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Abstract
We introduce 𝜀-approximate versions of the notion of a Euclidean vector bundle for 𝜀 ≥ 0, which recover the classical
notion of a Euclidean vector bundle when 𝜀 = 0. In particular, we study Čech cochains with coefficients in the
orthogonal group that satisfy an approximate cocycle condition. We show that 𝜀-approximate vector bundles can
be used to represent classical vector bundles when 𝜀 > 0 is sufficiently small. We also introduce distances between
approximate vector bundles and use them to prove that sufficiently similar approximate vector bundles represent
the same classical vector bundle. This gives a way of specifying vector bundles over finite simplicial complexes
using a finite amount of data and also allows for some tolerance to noise when working with vector bundles in an
applied setting. As an example, we prove a reconstruction theorem for vector bundles from finite samples. We give
algorithms for the effective computation of low-dimensional characteristic classes of vector bundles directly from
discrete and approximate representations and illustrate the usage of these algorithms with computational examples.
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1. Introduction

1.1. Context and problem statement

The notion of fiber bundle is fundamental in mathematics and physics [33, 43, 3, 6]. Informally, a fiber
bundle with fiber F consists of a continuous function 𝑝 : 𝑌 → 𝑋 from the total space Y to the base
space X, that, locally, looks like a projection 𝑈 × 𝐹 → 𝑈, in the following sense: X can be covered by
open sets𝑈 ⊆ 𝑋 , each equipped with a homeomorphism 𝑖 : 𝑈×𝐹 → 𝑝−1 (𝑈) such that (𝑝 ◦ 𝑖) (𝑥, 𝑓 ) = 𝑥
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for every (𝑥, 𝑓 ) ∈ 𝑈 × 𝐹. In particular, 𝑝−1 (𝑥) is homeomorphic to F for every 𝑥 ∈ 𝑋 . Vector bundles
are fiber bundles for which F is a vector space, and a key example is the tangent bundle 𝑇M → M
of a d-dimensional differentiable manifold M. The fiber of this bundle is R𝑑 , as the tangent space at
each point of M is d-dimensional. The Möbius band Mob → 𝑆1 is another example of a vector bundle,
interpreted as a collection of one-dimensional real vector spaces that change orientation as one goes
around the equatorial circle 𝑆1. Of particular interest are fiber bundles for which the fiber F is only
allowed to ‘twist’ according to a certain group G of automorphisms of F; these correspond to principal
G-bundles. Vector bundles can be identified with principal G-bundles with G the general linear group,
while Euclidean vector bundles arise when G is the orthogonal group.

Many problems in mathematics and physics can be reduced to finding sections of a fiber bundle (that
is, maps 𝑠 : 𝑋 → 𝑌 for which 𝑝 ◦ 𝑠 = id𝑋) satisfying certain properties. For this reason, one is interested
in finding computable obstructions to the existence of certain sections and, more generally, in defining
computable invariants of fiber bundles that can aid in their classification up to isomorphism.

Characteristic classes are examples of such invariants [47]. Indeed, any principal bundle determines
a collection of elements in the cohomology of its base space, called the characteristic classes of the
bundle. This is done in such a way that isomorphic bundles have the same characteristic classes.
The Stiefel–Whitney classes of a vector bundle are a particular type of characteristic class, which
provide obstructions to solving several geometric problems. For instance, the first Stiefel–Whitney class
determines whether or not the vector bundle is orientable, while, for a differentiable manifold M, the
Stiefel–Whitney classes of its tangent bundle provide obstructions to embedding M in R𝑛 for small n.
Similarly, the Euler class of an oriented vector bundle is yet another characteristic class, which provides
an obstruction to the existence of a nowhere vanishing section.

Part of the ubiquity of principal bundles stems from the fact that they can be defined in several, a
posteriori, equivalent ways. Of particular interest to us are: (1) the definition of principal G-bundles
by means of G-valued Čech cocycles, which, roughly speaking, consist of local data on the base space
specifying how the fibers must be glued to reconstruct the total space, and (2) the definition of principal
G-bundles by means of classifying maps, which are continuous functions from the base space to a
certain classifying space B𝐺.

Principal bundles and their characteristic classes appear also in practical applications. Many
synchronization problems, in which independent, local measurements need to be assembled into a
global quantity, can be interpreted as the problem of trivializing a Čech cochain of pairwise alignments.
Dimensionality reduction problems, where a high-dimensional point cloud concentrated around a low-
dimensional manifold needs to be represented with low distortion in a low-dimensional space, can be
interpreted as an embedding problem for which estimates of the tangential characteristic classes can
provide obstructions. Although it is informally clear that vector bundles are relevant for these kinds of
problems, the discrete and noisy nature of the input data makes it unclear whether the data actually
determine a true vector bundle and whether topological information of this bundle can be extracted
from the noisy and incomplete input.

We identify two main difficulties for working with vector bundles in a practical setting. One comes
from a discrete aspect: Mathematically, vector bundles are continuous entities specified, for instance, by
(continuous) cocycles or by classifying maps. How can one specify arbitrary vector bundles on, say, the
geometric realization of a finite simplicial complex using a finite amount of data? The other difficulty
comes from the fact that, in practical applications, nothing is exact (e.g., cocycle conditions from noisy
pairwise alignments), so one needs a notion of vector bundle that is robust to some degree of noise.
Although the results in this paper are mainly theoretical, they are motivated by problems in applied
topology. In the rest of this introduction, we describe some of these problems in more detail.

1.1.1. Synchronization and cocycles
Consider a synchronization problem with input a set V of local measurements that are pairwise aligned by
elements {𝑔𝑖 𝑗 }𝑖, 𝑗∈𝑉 of a group G. One instance of this problem arises in cryogenic electron microscopy
(cryo-EM), where, broadly speaking, one seeks to reconstruct the three-dimensional (3D) shape of
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Figure 1. 2D projections of an unknown 3D shape.

a molecule from several two-dimensional (2D) projections taken from unknown viewing directions
[18, 28]. Here, the measurements are the 2D pictures, which are pairwise aligned by elements of the
rotation group 𝑆𝑂 (2). Figure 1 shows examples of the input data for this kind of problem.

Letting K be the graph with vertex set V and an edge (𝑖 𝑗) if 𝑔𝑖 𝑗 aligns i and j sufficiently well, one
expects the family of elements {𝑔𝑖 𝑗 }(𝑖 𝑗) ∈𝐾 to satisfy an approximate cocycle condition. This means that
if (𝑖 𝑗), ( 𝑗 𝑘) and (𝑖𝑘) are edges of V, then ‖𝑔𝑖 𝑗𝑔 𝑗𝑘 − 𝑔𝑖𝑘 ‖ < 𝜀 for some sufficiently small 𝜀 > 0. This
condition indicates that the measurements can be approximately locally synchronized: In the case of
cryo-EM, this implies that sets of 2D projections with very similar viewing directions can be aligned
simultaneously; this is key for averaging and thus denoising images with similar viewing directions.
Global synchronization is a different matter: In the case of cryo-EM, we do not expect to be able to align
all 2D projections simultaneously. This is justified in [58] by observing that the pairwise alignments
{𝑔𝑖 𝑗 } approximate an 𝑆𝑂 (2)-cocycle representing the tangent bundle of the 2-sphere, which is nontrivial.
We will demonstrate in Section 7.4 how a data-derived estimate of the associated Euler class yields a
nontrivial obstruction to globally aligning the data from Figure 1.

In the general case, if the approximate cocycle {𝑔𝑖 𝑗 } does indeed determine a true principal G-bundle,
then global synchronization corresponds to the bundle being trivial. This view of synchronization is
studied in-depth in [19] for the case of flat principal G-bundles (i.e., bundles determined by a group
morphism from 𝜋1 of the base to G). However, as it is observed in [69], the bundles underlying the
cryo-EM problem are not flat.

