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Abstract

In a continuum model of the solvation of charged molecules in an aqueous solvent, the
classical Poisson–Boltzmann (PB) theory for the electrostatics of an ionic solution is
generalized to include the solute point charges and the dielectric boundary that sepa-
rates the high-dielectric solvent from the low-dielectric solutes. With such a setting, we
construct an effective electrostatic free-energy functional of ionic concentrations. The
functional admits a unique minimizer whose corresponding electrostatic potential is the
unique solution to the boundary-value problem of the nonlinear dielectric-boundary
PB equation. The negative first variation of this minimum free energy with respect
to variations of the dielectric boundary defines the normal component of the dielectric
boundary force. Together with the solute-solvent interfacial tension and van der Waals
interaction forces, such boundary force drives an underlying charged molecular system
to a stable equilibrium, as described by a variational implicit-solvent model. We develop
an L2-theory for boundary variations and derive an explicit formula of the dielectric
boundary force. Our results agree with a molecular-level prediction that the electro-
static force points from the high-dielectric aqueous solvent to the low-dielectric charged
molecules. Our method of analysis is general as it does not rely on any variational
principles.
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1 Introduction

Charged molecules such as proteins polarize the surrounding aqueous solvent (i.e., water or
salted water), generating a strong electrostatic force [15,32,46]. In a class of implicit-solvent
(i.e., continuum-solvent) models, electrostatic interactions in a charged molecular system
are described by the Poisson–Boltzmann (PB) theory [3, 9, 16, 18, 37, 49, 52]. Key in such a
description is the dielectric boundary (i.e., the solute-solvent interface) that separates the
high-dielectric solvent from the low-dielectric solutes (i.e., charged molecules). The dielectric
boundary force—the macroscopic electrostatic force exerted on the boundary—plays a critical
role in the molecular conformational dynamics [21,22,29,53,57]. Here, we present a detailed
mathematical study of this force within the PB framework.

Briefly, the classical PB theory provides a continuum description of electrostatic interac-
tions in an ionic solution through the nonlinear PB equation [2, 8, 19, 25,28]

∇ · ε∇ψ − B′(ψ) = −ρ in Ω0, (1.1)

where Ω0 ⊆ R3 is the region of the ionic solution, ε is the dielectric coefficient, ρ : Ω0 → R
is the density of fixed charges, and ψ : Ω0 → R is the electrostatic potential. In (1.1), the
function B : R→ R is defined by

B(s) = β−1

M∑
j=1

c∞j
(
e−βqjs − 1

)
∀s ∈ R, (1.2)

where β = (kBT )−1 with kB the Boltzmann constant and T the temperature, M is the total
number of ionic species, c∞j is the bulk ionic concentration of the jth ionic species, and
qj = zje is the charge of an ion of the jth species with zj the valence of such an ion and e
the elementary charge. The PB equation (1.1) is a combination of Poisson’s equation

∇ · ε∇ψ = −

(
ρ+

M∑
j=1

qjcj

)
in Ω0,

where cj : Ω0 → [0,∞) is the ionic concentration of the jth ionic species, and the Boltzmann
distributions for the equilibrium ionic concentrations

cj(x) = c∞j e
−βqjψ(x), x ∈ Ω0, j = 1, . . . ,M.

In modeling charged molecules in an aqueous solvent with an implicit-solvent, the PB
theory is generalized to include the point charges of molecules and the dielectric boundary
[9, 16, 18, 37, 49, 52]. To be more specific, let us assume that the entire solvation system
occupies a region Ω ⊆ R3. It is the union of three disjoint parts: the region of solutes (i.e.,
charged molecules) Ω−; the region of solvent Ω+; and the solute-solvent interface or dielectric
boundary Γ, which is a closed surface with possibly multiple components, that separates Ω−
and Ω+; cf. Figure 1. We denote by n the unit normal to the boundary Γ pointing from Ω−
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Figure 1: A schematic description of a solvation system with an implicit solvent.

to Ω+ and also the exterior unit normal to ∂Ω, the boundary of Ω. The solute region Ω−
contains all the solute atoms that are located at x1, . . . , xN and that carry partial charges
Q1, . . . , QN , respectively, with N ≥ 1 a given integer. The solvent region Ω+ is the region of
ionic solution, same as Ω0 in (1.1). As above, we assume that there are M species of ions in
the solvent with the valence zj, charge qj = zje, bulk concentration c∞j , and concentration
cj : Ω+ → [0,∞) for the j ionic species (j = 1, . . . ,M). The dielectric coefficients in the
solute region Ω− and solvent region Ω+ are denoted by ε− and ε+, respectively. Typically,
ε− = 1 and ε+ = 76 ∼ 80 in the unit of vacuum permittivity. The density of fixed charges is
now ρ =

∑N
i=1 Qiδxi , where δxi is the Dirac delta function at xi.

Our study consists of three parts. First, we introduce the electrostatic free-energy func-
tional of the ionic concentrations c = (c1, . . . , cM) in the solvent region Ω+ [9, 26,37,48]

FΓ[c] =
1

2

N∑
i=1

Qi(ψ − φ̂C)(xi) +
1

2

∫
Ω+

(
M∑
j=1

qjcj

)
ψ dx

+ β−1

M∑
j=1

∫
Ω+

{
cj
[
log(Λ3cj)− 1

]
+ c∞j

}
dx−

M∑
j=1

∫
Ω+

µjcj dx, (1.3)

where Λ is the thermal de Broglie wavelength, µj is the chemical potential for ions of the jth
species, and c∞j = Λ−3eβµj (j = 1, . . . ,M). In (1.3), ψ : Ω→ R is the electrostatic potential.
It is the unique weak solution to the boundary-value problem (BVP) of Poisson’s equation

∇ · εΓ∇ψ = −

(
N∑
i=1

Qiδxi + χ+

M∑
j=1

qjcj

)
in Ω and ψ = φ∞ on ∂Ω, (1.4)

where the dielectric coefficient εΓ : Ω→ R is defined by

εΓ(x) =

{
ε− if x ∈ Ω−,

ε+ if x ∈ Ω+,
(1.5)
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χ+ = χΩ+ is the characteristic function of Ω+, and φ∞ is a given function on the boundary

∂Ω. The function φ̂C in (1.3) is the Coulomb potential arising from the point charges Qi at
xi (i = 1, . . . , N) in the medium with the dielectric coefficient ε−, serving as a reference field.
It is given by

φ̂C(x) =
N∑
i=1

Qi

4πε−|x− xi|
∀x ∈ R3 \ {x1, . . . , xN}. (1.6)

We note that the ionic concentrations c1, . . . , cM are only defined on the solvent region
Ω+. Implicitly, this assumes that no mobile ions in the solvent are allowed to cross the
boundary Γ and enter into the solute region Ω−, an approximation made in a continuum
model. The conservation of mass for the mobile ions in the solvent region is enforced through
the chemical potentials µ1, . . . , µM that are independent of the solute atomic positions xi and
partial charges Qi (i = 1, . . . , N). We also note that in the electrostatic free energy FΓ[c] (cf.
(1.3)), the bulk ionic concentrations c∞j and the chemical potentials µj, which are related
by c∞j = Λ−3eβµj , both appear in integrals over the solvent region Ω+. Since Γ is part of
the boundary of Ω+, variations of the dielectric boundary Γ will depend on the chemical
potentials [9].

We prove that the functional FΓ[c] has a unique minimizer cΓ = (cΓ,1, . . . , cΓ,M) in a class of
admissible concentrations, and derive the equilibrium conditions δcjFΓ[cΓ] = 0 (j = 1, . . . ,M),
which lead to the Boltzmann distributions cΓ,j = cΓ,j(ψΓ) (j = 1, . . . ,M), where ψΓ is the
corresponding electrostatic potential. We also prove that ψΓ is the unique solution to the
BVP of the nonlinear dielectric-boundary PB equation

∇ · εΓ∇ψ − χ+B
′
(
ψ − φΓ,∞

2

)
= −

N∑
i=1

Qiδxi in Ω and ψ = φ∞ on ∂Ω, (1.7)

where B is given in (1.2) and φΓ,∞ : Ω→ R is the unique weak solution to the BVP

∇ · εΓ∇φΓ,∞ = 0 in Ω and φΓ,∞ = φ∞ on ∂Ω; (1.8)

cf. Theorem 2.1 and Theorem 2.2. We denote the minimum free energy by

E[Γ] = minFΓ[·] = FΓ[cΓ],

which depends solely on the dielectric boundary Γ. We construct a strictly concave functional
GΓ of all admissible electrostatic potentials ψ such that the unique solution ψΓ to the BVP
of the dielectric-boundary PE equation is a solution to the Euler–Lagrange equation for GΓ,
and hence the unique maximizer of GΓ. Moreover,

E[Γ] = maxGΓ[·] = GΓ[ψΓ];

cf. Lemma 3.1 and Theorem 3.1.
Second, we define the (normal component of the) dielectric boundary force to be −δΓE[Γ],

the negative first variation of the functional E[Γ] with respect to the variation of boundary
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Γ. The boundary variation is defined via a smooth vector field. Specifically, let V : R3 → R3

be a smooth map vanishing outside a small neighborhood of the dielectric boundary Γ. Let
x = x(t,X) be the solution map of the dynamical system defined by [5, 20,33,50].

dx(t,X)

dt
= V (x(t,X)) ∀ t ∈ R and x(0, X) = X ∀X ∈ R3.

Such solution maps define a family of transformations Tt : R3 → R3 (t ∈ R) by Tt(X) =
x(t,X) for any X ∈ R3. The variational derivative of the functional E[Γ] in the direction of
V : R3 → R3 is defined to be

δΓ,VE[Γ] =
d

dt
E[Γt(V )]

∣∣∣∣
t=0

,

if it exists, where Γt(V ) = {x(t,X) : X ∈ Γ}.
We prove that δΓ,VE[Γ] exists, and is an integral over Γ of the product of V · n and some

function that is independent of V , where n is the unit normal along Γ, pointing from Ω− to
Ω+. This function on Γ is identified as the variational derivative (i.e., shape derivative) of
E[Γ] and is denoted by δΓE[Γ]. We obtain an explicit formula for δΓE[Γ]. If the boundary
value φ∞ = 0 on Γ, then

δΓE[Γ] = −1

2

(
1

ε+

− 1

ε−

)
|εΓ∂nψΓ|2 +

1

2
(ε+ − ε−) |∇ΓψΓ|2 +B (ψΓ) , (1.9)

where ψΓ is the unique solution to (1.7), εΓ∂nψΓ is the common value from both sides of Γ,
and ∇Γ = (I−n⊗n)∇ (with I the 3×3 identity matrix) is the tangential derivative along Γ.
Additional terms arise from a general, inhomogeneous boundary value φ∞; cf. Theorem 3.2.

Finally, to describe the electrostatic free energy with point charges and to prove our
theorems, we introduce various auxiliary functions that are weak solutions to the BVP of the
operator−∆ or−∇·εΓ∇, with or without the point charges

∑N
i=1 Qiδxi and with homogeneous

or inhomogeneous Dirichlet boundary conditions. We prove several lemmas, Lemmas 4.1–
4.4, showing the continuity and differentiability of those functions with respect to boundary
variations. Lemma 4.2 states that the “Γ-derivative” of the function φΓ,∞ which is defined in
(1.8) is the unique weak solution ζΓ,V ∈ H1

0 (Ω) to the elliptic problem −∇ · εΓ∇ζΓ,V = f in
Ω, where f depends on φΓ,V and V . Moreover,

φΓt(V ),∞ ◦ Tt − φΓ,∞

t
→ ζΓ,V in H1(Ω) as t→ 0.

(We use the standard notation of Sobolev spaces, such as H1(Ω) and H1
0 (Ω), and other

function spaces; cf. [1, 24, 27].) Lemma 4.3 and Lemma 4.4 generalize the result to other
Γ-dependent functions, including the electrostatic potential ψΓ that is the unique solution to
the BVP of the nonlinear dielectric-boundary PB equation (1.7).

We now make several remarks on our results. A nonzero Dirichlet boundary value in (1.4)
leads to an extra term φΓ,∞/2 in the Boltzmann distribution and hence in the PB equation
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(1.7). If there are surface charges on the boundary ∂Ω, then one can also use the Neumann
boundary condition for the electrostatic potential on ∂Ω. In that case, the electrostatic energy
includes a boundary integral term involving the surface charge density; cf. [39, 44].

If we use the homogeneous Dirichlet boundary condition φ∞ = 0 for the electrostatic
potential, then the dielectric boundary force points from the high-dielectric solvent region
Ω+ to the low-dielectric solute region Ω−; cf. (1.9). Such a macroscopic prediction is con-
sistent with a microscopic picture of molecular forces that charged molecules polarize the
surrounding aqueous solvent, which is otherwise electrically neutral, generating an additional
electric field that attracts the solvent to the solutes [15]. Since the force points to Ω−, one
expects that no bounded region Ω− will minimize the sum of the electrostatic energy and
the surface energy [45]. If a small, high-dielectric solvent region is surrounded by the low-
dielectric solute molecules (such as a cluster of water molecules buried in a protein), then the
competition between the solute-solvent interfacial tension force and the dielectric boundary
force results an equilibrium solute-solvent interface, which is however unstable with long-
wave perturbations [10, 41]. This may possibly explain why water molecules in proteins are
metastable [55, 56]. It remains open to confirm if the dielectric boundary force still points
from the high-dielectric solvent region to the low-dielectric solute region for a general inho-
mogeneous Dirichlet boundary value φ∞.

In [6, 7, 54], the authors use the Maxwell stress tensor to define and derive the dielectric
boundary force given an electrostatic potential that is determined by the dielectric-boundary
PB equation. The shape derivative approach seems first introduced in [38] to define and
derive the dielectric boundary force. However, approximations of point charges by smooth
functions are made there, and the derivation of the boundary force relies on the underlying
variational principle that the electrostatic potential extremizes the PB free-energy functional.
This approach is applied to the electrostatic force acting on membranes [47]. Here, we use
the direct calculations to derive the boundary force, which is a more general approach.

Our study is closely related to the development of a variational implicit-solvent model
(VISM) for biomolecules [21, 22] (cf. also [11–13, 53, 57, 58]). Central in the VISM is an
effective free-energy functional of all possible dielectric boundaries that consists mainly of
the surface energy of solute molecules, solute-solvent van der Waals interaction energy, and
continuum electrostatic free energy. Minimization of the free-energy functional with respect
to the dielectric boundary yields optimal solute-solvent interfaces, as well as the solvation free
energy. In [40], the authors use the matched asymptotic analysis to derive the sharp-interface
limit of a phase-field VISM [51]. In [17], the authors prove the convergence of the free energy
and force in the phase-field VISM to their sharp-interface counterparts.

In Section 2, we study the BVP of the nonlinear dielectric-boundary PB equation, and
the electrostatic free-energy functionals of ionic concentrations and electrostatic potentials,
respectively. In Section 3, we reformulate the minimum electrostatic free energy, define the
dielectric boundary force, and present the main formula for such force. In Section 4, we prove
several lemmas on the calculus of boundary variations. Finally, in Section 5, we prove the
main theorem (Theorem 3.2) of the dielectric boundary force.
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2 The Poisson–Boltzmann Equation and Free-Energy

Functional

2.1 Assumptions and Auxiliary Functions

Unless otherwise stated, we assume the following throughout the rest of the paper:
A1. The set Ω ⊂ R3 is non-empty, bounded, open, and connected. The sets Ω− ⊂ R3 and

Ω+ ⊂ R3 are non-empty, bounded, and open, and satisfy that Ω− ⊂ Ω and Ω+ = Ω\Ω−.
The interface Γ = ∂Ω− = Ω− ∩ Ω+ and the boundary ∂Ω are of the class C3 and C2,
respectively. The unit normal vector at the boundary Γ exterior to Ω− and that at ∂Ω
exterior to Ω are both denoted by n. The N points x1, . . . , xN for some integer N ≥ 1
belong to Ω−; cf. Figure 1. Moreover, there exists a constant s0 > 0 such that

dist (Γ, ∂Ω) ≥ s0; (2.1)

A2. All the integer M ≥ 2, and real numbers β > 0, Λ > 0, Qi ∈ R (1 ≤ i ≤ N), qj 6= 0
and µj ∈ R (1 ≤ j ≤ M), and ε− > 0 and ε+ > 0 are given. Moreover, ε− 6= ε+. The
parameter c∞j is defined by c∞j = Λ−3eβµj (j = 1, . . . ,M). The parameters qj and c∞j
(1 ≤ j ≤M) satisfy the condition of charge neutrality

M∑
j=1

qjc
∞
j = 0; (2.2)

A3. The functions B : R → R and εΓ ∈ L∞(Ω) are defined in (1.2) and (1.5), respectively.
The boundary data φ∞ is the trace of a given function, also denoted by φ∞, in C2(Ω).

