZTAZ = 0, it follows that
T (Hey) = [Bly) | (fo(®) =0) Gara .o ],

where fi)(y) = (éiAél(y)A...Aén,l(y))TA(y) (éiAél(y)A...Aén,l(y)) .

However over f(;(y) = 0 there are two points on the Calabi-Yau (at least away from the branch locus).
Hence by taking the locus in X over f(;(y) = 0 but removing the points z; = 0, one constructs a second
effective divisor, described by

(5.14) Hy: {Mzo}mx.

Zq

(5.13)

Away from the branch locus H(;) and H ;) pick out distinct points. Within the branch locus but away from
the P's the two loci coincide. However there is a significant qualitative difference at the P! loci, since while
H;y intersects the contracting P!s transversely, H(;) contains these curves entirely.

In the projection to Xgg, the P's are contracted to points and the qualitative difference between H ()
and H ;) disappears: these divisors simply map to opposite branches of the singular double cover, i.e. the
images 77 (H(;)) and 7% (H;)) are related by the Zy symmetry £ — —¢. However, the second contraction 7~
is related to the first 7™ by composition with this symmetry. Hence

(5.15) m (Hp) =7 Hey), 7 (He) =7 (Hy) ,
and, consequently, under the induced birational map ¢: X --+ X, we have the divisor mapping
(5.16) P(Huy) =Hey ,  ¢(Muy) =Hp -

Writing divisor classes on X with respect to the basis of the pulled-back hyperplane classes of the projective
space factors in the ambient space, the classes of the above divisors can be read off from their expressions as

(5.17) [Hpl = (1.0), [Hel=(-1.a+250,a) -

The divisors transversely intersecting the P's have positive intersection with the P's while the divisors
containing the P's have negative intersection, as expected. O
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Corollary 5.5. The Picard group isomorphism between X and itself is the map that exchanges the divisor
classes as [H ;)] <+ [H(;)] and which trivially maps classes with no component in the first entry, namely

(jl +2 ZZ:Q (j‘k 1
5.3. The flop and the new Kéahler cone. We are now in a position to prove the following.

Theorem 5.6. A generic CICY threefold with a row of Type 2 admits a flop to a threefold isomorphic (i.e.
diffeomorphic) to itself. Moreover, this is in fact an isomorphism of complex manifolds.

(5.18) Pic(X) = Pic(X): & — < - 0F ) 7.

Proof. Under the birational map from X to itself, which contracts and then resolves the P's and gives a
manifold isomorphic to the original Calabi-Yau, the divisor H(;) maps to the divisor H;) (and vice versa).
Moreover, the intersections of these divisors with the contracting P's are positive and negative, respectively.
Hence by Definition (2.1), the associated birational map from X to itself is a flop. O

We see that flops on rows of Type 2 always produce an isomorphic Calabi-Yau threefold. This is in contrast
to the case of flops on rows of Type 1 treated in Section 4, where the flopped Calabi-Yau is generically
topologically distinct from the original one (except in the special case noted in Section 4.3).

As in the special case of isomorphic flops from Type 1 rows, since all flops on rows of Type 2 produce an
isomorphic Calabi-Yau the Kéhler cone of the flopped manifold is known (trivially), and its relation to that
of the original Calabi-Yau is given by the Picard group isomorphism in Equation (5.18).

Example 5.7. As a first example, consider a generic Calabi-Yau threefold X with configuration matrix and

defining equation given by?

P![z]

P2[y]
For a generic y € P? the defining equation gives two solutions for x, while when the discriminant P(y)R(y)—

Q(y)? vanishes, the two solutions coincide. On the other hand, when P(y) = Q(y) = R(y) = 0, which happens

at 64 points in P3, the equation admits an entire P! as a solution. By contracting these curves one obtains
the singular double cover, which can be described as a hypersurface in a weighted projective space:

(5.20) Xeing = 1(&,¥1, 92,93, ¥4) € Placrir1a) | &€ —(PR-Q*)(y) =0} .
The singularities of Xing are of A; type, so locally these correspond to the Atiyah flop.

The Picard group isomorphism, written in the basis {[D1], [D2]} of the pulled-back hyperplane classes on
P! and P2, respectively, is given by the matrix

(5.19) X = Xrgg7 ~ [

421 } : { PW(y)a? +2QW(y) miz2 + RP(y)23 =0 } .

(5.21) Pic(X) = Pic(X): # (‘i ; )17.

In particular, this means that ¢([D1]) = —[D1]+4[D2] and ¢([D3]) = D2. The map can be extended by linear-
ity to Pic(X)®R giving the following picture which involves two cones: the Kéhler cone K (X) = ((1,0), (0,1))
and its image ¢(K(X)) = ((—1,4), (0,1)), forming together the extended Kéhler cone.

<_1’4)

(0,1)
(1,0)

Example 5.8. For a second example, we choose a generic Calabi-Yau threefold X with configuration matrix

and defining equation given by
2 1], ZTAZ=0
3.1]° BTi=0 [’

2We note that the birational geometry of hypersurfaces in products of projective spaces has also been described in Ref. [22].
This analysis overlaps with the cases treated in the present article in three cases: the present example, the hypersurface of
multi-degree (2,2, 3) in P! x P! x P2, and the hypersurface of multi-degree (2,2,2,2) in P! x P! x P! x P1.

