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Abstract

In a continuum model of the solvation of charged molecules in an aqueous solvent, the
classical Poisson—Boltzmann (PB) theory for the electrostatics of an ionic solution is
generalized to include the solute point charges and the dielectric boundary that sepa-
rates the high-dielectric solvent from the low-dielectric solutes. With such a setting, we
construct an effective electrostatic free-energy functional of ionic concentrations. The
functional admits a unique minimizer whose corresponding electrostatic potential is the
unique solution to the boundary-value problem of the nonlinear dielectric-boundary
PB equation. The negative first variation of this minimum free energy with respect
to variations of the dielectric boundary defines the normal component of the dielectric
boundary force. Together with the solute-solvent interfacial tension and van der Waals
interaction forces, such boundary force drives an underlying charged molecular system
to a stable equilibrium, as described by a variational implicit-solvent model. We develop
an L2-theory for boundary variations and derive an explicit formula of the dielectric
boundary force. Our results agree with a molecular-level prediction that the electro-
static force points from the high-dielectric aqueous solvent to the low-dielectric charged
molecules. Our method of analysis is general as it does not rely on any variational
principles.
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1 Introduction

Charged molecules such as proteins polarize the surrounding aqueous solvent (i.e., water or
salted water), generating a strong electrostatic force [15,32,46]. In a class of implicit-solvent
(i.e., continuum-solvent) models, electrostatic interactions in a charged molecular system
are described by the Poisson-Boltzmann (PB) theory [3,9,16,18,37,49,52]. Key in such a
description is the dielectric boundary (i.e., the solute-solvent interface) that separates the
high-dielectric solvent from the low-dielectric solutes (i.e., charged molecules). The dielectric
boundary force—the macroscopic electrostatic force exerted on the boundary——plays a critical
role in the molecular conformational dynamics [21,22,29,53,57]. Here, we present a detailed
mathematical study of this force within the PB framework.

Briefly, the classical PB theory provides a continuum description of electrostatic interac-
tions in an ionic solution through the nonlinear PB equation [2,8,19, 25, 28]

V-eVy—B()=—p  inQy, (1.1)

where Qg C R3 is the region of the ionic solution, ¢ is the dielectric coefficient, p : Qy — R
is the density of fixed charges, and ¥ : Qy — R is the electrostatic potential. In (1.1), the
function B : R — R is defined by

B(s)=p"" cho (e Fas —1) Vs € R, (1.2)

where 8 = (kgT)~! with kg the Boltzmann constant and T the temperature, M is the total
number of ionic species, ¢;° is the bulk ionic concentration of the jth ionic species, and
q; = zje is the charge of an ion of the jth species with z; the valence of such an ion and e
the elementary charge. The PB equation (1.1) is a combination of Poisson’s equation

M
VSV?ﬂZ — (p—l—qucj) in Qo,
j=1

where ¢; : Qg — [0, 00) is the ionic concentration of the jth ionic species, and the Boltzmann
distributions for the equilibrium ionic concentrations

cj(z) = cjoe”gq“”(’“"), x €y, j=1,..., M.

In modeling charged molecules in an aqueous solvent with an implicit-solvent, the PB
theory is generalized to include the point charges of molecules and the dielectric boundary
9,16, 18,37,49,52]. To be more specific, let us assume that the entire solvation system
occupies a region  C R3. Tt is the union of three disjoint parts: the region of solutes (i.e.,
charged molecules) €2_; the region of solvent 2, ; and the solute-solvent interface or dielectric
boundary I', which is a closed surface with possibly multiple components, that separates €)_
and €2 ; cf. Figure 1. We denote by n the unit normal to the boundary I' pointing from €2_
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Figure 1: A schematic description of a solvation system with an implicit solvent.

to €2, and also the exterior unit normal to 0€), the boundary of €. The solute region 2_
contains all the solute atoms that are located at xy,...,zy and that carry partial charges
@1, ...,QnN, respectively, with N > 1 a given integer. The solvent region {2, is the region of
ionic solution, same as €y in (1.1). As above, we assume that there are M species of ions in
the solvent with the valence z;, charge ¢; = z;e, bulk concentration ¢°, and concentration

cj + 2y — [0,00) for the j ionic species (j = 1,...,M). The dielectric coefficients in the
solute region 2_ and solvent region ), are denoted by e_ and e, , respectively. Typically,
e_=1and e, =76 ~ 80 in the unit of vacuum permittivity. The density of fixed charges is

now p = sz\il Qi04,;, where d,, is the Dirac delta function at x;.
Our study consists of three parts. First, we introduce the electrostatic free-energy func-
tional of the ionic concentrations ¢ = (cy, ..., cpr) in the solvent region €, [9,26,37,48]

ZQZ b - do)(w) + / (Z%)Mw
+ 87 Z/ {c; [log(A’c;) — }—i—coo}dx—Z/ picide, (1.3)

where A is the thermal de Broglie wavelength, 11, is the chemical potential for ions of the jth
species, and ¢* = A3 (j =1,...,M). In (1.3), ¢ : © — R is the electrostatic potential.
It is the unique weak solution to the boundary-value problem (BVP) of Poisson’s equation

N M
V-erVy = — (Z Qi0z; + X+ Z qjcj) in 2 and Y = ¢, on 09, (1.4)
i=1 j=1
where the dielectric coefficient ep : €2 — R is defined by

er(z) = {8 %f v &L, (1.5)

€4 ifx e Qy,



X+ = Xq. is the characteristic function of €2, and ¢, is a given function on the boundary
9. The function ¢¢ in (1.3) is the Coulomb potential arising from the point charges @Q; at
x; (i=1,...,N) in the medium with the dielectric coefficient ¢_, serving as a reference field.
It is given by

N
N Qz 3
m:E _ Vr e R X1, .-, TN} 1.6
¢C( ) - 47T€_|ZL'—[L'7;| \{ 1 N} ( )
We note that the ionic concentrations ci,...,cy are only defined on the solvent region

Q.. Implicitly, this assumes that no mobile ions in the solvent are allowed to cross the
boundary I' and enter into the solute region €)_, an approximation made in a continuum
model. The conservation of mass for the mobile ions in the solvent region is enforced through
the chemical potentials p1, ..., uy that are independent of the solute atomic positions x; and
partial charges @; (i =1,...,N). We also note that in the electrostatic free energy Fr[c] (cf.
(1.3)), the bulk ionic concentrations ¢° and the chemical potentials ji;, which are related
by ¢ = A=3ePHi both appear in integrals over the solvent region €. Since I is part of
the boundary of €, variations of the dielectric boundary I' will depend on the chemical
potentials [9].

We prove that the functional F[c] has a unique minimizer ¢r = (cpy, ..., cra) in a class of
admissible concentrations, and derive the equilibrium conditions é., Fr[cr] =0 (j = 1,..., M),
which lead to the Boltzmann distributions cr; = crj(¢r) (j = 1,..., M), where t¢r is the
corresponding electrostatic potential. We also prove that r is the unique solution to the
BVP of the nonlinear dielectric-boundary PB equation

N
V -erV — x B’ (w - ¢F20°) = - Z Qidy, I Q and 1 = ¢y on 09, (1.7)
i=1

where B is given in (1.2) and ¢r  : 2 — R is the unique weak solution to the BVP
V-erVoreo =0 inQ and ¢re = ¢oo on 082 (1.8)
cf. Theorem 2.1 and Theorem 2.2. We denote the minimum free energy by
E['] = min Fy[-| = Fr[er],

which depends solely on the dielectric boundary I". We construct a strictly concave functional
GTr of all admissible electrostatic potentials ) such that the unique solution ¢r to the BVP
of the dielectric-boundary PE equation is a solution to the Euler-Lagrange equation for G,
and hence the unique maximizer of Gr. Moreover,

E[l'] = max Gr[-] = Gr[¢r];

cf. Lemma 3.1 and Theorem 3.1.
Second, we define the (normal component of the) dielectric boundary force to be —dr E[I'],
the negative first variation of the functional E[I'] with respect to the variation of boundary
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I'. The boundary variation is defined via a smooth vector field. Specifically, let V : R3 — R3
be a smooth map vanishing outside a small neighborhood of the dielectric boundary I'. Let
x = z(t, X) be the solution map of the dynamical system defined by [5,20,33,50].

dx(t, X)

. V(z(t,X)) VteR and  2(0,X)=X VX €R’

Such solution maps define a family of transformations 7; : R* — R? (t € R) by Ty(X) =
z(t, X) for any X € R3. The variational derivative of the functional E[[] in the direction of
V :R® — R? is defined to be

d

S EI = G|

if it exists, where I'y(V') = {z(t, X) : X € T'}.

We prove that or v E[I'] exists, and is an integral over I' of the product of V' - n and some
function that is independent of V', where n is the unit normal along I', pointing from €2_ to
;. This function on IT" is identified as the variational derivative (i.e., shape derivative) of
E[T'] and is denoted by drE[']. We obtain an explicit formula for dpE[I']. If the boundary
value ¢, = 0 on I', then

SB[ = -1 (i - i) tunl’ + 5oy — ) [Veve 4+ Bwr).  (L9)

where ¢r is the unique solution to (1.7), er0d,¢r is the common value from both sides of T,
and Vi = (I —n®n)V (with I the 3 x 3 identity matrix) is the tangential derivative along I'.
Additional terms arise from a general, inhomogeneous boundary value ¢,; cf. Theorem 3.2.

Finally, to describe the electrostatic free energy with point charges and to prove our
theorems, we introduce various auxiliary functions that are weak solutions to the BVP of the
operator —A or —V-erV, with or without the point charges Zfil (0., and with homogeneous
or inhomogeneous Dirichlet boundary conditions. We prove several lemmas, Lemmas 4.1—
4.4, showing the continuity and differentiability of those functions with respect to boundary
variations. Lemma 4.2 states that the “I'-derivative” of the function ¢r o, which is defined in
(1.8) is the unique weak solution (ry € Hy(Q2) to the elliptic problem —V - erV(ry = f in
2, where f depends on ¢ry and V. Moreover,

Ore(v),o0 © Tt — @r o

; — CF,V in Hl(Q) ast — 0.

(We use the standard notation of Sobolev spaces, such as H'(Q2) and H}(2), and other
function spaces; cf. [1,24,27].) Lemma 4.3 and Lemma 4.4 generalize the result to other
I'-dependent functions, including the electrostatic potential ¢r that is the unique solution to
the BVP of the nonlinear dielectric-boundary PB equation (1.7).

We now make several remarks on our results. A nonzero Dirichlet boundary value in (1.4)
leads to an extra term ¢r /2 in the Boltzmann distribution and hence in the PB equation
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(1.7). If there are surface charges on the boundary 0f2, then one can also use the Neumann
boundary condition for the electrostatic potential on 9€2. In that case, the electrostatic energy
includes a boundary integral term involving the surface charge density; cf. [39,44].

If we use the homogeneous Dirichlet boundary condition ¢, = 0 for the electrostatic
potential, then the dielectric boundary force points from the high-dielectric solvent region
Q2 to the low-dielectric solute region ©_; cf. (1.9). Such a macroscopic prediction is con-
sistent with a microscopic picture of molecular forces that charged molecules polarize the
surrounding aqueous solvent, which is otherwise electrically neutral, generating an additional
electric field that attracts the solvent to the solutes [15]. Since the force points to 2_, one
expects that no bounded region €2 will minimize the sum of the electrostatic energy and
the surface energy [45]. If a small, high-dielectric solvent region is surrounded by the low-
dielectric solute molecules (such as a cluster of water molecules buried in a protein), then the
competition between the solute-solvent interfacial tension force and the dielectric boundary
force results an equilibrium solute-solvent interface, which is however unstable with long-
wave perturbations [10,41]. This may possibly explain why water molecules in proteins are
metastable [55,56]. It remains open to confirm if the dielectric boundary force still points
from the high-dielectric solvent region to the low-dielectric solute region for a general inho-
mogeneous Dirichlet boundary value ¢.