Note that B ∈ C∞(R) is strictly convex and B′(0) = 0 by the charge neutrality (2.2). Hence,
B(s) > B(0) = 0 for all s 6= 0. The charge neutrality (2.2) implies that there exist some
qj > 0 and some qk < 0. Hence, B(±∞) =∞ and B′(±∞) = ±∞.

We now introduce several auxiliary functions to treat the point-charge singularities, the
dielectric discontinuity Γ, and the inhomogeneous boundary data φ∞ on ∂Ω. There are two
basic such functions that will directly enter into our results (e.g., the expression of electrostatic
free energy and that of the related dielectric boundary force). They are:
• φ̂C: the Coulomb field defined in (1.6), which is the unique weak solution to −ε−∆φ̂C =∑N

i=1 Qiδxi in R3 and φ̂C = 0 at ∞;
• φΓ,∞ : defined as the unique weak solution to the BVP (1.8).
The function φΓ,∞ is determined by φΓ,∞ ∈ H1(Ω), φΓ,∞ = φ∞ on ∂Ω, and∫

Ω

εΓ∇φΓ,∞ · ∇η dx = 0 ∀η ∈ H1
0 (Ω). (2.3)

By the regularity theory, we have

φΓ,∞ ∈ W 1,∞(Ω) and φΓ,∞|Ωs ∈ C∞(Ωs) ∩H2(Ωs) for s = −,+. (2.4)
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Moreover, there exists a constant C = C(Ω, ε+, ε−, φ∞) > 0, independent of Γ, such that

‖φΓ,∞‖H1(Ω) + ‖φΓ,∞‖L∞(Ω) ≤ C. (2.5)

See [42] (Corollary 1.3) for the W 1,∞-regularity, which implies that φΓ,∞ ∈ C(Ω). The H1-
estimate in (2.5) is standard; it can be derived simply by setting η = φΓ,∞ − φ∞ in (2.3).
See [27] (Theorem 8.29) for the global Hölder estimate which implies the global L∞ estimate
in (2.5). (Note that the global W 1,∞-estimate is established in [42] but the constant C may
depend on the smoothness of Γ.) For the piecewise H2-regularity, see [35] (Section 16 of
Chapter 3) and [30,31]. By (2.3), we have

∆φΓ,∞ = 0 in Ω− ∪ Ω+. (2.6)

This implies the piecewise C∞-regularity in (2.4). By the fact that φΓ,∞ ∈ C(Ω)∩H1(Ω) and
by routine calculations using (2.3) and the Divergence Theorem, we have [37]

JφΓ,∞KΓ = 0 and JεΓ∂nφΓ,∞KΓ = 0, (2.7)

where the jump J·KΓ is defined for any function u on Ω that has the trace on Γ by

JuKΓ = u|Ω+ − u|Ω− on Γ. (2.8)

We now introduce some more auxiliary functions as weak solutions to BVPs; these func-
tions are only used in proofs of some lemmas or theorems:

φ̂0 : − ε−∆φ̂0 =
N∑
i=1

Qiδxi in Ω and φ̂0 = 0 on ∂Ω; (2.9)

φ̂∞ : − ε−∆φ̂∞ =
N∑
i=1

Qiδxi in Ω and φ̂∞ = φ∞ on ∂Ω; (2.10)

φ̂Γ,∞ : −∇ · εΓ∇φ̂Γ,∞ =
N∑
i=1

Qiδxi in Ω and φ̂Γ,∞ = φ∞ on ∂Ω. (2.11)

Note that a hat means the right-hand side is given by
∑N

i=1 Qiδxi . A subscript Γ corresponds
to −∇ · εΓ∇, while no subscript Γ referring to −ε−∆. A subscript ∞ or 0 corresponds to
boundary value φ∞ or 0, respectively.

The function φ̂ = φ̂C, or φ̂0, or φ̂∞ satisfies that φ̂ ∈ φ̂C +H1(Ω). It is uniquely determined
by its boundary value on ∂Ω, and∫

Ω

ε−∇φ̂ · ∇η dx =
N∑
i=1

Qiη(xi) ∀η ∈ C1
c (Ω), (2.12)

where C1
c (Ω) denotes the class of C1(Ω)-functions that are compactly supported in Ω. Clearly,

we can modify the value of φ̂ on a set of zero Lebesgue measure, if necessary, so that φ̂ is a

8



C∞-function in Ω\{x1, . . . , xN}. Moreover, ∆φ̂ = 0 in Ω\{x1, . . . , xN} and ∆(φ̂− φ̂C) = 0 in
Ω. Since ∂Ω is C2 and φ∞ ∈ C2(Ω), we have φ̂− φ̂C ∈ H2(Ω); cf. Chapter 8 in [27]. Therefore,
φ̂ ∈ φ̂C +H2(Ω) ∩ C∞(Ω) ⊂ W 1,1(Ω).

We remark that η ∈ C1
c (Ω) in (2.12) can be replaced by η ∈ H1

0 (Ω) with η|Ω− ∈ C1(Ω−).

To see this, we first note that (2.12) holds true if φ̂ is replaced by φ̂C (cf. (1.6)). Thus,∫
Ω

ε−∇(φ̂− φ̂C) · ∇η dx = 0 ∀η ∈ H1
0 (Ω),

as φ̂− φ̂C ∈ H1(Ω) and C1
c (Ω) is dense in H1(Ω). If η ∈ H1

0 (Ω) also satisfies η|Ω− ∈ C1(Ω−),

then ∇φ̂C · ∇η, hence ∇φ̂ · ∇η, is integrable in Ω. Moreover,∫
Ω

ε−∇φ̂ · ∇η dx =

∫
Ω

ε−∇φ̂C · ∇η dx =
N∑
i=1

Qiη(xi),

where the second equality follows from straight forward calculations using (1.6).
The function φ̂Γ,∞ defined in (2.11) belongs to φ̂C +H1(Ω). It is uniquely determined by

its boundary value on ∂Ω and∫
Ω

εΓ∇φ̂Γ,∞ · ∇η dx =
N∑
i=1

Qiη(xi) ∀η ∈ C1
c (Ω); (2.13)

cf. [23, 43]. If φ̂ = φ̂C (the Coulomb field), or φ̂0 defined in (2.9) , or φ̂∞ defined in (2.10),
then (2.13) is equivalent to∫

Ω

εΓ∇(φ̂Γ,∞ − φ̂) · ∇η dx = −(ε+ − ε−)

∫
Ω+

∇φ̂ · ∇η dx

= (ε+ − ε−)

∫
Γ

∂nφ̂ η dS ∀η ∈ H1
0 (Ω), (2.14)

where the unit normal n at Γ points from Ω− to Ω+. If η ∈ H1
0 (Ω) satisfies η|Ω− ∈ C1(Ω−),

then it follows from (2.14) and (2.13) that∫
Ω

εΓ∇φ̂Γ,∞ · ∇η dx =

∫
Ω

ε−∇φ̂ · ∇η dx =
N∑
i=1

Qiη(xi).

Therefore, we can replace η ∈ C1
c (Ω) in (2.13) by η ∈ H1

0 (Ω) that satisfies η|Ω− ∈ C1(Ω−).
By (2.13) and (2.14), we have

∆(φ̂Γ,∞ − φ̂) = 0 in Ω− and ∆φ̂Γ,∞ = 0 in (Ω− \ {x1, . . . , xN}) ∪ Ω+, (2.15)

Jφ̂Γ,∞KΓ = 0 and JεΓ∂nφ̂Γ,∞KΓ = 0 on Γ. (2.16)
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Moreover, it follows from the elliptic regularity theory [23,27,30,31,35,42] that

φ̂Γ,∞ − φ̂ ∈ W 1,∞(Ω) and (φ̂Γ,∞ − φ̂)|Ωs ∈ C∞(Ωs) ∩H2(Ωs) s = +,−, (2.17)

‖φ̂Γ,∞ − φ̂‖H1(Ω) + ‖φ̂Γ,∞ − φ̂‖L∞(Ω) ≤ C, (2.18)

where the constant C > 0 does not depend on Γ. These results (2.17) and (2.18) follow from
the same arguments used above with η ∈ C1

c (Ω) so chosen that supp (η) is in a neighborhood
of Γ that excludes the singularities xi (i = 1, . . . , N).

We end this subsection by defining some linear operator and a class of functions. For any
g ∈ H−1(Ω), let LΓg ∈ H1

0 (Ω) be the unique weak solution (defined using test functions in
H1

0 (Ω)) to the BVP

∇ · εΓ∇LΓg = −g in Ω and LΓg = 0 on ∂Ω. (2.19)

This defines a linear, continuous, and self-adjoint operator LΓ : H−1(Ω)→ H1
0 (Ω). The map

g 7→ ‖g‖LΓ
:=
√
〈g, LΓg〉H−1(Ω),H1

0 (Ω) =

[∫
Ω

εΓ|∇(LΓg)|2dx
]1/2

(2.20)

defines a norm on H−1(Ω) which is equivalent to the H−1(Ω)-norm.
Let g ∈ L1(Ω) and assume that

sup

{∫
Ω

gu dx : u ∈ H1
0 (Ω) ∩ L∞(Ω) and ‖u‖H1(Ω) = 1

}
<∞. (2.21)

Define Tg : H1
0 (Ω) ∩ L∞(Ω)→ R by

Tg[u] =

∫
Ω

gu dx ∀u ∈ H1
0 (Ω) ∩ L∞(Ω).

It follows from (2.21) that Tg is a bounded (with respect to the H1
0 (Ω)-norm) linear functional

on H1
0 (Ω)∩L∞(Ω), a subspace of H1

0 (Ω). Since this subspace is dense in H1
0 (Ω), we can extend

Tg uniquely to a bounded linear functional, still denoted by Tg, on the entire space H1
0 (Ω), i.e.,

Tg ∈ H−1(Ω). For convenience, we shall write g ∈ L1(Ω) ∩H−1(Ω) to mean that g ∈ L1(Ω),
(2.21) holds true, and g is identified as Tg ∈ H−1(Ω).

2.2 The Poisson–Boltzmann Equation

Definition 2.1. A function ψ ∈ φ̂C +H1(Ω) is a weak solution to the BVP of the dielectric-
boundary PB equation (1.7), if ψ = φ∞ on ∂Ω, χ+B

′(ψ − φΓ,∞/2) ∈ L1(Ω) ∩H−1(Ω), and∫
Ω

[
εΓ∇ψ · ∇η + χ+B

′
(
ψ − φΓ,∞

2

)
η

]
dx =

N∑
i=1

Qiη(xi) ∀η ∈ C1
c (Ω). (2.22)
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Note that we can replace η ∈ C1
c (Ω) in (2.22) by η ∈ H1

0 (Ω) that satisfies η|Ω− ∈ C1(Ω−);
cf. the remark below (2.14). The theorem below provides the existence and uniqueness of the
solution to the BVP of the dielectric-boundary PB equation, and an equivalent formulation
of such a BVP. These results are essentially proved in [38]. Here we sketch the proof and add
some points that are not included in the previous proof due to some differences between the
current and previous statements. Note that φ̂C +H1(Ω) = φ̂Γ,∞+H1(Ω). So, we can replace

φ̂C by φ̂Γ,∞ in the above definition.

Theorem 2.1. (1) There exists a unique weak solution ψΓ ∈ φ̂Γ,∞ +H1
0 (Ω) of the BVP of

the dielectric-boundary PB equation (1.7). Moreover, ψΓ − φ̂Γ,∞ ∈ C(Ω) ∩W 1,∞(Ω),

(ψΓ − φ̂Γ,∞)|Ω− ∈ C∞(Ω−) ∩ H2(Ω−), and ψΓ|Ω+ ∈ C∞(Ω+) ∩ H2(Ω+). Further, there
exists a constant C > 0 independent of Γ such that

‖ψΓ − φ̂Γ,∞‖H1(Ω) + ‖ψΓ − φ̂Γ,∞‖L∞(Ω) ≤ C. (2.23)

(2) A function ψ ∈ φ̂Γ,∞ + H1(Ω) with χ+B
′(ψ − φΓ,∞/2) ∈ L1(Ω) ∩ H−1(Ω) is the weak

solution to the BVP of the dielectric-boundary PB equation (1.7) if and only if it is the
unique solution to the following problem:

∆(ψ − φ̂C) = 0 in Ω−,

ε+∆ψ − B′
(
ψ − φΓ,∞

2

)
= 0 in Ω+,

JψKΓ = 0 and JεΓ∂nψKΓ = 0 on Γ,

ψ = ψ∞ on ∂Ω.

(2.24)

Proof. (1) With u = ψ − φ̂Γ,∞ and by (2.13) and (2.22), it is equivalent to show that there

exists a unique uΓ ∈ H1
0 (Ω) such that χ+B

′(uΓ + φ̂Γ,∞ − φΓ,∞/2) ∈ L1(Ω) ∩H−1(Ω), and∫
Ω

[
εΓ∇uΓ · ∇η + χ+B

′
(
uΓ + φ̂Γ,∞ −

φΓ,∞

2

)
η

]
dx = 0 ∀η ∈ H1

0 (Ω). (2.25)

Define

I[u] =

∫
Ω

[
εΓ

2
|∇u|2 + χ+B

(
u+ φ̂Γ,∞ −

φΓ,∞

2

)]
dx ∀u ∈ H1

0 (Ω).

Since B ≥ 0 and B is convex, we can use the direct method in the calculus of variations
to obtain a unique minimizer uΓ ∈ H1

0 (Ω) of the functional I : H1
0 (Ω) → [0,∞]. Moreover,

comparing the values I[uΓ] and I[uΓ,λ] for any constant λ > 0 large enough, where uΓ,λ = uΓ

if |uΓ| ≤ λ and uΓ,λ = λ sign (uΓ) otherwise, we have by the convexity of B that uΓ = uΓ,λ a.e.
Ω for some λ independent on Γ. Hence, uΓ ∈ L∞(Ω), and ‖uΓ‖L∞(Ω) ≤ C for some constant
C > 0 independent of Γ; cf. [38]. This allows the use of the Lebesgue Dominated Convergence
Theorem in the routine calculations of (d/dt)|t=0I[uΓ + tη] = 0 for any η ∈ C1

c (Ω) to obtain
the equation in (2.25). Since C1

c (Ω) is dense in H1
0 (Ω), (2.25) holds true. The convexity of B

now implies that uΓ is the unique solution as desired.
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The regularity of the solution ψΓ follows from the elliptic regularity theory [14,23,27,30,
31,35,42], with the same argument above for the regularity of the function φ̂Γ,∞; cf. (2.17) and
(2.18). Note that the piecewise C∞ smoothness follows from a usual bootstrapping method.

(2) This part of the proof is the same as that given in [37].

2.3 Electrostatic Free-Energy Functional of Ionic Concentrations

We define

X =

{
(c1, . . . , cM) ∈ L1(Ω,RM) : cj = 0 a.e. Ω− for j = 1, . . . ,M and

M∑
j=1

qjcj ∈ H−1(Ω)

}
,

X+ =

{
(c1, . . . , cM) ∈ X : cj ≥ 0 a.e. Ω+ for j = 1, . . . ,M

}
.

Here, for any g ∈ L1(Ω), we define g ∈ L1(Ω) ∩H−1(Ω) by (2.21). The space X is a Banach
space equipped with the norm ‖c‖X =

∑M
j=1 ‖cj‖L1(Ω) + ‖

∑M
j=1 qjcj‖H−1(Ω). Moreover, X+

is a convex and closed subset of X . For any c = (c1, . . . , cM) ∈ X , standard arguments
(cf. [23,24,27,43]) imply that there exists a unique weak solution ψ to the BVP (1.4), defined
by ψ ∈ φ̂C +H1(Ω), ψ = φ∞ on ∂Ω, and∫

Ω

εΓ∇ψ · ∇η dx =
N∑
i=1

Qiη(xi) +

∫
Ω+

(
M∑
j=1

qjcj

)
η dx ∀η ∈ C1

c (Ω), (2.26)

Equivalently, if φ̂ ∈ φ̂C +H1(Ω) satisfies (2.12), then∫
Ω

εΓ∇(ψ − φ̂) · ∇η dx =

∫
Ω+

[
(ε− − ε+)∇φ̂ · ∇η +

(
M∑
j=1

qjcj

)
η

]
dx ∀η ∈ H1

0 (Ω).

