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Alfvén eigenmodes (AEs) are an important and complex class of plasma dynamics commonly observed in tokamaks
and other plasma devices. In this work, we manually labeled a small database of 26 discharges from the DIII-D toka-
mak in order to train simple neural-network-based models for classifying AEs. The models provide spatiotemporally
local identification of four types of Alfvén eigenmodes by using an array of 40 electron cyclotron emission (ECE)
signals as inputs. Despite the minimal dataset, this strategy performs well at spatiotemporally localized classification
of Alfvén eigenmodes, indicating future opportunities for more sophisticated models and incorporation into real-time
control strategies. The trained model is then used to generate spatiotemporally-resolved labels for each of the forty
ECE measurements on a much larger database of 1,112 DIII-D discharges. This large set of precision labels can be
used in future studies for advanced deep predictors and new physical insights.
Keywords: Machine learning, Alfvén eigenmodes, energetic particles, tokamak

I. INTRODUCTION

Future steady-state operation of nuclear fusion devices ne-
cessitates active real-time control of a number of complex
plasma processes, including edge-localized modes1–3, dis-
ruptions4,5, and Alfvén eigenmodes (AEs)6. Some of these
dynamics are highly nonlinear, and can occur on fast time
scales and small spatial scales where many analytic assump-
tions break down. The reality of fast time scales requires that
many real-time plasma control schemes are limited to simple
models such as those based on 1D transport7, linearization or
local-expansions8–16, heuristics (based on prior experimental
knowledge)17,18, the biorthogonal decomposition19–24, and so
forth. Despite the challenges posed by multi-scale dynamics
and nonlinearity, many of these models have been success-
fully employed for real-time control in operational scenarios.
However, future progress in controlled fusion hinges on mod-
els that have the potential to overcome the many barriers as-
sociated with predicting the dynamics of complex plasmas.

Fortunately, there has already been remarkable success
in data-driven models for disruption identification and real-
time control in tokamaks4,5,25–29, including high-performance
models that are not limited to a specific device30. Neural net-
work models can be trained offline and then used to predict
plasma activity online. There has also been recent deep learn-
ing work for automated identification of AEs in diagnostic
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data31–33. Our prior work34, briefly reviewed in Sec. I C, sub-
stantially advanced these Alfvén eigenmode studies by utiliz-
ing a large database of high-resolution spatiotemporal data for
AE prediction. In addition to real-time control applications,
machine learning studies open the possibility for new phys-
ical understanding of this unique class of plasma modes in
terrestrial plasma experiments or even space-based probes35.

Heuristic models for AEs have also seen some successes.
For instance, Hu et al.18 controlled Alfvén eigenmodes by
computing a measure of the strength of AEs “by the mean
value of the coherent power spectral density from Fourier
analysis of temperature measurements from ten pairs of ECE
channels with a bandpass between the geodesic acoustic and
TAE frequencies ... averaged over the period of t = 400�700
ms.” Despite this coarse-grained metric and lack of distinc-
tion between AE modes, it worked reasonably well for a lin-
ear feedback controller with neutral beam injection used as an
actuator.

The purpose of this work is to use simple neural-network-
based models to provide more sophisticated spatio-temporal
predictions of AE activity. In this work, we meticulously label
a database of 26 DIII-D tokamak discharges in order to train
simple neural-network-based models for full spatio-temporal
AE classification, improving on previous work that could not
provide localized predictions in space and time. This mod-
els are then used to generate new labels for the much larger
database36 of 1,112 DIII-D discharges.

In the remainder of this section, we briefly describe AEs
as well as the electron cyclotron emission (ECE) diagnostics
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AE Name Acronym Cause
Beta-induced BAE44–46 Compressibility

Low-frequency modes LFM36 Hot electrons,
qmin ⇠ rational

Reversed-shear RSAE47,48 qmin

Toroidal TAE49–52 m & m+1
coupling

Table I. Description of the AE activity considered in this work,
adapted from Heidbrink53. The poloidal wave number is denoted
by m and the minimum value of the safety factor is denoted qmin.
Other AEs are omitted because they were not common enough for
adequate training using the database described in Sec. II.

that we use to develop the data-driven models for locating and
identifying AE modes. These models are introduced in Sec-
tion II and their performances are discussed in Section III.