In [6,7,54], the authors use the Maxwell stress tensor to define and derive the dielectric
boundary force given an electrostatic potential that is determined by the dielectric-boundary
PB equation. The shape derivative approach seems first introduced in [38] to define and
derive the dielectric boundary force. However, approximations of point charges by smooth
functions are made there, and the derivation of the boundary force relies on the underlying
variational principle that the electrostatic potential extremizes the PB free-energy functional.
This approach is applied to the electrostatic force acting on membranes [47]. Here, we use
the direct calculations to derive the boundary force, which is a more general approach.

Our study is closely related to the development of a variational implicit-solvent model
(VISM) for biomolecules [21,22] (cf. also [11-13, 53, 57, 58]). Central in the VISM is an
effective free-energy functional of all possible dielectric boundaries that consists mainly of
the surface energy of solute molecules, solute-solvent van der Waals interaction energy, and
continuum electrostatic free energy. Minimization of the free-energy functional with respect
to the dielectric boundary yields optimal solute-solvent interfaces, as well as the solvation free
energy. In [40], the authors use the matched asymptotic analysis to derive the sharp-interface
limit of a phase-field VISM [51]. In [17], the authors prove the convergence of the free energy
and force in the phase-field VISM to their sharp-interface counterparts.

In Section 2, we study the BVP of the nonlinear dielectric-boundary PB equation, and
the electrostatic free-energy functionals of ionic concentrations and electrostatic potentials,
respectively. In Section 3, we reformulate the minimum electrostatic free energy, define the
dielectric boundary force, and present the main formula for such force. In Section 4, we prove
several lemmas on the calculus of boundary variations. Finally, in Section 5, we prove the
main theorem (Theorem 3.2) of the dielectric boundary force.



2 The Poisson—Boltzmann Equation and Free-Energy
Functional

2.1 Assumptions and Auxiliary Functions

Unless otherwise stated, we assume the following throughout the rest of the paper:
Al. The set Q C R3 is non-empty, bounded, open, and connected. The sets Q_ C R3 and
Q. C R? are non-empty, bounded, and open, and satisfy that Q_ C Q and Q, = Q\Q_.
The interface I' = 9Q_ = Q_ N Q, and the boundary 9§ are of the class C® and C?,
respectively. The unit normal vector at the boundary I' exterior to ) and that at 0f2
exterior to {2 are both denoted by n. The N points x1,...,zy for some integer N > 1
belong to Q_; cf. Figure 1. Moreover, there exists a constant sy > 0 such that

A2. All the integer M > 2, and real numbers § > 0, A >0, Q; e R(1 <i<N),q; #0
and p; € R (1 <j < M), and e_ > 0 and € > 0 are given. Moreover, e_ # ¢,. The
parameter ¢° is defined by ¢7° = A=3ePri (j =1,...,M). The parameters qj and ¢}°
(1 < j < M) satisfy the condition of charge neutrality

M

> g =0; (2.2)
j=1

A3. The functions B : R — R and er € L*>®(12) are defined in (1.2) and (1.5), respectively.

The boundary data ¢ is the trace of a given function, also denoted by ¢u, in C?(9).

Note that B € C*°(R) is strictly convex and B’(0) = 0 by the charge neutrality (2.2). Hence,

B(s) > B(0) = 0 for all s # 0. The charge neutrality (2.2) implies that there exist some
¢; > 0 and some g, < 0. Hence, B(f00) = 0o and B'(fo00) = +o0.

We now introduce several auxiliary functions to treat the point-charge singularities, the
dielectric discontinuity I', and the inhomogeneous boundary data ¢., on 0€2. There are two
basic such functions that will directly enter into our results (e.g., the expression of electrostatic
free energy and that of the related dielectric boundary force). They are:

e &c: the Coulomb field defined in (1.6), which is the unique weak solution to —e_A¢e =

SV Qib,, in R? and ¢ = 0 at oo;
® Or . : defined as the unique weak solution to the BVP (1.8).
The function ¢r  is determined by ¢r o € H'(Q), ¢r 0 = oo on 99, and

/ erVor - Vnde =0 Vn € Hy(S2). (2.3)
0

By the regularity theory, we have

Proo € WHX(Q) and  éroolo, € C(Q) N H(Q,) for s = —, +. (2.4)




Moreover, there exists a constant C' = C(Q,e4,6_, ¢s) > 0, independent of I', such that

|or,c0ll 21 (@) + |61 00|l Lo @) < C. (2.5)

See [42] (Corollary 1.3) for the Wh>-regularity, which implies that ¢r ., € C(Q). The H'-
estimate in (2.5) is standard; it can be derived simply by setting 1 = ¢r . — ¢ in (2.3).
See [27] (Theorem 8.29) for the global Holder estimate which implies the global L> estimate
in (2.5). (Note that the global W' >-estimate is established in [42] but the constant C' may
depend on the smoothness of I'.) For the piecewise H?*-regularity, see [35] (Section 16 of
Chapter 3) and [30,31]. By (2.3), we have

Agroo =0  inQ_UQ,. (2.6)

This implies the piecewise C*°-regularity in (2.4). By the fact that ¢r ., € C(Q)NH(Q) and
by routine calculations using (2.3) and the Divergence Theorem, we have [37]

[or,collr =0 and lerOn¢r oolr =0, (2.7)
where the jump [-]r is defined for any function u on €2 that has the trace on I' by
[ulr = ula, —ulo_ on I'. (2.8)

We now introduce some more auxiliary functions as weak solutions to BVPs; these func-
tions are only used in proofs of some lemmas or theorems:

N

bo : — e Ay = Z Qi0,, inQ and $o=0 on O (2.9)
i=1

~ ~ N ~

ODoo — e A = Z Qi0,, inQ and Doo = P ON O (2.10)
i=1

~ ~ N ~

Froo: —V-erVore=» Qif,, nQ and  gre =0s on oL (2.11)

i=1

Note that a hat means the right-hand side is given by Zfil Q:04;. A subscript I' corresponds
to —V - erV, while no subscript I' referring to —e_A. A subscript co or 0 corresponds to
boundary value ¢, or 0, respectively.

The function ¢ = ¢, or ¢y, or du satisfies that ¢ € oo+ H 1(Q). It is uniquely determined
by its boundary value on 92, and

N
/ e_Vo-Vnds = Z Qin(z:) Vn € CH(Q), (2.12)
Q i=1

where C1(Q) denotes the class of C'' (Q)-functions that are compactly supported in Q. Clearly,
we can modify the value of ¢ on a set of zero Lebesgue measure, if necessary, so that ¢ is a
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C*>-function in Q\ {z1,...,zx}. Moreover, Ad =0in Q\{x1,...,zn} and A(gﬁ— QAﬁc) =0in
Q. Since Q2 is C* and ¢o, € C*(Q2), we have d—dc € H*(Q); cf. Chapter 8 in [27]. Therefore,
b € pc + H*(Q)NC>(Q) c WH(Q).

We remark that n € C}(Q) in (2.12) can be replaced by n € H}(Q) with n|g_ € C1(2_).
To see this, we first note that (2.12) holds true if ¢ is replaced by ¢¢ (cf. (1.6)). Thus,

/ﬁv(é — o) Vndz =0  Vne H)Q),
Q

as ¢ — oc € H'(Q) and C1() is dense in H'(Q). If n € HL(Q) also satisfies n]q_ € CH(Q),
then Vggc - Vn, hence Vo - Vn, is integrable in 2. Moreover,

N
| =96 Vude = [ < Vio-Tnde =3 Q).
Q Q i=1

where the second equality follows from straight forward calculations using (1.6).
The function ¢r o, defined in (2.11) belongs to ¢c + H* (). It is uniquely determined by
its boundary value on 0€) and

N
/ erVor o - Vi dz = Z Qin(z;) Vn € CHQ); (2.13)
Q i=1
of. [23,43]. If ¢ = ¢¢ (the Coulomb field), or ¢y defined in (2.9) , or ¢n defined in (2.10),

then (2.13) is equivalent to

/ erV(oroo — @) - Vide = —(e, — 5_)/ Vé - Vnds
Q Q

+

—(o-c) [odnds wpem@. (214

where the unit normal n at T points from Q_ to Q.. If n € H}(Q) satisfies n|o_ € C*(Q),
then it follows from (2.14) and (2.13) that

N
/ EFVQASF,OO -Vndx = / e V- Vnds = Z Qin(x;).
Q Q i=1
Therefore, we can replace n € C1(Q) in (2.13) by n € HJ(2) that satisfies n]q_ € C1(Q_).

By (2.13) and (2.14), we have

Aldros—¢) =0 inQ_ and Adro =0 in (Q_\{zy,...,zx})UQ, (2.15)
[oredr =0  and  [erOugroc]r =0  onT. (2.16)



Moreover, it follows from the elliptic regularity theory [23,27,30,31,35,42] that

broc — G €WH2(Q) and (droc — 0)la, € CF(U) NHA Q) s=+,—, (2.17)
||§£T,oo - €5||H1(Q) + ||¢A5r,oo - QASHLOO(Q) <, (2.18)

where the constant C' > 0 does not depend on I'. These results (2.17) and (2.18) follow from
the same arguments used above with n € C(2) so chosen that supp (1) is in a neighborhood
of I" that excludes the singularities z; (i = 1,..., N).

We end this subsection by defining some linear operator and a class of functions. For any
g€ HY(Q), let Lrg € H}(Q) be the unique weak solution (defined using test functions in
H}(Q)) to the BVP

V-erVLirg=—g inQ) and Lrg=0 on 0. (2.19)

This defines a linear, continuous, and self-adjoint operator Ly : H1(Q) — H}(Q). The map

1/2
9= llglle = \/<9>LFQ>H—1(Q),H5(Q) = [/ 5F‘V(LF9)|2d$1 (2.20)
Q

defines a norm on H~!(€) which is equivalent to the H~!(Q2)-norm.
Let g € L'(Q) and assume that

sup {/ gudr :u € Hy(Q) N L®(Q) and [Jul i) = 1} < 00. (2.21)
Q
Define T, : Hj(Q) N L>=(Q) — R by
Tylu] = / gudr  Yu € Hy(Q)N L=(Q).
Q

It follows from (2.21) that T, is a bounded (with respect to the Hj(£2)-norm) linear functional
on Hy ()N L>®(), a subspace of H}(£2). Since this subspace is dense in H}(€2), we can extend
T, uniquely to a bounded linear functional, still denoted by T, on the entire space H} (), i.e.,
T, € H1(Q). For convenience, we shall write g € L' () N H () to mean that g € L*(Q),
(2.21) holds true, and g is identified as T, € H*(Q).

2.2 The Poisson—Boltzmann Equation

Definition 2.1. A function 1 € ¢c+ H'(Q) is a weak solution to the BVP of the dielectric-
boundary PB equation (1.7), if ) = ¢oo on 0Q, x4+ B' (¢ — ¢r/2) € LY Q)N H(Q), and

(bI‘,oo
2

/Q {@VZ& Vi +x..B' (w - ) n] dr = é@in(:pi) Vn € CL(Q). (2.22)
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Note that we can replace n € C(Q2) in (2.22) by n € H}(Q2) that satisfies n|q_ € C'(Q_);
cf. the remark below (2.14). The theorem below provides the existence and uniqueness of the
solution to the BVP of the dielectric-boundary PB equation, and an equivalent formulation
of such a BVP. These results are essentially proved in [38]. Here we sketch the proof and add
some points that are not included in the previous proof due to some differences between the
current and previous statements. Note that ¢c + H 1(Q) = (i[‘}oo + HY(2). So, we can replace

éc by ¢2p,oo in the above definition.

