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We review progress and open challenges for a number of problems related to the Oldroyd B model which
are of current interest to the mathematical community. We discuss existence results for initial value problems
and steady flows, flow stability, and the problem of understanding the asymptotics of the high Weissenberg
number limit. We also discuss efforts and challenges in numerical simulation, exemplified by three problems:
extensional flow in a four roll mill geometry, flow past a confined cylinder, and locomotion of microorganisms

1. Introduction

This review article is intended to address a two-fold audience:
mathematicians who are interested in working on viscoelastic flow
problems, and rheologists who have a need for a deeper understanding
of the underlying equations and for interactions with mathematicians.
To the former, we wish to give a perspective of the state of current
progress and the many open problems in the field; to the latter we
hope to convey a sense of how mathematicians look at the field, what
interests them and what they can accomplish.

We begin our review with a section on the physical background of
the Oldroyd B model. Section 2 summarizes what we think a mathe-
matician working on this subject needs to know about the underlying
physics. Any mathematical analysis starts with the question of existence
of solutions. The techniques used in analyzing this question lay the
foundation for any study of further issues such as qualitative behavior
of solutions, methods of approximation, etc. Sections 3 and 4 review
the state of the art for initial value problems, and, respectively, steady
flows. Generally speaking, the question of existence is at this point
reasonably well understood “in the small”, i.e. for short time in initial
value problems, and for small perturbations of the rest state or of
Newtonian flows. On the other hand, the existence problem “in the
large” is still open even for the Newtonian case, and it only becomes
harder for viscoelastic flows. Little is known at this point.

Section 5 is concerned with flow stability. Flow instabilities in
Newtonian flows are a rich subject, which has inspired much math-
ematical research in dynamical systems and asymptotics. Viscoelastic
effects add new mechanisms of instability. Beyond that, fundamental
mathematical questions arise. The standard approach to studying the
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onset of instability links stability to eigenvalues and employs center
manifold reduction and bifurcation theory. The rigorous justification
of these methods is well understood in Newtonian fluid mechanics but
still leaves open questions for viscoelastic flows.

Newtonian flows become increasingly complex as the Reynolds
number increases. Something similar happens in viscoelastic flows at
high Weissenberg number. The idea of separating the study of the high
Reynolds number limit into near inviscid flow in the interior of the flow
domain and a boundary layer where viscous effects are important is
now more than a century old. But actually implementing this idea is far
from straightforward or simple. Section 6 reviews efforts to formulate
an analogous framework for high Weissenberg number flows.

In the latter part of our paper, we review numerical simulations
of a number of flow problems. We have chosen a few specific topics
which illustrate the importance of singular or near singular behavior at
high Weissenberg number, instabilities, possible nonexistence of steady
flows, and the impact of such mathematical difficulties on numerical
simulations. Specifically, we discuss extensional flow generated in a
four roll mill geometry (Section 8), flow past a cylinder (Section 9) and
locomotion of microorganisms (Section 10).

2. Motivation of the Oldroyd B model

Oldroyd’s article in 1950 [1] is the first systematic attempt to
formulate constitutive models for viscoelastic fluids in a way that
respects material frame indifference. This principle states that stresses
in a continuous medium should arise from deformations only and
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should not change if the material is merely rotated. More specifically,
consider a given motion where a particle initially at point & occupies
position x(&,¢) and another where the same particle occupies position
x*(&,1) = Q@)x(&,1), where Q is a rotation. If the stress tensor in the
first case is T(x, ), then in the second motion the stress tensor should
be T*(x*,1) = Q()T(x,1)Q~(¢), i.e. apart from a rotation of the principal
axes the stress tensor is unchanged.

As a special case, Oldroyd considers the extension of a linear
Jeffreys model to the nonlinear case. The Jeffreys model relates the
stress tensor to the velocity gradient. Let v(x,f) denote the velocity
of the fluid, and let Vv be its gradient, with the convention that the
ij component is dv;/dx;. We denote by D the symmetric part %(Vv +
(Vv)T). The linear Jeffreys model postulates a relationship of the form
T+AI% =2n(D+/12(Z)—It)). )]
Here 7 is the viscosity, 4, is called the relaxation time, and 4, is called
the retardation time. All of these are presumed constant.

Naively, we might just replace the time derivative 0/0t by the
material time derivative d/dt = d/ot + (v - V), i.e. a time derivative
following the same particle. However, this is wrong. To see this, let us
consider how the various terms in (1) change under a superimposed
rotation. We have

angt, n_, @,
% = vi(x*, 1) = Q)V(x, 1) + Q(N)x

QVIQ ' (x*, 1) + QHQ ™ ()x*. 2

Consequently, we find

ViV, 1 = Qv NQ ™ (1) + QQT! (). 3
Since the latter term is antisymmetric, the symmetric part satisfies
D*(x*,1) = QDX NQ™' (). “

This confirms that the Newtonian fluid satisfies material frame in-
difference. Now, however, consider the behavior of a material time
derivative. If T*(x*,1) = Q)T (x, )Q~'(r), we find
" dT(x,t) _
L = Qoo

+ Q(t)Q_1 OT*(x*, 1) - T*&*, HQNQ ™' (1), )

which is not Q Q . Oldroyd’s paper presents two simple ways to fix
this. We can replace (1) by

T+AIDDT—2;1(D+12 ), 6)
where either

DDT = UT+ (VT + T(VV), @
or

% = ﬂ +(v- V)T = (V0T = TV . (®)

He calls these two alternatives Model A and Model B. Oldroyd notes
that experiments of Weissenberg [2], which show that polymeric fluids
climb a rotating rod, favor Model B (Model A would predict the
opposite effect). For a more systematic study of the rod climbing effect,
we refer to [3]. For future reference, we note that (6) can be put in the
alternative form

T=T,+T,, )
where
T4 DT,
+
Dr

= Zr]pD T, =25,D,

npy=0=24/dpn,  ng=(4/4)n (10)
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The model is physically reasonable only if 4, < ;. 5, and 7, are referred
to as the “polymer” and “solvent” viscosity. In the practical application
of the model, however, 75, is often much larger than the viscosity of
the solvent, except for very viscous solvents (polymeric fluids typically
have more than one relaxation time, and the contribution of shorter
relaxation times to the viscosity usually exceeds that of the solvent).
The limiting case 4, = 0 (i.e. n, = 0) of the Oldroyd B model is called
the upper convected Maxwell model.