To our knowledge, the problem of determining when an arbitrary approximate 𝑂 (𝑑)-valued cocycle
defines a true vector bundle has not yet been addressed in the literature. This is one of the goals of this
paper. Possible applications of a general theory of approximate 𝑂 (𝑑)-cocycles are the usage of charac-
teristic classes of the underlying true vector bundle for model validation, detecting nonsynchronizability
in data and for guiding local synchronization and averaging algorithms.

1.1.2. Local trivializations and dimensionality reduction
Consider a point cloud 𝑋 ⊆ R𝐷 concentrated around a d-dimensional embedded manifold M and the
ensuing problem of extracting information about the tangent bundle 𝑇M → M from the sample X.
Possible applications of this include using the tangential characteristic classes as computable obstructions
for local-to-global dimensionality reduction on X.

Here is an example of such an approach. Fix 𝑘 ∈ N, and let 𝑁𝑥 denote the set of the k closest
neighbors of x in X. The application of principal component analysis (PCA) to each 𝑁𝑥 with target
dimension d yields an ordered orthonormal basis Φ(𝑥) of the d-dimensional linear subspace that best
approximates 𝑁𝑥 . This method, or variations thereof, is sometimes known as local PCA [59] and can
be used, for instance, to estimate the local dimension of the data [41].

The aforementioned process defines a functionΦ : 𝑋 → V(𝑑, 𝐷) from the data to the Stiefel manifold
of orthonormal d-frames inR𝐷 , which can be interpreted as an approximate vector bundle given by local
trivializations. One expects this construction to approximate the tangent bundle of the manifold M. Our
goal here is to formalize this intuition and, in particular, to quantify the extent to which an approximate

https://doi.org/10.1017/fms.2023.16 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.16


4 L. Scoccola and J. A. Perea

local trivialization induces a true vector bundle and whether topological information of the bundle can
be extracted from the approximation.

We apply these ideas in Section 7.2 to the problem of distinguishing nonhomeomorphic but homo-
topy equivalent attractors in the double-gyre dynamical system. Indeed, we do so by combining local
trivializations and data-driven estimates of the first tangential Stiefel–Whitney class. Moreover, we also
demonstrate in Section 7.3 how the first two Stiefel–Whitney classes can be estimated from data to yield
nontrivial obstructions to dimensionality reduction and parallelization.

1.2. Contributions

In this paper, we introduce relaxations and discretizations of the notion of vector bundle, we determine
the extent to which these approximate representations determine true vector bundles and we give
algorithms for the effective computation of low-dimensional characteristic classes of the true vector
bundle directly from approximate and discrete representations. We run these algorithms on examples to
illustrate their usage.

The notions of vector bundle we focus on correspond to Euclidean vector bundles, that is, to vector
bundles endowed with a compatible, fiberwise inner product, or, equivalently, vector bundles whose
structure group is an orthogonal group. To avoid cumbersome nomenclature, we drop the modifier
‘Euclidean’ in our main definitions.

Approximate notions of vector bundle.
Let 𝜀 ≥ 0. For a topological space B with an open cover U , we define the set of 𝜀-approximate
𝑂 (𝑑)-valued 1-cocycles Z1

𝜀 (U ;𝑂 (𝑑)) (Definition 3.3), which we use to define the 𝜀-approximate coho-
mology set Ȟ1

𝜀 (U ;𝑂 (𝑑)) (Definition 3.5). We also introduce the set of 𝜀-approximate classifying maps
Maps(𝐵,Gr(𝑑) 𝜀) (Definition 3.9), which consists of continuous maps with codomain a thickened Grass-
mannian (Section 2.1.3), and the set of 𝜀-approximate classifying maps up to homotopy [𝐵,Gr(𝑑) 𝜀].
In order to relate these notions, we define the set of 𝜀-approximate local trivializations T𝜀 (U ; 𝑑)
(Definition 3.8). We introduce metrics on these sets, the most relevant of which being the metric dȞ on
Ȟ1
𝜀 (U ;𝑂 (𝑑)), which we use to state stability results, below.
When B is a paracompact topological space and U is a countable open cover, we define maps between

the sets, as follows:

Z1
𝜀 (U ;𝑂 (𝑑)) T𝜀 (U ; 𝑑) Maps(𝐵,Gr(𝑑) 𝜀)

Ȟ1
𝜀 (U ;𝑂 (𝑑)) [𝐵,Gr(𝑑) 𝜀] .

triv
1

1

av √
2

w3

1cl
√

2

Here, a sub- or superscript with a constant c at an arrow tip indicates that the map sends one kind
of 𝜀-approximate vector bundle to another kind of 𝑐𝜀-approximate vector bundle. The maps triv and
w are defined in Section 4.1, the map av is defined in Construction 4.15 and the map cl is defined in
Theorem 4.21, which, in particular, also implies that the diagram above commutes when going from
top left to bottom right. In Section 4.11, we describe a way in which triv and w are approximate inverses
of each other.

By a result of Tinarrage [63, Lemma 2.1], there is a bijection 𝜋∗ : [𝐵,Gr(𝑑) 𝜀] → [𝐵,Gr(𝑑)]
whenever 𝜀 ≤

√
2/2. In particular, when 𝜀 ≤ 1/2, the composite

𝜋∗ ◦ cl : Ȟ1
𝜀 (U ;𝑂 (𝑑)) → [𝐵,Gr(𝑑)]

assigns a true (classical) vector bundle to every 𝜀-approximate cohomology class. In this sense, an
𝜀-approximate cocycle determines a true vector bundle, as long as 𝜀 is sufficiently small.
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The following result, which appears as Theorem 4.21 and Theorem 4.27, says in particular that the
map cl is stable.

Theorem A. For any 𝜀 ≥ 0, the map cl : Ȟ1
𝜀 (U ;𝑂 (𝑑)) →

[
𝐵,Gr(𝑑)

√
2𝜀

]
is independent of arbitrary

choices, such as a choice of a partition of unity subordinate to U or a choice of enumeration of the
opens of U , and is such that, if dȞ (Ω,Λ) < 𝛿 in Ȟ1

𝜀 (U ;𝑂 (𝑑)), then cl(Ω) and cl(Λ) become equal in[
𝐵,Gr(𝑑)

√
2(𝜀+𝛿)

]
. Moreover, if Ω ∈ Ȟ1

𝜀 (U ;𝑂 (𝑑)) and 𝜀 ≤
√

2/4, then there exists Λ ∈ Ȟ1 (U ;𝑂 (𝑑))
such that 𝜋∗(cl(Ω)) = cl(Λ) ∈ [𝐵,Gr(𝑑)] and dȞ (Ω,Λ) ≤ 9𝜀.

Theorem 4.21 also addresses refinements of covers and their action on approximate cohomology
classes; see also Remark 4.22 for a notion of approximate Čech cohomology independent of a cover.

Discrete approximate notions of vector bundle.
For a simplicial complex K, we introduce discrete analogues of approximate cocycles, approximate
cohomology and approximate local trivializations. Most importantly, we introduce the discrete approxi-
mate cohomology set DH1

𝜀 (𝐾;𝑂 (𝑑)) and the set of discrete approximate local trivializations DT𝜀 (𝐾; 𝑑).
These are useful in practice, as specifying elements of these sets requires a finite amount of data when
K is finite. To highlight their simplicity, we give here the notion of discrete approximate cocycle over a
simplicial complex K:

DZ1
𝜀 (𝐾;𝑂 (𝑑)) =

{
{Ω𝑖 𝑗 ∈ 𝑂 (𝑑)}(𝑖 𝑗) ∈𝐾1 : Ω𝑖 𝑗 = Ω𝑡

𝑗𝑖 and ‖Ω𝑖 𝑗Ω 𝑗𝑘 −Ω𝑖𝑘 ‖ < 𝜀 for all (𝑖 𝑗 𝑘) ∈ 𝐾2

}
so that a discrete approximate cocycle consists of a set of orthogonal matrices indexed by the ordered
1-simplices of K, which satisfies an approximate cocycle condition. The definition of discrete approxi-
mate local trivialization is equally simple.