Theorem 2.1. (1) There exists a unique weak solution Yr € ¢r o + HE(Q) of the BVP of
the dielectric-boundary PB equation (1.7). Moreover, iy — ¢ro € C(Q) N WH2(Q),
(Yr — droo)la. € C(Q_) N HXQ.), and Prlo, € C®(Q,) N HX(Q). Further, there
exists a constant C > 0 independent of I' such that

[¥r — broollmi@) + 1¥r — ¢roollz=(@ < C. (2.23)

(2) A function ) € ¢r oo + H'(Q) with x4 B (¥ — ¢r.oo/2) € L'(Q) N H Q) is the weak
solution to the BVP of the dielectric-boundary PB equation (1.7) if and only if it is the
unique solution to the following problem:

(AW =) =0 in O,
/ ¢F,oo - .
etAY — B (¢ - ) =0 in Q. (2.24)
[¥]r=0 and lerdny]r =0 onT,
(¥ = ¥ on Of).

Proof. (1) With u = ) — ¢r and by (2.13) and (2.22), it is equivalent to show that there
exists a unique ur € Hj(Q) such that x4 B'(ur + érec — ¢reo/2) € LY(Q) N H(Q), and

/ {squp -Vn+ x+ B’ (ur + Prioe — <Z51;>o) n] dr =0  ¥Yne H} Q). (2.25)
Q
Define
Iu] = / {%F\Vu\z + x4+ B (u + Prioo — (bgoo)} dr  Yu € Hi(Q).
Q

Since B > 0 and B is convex, we can use the direct method in the calculus of variations
to obtain a unique minimizer ur € H}(Q) of the functional I : H}(Q) — [0, 00]. Moreover,
comparing the values I[ur] and I[ur )] for any constant A > 0 large enough, where ur y = ur
if |ur| < A and ur y = Asign (ur) otherwise, we have by the convexity of B that ur = ur ) a.e.
Q) for some A independent on I'. Hence, up € L*(Q), and ||ur||r~) < C for some constant
C' > 0 independent of T'; cf. [38]. This allows the use of the Lebesgue Dominated Convergence
Theorem in the routine calculations of (d/dt)|i=oI[ur + tn] = 0 for any n € C}(Q2) to obtain
the equation in (2.25). Since C!(Q) is dense in H}(2), (2.25) holds true. The convexity of B
now implies that ur is the unique solution as desired.
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The regularity of the solution ¢r follows from the elliptic regularity theory [14,23,27,30,
31,35,42], with the same argument above for the regularity of the function QZBF’OO; cf. (2.17) and
(2.18). Note that the piecewise C*° smoothness follows from a usual bootstrapping method.

(2) This part of the proof is the same as that given in [37]. O

2.3 Electrostatic Free-Energy Functional of Ionic Concentrations
We define
M
X = {(cl, cen) € LMOQRMY i ej=0ae Q forj=1,...,M and quCj S H_I(Q)},
j=1
X, = {(01,...,CM) eX:c;>0ae Qp forjzl,...,M}.
Here, for any g € L*(Q), we define g € L*(Q2) N H~(Q) by (2.21). The space X is a Banach
space equipped with the norm [lellx = 32, el (a + || Y20 6310 Moreover, X,
is a convex and closed subset of X. For any ¢ = (¢q,...,cy) € X, standard arguments

(cf. [23,24,27,43]) imply that there exists a unique weak solution ¢ to the BVP (1.4), defined
by ¥ € ¢c + HY(Q), 1) = ¢ on 99, and

N M
/Qapvw -Vndr = Z Qin(x;) + /Q (Z q]'Cj) ndr  Vn e CHQ), (2.26)
i=1 + \j=1

Equivalently, if ¢ € ¢c + H(Q) satisfies (2.12), then
A A M
/ erV (¥ = ¢) - Vidr = / [(a_ —e)Vo - Vi + (Z qjcj> 77] dr Vi € Hy(Q).
Q Qs j=1

Clearly, ¢ — (;3 is harmonic in €2_. Moreover, it follows from the definition of ngbp,oo (cf. (2.13))

and Lr (cf. (2.19)) that
M
= QBF,oo + Lr <Z C]jCj> . (2.27)
j=1

Since the function s — slogs (s > 0) is bounded below and €2 is bounded, Frlc] > —o0
for any ¢ € X, where Frc] is defined in (1.3).

Theorem 2.2. Let ir be the unique weak solution to the BVP of the dielectric-boundary PB
equation (1.7). For each j € {1,..., M}, define crj : @ — [0,00) by

0 if v € Q_,
er(@) = e B4 [r () =61 00 () /2] if v € Q4 (2.28)
¥ .
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Then cr := (cra,...,crm) € Xy and Yr is the electrostatic potential corresponding to cr,
i.e., the unique weak solution to (1.4) with c; replaced by cp; (j = 1,...,M). Moreover, cp
is the unique minimizer of the functional Fyr : Xy — (—o00, 00| defined in (1.3), and

Frler] = 5 3 Qulte — b))

A T (e BT |

Proof. By the properties of ¢ (cf. Theorem 2.1) and ¢r o (cf. (2.5)), we have cp € X4 If we
replace ¢; in (1.4) by cr ; defined in (2.28) and note the definition of B in (1.2), we get exactly
the PB equation (1.7). Therefore, the unique solution ¢r to the BVP of the PB equation
(1.7) is also the unique solution to the BVP of Poisson’s equation (1.4) corresponding to cr.

We now prove that cr is the unique minimizer of Fr : X, — (—o00,00]. To do so, we
first re-write the functional Fr. Let ¢ = (c1,...,ca) € Xy and let ¢ € dc + H(Q) be the
corresponding electrostatic potential, i.e., the weak solution to (1.4) defined in (2.26). Denote
f= Z]J‘/il g;c;. Since f =0 a.e. in ©_, we have by the definition of Ly (cf. (2.19)) that Ly f
is harmonic in €2_. Moreover,

N ~
> QL)) = [ (Grow = ro)f i
i=1 Q4+

cf. Lemma 3.2 in [37] (where L/(47) and G/(47) are our Lr and ¢Fm ¢r .o here, respec-

tively). This, together with (2.27) and the fact that all ¢ — b, (bpoo ¢, and Lpf are
harmonic in €)_, implies that

N

> Qi — do)(xi) ZQz Lrf) (i +Z@ Or 00 — 6)(;)

i=1
= /Q (éro0 — Prooc) (Z Qj0j> dr + Z Qi(dr.o0 — dc)(x2).
+ j=1 i=1

With this and (2.27), we can rewrite Fr[c] (1.3) as

M

Frlc] = /Q [% (Z qjcj> Ly (Z qjcj> + Z (5*10]- logc; + ozjcj)

j=1

dx + onr, (230)

where all a; = a;(z) (j =1,...,M) and Eyr are independent of ¢, given by

aj(r) = g |:Q§FOO(ZE) - %qﬁpm(x)} + B8 (Blogh—1)—p; VYoeQ, j=1,...,M, (2.31)

13



In - . M
Eo,F:§ZQi(¢F,oo—¢C>( + 8 1|Q+]Zc .
=1 j=1

Here and below, we denote by |A| the Lebesgue measure of A when no confusion arises.
We now compare Fr[c] and Frler]. By Taylor’s expansion, we have for any s,t € (0,00)
that

1
slogs —tlogt = (1+logt)(s—1t)+ 2—(3—15)2 > (1+logt)(s —1t),
r

where 7 is in between s and t. Consequently, by (2.30) and the fact that Lr is self-adjoint,
we have

Frlc] — Frler] / (Zq] —cp )Lr (qu —cp )dx

+/ (Z qj(c; — Cr,j)> Ly <Z qur,k> da
Q \ = —
+ 8~ Z/ (c;logec; —cpjloger,;) da:—l—Z/ —cpj)oydx
Z Z /Q(Cj — CFJ‘) [qJ‘LF (Z chnk) + 6—1 (]_ + log CFJ‘) + Qa;
j=1 k=1

It follows from the fact that ¢5° = A=3¢? (cf. the assumption (A2)), (2.27), (2.28), and (2.31)
that the quantity inside the brackets in the above integral vanishes. Thus, F[c] > Fler].
Hence, cr is a minimizer of Fr : X, — (—o00,00|. Since Fr is convex, and in particular,
s — slog s is strictly convex on (0, 00), the minimizer of Fy is unique; cf. [37].

Finally, we obtain (2.29) from (1.3) (with ¢¥r and cr replacing ¢ and ¢, respectively),
(1.2), and (2.28). O

dz.

3 Dielectric Boundary Force

3.1 Electrostatic Free Energy of a Dielectric Boundary

Let I' be a given dielectric boundary as described in the assumption Al in Subsection 2.1.
We denote by

E[l'] = min Fr[d], (3.1)
the minimum electrostatic free energy given in Theorem 2.2 (cf. (2.29)). Let ¢ € ¢+ H'(Q)
be the corresponding solution to the BVP of PB equation (1.7). Recall that all the functions
dc, D0, Poor Pro, and @r o are defined in Subsection 2.1, with a hat corresponding to
Zf\;l Qi0z;, I' to =V - epV and otherwise to —e_A, and oo or 0 to the boundary value ¢
or 0, respectively.

14



Lemma 3.1. We have

E[l' = —/Q%F]V(wp — ép,m)]2d$ —/Q B (wp — QSI;OO) dx

E_—¢&4
2

+

N
| Vére Vonda 53 Quon—dole). 62
+ i=1

Proof. We first prove an elementary identity. Let u € C?(Q_)NC*(Q_) be such that Au = 0 in
Q_.Letv e ¢C+H1(Q )NC(Q_), in particular, v = bc, o, oo, OT ¢poo (restricted onto 2_).
Denote B, = UY,B(z;,«) for 0 < a < 1 and v the unit normal at dB(a) = UY 0B(z;, o),
pointing toward z; (i = 1,..., N). Since the unit normal n at I' points from Q_ to 2, and
since v = ¢ + 0 for some o € H'(Q_) N C(Q_) and ¢¢ is given in (1.6), we have

Vu-Voder = lim Vu-Vudz
Q_ a—07t Q_\Ba

Denoting now W = (1/2) Zfil Qi(doo — dc)(2;), we have by (3.1) and (2.29) that

ZQ (Groe — Poo) (1) ZQZ Yr — frooo) (1)

+/Q+[§(wp—¢p,oo> (wr_qu) (wp—¢rw)]dx+w. (3.4

We first consider the first term in (3.4). Note that the unit vector n normal to I" points from
Q_ to Q.. Denoting u® = ulg, (s = +,—), we have by Green’s formula that

1oL . -
5 Z Qi((bl",oo - (boo)(xl)
=1
_ /Q %‘Véo V(froo — oo)dz  [by (2.12) with ¢ = do and 1 = dr e — o)
— /_ %V@go V(0r o0 — Goo) da + /Q+ %Végo V(100 = boc) d
S0~ ) S + [ SV Tl = du)de by (33)
Q4

15



E_ A ~ ~
4[5V Ve - 0 s
Q4
= —/ giggoanqum dsS —I—/ g—_ggoﬁnggoo dS [since ngSO =0 on 09)]
00, 2 o0, 2
E_ . R
Q4
gyt ~ ~ E_ ~ ~
= —/ — Vo - Vor e dx +/ —V oo - Voo dx
E_ A ~ ~
+/ ?Vﬁbo - V(¢roo — ¢oo) dx
Q4
E_ — €+

= — VQASF,OO : Vélgo dr.
2 Q4

Considering now the second and third terms in (3.4), we have
| N
5 2 Qiltr — o) (z:)
i=1

o s (wr— ) - (- 25 )| o

N
:ZQz (bfoo .’171 ZQ@ ¢Foo xl)
=1

+_/Q+ [ (Y — droc) B’ (wr - ¢F°°) - B (wr B @500)} w

= / €FV¢EF,OO - V(¢r — ér,oo) dz  [by (2.13)]
Q

1

- —/ [grvl/)r V(r — dreo) + X1 B’ (lbr _ Pre
Q

2 ) (Yr — ¢r oo)] [by (2.22)]

+/Q[ (¢r = dr.00) B (w —(br”)—B(wp—(bgm)}dx
o LSy R (R P

+/Q?Fv(1/)r_$l—‘oo  Vr o dz + /Q+ (r.c0 — r.c0) B’ (1/11“— ¢F2’oo)d90
= / IV (¢r — ér o)l le’— (Yﬁr ¢Fm>
Q

?V(@Z)F - ¢F,oo) : v¢F,oo dl‘

l\DIH

Q
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+/ %(cbroo Or00) A(r — droo)dz by (2.24) and (2.15) |
Q4

- _/Q%F’VWF — Orooo)|*dz — /Q+ B (@DF B ¢1;oo) i

TV = droc) - V(dro — droc)de by (23)]

Q

- /ﬂ DY (froe — bre) - V(i — droe) d

N / %ran(w; - le—r,oo)(qgr,oo — ¢r)dS [since q%noo — ¢r.o = 0 on 09
r

= —/Q%F|V(¢F - le“,oo)|2dm - /Q+ B (%UF - ¢200) dx

+ /Q %VWF — Proe) - V(Pree — ¢ros) dz

— [ SO0 = ) = 1) dS Doy (224) with ¥ = v and (216)
r

— = [0t —drapas [ B (o= %) an by 03]

Now (3.2) follows directly from (3.4) and the above two expressions.