In the language of tensor analysis, the derivative appearing in the
Oldroyd A model is called covariant or lower convected, while that in
the Oldroyd B model is called contravariant or upper convected. We
shall not go into this further, but give some simple heuristics which
explains why one model might be preferred over the other. Let us
consider a curve consisting of points which move with the material.
If s is the curve parameter, and x(s,7) is the position of a point on the
curve, we have % = v(x(s, 1), 1). For the tangent vector u = %, we find
&M Wy, an
If we think of a polymer molecule as a linear object which is affinely
stretched with the flow and carries a stress proportional to uu’, then
we find
DT
D
with D/Drt denoting the upper convected derivative. This is indeed
assumed in the neo-Hookean model of rubber elasticity [4]. This makes
the Model B the more natural one for fluids like polymers. On the other
hand, we may consider a family of surfaces moving with the medium,
given by an equation ¢(x(¢,1),1) = g(&). We have d¢/dt = 0, which for
the normal vector of these surfaces yields

=0, (12)

%an +(VW'vg =0. 3

Materials in which stresses are carried by surfaces exist (indeed surface
tension is the primary source of stresses in emulsions), but they are not
adequately modeled by linear elasticity.

There are two quite distinct “molecular” theories of polymeric
liquids which lead to the Oldroyd B model. One is motivated by
the network theory of rubber elasticity, which visualizes rubber as a
network of interconnected elastic strands. For a liquid, the connections
are temporary and form and decay according to laws postulated ad
hoc. Such a theory leading to the upper convected Maxwell model was
formulated by Green and Tobolsky in 1946 [5]. A quite different theory
visualizes a polymer molecule as a linear elastic spring subject to drag
from the surrounding fluid (which is modeled as Newtonian) on its ends
and also to Brownian motion. This theory is originally due to Kuhn [6].
We may regard the Oldroyd B model as the simplest model for the
flow behavior of polymeric fluids which has some underpinning in the
physics of the underlying microstructure. There are however, serious
limitations:

1. It is not realistic to have a single relaxation time. Polymers
do not usually consist of identical molecules, and, even if they
do, molecules have internal modes of deformation which have
shorter relaxation times than the dominant mode.

2. Both the rubberlike and dumbbell theories treat molecules as
linearly elastic. This is, at the very least, inappropriate for large
deformations. The elasticity of polymeric liquids is primarily as-
sociated with the decrease in entropy that results from stretching
out a randomly coiled molecule. A different physics takes over
once molecules are fully stretched.

3. The model does not adequately account for interactions between
different polymer molecules. In most polymeric fluids, entangle-
ments between molecules are essential, but unlike in a “rubber-
like” network, molecules are not pinned at these entanglements,
but slither through them.
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For reasons like these, rheologists had to go to some length to even find
a fluid that is well described by the Oldroyd B model. The search for
such a fluid finally led to “Boger fluids;” these are polymer solutions in
highly viscous solvents. The original Boger fluid [7] was a solution of
polyacrylamide in corn syrup. The Oldroyd B model predicts a higher
stress growth at large deformation rates than typical elastic fluids
actually possess. This leads to more pronounced singular behavior in
the limit of high deformation rates, which poses challenges for both
mathematical analysis and numerical simulation.

The Oldroyd B model has an equivalent integral form. Let y(x,t,s)
denote the position at a prior time s of the particle which occupies
position x at time 7, and let

F,(x,5) = Vy(x.t,5), C,(x,s) =F,(x, S)TF,(x, s). (14

Then an equivalent form of the Oldroyd B model is
n t
T, = /1_1; /_ exp(—(t — )/ 4))(C; ' (x,5) = D ds. (15)
l 0

It is obvious from the integral form that T, + (n,/4))I is positive
definite. It can also be shown from the differential version of the
model that this positive definiteness is preserved as long as it holds
for the initial data [8]. Preservation of positive definiteness is an
important concern for numerical simulations. If positive definiteness is
lost, instabilities arise, and the upper convected Maxwell model even
becomes ill-posed [9].

3. Existence for initial value problems

The basic existence problem consists in solving (6), together with
the balance of momentum

p(% +(v-V)v)=divT - Vp, e)
the incompressibility condition
divv =0, a7

the boundary condition v = 0, and initial conditions for v and T.
Creeping flow problems (i.e. with inertia neglected) seem to have been
the first to be solved; see [10] for an early reference. With the inclusion
of inertia, an existence result locally in time was proved in [11] for
a broad class of models including the Oldroyd B model. The method
uses Lagrangian coordinates and is essentially based on a perturbation
of the Newtonian case. The case 5, = 0 is harder; the first existence
result for a three-dimensional situation is due to Kim [12]; it concerns a
class of integral models including the lower convected Maxwell model.
The technique can be generalized to cover also the upper convected
model [13]; a different method is developed in [14]. A result which
proceeds directly from the differential form of the model is given
in [15].

If the initial data are sufficiently small, we can expect a global
existence result. Indeed, any reasonable model of fluid flow ought to
predict that small perturbations of the rest state, in absence of a driving
force, decay to zero. Kim’s result [12] and the result given in [13]
include a result on global existence and decay for small perturbations
of the rest state in addition to local existence. These results are for
problems without boundaries. Guillopé and Saut [16] prove a global
existence result for one-dimensional shearing motions for a class of
models including the Oldroyd B model. This result is for large data,
but is trivial for the Oldroyd B case, since this model is linear for
shearing motions. In [17] they prove global existence for small data in
the multidimensional setting, under the assumption that the retardation
time is not too small. Hakim [18] also proves a result on existence of
time-periodic solutions for small time-periodic data. The assumption
of sufficiently large retardation time is disposed of by Molinet and
Talhouk [19]. More recent further results concern the incompressible
limit of compressible versions of the Oldroyd B model [20], the limiting
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case of zero relaxation time [21], exterior domains [22], and the
molecular version of the model, which includes additional “molecular”
variables [23]. There are also improvements regarding function spaces
in which data need to be small, which can be chosen to be critical Besov
spaces; moreover, in two dimensions the known global existence result
for the Newtonian case can be exploited if 4,/4; is close to 1 [24].