Clearly, ψ− φ̂ is harmonic in Ω−. Moreover, it follows from the definition of φ̂Γ,∞ (cf. (2.13))
and LΓ (cf. (2.19)) that

ψ = φ̂Γ,∞ + LΓ

(
M∑
j=1

qjcj

)
. (2.27)

Since the function s 7→ s log s (s ≥ 0) is bounded below and Ω is bounded, FΓ[c] > −∞
for any c ∈ X+, where FΓ[c] is defined in (1.3).

Theorem 2.2. Let ψΓ be the unique weak solution to the BVP of the dielectric-boundary PB
equation (1.7). For each j ∈ {1, . . . ,M}, define cΓ,j : Ω→ [0,∞) by

cΓ,j(x) =

{
0 if x ∈ Ω−,

c∞j e
−βqj[ψΓ(x)−φΓ,∞(x)/2] if x ∈ Ω+.

(2.28)
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Then cΓ := (cΓ,1, . . . , cΓ,M) ∈ X+ and ψΓ is the electrostatic potential corresponding to cΓ,
i.e., the unique weak solution to (1.4) with cj replaced by cΓ,j (j = 1, . . . ,M). Moreover, cΓ

is the unique minimizer of the functional FΓ : X+ → (−∞,∞] defined in (1.3), and

FΓ[cΓ] =
1

2

N∑
i=1

Qi(ψΓ − φ̂C)(xi)

+

∫
Ω+

[
1

2
(ψΓ − φΓ,∞)B′

(
ψΓ −

φΓ,∞

2

)
− B

(
ψΓ −

φΓ,∞

2

)]
dx. (2.29)

Proof. By the properties of ψΓ (cf. Theorem 2.1) and φΓ,∞ (cf. (2.5)), we have cΓ ∈ X+. If we
replace cj in (1.4) by cΓ,j defined in (2.28) and note the definition of B in (1.2), we get exactly
the PB equation (1.7). Therefore, the unique solution ψΓ to the BVP of the PB equation
(1.7) is also the unique solution to the BVP of Poisson’s equation (1.4) corresponding to cΓ.

We now prove that cΓ is the unique minimizer of FΓ : X+ → (−∞,∞]. To do so, we
first re-write the functional FΓ. Let c = (c1, . . . , cM) ∈ X+ and let ψ ∈ φ̂C + H1(Ω) be the
corresponding electrostatic potential, i.e., the weak solution to (1.4) defined in (2.26). Denote
f =

∑M
j=1 qjcj. Since f = 0 a.e. in Ω−, we have by the definition of LΓ (cf. (2.19)) that LΓf

is harmonic in Ω−. Moreover,

N∑
i=1

Qi (LΓf) (xi) =

∫
Ω+

(φ̂Γ,∞ − φΓ,∞)f dx;

cf. Lemma 3.2 in [37] (where L/(4π) and G/(4π) are our LΓ and φ̂Γ,∞ − φΓ,∞ here, respec-

tively). This, together with (2.27) and the fact that all ψ − φ̂C, φ̂Γ,∞ − φ̂, and LΓf are
harmonic in Ω−, implies that

N∑
i=1

Qi(ψ − φ̂C)(xi) =
N∑
i=1

Qi(LΓf)(xi) +
N∑
i=1

Qi(φ̂Γ,∞ − φ̂C)(xi)

=

∫
Ω+

(φ̂Γ,∞ − φΓ,∞)

(
M∑
j=1

qjcj

)
dx+

N∑
i=1

Qi(φ̂Γ,∞ − φ̂C)(xi).

With this and (2.27), we can rewrite FΓ[c] (1.3) as

FΓ[c] =

∫
Ω+

[
1

2

(
M∑
j=1

qjcj

)
LΓ

(
M∑
j=1

qjcj

)
+

M∑
j=1

(
β−1cj log cj + αjcj

)]
dx+ E0,Γ, (2.30)

where all αj = αj(x) (j = 1, . . . ,M) and E0,Γ are independent of c, given by

αj(x) = qj

[
φ̂Γ,∞(x)− 1

2
φΓ,∞(x)

]
+ β−1 (3 log Λ− 1)− µj ∀x ∈ Ω, j = 1, . . . ,M, (2.31)
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E0,Γ =
1

2

N∑
i=1

Qi(φ̂Γ,∞ − φ̂C)(xi) + β−1|Ω+|
M∑
j=1

c∞j .

Here and below, we denote by |A| the Lebesgue measure of A when no confusion arises.
We now compare FΓ[c] and FΓ[cΓ]. By Taylor’s expansion, we have for any s, t ∈ (0,∞)

that

s log s− t log t = (1 + log t)(s− t) +
1

2r
(s− t)2 ≥ (1 + log t)(s− t),

where r is in between s and t. Consequently, by (2.30) and the fact that LΓ is self-adjoint,
we have

FΓ[c]− FΓ[cΓ] =

∫
Ω

1

2

(
M∑
j=1

qj(cj − cΓ,j)

)
LΓ

(
M∑
j=1

qj(cj − cΓ,j)

)
dx

+

∫
Ω

(
M∑
j=1

qj(cj − cΓ,j)

)
LΓ

(
M∑
k=1

qkcΓ,k

)
dx

+ β−1

M∑
j=1

∫
Ω

(cj log cj − cΓ,j log cΓ,j) dx+
M∑
j=1

∫
Ω

(cj − cΓ,j)αj dx

≥
M∑
j=1

∫
Ω

(cj − cΓ,j)

[
qjLΓ

(
M∑
k=1

qkcΓ,k

)
+ β−1 (1 + log cΓ,j) + αj

]
dx.

It follows from the fact that c∞j = Λ−3eβµj (cf. the assumption (A2)), (2.27), (2.28), and (2.31)
that the quantity inside the brackets in the above integral vanishes. Thus, F [c] ≥ F [cΓ].
Hence, cΓ is a minimizer of FΓ : X+ → (−∞,∞]. Since FΓ is convex, and in particular,
s 7→ s log s is strictly convex on (0,∞), the minimizer of FΓ is unique; cf. [37].

Finally, we obtain (2.29) from (1.3) (with ψΓ and cΓ replacing ψ and c, respectively),
(1.2), and (2.28).

3 Dielectric Boundary Force

3.1 Electrostatic Free Energy of a Dielectric Boundary

Let Γ be a given dielectric boundary as described in the assumption A1 in Subsection 2.1.
We denote by

E[Γ] = min
c∈X+

FΓ[c], (3.1)

the minimum electrostatic free energy given in Theorem 2.2 (cf. (2.29)). Let ψΓ ∈ φ̂C +H1(Ω)
be the corresponding solution to the BVP of PB equation (1.7). Recall that all the functions
φ̂C, φ̂0, φ̂∞, φΓ,∞, and φ̂Γ,∞ are defined in Subsection 2.1, with a hat corresponding to∑N

i=1 Qiδxi , Γ to −∇ · εΓ∇ and otherwise to −ε−∆, and ∞ or 0 to the boundary value φ∞
or 0, respectively.
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Lemma 3.1. We have

E[Γ] = −
∫

Ω

εΓ

2
|∇(ψΓ − φ̂Γ,∞)|2dx−

∫
Ω+

B

(
ψΓ −

φΓ,∞

2

)
dx

+
ε− − ε+

2

∫
Ω+

∇φ̂Γ,∞ · ∇φ̂0 dx+
1

2

N∑
i=1

Qi(φ̂∞ − φ̂C)(xi). (3.2)

Proof. We first prove an elementary identity. Let u ∈ C2(Ω−)∩C1(Ω−) be such that ∆u = 0 in
Ω−. Let v ∈ φ̂C+H1(Ω−)∩C(Ω−), in particular, v = φ̂C, φ̂0, φ̂∞, or φ̂Γ,∞ (restricted onto Ω−).
Denote Bα = ∪Ni=1B(xi, α) for 0 < α � 1 and ν the unit normal at ∂B(α) = ∪Ni=1∂B(xi, α),
pointing toward xi (i = 1, . . . , N). Since the unit normal n at Γ points from Ω− to Ω+, and
since v = φ̂C + v̂ for some v̂ ∈ H1(Ω−) ∩ C(Ω−) and φ̂C is given in (1.6), we have∫

Ω−

∇u · ∇v dx = lim
α→0+

∫
Ω−\Bα

∇u · ∇v dx

=

∫
Γ

∂nu v dS + lim
α→0+

N∑
i=1

∫
∂B(xi,α)

∂νu v dS

=

∫
Γ

∂nu v dS. (3.3)

Denoting now W = (1/2)
∑N

i=1 Qi(φ̂∞ − φ̂C)(xi), we have by (3.1) and (2.29) that

E[Γ] =
1

2

N∑
i=1

Qi(φ̂Γ,∞ − φ̂∞)(xi) +
1

2

N∑
i=1

Qi(ψΓ − φ̂Γ,∞)(xi)

+

∫
Ω+

[
1

2
(ψΓ − φΓ,∞)B′

(
ψΓ −

φΓ,∞

2

)
− B

(
ψΓ −

φΓ,∞

2

)]
dx+W. (3.4)

We first consider the first term in (3.4). Note that the unit vector n normal to Γ points from
Ω− to Ω+. Denoting us = u|Ωs (s = +,−), we have by Green’s formula that

1

2

N∑
i=1

Qi(φ̂Γ,∞ − φ̂∞)(xi)

=

∫
Ω

ε−
2
∇φ̂0 · ∇(φ̂Γ,∞ − φ̂∞) dx [by (2.12) with φ̂ = φ̂0 and η = φ̂Γ,∞ − φ̂∞]

=

∫
Ω−

ε−
2
∇φ̂0 · ∇(φ̂Γ,∞ − φ̂∞) dx+

∫
Ω+

ε−
2
∇φ̂0 · ∇(φ̂Γ,∞ − φ̂∞) dx

=

∫
Γ

ε−
2
φ̂0∂n(φ̂−Γ,∞ − φ̂∞) dS +

∫
Ω+

ε−
2
∇φ̂0 · ∇(φ̂Γ,∞ − φ̂∞) dx [by (3.3)]

=

∫
Γ

ε+

2
φ̂0∂nφ̂

+
Γ,∞ dS −

∫
Γ

ε−
2
φ̂0∂nφ̂∞ dS [by (2.16)]
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+

∫
Ω+

ε−
2
∇φ̂0 · ∇(φ̂Γ,∞ − φ̂∞) dx

= −
∫
∂Ω+

ε+

2
φ̂0∂nφ̂Γ,∞ dS +

∫
∂Ω+

ε−
2
φ̂0∂nφ̂∞ dS [since φ̂0 = 0 on ∂Ω]

+

∫
Ω+

ε−
2
∇φ̂0 · ∇(φ̂Γ,∞ − φ̂∞) dx

= −
∫

Ω+

ε+

2
∇φ̂0 · ∇φ̂Γ,∞ dx+

∫
Ω+

ε−
2
∇φ̂0 · ∇φ̂∞ dx

+

∫
Ω+

ε−
2
∇φ̂0 · ∇(φ̂Γ,∞ − φ̂∞) dx

=
ε− − ε+

2

∫
Ω+

∇φ̂Γ,∞ · ∇φ̂0 dx.

Considering now the second and third terms in (3.4), we have

1

2

N∑
i=1

Qi(ψΓ − φ̂Γ,∞)(xi)

+

∫
Ω+

[
1

2
(ψΓ − φΓ,∞)B′

(
ψΓ −

φΓ,∞

2

)
− B

(
ψΓ −

φΓ,∞

2

)]
dx

=
N∑
i=1

Qi(ψΓ − φ̂Γ,∞)(xi)−
1

2

N∑
i=1

Qi(ψΓ − φ̂Γ,∞)(xi)

+

∫
Ω+

[
1

2
(ψΓ − φΓ,∞)B′

(
ψΓ −

φΓ,∞

2

)
− B

(
ψΓ −

φΓ,∞

2

)]
dx

=

∫
Ω

εΓ∇φ̂Γ,∞ · ∇(ψΓ − φ̂Γ,∞) dx [by (2.13)]

− 1

2

∫
Ω

[
εΓ∇ψΓ · ∇(ψΓ − φ̂Γ,∞) + χ+B

′
(
ψΓ −

φΓ,∞

2

)
(ψΓ − φ̂Γ,∞)

]
[by (2.22)]

+

∫
Ω+

[
1

2
(ψΓ − φΓ,∞)B′

(
ψΓ −

φΓ,∞

2

)
− B

(
ψΓ −

φΓ,∞

2

)]
dx

= −
∫

Ω

εΓ

2
|∇(ψΓ − φ̂Γ,∞)|2dx−

∫
Ω+

B

(
ψΓ −

φΓ,∞

2

)
dx

+

∫
Ω

εΓ

2
∇(ψΓ − φ̂Γ,∞) · ∇φ̂Γ,∞ dx+

∫
Ω+

1

2
(φ̂Γ,∞ − φΓ,∞)B′

(
ψΓ −

φΓ,∞

2

)
dx

= −
∫

Ω

εΓ

2
|∇(ψΓ − φ̂Γ,∞)|2dx−

∫
Ω+

B

(
ψΓ −

φΓ,∞

2

)
dx

+

∫
Ω

εΓ

2
∇(ψΓ − φ̂Γ,∞) · ∇φ̂Γ,∞ dx
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+

∫
Ω+

ε+

2
(φ̂Γ,∞ − φΓ,∞)∆(ψΓ − φ̂Γ,∞) dx [by (2.24) and (2.15) ]

= −
∫

Ω

εΓ

2
|∇(ψΓ − φ̂Γ,∞)|2dx−

∫
Ω+

B

(
ψΓ −

φΓ,∞

2

)
dx

+

∫
Ω

εΓ

2
∇(ψΓ − φ̂Γ,∞) · ∇(φ̂Γ,∞ − φΓ,∞) dx [by (2.3)]

−
∫

Ω+

ε+

2
∇(φ̂Γ,∞ − φΓ,∞) · ∇(ψΓ − φ̂Γ,∞) dx

−
∫

Γ

ε+

2
∂n(ψ+

Γ − φ̂
+
Γ,∞)(φ̂Γ,∞ − φΓ,∞) dS [since φ̂Γ,∞ − φΓ,∞ = 0 on ∂Ω]

= −
∫

Ω

εΓ

2
|∇(ψΓ − φ̂Γ,∞)|2dx−

∫
Ω+

B

(
ψΓ −

φΓ,∞

2

)
dx

+

∫
Ω−

ε−
2
∇(ψΓ − φ̂Γ,∞) · ∇(φ̂Γ,∞ − φΓ,∞) dx

−
∫

Γ

ε−
2
∂n(ψ−Γ − φ̂

−
Γ,∞)(φ̂Γ,∞ − φΓ,∞) dS [by (2.24) with ψ = ψΓ and (2.16) ]

= −
∫

Ω

εΓ

2
|∇(ψΓ − φ̂Γ,∞)|2dx−

∫
Ω+

B

(
ψΓ −

φΓ,∞

2

)
dx. [by (3.3)]

Now (3.2) follows directly from (3.4) and the above two expressions.

We define GΓ : φ̂Γ,∞ +H1
0 (Ω)→ R ∪ {−∞} by

GΓ[ψ] = −
∫

Ω

εΓ

2
|∇(ψ − φ̂Γ,∞)|2dx−

∫
Ω+

B

(
ψ − φΓ,∞

2

)
dx+ gΓ,∞,

where

gΓ,∞ =
ε− − ε+

2

∫
Ω+

∇φ̂Γ,∞ · ∇φ̂0 dx+
1

2

N∑
i=1

Qi(φ̂∞ − φ̂C)(xi).

We shall call GΓ the PB energy functional. Note that by Lemma 3.1, E[Γ] = GΓ[ψΓ]. In fact,
we have the following variational principle for the PB energy functional.

Theorem 3.1. The Euler–Lagrange equation of the PB energy functional GΓ : φ̂Γ,∞ +
H1

0 (Ω) → R ∪ {−∞} is exactly the dielectric-boundary PB equation. Moreover, the func-
tional GΓ[·] is uniquely maximized over φ̂Γ,∞ + H1

0 (Ω) by the solution ψΓ to the BVP of the
PB equation (1.7), and the maximum value is exactly E[Γ].

Proof. Direct calculations verify that the Euler–Lagrange equation for the PB energy func-
tional GΓ[·] is indeed the dielectric-boundary PB equation; cf. Definition 2.1. Hence, ψΓ is a
solution to the Euler–Lagrange equation, and is further the unique maximizer of the strictly
concave functional GΓ. These, together with Lemma 3.1, imply that the maximum value of
the free energy is GΓ[ψΓ] = E[Γ].

17



We remark that the PB functional GΓ[·] is maximized, not minimized, among all the
admissible electrostatic potentials; see [9] for related discussions.