A. Alfvén eigenmodes

Alfvén eigenmodes make up a diverse class of complex dy-
namics that pose many challenges for simple machine learn-
ing models, generalization to new datasets, and analytic meth-
ods. They are typically observed in tokamaks and other
fusion-relevant plasma devices, although they can also occur
in space plasmas37. Some AEs are extremely well-studied,
while others are recently discovered and yet to be fully under-
stood. Although their causes and effects vary widely, some
AEs can lead to confinement loss and damage to plasma-
facing components in present and future devices. Previous
examples include ablating carbon and ruining the transmis-
sion of optical components38 and lost fast ions drilling a hole
in TFTR that actually vented the machine39. The database
used in this work (described in Section II) distinguishes be-
tween several types of AE activity: Low-frequency modes
(LFMs, these “Christmas light” patterns have been formerly
characterized as BAAE modes36), Beta-induced Alfvén eigen-
modes (BAE), Reversed-Shear Alfvén eigenmodes (RSAE),
and Toroidal Alfvén eigenmodes (TAE)36,40. The AE modes
are further described in Table I, where references to the rel-
evant theoretical and experimental manuscripts can also be
found.

Although AEs are relatively rare events, models for AE
classification can be trained because AEs appear on many
high-resolution plasma diagnostics and significant troves of
past data are often available on tokamaks such as DIII-D. For
future real-time control applications, there are a wide range
of experimental actuators that can be used to control different
AEs6,41–43.

B. Electron cyclotron emission

Electron cyclotron emission (ECE) provides direct local
measurements of the electron temperature for thermal plas-
mas54, and as such, can provide spatiotemporally-localized
information about AE activity. The DIII-D ECE diagnostic
data is obtained at 500 kHz, in a single toroidal cross-section,
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Figure 1. Illustration of the 40 radial ECE measurement locations
alongside the closed (solid) and open (dashed) flux surfaces for an
example DIII-D discharge. The effective position of the ECE chan-
nels can vary significantly in each discharge, and measurements out-
side the last closed flux surface are not local or accurate.

at 40 different channels corresponding to varying radial loca-
tions, as shown in Fig. 1. Each ECE channel spans an approx-
imately 1� 2 cm radial extent, which is small compared to
the radial scale of AEs. Most of the time, an AE mode can be
seen across several channels.

Properly capturing the spatial correlations is difficult be-
cause the effective position of the ECE channels changes with
the magnetic equilibrium, and therefore can vary substantially
during startup operation. The first few ECE channels regu-
larly view data that is outside the last closed flux surface and
this data is considered untrustworthy. Despite this spatial vari-
ability and data corruption, our prior work34 used the full,
raw, unprocessed ECE data, i.e. only the ECE channel in-
dices corresponding to the relative major radial positions of
the measurements. This has the advantage that the magnetic
field evolution is not required. In the present work, we use the
time-resolved magnetic field equilibrium data from EFIT55 to
map the ECE channels to the normalized plasma radius r , the
square root of the toroidal flux normalized by the value at the
last-closed flux surface.

C. Summary of results from prior work

Despite the simplifications that we described in the previ-
ous subsection, high classification performance was obtained
in our initial work34. Table II illustrates the primary conclu-
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Table II. Summary of the highest performance model from Jalalvand
et al.34, a 2-layer RCN with 8K-500 nodes per layer, on a validation
set. A threshold of 0.2 has been applied to binarize the model output.
There are 540 labeled AEs in this validation dataset.

AE TP FP TN FN TPR FPR
BAE 75 46,982 470,368 17 0.82 0.09
LFM 8 4,102 587,088 3 0.73 0.01
RSAE 167 48,319 417,211 13 0.93 0.10
TAE 248 76,133 330,057 9 0.97 0.19

sions of the prior work using a reservoir computing network
(RCN)34. RCNs are recurrent neural networks, and therefore
are capable of processing temporal information while provid-
ing a simple weights initialization and training procedure56,57.
This work used a very large but imprecise database that con-
tains labels for a single time slice per AE activity to indicate
the approximate occurrence of AEs in the time domain. These
labels are specific to the overall discharge but not specific
to each ECE channel, so spatially-localized prediction of the
modes was not possible. Moreover, since only a single time
slice label indicates roughly where each AE occurs, signifi-
cant interpolation and windowing is required to train a proper
machine learning method. Otherwise, the learning architec-
ture is attempting to learn from a dataset with very few true
positives and a very large number of false negatives. There-
fore, only somewhat temporally-localized predictions were
possible � predictions of AE activity by the RCN were con-
sidered true positives if they were within 500 ms of the corre-
sponding ground-truth time slice.