Global existence for large initial data is a much harder and essen-
tially unsolved problem. Even for the Newtonian case, only existence
of weak solutions is known in the three-dimensional case. Lions and
Masmoudi [25] show a global existence result for weak solutions of the
corotational Oldroyd model; their result, however, relies on a cancel-
lation of terms which is specific to this model and does not generalize
to more physically realistic models. Chemin and Masmoudi [26] give
necessary criteria for blow-up which need to be satisfied if global
existence (of regular solutions) fails. Constantin and Kliegl [27] prove
global existence in two space dimensions, provided an additional stress
diffusion term is added to the constitutive law. (There is a physical
rationale for such a term, but the coefficient is very small, and stress
diffusion is in practice relevant only at submicron length scales). Barrett
and Siili [28] prove a similar result for the molecular version of the
Oldroyd B model. Masmoudi [29] proves global existence of weak
solutions for the FENE-P, Phan-Thien Tanner and Giesekus models; all
these models have slower stress growth at high deformation rates than
the Oldroyd B model.

4. Existence results for steady flows

The first existence result for steady flows is due to Renardy [30].
The proof is based on taking the divergence of the constitutive law and
using the result in the momentum equation; this combination leads to a
Stokes-like problem. Solutions for small data can then be constructed by
proving convergence of an iteration which alternates between solving a
Stokes problem and integrating stresses along streamlines. Guillopé and
Saut [31] prove existence of steady flows close to a stable Newtonian
flow if the ratio of polymer to solvent viscosity is small. Existence
for small data, also based on iteration between Stokes problems and
integration along streamlines, has also been proved for exterior flows
in three dimensions [32,33] and flows with outlets to infinity [34].
For exterior domains in two dimensions, the Newtonian case is already
more complicated; Stokes solutions do not exist in general and an Oseen
linearization has to be considered instead. This case does not seem to
have been tackled for viscoelastic flows.

It is not clear if any large data global existence result should be
expected. The Oldroyd B model leads to infinite stresses in steady
elongation at a finite extension rate. In complex flows, this leaves us
with three possibilities:

1. The flow arranges itself in such a manner that the limiting
elongation rate is not reached.

2. Steady flows cease to exist.

3. Steady flows exist even when the limiting elongation rate is
exceeded; they then have infinite stresses at the stagnation point
and along the streamline emanating from it.

If velocity boundary conditions are inhomogeneous, the problem of
additional boundary conditions at inflow boundaries arises. The inte-
gration of stresses along streamlines would require stresses at inflow
boundaries to be prescribed. For the Oldroyd B model, a well-posed
problem is indeed obtained if polymer stresses at inflow boundaries
are prescribed in addition to velocities on all boundaries [35]. For
the upper convected Maxwell model, however, this is an overdeter-
mined problem. Correct choices of inflow boundary conditions were
given in [36,37]. In real flow problems, inflow boundaries usually
terminate at corners, and the issue of compatibility conditions to avoid
singularities arises [38]. Of course, inflow boundaries can arise in time-
dependent as well as steady flows. Work on this problem has so far been
rather fragmentary [39].
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5. Flow stability

Newtonian fluid flows display a rich variety of instabilities and
bifurcations, which has inspired much mathematical work in dynamical
systems, asymptotics and other fields. Viscoelastic effects modify these
instabilities and can also lead to new mechanisms. We shall not attempt
a comprehensive literature review, but merely outline some of the basic
problems. The review articles of Larson [40] and Shaqfeh [41] can
serve as a starting point for further reading.

Early work on stability of viscoelastic shear flows was motivated by
the hope that a linear shear flow instability might explain extrudate in-
stabilities known as melt fracture. The early literature is characterized
by quite a bit of confusion, with reports of positive results which turned
out to be based on faulty approximations or inaccurate numerics.
More accurate numerical computations showed no evidence of linear
instabilities in parallel shear flows of the upper convected Maxwell
and Oldroyd B fluids [42,43]. One difference between Newtonian and
viscoelastic flows is the appearance of continuous spectra, even in
bounded geometries. Numerical methods are generally not very accu-
rate in approximating these, which explains some of the early claims
of instability. It would be of interest to know how to design numerical
methods which approximate continuous spectra more faithfully, but
there seems to be no literature on this topic. Elastic instabilities do,
however, exist in shear flows with curved streamlines. This was first
discovered by Larson, Shaqfeh and Muller [44], and there has been
much subsequent work on this topic. In multilayer shear flows, there
can be instabilities driven by a normal stress difference at the interface;
this was first observed in [45] and [46].

In elongational flows, the strong resistance of viscoelastic fluids to
stretching has a stabilizing influence. For the Rayleigh instability of
jets, viscoelasticity actually has a destablizing effect on the initial linear
instability, where elongation is not yet important [47-49]. However,
viscoelastic effects become stabilizing in the later evolution [50-52].
Indeed, the analysis of one-dimensional models shows that jet breakup
is suppressed entirely for the Oldroyd B fluid [53]. The stabilizing effect
of elasticity on elongation has also been found to be the dominant effect
responsible for turbulent drag reduction; see [54] for a review.

From the mathematician’s point of view, there are a number of
fundamental questions which are largely unresolved for viscoelastic
flows. First of all, stability is usually inferred from eigenvalue calcula-
tions. While this is well justified for Newtonian flows, it is well known
that there are examples of evolution problems which are unstable
even though the entire spectrum of the generator is in the left half
plane. This can happen in examples as “applied” as a lower order
perturbation of the wave equation, with the natural choice of function
spaces [55]. Linear stability can be proved rigorously if, in addition
to having a spectrum strictly in the left half plane, a resolvent bound
on the imaginary axis can be established [56-59]. This is applied to
parallel shear flows of a class of fluids including the Oldroyd B model
in [55,60]. The idea is to first take advantage of separation of variables
to reduce the stability problem to ODEs. Then the ODE problems are
reduced to finite dimension by taking advantage of the correspondence
between solutions and initial data. Doing this makes it possible to
deduce resolvent bounds from the location of spectra.