3.2 Definition and Formula of the Dielectric Boundary Force

Let Γ be a dielectric boundary as given in the assumption A1 in Subsection 2.1. Let φ : R3 →
R be the signed distance function to Γ, negative in Ω− (inside Γ) and positive in R3 \ Ω−
(outside Γ). Then, n = ∇φ is exactly the unit normal along Γ, pointing from Ω− to Ω+.
Since Γ is assumed to be of the class C3, there exists d0 > 0 with

d0 <
1

2
min

(
dist (Γ, ∂Ω), min

1≤i≤N
dist (xi,Γ)

)
such that the signed distance function φ is a C3-function and ∇φ 6= 0 in the neighborhood

N0(Γ) = {x ∈ Ω : dist (x,Γ) < d0} (3.5)

in Ω of Γ; cf. [27] (Section 14.6) and [34]. Define

V = {V ∈ C2
c (R3,R3) : supp (V ) ⊂ N0(Γ)}. (3.6)

Let V ∈ V . For any X ∈ R3, let x = x(t,X) be the unique solution to the initial-value
problem

ẋ = V (x) (t ∈ R) and x(0, X) = X, (3.7)

where a dot denotes the derivative with respect to t. Define Tt(X) = x(t,X) for any X ∈ R3

and any t ∈ R. Then, {Tt}t∈R is a family of diffeomorphisms and C2-maps from R3 to R3

with T0 = I the identity map and T−t = T−1
t for any t ∈ R.

Let t ∈ R. Since supp (V ) ⊂ N0(Γ) ⊂ Ω, we have Tt(Ω) = Ω and Tt(∂Ω) = ∂Ω. Clearly,
Tt(Ω−) ⊂ Ω and Tt(Ω+) = Ω\Tt(Ω−). Moreover, Γt := Tt(Γ) = ∂Tt(Ω−) = Tt(Ω−)∩Tt(Ω+) is
of class C2. Note that xi ∈ Tt(Ω−) and Tt(xi) = xi for all i = 1, . . . , N. Analogous to (1.5), εΓt

is defined correspondingly with respect to Tt(Ω−) and Tt(Ω+). We shall denote Γt = Γt(V )
to indicate the dependence of Γt on V ∈ V . For each t ∈ R, the electrostatic free energy
E[Γt(V )] is defined in (3.1) (cf. also (3.2)) with Γt = Γt(V ) replacing Γ.

Definition 3.1. The first variation of E[Γ] with respect to V ∈ V is

δΓ,VE[Γ] =
d

dt
E[Γt(V )]

∣∣∣∣
t=0

= lim
t→0+

E[Γt(V )]− E[Γ]

t
,

if the limit exists.

We recall that the tangential gradient along a dielectric boundary Γ is given by ∇Γ =
(I − n ⊗ n)∇, where I is the identity matrix. The following theorem provides an explicit
formula of the first variation δΓ,VE[Γ], and its proof is given in Section 5:
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Theorem 3.2. Let ψΓ ∈ φ̂C+H1
0 (Ω) be the unique weak solution to the BVP of the dielectric-

boundary PB equation (1.7). Then, for any V ∈ V, the first variation δΓ,VE[Γ] exists, and is
given by

δΓ,VE[Γ] =

∫
Γ

qΓ(V · n) dS,

where

qΓ = −1

2

(
1

ε+

− 1

ε−

)(
|εΓ∂nψΓ|2 − εΓ∂nψΓεΓ∂nφΓ,∞

)
+
ε+ − ε−

2

(
|∇ΓψΓ|2 −∇ΓψΓ · ∇ΓφΓ,∞

)
+B

(
ψΓ −

φΓ,∞

2

)
. (3.8)

We identify qΓ in (3.8) as the first variation of E[Γ] and denote it as qΓ = δΓE[Γ]. We call
−δΓE[Γ] the (normal component of the) dielectric boundary force.

4 Some Lemmas: The Calculus of Boundary Variations

4.1 Properties of the Transformation Tt

We first recall some properties of the family of transformations Tt : R3 → R3 (t ∈ R) defined
by (3.7) in Subsection 3.2 above via a vector field V ∈ C2

c (R3,R3). These properties hold
true if we change R3 to Rd with a general dimension d ≥ 2. They can be proved by direct
calculations; cf. [20] (Section 4 of Chapter 9).

(1) Let X ∈ R3 and t ∈ R. Let ∇Tt(X) be the gradient matrix of Tt at X with its entries
(∇Tt(X))ij = ∂jT

i
t (X) (i, j = 1, 2, 3), where T it is the ith component of Tt. Let

Jt(X) = det∇Tt(X). (4.1)

Then for each X ∈ R3 the function t 7→ Jt(X) is a C2-function and

dJt
dt

= ((∇ · V ) ◦ Tt)Jt,

where ◦ denotes the composition of functions or maps. Clearly, ∇T0 = I, the identity
matrix, and J0 = 1. Moreover,

Jt(X) = 1 + t(∇ · V )(X) +H(t,X)t2 ∀t ∈ R ∀X ∈ R3, (4.2)

where H(t,X) satisfies

sup{|H(t,X)| : t ∈ R, X ∈ R3} <∞, (4.3)

since V is compactly supported.
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(2) For each t ∈ R, we define AV (t) : R3 → R3×3 by

AV (t)(X) = Jt(X) (∇Tt(X))−1 (∇Tt(X))−T , (4.4)

where a superscript T denotes the matrix transpose. The mapping AV (t) collects some
terms together when the change of variable x = Tt(X) is made to an integral over Ω
of a function of the type a∇u · ∇v (for some functions a, u, and v); cf. e.g., (4.21) and
the equation above that. Clearly, AV (t) ∈ C1(R3,R3×3), and the t-derivative of AV (t)
at each point in R3 is

A′V (t) =
[
((∇ · V ) ◦ Tt)− (∇Tt)−1((∇V ) ◦ Tt)∇Tt
−(∇Tt)−1((∇V ) ◦ Tt)T (∇Tt)

]
AV (t). (4.5)

In particular
A′V (0) = (∇ · V )I −∇V − (∇V )T . (4.6)

Moreover,

AV (t)(X) = I + tA′V (0)(X) +K(t,X)t2 ∀t ∈ R ∀X ∈ R3, (4.7)

where K(t,X) satisfies

sup{|K(t,X)| : t ∈ R, X ∈ R3} <∞. (4.8)

(3) For any u ∈ L2(Ω) and t ∈ R, u ◦ Tt ∈ L2(Ω) and u ◦ T−1
t ∈ L2(Ω). Moreover,

lim
t→0

u ◦ Tt = u and lim
t→0

u ◦ T−1
t = u in L2(Ω). (4.9)

For any u ∈ H1(Ω) and t ∈ R, u ◦ Tt ∈ H1(Ω) and u ◦ T−1
t ∈ H1(Ω). Moreover,

∇(u ◦ T−1
t ) = (∇T−1

t )T
(
∇u ◦ T−1

t

)
and ∇(u ◦ Tt) = (∇Tt)T (∇u ◦ Tt) , (4.10)

lim
t→0

u ◦ Tt = u and lim
t→0

u ◦ T−1
t = u in H1(Ω). (4.11)

If u ∈ H2(Ω), then

lim
t→0

∥∥∥∥u ◦ Tt − ut
−∇u · V

∥∥∥∥
H1(Ω)

= 0. (4.12)

4.2 Continuity and Differentiability

Let Γ be a dielectric boundary satisfying the assumptions in A1 of Subsection 2.1 and V ∈ V
(cf. (3.6)). Let {Tt}t∈R be the corresponding family of diffeomorphisms defined by (3.7). Let
φ̂ ∈ W 1,1(Ω) satisfy (2.12). We consider the approximations φ̂ ◦ Tt. Note that φ̂ ◦ Tt − φ̂ and
∇φ̂ · V vanish in any small neighborhood of ∪Ni=1xi, as V (X) = 0 and Tt(X) = X for any X
in such a neighborhood and any t ∈ R.
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Lemma 4.1. Let φ̂ ∈ φ̂C + H1(Ω) satisfy (2.12). We have φ̂ ◦ Tt − φ̂ ∈ H1(Ω) for all t ≥ 0
and

lim
t→0
‖φ̂ ◦ Tt − φ̂‖H1(Ω) = 0. (4.13)

Moreover, ∇φ̂ · V ∈ H1(Ω) and

lim
t→0

∥∥∥∥∥ φ̂ ◦ Tt − φ̂t
−∇φ̂ · V

∥∥∥∥∥
H1(Ω)

= 0. (4.14)

Proof. We note that both φ̂ and φ̂ ◦ Tt are not in H1(Ω) due to the singularities at xi
(i = 1, . . . , N). Let σ > 0 be such that Bσ := ∪Ni=1B(xi, σ) ⊂ Ω and V = 0 on Bσ. Then,
there exists φ̃ ∈ C∞(Ω) ∩ H2(Ω) such that φ̃ = 0 in Bσ/2 and φ̃ = φ̂ a.e. in Ω \ Bσ. These

imply that φ̃ ◦ Tt − φ̃ = φ̂ ◦ Tt − φ̂, and ∇φ̃ · V = ∇φ̂ · V a.e. in Ω for all t. This implies that
∇φ̂ · V ∈ H1(Ω). Moreover, it follows from (4.11) that

lim
t→0
‖φ̂ ◦ Tt − φ̂‖H1(Ω) = lim

t→0
‖φ̃ ◦ Tt − φ̃‖H1(Ω) = 0,

implying (4.13), and from (4.12) that

lim
t→0

∥∥∥∥∥ φ̂ ◦ Tt − φ̂t
−∇φ̂ · V

∥∥∥∥∥
H1(Ω)

= lim
t→0

∥∥∥∥∥ φ̃ ◦ Tt − φ̃t
−∇φ̃ · V

∥∥∥∥∥
H1(Ω)

= 0,

implying (4.14).

We recall that φΓ,∞ ∈ H1(Ω)∩C(Ω) is the unique weak solution to the BVP (1.8), defined
in (2.3). Similarly, φΓt,∞ ∈ H1(Ω) ∩ C(Ω) for each t ∈ R is the unique weak solution to the
same BVP with Γt = Tt(Γ) replacing Γ. We note that the support of V and hence that of
A′V (0) (cf. (4.6)) do not contain any of the singularities xi (1 ≤ i ≤ N).

Lemma 4.2. (1) There exists a unique ζΓ,V ∈ H1
0 (Ω) such that∫

Ω

εΓ∇ζΓ,V · ∇η dx = −
∫

Ω

εΓA
′
V (0)∇φΓ,∞ · ∇η dx ∀η ∈ H1

0 (Ω), (4.15)

where A′V (0) is defined in (4.6). Moreover, the mapping V 7→ ζΓ,V is linear in V , i.e.,

ζΓ,c1V1+c2V2 = c1ζΓ,V1 + c2ζΓ,V2 for all V1, V2 ∈ V and c1, c2 ∈ R.

(2) We have ζΓ,V |Ωs ∈ H2(Ωs) ∩ C1(Ωs) for s = − or +. Moreover,

∆ζΓ,V = −∇ · [A′V (0)∇φΓ,∞] = ∆(∇φΓ,∞ · V ) in Ω− ∪ Ω+, (4.16)

JεΓ∂nζΓ,V KΓ = −JεΓA
′
V (0)∇φΓ,∞ · nKΓ on Γ. (4.17)

21



(3) We have

lim
t→0
‖φΓt,∞ ◦ Tt − φΓ,∞‖H1(Ω) = 0, (4.18)

lim
t→0

∥∥∥∥φΓt,∞ ◦ Tt − φΓ,∞

t
− ζΓ,V

∥∥∥∥
H1(Ω)

= 0. (4.19)

(4) If V · n = 0 on Γ, then ζΓ,V = ∇φΓ,∞ · V in Ω.

Proof. (1) The existence and uniqueness of ζΓ,V ∈ H1
0 (Ω) that satisfies (4.15) follow from the

Lax–Milgram Lemma [24, 27]. By (4.6), A′V (0) is linear in V . Therefore, by the definition
(4.15) of ζΓ,V ∈ H1

0 (Ω), ζΓ,V is linear in V.
(2) Let s denote − or +. Note by (2.4), (3.6), and (4.6) that A′V (0)∇φΓ,∞ ∈ C1(Ωs) ∩

H1(Ωs). For any η ∈ C1
c (Ω) with supp (η) ⊂ Ωs, we have by (4.15) and the Divergence

Theorem that ∫
Ωs

εs∇ζΓ,V · ∇η dx =

∫
Ωs

εs∇ · [A′V (0)∇φΓ,∞] η dx.

Hence, −∆ζΓ,V = ∇ · [A′V (0)∇φΓ,∞] in Ωs. Since the right-hand side is in L2(Ωs) ∩ C(Ωs),
it follows from the elliptic regularity theory [27, 35] that ζΓ,V |Ωs ∈ H2(Ωs) ∩ C1(Ωs), after a
possible modification of the value of ζΓ,V on a set of zero Lebesgue measure. Moreover, the
first equality in (4.16) follows.

Let us denote by V i (i = 1, 2, 3) the components of V. With the conventional summation
notation (i.e., repeated indices are summed), we have by (4.6), (2.4), and (2.6) that

−∇ · (A′V (0)∇φΓ,∞)

= ∇ ·
[
∇V + (∇V )T − (∇ · V )I

]
∇φΓ,∞

= ∂i
(
∂jV

i∂jφΓ,∞ + ∂iV
j∂jφΓ,∞ − ∂kV k∂iφΓ,∞

)
= 2∂ijφΓ,∞∂iV

j + ∂iiV
j∂jφΓ,∞ [since ∂iiφΓ,∞ = 0]

= ∂ii∂jφΓ,∞V
j + 2∂ijφΓ,∞∂iV

j + ∂iiV
j∂jφΓ,∞ [since ∂iiφΓ,∞ = 0]

= ∂ii
(
∂jφΓ,∞V

j
)

= ∆(∇φΓ,∞ · V ) in Ω− ∪ Ω+, (4.20)

implying the second equation in (4.16).
Since ζΓ,V ∈ H1

0 (Ω) and ∆ζΓ,V ∈ L2(Ωs) for s being − or +, and since the unit normal n
at the Γ points from Ω− to Ω+, we have by the Divergence Theorem that both sides of the
equation in (4.15) are∫

Ω

εΓ∇ζΓ,V · ∇η dx =

∫
Ω−

ε−∇ζΓ,V · ∇η dx+

∫
Ω+

ε+∇ζΓ,V · ∇η dx

= −
∫

Ω−

ε−∆ζΓ,V η dx−
∫

Ω+

ε+∆ζΓ,V η dx−
∫

Γ

JεΓ∂nζΓ,V KΓη dS,
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and

−
∫

Ω

εΓA
′
V (0)∇φΓ,∞ · ∇η dx

= −
∫

Ω−

ε−A
′
V (0)∇φΓ,∞ · ∇η dx−

∫
Ω+

ε+A
′
V (0)∇φΓ,∞ · ∇η dx

=

∫
Ω−

ε−∇ · (A′V (0)∇φΓ,∞)η dx+

∫
Ω+

ε+∇ · (A′V (0)∇φΓ,∞)η dx

+

∫
Γ

JεΓA
′
V (0)∇φΓ,∞ · nKΓη dS,

respectively. These, together with (4.16), imply (4.17).
(3) Replacing Γ, φΓ,∞, and η by Γt, φΓt,∞, and η ◦T−1

t for t ∈ R, respectively, in the weak
formulation (2.3), we get by the change of variable x = Tt(X) that∫

Ω

εΓAV (t)∇(φΓt,∞ ◦ Tt) · ∇η dX = 0 ∀η ∈ H1
0 (Ω).