Furthermore, Table II illustrates the highly imbalanced na-
ture of the data. Even after interpolation and windowing of the
original labels, only about 0.02% of the training or validation
sets are labeled as an AE. This fact is why true-positive-ratio
(TPR) and false-positive-ratio (FPR) are the primary metrics
reported in that work. Reporting the “accuracy” of the model
would be profoundly misleading; a model that never predicts
AE activity would report accuracy above 99%. Despite the
many shortcomings of the data, the strong performance with
RCNs was encouraging for continued machine learning work.

II. SPATIOTEMPORALLY-LOCALIZED AE
CLASSIFICATION

The previous work identified that the primary avenue
for further improvements was to provide improved database
labels that are unique to each ECE channel, facilitating
spatiotemporally-localized machine learning predictors. For
instance, it was found that other machine learning classifiers
(MLPs, GRUs, RNNs, CNNs, etc.) that were trained with the
original, large database struggle to find performance & 70%
TPR, and very quickly overfit to the data. This poor training
performance persists despite the different learning architec-
tures, and despite large variations in the network hyperparam-
eters. This behavior is characteristic of database labels that are
of insufficient quality for training accurate machine learning
models. This is an expected finding � the database labels are

not unique to each ECE channel so the model is inevitably be-
ing trained on many false positives and many false negatives,
providing an upper bound on the performance achievable with
any machine learning model. This finding further motivated a
second, much smaller database consisting of higher-precision,
spatiotemporally-localized AE labels.

A. High precision database labels

ECE-channel-specific labels were produced by selecting
26 very active DIII-D discharges, manually examining all
26 ⇥ 40 = 1040 ECE channel spectrograms, and providing
specific time and frequency windows for the labels (a box
is drawn on the spectrogram where the mode appears). This
manual examination becomes significantly easier by first us-
ing standard image processing techniques58 to enhance the
spectrograms by highlighting the AE activity59. Each spec-
trogram is shape 3709⇥256 in time ⇥ frequency space. The
denoising process is as follows: the spectrogram values are
(1) converted to the log of the values, (2) normalized to [0,1],
(3) thresholded off if below the 90% quantile, (4) Gaussian-
filtered with temporal standard deviations (31,3), (5) mean-
filtered along the frequency dimension, (6) morphologically-
filtered, and finally (7) mean-filtered along the frequency di-
mension again. Across the vast majority of ECE spectrograms
obtained from a wide range of DIII-D discharges, this image
filtering sequence was empirically found to perform well at
highlighting the AE activity while denoising the remainder of
the image, as in Fig. 5.

Although this is a very small subset of the original database,
each spectrogram provides 3709 time slice input vectors, each
of dimension 256, meaning a total of ⇠ 4 million input vectors
for training models. The raw signals, spectrograms, denoised
spectrograms (denoised as described in the previous para-
graph), labels, and predictions are illustrated for three active
ECE channels during DIII-D discharge 178637 in Fig. 2.The
model was not trained on this discharge. The denoising pro-
cess strongly highlights the AE activity and improved both
the manual and model-based labeling; models trained with the
denoised spectrograms universally outperformed models with
the raw spectrograms.

Out of the 1040 ECE channel spectrograms, ⇡ 2% of the
total time series contain an LFM, ⇡ 3% contain BAE, ⇡ 8%
contain RSAE, and ⇡ 7% contain TAE. However, often the
AEs are concurrent, so this is an underestimate of the inactive
periods. The total number of “events” of each type are 143
LFM, 329 BAE, 415 RSAE, and 441 TAE (this can be rec-
onciled with the previous percentages because BAE tends to
appear on the ECE channels as short, isolated events). Over-
all, approximately 95% of the samples in this sub-database has
no AE activity whatsoever. Although still quite imbalanced,
this database is a substantial improvement over the original
one where approximately 99% of the data contained no AE
activity (or at least no AE labels).
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Figure 2. In order to facilitate more accurate NN predictions, a small dataset of 26 discharges was developed and contains high-precision
labels unique for each ECE channel. From top to bottom this illustration shows three ECE channel time series for the DIII-D test discharge
178637, along with the corresponding spectrograms, the denoised spectrograms, the manual labels corresponding to each ECE channel, and
the predictions using the baseline MLP. The model closely predicts the manual labels, albeit with weaker strength.