We motivate the introduction of these constructions by showing that, when 𝜀 ≤ 1/2, any discrete
𝜀-approximate cocycle and any discrete 𝜀-approximate local trivialization represent a true vector bundle
on the geometric realization of K. Moreover, we prove a completeness result (Proposition 5.7), which says
that any vector bundle over a compact triangulable space can be represented by a discrete approximate
cocycle on a sufficiently fine triangulation of the space.

We remark here that the map w restricts to an algorithmic map from discrete approximate local
trivializations to discrete approximate cocycles (Remark 5.6).

Reconstruction from finite samples.
Building on a result of Niyogi, Smale and Weinberger [49], we prove a reconstruction result for vector
bundles on compact, embedded manifolds. For readability, we give here a version of the result using
big-O notation and an informal notion of (𝜀, 𝛿)-closeness; a formal statement with precise bounds is
given in Theorem 5.15. In the statement, Gr(𝑑, 𝑛) is the Grassmannian of d-planes in R𝑛, which we
metrize using the Frobenius distance (Section 2.1.1).

Theorem B. Let M ⊆ R𝑁 be a smoothly embedded compact manifold with reach 𝜏 > 0, and let
𝑓 : M → Gr(𝑑, 𝑛) be ℓ-Lipschitz. Let 𝑃 ⊆ R𝑁 be a finite set, and let 𝑔 : 𝑃 → Gr(𝑑, 𝑛) be a function
such that (𝑃, 𝑔) is (𝜀, 𝛿)-close to (M, 𝑓 ). If 𝛼 ∈ (O(𝜀), 𝜏 −O(𝜀)) ∩

(
0,
√

2/4ℓ−1 − 2𝛿ℓ−1 − 𝜀
)
, then

there exists a homotopy commutative diagram as follows, in which the vertical maps are homotopy
equivalences:

M Gr(𝑛, 𝑑)

Č(𝑃) (𝛼) Gr(𝑛, 𝑑)2(ℓ𝛼+ℓ 𝜀+𝛿) .

𝑓

Č(𝑔)
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Moreover, the map Č(𝑔) can be represented by a discrete local trivialization Φ ∈ DT2ℓ 𝜀+𝛿
(
Č(𝑃) (𝜀); 𝑑

)
,

in the sense that Č(𝑔) = av(Φ).
Applying w to the discrete local trivialization of Theorem B, we get an approximate cocycle that can

be used to compute low-dimensional characteristic classes of the true vector bundle using the algorithms
of Section 6, which we describe next. The extent to which the approximate cocycle w(Φ) recovers the
true vector bundle f is made precise in Lemma 5.10; see also Remark 5.17.

Effective computation of characteristic classes.
Our last main contribution is the definition of algorithms for the stable and consistent computation
of the one- and two-dimensional characteristic classes of a vector bundle given by an approximate
𝑂 (𝑑)-cocycle.

The algorithms are based on well-known results which say that the characteristic classes we consider
are obstructions to lifting the structure group of the cocycle from an orthogonal group to certain other
Lie groups. In this sense, the algorithms are classical and most of our work goes into adapting them to
the approximate setting and into giving precise bounds for their stability and consistency. The following
theorem is a summary of the results in Section 6. In the theorem, Ȟ denotes Čech cohomology.

Theorem C. Let U be a cover of a topological space B with the property that nonempty binary
intersections are locally path connected and simply connected. There are maps

sw1 : Ȟ1
𝜀 (U ;𝑂 (𝑑)) → Ȟ1(U ;Z/2) for 𝜀 ≤ 2;

sw2 : Ȟ1
𝜀 (U ;𝑂 (𝑑)) → Ȟ2(U ;Z/2) for 𝜀 ≤ 1;

eu : Ȟ1
𝜀 (U ; 𝑆𝑂 (2)) → Ȟ2(U ;Z) for 𝜀 ≤ 1.

The map sw1 is 2-stable, in the sense that, if Ω,Ω′ ∈ Ȟ1
𝜀 (U ;𝑂 (𝑑)) with 𝜀 ≤ 2, and dȞ(Ω,Ω′) < 2,

then sw1(Ω) = sw1 (Ω′) ∈ Ȟ1 (U ;Z/2). In this same sense, the maps sw2 and eu are 1-stable.
Assume that U is countable and that B is paracompact and locally contractible. The map sw1 is 2/9-

consistent, in the sense that, if Ω ∈ Ȟ1
𝜀 (U ;𝑂 (𝑑)) with 𝜀 < 2/9, then sw1 (Ω) is the first Stiefel–Whitney

class of the vector bundle classified by 𝜋∗(cl(Ω)) : 𝐵 → Gr(𝑑). In this same sense, the map sw2 is
1/9-consistent and computes the second Stiefel–Whitney class, and the map eu is 1/9-consistent and
computes the Euler class of an oriented vector bundle of rank 2.

We show that the maps of Theorem C are algorithmic when the input approximate cocycles are
discrete approximate cocycles on a finite simplicial complex (see Tables 1-3). The time and space
complexity of the algorithms is polynomial in the number of vertices of the simplicial complex. For
sw1, the complexity is also polynomial in d, while, for sw2, the complexity is exponential in d and
depends on calculating geodesic distances on the Spin group. In Section 6.4, we explain how to perform
these calculations for small values of d.

Computational examples.
We demonstrate our algorithms on data and show how they can be combined with persistent cohomology
computations to obtain cohomological as well as bundle-theoretical information of the data; this is done
in Section 7. A proof-of-concept implementation of our algorithms, together with code to replicate the
examples, can be found at [56].

1.3. Related work

Cohomology of synchronization problems.
Cohomological aspects of synchronization problems are discussed in [69, 19, 25].

In [19], Gao, Brodzki and Mukherjee describe a general framework for studying cohomological ob-
structions to synchronization problems using principal G-bundles. Although useful in many practical
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applications, the approach is limited by the fact that it only encompasses so-called flat principal
G-bundles, namely, bundles over a space B classified by group homomorphisms 𝜋1 (𝐵) → 𝐺. To see
that this is indeed a limitation, note that no nontrivial vector bundle over 𝑆2 can be represented by a
group homomorphism 𝜋1 (𝑆2) → 𝑂 (𝑑) since 𝜋1 (𝑆2) = 0. As mentioned previously, vector bundles over
𝑆2 are central in the cryo-EM synchronization problem.

The fact that the cryo-EM bundles cannot be represented by discrete and exact 𝑆𝑂 (2)-cocycles on a
triangulation of 𝑆2 is observed by Ye and Lim in [69], where a solution to this problem is proposed in
the special case of 𝑆𝑂 (2)-cocycles over a two-dimensional simplicial complex.