In [31] it is shown that flows of weakly elastic fluids inherit stability
characteristics from the Newtonian case. A somewhat larger perturba-
tion is allowed in [61]; the result there is not that the flow inherits
Newtonian stability, but that a resolvent estimate holds which allows
inferring stability from the spectrum. These results also show nonlinear
stability for small perturbations.

Another approach to the stability problem looks for conditions in
addition to the location of the spectrum which guarantee stability. For
some types of hyperbolic PDEs such conditions have been given which
involve the stability of ODE systems along characteristics. Results along
such lines [62] have been shown to be applicable to creeping flows
of Maxwell fluids [63,64]. It should be emphasized, however, that the
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actual application of such criteria in a complex flow would be a rather
formidable task.

The continuous spectrum for the upper convected Maxwell fluid is
analyzed in [65]. For the linearization at a steady flow in a bounded
domain, the continuous spectrum consists of three parts: The first part
always has real part equal to —1/4,, the second part is associated with
the short wave limit of wall modes and has real part between —1/4, and
—1/(24,), and the third part is associated with integrating stresses in the
given velocity field of the base flow. If there are hyperbolic stagnation
points, then this latter part will depend on the choice of function space.
It will always be unstable in Sobolev spaces of sufficiently high order;
this is because derivatives in a converging direction of the flow will
grow by advection and stress relaxation cannot compensate for this if
the order of the derivative is high enough. On the other hand, it is
shown in [65] that in two dimensional flows without interior stagnation
points the continuous spectrum is always stable.

If instabilities are associated with an isolated eigenvalue crossing
the imaginary axis, we expect the usual methods of bifurcation theory
to be applicable. This requires a version of the center manifold theorem
which reduces the problem to finite dimensions. The versions available
in the literature, however, are for parabolic PDEs and the equations
of viscoelastic flow are always partly hyperbolic, which causes serious
technical issues. A version of the center manifold theorem which is
suitable for hyperbolic PDEs with periodic boundary conditions is
proved in [66] and applied to the viscoelastic Bénard problem.

6. High Weissenberg number asymptotics

The study of Newtonian high Reynolds number flows has a long
history. Formally, the high Reynolds number limit of the Navier-Stokes
equations leads to the Euler equations. But the Euler equations do
not allow imposition of zero velocity on the boundary. More than a
century ago, Prandtl [67] advanced the idea that viscous effects are
confined to a boundary layer: In the bulk of the flow the Euler equations
apply, but in a thin layer near the boundary viscous effects need to be
taken into account to allow transition to the right boundary condition.
The actual implementation of this strategy, however, turns out to be
far more complicated than the illustrative examples usually presented
in textbooks, and the results remain fragmentary. Perhaps the most
successful applications are for the technologically important problem of
flow past bodies; on the other hand, such seemingly simple problems as
determining the flow rate through a pipe elude a full analysis. There are
a number of major obstacles. The Euler equations allow many solutions,
and it is not clear which is the “right” one. For instance, there are
infinite dimensional manifolds just of steady solutions. Most of these
are unstable, and the dynamics resulting from instabilities is complex.
The Prandtl equations are difficult to analyze, and in general not well-
posed [68]. Similar considerations apply to high Weissenberg number
flows of elastic fluids, and indeed we can expect the flow behavior to
be just as complicated as high Reynolds number flows of Newtonian
fluids [69].

There is a connection between viscoelastic high Weissenberg num-
ber flows and the Euler equations [70]. Recall that the source of
elasticity in polymeric fluids is the stretching of polymer molecules by
the flow. At high Weissenberg number, we can expect these stretched
molecules to align in whatever direction the flow stretches them in,
leading to a predominant component of the stress which is of rank 1.
Let us write this component in the form

T = yuu’, (18)

where u is a vector, and y is a scalar. For given T of this form, we can
always choose y and u in such a way that

div (yu) = 0. 19
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If we now assume creeping flow and insert (18) into the equation of
motion, we find

divT—Vp=y@u-Viu-Vp=0. (20)

The Egs. (19) and (20) are the steady compressible Euler equations.
In contrast to compressible Newtonian flow, u is not the velocity and
y is not the density, although p is the pressure. Moreover, the sign of
the pressure term is opposite, reflecting the fact that elastic stresses in
polymers are tensile while Reynolds stresses are compressive. Finally,
there is no equation of state linking p to y.

We note that so far we have neither invoked a specific constitutive
law nor even mentioned the velocity of the fluid. All we have used
is that the stress is one-dimensional. In the high Weissenberg number
limit for steady flow of the Oldroyd B model, polymer stress dominates
over solvent stress, and quadratic terms in the constitutive equation
dominate over linear ones, so we have the following dominant balance:

v- VT = (VT - T(VW)T =0. @1

It is shown in [70] that, in a two-dimensional flow, this leads to the
following relationships between v and u and y introduced above:

v-Vy=0, vX(yu) = Kes. (22)

Here e; is the out-of-plane unit vector and K is an arbitrary constant.
The condition that v be divergence-free leads to the “equation of state”

divu = ¢(y). (23)

In this equation, ¢ is an arbitrary function. In particular, ¢ can be zero,
and y can be constant; in this case we recover the incompressible Euler
equations. We note that the velocity does not appear in (19), (20) and
(23); it is determined by (22) once y and u are known.

We see that the indeterminacy in this problem is even greater
than for the steady Euler equations, since the “equation of state”
now involves an arbitrary rather than a specific function. The time
dependent problem raises even more difficult problems. Basically, the
high Weissenberg number limit of the Oldroyd B model is a neo-
Hookean elastic solid with zero equilibrium stress modulus. A stress
modulus arises as a result of flow, but it is in one direction only. This
degeneracy of the stress modulus makes it impossible to determine
both stresses and velocities in creeping flow. An analogous situation
arises in simpler contexts: In a rigid body, we can fully determine the
motion, but we know nothing about the stresses (other than that the
divergence is zero), in contrast, in a vacuum, we know exactly what
the stress is, but we cannot define a motion. Unlike these “obvious”
and extreme cases, however, the high Weissenberg number limit of
viscoelastic flow does not give us a “clean” way of separating knowable
and unknowable variables. Lower order terms need to be considered
to resolve the indeterminacy; this problem has not been resolved in a
satisfactory manner [71,72].