P2[z]

X = Xrsg3 ~ { P3y]
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where A is a symmetric 3 x 3 matrix whose entries are degree three polynomials in y, while B is a 3-dimensional
vector whose entries are degree one polynomials in y.

The second equation can be used to eliminate one of the z-variables from the first equation. The resulting
quadratic equation has a determinant which can be written as

(5.22) A(y) = B(y)"Ca(y)B(y) .

where Cy4 is the matrix of cofactors of A. The singular double cover at the intermediate point of the flop is
again a hypersurface in a weighted projective space:

(5.23) Xsing = {(§, 91,92, 93, 94) € P[4;1;1;1;1] | 52 —A(y) =0} .

The threefold Xsing has 73 singular points and the map X — Xqing contracts 72 curves in the class [C4] and
1 curve in the class 2[C1], where [C4], [C2] are the curve classes dual to the hyperplane classes [D;], [D2] of
P? and, respectively, P? (pulled-back to the Calabi-Yau X).

The Picard group isomorphism written in the basis {[D1], [D2]} is given by the matrix

(5.24) Pic(X) = Pic(X): # (‘; ; )U,

giving an extended Kéahler cone qualitatively as in the previous example but with a boundary ray (—1,5).
Note that the singular manifold involved in this flop belongs to the same deformation class as that in the
previous example, hence the threefolds X7sg7 and Xrggs are connected by two conifold transitions.

5.4. Counting the number of contracting curves. Unlike in the case of flops on rows of Type 1 treated
in Section 4, in the case of flops on rows of Type 2 there are two types of P's involved in the contraction:
those with class [C] and those with class 2[C].

Proposition 5.9. The numbers num(P%C]) and num(]P’%[C]) of contracting curves in each class are given by
the two relations

() + () = $(x(06) ~ (X)),

5.25 n

o s (Ply) + 2mn(Phey) = da() - (=25 +23°d0).
k=2

Proof. The sum of the total numbers of both types can be extracted from the difference in Euler characteristic
between X and the smoothed contracted manifold X,

(5.26) num(]P)[lc]) + num(P%[C]) =3 (x(X) - X(Xb)) .

One may also want to know the two numbers num (]P’lc) and num (]P’%C) independently. One way to compute
this is by leveraging the fact that the flopped manifold is isomorphic to the original in the relation for the
difference in second Chern classes in Equation (2.3). In particular, we immediately know the second Chern
class after the transition, and hence we can use this relation to learn about the contracting P! curves.
Taking the intersection on the right of Equation (2.3) with H;y ~ (1,0) and on the left with H) ~
( -1, @ +2>,, (jk), i.e. using the Picard group isomorphism in Equation (5.18), we have

2 ZC(“) . H(i) = C2(_X) 'H(i) — C2(_X) . H(i)
(5.27) = num(IP’[lc]) + 2num(Pé[c}) =1c(X) (Hu — Hpy)

=5 ca(X)- (—2#71-?—22(7/@)-
k=2

Example 5.10. Consider a generic CICY threefold in the family

P2{2 1 0
(528) X758 ~ |: Pl1 2 2 :| :
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One can check that the Euler characteristic and second Chern class of this Calabi-Yau are x(X) = —100 and
c2(X) = (36,52). The divisor class of H(;) can be read off from the configuration matrix as (—1,5). The

smoothed contracted manifold X° is

€y ...y P P
T3 1 16 2
and one can check that its Euler characteristic is x(X?) = —256. With this information we find that
(5.30) num(]P)[lc]) =62, num(P;[C]) =16.

(5.29) X’

)

Remark 5.11. One can also compute num(P%[C]) directly by using the Giambelli-Thom-Porteous formula,

analogously to the computation in Section 4.5. Defining the line bundle sum F = 7_, O3(q;) on P[y], and

writing JF for the restriction of F' to Y ~ [ @[y] | Gn+1 -+ (K }, the number of P's with class 2C is
ci(F) c2F) e3(F) c(F) ca(F) e3(F) K .
(5.31) num(Byey) = | «olF) alF) ) [=| o) aF) aF) |- ] (q;- : H) :

0 co(F) c1(F) 0 co(F) ci(F) | j=n+1

In the last expression all intersections are taken on E;[y], and the product factor is a series of intersections
which implement the restriction to ¥ ~ [ @[y] | Gn+1 -+ (K }, in which H is a list of the hyperplane

classes of each of the projective spaces in ﬁ[y]

Example 5.12. Consider a generic CICY threefold in the family

P3l2 1 1 0
(5.32) X759 ~ [ Pil1 1 1 9 } ;
so that F' = Opa(1) ® Opa(1) and HJK:"H (- ﬁ) = 2H. The Chern classes of F' are then
(5.33) co(F)=1, ci(F)=2H, c(F)=H?, c3(F)=0.
and the number of collapsing curves in class 2[C] is

2H H? 0

(5.34) mm(Pyy) =| 1 2H H? |-(2H)=38.

0 1 2H

One can also check using Equation (5.26) or Equation (5.27) that num(]P’[lc]) = 70. Lastly we note that for
this Calabi-Yau threefold, both rows are Type 2, so both boundaries of the Kéhler cone correspond to flops to
isomorphic manifolds, and the Calabi-Yau admits two distinct descriptions as a small resolution of a singular
double cover. Focusing on the flop on the second row, one finds instead num(P%C]) =72 and num(P%[C]) = 26.
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