Vector bundles over simplicial complexes.
In [37], Knöppel and Pinkall give a method for describing arbitrary complex line bundles over finite
simplicial complexes using a finite amount of data. They also describe applications to physics and
computer graphics. Their theory relies on the fact that, up to isomorphism, a complex line bundle over a
simplicial complex can be described exactly using a finite amount of data consisting of an angle 𝜂𝑖 𝑗 ∈ 𝑆1

(encoded as a complex number of absolute value 1) for each edge (𝑖 𝑗) of the simplicial complex as
well as a real number Ω𝑖 𝑗𝑘 ∈ R for each 2-simplex (𝑖 𝑗 𝑘) of the simplicial complex, which satisfy
𝜂𝑘𝑖𝜂 𝑗𝑘𝜂𝑖 𝑗 = 𝑒 𝜄Ω𝑖 𝑗𝑘 for every 2-simplex (𝑖 𝑗 𝑘), where 𝜄 denotes the imaginary unit. This fact does not
seem to generalize in a direct way to vector bundles of higher rank.

In [25], Hansen and Ghrist discuss synchronization on networks and describe a framework based
on cellular sheaves. The framework specializes to encompass flat vector bundles over a simplicial
complex. This application of their theory has the same limitation as [19]: By having the vector bundles
be described by a family of matrices {Ω𝑖 𝑗 } indexed by the edges of the simplicial complex, subject to
the restriction that Ω 𝑗𝑘Ω𝑖 𝑗 = Ω𝑖𝑘 for every 2-simplex (𝑖 𝑗 𝑘) of the simplicial complex, only flat vector
bundles can be described.

These two approaches require a certain equality to hold for each 2-simplex of the simplicial complex.
The main difference between these approaches and the approach described in this paper is that we do
not require an equality to hold for each 2-simplex; instead, we keep track of how much a certain equality
does not hold.

Computation of characteristic classes.
In [59], Singer and Wu describe an algorithm for the consistent estimation of the orientability of an
embedded manifold. This can be interpreted as estimating whether sw1 (Ω) is zero or not, where Ω is
the approximate cocycle given by the transition functions of the approximate local trivialization defined
using a local PCA computation, as sketched in Section 1.1.2. Their approach is robust to outliers, a
property not enjoyed by the approach presented in this paper. But the algorithm does not provide the
user with an actual cocycle and thus, in the case sw1 (Ω) is deemed to be nonzero by the algorithm, it is
not clear how one can write it in a basis of the cohomology of a simplicial complex built from the data.

In [63], Tinarrage presents a framework for the consistent estimation of characteristic classes of
vector bundles over embedded compact manifolds. The input data of the framework consist of the
value of a sufficiently tame classifying map on a sufficiently dense sample of the manifold. Theoretical
algorithms are given for the stable and consistent computation of arbitrary characteristic classes. The
characteristic classes are computed in a geometric way, as the algorithm uses explicit triangulations
of the Grassmannians and pulls back the universal characteristic classes to a simplicial complex built
from the sample. The practicality of the algorithms is limited by the fact that the number of simplices
required to triangulate a Grassmannian Gr(𝑑, 𝑛) is exponential in both d and n [21] and the fact that the
algorithm often requires iterated subdivisions of the simplicial complex built from the data.

Vector bundles from finite samples.
As mentioned above, in [63] Tinarrage presents a framework for the consistent estimation of character-
istic classes of a vector bundle, given a sample.
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In [53], Rieffel addresses the problem of giving a precise correspondence between vector bundles on
metric spaces X and Y that are at small Gromov–Hausdorff distance. In particular, one can use Rieffel’s
framework to extend a vector bundle on a sample of a manifold to the entire manifold.

1.4. Structure of the paper

In Section 2, we give basic background. In Section 3, we present our three notions of approximate
vector bundle, and in Section 4, we relate them to each other and to classical vector bundles. In
particular, we prove Theorem 4.21 and Theorem 4.27. In Section 5, we introduce our notions of discrete
approximate vector bundles and show that they can be used to represent vector bundles over triangulable
spaces and to reconstruct vector bundles from finite samples. In Section 6, we give algorithms for
the stable and consistent computation of low-dimensional characteristic classes starting from a discrete
and approximate cocycle. In Section 7, we run our algorithms on examples. In Section 8, we discuss
open questions.

2. Background

In this section, we introduce the basic background needed to state and prove the results in this paper.
Some more technical definitions and results are in Appendix A. In Section 2.1, we introduce orthogonal
groups, Grassmannians and Stiefel manifolds and fix notation. In Section 2.2, we recall some of the
basics of the theory of principal bundles and vector bundles. We assume familiarity with the very basics
of algebraic topology, including cohomology.

2.1. Orthogonal groups, Grassmannians and Stiefel manifolds

2.1.1. Main definitions
We start by recalling the definition of the Frobenius norm. Let 𝑙, 𝑚 ∈ N≥1, and let R𝑙×𝑚 denote the set
of 𝑙 × 𝑚 matrices with real coefficients. Let 𝐴 ∈ R𝑙×𝑚. The Frobenius norm of A is defined by

‖𝐴‖ =
√

tr(𝐴𝑡 𝐴) =
√ ∑

1≤𝑖≤𝑙,1≤ 𝑗≤𝑚
𝐴2
𝑖 𝑗 ,

where 𝐴𝑡 ∈ R𝑚×𝑙 denotes the transpose of A. The Frobenius norm, as any norm, induces a distance on
R
𝑙×𝑚 defined by dFr (𝐴, 𝐵) = ‖𝐴 − 𝐵‖. We refer to this distance as the Frobenius distance.
We now introduce the spaces of matrices we are most interested in. Let 𝑛 ≥ 𝑑 ≥ 1 ∈ N.
The Grassmannian Gr(𝑑, 𝑛) has as elements the 𝑛 × 𝑛 real matrices A that satisfy 𝐴 = 𝐴𝑡 = 𝐴2

and have rank equal to d and is thus a subset of R𝑛×𝑛. We metrize and topologize Gr(𝑑, 𝑛) using the
Frobenius distance. Note that the elements of Gr(𝑑, 𝑛) are canonically identified with the orthogonal
projection operators R𝑛 → R𝑛 of rank d. Since these orthogonal projections are completely determined
by the subspace of R𝑛 which they span, it follows that the elements of Gr(𝑑, 𝑛) correspond precisely to
the d-dimensional subspaces of R𝑛.

The (compact) Stiefel manifold V(𝑑, 𝑛) has as elements the set of 𝑛×𝑑 real matrices with orthonormal
columns. We metrize V(𝑑, 𝑛) with the Frobenius distance. Note that the elements of V(𝑑, 𝑛) can be
identified with the d-dimensional subspaces of R𝑛 equipped with an ordered orthonormal basis. The
elements of a Stiefel manifold are sometimes referred to as frames.

When 𝑑 = 𝑛, the Stiefel manifold V(𝑑, 𝑛) coincides with the orthogonal group 𝑂 (𝑑), which consists
of real 𝑑 × 𝑑 matrices Ω such that ΩΩ𝑡 = id. We metrize 𝑂 (𝑑) using the Frobenius distance. With this
definition, 𝑂 (𝑑) is a topological group, as matrix multiplication and inversion are continuous.

We remark here that, although we shall encounter other metrics for 𝑂 (𝑑) and Gr(𝑑, 𝑛), our main
results are stated using the Frobenius distance. The relevant results about other metrics on the orthogonal
group can be found in Appendix A.4, and the ones about other metrics on the Grassmannian are in
Appendix A.4.
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2.1.2. Infinite-dimensional Grassmannians and Stiefel manifolds
Let 𝑛 ≥ 𝑑 ≥ 1 ∈ N. There is an inclusion Gr(𝑑, 𝑛) ⊆ Gr(𝑑, 𝑛 + 1) given by adding a row and a
column of zeros at the bottom and right, respectively. This inclusion is norm-preserving and thus metric-
preserving. We define the infinite-dimensional Grassmannian as Gr(𝑑) =

⋃
𝑛∈N Gr(𝑑, 𝑛). We topologize

Gr(𝑑) using the direct limit topology; recall that the direct limit topology on a union 𝑋 =
⋃

𝑛∈N 𝑋𝑛 of
topological spaces {𝑋𝑛}𝑛∈N, where 𝑋𝑛 is a subspace of 𝑋𝑛+1 for all 𝑛 ∈ N, is the topology where 𝐴 ⊆ 𝑋
is open if and only if 𝐴 ∩ 𝑋𝑛 is open in 𝑋𝑛 for all 𝑛 ∈ N. Note that this topology is finer (i.e., has more
opens) than the topology induced by the metric inherited by Gr(𝑑) by virtue of it being an increasing
union of metric spaces.