We define Gr : ¢r o + H3(Q) — RU{—o00} by

Grlvl = - [ Fi9w = drafas = [ B (0= ) ot o,

where

N
E_—¢€ A A 1 - N
Iroo=—F— / Voro Voods + 5 Q6 — bc)(:).
4 i=1

We shall call Gr the PB energy functional. Note that by Lemma 3.1, E[I'] = Gr[¢r]. In fact,

we have the following variational principle for the PB energy functional.

Theorem 3.1. The Fuler—Lagrange equation of the PB energy functional Gr : (51‘,00 +
Hy() — RU {—oc} is exactly the dielectric-boundary PB equation. Moreover, the func-
tional Gr[] is uniquely mazimized over ¢r o + HE(Q) by the solution vr to the BVP of the

PB equation (1.7), and the mazimum value is exactly E[T].

Proof. Direct calculations verify that the Euler—-Lagrange equation for the PB energy func-
tional G- is indeed the dielectric-boundary PB equation; cf. Definition 2.1. Hence, ¢r is a
solution to the Euler—Lagrange equation, and is further the unique maximizer of the strictly
concave functional Gr. These, together with Lemma 3.1, imply that the maximum value of

the free energy is Grlyr] = E[I].
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We remark that the PB functional Gr[-] is maximized, not minimized, among all the
admissible electrostatic potentials; see [9] for related discussions.

3.2 Definition and Formula of the Dielectric Boundary Force

Let I be a dielectric boundary as given in the assumption Al in Subsection 2.1. Let ¢ : R? —
R be the signed distance function to I', negative in Q_ (inside I') and positive in R3 \ Q_
(outside T'). Then, n = V¢ is exactly the unit normal along I', pointing from Q_ to €.
Since I' is assumed to be of the class C?, there exists dy > 0 with

1
dy < 5 min (dist (', 082), min dist (x;, F))

1<i<N
such that the signed distance function ¢ is a C3-function and V¢ # 0 in the neighborhood
No(T) ={x € Q: dist (z,T) < do} (3.5)
in Q of I'; cf. [27] (Section 14.6) and [34]. Define
V= {V e C2(R%R®) : supp (V) C Np(D)}. (3.6)

Let V € V. For any X € R3 let = z(t, X) be the unique solution to the initial-value
problem

t=V(zx) (teR) and z(0,X) =X, (3.7)

where a dot denotes the derivative with respect to ¢. Define T;(X) = x(¢, X) for any X € R?
and any ¢t € R. Then, {T}}cr is a family of diffeomorphisms and C?-maps from R? to R?
with Ty = I the identity map and T_, = T, ! for any ¢ € R.

Let t € R. Since supp (V) C No(T') C Q, we have T,(2) = Q and T;(9Q) = 99. Clearly,
T:(2-) C Qand T,(Q4) = Q\T3(Q-). Moreover, I'; :=Ty(I") = 0T3(Q_) = T (Q-)NT(24) is
of class C?. Note that z; € T;(Q_) and Ti(z;) = x; for alli = 1,..., N. Analogous to (1.5), er,
is defined correspondingly with respect to T;(€2_) and T;(€2y). We shall denote I'; = I'y(V)
to indicate the dependence of I'; on V' € V. For each t € R, the electrostatic free energy
ET:(V)] is defined in (3.1) (cf. also (3.2)) with I'; = I';(V') replacing T

Definition 3.1. The first variation of E[I'| with respect to V- €V is

sevE = LEm,0| = tim £ Wv)t] mil )

dt j—p 07T

if the limit exists.

We recall that the tangential gradient along a dielectric boundary I' is given by Vi =
(I —n®n)V, where [ is the identity matrix. The following theorem provides an explicit
formula of the first variation dr v E[I'], and its proof is given in Section 5:
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Theorem 3.2. Let r € ¢+ HE(Q) be the unique weak solution to the BVP of the dielectric-
boundary PB equation (1.7). Then, for any V €V, the first variation opy E[L'] exists, and is
given by

51y E[T] = / g (V - n) dS,

where

1/1 1
qr=—= (_ - 5_) (lerOntor|* — erdptorerdndr )

2 g4 _
Ey — &
2

(IVrer]> = Vivr - Vigrs) + B (¢r — ¢F,w) . (3.8)

- 2

We identify ¢r in (3.8) as the first variation of E[I'] and denote it as gr = drE[I']. We call
—orE[l'] the (normal component of the) dielectric boundary force.

4 Some Lemmas: The Calculus of Boundary Variations

4.1 Properties of the Transformation T;

We first recall some properties of the family of transformations T} : R?* — R3 (¢t € R) defined
by (3.7) in Subsection 3.2 above via a vector field V € C?*(R3 R?). These properties hold
true if we change R® to R? with a general dimension d > 2. They can be proved by direct
calculations; cf. [20] (Section 4 of Chapter 9).
(1) Let X € R® and ¢ € R. Let VT(X) be the gradient matrix of T} at X with its entries
(VT,(X))i; = 0,T/(X) (i,j =1,2,3), where T} is the ith component of T;. Let

Ji(X) = det VT;(X). (4.1)

Then for each X € R? the function ¢ — J;(X) is a C*-function and

dJ
—-=((V-V)e L),

where o denotes the composition of functions or maps. Clearly, VI = I, the identity
matrix, and Jy = 1. Moreover,

J(X)=14+t(V-V)(X)+ H(t,X)* VteR VX eR’ (4.2)
where H(t, X) satisfies
sup{|H(t, X)|: t e R, X € R’} < o0, (4.3)

since V' is compactly supported.
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(2) For each t € R, we define Ay (t) : R — R3*3 by
Ay (£)(X) = J(X) (VT,(X)) " (VT(X) ™, (4.4)

where a superscript 7' denotes the matrix transpose. The mapping Ay (t) collects some
terms together when the change of variable x = T;(X) is made to an integral over ()
of a function of the type aVu - Vv (for some functions a, u, and v); cf. e.g., (4.21) and
the equation above that. Clearly, Ay (t) € C1(R3,R3*3), and the t-derivative of Ay (t)
at each point in R? is

Ay(t) = [(V-V)oT) = (VL) ((VV) o T,)VT,

~(VI)7H(VV) o T)'(VT)] Av (t). (4.5)
In particular
AL (0) = (V- V) - VV — (VV). (4.6)
Moreover,
Ay (t)(X) = T +tA,(0)(X) + K(t, X)t? VteR VX € R (4.7)
where K (t, X) satisfies
sup{|K (¢, X)|: t e R, X € R’} < oo. (4.8)

(3) For any u € L*(Q) and t € R, uoT; € L*(Q) and uo T, ' € L?(2). Moreover,

limuoT; =u and limuoT, ' =u in L*(Q). (4.9)

t—0 t—0

For any u € H'(Q) and t € R, uo Ty € H'(Q) and uo T, ' € H*(Q2). Moreover,

V(woT; ") = (VI; )" (VuoT;') and V(uoT;) = (VL))" (VuoTi), (4.10)
limuoT; =u and limuoT, ' =u in H'(9). (4.11)

t—0 t—0

If u e H*(Q), then

T _
lim M_vu.v
t—0

= 0. (4.12)
H(Q)

4.2 Continuity and Differentiability

Let I be a dielectric boundary satisfying the assumptions in A1 of Subsection 2.1 and V € V
(cf. (3.6)). Let {T}}icr be the corresponding family of diffeomorphisms defined by (3.7). Let
b€ WL(Q) satisfy (2.12). We consider the approximations ¢ o T,. Note that ¢ o T} — ¢ and
V- V vanish in any small neighborhood of UN ,z;, as V(X) = 0 and T}(X) = X for any X

in such a neighborhood and any ¢ € R.
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Lemma 4.1. Let ¢ € ¢ + H'(Q) satisfy (2.12). We have ¢ o T, — ¢ € HY(Q) for all t > 0
and

fim 190 T, — sy = . (4.13)
Moreover, V¢ -V € HY(Q) and
ST )
im || 201 ¢ _ g4y = 0. (4.14)
t—0 t
H(Q)

Proof. We note that both qAﬁ and QASO T; are not in H'(Q) due to the singularities at w;
(i=1,...,N). Let 0 > 0 be such that B, := UY,B(z;,0) C Q and V = 0 on B,. Then,
there exists ¢ € C°(Q) N H*(Q) such that ¢ = 0 in B,y and ¢ = ¢ a.e. in Q\ B,. These
imply that doT, — = 950 T, — qg, and V(ﬁ V= V(ﬁ -V a.e. in () for all ¢. This implies that
Vo -V e HY(Q). Moreover, it follows from (4.11) that

lim o1y — &l|lui) = lim ¢ 0T} — &||ur ) =0,

implying (4.13), and from (4.12) that

~ ~

T, — ¢ . T,—¢ -
lim M—W-V — lim M—W-V =0,
t—0 t t—0 t
H(Q) HY(Q)
implying (4.14). O

We recall that ¢r ., € H'(2)NC(Q) is the unique weak solution to the BVP (1.8), defined
n (2.3). Similarly, ér, . € H(Q) N C(Q) for each t € R is the unique weak solution to the
same BVP with I', = T3(I") replacing I". We note that the support of V' and hence that of
A, (0) (cf. (4.6)) do not contain any of the singularities z; (1 <i < N).

Lemma 4.2. (1) There exists a unique Cry € H}(Q) such that
/ erV(ry - Vndr = — / er Ay (0)Vér o - Vndz Vn € Hy (), (4.15)
Q Q

where A}, (0) is defined in (4.6). Moreover, the mapping V +— (py is linear in 'V, i.e.,
CroeVideaVe = 10,17 + C2Cr,vs for all Vi,Va €V and ci,co € R.
(2) We have (ry|a, € H*(Qs) N CH Q) for s = — or +. Moreover,
Alry ==V - [AL(0)Vér.oo) = A(Vére - V) in Q_UQy, (4.16)
leronCrvir = —[erdy (0)Vor o - nfr on T. (4.17)
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(3) We have

I {|¢r, 00 0 Tt = ér o0l i1() = 0, (4.18)
o0 T - o0

li || oo 0Tt = 0o (o = 0. (4.19)

t—0 t ’ HL(Q)

(4) If V-n=0onT, then (ry = Vore -V in Q.