A different limit arises if both Weissenberg and Reynolds number
are large, and inertial terms are included in the equations. In that
case, the limiting equations are well-posed [73]. Well-posedness for
boundary layer equations can be shown as well [74,75]. Thus this
problem is actually better behaved mathematically than the Newtonian
case, due to a stabilizing effect of viscoelasticity on high Reynolds
number shear flow instabilities [76]. This stabilization has previously
been noticed in the mathematically equivalent situation of ideal mag-
netohydrodynamics [77].

In steady flows without inertia, boundary layers arise for a different
reason than in the Newtonian case. High Weissenberg number means
long memory, and as a result stresses depend on the velocity gradi-
ent along the entire streamline. On walls and at stagnation points,
however, the velocity is zero, and hence stresses depend only on the
local velocity gradient. The boundary layer equations resulting from
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this are derived in [78]. The most successful application of matched
asymptotics involving these boundary layer equations is in the analysis
of the reentrant corner singularity. When it comes to corners between
walls, there is a fundamental difference between corners with angle less
than 180 degrees and “reentrant” corners of angle greater than 180
degrees. The former lead to zero velocity gradients and stresses at the
corner and a dominant Newtonian behavior, see [79] for a rigorous
result along such lines. For reentrant corners, on the other hand,
stresses and velocity gradients are infinite, and the study of the stress
singularity becomes a matter of high Weissenberg number asymptotics.
A matched solution based on potential flow of the Euler equations [80]
and similarity solutions of the boundary layer equations was suggested
and partially constructed by Renardy [81] and completed by Rallison
and Hinch [82]. In principle, the viscoelastic stresses always dominate
near the corner, and Newtonian terms are subdominant. If the model
is close to Newtonian (i.e. 4, is close to 4,), this can only be the case
very close to the corner. Evans [83] has given a partial analysis for this
case. Rigorous results on existence of solutions with reentrant corners
are not available at this point. Another flow with a point singularity
that is amenable to boundary layer analysis is sink flow, which was
analyzed by Evans and Hagen [84].

Little is known about the high Weissenberg number behavior along
separating streamlines. The simpler problem of integrating the consti-
tutive law in a given velocity field can be analyzed, see e.g. [85] for a
study of flow past a cylinder. Numerical results for the same simplified
problem agree with the analysis [86], but simulations of the full
problem have not reached Weissenberg numbers where a meaningful
comparison would be possible.

7. Mathematical analysis informing numerical methods

Understanding the nature of viscoelastic flows in complex geome-
tries is important for many engineering and biological problems at
the micro-scale, and numerical simulations are a key tool to devel-
oping theory. We continue the focus on the Oldroyd B model in the
creeping flow regime and now turn to how mathematical analysis
can help inform the use and design of numerical methods. Challenges
in simulating the Oldroyd B model have a long history, going back
to the early 1980’s when the “high Weissenberg number problem”
was first discussed [87,88]. We refer the interested reader to a recent
review [89,90] and book dedicated to more of an overview of these
issues; here we focus on a few simple flow geometries and related
observations.

There is a need for high resolution numerical methods to handle the
complex flows and dynamics for biological problems. Some of this was
pointed out in [91]. The immersed boundary (IB) method is a popular
method used for its flexibility [92] but its low order of convergence
makes it ill suited for simulating problems in complex fluids. Some
modifications to the stress tensor locally near boundaries have been
proposed [93,94] as well as higher order versions of IB [95-97] but
there are still significant limitations in the technology for numerical
simulations of moving and deforming objects in viscoelastic fluids,
especially in three spatial dimensions.

The Oldroyd B model is a good model to analyze mathematically
because it is more tractable than models with lots of “bells and whis-
tles” (aka parameters). Nevertheless it still captures key features of
a nonlinear viscoelastic fluid, such as storage of memory from past
deformation on a characteristic time-scale. We focus here on flows near
extensional points, as they present the most notable challenges to the
Oldroyd B model. Three settings are explored, a steady extensional
point created by steady background forcing, flow around a cylinder
in 2D, and flows near tips of waving filaments that create oscillating
extension.
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8. Flows at steady extensional points with periodic forcing

A relatively simple way to simulate a steady extensional point
is by imposing a four-roll mill background force. In this section we
discuss results from [98-101], which were obtained by simulating the
following non-dimensional set of equations

—Vp+A4u+éV-C+f=0 24
divu=0 (25)
DC 1

—=——(C-D+v4a 2
D Wi(c )+ vAC, (26)

where the upper convected derivative DC s defined in (8). The confor-
mation tensor C is related to the polymer stress tensor via

p
T,=~(C-D
and the background force f in Eq. (24) is given by
. <—2 sin x cos y) . @7
2cosxsiny
The Weissenberg number is defined to be Wi = Ti where T, is the
f
flow time scale. The coupling parameter & = :T" is related to the more
familiar viscosity ratio g via ’
N1

_I1S+I1p T4

The system in Egs. (24)-(26) is equivalent to the Stokes Oldroyd B
model for v = 0. For v > 0 the model has an additional polymer stress
diffusion. We scale the diffusion v = a dx2, with the grid discretization,
thus in the limit dx — 0 this model converges to the Oldroyd B model.
In Section 8.1 we set v = 0, and we discuss the effects of this stress
diffusion in detail in Section 8.2

8.1. Steady flow in the 4-roll mill geometry

To study the behavior of the Stokes Oldroyd B model near steady
extensional points in [99] we simulated Eqgs. (24)-(26) in a 2D periodic
domain [—r, 7)? using a pseudo-spectral method. We did not use poly-
mer stress diffusion, i.e. v =0 in Eq. (26). In a purely viscous fluid the
solution to Eq. (24) with the forcing f given in Eq. (27) would be u = %,
resulting in a flow with 2 extensional stagnation points in the periodic
domain. We focus on the extensional point at the origin in what follows.

One mathematical and numerical result from [99] was that the poly-
mer stress field loses smoothness as a function of Wi. Previously there
were analytical predictions along these lines [102,103], but in those
analyses the stress and velocity were decoupled. In these simulations
we demonstrate how the stress responds to an imposed background
flow. The results reveal an algebraic structure of the solutions that
depends critically on the Weissenberg number.