III. MODELS AND RESULTS

Evaluating model performance with this database is not
straightforward. Often, the TPR and FPR are used for im-
balanced datasets. However, we are primarily interested if the
model can provide accurate, spatiotemporally localized pre-
dictions of the AEs. In other words, metrics should be evalu-
ated not on individual spectrograms, but on the full, 40 chan-
nel ECE data. Each discharge’s ECE data forms an “image”
in the space of normalized plasma radius and time (r, t).

One of the primary metrics in the field of image segmen-
tation is the intersection-over-union (IOU)60–62. For each AE
type, this metric places a bounding box over the entire active

portion of the ground truth image, and another bounding box
over all of the active image pixels that are predicted by the
model to be above some threshold value l . Then the IOU
can be computed from these two bounding boxes, providing a
similarity metric between the predictions and manual labels.
IOU above 0.5 is typically considered strong performance in
image identification.

A. MLP and other models

As a baseline, a multi-layer perceptron (MLP) with three
layers, 512 nodes per layer, and interleaving 30% dropout lay-
ers was trained with the mean-squared error loss, directly on
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Figure 3. IOU values for each of the AE types as a function of the
threshold l . The IOU values were computed from the five test dis-
charges.

the denoised spectrogram data from this new database. Each
input is a single column from the denoised spectrogram, i.e.
a feature vector of length equal to the number of frequency
points in the spectrogram. Therefore, the inputs do not contain
any temporal information beyond that which is encoded in the
frequency information in the spectrogram. Such a memory-
less approach tends to produce rather “spiky” predictions, so
we smooth the outputs using a running average with a win-
dow of ⇠ 50 ms. In order to compare some of model predic-
tions with the manual labels, the 26 discharges are split into
16 training discharges, 5 validation discharges, and 5 testing
discharges in a way that provides enough LFM and BAE in-
stances for training. Model performance was fairly insensitive
to changes in the dropout rate, additional nodes per layer, and
other network hyperparameters.

The performance of the model is evaluated by computing
the IOU for each of the validation discharges and for each of
the AE types as a function of the prediction threshold l . The
full IOU validation results are shown in Fig. 3 and indicate
that at l ⇡ 0.4, LFM, RSAE, and TAE IOUs are ⇡ 40�80%
or higher, while the BAE IOU peaks at ⇡ 20%. It is possi-
ble that the lower performance for BAE is because this mode
tends to be more intermittent than other AEs. We plot each
validation discharge image and the corresponding bounding
box in Fig. 4 for a threshold of l = 0.4. The visualization
illustrates that the model accurately captures the spatiotempo-
ral location of AE activity in all the testing discharges, with
most of the degradation in IOU coming from small outliers.
The model IOU can frequently be further improved by using
a more aggressive output smoothing than the 50 ms running
average employed here.

The baseline MLP did not use spatial or temporal correla-
tions in the data to train, and yet manages to accurately cap-
ture much of the spatiotemporal dependence of AEs in the
data. The frequency content at a single time slice of the in-
dividual denoised spectrograms is apparently already very in-
formative for AE classification. Temporal memory was also
found to be fairly unimportant in our prior work. The lower

138388

159246

163147

178631

178637

Time (s) Time (s) Time (s) Time (s) Time (s) Time (s) Time (s) Time (s)

138388

159246

163147

178631

178637

Figure 4. Summary of the IOU results for the 5 test discharges, at
a threshold of l = 0.4. Apart from some of the BAE, it is visually
apparent that the model can accurately predict the spatiotemporal de-
pendence of the modes; the primary degradation in the LFM, RSAE,
and TAE IOU tend to be isolated outlier predictions, which could
be removed by additional output smoothing. It is also worth noting
that the manual labels are not perfect. It is possible that in some
cases, the model is actually more accurate than the provided labels.
For instance, on additional inspection discharge 159246 looks like it
does exhibit some weak LFM activity at the location predicted by the
model, and had been labeled as such in the original database contain-
ing 1,112 discharges (but not in the database of 26 discharges).
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performance with BAE and LFM may be a symptom of the
simplicity of this MLP. The MLP is only three layers, and the
input data contains no temporal memory for the MLP to ex-
tract. There is no spatial memory either, because each ECE
channel is processed individually. This is not very relevant
for BAE and LFM, which tend to have smaller spatial extents
than TAE or RSAE. LFMs in particular exhibit a complex pat-
tern in time, meaning one might expect that identifying these
modes would be more sensitive to temporal memory. A sim-
ple way to incorporate some temporal information in these
models is to enrich the input by including first and second
temporal derivatives, calculated from an arbitrary window of
size Dt around each input at time t. This triples the size of the
input features, but we observe some minor improvements in
performance. The addition of temporal information primarily
increases the confidence of the model decisions, particularly
for detecting LFM.