Proof. (1) The existence and uniqueness of (ry € Hj(f2) that satisfies (4.15) follow from the
Lax—Milgram Lemma [24,27]. By (4.6), A}, (0) is linear in V. Therefore, by the definition
(4.15) of (ry € Hy(Q), (ryv is linear in V.

(2) Let s denote — or +. Note by (2.4), (3.6), and (4.6) that A}, (0)V¢r. € C*(Qs) N
H'(Qy). For any n € CXQ) with supp () C €, we have by (4.15) and the Divergence
Theorem that

8SVCF,V . VT] dr = / 55V . [A’V(O)ngp,oo] 7’]de‘
Qs Qs

Hence, —Alry = V - [A,(0)Ver o] in Q. Since the right-hand side is in L2(2,) N C(Qs),
it follows from the elliptic regularity theory [27,35] that (rv o, € H?(Qs) N CH(Qy), after a
possible modification of the value of (r on a set of zero Lebesgue measure. Moreover, the
first equality in (4.16) follows.

Let us denote by V* (i = 1,2,3) the components of V. With the conventional summation
notation (i.e., repeated indices are summed), we have by (4.6), (2.4), and (2.6) that

V(A (0)Vora)
=V [VV+ (V) = (V- V)] Vor
= 0; (0;V'0;0r00 + 0;V? 01 00 — 0V 0i6r,0)
= 20,1000,V 4 03V 0j¢r 00 [sinCE Diipr o0 = 0]
= 000106V’ + 20,010,000 V7 + 0V 0j¢r00  [since Dyi¢0r 06 = 0]
— 04 (Bhr?)
=A(Vore-V) in Q_UQ,, (4.20)
implying the second equation in (4.16).
Since (rv € Hy(Q) and Alry € L*(Qs) for s being — or +, and since the unit normal n

at the I' points from Q_ to Q,, we have by the Divergence Theorem that both sides of the
equation in (4.15) are

/ erV(ry - Vndr = / e_V(ryv - -Vndzr + / exViry - Vndz
Q - Q

+

= —/ 5_ACF7V17da:—/ €+ACF7V77dI_/[[EFangF,V]]FndS7
_ Q4 r
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and
—/é?rAIV(O)V(bF’OO-V?]dx
Q
:—/ e_ AL (0)Vor « - Vndx—/ e+ AL (0)Vér o - Vnda
_ Q4

:/ e V- (4 ()ngpoond:c—ir/ e+V - (Ay(0)Vér o )n dx

_ Q4

+ /ﬂ&rA@(O)V(ﬁr’oo . Tl]]p?] dS,
I

respectively. These, together with (4.16), imply (4.17).
(3) Replacing T, ¢r o, and 1 by Iy, ér, o0, and no T, ! for t € R, respectively, in the weak
formulation (2.3), we get by the change of variable x = T3(X) that

| er A0 (ér, 0T - TrdX =0 Wy € HY(@),
Q
This and (2.3) imply for any n € H}(Q) that

/ €Fv(¢Ft,oo @) Tt — ¢1“7OO) . Vn dX = / SF[[ — Av(t)]v<¢rt7oo @) ﬂ) . Vn dX. (421)
Q Q

It follows from a change of variable, (4.2), (4.3), (4.7), and (4.8) that ||V(¢r,« © T3)| r2(0)
is bounded uniformly in ¢. Setting 7 = ¢r, o © Tt — ¢roo € Hg($2) in (4.21), we then obtain
(4.18) by (4.7), (4.8), and the Cauchy—Schwarz and Poincaré inequalities.

Dividing both sides of (4.21) by ¢ # 0 and setting now 17 = (¢r,.c0 © Tt — ¢r.00)/t — (rv in
the resulting equation and also in (4.15), we have by the Cauchy—Schwarz inequality that

2
/5F \V4 (¢Ft,00 o E - ¢F,oo . CF,V) dX
Q t
[ - A o T;‘, - [e’¢)
= /Qe?r {%Oﬁ) + AQ/(O)} V(ér,ec0Ty) -V ((brt’oo r breo _ CF,V) dX

/ #,00 © T — ,00
U N o A e I
Q
¢Ft,oo o E - qbl",oo

Av(t) — T —tA, (0
<o OB or o Tl |
L (9) H1(Q)
¢ ,00 OT - ¢ ,00
+ Cl¢r.o0 — Do © Till iy || — L%y
t HY(Q)

This, together with Poincaré’s inequality, (4.7), (4.8), and (4.18), leads to (4.19).
(4) Assume now V' -n = 0 on I'. This means that V' is tangent to I' at every point in T
Since I' is a compact manifold, by a classical result on the initial-value problem of differential
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equations on a differentiable manifold, each trajectory 7;(X) (¢t € R) defined by the vector-
field V' that starts from To(X) = X € I" will stay in I for all ¢ € R [4,36]. Therefore, I'y =T
for all t € R. Let n € L*(Q) and ¢t # 0. We have by the properties of the transformations T}
(t € R) (4.9), (4.12), and (4.1)—(4.3) that

T, — T,
/Cbrt,ooo b ¢F,oondX:/¢r,ooo tndX—/ ¢r,oo77dX
Q t o t Q
¢F’°Ondx

t
_/Q t

-1 -1
_ / 1 oo (—77 ° Ttt T det vt + n—det Vi 1) dx
Q

¢Ft’°° (noT, ") det VI, 'da — /
Q

t
— —/ ¢reeVn - Vdr — / ¢roon(V-V)dx
Q 0

- /(ngﬁnoo -Vndx ast — 0.
Q

Since n € L?(2) is arbitrary, this and (4.19) imply that (ry = Ver o - V in Q. O

We recall that ép,oo is determined by (2.13) and the boundary condition (ZEF’OO = (oo ON
0€). For each t € R, we denote by éphoo the unique function that is defined by (2.13) with
I'; replacing I' and the same boundary condition quhoo = ¢ on 0f). Note again that the
support of V or Af,(0) contains no singularities z; (i = 1,..., N).

Lemma 4.3. (1) There exists a unique &ry € HY () such that
/ 5FV€F,V . VT] dr = — / €FAIV(0)V§Z§F700 . Vn dz \V/77 € H&(Q) (422)
Q Q

(2) We have &ryy

0. € H*(Q,) N CY(Qy) for s = — or +. Moreover,
Abry = =V - Ay (0)Voro = A(Voree - V)  in Q_UQ,, (4.23)
[erOnr vl = —[er AL (0)0,dr ool on I.

(3) We have

11_{% |#r, .00 © Tt — ¢r 0ol|H1(02) = 0,

Qgrt,oo o E - ¢EF,OO
t

0.

lim

t—0 N €F,V

HY(Q)

Proof. The proof is the same as and simpler than that of the next lemma, Lemma 4.4, as
there is an extra term B there, which can be set to 0 here. The only exception is the second
equality in (4.23) which can be obtained by the same calculations as in (4.20). ]
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We recall that yr € ¢c + HY(Q) N C(Q) = dro + H(Q) N C(Q) is the unique weak
solution to the BVP of the dielectric-boundary PB equation (1.7); cf. Definition 2.1. For
each t € R, we denote by ¢r, € dc + H'(Q2) N C(Q) the unique solution to the same BVP
with I'; replacing T.

Lemma 4.4. (1) There exists a unique wry € H}(Q) such that

/ {&Vwr,v -V + X+B” (lﬁr - gb[;o> wr,vﬁ] dx
Q

=— / er A, (0)Vor - Vi dz
Q

[ | (o= ) - (- 2 g e @)
Q4 2 2 2

(4.24)
(2) We have wry|q, € H*(Q) N CY(Qy) for s = — or +. Moreover,
Awry = —V - AL (0)Ver = A(Vyr - V) in Q_, (4.25)
e4Awry — B" (@DF - (b;’oo) wry = —€4V - A/V(O)V?ﬂr
+(V-V)B (wr —~ ¢F2’°°> - %VB” (wp - (bg‘”) in Qy, (4.26)
leronwr vir = —[erAL (0)0,r]r on T. (4.27)
(3) We have
lim (¢, o Ty = Yr|[ i) = 0, (4.28)
lim Yrooli mvr wr,v = 0. (4.29)
0 t e

Proof. (1) Since B” > 0, the support of V' does not contain any of the singularities z;
(it =1,...,N), and Yr and ¢r  are uniformly bounded on the union of the support of V'
and Q, (cf. (2.18) and (2.23)), the existence and uniqueness of wry € Hj () that satisfies
(4.24) follows from the Lax—Milgram Lemma [24,27].

(2) Choosing n € CH(Q) in (4.24) with supp () C ©Q_ and applying the Divergence
Theorem, we obtain the first equation of (4.25) a.e. in _. Since the right-hand side of this
first equation is in L2(2_) N C(2_), it follows from the regularity theory [27,35] that, with
a possible modification of the value of wry on a set of zero Lebesgue measure, wry|o €
H?(Q_)NCY ). Now, the first equation in (4.25) holds for each point in _. The second
equation is similar to that in (4.16) (cf. (4.20)). By similar arguments, we obtain that
wrvlo, € H*(Q4) N CHQy) and (4.26). By splitting each of those two integrals in (4.24)
that has the term V7 into integrals over Q2_ and ()., respectively, using the Divergence
Theorem, and using (4.25) and (4.26), we obtain (4.27).
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(3) Let dc be given as in (1.6) and ¢t € R. Denote ¢, = ¢r — b and Uy = Yr, — bc. We
first prove (4.28). By (4.13) (with ¢ = ¢¢) in Lemma 4.1, it suffices to prove that

lim ||77Z)r,t O T;g — erHl(Q) = 0. (430)
t—0

By Definition 2.1 and (2.12) (cf. also (2.14)), we have

/ |:5I‘Vwr -V + x4 B (wr + do — gbg’“) ?71 dr
Q

=—(ep—e_) Voc-Vndr  ¥ne HY(Q). (4.31)

Q4

Replacing I', Q. , ¥, and 5 in (4.31) by I, = Ty(T"), T,(Q%4.), ¥r,, and n = no T}, respectively,
we obtain by the change of variable x = T;(X) and (4.4) that

/ {EFAV(t)V<wr,t oTy) - Vn+x:+ B (<wr,t + ¢EC - 9251“5,00) o Tt) Ui Jt:| dX
Q
= (eh—c) / Av(O)V(dooT) - VndX  Vye HAQ). (4.32)
Q4
Subtracting (4.31) from (4.32) and rearranging terms, we get
/ o [Vt o Ty) = V] - VX
Q
Er Av(t ] (wrt o E) V?? dX
/ ¢Ft 00
B ( ¥es + ¢ — oTy ) (J, — 1)ndX
.

[B’ (( Urs + bo — ¢F;°°) 11) (¢r+¢c —~ ¢F°°>] ndX

—(ep —e- /Q[V(écom—wc]-vndx

:\o\s\

~eme) [ Av() - V(oo T) - TndX Vi€ HY() (4.33)

Setting n = ¢, o T — ¢, we have by the uniform bound of all ¢, ; and ¢r, o (cf. (2.23) and
(2.5)), the Mean-Value Theorem, and the convexity of B that

- [B’((zbr,ﬁcﬁc—d)rgm)oﬂ) (wr+¢c—¢“‘°>}n

A R 1
—B"(\) (wr,t oy — iy +ocoly — ¢c + §¢Ft,oo oT; — §¢F,oo) (e 0 Ty — 2y)

26



= —B”()\t>(¢r,t oT} — wr)z
- B”()\t) (QBC o T;‘/ - éC + %¢Ft,oo o Tt - %(bF,oo) (wr,t o th - 2ﬂr)
< C|(QBC ol — QEC)(@er,t ol — 7vbr)| +C |(¢Ft700 oy — ¢F,w)(wr,t ol — ¢r)| ) (4'34)

where )\ is in between (¢,; + ngﬁc — @r,.00/2) 0 Ty and ¢, + ngSC — ¢r./2 at each point in Q,
and the constant C' > 0 is independent of ¢ and I'. Now, the combination of (4.33) with
n = ¢y 0T, — 1), and (4.34), together with the uniform bounds for ¢,, and ¢r, ~, and the
Cauchy—Schwarz and Poincaré inequalities, leads to

[V 0 Ty — el () < CllAv(t) = I|| oo @)l|r © Til| 1) + Cll e — 1| (o)
+ OH¢C o T;ﬁ - ¢C||H1(Q+) +C ||¢Ft,oo o E - ¢F,oo||H1(Q)
+ Cl[Av(t) = Il 1) 9c © Till oy

Now the convergence (4.30) follows from (4.2), (4.3), (4.7), (4.8), the uniform bound of ), .,
Lemma 4.1 (with b= QEC), and Lemma 4.2.