Similarly, we have an inclusion V(𝑑, 𝑛) ⊆ V(𝑑, 𝑛 + 1) given by taking the matrix representation of
a d-frame in R𝑛 and adding a row of zeros at the bottom of the matrix. Again, these inclusions are
metric preserving, and we define V(𝑑) =

⋃
𝑛∈N V(𝑑, 𝑛), with the direct limit topology induced by the

inclusions V(𝑑, 𝑛) → V(𝑑).
There is a principal 𝑂 (𝑑)-bundle Proj : V(𝑑, 𝑛) → Gr(𝑑, 𝑛), defined by mapping a d-frame M to the

matrix 𝑀𝑀 𝑡 (see Section 2.2.2 for the notion of principal bundle). Note that the maps Proj : V(𝑑, 𝑛) →
Gr(𝑑, 𝑛) for each 𝑛 ≥ 1 assemble into a map

Proj : V(𝑑) → Gr(𝑑).

It is clear that Proj is continuous, as it restricts to a continuous map Proj : V(𝑑, 𝑛) → Gr(𝑑, 𝑛) for each
𝑛 ≥ 𝑑.

2.1.3. Thickenings of Grassmannians
For the general notion of thickening and some basic properties, we refer the reader to Appendix A.1;
here, we briefly introduce the thickenings of Grassmannians, as they play an important role in our results.

We will be interested in thickenings of Grassmannians, and for that we need to include Grassmannians
into a larger metric space. A natural candidate is to let Gr(𝑑, 𝑛) ⊆ R𝑛×𝑛, which is metric preserving if we
metrize R𝑛×𝑛 using the Frobenius distance. Similarly, we have V(𝑑, 𝑛) ⊆ R𝑛×𝑑 . Analogously to what we
did for Grassmannians and Stiefel manifolds, we define R∞×∞ :=

⋃
𝑛∈N R

𝑛×𝑛 and R∞×𝑑 :=
⋃

𝑛∈N R
𝑛×𝑑 .

The elements ofR∞×∞ thus consist of infinite matrices with rows and columns indexed by the positive
natural numbers, which have finite support, meaning that they have only finitely many nonzero entries.
Similarly, the elements of R∞×𝑑 are matrices with finite support, with d columns and rows indexed by
the positive natural numbers. Again, although R∞×∞ and R∞×𝑑 inherit natural metrics, we use instead
the direct limit topologies induced by inclusions R𝑛×𝑛 → R∞×∞ and R𝑛×𝑑 → R∞×𝑑 , respectively.

Let 𝜀 > 0. The 𝜺-thickening of Gr(𝑑, 𝑛), denoted Gr(𝑑, 𝑛) 𝜀 ⊆ R𝑛×𝑛, consists of all matrices in R𝑛×𝑛
at Frobenius distance strictly less than 𝜀 from a matrix in Gr(𝑑, 𝑛). Similarly, we define Gr(𝑑) 𝜀 ⊆ R∞×∞.
Clearly, we have Gr(𝑑, 𝑛) 𝜀 ⊆ Gr(𝑑, 𝑛 + 1) 𝜀 ⊆ Gr(𝑑) 𝜀 . The 𝜀-thickenings Gr(𝑑, 𝑛) 𝜀 ⊆ R𝑛×𝑛 and
Gr(𝑑) 𝜀 ⊆ R∞×∞ are open subsets. If 𝜀 = 0, it is convenient to define Gr(𝑑, 𝑛) 𝜀 = Gr(𝑑, 𝑛) and
Gr(𝑑) 𝜀 = Gr(𝑑).

The main result about thickenings of Grassmannians we will need is Proposition A.12. The result
follows directly from a result of Tinarrage (Lemma A.11) and says that, if 𝜀 ≤

√
2/2, then Gr(𝑑, 𝑛) 𝜀

deformation-retracts onto Gr(𝑑, 𝑛).

2.2. Principal bundles and vector bundles

We recall the main notions and results that are relevant to this article. For a thorough exposition, we
refer the reader to, for example, [38, Appendices A and B], [61], [34] and [33]. The classic book [47]
contains all of the standard results on vector bundles we need; see also [27] for a modern exposition.

2.2.1. Covers and nerve
A cover U = {𝑈𝑖}𝑖∈𝐼 of a topological space B consists of an indexing set I together with, for every 𝑖 ∈ 𝐼,
an open subset 𝑈𝑖 ⊆ 𝐵 such that 𝐵 = ∪𝑖∈𝐼𝑈𝑖 . The nerve of U , denoted 𝑁 (U ), is the simplicial complex
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with underlying set I and simplices consisting of finite, nonempty subsets 𝐽 ⊆ 𝐼 such that ∩ 𝑗∈𝐽𝑈 𝑗 ≠ ∅.
An ordered simplex of 𝑁 (U ) consists of a list (𝑖0𝑖1 . . . 𝑖𝑛) such that 𝑈𝑖𝑛 ∩ 𝑈𝑖𝑛−1 ∩ · · · ∩ 𝑈𝑖0 ≠ ∅.
When quantifying over ordered 1-simplices of 𝑁 (U ), we will write (𝑖 𝑗) ∈ 𝑁 (U ), and, similarly, when
quantifying over ordered 2-simplices of 𝑁 (U ) we will write (𝑖 𝑗 𝑘) ∈ 𝑁 (U ).

2.2.2. Principal bundles
Let B and F be topological spaces. A fiber bundle over B with fiber F consists of a continuous
map 𝑝 : 𝐸 → 𝐵 such that, for every 𝑦 ∈ 𝐵, there exists an open neighborhood 𝑈 ⊆ 𝐵 of y and a
homeomorphism 𝜌𝑈 : 𝑈×𝐹 → 𝑝−1 (𝑈) such that 𝑝◦𝜌𝑈 = 𝜋1 : 𝑈×𝐹 → 𝑈, where 𝜋1 denotes projection
onto the first factor. Let U = {𝑈𝑖}𝑖∈𝐼 be a cover of B. A collection of maps {𝜌𝑖 : 𝑈𝑖 × 𝐹 → 𝑝−1 (𝑈𝑖)}𝑖∈𝐼
with the property above is referred to as a local trivialization of p. By definition, any fiber bundle
admits some local trivialization.

Let G be a topological group. A principal 𝑮-bundle over B consists of a fiber bundle 𝑝 : 𝐸 → 𝐵
with fiber G together with a continuous, fiberwise right action − · − : 𝐸 ×𝐺 → 𝐸 such that there exists
a cover U = {𝑈𝑖}𝑖∈𝐼 and a local trivialization {𝜌𝑖 : 𝑈𝑖 ×𝐺 → 𝑝−1 (𝑈𝑖)}𝑖∈𝐼 that is equivariant, meaning
that, for every 𝑔, ℎ ∈ 𝐺 and 𝑦 ∈ 𝑈𝑖 , we have 𝜌𝑖 (𝑦, 𝑔ℎ) = 𝜌𝑖 (𝑦, 𝑔) · ℎ ∈ 𝐸 .