The MLP models were then compared with two other rel-
atively simple machine-learning models, one based on ridge
regression and another based on a two-layer RCN. The MLP
outperforms ridge regression, which struggles to identify BAE
or LFM, cannot distinguish between TAE and RSAE, and
struggles to fully turn off when AE activity is not present.
The RCN performs similarly to the MLP model. All four of
the linear, RCN, MLP, and MLP + derivatives models were
tested against a set of 20 randomly chosen discharges to vi-
sually compare model performances. A representative set of
spectrograms from discharge 170669 are illustrated in Fig. 5,
along with the outputs from the original RCN used in our prior
work. The RCN and MLP models accurately predict AE activ-
ity quite well. The older RCN predicts the overall AE activity
in the discharge well, but cannot distinguish activity in each
ECE channel since it was trained on the original database la-
bels that are not specific to ECE channel. Nonetheless, the
older RCN performs well at predicting the timing and type of
primary AE activity that occurs across the ECE channels.

Encouraged with the performance of this baseline MLP, we
now use the model to predict labels for the large database
consisting of another 1,112 DIII-D discharges. This larger
database varies across a very wide range of parameter space
despite the database having been compiled to focus on dis-
charges with energetic particles. This sort of bootstrapping is
critical for creating more useful datasets in the fusion com-
munity; recent work63 provided similar labels for LH tran-
sitions in a DIII-D database. In this scenario, we denote a
“true AE” in a specific ECE channel if the mode is predicted
to occur with probability > 0.2 for more than 50 ms of the
data. With this definition, the percent of spectrograms in the
database with at least one occurrence of LFM, BAE, RSAE,
or TAE is 3.9%, 1.0%, 22%, and 24% respectively. How-
ever, the percentage of time in the whole database where each
AE is predicted to occur with probability > 0.2 is only 0.6%,
0.2%, 4.8%, 5.2%. In total, 8% of the data has at least one
of type AE occurring. This estimate contains far more AE ac-
tivity than was originally labeled in this database and it alone
represents an interesting finding. It provides an estimate for
the frequency of occurrence in AE modes across a broad pa-
rameter space of DIII-D operation. A representative example

is illustrated in Fig. 6 where weak AE activity was originally
ignored but the model correctly predicts AEs. Future work
could cluster the AE activity by various plasma parameters in
order to assess AE occurrence frequencies and other AE prop-
erties in different dynamical regimes.

IV. CONCLUSION

A small set of 26 DIII-D discharges were manually labeled
for AE activity and used to train machine learning models to
generate spatiotemporally localized classification of AEs. Ini-
tial work with this small database shows that simple machine-
learned models can already produce strong spatiotemporally-
localized AE classification from denoised spectrograms of in-
dividual DIII-D ECE channel data. The baseline MLP model
performs favorably compared with a ridge regression model,
a RCN model, and a memory-aware MLP. The baseline MLP
was subsequently used to generate spatiotemporally localized
labels for a much larger database of 1,112 DIII-D discharges.
These labels facilitate future work using more sophisticated
deep learning models, as well as physical studies on the char-
acteristics of AEs in different dynamical regimes. Additional
future work includes prediction and control algorithms for
AEs and combining datasets from different diagnostics such
as ECE, magnetics, and beam-emission spectroscopy.
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Figure 5. Illustration of the predictions for the linear, RCN, MLP, and MLP + derivatives models on the active ECE channels in discharge
170669, along with the RCN outputs from our prior work34. The linear model struggles to accurately predict AEs, the new RCN and the MLPs
predict AEs quite well, and the older RCN accurately predicts the “average” AE content of the discharge but cannot distinguish between ECE
channels. Recall that the RCN from previous work was trained on a different set of labels that is not unique to each ECE channel; despite this
setback, it predicts well the timing and type of primary AE activity that occurs over the majority of ECE channels.
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Figure 6. The model correctly identifies minor AE activity through-
out the database, which is not usually labeled manually.
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32V. Škvára, V. Šmídl, T. Pevnỳ, J. Seidl, A. Havránek, and D. Tskhakaya,
“Detection of Alfvén eigenmodes on COMPASS with generative neural
networks,” Fusion Science and Technology 76, 962–971 (2020).