We now prove (4.29). Let us denote &ry = wry — Vée - V. By Lemma 4.1 (cf. (4.14)
with ¢ = ¢fc), we need only to prove that

i %,t oT; — N
m|——— —Wwry
t—0 t

= 0. (4.35)
HY(Q)

Since the support of V and Af (0) does not contain any of the singularities z; (i =
1,...,N), the Divergence Theorem and the calculations in (4.20) imply that

/Q A (0)Vde + V(Ve - V)] - Vi da

__ /Q V- (AL (0)Voe) + A(Vée - V)] i da
=0 Vn € Hy ().

This allows us to rewrite (4.24) into the following equation for wr y:

/ {&“V@r,v -Vn+ x+B" (% + dc — QSFTOO> @r,vﬁ} dX
Q

_ / er A4, (0)V (¢br — o) - VipdX
Q

L lr(en-er

+B" (77Z)r + oo — ¢F’Oo) (Vﬁlgc V= CFT‘/)} ndXx

2
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ey —e) / A (0)Vde + V(Voe V)] -VndX  Vge Hi(Q). (430

Multiplying both sides of (4.33) by 1/t and combining the resulting equation with (4.36),
we obtain by rearranging terms that

T T_ r ~
/€FV (M —wr,v> L VndX
Q

_ _/Qgr [(W) V(s 0 T)) — A’V(O)wr] VndX

(s ()

' (o= 22 ) (v 1) ax

—/m{i[ (o) om) = (v i)

(¢r+¢c— ¢F°°) (wr,wvéc-v—%v)}ndx

~e-e) | + [(M) V(dooT) A@((»W%} Vi dx

t

T )

— (e4 — 5_)/ \Y (M —Voc - V) -VndX Vn € Hy (). (4.37)
Q4

Specifying n = (¢4 0 Ty — )/t — @ry € H(S2), we have by the fact that B” > 0, the

Mean-Value Theorem, the uniform bound in €, for all the functions ¢ (cf. (1.6)) ¢, (cf.

(2.5), (2.18), (2.23)), Cr.v (cf. part (2) of Lemma 4.2), and wry (cf. part (2) of Lemma 4.4)

that in Q+

B (v do- 2= ) o) - 8 (v do - =)
B <¢r +oc — ¢1;OO) (@r,v + VooV — CFTV)} <—¢r’t O?_ b @Jr,v>

rtoT‘t_ T ) OT;S_A toooT‘t_ o] rtOT;f_ r ~
__B,,@(w [~ | fooTi—do _ brueoTi= o >(¢ v y)

{5 o) (155 )

E r,t t r ~
B”( )('l/}7 z ’lp 7 )
S ) b ¢|t00 - jt ¢ o0 T
B/I( )(A 7 ¢C :]t ¢C 5 2 3 ) (¢,i Ojt w S 7 )
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|:B// (@Z) +¢C . ¢Foo) . B,/(§t>:| (QF,V _’_VQASC Vo CI;V) (%,t oT} — _(DF,V)

t
n T T: — r ~
+ B//(gt) (a)l_‘,v _I_ V¢C . V _ CZV) (w ,t o tt w o CUI"V)

-B" (gt) (¢C OCFt - (bC . VQSC V- ¢Ft,oooﬂ _¢I‘,OO + CF,V)

t 2t 2
(dfr,t oly =i . )
T v

+ B/”(Ut) <wr + (ic — ¢FOO — &) ((':)F,V + v(zgc LV = CBV) (djr,t O? - wr . (Z)nv)

) T_A n [e%e] T_ fe’e) r T_ T
SC<—¢CO ; gzSC—V¢C'V + Pruco © tt o, —CF,V> ’—w’tott L —wr,y
n n r OT— T N
+C<|¢r,toﬂ_wr’+‘quOE_QbC‘+|¢Ft,woﬂ_¢F,m|> w—wnv ;

where & and o, are in between (1, ; + ngSC —¢r,.00/2)0T; and 1, + ggc — ¢r./2 at each point in
2;. Now, combining this inequality and the identity (4.37) with n = (¢ 0Ty — )/t —dry €
H}(Q), we obtain by the Poincaré and Cauchy—Schwarz inequalities and rearranging terms
that

¢rtoﬂ_w ~ ?

—wrv

HY(Q)

(AV ) ) V(s 0 T1) — Ay (0)V0

2

+C (<¢rt+¢c—¢rtm) OE) (Jt_]_>
Qy 2 t
< ¢Foo) ?
¢r+¢>c— (VV) dX
2 2
—f—C( ¢COE_¢C_V§£C'V +‘¢Ft,oooﬂ_¢f‘,oo_§r,v
t HI(Q+) t LQ(Q+)

+ [ 0 Ty = UellT2q,y + 0c © Th = dcllFzq, ) + ldr,.co 0 Ty — ¢F,oo”%2(g+)>

Ap(t) =T\ - o
v [ |(F0=) véeon) - s
= C'[S1(t) + Sa(t) + S3(t) + Sa(t)] . (4.38)

2
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It follows from (4.6)(4.8), Lemma 4.1 (with ¢ = ¢¢), and (4.28) that

2

51(75) =

—1I
|: t :| V wrtoﬂ %/(O)Vwr

2
<2

[A” L 4,0)| Vo] ax 2 [ 14090 o T - vPax
—>O ast — 0. (4.39)

By the uniform boundedness of v¢,; and ¢r, « (cf. (2.5), (2.18), (2.23)) the Mean-Value
Theorem, (4.2) and (4.3), Lemmas 4.1 and 4.2, and (4.28), we have

t,00 Ji—1 / 7 00 ’
Sa(t) =/ ((%wc— ¢F2 ) oTt> ( tt ) ~-B <¢r+¢c— ‘bg ) (V-V)| dX
Q4
N -1 2
< 2/ B’ ((wr,t + ¢c — ¢F“°°) oTt) (Jt -V- V) dX
0. 2 t
/ n Qth,oo (bFoo 2 2
+2 B Yt + dc — 9 o T Uy + bo — V- V|7dX
Q4
—1 2
< c/ ol oy vl ax
Q4
+ C (‘wr,t o E - wr|2 + ’Qgc o E - $C|2 + |¢Ft,oo o E - ¢F,oo’2) dX
Qy
—0 as t — 0. (4.40)
By Lemma 4.1 (with ¢ = ¢¢), Lemma 4.2, and (4.28), we have
bo o Ty — & A 00 01} — Or o
Ss(t) = ‘ goeli= o ; bo Voc -V + ‘ or. tt Preo (r,v
HY(Q4) L2(Q4)
+ ¢ 0 T = Wil + 160 0 Th = dcll7aas) + drim0 0 Tr = Srocllizy)
—0 ast — 0. (4.41)
It follows from (4.6)-(4.8) and Lemma 4.1 (with ¢ = ¢¢) that
Av(t) =1 o, - ) . 1P
s = [ ||| vtbeom) - 0w
Q4
Ay(t) -1 . 2 ) .
<o [ [P - a0 Videoa| +0 [ 19GeaTi-doifax
Q4 Q4
—0 ast — 0. (4.42)
Now the desired convergence (4.35) follows from (4.38)—(4.42). O
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5 Proof of Theorem 3.2

Proof of Theorem 3.2. Fix V € V (cf. (3.6)). Let {T;}ier be the family of diffeomorphisms
from R? to R? defined by T;(X) = z(t, X) as the solution to the initial-value problem (3.7).
We proceed in five steps. In Step 1, we calculate the limit as ¢ — 0 that defines the variation
dr.v E[I']; cf. Definition 3.1. In Step 2, we simplify the expression of éry E[I']. In Step 3, we
convert all the volume integrals in dr v E[I'] into surface integrals on the boundary I, except
one volume integral that involves the B’ term. In Step 4, we rewrite the surface integrals to
have the desired form (i.e., with a factor V' - n in the integrand). Finally, in Step 5, we treat
the only volume integral term that involves B’ to get the desired formula.

Step 1. Let t € R. We recall that ¢r, o, Qgpt,oo, and 1, are the solutions to (2.3), (2.13),
and (2.22) with T'; = T;(T") replacing I, respectively, and that all these functions have the
boundary value ¢o, on €. Recall that ¢ and ¢o. are defined by (2.9) and (2.10). We denote
in this proof ) R

Yr=1tr —¢re and Y =Ur, — Pry - (5.1)
By (3.2) with I'y replacing I', the definition of Ay (t) (4.4) and J; (4.1), and the change of
variable x = T;(X), we have

13 (o)
El] = —/ %ywr,tﬁdx — / B <¢rt - ¢FT> dx
Q Ty (924)

e / Vor, o - Voodz + W
Ty (Q24)

2
_ _/Q%F[Av(t)vwr,toTt)-V(wr,toTt)] dx

[ (o2 on) e
Q4

- e / Av()V(dryme 0 Th) - V(o o T)) dX + W,
Q4

M

where W = (1/2) 2N, Qi(¢oo — ¢¢)(z;) is independent of T.

By the definition of or y E[I'] (cf. Definition 3.1), we need to calculate (d/dt)|—oE[I']. This
amounts to justifying the interchange of the differentiation against ¢ and the integration over
2, and then applying the product and chain rules of differentiation. Since the differentiation
against ¢ of functions ¢r, , Qgrhoo, and ¢r, are defined using the H'(Q)-norm applied to the
corresponding quotients (cf. Lemmas 4.2-4.4), we proceed with the limit ¢ — 0 of (E[I'y] —
E[I'])/t and apply the results from those lemmas.

It follows from (3.2) and the above expression of E[I';] that

t 2t

1 ¢Ft,oo ¢F,oo
L) om) e (o) fox
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e_—¢ 1 2 f ; )
T : / t [AV(t)v(¢Ft,w oTy)-V(gooTi) — Vore - Voo | dX
Q4

— i) — a(t) + =

d3(t)- (5.2)

By rearranging the terms, we obtain that

51(t) _ /(; 651" |:AV(t) - It— tA%/(O):| V(wr,t Oﬂ) X V(wr,t oTt) dx

s [ A0V 0T Vo T X
Q

Er ¢r,toﬂ —%
+/QE[V(%¢OTO+V%]‘V(— ; >dX'

It thus follows from (4.7), (4.8), Lemma 4.3, and Lemma 4.4 that

lim 51 (t) == / Er [%A/V(O)Vi/}r . V@br + V@Dr . V(WF,V — fp,v):| dX, (53)
Q

t—0

where &r v and wr y are defined in (4.22) in Lemma 4.3 and (4.24) in Lemma 4.4, respectively.
Denote ¢ = Yr — ¢r /2 and ¢ = (¢Yr, — ér,./2) 0 T;. The second term d5(¢) in (5.2) can
be written as

(52(15):/Q+ Jtt_lB(qt)dXJr/ Bla) = Bla) ;v (5.4)

Qp t

It follows from Lemma 4.2 and Lemma 4.4 that ¢; — ¢ in L?(Q2). Moreover, by (2.5), (2.18),
and (2.23), the L>(2)-norm of ¢; is bounded uniformly in ¢ € R. Hence, B(q;) — B(q) in
L?(2y) as t — 0. This, together with (4.2) and (4.3), implies that

m [ 2= 1B@) dX = | (V-V)B(q)dX. (5.5)

t—0 Q4 Q.