Two principal G-bundles 𝑝 : 𝐸 → 𝐵 and 𝑝′ : 𝐸 ′ → 𝐵 are isomorphic if there exists a G-equivariant
map 𝑚 : 𝐸 → 𝐸 ′ such that 𝑝′ ◦𝑚 = 𝑝. Denote by Prin𝐺 (𝐵) the set of isomorphisms classes of principal
G-bundles over B (this is a set and not a proper class).

We remark that the definitions we have given are sometimes referred to as locally trivial fiber bundle
and locally trivial principal bundle.

2.2.3. Čech cocycles
Let B be a topological space, G a topological group and U a cover of B. A Čech 1-cocycle subordinate
to U with coefficients in G consists of a family of continuous maps {𝜌𝑖 𝑗 : 𝑈 𝑗 ∩ 𝑈𝑖 → 𝐺}(𝑖 𝑗) ∈𝑁 (U)
indexed by the ordered 1-simplices of 𝑁 (U ), which satisfies the cocycle condition, meaning that for
every (𝑖 𝑗 𝑘) ∈ 𝑁 (U ) and 𝑦 ∈ 𝑈𝑘 ∩𝑈 𝑗 ∩𝑈𝑖 , we have

𝜌𝑖 𝑗 (𝑦)𝜌 𝑗𝑘 (𝑦) = 𝜌𝑖𝑘 (𝑦) ∈ 𝐺.

We remark that we are using a convention for defining 𝜌𝑖 𝑗 so that 𝜌𝑖 𝑗 and 𝜌 𝑗𝑘 can be composed from
left to right. The opposite convention is also common. The set of 1-cocycles subordinate to U with
coefficients in G is denoted by 𝑍1 (U ;𝐺).

The following construction associates a cocycle to any principal G-bundle and motivates the notion
of cocycle. Given a principal G-bundle over B, there exists, by definition, a cover U = {𝑈𝑖}𝑖∈𝐼 and a
family of G-equivariant local trivializations {𝜌𝑖 : 𝑈𝑖 × 𝐺 → 𝑝−1 (𝑈𝑖)}𝑖∈𝐼 . Note that, whenever 𝑖, 𝑗 ∈ 𝐼
are such that𝑈 𝑗 ∩𝑈𝑖 ≠ ∅, the map 𝜌−1

𝑗 ◦ 𝜌𝑖 : (𝑈 𝑗 ∩𝑈𝑖) ×𝐺 → (𝑈 𝑗 ∩𝑈𝑖) ×𝐺 is G-equivariant. It follows
that 𝜌−1

𝑗 ◦ 𝜌𝑖 induces a continuous map 𝜌𝑖 𝑗 : 𝑈 𝑗 ∩𝑈𝑖 → 𝐺 satisfying (𝜌−1
𝑗 ◦ 𝜌𝑖) (𝑦, 𝑔) = (𝑦, 𝑔 · 𝜌𝑖 𝑗 (𝑦))

for all (𝑦, 𝑔) ∈ (𝑈 𝑗 ∩𝑈𝑖) × 𝐺, and that the family {𝜌𝑖 𝑗 : 𝑈 𝑗 ∩𝑈𝑖 → 𝐺}(𝑖 𝑗) ∈𝑁 (U) satisfies the cocycle
condition.

2.2.4. Čech cohomology
LetU = {𝑈𝑖}𝑖∈𝐼 be a cover of B. A Čech 0-cochain subordinate toU with values in G consists of a family
of continuous maps Θ = {Θ𝑖 : 𝑈𝑖 → 𝐺}𝑖∈𝐼 . Let 𝐶0 (U ;𝐺) denote the set of 0-cochains subordinate to
U with values in G. There is an action 𝐶0(U ;𝐺) � 𝑍1 (U ;𝐺) with Θ = {Θ𝑖 : 𝑈𝑖 → 𝐺}𝑖∈𝐼 acting on
a cocycle 𝜌 = {𝜌𝑖 𝑗 : 𝑈 𝑗 ∩ 𝑈𝑖 → 𝐺}(𝑖 𝑗) ∈𝑁 (U) by Θ · 𝜌 = {Θ𝑖𝜌𝑖 𝑗Θ−1

𝑗 : 𝑈 𝑗 ∩𝑈𝑖 → 𝐺}(𝑖 𝑗) ∈𝑁 (U) . The
quotient of 𝑍1 (U ;𝐺) by the action of 𝐶0 (U ;𝐺) is denoted by Ȟ1 (U ;𝐺).

Let U = {𝑈𝑖}𝑖∈𝐼 and V = {𝑉 𝑗 } 𝑗∈𝐽 be two covers of a common topological space B. A refinement
𝜈 : U → V consists of a function 𝜈 : 𝐼 → 𝐽 such that for every 𝑖 ∈ 𝐼 we have 𝑈𝑖 ⊆ 𝑉𝜈 (𝑖) . Given a
refinement 𝜈 : U → V and 𝜌 ∈ 𝑍1 (V;𝐺), define a cocycle 𝜈(𝜌) ∈ 𝑍1 (U ;𝐺) by 𝜈(𝜌)𝑖 𝑗 = 𝜌𝜈 (𝑖)𝜈 ( 𝑗) . It is
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not hard to check that any two refinements 𝜈, 𝜈′ : U → V induce the same map Ȟ1 (V;𝐺) → Ȟ1 (U ;𝐺).
One then defines the Čech cohomology of B with coefficients in G as

Ȟ1(𝐵;𝐺) = colim
U

Ȟ1(U ;𝐺),

where the colimit is indexed by the poset whose objects are covers of B and where V � U if there exists
a refinement U → V .

As we saw previously, any principal G-bundle over B can be trivialized over some cover of B and
induces a cocycle over that cover. It is well known, and easy to see, that this construction induces a
bijection

Prin𝐺 (𝐵) → Ȟ1 (𝐵;𝐺).

For a description of principal G-bundles from this point of view, see [38, Appendix A].

2.2.5. Vector bundles
Let 𝑑 ∈ N≥1. A vector bundle of rank d over B consists of a fiber bundle 𝑝 : 𝐸 → 𝐵 with fiber R𝑑 ,
where each fiber comes with the structure of a real vector space of dimension d and such that p admits
a local trivialization that is linear on each fiber.

It follows that 𝜌−1
𝑗 ◦ 𝜌𝑖 induces a well-defined continuous map 𝜌𝑖 𝑗 : 𝑈 𝑗 ∩𝑈𝑖 → 𝐺𝐿(𝑑) satisfying

(𝜌−1
𝑗 ◦ 𝜌𝑖) (𝑦, 𝑔) = (𝑦, 𝑔 · 𝜌𝑖 𝑗 (𝑦)) for all (𝑦, 𝑔) ∈ (𝑈 𝑗 ∩𝑈𝑖) ×R𝑑 . So every vector bundle of rank d over

B that trivializes over a cover U gives a cocycle in 𝑍1 (U ;𝐺𝐿(𝑑)).
An isomorphism between vector bundles 𝑝 : 𝐸 → 𝐵 and 𝑝′ : 𝐸 ′ → 𝐵 consists of a fiberwise map

𝑚 : 𝐸 → 𝐸 ′ that is a linear isomorphism on each fiber. The family of isomorphism classes of rank-d
vector bundles over B is denoted by Vect𝑑 (𝐵).

A partition of unity argument shows that, if B is paracompact (in the sense of [47, Section 5.8]), the
trivialization of a vector bundle on B can be taken so that the associated cocycle takes values in the
orthogonal group. When B is paracompact, this gives a bijection

Vect𝑑 (𝐵) → Ȟ1 (𝐵;𝑂 (𝑑)).

In particular, Vect𝑑 (𝐵) � Ȟ1 (𝐵;𝑂 (𝑑)) � Prin𝑂 (𝑑) (𝐵).