A local analysis near the origin finds that the velocity converges to
an extensional flow of the form a(x, —y) where « is the local strain-rate
at the origin. In this numerical framework a« does not remain order one
as Wi increases. Rather, the flow slows down to compensate for the
increasing stress at the origin and the product ¢ = «Wi remains bounded
by 1. Using this rescaled velocity one can solve for the components of
the stress tensor directly along the characteristics of the local velocity.
The xx—component of the conformation tensor is

Cp (3,0 = + e H (xe™, ye). (28)

1-2e

The structure of the function H cannot be derived without coupling
to the background flow. The analysis and comparison with numerical
simulations suggests that the steady-state structure of the conformation
tensor is

1 12
C®=——+A e . 29
w=T-2 t [yl 29
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There are two significant transitions in the flow structure. First beyond
Wi~ 0.5 (¢ = 1/3) the stress approaches a cusp solution exponentially
in time, meaning that the limiting (or steady state) stress is not differ-
entiable. Second beyond Wi ~ 0.9 (¢ = 1/2) the stress exponentially
approaches a divergent solution. The numerical validation of these
analytical predictions relies on the use of the pseudo-spectral method
which allows one to study the approach of a singularity via the Fourier
spectrum of the solution [104-106].

The simulations also show that although the stress is diverging
exponentially in time, the velocity (which is modified by the stress via
the divergence of the stress tensor) converges. We can see this if we
define the energy &€ = % [ [ tr (C=T) dxdy. This energy satisfies

1 1 1
a,5+m£:-g /|Vu|2 dxdy—g//uAfdxdy, (30)

hence for bounded input power, u-f, this integral will remain bounded.
Thus although the stress may diverge at a point, the integral re-
mains bounded, allowing for convergence of the velocity field. We
demonstrate this via an asymptotic analysis in Section 8.2.

8.2. Polymer diffusion asymptotics

We saw above that the stress diverges for sufficiently large Wi
so only a quasi-steady state exists without some regularization. The
addition of polymer stress diffusion, v > 0 in Egs. (24)-(26), allows
one to obtain steady state numerical solutions. Although polymer stress
diffusion has microscopic justification [107,108], the size of numerical
diffusion used in simulations is usually larger than can be justified
by the kinetic theory. Polymer stress diffusion has been studied in
the Oldroyd B model [98,109,110] and it has been shown that the
addition of any amount of polymer stress diffusion appears to remove
the singularity found in [99]. This is because for v > 0 in Eq. (29)
asymptotic analysis [98,109] finds that for sufficiently large Wi and
small v we get a solution that has a Gaussian structure in y at steady
state of the form

€ (0.) ~ CoWiv/2e /27 -

Numerical simulations support this analysis. Here we show simulations
of Egs. (24)—(26) with a fixed grid discretization dx = 2z /512 ~ 0.0123,
and Wi = 5. Simulations are run to steady state at 1 ~ 10Wi. We vary
the polymer stress diffusion of the form v = adx?. To describe the
results it is useful first to look at C,, and the vorticity near the origin.
The color map shown in Fig. 1(a) displays the first component of the
conformation tensor C, (x,y) at steady state for the lowest diffusion
level a« = 0.5. This shows that the stress is large at the origin, but also
along the entire line of extension near y = 0. In Fig. 1(b) we show the
vorticity at steady state for this same level of diffusion. The vorticity
near the centers of the “rolls” is slaved to the background forcing, but
near the line of extension at y = 0 we find that there are vortical
structures that rotate in the opposite direction.

Next we zoom in near the origin for the stress and near (z/2,0) for
the velocity and vorticity in Fig. 2, and examine how these structures
depend on the diffusion. In Fig. 2(a) we demonstrate the effect of diffu-
sion on the xx—component of the conformation tensor. The maximum
is growing, but the maximum is growing as max C,, ~ O(v~'/2) as
predicted in Eq. (31). In Fig. 2(b) we also plot the best fit to a power-
law function, and the best fit gives v#, with p = —.43. As expected from
the bound on the energy, we find that the integral or L' norm of the
conformation tensor is converging (not shown). We also examine how
the velocity is effected by the highly concentrated stress. The largest
differences in the velocity with high stress concentration arise near
x = +x/2. We plot the horizontal velocity at (x/2, y) in Fig. 2(c) and the
velocity gradient d,u in Fig. 2(d). The velocity appears to be converging
to a cusp which yields a jump in the velocity gradient across the line of
extension. We emphasize that although the stress is diverging near the
axis of extension, it is converging in average, and this is sufficient for
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Fig. 1. Results of simulations for Wi =5 run to steady state. (a) C,,(x,y) conformation tensor (b) Vorticity.
(@) 50 () 4507
—a=4 -©-simulation
—_—— = 2 | - ft
400 i
400 - ., -
—a=0.5 _ 350!
> 30 8
= 300
& 20 s
/ 250+
10
200
%2 02 0 02 o4 150 ‘
’ ) ) : 0 1 2 3 4
Yy (6]
(© -0.18 @ 03

Y

-0.1¢ — =4
—--a=2
02r- .21
—a=0.5
3 : : : ‘
-04 -0.2 0 0.2 0.4

)

Fig. 2. Slices of stress and velocity for Wi =5 at steady state and a range of diffusion v = a dx?> (a) Polymer stress (b) Maximum of conformation tensor (c) Velocity (d) Vorticity.

the velocity to converge, but the smoothness of the velocity is lower
order resulting in what looks like a finite sized jump in the derivative
across the stress near-singularity. The asymptotic analysis in [109]
supports these conclusions.