Now Taylor’s expansion implies that
B(g(X)) — B(g(X))
t
= B'(q(X))

a(X) — q(X)

) = 9X) | L g (0 (X) — () a—_—

; 5 a.e. X € (),

where 7,(X) is in between ¢(X) and ¢/(X), and its L>°(£2)-norm is bounded uniformly in ¢.

It then follows from Lemma 4.2 and Lemma 4.4 that

qt —q
t

— 0 ast — 0,
L2(Q4)

e — g
/ B"(n) (¢ — q) = ; dX| < Cllg: — qllz2(ay)
Q4
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where (' is a constant independent of t. Consequently, Lemma 4.2 and Lemma 4.4 imply that

B(q) — B -
lim / Bla) = B) 4y _ iy, / B %ix = [ Bl <ww - CF—V) dX,
Q Q. t ol

t—0 t t—0 2

where wry and (ry are given in (4.24) and (4.15), respectively. This, together with (5.4)
and (5.5), and our definition of ¢ and ¢;, implies that

lin 6y (1) = /Q+ [(v VB <¢F - ¢F27°°) + B (¢F - ¢2°°> (ww - CFTV)] dX. (5.6)

Rearranging the terms, we have

d3(t) = /Q S tAQ/(O)V(QBFt,oo oTy) - V(¢ o T;) dX

t
~ T ~ A
+ V(¢Ft700 o t) v¢F,oo . V(¢O o E) de‘
Q4 t
. b oT,) — Vo
4 V(bf,oo . v(¢0 o t) v¢0 dX

+ [ A0V o T) - Vo T X
Q4
Therefore, we have by (4.7), (4.8), Lemma 4.1 (with ¢ = ¢;), and Lemma 4.3 that
lim 63 (1) = / [vgw Vo + Vore - V(Vog- V) + A (0)Vr.o - wSo} dx.  (5.7)
— 0.

It now follows from Definition 3.1, (5.2), (5.3), (5.6), and (5.7) that the first variation
drEI'] exists and is given by

orvE[l] = — %FA’V(O)V% -V dX + /Qspvwr -VérydX — /Q erVi, - Vwr y dX

Q
M1 M2 M3
[ [ o-55) oo (o 5) o)
M,
e / Very - Vo dX
M;
+ & 5 t / [v&spm V(Yo - V) + Ap(0)Vora - Vo| dX
Q4

N J/

My
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:M1+M2+M3+M4+M5+M6. (58)

Step 2. We now simplify this expression. By Lemma 4.3, our notation 1, = ¥r — gzgpm,
and the fact that the support of V or AJ,(0) contains no singularities z; (1 <i < N), we can
express the sum of the first two integrals above as

€r

M+ My = —/Q— L)V (U — drne) - V(er — dr o) dX
— /erAQ,(O)ngr,oo -V (¢r — (Zgl",oo) aXx

€F

:_/Q_ (0) Vb - wpd)u/ Ay (0)Véreo - VorocdX.  (5.9)

Note that the last two integrals exist as the singularities z; (1 < i < N) of ¢r and qum are
outside the support of V' and A/, (0) is given in (4.6). By (2.22) and (2.13), we have

/ |:€FV’I7Z)T -Vn+x. B (wp - ¢F°°) n] dX =0
Q

for all n € C}(Q) and hence all n € H (). Setting n = wry, we get the two-wr - terms in
(5.8) (one is M3 and the other is part of M,) cancelled:

/ [Erv¢r . VWF,V + X+B/ (ﬁ}r — ¢FOO) WF,V:| dX = 0. (510)
Q

To simplify Ms, we note that we can replace 7 in (2.12) (with ¢ = ¢,) and (2.13) by
try € HY(Q), as &ryla. € C*(Q); cf. the remark six lines below (2.12) and that below
(2.14). It then follows that

~ g n
M5 = _/ Véry - VoodX — == | Véry - VogdX
Q4

2 > o,
~ 1 N ) A
_ /Q T Véry - Voo dX + 5 ; Qiér(z:)  [by (2.12) with ¢ = Gy
_ / L6y - VondX + / LVt Very dX by (2.13)]
@ Q
= /Q 6—FV£F,V . V(le",oo - ng — ¢F,m) dX [by (23)]
— _/ er 4 v(0 )V¢Foo . (ggf,oo — o — ér0o)dX. [by Lemma 4.3] (5.11)
Q

Since ¢20 is harmonic in the support of V' that excludes all z; (i = 1,..., N), we have by
the same calculations as in (4.20) that V - [V(ngo V) + A’V(O)ngfo} =0 in Q. Thus, since
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the normal n along I' points from Q_ to €2, , we have by the Divergence Theorem that
5 | Vore [V(Voo- V) + Ay (0) Vo] dX

=5 [ oral¥ (0 V) + 40 V] s

=== | Vére[V(Voo- V) + AL (0) Ve dX

Therefore, since A}, (0) (cf. (4.6)) is symmetric,

E_—¢&4

=
I

Vor e - [V(Vo - V) + Ay (0) Vo] dX

2 Ja.
__ / L IVdroe - V(Vo - V) + A (0)Ver s - Vo] dX
Q

€F

__ /Q A (0)Vorae - VdodX. [by (2.13)] (5.12)

It now follows from (5.8)—(5.12) that

orv B[] = = | S AL (0)Ver - VordX + | AL (0)Vr oo - Vo dX
Q _/
P Py
CFV ( _¢Foo)_ V-VB( —¢F’°o>]dX
+\/Q+ [ 5 Yr ( )B | ¥r 5 /
S
=P+ P+ Py (5.13)

Step 3. We convert most of these volume integrals into surface integrals on I". We shall
use the following identities that can be verified by using the Divergence Theorem and ap-
proximations by smooth functions:

/(V-U)Va-Vbdx:—/ U - (V2aVb + V*Va) da:+/ (Va-Vb)(U -v)dx, (5.14)
D D oD

/(VU)Va~Vbdx:—/ U (AaVb + V2bVa) dx+/ (Va-v)(Vb-U)de.  (5.15)

oD

Here, D C R? is a bounded open set with a C'* boundary 0D, U € H'(D,R?), a,b € H*(D),
V2a is the Hessian matrix of a, and v is the unit exterior normal at the boundary dD. If in
addition Aa = Ab =0 in D, then we have by (5.14) and (5.15) that

/ (VU + (YUY — (V- U))Va - Vbda
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:/ (Va-U)-(Vb-v)+(Vb-U)-(Va-v)—(Va-Vb)- (U -v)]dS. (5.16)

Note that V' = 0 in a neighborhood of all x; (1 <i < N) and V =0 on 092 and that the
unit normal vector n on I' points from Q_ to ;. By Theorem 2.1, A¢r = 0 on Q_Nsupp (V)
and e, A¢r = B'(Yr — ér/2) on . Therefore, writing u® = ulg, (s = +, —), we have by
(4.6), (5.14), and (5.15) that

P = / E—F[VV + (VW) — (V- WV - Vipr dX
a 2

= / e_(VV)Vir - Vibr dX + / e (VV)Vir - Vibr dX
Q_

Q4

1\3||m

(V- V)Ver - Vipr dX — 5 %*(v V)\Ver - Vibr dX

SV AUV + i) X + [ e (VU V)i m)dS
LV (AUrVe + VAV dX — [ e (Vui V)i ) ds
eV V3rVirdX — /F %‘!W;F(V -n)dS

+/ s+v-v2¢rvwrdx+/%|V¢;|Q(v-n)ds
Q4 r

:—/ €_A¢F(V¢F-V)dX+/

_ r

(Vo V)V m)dS = [ SV PV n) ds
I
~ [ etV vyax - [ eV vIVeEmds+ [ Ve v en)as
ol r r
= [ (Vur VAU m)dS = [ eu(Vai V(T ) ds

- [SIVerPv myds + [ VeV -mds

—/ B (w - d)z“’) (Vipr - V) dX, (5.17)
Q4

where a superscript — or + denotes the restriction to {2 or {2, respectively.
Since ¢r o and ¢r o are harmonic in Q_Nsupp (V') and 2, and since the normal n points
from ©_ to Q,, we have by (4.6), (5.16), and the notation of jumps (2.8) that

Py = / U VI =TV = (VV)T[Vir e - Vo dX
Q_

+ / SV V) = YV = (VV) T Vr e - Ve dX
Q, 2
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— %/[[ar(W%noo V) (Vore -n) + gp(vggrm ) (Veros - V)
r

— €F<V§ZA5F7OO . VQZSF’W)(V . n)]]r ds. (518)

Using the Divergence Theorem and noting again that the normal n at I' points from 2_

to €24, we obtain

_ CF_,V / _(vaOO R/ _(bF,oo _V¢F,m
P = o QB(@ZJF 2)dX+/Q+VB(7,Dp 2)(V¢r 5 )dX

+/FB(¢F—¢I;°°)(V-n)dS

= /Q B (Crv = Voére V) + Vir - V] B’ (¢p - ¢I£oo) dX

+/FB (wp - ¢F2’°°> (V -n)ds. (5.19)

It now follows from (5.13) and (5.17)—(5.19) that
sew BT = [ (V- VIV0 ) dS = [ & (90 - V)(Vui -mas
r r

- [SIVerPv mds + [ VeV mds

o / [er(Vrse - V)(Véroe - n)]r dS
o1 [l (Tin (T -Vl
-3 / [er(Vor oo - Véroo)(V - n)]r dS
+ /Q + % (Crv = Vére V) B’ (wr - ¢F2’°°) X

+/FB (z/;p - ngf’) (V -n)dS. (5.20)

Step 4. We express the surface integrals into those with the factor V - n in the integrand.
Note that on each side of I', we can write

Vir = (Vor -n)n + Vrr = 0,¢rn+ Ver on T,

where Vrir = (I —n ®n)Vir is the tangential derivative. Clearly n - Viir = 0. Moreover,

Vit = Viryp on T Thus, V (¢ — ¥ ) = (9,91 — 0,91 )n on I'. By Theorem 2.1, we have
also e, Vi -n =¢_Vip -n =erVer -n on I'. Therefore, the first four terms in (5.20) are

[ eV VU myds = [ eV V(U ) ds
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— [ SIVUrE myas+ [ SHvatPo-mas
— [ erdutr(Ouit — 00 )V - m)dS
r
+ [ SV s - [ SIvurP nds
:—/5+|8nw1f|2(V~n)dS+/5_|8nwr|2(V~n)dS
r r
+ [ Slowi PV -mas+ [ SHvrue (v ) ds

- [ SlowiPv-mds - [ FVeurf (v n)as

1/1 1 —e_
= (_‘_) [ e (v myas + S5 [ mas. s

€y E_ 2
Similarly, on each side of I', we have with ur = ¢r  or quﬁoo that

Vur -V = (Opurn + Vreur) - (V-n)n+ (I —n®@n)V)
= Oyur(V -n) 4+ Vrur(I —n®n)V.