2.2.6. Classifying maps
For details about the claims in this section, see [45, Theorem 3.1] for the existence of classifying spaces
of topological groups and [38, Appendix B] for an account of classifying spaces of Lie groups.

For every topological group G, there exists a classifying space B𝐺, which consists of a topological
space with the property that, for every paracompact topological space B, there is a natural bijection

Prin𝐺 (𝐵) � [𝐵,B𝐺] .

The classifying space of the orthogonal group 𝑂 (𝑑) is the Grassmannian Gr(𝑑), and thus

Vect𝑑 (𝐵) � Ȟ1 (𝐵;𝑂 (𝑑)) � Prin𝑂 (𝑑) (𝐵) � [𝐵,Gr(𝑑)] .

The map [𝐵,Gr(𝑑)] → Prin𝑂 (𝑑) (𝐵) is constructed as follows. Given [ 𝑓 ] ∈ [𝐵,Gr(𝑑)], let 𝑓 : 𝐵 →
Gr(𝑑) be a representative. Then, the pullback of Proj : V(𝑑) → Gr(𝑑) along f is a principal𝑂 (𝑑)-bundle
over B, whose isomorphism type is independent of the choice of representative for [ 𝑓 ].

2.2.7. Characteristic classes
Let G be a topological group, B a paracompact topological space and p be a principal G-bundle over
B. Fix an abelian group A, and let 𝑛 ∈ N. The bundle p can be represented by a continuous map
𝑓 : 𝐵 → B𝐺, which can then be used to pull back any cohomology class 𝑥 ∈ 𝐻𝑛 (B𝐺; 𝐴) to a class
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𝑓 ∗(𝑥) ∈ 𝐻𝑛 (𝐵; 𝐴). The cohomology classes 𝑓 ∗(𝑥) obtained in this way are the characteristic classes
of the principal G-bundle p, and they are invariant under isomorphism of principal G-bundles. For a
presentation of characteristic classes from this point of view, see [38, Appendix B].

The cohomology ring 𝐻•(Gr(𝑑);Z/2) is isomorphic to a polynomial ring (Z/2) [𝜎1, . . . , 𝜎𝑑] with
𝜎𝑖 ∈ 𝐻𝑖 (Gr(𝑑);Z/2) [47, Section 7]. For 𝑝 : 𝐸 → 𝐵 a rank-d vector bundle over a paracompact topo-
logical space B, one defines the ith Stiefel–Whitney class of p as the characteristic class corresponding
to 𝜎𝑖 ∈ 𝐻𝑖 (Gr(𝑑);Z/2).

For any even 𝑑 ≥ 1, there is a distinguished element 𝑒𝑑 ∈ 𝐻𝑑 (B𝑆𝑂 (𝑑);Z), the universal Euler class
[47, Section 9],[17, Theorem 1]. For 𝑝 : 𝐸 → 𝐵 an oriented, rank-d vector bundle over a paracompact
topological space B, which corresponds, up to isomorphism, to an principal 𝑆𝑂 (𝑑)-bundle, one defines
the Euler class of p as the characteristic class corresponding to 𝑒𝑑 ∈ 𝐻𝑑 (B𝑆𝑂 (𝑑);Z). We remark that the
Euler class can be defined for odd d too, but in this case it is often less useful as, for odd d, we have
2𝑒𝑑 = 0 [47, Property 9.4].

3. Three notions of approximate vector bundle

In this section, we introduce relaxations of three standard definitions of vector bundle. The base space
of our bundles will be denoted by B and a typical element will usually be denoted by 𝑦 ∈ 𝐵.

The classical notions of vector bundle that we consider are those of a vector bundle given by an
𝑂 (𝑑)-valued Čech cocycle, a vector bundle given by a family of compatible maps from opens of a cover
of B to the Stiefel manifold V(𝑑), which we interpret as a local trivialization; and a vector bundle given
by a continuous map from B to the Grassmannian Gr(𝑑).

The reader may be more familiar with the notion of vector bundle given by a 𝐺𝐿(𝑑)-valued cocycle.
Being able to lift the structure group from 𝐺𝐿(𝑑) to 𝑂 (𝑑) corresponds to endowing the vector bundle
with a compatible, fiberwise inner product. Vector bundles endowed with this extra structure are
sometimes referred to as Euclidean vector bundles. Any vector bundle over a paracompact space can
be endowed with an inner product in an essentially unique way [47, Problems 2-C and 2-E], and thus is
isomorphic to the underlying vector bundle of a Euclidean vector bundle. The main reason for working
with Euclidean vector bundles is that, for many choices of distance on the orthogonal group 𝑂 (𝑑), the
group acts on itself by isometries. This is not the case for 𝐺𝐿(𝑑).

3.1. Approximate cocycles

The notion of approximate cocycle makes sense for any metric group, which we define next. This extra
generality makes some arguments clearer and will be of use in Section 6.1.
Definition 3.1. A metric group consists of a group G endowed with the structure of a metric space
such that left and right multiplication by any fixed element 𝑔 ∈ 𝐺, and taking inverse are all isometries
𝐺 → 𝐺.

The main example of metric group to keep in mind is that of the orthogonal group 𝑂 (𝑑) endowed
with the Frobenius distance. Other relevant examples include all connected Lie groups endowed with the
geodesic distance induced by a bi-invariant Riemannian metric; recall that all compact Lie groups, such
as the orthogonal groups, the unitary groups and the compact symplectic groups, admit a bi-invariant
Riemannian metric (see, e.g., [46, Corollary 1.4]). It is also relevant to note that the Frobenius distance
on𝑂 (𝑑) does not arise as the geodesic distance induced by a Riemannian metric; Section A.4 deals with
some of the relationships between the Frobenius distance and the (usual) geodesic distance on 𝑂 (𝑑).

Let G be a metric group and let us denote its distance by 𝑑𝐺 : 𝐺 × 𝐺 → R. Let B be a topological
space and let U = {𝑈𝑖}𝑖∈𝐼 be a cover of B.
Definition 3.2. A 1-cochain on B subordinate to U with values in G consists of a family of continuous
mapsΩ = {Ω𝑖 𝑗 : 𝑈 𝑗∩𝑈𝑖 → 𝐺}(𝑖 𝑗) ∈𝑁 (U) indexed by the ordered 1-simplices of 𝑁 (U ) that is symmetric,
that is, such that for all (𝑖 𝑗) ∈ 𝑁 (U ) and 𝑦 ∈ 𝑈 𝑗 ∩𝑈𝑖 we have Ω𝑖 𝑗 (𝑦) = Ω 𝑗𝑖 (𝑦)−1.
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We denote the set of all 1-cochains on B subordinate to U with values in G by 𝐶1(U ;𝐺). If there is
no risk of confusion, we may refer to an element of 𝐶1 (U ;𝐺) simply as a cochain subordinate to U .

Definition 3.3. Let 𝜀 ∈ (0,∞]. A cochain Ω subordinate to U is an 𝜺-approximate cocycle if for every
(𝑖 𝑗 𝑘) ∈ 𝑁 (U ) and every 𝑦 ∈ 𝑈𝑘 ∩ 𝑈 𝑗 ∩ 𝑈𝑖 we have 𝑑𝐺

(
Ω𝑖 𝑗 (𝑦)Ω 𝑗𝑘 (𝑦),Ω𝑖𝑘 (𝑦)

)
< 𝜀, and an exact

cocycle if we have Ω𝑖 𝑗 (𝑦)Ω 𝑗𝑘 (𝑦) = Ω𝑖𝑘 (𝑦).