On the one hand, polymer stress diffusion, used carefully and with
consideration of the numerical artifacts it may create, can rescue the
Oldroyd B model from the singularities it suffers at steady extensional
points. And, the polymer stress diffusion term is not added without

physical justification, it can be justified from kinetic theory when
including the effect of center of mass diffusion of polymer coils [107,
108]. To apply the asymptotic analysis we need only posit that v >
0, which is enough to obtain bounded solutions for the velocity and
velocity gradients. On the other hand, simply adding polymer stress
diffusion is not always sufficient to mitigate the challenges of the more
complex geometries and flow dynamics that arise in engineering and
biological applications.
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8.3. Symmetry breaking in the 4-roll mill geometry

Experimental observations of symmetry breaking flow transitions
near extensional points [111] motivated simulations of viscoelastic
fluids in cross slot geometries [112-116]. In [111] a polymeric fluid
in a cross-slot geometry exhibited two distinct symmetry breaking
transitions as a function of the Weissenberg number. The first transition
was characterized by the onset of a steady asymmetry in the flow
near the extensional point. At a higher Weissenberg number the flow
became aperiodic. Simulations in the four-roll mill geometry observed
qualitatively similar results [100,101,117]. To obtain numerical steady
states stress diffusion v = .001 =~ 5/3 dx? is added to the Stokes Oldroyd
B model. The symmetry breaking occurs first as the flow loses slaving
to the background flow locally near the extensional point in the flow.
A second instability that is characterized by the onset of quasi-periodic
motion occurs for a larger critical Wi. These asymmetric steady states
were found by numerically evolving the flow from small perturbations
to the initial data. Here the loss of pinning of the centers of the “4-rolls”
appears to be related to the onset of oscillatory motion. This oscillatory
flow also leads to high levels of mixing in the flow.

It has been suggested that this second instability may arise due to
the additional polymer stress diffusion, as simulations without diffusion
found the first instability but not the second instability [118]. One must
take care when using any numerical regularization as it may introduce
unwanted artifacts. Stress diffusion as a method of regularization has
the advantage that it makes the system well-posed [27,119] and we
can quantify the effect via asymptotic analysis [98,109]. Regarding the
second instability discussed above, it is interesting to note that in recent
experimental work [120] the onset of the temporal aperiodicity coin-
cided with a 3-dimensional instability along the z-axis, and simulations
of a 3-dimensional 4-roll mill found a similar result [121].

9. Two dimensional flow around cylinder

One of the most challenging static flow geometries for the Oldroyd
B model in simulations has been the flow around a cylinder in a
planar channel. This geometry was introduced as a benchmark for
the numerical simulations of viscoelastic fluids in the report from the
VIIth international workshop on numerical methods in non-Newtonian
flow [122] in 1992. Despite significant effort it has proven elusive to
find numerical solutions to the Oldroyd B model in creeping flow in
this geometry beyond Wi ~ 0.7. In the low Wi regime, this benchmark
is a very popular geometry to test new numerical methods, but it is
noteworthy that higher values of Wi are unattainable for numerical
simulations. Here we will not attempt to review the state of numerical
methods in this flow geometry, but we direct the interested reader
to the extensive information in the book Computational Rheology [90]
which reviews this material thoroughly up to its publication date,
along with the recent review article that summarizes many subsequent
developments [89]. Rather we take this opportunity to discuss some of
the numerical challenges that are deeply connected to the mathematical
challenges posed in the first half of this manuscript related to this flow
geometry.

A standard benchmark flow for evaluating numerical solvers for
polymeric flow problems is the confined flow of a fluid around a
cylinder in a channel, studied in [123-132]. The behavior of the flow
is well understood at low Weissenberg numbers but the behavior of
the flow is unknown above Wi = 0.7. The typical computational setup
is to solve the Stokes Oldroyd B system given in Egs. (24)-(26) (with
f = 0,v = 0) in a rectangular domain, [-20,20] x [-2,2] with no-slip
(u = 0) boundaries imposed on the bottom and top of the domain, the
inflow condition u(~20;y) = (u,,(»),0) with u,(») = 3 (1- %) and
an outflow boundary condition (which may differ depending on the
computational setup). The parameter g = ﬁ is fixed at 0.59.

It is quite reasonable to ask What makes tilisﬁow geometry so challeng-
ing for numerical simulations?, but the answer is unclear. As mentioned
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at the end of Section 6 there are asymptotic results [85] for the
decoupled problem (where the polymer stress is advected along fixed
streamlines of the corresponding Newtonian flow) that indicate that for
large Wi the maximum value of the stress in the wake of the cylinder
should scale like Wi’ for large Wi. This scaling creates significantly
large stresses and stress gradients in the wake of the cylinder that are
numerically challenging to resolve. However, numerical simulations in
a Lagrangian frame (i.e. evolving the stress along streamlines of the
Newtonian flow) have been able to capture these large stress and stress
gradients [86], and these numerical simulations confirm the asymptotic
scaling for sufficiently large Wi (Wi > 128.) In that work it is noted
that to reach the regime where this scaling should be valid the stresses
need to be fully convected around the cylinder. This does not occur
for small Wi and thus for the decoupled problem one should not have
these scalings for Wi ~ 1. However, it is important to note that it is not
clear exactly how the coupling changes the dynamics of the flow and
in particular does the coupling make the onset of this scaling occur at a
smaller Weissenberg number? It was noted in [86] that when designing
numerical simulations for this flow geometry one could use the fact that
the decoupled problem is well-posed and can be resolved numerically
at high Wi as a test of any numerical scheme. However, it appears
that at least finite element method (FEM) [133] and unstructured
grid methods [134] of the decoupled case are still unable to resolve
large stress growth beyond Wi ~ 1 indicating that this is still a very
challenging numerical computation.

There is a range of possibilities that could explain what happens in
the coupled problem for Wi > 0.7. Experiments have indicated a wake
instability [135] for Wi ~ 1 and numerical simulations also indicate
similar results [136,137]. In [126] the authors indicate that there are
velocity fluctuations near the channel walls for Wi > 0.62, and suggest
that these fluctuations will lead to the onset of an oscillatory state. It
is also possible that underlying these numerical oscillations is a math-
ematical singularity and the system is not well-posed beyond a critical
Wi. It would be nice to resolve this problem with either an analytical
result or sufficiently convincing numerical simulations that determine
a critical Wi for a transition to unsteady behavior, but neither solution
appears readily available. It is likely that numerical simulations that
accurately predict the dynamics observed in experiments [135] for high
Wi will require 3D grids, making computations very expensive.