This and (2.3) imply for any η ∈ H1
0 (Ω) that∫

Ω

εΓ∇(φΓt,∞ ◦ Tt − φΓ,∞) · ∇η dX =

∫
Ω

εΓ[I − AV (t)]∇(φΓt,∞ ◦ Tt) · ∇η dX. (4.21)

It follows from a change of variable, (4.2), (4.3), (4.7), and (4.8) that ‖∇(φΓt,∞ ◦ Tt)‖L2(Ω)

is bounded uniformly in t. Setting η = φΓt,∞ ◦ Tt − φΓ,∞ ∈ H1
0 (Ω) in (4.21), we then obtain

(4.18) by (4.7), (4.8), and the Cauchy–Schwarz and Poincaré inequalities.
Dividing both sides of (4.21) by t 6= 0 and setting now η = (φΓt,∞ ◦ Tt− φΓ,∞)/t− ζΓ,V in

the resulting equation and also in (4.15), we have by the Cauchy–Schwarz inequality that∫
Ω

εΓ

∣∣∣∣∇(φΓt,∞ ◦ Tt − φΓ,∞

t
− ζΓ,V

)∣∣∣∣2 dX
=

∫
Ω

εΓ

[
I − AV (t)

t
+ A′V (0)

]
∇(φΓt,∞ ◦ Tt) · ∇

(
φΓt,∞ ◦ Tt − φΓ,∞

t
− ζΓ,V

)
dX

+

∫
Ω

εΓA
′
V (0)∇ [φΓ,∞ − φΓt,∞ ◦ Tt] · ∇

(
φΓt,∞ ◦ Tt − φΓ,∞

t
− ζΓ,V

)
dX

≤ C

∥∥∥∥AV (t)− I − tA′V (0)

t

∥∥∥∥
L∞(Ω)

‖φΓt,∞ ◦ Tt‖H1(Ω)

∥∥∥∥φΓt,∞ ◦ Tt − φΓ,∞

t
− ζΓ,V

∥∥∥∥
H1(Ω)

+ C‖φΓ,∞ − φΓt,∞ ◦ Tt‖H1(Ω)

∥∥∥∥φΓt,∞ ◦ Tt − φΓ,∞

t
− ζΓ,V

∥∥∥∥
H1(Ω)

.

This, together with Poincaré’s inequality, (4.7), (4.8), and (4.18), leads to (4.19).
(4) Assume now V · n = 0 on Γ. This means that V is tangent to Γ at every point in Γ.

Since Γ is a compact manifold, by a classical result on the initial-value problem of differential
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equations on a differentiable manifold, each trajectory Tt(X) (t ∈ R) defined by the vector-
field V that starts from T0(X) = X ∈ Γ will stay in Γ for all t ∈ R [4,36]. Therefore, Γt = Γ
for all t ∈ R. Let η ∈ L2(Ω) and t 6= 0. We have by the properties of the transformations Tt
(t ∈ R) (4.9), (4.12), and (4.1)–(4.3) that∫

Ω

φΓt,∞ ◦ Tt − φΓ,∞

t
η dX =

∫
Ω

φΓ,∞ ◦ Tt
t

η dX −
∫

Ω

φΓ,∞η

t
dX

=

∫
Ω

φΓ,∞

t

(
η ◦ T−1

t

)
det∇T−1

t dx−
∫

Ω

φΓ,∞η

t
dx

=

∫
Ω

φΓ,∞

(
η ◦ T−1

t − η
t

det∇T−1
t + η

det∇T−1
t − 1

t

)
dx

→ −
∫

Ω

φΓ,∞∇η · V dx−
∫

Ω

φΓ,∞η(∇ · V ) dx

=

∫
Ω

(∇φΓ,∞ · V )η dx as t→ 0.

Since η ∈ L2(Ω) is arbitrary, this and (4.19) imply that ζΓ,V = ∇φΓ,∞ · V in Ω.

We recall that φ̂Γ,∞ is determined by (2.13) and the boundary condition φ̂Γ,∞ = φ∞ on

∂Ω. For each t ∈ R, we denote by φ̂Γt,∞ the unique function that is defined by (2.13) with

Γt replacing Γ and the same boundary condition φ̂Γt,∞ = φ∞ on ∂Ω. Note again that the
support of V or A′V (0) contains no singularities xi (i = 1, . . . , N).

Lemma 4.3. (1) There exists a unique ξΓ,V ∈ H1
0 (Ω) such that∫

Ω

εΓ∇ξΓ,V · ∇η dx = −
∫

Ω

εΓA
′
V (0)∇φ̂Γ,∞ · ∇η dx ∀η ∈ H1

0 (Ω). (4.22)

(2) We have ξΓ,V |Ωs ∈ H2(Ωs) ∩ C1(Ωs) for s = − or +. Moreover,

∆ξΓ,V = −∇ · A′V (0)∇φ̂Γ,∞ = ∆(∇φ̂Γ,∞ · V ) in Ω− ∪ Ω+, (4.23)

JεΓ∂nξΓ,V KΓ = −JεΓA
′
V (0)∂nφ̂Γ,∞KΓ on Γ.

(3) We have

lim
t→0
‖φ̂Γt,∞ ◦ Tt − φ̂Γ,∞‖H1(Ω) = 0,

lim
t→0

∥∥∥∥∥ φ̂Γt,∞ ◦ Tt − φ̂Γ,∞

t
− ξΓ,V

∥∥∥∥∥
H1(Ω)

= 0.

Proof. The proof is the same as and simpler than that of the next lemma, Lemma 4.4, as
there is an extra term B there, which can be set to 0 here. The only exception is the second
equality in (4.23) which can be obtained by the same calculations as in (4.20).
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We recall that ψΓ ∈ φ̂C + H1(Ω) ∩ C(Ω) = φ̂Γ,∞ + H1(Ω) ∩ C(Ω) is the unique weak
solution to the BVP of the dielectric-boundary PB equation (1.7); cf. Definition 2.1. For
each t ∈ R, we denote by ψΓt ∈ φ̂C + H1(Ω) ∩ C(Ω) the unique solution to the same BVP
with Γt replacing Γ.

Lemma 4.4. (1) There exists a unique ωΓ,V ∈ H1
0 (Ω) such that∫

Ω

[
εΓ∇ωΓ,V · ∇η + χ+B

′′
(
ψΓ −

φΓ,∞

2

)
ωΓ,V η

]
dx

= −
∫

Ω

εΓA
′
V (0)∇ψΓ · ∇η dx

−
∫

Ω+

[
(∇ · V )B′

(
ψΓ −

φΓ,∞

2

)
− ζΓ,V

2
B′′
(
ψΓ −

φΓ,∞

2

)]
η dx ∀η ∈ H1

0 (Ω).

(4.24)

(2) We have ωΓ,V |Ωs ∈ H2(Ωs) ∩ C1(Ωs) for s = − or +. Moreover,

∆ωΓ,V = −∇ · A′V (0)∇ψΓ = ∆(∇ψΓ · V ) in Ω−, (4.25)

ε+∆ωΓ,V − B′′
(
ψΓ −

φΓ,∞

2

)
ωΓ,V = −ε+∇ · A′V (0)∇ψΓ

+ (∇ · V )B′
(
ψΓ −

φΓ,∞

2

)
− ζΓ,V

2
B′′
(
ψΓ −

φΓ,∞

2

)
in Ω+, (4.26)

JεΓ∂nωΓ,V KΓ = −JεΓA
′
V (0)∂nψΓKΓ on Γ. (4.27)

(3) We have

lim
t→0
‖ψΓt ◦ Tt − ψΓ‖H1(Ω) = 0, (4.28)

lim
t→0

∥∥∥∥ψΓt ◦ Tt − ψΓ

t
− ωΓ,V

∥∥∥∥
H1(Ω)

= 0. (4.29)

Proof. (1) Since B′′ > 0, the support of V does not contain any of the singularities xi
(i = 1, . . . , N), and ψΓ and φΓ,∞ are uniformly bounded on the union of the support of V
and Ω+ (cf. (2.18) and (2.23)), the existence and uniqueness of ωΓ,V ∈ H1

0 (Ω) that satisfies
(4.24) follows from the Lax–Milgram Lemma [24,27].

(2) Choosing η ∈ C1
c (Ω) in (4.24) with supp (η) ⊂ Ω− and applying the Divergence

Theorem, we obtain the first equation of (4.25) a.e. in Ω−. Since the right-hand side of this
first equation is in L2(Ω−) ∩ C(Ω−), it follows from the regularity theory [27, 35] that, with
a possible modification of the value of ωΓ,V on a set of zero Lebesgue measure, ωΓ,V |Ω− ∈
H2(Ω−) ∩ C1(Ω−). Now, the first equation in (4.25) holds for each point in Ω−. The second
equation is similar to that in (4.16) (cf. (4.20)). By similar arguments, we obtain that
ωΓ,V |Ω+ ∈ H2(Ω+) ∩ C1(Ω+) and (4.26). By splitting each of those two integrals in (4.24)
that has the term ∇η into integrals over Ω− and Ω+, respectively, using the Divergence
Theorem, and using (4.25) and (4.26), we obtain (4.27).
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(3) Let φ̂C be given as in (1.6) and t ∈ R. Denote ψr = ψΓ − φ̂C and ψr,t = ψΓt − φ̂C. We

first prove (4.28). By (4.13) (with φ̂ = φ̂C) in Lemma 4.1, it suffices to prove that

lim
t→0
‖ψr,t ◦ Tt − ψr‖H1(Ω) = 0. (4.30)

By Definition 2.1 and (2.12) (cf. also (2.14)), we have∫
Ω

[
εΓ∇ψr · ∇η + χ+B

′
(
ψr + φ̂C −

φΓ,∞

2

)
η

]
dx

= −(ε+ − ε−)

∫
Ω+

∇φ̂C · ∇η dx ∀η ∈ H1
0 (Ω). (4.31)

Replacing Γ, Ω+, ψ, and η in (4.31) by Γt = Tt(Γ), Tt(Ω+), ψΓt , and η = η ◦T−1
t , respectively,

we obtain by the change of variable x = Tt(X) and (4.4) that∫
Ω

[
εΓAV (t)∇(ψr,t ◦ Tt) · ∇η + χ+B

′
((

ψr,t + φ̂C −
φΓt,∞

2

)
◦ Tt

)
η Jt

]
dX

= −(ε+ − ε−)

∫
Ω+

AV (t)∇(φ̂C ◦ Tt) · ∇η dX ∀η ∈ H1
0 (Ω). (4.32)

Subtracting (4.31) from (4.32) and rearranging terms, we get∫
Ω

εΓ [∇(ψr,t ◦ Tt)−∇ψr] · ∇η dX

= −
∫

Ω

εΓ[AV (t)− I]∇(ψr,t ◦ Tt) · ∇η dX

−
∫

Ω+

B′
((

ψr,t + φ̂C −
φΓt,∞

2

)
◦ Tt

)
(Jt − 1)η dX

−
∫

Ω+

[
B′
((

ψr,t + φ̂C −
φΓt,∞

2

)
◦ Tt

)
− B′

(
ψr + φ̂C −

φΓ,∞

2

)]
η dX

− (ε+ − ε−)

∫
Ω+

[∇(φ̂C ◦ Tt)−∇φ̂C] · ∇η dX

− (ε+ − ε−)

∫
Ω+

[AV (t)− I]∇(φ̂C ◦ Tt) · ∇η dX ∀η ∈ H1
0 (Ω). (4.33)

Setting η = ψr,t ◦ Tt − ψr, we have by the uniform bound of all ψr,t and φΓt,∞ (cf. (2.23) and
(2.5)), the Mean-Value Theorem, and the convexity of B that

−
[
B′
((

ψr,t + φ̂C −
φΓt,∞

2

)
◦ Tt

)
− B′

(
ψr + φ̂C −

φΓ,∞

2

)]
η

= −B′′(λt)
(
ψr,t ◦ Tt − ψr + φ̂C ◦ Tt − φ̂C +

1

2
φΓt,∞ ◦ Tt −

1

2
φΓ,∞

)
(ψr,t ◦ Tt − ψr)
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= −B′′(λt)(ψr,t ◦ Tt − ψr)
2

− B′′(λt)
(
φ̂C ◦ Tt − φ̂C +

1

2
φΓt,∞ ◦ Tt −

1

2
φΓ,∞

)
(ψr,t ◦ Tt − ψr)

≤ C|(φ̂C ◦ Tt − φ̂C)(ψr,t ◦ Tt − ψr)|+ C |(φΓt,∞ ◦ Tt − φΓ,∞)(ψr,t ◦ Tt − ψr)| , (4.34)

where λt is in between (ψr,t + φ̂C − φΓt,∞/2) ◦ Tt and ψr + φ̂C − φΓ,∞/2 at each point in Ω+,
and the constant C > 0 is independent of t and Γ. Now, the combination of (4.33) with
η = ψr,t ◦ Tt − ψr and (4.34), together with the uniform bounds for ψr,t and φΓt,∞, and the
Cauchy–Schwarz and Poincaré inequalities, leads to

‖ψr,t ◦ Tt − ψr‖H1(Ω) ≤ C‖AV (t)− I‖L∞(Ω)‖ψr,t ◦ Tt‖H1(Ω) + C‖Jt − 1‖L∞(Ω)

+ C‖φ̂C ◦ Tt − φ̂C‖H1(Ω+) + C ‖φΓt,∞ ◦ Tt − φΓ,∞‖H1(Ω)

+ C ‖AV (t)− I‖L∞(Ω+) ‖φ̂C ◦ Tt‖H1(Ω+).

Now the convergence (4.30) follows from (4.2), (4.3), (4.7), (4.8), the uniform bound of ψr,t,

Lemma 4.1 (with φ̂ = φ̂C), and Lemma 4.2.
We now prove (4.29). Let us denote ω̂Γ,V = ωΓ,V − ∇φ̂C · V. By Lemma 4.1 (cf. (4.14)

with φ̂ = φ̂C), we need only to prove that

lim
t→0

∥∥∥∥ψr,t ◦ Tt − ψr

t
− ω̂Γ,V

∥∥∥∥
H1(Ω)

= 0. (4.35)

Since the support of V and A′V (0) does not contain any of the singularities xi (i =
1, . . . , N), the Divergence Theorem and the calculations in (4.20) imply that∫

Ω

[A′V (0)∇φ̂C +∇(∇φ̂C · V )] · ∇η dx

= −
∫

Ω

[∇ · (A′V (0)∇φ̂C) + ∆(∇φ̂C · V )] η dx

= 0 ∀η ∈ H1
0 (Ω).

This allows us to rewrite (4.24) into the following equation for ω̂Γ,V :∫
Ω

[
εΓ∇ω̂Γ,V · ∇η + χ+B

′′
(
ψr + φ̂C −

φΓ,∞

2

)
ω̂Γ,V η

]
dX

= −
∫

Ω

εΓA
′
V (0)∇(ψΓ − φ̂C) · ∇η dX

−
∫

Ω+

[
B′
(
ψr + φ̂C −

φΓ,∞

2

)
(∇ · V )

+B′′
(
ψr + φ̂C −

φΓ,∞

2

)(
∇φ̂C · V −

ζΓ,V

2

)]
η dX
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− (ε+ − ε−)

∫
Ω+

[A′V (0)∇φ̂C +∇(∇φ̂C · V )] · ∇η dX ∀η ∈ H1
0 (Ω). (4.36)

Multiplying both sides of (4.33) by 1/t and combining the resulting equation with (4.36),
we obtain by rearranging terms that∫

Ω

εΓ∇
(
ψr,t ◦ Tt − ψr

t
− ω̂Γ,V

)
· ∇η dX

= −
∫

Ω

εΓ

[(
AV (t)− I

t

)
∇(ψr,t ◦ Tt)− A′V (0)∇ψr

]
· ∇η dX

−
∫

Ω+

[
B′
((

ψr,t + φ̂C −
φΓt,∞

2

)
◦ Tt

)(
Jt − 1

t

)
−B′

(
ψr + φ̂C −

φΓ,∞

2

)
(∇ · V )

]
η dX

−
∫

Ω+

{
1

t

[
B′
((

ψr,t + φ̂C −
φΓt,∞

2

)
◦ Tt

)
− B′

(
ψr + φ̂C −

φΓ,∞

2

)]
−B′′

(
ψr + φ̂C −

φΓ,∞

2

)(
ω̂Γ,V +∇φ̂C · V −

ζΓ,V

2

)}
η dX

− (ε+ − ε−)

∫
Ω+

[(
AV (t)− I

t

)
∇(φ̂C ◦ Tt)− A′V (0)∇φ̂C

]
· ∇η dX

− (ε+ − ε−)

∫
Ω+

∇

(
φ̂C ◦ Tt − φ̂C

t
−∇φ̂C · V

)
· ∇η dX ∀η ∈ H1

0 (Ω). (4.37)

Specifying η = (ψr,t ◦ Tt − ψr)/t − ω̂Γ,V ∈ H1
0 (Ω), we have by the fact that B′′ > 0, the

Mean-Value Theorem, the uniform bound in Ω+ for all the functions φ̂C (cf. (1.6)) ψr,t (cf.
(2.5), (2.18), (2.23)), ζΓ,V (cf. part (2) of Lemma 4.2), and ωΓ,V (cf. part (2) of Lemma 4.4)
that in Ω+

−
{

1

t

[
B′
((

ψr,t + φ̂C −
φΓt,∞

2

)
◦ Tt

)
− B′

(
ψr + φ̂C −

φΓ,∞

2

)]
−B′′

(
ψr + φ̂C −

φΓ,∞

2

)(
ω̂Γ,V +∇φ̂C · V −

ζΓ,V

2

)}(
ψr,t ◦ Tt − ψr

t
− ω̂Γ,V

)
= −B′′ (ξt)