33B. J. Woods, V. N. Duarte, E. D. Fredrickson, N. N. Gorelenkov,
M. Podestà, and R. G. Vann, “Machine learning characterization of
Alfvénic and sub-Alfvénic chirping and correlation with fast-ion loss at
NSTX,” IEEE Transactions on Plasma Science 48, 71–81 (2020).

34A. Jalalvand, A. A. Kaptanoglu, A. Garcia, A. O. Nelson, J. Abbate, M. E.
Austin, G. Verdoolaege, S. Brunton, W. W. Heidbrink, and E. Kolemen,
“Alfvén eigenmode classification based on ECE diagnostics at DIII-D using
deep recurrent neural networks,” Nuclear Fusion (2021).

35L.-L. Zhao, G. P. Zank, J. S. He, D. Telloni, L. Adhikari, M. Nakanotani,
J. C. Kasper, and S. D. Bale, “MHD and ion kinetic waves in field-aligned
flows observed by Parker Solar Probe,” The Astrophysical Journal 922, 188
(2021).

36W. W. Heidbrink, M. A. Van Zeeland, M. E. Austin, A. Bierwage, L. Chen,
G. Choi, P. Lauber, Z. Lin, G. R. McKee, and D. A. Spong, “‘BAAE’
instabilities observed without fast ion drive,” Nuclear Fusion 61, 016029
(2020).

37A. Beliën, S. Poedts, and J. Goedbloed, “Magnetohydrodynamic continua
and stratification induced Alfvén eigenmodes in coronal magnetic loops,”
Physical review letters 76, 567 (1996).

38H. Duong, W. Heidbrink, E. Strait, T. Petrie, R. Lee, R. Moyer, and
J. Watkins, “Loss of energetic beam ions during TAE instabilities,” Nuclear
Fusion 33, 749 (1993).

39R. White, E. Fredrickson, D. Darrow, M. Zarnstorff, R. Wilson, S. Zweben,
K. Hill, Y. Chen, and G. Fu, “Toroidal Alfvén eigenmode-induced ripple
trapping,” Physics of Plasmas 2, 2871–2873 (1995).

40B. Madsen, M. Salewski, W. Heidbrink, L. Stagner, M. Podestà, D. Lin,
A. Garcia, P. C. Hansen, J. Huang, et al., “Tomography of the positive-pitch
fast-ion velocity distribution in DIII-D plasmas with Alfvén eigenmodes
and neoclassical tearing modes,” Nuclear Fusion 60, 066024 (2020).

41D. C. Pace, C. S. Collins, B. Crowley, B. A. Grierson, W. W. Heidbrink,
C. Pawley, J. Rauch, J. T. Scoville, M. A. Van Zeeland, Y. B. Zhu, et al.,
“Control of power, torque, and instability drive using in-shot variable neu-
tral beam energy in tokamaks,” Nuclear Fusion 57, 014001 (2016).

42P. Li, Y. Li, J. Li, G. Wu, W. Chen, J. Geng, F. Chen, Y. Wang, B. Zhang,
L. Xu, et al., “Dynamics between toroidal Alfvén eigenmode evolution and
turbulence suppression under RMP on EAST,” Nuclear Fusion (2021).

43S. Tang, T. Carter, N. Crocker, W. Heidbrink, J. Lestz, R. Pinsker,
K. Thome, M. Van Zeeland, and E. Belova, “Stabilization of Alfvén eigen-
modes in DIII-D via controlled energetic ion density ramp and validation
of theory and simulations,” Physical Review Letters 126, 155001 (2021).

44A. Turnbull, E. Strait, W. Heidbrink, M. Chu, H. Duong, J. Greene, L. Lao,
T. Taylor, and S. Thompson, “Global Alfvén modes: Theory and experi-
ment,” Physics of Fluids B: Plasma Physics 5, 2546–2553 (1993).