One candidate for potential singularities in the flow around a cylin-
der geometry is the stationary stagnation point at the front and rear
of the cylinder. In Section 8.1 we discussed the nature of the coupled
flow in the stationary stagnation point driven by a background forcing.
In that case the de-coupled problem has singularities [102,103] but
in the coupled problem as the Weissenberg number is increased the
flow locally near the origin rearranges to maintain integrability of the
polymer stress. This flow geometry is quite different and the flow is
driven by an upstream in-flow condition. In addition we know that the
decoupled case is well-posed. So in this case one can ask, does the flow
coupling make the problem more singular?

In Fig. 3 we show the xx—component of the polymer stress tensor
7 on the centerline of the channel (when x ¢ [-1,1],) and along
the wall of the cylinder (for x € [-1,1]), for Wi = 0.7. These solu-
tions were computed using the immersed boundary smooth extension
method [95-97], and the results for the coupled cases were compared
with benchmarks from the literature [126]. These results show that
there is a noticeable steepening of the gradient in the wake of the
cylinder, and the maximum of the stress in the wake is increased by
the coupling. However, the stress accumulation around the cylinder
is much lower in the coupled case. Studying the differences between
the coupled and decoupled cases may give us further insight into this
challenging numerical benchmark for the Oldroyd B model.
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Fig. 3. The xx—component of the polymer stress tensor r on the centerline of the
channel (when x ¢ [—1,1],) and along the wall of the cylinder (for x € [-1,1]), for
Wi = 0.7 for both the decoupled and coupled flow. Full domain is truncated for better
visualization.

10. Microorganism locomotion in viscoelastic fluids

Many micro-organisms and cells move and function in complex
materials and specifically in viscoelastic fluids. For example mam-
malian sperm must navigate through the cervical mucus in the female
reproductive tract. Until relatively recently most theoretical studies of
micro-scale locomotion have assumed a Newtonian background fluid,
ignoring the effects of complex rheology on motion. A further challenge
in biological systems is that the swimming gait depends on the physical
properties of the surrounding fluid. For example, sperm are known to
exhibit different gait characteristics (shape and frequency of the beat
pattern) based on the fluid rheology and their activation state which is
known to be necessary for fertilization [138-141].

There has been an intense effort over recent years to understand the
effect of fluid elasticity on micro-organism swimming [93,142-161].
Experiments, analysis, and simulations of low-Reynolds number swim-
ming of microorganisms in complex fluids, in particular viscoelastic
fluids, has led to a variety of results on the effect of fluid elasticity
on swimming speed. It has become clear that whether fluid elasticity
increases or decreases swimming speed depends on the swimmer’s gait.
Swimming in viscoelastic fluids using small amplitude gaits has been
analyzed [143,145-150,156], but both computational and experimen-
tal studies of the biologically relevant large amplitude gaits can show
fundamentally different behavior than that predicted by small ampli-
tude analysis [151,154,155,158,159]. In the large amplitude regime

Fig. 4. Flexors at different phases
note there is a logarithmic scale.
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the nonlinearities in the fluid produce elastic stress localization [151,
155,158,159], and the physical mechanism behind the formation of
these localized stresses and their resulting impact on swimming remains
unknown.

It has been noted that the immersed boundary method presents chal-
lenges for numerical simulations of structures moving in viscoelastic
fluids, but it still remains one of the simpler ways to simulate large
deformations and motions in fluid dynamics simulations. While con-
vergence of the polymeric stress is poor near boundaries, quantifying
average swimming speed and stress localization near but not on the
boundaries of structures is still possible, though it requires a high
level of resolution making computations expensive and especially so in
three space dimensions. Some efforts to modify the immersed boundary
method for complex fluids have been made by other groups [93,94],
but there is still work to be done, and simulating complex fluids with
many moving objects or active particles is still quite a challenge.

In recent work [151,159,162-164] the effect of polymer stress
concentration near and in the wake of moving objects in both 2D
and 3D has been shown to greatly affect the swimming speed and
dynamics of motion at the micro-scale. One interesting observation
is that oscillatory extensional flows arise near tips of thin filaments
moving with undulatory motion in complex fluids [164].

In Fig. 4 we show an example of a “flexor” moving in a 2D
simulation with the Stokes Oldroyd B model. In order to study the
flows around the tips of undulatory swimmers we consider filaments
of length L = 1 oscillating through circular arcs with peak curvature
A. Specifically, the curvature is

2z

k(s, 1) = Asin (Ft) . (32)

For A = r the fully bent shape is a semi-circle. By symmetry, this
motion does not result in any horizontal translation of the body.

It was observed in [164] that near the tips of such an object the flow
is well approximated by an oscillatory extensional flow of the form

F = 2asin (ot) (x, —y) (33)

Here we define the Deborah number De = /T, for T = 2z /w, and the
Weissenberg number as Wi = 2a 4. Analysis of the flow above concludes
that there is a Deborah number dependent Weissenberg number transi-
tion, below which the stress is linear in Wi, and above which the stress
grows exponentially in Wi. In Fig. 4 the stress concentration near the
tips and in the wake of the tips for a large amplitude flexor at De = 3
is shown; this figure shows the stress concentration in the exponential
regime.

The strong concentration of elastic stress near tips of flexing objects
seen here is likely important when studying how cells and flagella
move in real fluids with elasticity such as sperm in cervical mucus.
Experiments have shown that changes in fluid rheology are related to
important changes in gait, but without careful experiments compared
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in one period, A = 3.5, De = 3, after the stress has equilibrated to a periodic state. The colors are contours of the trace of the polymer stress,
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with simulations it is hard to unlock the complicated nonlinear in-
teraction between gait and fluid changes. Given the highly nonlinear
fluid responses seen in recent simulations, it is likely going to be
important to resolve fluid effects in biologically relevant fluid rhe-
ologies. It is also important to look at the relevant length-scales for
resolution, which are likely to require very fine grids. Coupling high
resolution simulations with the complicated 3D gaits for realistic cell
locomotion and flagellar motion is an important task for researchers
to approach. In addition the complex nonlinear coupling between gait
changes and fluid changes, and relevant biological modeling questions
about internal motor activity in flagella remain to be investigated.

Conclusions

Over the last four decades, there has been major progress on the
mathematical analysis and numerical simulation of viscoelastic flows.
We are beginning to understand the complexities arising at high Weis-
senberg numbers, such as instabilities, singularities and steep stress
gradients. There remains significant potential for further work, and this
promises to remain an active area for some time to come.
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