Moreover, ¢,.0,uft = e_0,ur and dpuf = Orup on I'. Therefore, the next three terms in
(5.20) become

3 | (Vore V)(Vora - nledS + 5 [ [er(Voron )(Vor - V)Irds

1 .
— 5 [ (Var - Vor v -l ds
= /[[Sranér,ooan¢nooﬂf(v : n) ds

T
- % / [r(9nfr,00n0r.00 + Vi0r 00 - Vidr,oo)Io(V - n) dS
r

— %/F[[ef‘anqgr,ooanqSRoo]]F(V -n)dS — %/F[[EFVFQEF7OO - Vr¢ro]r(V -n)dS. (5.22)

It now follows from (5.20)—(5.22) that

Sy E[D] = _% (L _ i) / lerdtr2(V - ) dS + 5= / Vb 2(V - n) dS
T I

€4 E_ 2

1 N 1 A
+ 5 /[[€ran¢r,oo3n¢r,oo]]r(v ’ ”) ds — 5 /HstFﬁme : vF¢F,wHF(V : n) as
r r

1 00
o[, g = Vo V)8 (o - %) ax
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+/FB (¢F - Cbg“) (V -n)dsS. (5.23)

Step 5. We finally rewrite the volume integral above into a surface integral on the
boundary I'. Recall from the beginning of Subsection 3.2 that the signed distance function
¢ : R3 — R with respect to I' is a C3-function and V¢ # 0 in the neighborhood Ny(T") of T.
We extend n = V¢ on I' to Ny(T'), i.e., we define n = V¢ at every point in Ny(T"). Note that
n € C*(No(T)). Since V' € V vanishes outside Ny(T'), both the normal component (V - n)n
and the tangential component V — (V -n)n = (I —n ® n)V of V are in the class of vector
fields V; cf. (3.6). Since V.= (V-n)n+ (I —n®@n)V and (I —n®@n)V -n =0, we have by
Lemma 4.2 (part (1) and part (4)) that

Crv — Vore -V = (o (vant—nen)y — Vére - [(V-n)n+ (I —n®@n)V]
= CF,(V-n)n - V¢F,w . (V . n)’I’L + CF7([—H®TL)V — V¢F,m . (I —-n® n)V
= (v — Vore - (V-n)n  in Q.

Therefore, we may assume that

V=WV-nn inN(T). (5.24)

By Lemma 4.2, (ry|a, € H*(2,) for s = — or +. Thus, by (4.16), A(Vér - V) € L*(£y)
for s = — or +. Therefore,

Vore -V € H*(Q) fors =—or +. (5.25)

Recall from (5.1) that ¢, = 9r —dr oo € He (€2). Note by Theorem 2.1 that Agy, = 0 in ©_ and
e+ Ay = B'(Yr—¢r /2) in Q. Note also by (4.16) in Lemma 4.2 that A((ry —V¢r V) =
0in 2_UQ,. We then obtain by Green’s second identity with our convention that the normal
n at I' pointing from Q_ to 4 and the fact that [er(r y0,¢:]r = 0 which follows from the
third equation in (2.24) that twice of the volume term in (5.23) is

Q= (Crv = Vore V) B <¢r — ¢F’°°) dxX

QL 2

= / €+ [(CF,V - v¢DOO ’ V) A@Dr - er (CF,V - Vgbl“,oo ’ V)] dX

Q4

+/15K&y—V%mWUA%—%A@W—V@@UWMX

=—Kﬁﬂ@w—V%mwomm—mmmw—vmmwmhw

= /[[€F(V¢F,oo V)0t ]r dS + /[[&%@CF,V]]F as — /[[&?r%an(vﬁf)r,oo -V)rdS
r r r
= @1+ Q2 — Us. (5.26)
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It follows from (5.24) that

Q1 = /[[EF(VQbF,oo - V)0p]r dS = /[[apangzﬁp,ooanwr]]p(v -n)dS. (5.27)
r r

Since [¢]r = 0 and [erd,¢r |r = 0, we have by Lemma 4.2 (cf. (4.17)) that

Q= [ v duGealrds
—— [ Eerte iy (0) Vo - nlrds
= /F [ert [VV + (VV)T = (V- V)] Vér o - n]r dS
= /F lerte [VV + (VV)T] Vér o - 0] dS
= /F [ertxVor e - [VV + (VV)T] n]rdS. (5.28)

Denoting by n’ the jth component of n and noting that 9;n/n’ = (1/2)9;||n||* = 0, we obtain
on each side of T' (i.e., on NVp(T') NQ_ and Ny(T') N 2,) that

Voéra - (VV + (VV) )
= 0ipr (;V' 4+ 0,V7) 1!
= 050005 (V- n)n')n? + 8i6r o 0i(V - n)n )0/ [by (5.24)]
= 0;¢r.c0;(V - n)n'n’ + 0i¢r (V- n)0; nind
+ 0501 00 0i(V - n)nin? + 0;¢0r oo (V - n)Oin?n?
= (Voére -n)VIV -n) - n+Vore - (Vn)n)(V-n) + Voér - V(V - n).

This and (5.28), together with the fact that [erVer o - n]r = 0 on I, lead to
_ / [rteVor e - (Vn)n]e(V - ) dS + / [tV or e - V(V - n)]r dS
r r

= Q2,1 + Q2. (5.29)

To further simplify these terms, let us recall the surface divergence Vv along I' and its
integral on I" for a vector field v that belongs to H! of a neighborhood of I'

Vie-v=V-v—(Vo)n-n, (5.30)
/VF vdS-?/HU n) (5.31)

where H is the mean curvature; cf. [20] (Section 5 of Chapter 9).
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Consider the term ()35 in (5.29). Since n = V¢ is a unit vector field, we have n- (Vn)n =
n‘d;n'n? = (1/2)n?d;(n'n") = 0. Hence, on each side of I', we have

V(ﬁnoo . (Vn)n = VF(ZSnm . (Vn)n (532)

Let us denote ar = ¢, Vr¢r « and note that [ar]r = 0. Hence ar € H'(Ny(T'), R?). Note
also that ar -n = 0. Thus,

(Var)n-n+ar-(Vn)n=V(ar-n)-n=0  in Ny(T). (5.33)

This implies that
(Varn) -n = —ar - (Vn)n € H*(No(T)). (5.34)

By (5.24), we have for s = — or + that

V(Vore V) -n=V((Vore -n)(V-n)) n
(V(ngroo n)-n)(V-n)+ (Vore -n)V(V -n)-n in Q, NNy(T).
This, together with (2.4) and (5.25), implies for s = — or + that

(V(Véroo - n) n)(V -n) € H'(Q N No(I)). (5.35)

Thereforea since VF¢F,OO = V¢F,oo - (V¢F,oo ’ n>n7 A¢F,oo =0in Q_ and QJra and % and ¢F,oo
are in Wh* on each side of I, we can verify that for s = — or +

(V-ar)(V-n) = (Vi - Vore)(V-n) — (Vo - n)(Vor - n)(V - n)
— 0 (V(Vore - n) - n)(V-n) = (Vore -n)(V-n)(V-n) € H'(Q, N No(T)). (5.36)

By (5.34), (5.36), and (5.30) (with ar replacing v), we have for s = — or + that
(Vr-ar)(V-n)=(V-ar)(V-n)— (Varn-n)(V -n) € H(Q, N Ny(T)). (5.37)

With all the regularity results (5.34), (5.36), and (5.37), we have now by (5.32), (5.33), and
(5.30) (with ar replacing v) that

Qo = /F [erar - (Va)n]o(V - n) dS
- /Fﬂsp(Vozp)n -n]r(V -n)dS
= /F[[er(Vr ~ar =V -ap)p(V - n)dsS. (5.38)

Consider now the term ()25 in (5.29). On each side of T',

ngnoo . V(V . TL) = [(ngpm . TL)TL + VFQZDROO] . [(V(V . TL) . n)n + VF(V . n)]
= (Vére -n)(V(V 1) n) + Vrore - Vr(V - n).
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Since [t ]r = 0 and [erVér.o - n]r = 0, we thus have

ﬂep@/zrngﬁpm . V<V : n)]]F
= [ertr(Vore - n)(V(V - n) - n)r + [ertr Vegro - Ve(V - n)]r
= [[51“051“ . VF(V . n)]]r (539)

One can verify that on both sides of I'
Vr-((V-n)ar) =(V-n)Vr-ar+ar-Vp(V-n).

Consequently, we have by (5.29), (5.39), (5.31), and the fact that Vi¢r o -n = 0 on each side
of I that

Q22 = /F[[c“roér -Vr(V-n)rds
— [l (v -man)leds = [ [V ) e - arlrds
— [I2=e( - mar leds — [[exTr- arle(V o) ds
= /F[[8FVF ~ar]r(V - n)dS.
This, together with (5.29), (5.38), and the notation ar = ¢, Vr¢r ~, implies that

Q= [V ol (V- ds == [[9 - @Veora) eV m)ds. (540

Now, let us calculate the term @3 in (5.26). Since V = (V -n)n (cf. (5.24)), we have from
both sides of I" that

V(Vore V) -n=V((Vore -n)(V-n)) n
=V(Vore -n) -n(V-n)+ (Vore -n)V(V -n)-n.

Since [erVér « - nfr = 0, we have by (5.26) and (5.35) that
Q3 = /F[[5F¢rV(V¢F,oo V) -n]rdS = /F[[5F¢rv(v¢r,oo -n)-nfr(V -n)dS. (5.41)

It now follows from (5.26), (5.27), (5.40), and (5.41) that
Q= [ [evl0u0rcuts = V - (6.5 r0rc) = ¥ (Vo )}V ) dS. (542
By the definition of the tangential gradient, the fact that A¢r ., = 0 on both sides of I' (cf.

(2.6)), and V -n = 2H on I', we can simplify the terms inside the pair of brackets in (5.42).
On both sides of I', we have

and)l",ooanwr -V- (¢er¢F,m> - ¢rv(v¢F,m : n) "n
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= 0n9r,00Onthr — V - [tV or oo — Ur(Vor e - n)n] — 0 V(Vér e - n) -n
= OnPr ocOn¥r — Vbr - Vor oo — Ut Adr o

+ V(¥ (Vore 1) - n+¢u(Vor o - n)(V-n) = V(Vore -n) - n
= 0n9r,000ntr — Vibr - Vér oo + (Vér e - 1) (Vihr - n) + 10 (Vor o - n)(V - n)
= 20,091,000y — [V - n)n + V| [(Vér oo - n)0 + Vior.oo| + 2H Y0061 o
= Onr,000ntr — Vror.o - Vi + 2H 0,01 .

Plug this into (5.42). Noting that ¢, = wr—ggr’oo and that all Vi), Vrér o, span(z/)p—ép,oo),
and erd, ¢r ~ are continuous across the boundary I', we obtain that

Q = /[[€F<anwran¢F,oo - Vl"wr ’ VF¢F,%)]]F(V : Tl) dsS
r
= /[[€F[an(¢r — QASF,oo)anng,oo — Vr(¢r — ng,oo) - Vréroolr(V - n)dsS. (5.43)
r

Finally, we obtain by (5.23), (5.26), and (5.43) that some of the terms in opy E['] (5.23)
are simplified into

1 A 1 N
5 /[[5ran¢r,ooan¢r,oo]]r(v ) ”) ds — 5 /H€FVF¢F,w : VF¢F,mﬂF(V : n) as
r r

1 00
o[, g G = Tone 8 (o= %) ax

— %£H5F8n$F7m8n¢F,mﬂF(V . TL) ds — %/F[[SFVFQEF,OO . vF¢F,mHF(V . ’I’L) ds + %Q
- %/ng(a"wra“(ﬁﬂoo — Vrr - Vroroo)r(V - n) dS
r

- /F O 00 (V- m)dS — /F e O Oudr (V- m)dS

g E_
~ Ve Vroea(V o mydS + / Vit - Veora(V - n) dS
T T

1 /1 1 Ex —E_
=5 \— /€r3n¢r€r3n¢r,oo(v -n)dS — = /VF¢F Vrgre(V - n)dS.
2\e+ - /) Jr 2 r
This and (5.23) imply the desired formula (3.8). The proof is complete. O
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