(
ψr,t ◦ Tt − ψr

t
+
φ̂C ◦ Tt − φ̂C

t
− φΓt,∞ ◦ Tt − φΓ,∞

2t

)(
ψr,t ◦ Tt − ψr

t
− ω̂Γ,V

)
+B′′

(
ψr + φ̂C −

φΓ,∞

2

)(
ω̂Γ,V +∇φ̂C · V −

ζΓ,V

2

)(
ψr,t ◦ Tt − ψr

t
− ω̂Γ,V

)
= −B′′ (ξt)

(
ψr,t ◦ Tt − ψr

t
− ω̂Γ,V

)2

− B′′ (ξt)

(
ω̂Γ,V +

φ̂C ◦ Tt − φ̂C

t
− φΓt,∞ ◦ Tt − φΓ,∞

2t

)(
ψr,t ◦ Tt − ψr

t
− ω̂Γ,V

)
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+

[
B′′
(
ψr + φ̂C −

φΓ,∞

2

)
− B′′(ξt)

](
ω̂Γ,V +∇φ̂C · V −

ζΓ,V

2

)(
ψr,t ◦ Tt − ψr

t
− ω̂Γ,V

)
+B′′(ξt)

(
ω̂Γ,V +∇φ̂C · V −

ζΓ,V

2

)(
ψr,t ◦ Tt − ψr

t
− ω̂Γ,V

)
≤ −B′′ (ξt)

(
φ̂C ◦ Tt − φ̂C

t
−∇φ̂C · V −

φΓt,∞ ◦ Tt − φΓ,∞

2t
+
ζΓ,V

2

)

·
(
ψr,t ◦ Tt − ψr

t
− ω̂Γ,V

)
+B′′′(σt)

(
ψr + φ̂C −

φΓ,∞

2
− ξt

)(
ω̂Γ,V +∇φ̂C · V −

ζΓ,V

2

)(
ψr,t ◦ Tt − ψr

t
− ω̂Γ,V

)
≤ C

(∣∣∣∣∣ φ̂C ◦ Tt − φ̂C

t
−∇φ̂C · V

∣∣∣∣∣+

∣∣∣∣φΓt,∞ ◦ Tt − φΓ,∞

t
− ζΓ,V

∣∣∣∣
) ∣∣∣∣ψr,t ◦ Tt − ψr

t
− ω̂Γ,V

∣∣∣∣
+ C

(
|ψr,t ◦ Tt − ψr|+

∣∣∣φ̂C ◦ Tt − φ̂C

∣∣∣+ |φΓt,∞ ◦ Tt − φΓ,∞|
) ∣∣∣∣ψr,t ◦ Tt − ψr

t
− ω̂Γ,V

∣∣∣∣ ,
where ξt and σt are in between (ψr,t+ φ̂C−φΓt,∞/2)◦Tt and ψr + φ̂C−φΓ,∞/2 at each point in
Ω+. Now, combining this inequality and the identity (4.37) with η = (ψr,t◦Tt−ψr)/t− ω̂Γ,V ∈
H1

0 (Ω), we obtain by the Poincaré and Cauchy–Schwarz inequalities and rearranging terms
that ∥∥∥∥ψr,t ◦ Tt − ψr

t
− ω̂Γ,V

∥∥∥∥2

H1(Ω)

≤ C

∫
Ω

∣∣∣∣(AV (t)− I
t

)
∇(ψr,t ◦ Tt)− A′V (0)∇ψr

∣∣∣∣2 dX
+ C

∫
Ω+

∣∣∣∣B′((ψr,t + φ̂C −
φΓt,∞

2

)
◦ Tt

)(
Jt − 1

t

)
−B′

(
ψr + φ̂C −

φΓ,∞

2

)
(∇ · V )

∣∣∣∣2 dX
+ C

(∥∥∥∥∥ φ̂C ◦ Tt − φ̂C

t
−∇φ̂C · V

∥∥∥∥∥
2

H1(Ω+)

+

∥∥∥∥φΓt,∞ ◦ Tt − φΓ,∞

t
− ζΓ,V

∥∥∥∥2

L2(Ω+)

+ ‖ψr,t ◦ Tt − ψr‖2
L2(Ω+) + ‖φ̂C ◦ Tt − φ̂C‖2

L2(Ω+) + ‖φΓt,∞ ◦ Tt − φΓ,∞‖2
L2(Ω+)

)
+ C

∫
Ω+

∣∣∣∣(AV (t)− I
t

)
∇(φ̂C ◦ Tt)− A′V (0)∇φ̂C

∣∣∣∣2 dX
= C [S1(t) + S2(t) + S3(t) + S4(t)] . (4.38)
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It follows from (4.6)–(4.8), Lemma 4.1 (with φ̂ = φ̂C), and (4.28) that

S1(t) =

∫
Ω

∣∣∣∣[AV (t)− I
t

]
∇(ψr,t ◦ Tt)− A′V (0)∇ψr

∣∣∣∣2 dX
≤ 2

∫
Ω

∣∣∣∣[AV (t)− I
t

− A′V (0)

]
∇(ψr,t ◦ Tt)

∣∣∣∣2 dX + 2

∫
Ω

|A′V (0)∇(ψr,t ◦ Tt − ψr)|2 dX

→ 0 as t→ 0. (4.39)

By the uniform boundedness of ψr,t and φΓt,∞ (cf. (2.5), (2.18), (2.23)) the Mean-Value
Theorem, (4.2) and (4.3), Lemmas 4.1 and 4.2, and (4.28), we have

S2(t) =

∫
Ω+

∣∣∣∣B′((ψr,t + φ̂C −
φΓt,∞

2

)
◦ Tt

)(
Jt − 1

t

)
− B′

(
ψr + φ̂C −

φΓ,∞

2

)
(∇ · V )

∣∣∣∣2 dX
≤ 2

∫
Ω+

∣∣∣∣B′((ψr,t + φ̂C −
φΓt,∞

2

)
◦ Tt

)(
Jt − 1

t
−∇ · V

)∣∣∣∣2 dX
+ 2

∫
Ω+

∣∣∣∣B′((ψr,t + φ̂C −
φΓt,∞

2

)
◦ Tt

)
− B′

(
ψr + φ̂C −

φΓ,∞

2

)∣∣∣∣2 |∇ · V |2dX
≤ C

∫
Ω+

∣∣∣∣Jt − 1

t
−∇ · V

∣∣∣∣2 dX
+ C

∫
Ω+

(|ψr,t ◦ Tt − ψr|2 + |φ̂C ◦ Tt − φ̂C|2 + |φΓt,∞ ◦ Tt − φΓ,∞|2) dX

→ 0 as t→ 0. (4.40)

By Lemma 4.1 (with φ̂ = φ̂C), Lemma 4.2, and (4.28), we have

S3(t) =

∥∥∥∥∥ φ̂C ◦ Tt − φ̂C

t
−∇φ̂C · V

∥∥∥∥∥
2

H1(Ω+)

+

∥∥∥∥φΓt,∞ ◦ Tt − φΓ,∞

t
− ζΓ,V

∥∥∥∥
L2(Ω+)

+ ‖ψr,t ◦ Tt − ψr‖L2(Ω+) + ‖φ̂C ◦ Tt − φ̂C‖2
L2(Ω+) + ‖φΓt,∞ ◦ Tt − φΓ,∞‖2

L2(Ω+)

→ 0 as t→ 0. (4.41)

It follows from (4.6)–(4.8) and Lemma 4.1 (with φ̂ = φ̂C) that

S4(t) =

∫
Ω+

∣∣∣∣[AV (t)− I
t

]
∇(φ̂C ◦ Tt)− A′V (0)∇φ̂C

∣∣∣∣2 dX
≤ C

∫
Ω+

∣∣∣∣[AV (t)− I
t

− A′V (0)

]
∇(φ̂C ◦ Tt)

∣∣∣∣2 + C

∫
Ω+

|∇(φ̂C ◦ Tt − φ̂C)|2dX

→ 0 as t→ 0. (4.42)

Now the desired convergence (4.35) follows from (4.38)–(4.42).
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5 Proof of Theorem 3.2

Proof of Theorem 3.2. Fix V ∈ V (cf. (3.6)). Let {Tt}t∈R be the family of diffeomorphisms
from R3 to R3 defined by Tt(X) = x(t,X) as the solution to the initial-value problem (3.7).
We proceed in five steps. In Step 1, we calculate the limit as t→ 0 that defines the variation
δΓ,VE[Γ]; cf. Definition 3.1. In Step 2, we simplify the expression of δΓ,VE[Γ]. In Step 3, we
convert all the volume integrals in δΓ,VE[Γ] into surface integrals on the boundary Γ, except
one volume integral that involves the B′ term. In Step 4, we rewrite the surface integrals to
have the desired form (i.e., with a factor V · n in the integrand). Finally, in Step 5, we treat
the only volume integral term that involves B′ to get the desired formula.

Step 1. Let t ∈ R. We recall that φΓt,∞, φ̂Γt,∞, and ψΓt are the solutions to (2.3), (2.13),
and (2.22) with Γt = Tt(Γ) replacing Γ, respectively, and that all these functions have the
boundary value φ∞ on ∂Ω. Recall that φ̂0 and φ̂∞ are defined by (2.9) and (2.10). We denote
in this proof

ψr = ψΓ − φ̂Γ,∞ and ψr,t = ψΓt − φ̂Γt,∞. (5.1)

By (3.2) with Γt replacing Γ, the definition of AV (t) (4.4) and Jt (4.1), and the change of
variable x = Tt(X), we have

E[Γt] = −
∫

Ω

εΓt

2
|∇ψr,t|2dx−

∫
Tt(Ω+)

B

(
ψΓt −

φΓt,∞

2

)
dx

+
ε− − ε+

2

∫
Tt(Ω+)

∇φ̂Γt,∞ · ∇φ̂0 dx+W

= −
∫

Ω

εΓ

2
[AV (t)∇(ψr,t ◦ Tt) · ∇(ψr,t ◦ Tt)] dX

−
∫

Ω+

B

((
ψΓt −

φΓt,∞

2

)
◦ Tt

)
Jt dX

+
ε− − ε+

2

∫
Ω+

AV (t)∇(φ̂Γt,∞ ◦ Tt) · ∇(φ̂0 ◦ Tt) dX +W,

where W = (1/2)
∑N

i=1 Qi(φ̂∞ − φ̂C)(xi) is independent of Γ.
By the definition of δΓ,VE[Γ] (cf. Definition 3.1), we need to calculate (d/dt)|t=0E[Γt]. This

amounts to justifying the interchange of the differentiation against t and the integration over
Ω, and then applying the product and chain rules of differentiation. Since the differentiation
against t of functions φΓt,∞, φ̂Γt,∞, and ψΓt are defined using the H1(Ω)-norm applied to the
corresponding quotients (cf. Lemmas 4.2–4.4), we proceed with the limit t → 0 of (E[Γt] −
E[Γ])/t and apply the results from those lemmas.

It follows from (3.2) and the above expression of E[Γt] that

E[Γt]− E[Γ]

t
= −

∫
Ω

εΓ

2t
[AV (t)∇(ψr,t ◦ Tt) · ∇(ψr,t ◦ Tt)−∇ψr · ∇ψr] dX

−
∫

Ω+

1

t

[
B

((
ψΓt −

φΓt,∞

2

)
◦ Tt

)
Jt − B

(
ψΓ −

φΓ,∞

2

)]
dX

31



+
ε− − ε+

2

∫
Ω+

1

t

[
AV (t)∇(φ̂Γt,∞ ◦ Tt) · ∇(φ̂0 ◦ Tt)−∇φ̂Γ,∞ · ∇φ̂0

]
dX

= −δ1(t)− δ2(t) +
ε− − ε+

2
δ3(t). (5.2)

By rearranging the terms, we obtain that

δ1(t) =

∫
Ω

εΓ

2

[
AV (t)− I − tA′V (0)

t

]
∇(ψr,t ◦ Tt) · ∇(ψr,t ◦ Tt) dX

+

∫
Ω

εΓ

2
A′V (0)∇(ψr,t ◦ Tt) · ∇(ψr,t ◦ Tt) dX

+

∫
Ω

εΓ

2
[∇(ψr,t ◦ Tt) +∇ψr] · ∇

(
ψr,t ◦ Tt − ψr

t

)
dX.

It thus follows from (4.7), (4.8), Lemma 4.3, and Lemma 4.4 that

lim
t→0

δ1(t) =

∫
Ω

εΓ

[
1

2
A′V (0)∇ψr · ∇ψr +∇ψr · ∇(ωΓ,V − ξΓ,V )

]
dX, (5.3)

where ξΓ,V and ωΓ,V are defined in (4.22) in Lemma 4.3 and (4.24) in Lemma 4.4, respectively.
Denote q = ψΓ− φΓ,∞/2 and qt = (ψΓt − φΓt,∞/2) ◦ Tt. The second term δ2(t) in (5.2) can

be written as

δ2(t) =

∫
Ω+

Jt − 1

t
B(qt) dX +

∫
Ω+

B(qt)− B(q)

t
dX. (5.4)

It follows from Lemma 4.2 and Lemma 4.4 that qt → q in L2(Ω). Moreover, by (2.5), (2.18),
and (2.23), the L∞(Ω)-norm of qt is bounded uniformly in t ∈ R. Hence, B(qt) → B(q) in
L2(Ω+) as t→ 0. This, together with (4.2) and (4.3), implies that

lim
t→0

∫
Ω+

Jt − 1

t
B(qt) dX =

∫
Ω+

(∇ · V )B(q) dX. (5.5)

Now Taylor’s expansion implies that

B(qt(X))− B(q(X))

t

= B′(q(X))
qt(X)− q(X)

t
+

1

2
B′′(ηt(X))[qt(X)− q(X)]

qt(X)− q(X)

t
, a.e. X ∈ Ω+,

where ηt(X) is in between q(X) and qt(X), and its L∞(Ω)-norm is bounded uniformly in t.
It then follows from Lemma 4.2 and Lemma 4.4 that∣∣∣∣∫

Ω+

B′′(ηt)(qt − q)
qt − q
t

dX

∣∣∣∣ ≤ C‖qt − q‖L2(Ω+)

∥∥∥∥qt − qt
∥∥∥∥
L2(Ω+)

→ 0 as t→ 0,
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where C is a constant independent of t. Consequently, Lemma 4.2 and Lemma 4.4 imply that

lim
t→0

∫
Ω+

B(qt)− B(q)

t
dX = lim

t→0

∫
Ω+

B′(q)
qt − q
t

dX =

∫
Ω+

B′(q)

(
ωΓ,V −

ζΓ,V

2

)
dX,

where ωΓ,V and ζΓ,V are given in (4.24) and (4.15), respectively. This, together with (5.4)
and (5.5), and our definition of q and qt, implies that

lim
t→0

δ2(t) =

∫
Ω+

[
(∇ · V )B

(
ψΓ −

φΓ,∞

2

)
+B′

(
ψΓ −

φΓ,∞

2

)(
ωΓ,V −

ζΓ,V

2

)]
dX. (5.6)

Rearranging the terms, we have

δ3(t) =

∫
Ω+

AV (t)− I − tA′V (0)

t
∇(φ̂Γt,∞ ◦ Tt) · ∇(φ̂0 ◦ Tt) dX

+

∫
Ω+

∇(φ̂Γt,∞ ◦ Tt)−∇φ̂Γ,∞

t
· ∇(φ̂0 ◦ Tt) dx

+

∫
Ω+

∇φ̂Γ,∞ ·
∇(φ̂0 ◦ Tt)−∇φ̂0

t
dX

+

∫
Ω+

A′V (0)∇(φ̂Γt,∞ ◦ Tt) · ∇(φ̂0 ◦ Tt) dX.