45W. Heidbrink, E. Strait, M. Chu, and A. Turnbull, “Observation of beta-
induced Alfvén eigenmodes in the DIII-D tokamak,” Physical review letters
71, 855 (1993).

46W. Heidbrink, M. Van Zeeland, M. Austin, N. Crocker, X. Du, G. Mc-
Kee, and D. Spong, “Stability of beta-induced Alfven eigenmodes (BAE)
in DIII-D,” Nuclear Fusion 61, 066031 (2021).

47S. Sharapov, B. Alper, H. Berk, D. Borba, B. Breizman, C. Challis, A. Fa-
soli, N. Hawkes, T. Hender, J. Mailloux, et al., “Alfvén wave cascades in a
tokamak,” Physics of Plasmas 9, 2027–2036 (2002).

48H. Kimura, Y. Kusama, M. Saigusa, G. Kramer, K. Tobita, M. Nemoto,
T. Kondoh, T. Nishitani, O. Da Costa, T. Ozeki, et al., “Alfvén eigenmode
and energetic particle research in JT-60U,” Nuclear Fusion 38, 1303 (1998).

49C. Cheng, L. Chen, and M. Chance, “High-n ideal and resistive shear
Alfvén waves in tokamaks,” Annals of Physics 161, 21–47 (1985).

50C. Cheng and M. Chance, “Low-n shear Alfvén spectra in axisymmetric
toroidal plasmas,” The Physics of fluids 29, 3695–3701 (1986).

51W. Heidbrink, E. Strait, E. Doyle, G. Sager, and R. Snider, “An investi-
gation of beam driven Alfvén instabilities in the DIII-D tokamak,” Nuclear
Fusion 31, 1635 (1991).

52K. Wong, R. Fonck, S. Paul, D. Roberts, E. Fredrickson, R. Nazikian,
H. Park, M. Bell, N. Bretz, R. Budny, et al., “Excitation of toroidal Alfvén
eigenmodes in TFTR,” Physical review letters 66, 1874 (1991).

53W. Heidbrink, “Basic physics of Alfvén instabilities driven by energetic
particles in toroidally confined plasmas,” Physics of Plasmas 15, 055501
(2008).

54M. Austin and J. Lohr, “Electron cyclotron emission radiometer upgrade
on the DIII-D tokamak,” Review of scientific instruments 74, 1457–1459



9

(2003).
55L. Lao, H. S. John, R. Stambaugh, A. Kellman, and W. Pfeiffer, “Recon-

struction of current profile parameters and plasma shapes in tokamaks,”
Nuclear fusion 25, 1611 (1985).

56H. Jaeger, “The "echo state" approach to analysing and training recurrent
neural networks,” Tech. Rep. GMD Report 148 (German National Research
Center for Information Technology, 2001).

57A. Jalalvand, J. Abbate, R. Conlin, G. Verdoolaege, and E. Kolemen,
“Real-time and adaptive reservoir computing with application to profile
prediction in fusion plasma,” IEEE Transactions on Neural Networks and
Learning Systems , 1–12 (2021).

58R. Chandel and G. Gupta, “Image filtering algorithms and techniques: A
review,” International Journal of Advanced Research in Computer Science
and Software Engineering 3 (2013).

59E. Ahn, A. Jalalvand, and E. Kolemen, “Localizing Alfvén eigenmodes in
plasma based on high resolution ECE spectrograms at DIII-D using autoen-
coders and image processing techniques,” Bulletin of the American Physi-

cal Society (2021).
60M. A. Rahman and Y. Wang, “Optimizing intersection-over-union in deep

neural networks for image segmentation,” in International symposium on
visual computing (Springer, 2016) pp. 234–244.

61Z. Qiao, J. Zhao, J. Zhu, Z. Tyree, P. Mudalige, J. Schneider, and J. M.
Dolan, “Human driver behavior prediction based on urbanflow,” in 2020
IEEE International Conference on Robotics and Automation (ICRA) (IEEE,
2020) pp. 10570–10576.

62Z. Hao, H. Averbuch-Elor, N. Snavely, and S. Belongie, “Dualsdf: Seman-
tic shape manipulation using a two-level representation,” in Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(2020) pp. 7631–7641.

63K. J. Montes, C. Rea, R. A. Tinguely, R. Sweeney, J. Zhu, and R. Granetz,
“A semi-supervised machine learning detector for physics events in toka-
mak discharges,” Nuclear Fusion 61, 026022 (2021).