Therefore, we have by (4.7), (4.8), Lemma 4.1 (with φ̂ = φ̂0), and Lemma 4.3 that

lim
t→0

δ3(t) =

∫
Ω+

[
∇ξΓ,V · ∇φ̂0 +∇φ̂Γ,∞ · ∇(∇φ̂0 · V ) + A′V (0)∇φ̂Γ,∞ · ∇φ̂0

]
dX. (5.7)

It now follows from Definition 3.1, (5.2), (5.3), (5.6), and (5.7) that the first variation
δΓE[Γ] exists and is given by

δΓ,VE[Γ] = −
∫

Ω

εΓ

2
A′V (0)∇ψr · ∇ψr dX︸ ︷︷ ︸

M1

+

∫
Ω

εΓ∇ψr · ∇ξΓ,V dX︸ ︷︷ ︸
M2

−
∫

Ω

εΓ∇ψr · ∇ωΓ,V dX︸ ︷︷ ︸
M3

−
∫

Ω+

[
(∇ · V )B

(
ψΓ −

φΓ,∞

2

)
+B′

(
ψΓ −

φΓ,∞

2

)(
ωΓ,V −

ζΓ,V

2

)]
dX︸ ︷︷ ︸

M4

+
ε− − ε+

2

∫
Ω+

∇ξΓ,V · ∇φ̂0 dX︸ ︷︷ ︸
M5

+
ε− − ε+

2

∫
Ω+

[
∇φ̂Γ,∞ · ∇(∇φ̂0 · V ) + A′V (0)∇φ̂Γ,∞ · ∇φ̂0

]
dX︸ ︷︷ ︸

M6
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= M1 +M2 +M3 +M4 +M5 +M6. (5.8)

Step 2. We now simplify this expression. By Lemma 4.3, our notation ψr = ψΓ − φ̂Γ,∞,
and the fact that the support of V or A′V (0) contains no singularities xi (1 ≤ i ≤ N), we can
express the sum of the first two integrals above as

M1 +M2 = −
∫

Ω

εΓ

2
A′V (0)∇(ψΓ − φ̂Γ,∞) · ∇(ψΓ − φ̂Γ,∞) dX

−
∫

Ω

εΓA
′
V (0)∇φ̂Γ,∞ · ∇(ψΓ − φ̂Γ,∞) dX

= −
∫

Ω

εΓ

2
A′V (0)∇ψΓ · ∇ψΓ dX +

∫
Ω

εΓ

2
A′V (0)∇φ̂Γ,∞ · ∇φ̂Γ,∞ dX. (5.9)

Note that the last two integrals exist as the singularities xi (1 ≤ i ≤ N) of ψΓ and φ̂Γ,∞ are
outside the support of V and A′V (0) is given in (4.6). By (2.22) and (2.13), we have∫

Ω

[
εΓ∇ψr · ∇η + χ+B

′
(
ψΓ −

φΓ,∞

2

)
η

]
dX = 0

for all η ∈ C1
c (Ω) and hence all η ∈ H1

0 (Ω). Setting η = ωΓ,V , we get the two-ωΓ,V terms in
(5.8) (one is M3 and the other is part of M4) cancelled:∫

Ω

[
εΓ∇ψr · ∇ωΓ,V + χ+B

′
(
ψΓ −

φΓ,∞

2

)
ωΓ,V

]
dX = 0. (5.10)

To simplify M5, we note that we can replace η in (2.12) (with φ̂ = φ̂0) and (2.13) by
ξΓ,V ∈ H1

0 (Ω), as ξΓ,V |Ω− ∈ C2(Ω−); cf. the remark six lines below (2.12) and that below
(2.14). It then follows that

M5 =
ε−
2

∫
Ω+

∇ξΓ,V · ∇φ̂0 dX −
ε+

2

∫
Ω+

∇ξΓ,V · ∇φ̂0 dX

= −
∫

Ω

εΓ

2
∇ξΓ,V · ∇φ̂0 dX +

1

2

N∑
i=1

QiξΓ,V (xi) [by (2.12) with φ̂ = φ̂0]

= −
∫

Ω

εΓ

2
∇ξΓ,V · ∇φ̂0 dX +

∫
Ω

εΓ

2
∇φ̂Γ,∞ · ∇ξΓ,V dX [by (2.13)]

=

∫
Ω

εΓ

2
∇ξΓ,V · ∇(φ̂Γ,∞ − φ̂0 − φΓ,∞) dX [by (2.3)]

= −
∫

Ω

εΓ

2
A′V (0)∇φ̂Γ,∞ · ∇(φ̂Γ,∞ − φ̂0 − φΓ,∞) dX. [by Lemma 4.3] (5.11)

Since φ̂0 is harmonic in the support of V that excludes all xi (i = 1, . . . , N), we have by

the same calculations as in (4.20) that ∇ ·
[
∇(∇φ̂0 · V ) + A′V (0)∇φ̂0

]
= 0 in Ω. Thus, since
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the normal n along Γ points from Ω− to Ω+, we have by the Divergence Theorem that

ε−
2

∫
Ω+

∇φ̂Γ,∞ · [∇(∇φ̂0 · V ) + A′V (0)∇φ̂0] dX

= −ε−
2

∫
Γ

φ̂Γ,∞[∇(∇φ̂0 · V ) + A′V (0)∇φ̂0] · n dS

= −ε−
2

∫
Ω−

∇φ̂Γ,∞ · [∇(∇φ̂0 · V ) + A′V (0)∇φ̂0] dX.

Therefore, since A′V (0) (cf. (4.6)) is symmetric,

M6 =
ε− − ε+

2

∫
Ω+

∇φ̂Γ,∞ · [∇(∇φ̂0 · V ) + A′V (0)∇φ̂0] dX

= −
∫

Ω

εΓ

2
[∇φ̂Γ,∞ · ∇(∇φ̂0 · V ) + A′V (0)∇φ̂Γ,∞ · ∇φ̂0] dX

= −
∫

Ω

εΓ

2
A′V (0)∇φ̂Γ,∞ · ∇φ̂0 dX. [by (2.13)] (5.12)

It now follows from (5.8)–(5.12) that

δΓ,VE[Γ] = −
∫

Ω

εΓ

2
A′V (0)∇ψΓ · ∇ψΓ dX︸ ︷︷ ︸

P1

+

∫
Ω

εΓ

2
A′V (0)∇φ̂Γ,∞ · ∇φΓ,∞ dX︸ ︷︷ ︸

P2

+

∫
Ω+

[
ζΓ,V

2
B′
(
ψΓ −

φΓ,∞

2

)
− (∇ · V )B

(
ψΓ −

φΓ,∞

2

)]
dX︸ ︷︷ ︸

P3

= P1 + P2 + P3. (5.13)

Step 3. We convert most of these volume integrals into surface integrals on Γ. We shall
use the following identities that can be verified by using the Divergence Theorem and ap-
proximations by smooth functions:∫

D

(∇ · U)∇a · ∇b dx = −
∫
D

U · (∇2a∇b+∇2b∇a) dx+

∫
∂D

(∇a · ∇b)(U · ν) dx, (5.14)∫
D

(∇U)∇a · ∇b dx = −
∫
D

U · (∆a∇b+∇2b∇a) dx+

∫
∂D

(∇a · ν)(∇b · U) dx. (5.15)

Here, D ⊂ R3 is a bounded open set with a C1 boundary ∂D, U ∈ H1(D,R3), a, b ∈ H2(D),
∇2a is the Hessian matrix of a, and ν is the unit exterior normal at the boundary ∂D. If in
addition ∆a = ∆b = 0 in D, then we have by (5.14) and (5.15) that∫

D

(∇U + (∇U)T − (∇ · U)I)∇a · ∇b dx
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=

∫
∂D

[(∇a · U) · (∇b · ν) + (∇b · U) · (∇a · ν)− (∇a · ∇b) · (U · ν)] dS. (5.16)

Note that V = 0 in a neighborhood of all xi (1 ≤ i ≤ N) and V = 0 on ∂Ω and that the
unit normal vector n on Γ points from Ω− to Ω+. By Theorem 2.1, ∆ψΓ = 0 on Ω−∩supp (V )
and ε+∆ψΓ = B′(ψΓ − φΓ,∞/2) on Ω+. Therefore, writing us = u|Ωs (s = +,−), we have by
(4.6), (5.14), and (5.15) that

P1 =

∫
Ω

εΓ

2
[∇V + (∇V )T − (∇ · V )I]∇ψΓ · ∇ψΓ dX

=

∫
Ω−

ε−(∇V )∇ψΓ · ∇ψΓ dX +

∫
Ω+

ε+(∇V )∇ψΓ · ∇ψΓ dX

−
∫

Ω−

ε−
2

(∇ · V )∇ψΓ · ∇ψΓ dX −
∫

Ω+

ε+

2
(∇ · V )∇ψΓ · ∇ψΓ dX

= −
∫

Ω−

ε−V · (∆ψΓ∇ψΓ +∇2ψΓ∇ψΓ) dX +

∫
Γ

ε−(∇ψ−Γ · V )(∇ψ−Γ · n) dS

−
∫

Ω+

ε+V · (∆ψΓ∇ψΓ +∇2ψΓ∇ψΓ) dX −
∫

Γ

ε+(∇ψ+
Γ · V )(ψ+

Γ · n) dS

+

∫
Ω−

ε−V · ∇2ψΓ∇ψΓ dX −
∫

Γ

ε−
2
|∇ψ−Γ |

2(V · n) dS

+

∫
Ω+

ε+V · ∇2ψΓ∇ψΓ dX +

∫
Γ

ε+

2
|∇ψ+

Γ |
2(V · n) dS

= −
∫

Ω−

ε−∆ψΓ(∇ψΓ · V ) dX +

∫
Γ

ε−(∇ψ−Γ · V )(∇ψ−Γ · n) dS −
∫

Γ

ε−
2
|∇ψ−Γ |

2(V · n) dS

−
∫

Ω+

ε+∆ψΓ(∇ψΓ · V ) dX −
∫

Γ

ε+(∇ψ+
Γ · V )(∇ψ+

Γ · n) dS +

∫
Γ

ε+

2
|∇ψ+

Γ |
2(V · n) dS

=

∫
Γ

ε−(∇ψ−Γ · V )(∇ψ−Γ · n) dS −
∫

Γ

ε+(∇ψ+
Γ · V )(∇ψ+

Γ · n) dS

−
∫

Γ

ε−
2
|∇ψ−Γ |

2(V · n) dS +

∫
Γ

ε+

2
|∇ψ+

Γ |
2(V · n) dS

−
∫

Ω+

B′
(
ψΓ −

φΓ,∞

2

)
(∇ψΓ · V ) dX, (5.17)

where a superscript − or + denotes the restriction to Ω− or Ω+, respectively.
Since φ̂Γ,∞ and φΓ,∞ are harmonic in Ω−∩supp (V ) and Ω+, and since the normal n points

from Ω− to Ω+, we have by (4.6), (5.16), and the notation of jumps (2.8) that

P2 =

∫
Ω−

ε−
2

[(∇ · V )I −∇V − (∇V )T ]∇φ̂Γ,∞ · ∇φΓ,∞ dX

+

∫
Ω+

ε+

2
[(∇ · V )I −∇V − (∇V )T ]∇φ̂Γ,∞ · ∇φΓ,∞ dX
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=
1

2

∫
Γ

JεΓ(∇φ̂Γ,∞ · V )(∇φΓ,∞ · n) + εΓ(∇φ̂Γ,∞ · n)(∇φΓ,∞ · V )

− εΓ(∇φ̂Γ,∞ · ∇φΓ,∞)(V · n)KΓ dS. (5.18)

Using the Divergence Theorem and noting again that the normal n at Γ points from Ω−
to Ω+, we obtain

P3 =

∫
Ω+

ζΓ,V

2
B′
(
ψΓ −

φΓ,∞

2

)
dX +

∫
Ω+

V · B′
(
ψΓ −

φΓ,∞

2

)(
∇ψΓ −

∇φΓ,∞

2

)
dX

+

∫
Γ

B

(
ψΓ −

φΓ,∞

2

)
(V · n) dS

=

∫
Ω+

[
1

2
(ζΓ,V −∇φΓ,∞ · V ) +∇ψΓ · V

]
B′
(
ψΓ −

φΓ,∞

2

)
dX

+

∫
Γ

B

(
ψΓ −

φΓ,∞

2

)
(V · n) dS. (5.19)

It now follows from (5.13) and (5.17)–(5.19) that

δΓ,VE[Γ] =

∫
Γ

ε−(∇ψ−Γ · V )(∇ψ−Γ · n) dS −
∫

Γ

ε+(∇ψ+
Γ · V )(∇ψ+

Γ · n) dS

−
∫

Γ

ε−
2
|∇ψ−Γ |

2(V · n) dS +

∫
Γ

ε+

2
|∇ψ+

Γ |
2(V · n) dS

+
1

2

∫
Γ

JεΓ(∇φ̂Γ,∞ · V )(∇φΓ,∞ · n)KΓ dS

+
1

2

∫
Γ

JεΓ(∇φ̂Γ,∞ · n)(∇φΓ,∞ · V )KΓ dS

− 1

2

∫
Γ

JεΓ(∇φ̂Γ,∞ · ∇φΓ,∞)(V · n)KΓ dS

+

∫
Ω+

1

2
(ζΓ,V −∇φΓ,∞ · V )B′

(
ψΓ −

φΓ,∞

2

)
dX

+

∫
Γ

B

(
ψΓ −

φΓ,∞

2

)
(V · n) dS. (5.20)

Step 4. We express the surface integrals into those with the factor V · n in the integrand.
Note that on each side of Γ, we can write

∇ψΓ = (∇ψΓ · n)n+∇ΓψΓ = ∂nψΓn+∇ΓψΓ on Γ,

where ∇ΓψΓ = (I − n⊗ n)∇ψΓ is the tangential derivative. Clearly n · ∇ΓψΓ = 0. Moreover,
∇Γψ

+
Γ = ∇Γψ

−
Γ on Γ. Thus, ∇

(
ψ+

Γ − ψ
−
Γ

)
= (∂nψ

+
Γ −∂nψ

−
Γ )n on Γ. By Theorem 2.1, we have

also ε+∇ψ+
Γ · n = ε−∇ψ−Γ · n = εΓ∇ψΓ · n on Γ. Therefore, the first four terms in (5.20) are∫

Γ

ε−(∇ψ−Γ · V )(∇ψ−Γ · n) dS −
∫

Γ

ε+(∇ψ+
Γ · V )(∇ψ+

Γ · n) dS
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−
∫

Γ

ε−
2
|∇ψ−Γ |

2(V · n) dS +

∫
Γ

ε+

2
|∇ψ+

Γ |
2(V · n) dS

= −
∫

Γ

εΓ∂nψΓ(∂nψ
+
Γ − ∂nψ

−
Γ )(V · n) dS

+

∫
Γ

ε+

2
|∇ψ+

Γ |
2(V · n) dS −

∫
Γ

ε−
2
|∇ψ−Γ |

2(V · n) dS

= −
∫

Γ

ε+|∂nψ+
Γ |

2(V · n) dS +

∫
Γ

ε−|∂nψ−Γ |
2(V · n) dS

+

∫
Γ

ε+

2
|∂nψ+

Γ |
2(V · n) dS +

∫
Γ

ε+

2
|∇ΓψΓ|2(V · n) dS

−
∫

Γ

ε−
2
|∂nψ−Γ |

2(V · n) dS −
∫

Γ

ε−
2
|∇ΓψΓ|2(V · n) dS

= −1

2

(
1

ε+

− 1

ε−

)∫
Γ

|εΓ∂nψΓ|2(V · n) dS +
ε+ − ε−

2

∫
Γ

|∇ΓψΓ|2(V · n) dS. (5.21)

Similarly, on each side of Γ, we have with uΓ = φΓ,∞ or φ̂Γ,∞ that

∇uΓ · V = (∂nuΓn+∇ΓuΓ) · ((V · n)n+ (I − n⊗ n)V )

= ∂nuΓ(V · n) +∇ΓuΓ(I − n⊗ n)V.

Moreover, ε+∂nu
+
Γ = ε−∂nu

−
Γ and ∂Γu

+
Γ = ∂Γu

−
Γ on Γ. Therefore, the next three terms in

(5.20) become

1

2

∫
Γ

JεΓ(∇φ̂Γ,∞ · V )(∇φΓ,∞ · n)KΓ dS +
1

2

∫
Γ

JεΓ(∇φ̂Γ,∞ · n)(∇φΓ,∞ · V )KΓ dS

− 1

2

∫
Γ

JεΓ(∇φ̂Γ,∞ · ∇φΓ,∞)(V · n)KΓ dS

=

∫
Γ

JεΓ∂nφ̂Γ,∞∂nφΓ,∞KΓ(V · n) dS

− 1

2

∫
Γ

JεΓ(∂nφ̂Γ,∞∂nφΓ,∞ +∇Γφ̂Γ,∞ · ∇ΓφΓ,∞)KΓ(V · n) dS

=
1

2

∫
Γ

JεΓ∂nφ̂Γ,∞∂nφΓ,∞KΓ(V · n) dS − 1

2

∫
Γ

JεΓ∇Γφ̂Γ,∞ · ∇ΓφΓ,∞KΓ(V · n) dS. (5.22)

It now follows from (5.20)–(5.22) that

δΓ,VE[Γ] = −1

2

(
1

ε+

− 1

ε−

)∫
Γ

|εΓ∂nψΓ|2(V · n) dS +
ε+ − ε−

2

∫
Γ

|∇ΓψΓ|2(V · n) dS

+
1

2

∫
Γ

JεΓ∂nφ̂Γ,∞∂nφΓ,∞KΓ(V · n) dS − 1

2

∫
Γ

JεΓ∇Γφ̂Γ,∞ · ∇ΓφΓ,∞KΓ(V · n) dS

+

∫
Ω+

1

2
(ζΓ,V −∇φΓ,∞ · V )B′

(
ψΓ −

φΓ,∞

2

)
dX
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+

∫
Γ

B

(
ψΓ −

φΓ,∞

2

)
(V · n) dS. (5.23)

Step 5. We finally rewrite the volume integral above into a surface integral on the
boundary Γ. Recall from the beginning of Subsection 3.2 that the signed distance function
φ : R3 → R with respect to Γ is a C3-function and ∇φ 6= 0 in the neighborhood N0(Γ) of Γ.
We extend n = ∇φ on Γ to N0(Γ), i.e., we define n = ∇φ at every point in N0(Γ). Note that
n ∈ C2(N0(Γ)). Since V ∈ V vanishes outside N0(Γ), both the normal component (V · n)n
and the tangential component V − (V · n)n = (I − n ⊗ n)V of V are in the class of vector
fields V ; cf. (3.6). Since V = (V · n)n + (I − n⊗ n)V and (I − n⊗ n)V · n = 0, we have by
Lemma 4.2 (part (1) and part (4)) that

ζΓ,V −∇φΓ,∞ · V = ζΓ,(V ·n)n+(I−n⊗n)V −∇φΓ,∞ · [(V · n)n+ (I − n⊗ n)V ]

= ζΓ,(V ·n)n −∇φΓ,∞ · (V · n)n+ ζΓ,(I−n⊗n)V −∇φΓ,∞ · (I − n⊗ n)V

= ζΓ,(V ·n)n −∇φΓ,∞ · (V · n)n in Ω.

Therefore, we may assume that

V = (V · n)n in N0(Γ). (5.24)

By Lemma 4.2, ζΓ,V |Ωs ∈ H2(Ωs) for s = − or +. Thus, by (4.16), ∆(∇φΓ,∞ ·V ) ∈ L2(Ωs)
for s = − or +. Therefore,

∇φΓ,∞ · V ∈ H2(Ωs) for s = − or + . (5.25)

Recall from (5.1) that ψr = ψΓ−φ̂Γ,∞ ∈ H1
0 (Ω). Note by Theorem 2.1 that ∆ψr = 0 in Ω− and

ε+∆ψr = B′(ψΓ−φΓ,∞/2) in Ω+. Note also by (4.16) in Lemma 4.2 that ∆(ζΓ,V −∇φΓ,∞ ·V ) =
0 in Ω−∪Ω+. We then obtain by Green’s second identity with our convention that the normal
n at Γ pointing from Ω− to Ω+ and the fact that JεΓζΓ,V ∂nψrKΓ = 0 which follows from the
third equation in (2.24) that twice of the volume term in (5.23) is

Q :=

∫
Ω+

(ζΓ,V −∇φΓ,∞ · V )B′
(
ψΓ −

φΓ,∞

2

)
dX

=

∫
Ω+

ε+ [(ζΓ,V −∇φΓ,∞ · V ) ∆ψr − ψr∆ (ζΓ,V −∇φΓ,∞ · V )] dX

+

∫
Ω−

ε− [(ζΓ,V −∇φΓ,∞ · V ) ∆ψr − ψr∆ (ζΓ,V −∇φΓ,∞ · V )] dX

= −
∫

Γ

JεΓ [(ζΓ,V −∇φΓ,∞ · V ) ∂nψr − ψr∂n (ζΓ,V −∇φΓ,∞ · V )]KΓ dS

=

∫
Γ

JεΓ(∇φΓ,∞ · V )∂nψrKΓ dS +

∫
Γ

JεΓψr∂nζΓ,V KΓ dS −
∫

Γ

JεΓψr∂n(∇φΓ,∞ · V )KΓ dS

= Q1 +Q2 −Q3. (5.26)
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It follows from (5.24) that

Q1 =

∫
Γ

JεΓ(∇φΓ,∞ · V )∂nψrKΓ dS =

∫
Γ

JεΓ∂nφΓ,∞∂nψrKΓ(V · n)dS. (5.27)

Since JψrKΓ = 0 and JεΓ∂nφΓ,∞KΓ = 0, we have by Lemma 4.2 (cf. (4.17)) that

Q2 =

∫
Γ

JεΓψr∂nζΓ,V KΓ dS

= −
∫

Γ

JεΓψrA
′
V (0)∇φΓ,∞ · nKΓ dS

=

∫
Γ

JεΓψr

[
∇V + (∇V )T − (∇ · V )I

]
∇φΓ,∞ · nKΓ dS

=

∫
Γ

JεΓψr

[
∇V + (∇V )T

]
∇φΓ,∞ · nKΓ dS

=

∫
Γ

JεΓψr∇φΓ,∞ ·
[
∇V + (∇V )T

]
nKΓ dS. (5.28)

Denoting by nj the jth component of n and noting that ∂in
jnj = (1/2)∂i‖n‖2 = 0, we obtain

on each side of Γ (i.e., on N0(Γ) ∩ Ω− and N0(Γ) ∩ Ω+) that

∇φΓ,∞ · (∇V + (∇V )T )n

= ∂iφΓ,∞
(
∂jV

i + ∂iV
j
)
nj

= ∂iφΓ,∞∂j((V · n)ni)nj + ∂iφΓ,∞∂i((V · n)nj)nj [by (5.24)]

= ∂iφΓ,∞∂j(V · n)ninj + ∂iφΓ,∞(V · n)∂jn
inj

+ ∂iφΓ,∞∂i(V · n)njnj + ∂iφΓ,∞(V · n)∂in
jnj

= (∇φΓ,∞ · n)∇(V · n) · n+∇φΓ,∞ · ((∇n)n)(V · n) +∇φΓ,∞ · ∇(V · n).

This and (5.28), together with the fact that JεΓ∇φΓ,∞ · nKΓ = 0 on Γ, lead to

Q2 =

∫
Γ

JεΓψr∇φΓ,∞ · (∇n)nKΓ(V · n) dS +

∫
Γ

JεΓψr∇φΓ,∞ · ∇(V · n)KΓ dS

= Q2,1 +Q2,2. (5.29)

To further simplify these terms, let us recall the surface divergence ∇Γv along Γ and its
integral on Γ for a vector field v that belongs to H1 of a neighborhood of Γ

∇Γ · v = ∇ · v − (∇v)n · n, (5.30)∫
Γ

∇Γ · v dS = 2

∫
Γ

H(v · n) dS, (5.31)

where H is the mean curvature; cf. [20] (Section 5 of Chapter 9).
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Consider the term Q2,1 in (5.29). Since n = ∇φ is a unit vector field, we have n · (∇n)n =
ni∂jn

inj = (1/2)nj∂j(n
ini) = 0. Hence, on each side of Γ, we have

∇φΓ,∞ · (∇n)n = ∇ΓφΓ,∞ · (∇n)n. (5.32)

Let us denote αΓ = ψr∇ΓφΓ,∞ and note that JαΓKΓ = 0. Hence αΓ ∈ H1(N0(Γ),R3). Note
also that αΓ · n = 0. Thus,

(∇αΓ)n · n+ αΓ · (∇n)n = ∇(αΓ · n) · n = 0 in N0(Γ). (5.33)

This implies that
(∇αΓn) · n = −αΓ · (∇n)n ∈ H1(N0(Γ)). (5.34)

By (5.24), we have for s = − or + that

∇(∇φΓ,∞ · V ) · n = ∇((∇φΓ,∞ · n)(V · n)) · n
= (∇(∇φΓ,∞ · n) · n)(V · n) + (∇φΓ,∞ · n)∇(V · n) · n in Ωs ∩N0(Γ).

This, together with (2.4) and (5.25), implies for s = − or + that

(∇(∇φΓ,∞ · n) · n)(V · n) ∈ H1(Ωs ∩N0(Γ)). (5.35)

Therefore, since ∇ΓφΓ,∞ = ∇φΓ,∞− (∇φΓ,∞ ·n)n, ∆φΓ,∞ = 0 in Ω− and Ω+, and ψr and φΓ,∞
are in W 1,∞ on each side of Γ, we can verify that for s = − or +

(∇ · αΓ)(V · n) = (∇ψr · ∇φΓ,∞)(V · n)− (∇ψr · n)(∇φΓ,∞ · n)(V · n)

− ψr(∇(∇φΓ,∞ · n) · n)(V · n)− ψr(∇φΓ,∞ · n)(∇ · n)(V · n) ∈ H1(Ωs ∩N0(Γ)). (5.36)

By (5.34), (5.36), and (5.30) (with αΓ replacing v), we have for s = − or + that

(∇Γ · αΓ)(V · n) = (∇ · αΓ)(V · n)− (∇αΓn · n)(V · n) ∈ H1(Ωs ∩N0(Γ)). (5.37)

With all the regularity results (5.34), (5.36), and (5.37), we have now by (5.32), (5.33), and
(5.30) (with αΓ replacing v) that

Q2,1 =

∫
Γ

JεΓαΓ · (∇n)nKΓ(V · n) dS

= −
∫

Γ

JεΓ(∇αΓ)n · nKΓ(V · n) dS

=

∫
Γ

JεΓ(∇Γ · αΓ −∇ · αΓ)KΓ(V · n) dS. (5.38)

Consider now the term Q2,2 in (5.29). On each side of Γ,

∇φΓ,∞ · ∇(V · n) = [(∇φΓ,∞ · n)n+∇ΓφΓ,∞] · [(∇(V · n) · n)n+∇Γ(V · n)]

= (∇φΓ,∞ · n)(∇(V · n) · n) +∇ΓφΓ,∞ · ∇Γ(V · n).
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Since JψrKΓ = 0 and JεΓ∇φΓ,∞ · nKΓ = 0, we thus have

JεΓψr∇φΓ,∞ · ∇(V · n)KΓ

= JεΓψr(∇φΓ,∞ · n)(∇(V · n) · n)KΓ + JεΓψr∇ΓφΓ,∞ · ∇Γ(V · n)KΓ

= JεΓαΓ · ∇Γ(V · n)KΓ. (5.39)

One can verify that on both sides of Γ

∇Γ · ((V · n)αΓ) = (V · n)∇Γ · αΓ + αΓ · ∇Γ(V · n).

Consequently, we have by (5.29), (5.39), (5.31), and the fact that ∇ΓφΓ,∞ ·n = 0 on each side
of Γ that

Q2,2 =

∫
Γ

JεΓαΓ · ∇Γ(V · n)KΓ dS

=

∫
Γ

JεΓ∇Γ · ((V · n)αΓ)KΓ dS −
∫

Γ

JεΓ(V · n)∇Γ · αΓKΓ dS

=

∫
Γ

J2εΓH((V · n)αΓ · n)KΓ dS −
∫

Γ

JεΓ∇Γ · αΓKΓ(V · n) dS

= −
∫

Γ

JεΓ∇Γ · αΓKΓ(V · n) dS.

This, together with (5.29), (5.38), and the notation αΓ = ψr∇ΓφΓ,∞, implies that

Q2 = −
∫

Γ

JεΓ∇ · αΓKΓ(V · n) dS = −
∫

Γ

JεΓ∇ · (ψr∇ΓφΓ,∞)KΓ(V · n) dS. (5.40)

Now, let us calculate the term Q3 in (5.26). Since V = (V ·n)n (cf. (5.24)), we have from
both sides of Γ that

∇(∇φΓ,∞ · V ) · n = ∇ ((∇φΓ,∞ · n)(V · n)) · n
= ∇(∇φΓ,∞ · n) · n(V · n) + (∇φΓ,∞ · n)∇(V · n) · n.

Since JεΓ∇φΓ,∞ · nKΓ = 0, we have by (5.26) and (5.35) that

Q3 =

∫
Γ

JεΓψr∇(∇φΓ,∞ · V ) · nKΓ dS =

∫
Γ

JεΓψr∇(∇φΓ,∞ · n) · nKΓ(V · n) dS. (5.41)

It now follows from (5.26), (5.27), (5.40), and (5.41) that

Q =

∫
Γ

JεΓ[∂nφΓ,∞∂nψr −∇ · (ψr∇ΓφΓ,∞)− ψr∇(∇φΓ,∞ · n) · n]KΓ(V · n) dS. (5.42)

By the definition of the tangential gradient, the fact that ∆φΓ,∞ = 0 on both sides of Γ (cf.
(2.6)), and ∇ · n = 2H on Γ, we can simplify the terms inside the pair of brackets in (5.42).
On both sides of Γ, we have

∂nφΓ,∞∂nψr −∇ · (ψr∇ΓφΓ,∞)− ψr∇(∇φΓ,∞ · n) · n
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= ∂nφΓ,∞∂nψr −∇ · [ψr∇φΓ,∞ − ψr(∇φΓ,∞ · n)n]− ψr∇(∇φΓ,∞ · n) · n
= ∂nφΓ,∞∂nψr −∇ψr · ∇φΓ,∞ − ψr∆φΓ,∞

+∇(ψr(∇φΓ,∞ · n)) · n+ ψr(∇φΓ,∞ · n)(∇ · n)− ψr∇(∇φΓ,∞ · n) · n
= ∂nφΓ,∞∂nψr −∇ψr · ∇φΓ,∞ + (∇φΓ,∞ · n)(∇ψr · n) + ψr(∇φΓ,∞ · n)(∇ · n)

= 2∂nφΓ,∞∂nψr − [(∇ψr · n)n+∇Γψr] [(∇φΓ,∞ · n)n+∇ΓφΓ,∞] + 2Hψr∂nφΓ,∞

= ∂nφΓ,∞∂nψr −∇ΓφΓ,∞ · ∇Γψr + 2Hψr∂nφΓ,∞.

Plug this into (5.42). Noting that ψr = ψΓ−φ̂Γ,∞ and that all∇Γψr,∇ΓφΓ,∞, εΓ∂n(ψΓ−φ̂Γ,∞),
and εΓ∂nφΓ,∞ are continuous across the boundary Γ, we obtain that

Q =

∫
Γ

JεΓ(∂nψr∂nφΓ,∞ −∇Γψr · ∇ΓφΓ,∞)KΓ(V · n) dS

=

∫
Γ

JεΓ[∂n(ψΓ − φ̂Γ,∞)∂nφΓ,∞ −∇Γ(ψΓ − φ̂Γ,∞) · ∇ΓφΓ,∞]KΓ(V · n) dS. (5.43)

Finally, we obtain by (5.23), (5.26), and (5.43) that some of the terms in δΓ,VE[Γ] (5.23)
are simplified into

1

2

∫
Γ

JεΓ∂nφ̂Γ,∞∂nφΓ,∞KΓ(V · n) dS − 1

2

∫
Γ

JεΓ∇Γφ̂Γ,∞ · ∇ΓφΓ,∞KΓ(V · n) dS

+

∫
Ω+

1

2
(ζΓ,V −∇φΓ,∞ · V )B′

(
ψΓ −

φΓ,∞

2

)
dX

=
1

2

∫
Γ

JεΓ∂nφ̂Γ,∞∂nφΓ,∞KΓ(V · n) dS − 1

2

∫
Γ

JεΓ∇Γφ̂Γ,∞ · ∇ΓφΓ,∞KΓ(V · n) dS +
1

2
Q

=
1

2

∫
Γ

JεΓ(∂nψΓ∂nφΓ,∞ −∇ΓψΓ · ∇ΓφΓ,∞)KΓ(V · n) dS

=
1

2

∫
Γ

ε+∂nψ
+
Γ ∂nφ

+
Γ,∞(V · n)dS − 1

2

∫
Γ

ε−∂nψ
−
Γ ∂nφ

−
Γ,∞(V · n)dS

− ε+

2

∫
Γ

∇ΓψΓ · ∇ΓφΓ,∞(V · n) dS +
ε−
2

∫
Γ

∇ΓψΓ · ∇ΓφΓ,∞(V · n) dS

=
1

2

(
1

ε+

− 1

ε−

)∫
Γ

εΓ∂nψΓεΓ∂nφΓ,∞(V · n)dS − ε+ − ε−
2

∫
Γ

∇ΓψΓ · ∇ΓφΓ,∞(V · n) dS.

This and (5.23) imply the desired formula (3.8). The proof is complete.
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