We denote the set of 𝜀-approximate cocycles by Z1
𝜀 (U ;𝐺) ⊆ 𝐶1 (U ;𝐺), and the set of exact cocycles

by either Z1
0(U ;𝐺) or simply Z1 (U ;𝐺). Of course, when 𝜀 = ∞, 𝜀-approximate cocycles are merely

cochains, so to keep notation uniform, we denote 𝐶1(U ;𝐺) by Z1
∞(U ;𝐺). We endow the set Z1

∞(U ;𝐺)
with the metric given by

dZ (Ω,Λ) := sup
(𝑖 𝑗) ∈𝑁 (U)

sup
𝑦∈𝑈 𝑗∩𝑈𝑖

𝑑𝐺
(
Ω𝑖 𝑗 (𝑦),Λ𝑖 𝑗 (𝑦)

)
,

for Ω,Λ ∈ Z1
∞(U ;𝐺). This induces a metric on all spaces of approximate and exact cocycles. In

particular, for 𝜀 ≤ 𝜀′, we have metric embeddings

Z1(U ;𝐺) ⊆ Z1
𝜀 (U ;𝐺) ⊆ Z1

𝜀′ (U ;𝐺) ⊆ Z1
∞(U ;𝐺).

Definition 3.4. A 0-cochain subordinate to U with values in G consists of a family of continuous maps
Θ = {Θ𝑖 : 𝑈𝑖 → 𝐺}𝑖∈𝐼 .

We denote the set of all 0-cochains by 𝐶0 (U ;𝐺). The set 𝐶0(U ;𝐺) forms a group, by pointwise
multiplication. There is an action 𝐶0 (U ;𝐺) � Z1

∞(U ;𝐺) with Θ acting on Ω by

(Θ · Ω)𝑖 𝑗 (𝑦) = Θ𝑖 (𝑦)Ω𝑖 𝑗 (𝑦) Θ−1
𝑗 (𝑦)

for every 𝑦 ∈ 𝑈 𝑗 ∩ 𝑈𝑖 . Since G acts on itself by isometries, the above action restricts to an action on
Z1
𝜀 (U ;𝐺) for every 𝜀 ≥ 0.

Definition 3.5. Let 𝜀 ∈ [0,∞]. Define the 𝜺-approximate cohomology set Ȟ1
𝜀 (U ;𝐺) as the quotient

of Z1
𝜀 (U ;𝐺) by the action of 𝐶0 (U ;𝐺).

Notation 3.6. We denote a typical element of Ȟ1
𝜀 (U ;𝐺) by Ω, or by [Ω] if we want to refer to the

equivalence class of an approximate cocycleΩ ∈ Z1
𝜀 (U ;𝐺). In the latter case, we say that the approximate

cocycle Ω ∈ Z1
𝜀 (U ;𝐺) is a representative of the approximate cohomology class [Ω] ∈ Ȟ1

𝜀 (U ;𝐺).

Since the action 𝐶0(U ;𝐺) � Z1
∞(U ;𝐺) is by isometries, the set Ȟ1

𝜀 (U ;𝐺) inherits a metric dȞ from
Z1
𝜀 (U ;𝐺), given as follows. For Ω,Λ ∈ Ȟ1

𝜀 (U ;𝐺), we have

dȞ (Ω,Λ) := inf
Ω,Λ∈Z1

𝜀 (U ;𝑂 (𝑑))
dZ

(
Ω,Λ

)
,

where Ω and Λ range over all representatives of Ω and Λ, respectively.

Remark 3.7. Although we will not use this in what follows, we remark that, forU a cover of a topological
space and G a metric group, we have constructed a filtered (or persistent) metric space Ȟ1

𝜀 (U ;𝐺),
parametrized by 𝜀 ∈ [0,∞], which one can interpret as a functor Ȟ1

−(U ;𝐺) : ([0,∞], ≤) → Met.

3.2. Approximate local trivializations

We start with some considerations about the notion of local trivialization of a vector bundle
(Section 2.2.5), which motivate our notion of approximate local trivialization. Any rank-d Euclidean
vector bundle 𝑝 : 𝐸 → 𝐵 admits an isometric local trivialization, that is, a local trivialization over an
open cover U = {𝑈𝑖}𝑖∈𝐼 of B given by a family of homeomorphisms {𝑈𝑖 × R𝑑 → 𝑝−1 (𝑈𝑖)}𝑖∈𝐼 with
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the property that, given 𝑦 ∈ 𝑈𝑖 , we obtain an orthonormal basis of the vector space 𝑝−1 (𝑦) by evaluat-
ing the map 𝑈𝑖 × R𝑑 → 𝑝−1 (𝑈𝑖) on (𝑦, 𝑒 𝑗 ) for 1 ≤ 𝑗 ≤ 𝑑, where 𝑒 𝑗 is the jth canonical basis vector
of R𝑑 . Recall that any vector bundle over a paracompact base B is classified by some continuous map
𝐵 → Gr(𝑑) (Section 2.2.6). This implies, in particular, that, up to isomorphism of vector bundles, any
vector bundle 𝑝 : 𝐸 → 𝐵 over a paracompact base is a Euclidean vector bundle whose fibers 𝑝−1 (𝑦)
that are not just abstract vector spaces, but d-dimensional subspaces of R∞.

With the above in mind, any isometric local trivialization of a Euclidean vector bundle over a
paracompact base B gives us maps {Φ𝑖 : 𝑈𝑖 → V(𝑑)}, where, as in Section 2.1.1, the space V(𝑑) stands
for the Stiefel manifold of d-frames in R∞. One can check that a family of maps {Φ𝑖 : 𝑈𝑖 → V(𝑑)}𝑖∈𝐼
comes from a vector bundle over B precisely when, for every intersection 𝑈 𝑗 ∩ 𝑈𝑖 ≠ ∅ and every
𝑦 ∈ 𝑈 𝑗 ∩ 𝑈𝑖 , we have that Φ𝑖 (𝑦) and Φ 𝑗 (𝑦) span the same subspace of R∞ and thus, equivalently,
when there exist continuous maps {Ω𝑖 𝑗 : 𝑈 𝑗 ∩𝑈𝑖 → 𝑂 (𝑑)}(𝑖 𝑗) ∈𝑁 (U) such that Φ𝑖 (𝑦)Ω𝑖 𝑗 (𝑦) = Φ 𝑗 (𝑦)
for all 𝑦 ∈ 𝑈 𝑗 ∩ 𝑈𝑖 . Our notion of approximate local trivialization is based on this last equivalent
characterization of local trivializations and, specifically, on relaxing this last equality.

Let U = {𝑈𝑖}𝑖∈𝐼 be a cover of a topological space B.

Definition 3.8. Let 𝜀 ∈ (0,∞]. An 𝜺-approximate local trivialization subordinate to U consists
of a family of continuous maps Φ = {Φ𝑖 : 𝑈𝑖 → V(𝑑)}𝑖∈𝐼 such that, for every (𝑖 𝑗) ∈ 𝑁 (U ),
there exists a continuous map Ω𝑖 𝑗 : 𝑈 𝑗 ∩ 𝑈𝑖 → 𝑂 (𝑑) such that, for every 𝑦 ∈ 𝑈 𝑗 ∩ 𝑈𝑖 , we have
‖Φ𝑖 (𝑦)Ω𝑖 𝑗 (𝑦) − Φ 𝑗 (𝑦)‖ < 𝜀. An exact local trivialization is an approximate local trivialization for
which Φ𝑖 (𝑦)Ω𝑖 𝑗 (𝑦) = Φ 𝑗 (𝑦).

We say that the family Ω = {Ω𝑖 𝑗 }(𝑖 𝑗) ∈𝑁 (U) in Definition 3.8 is a witness of the fact that Φ is an
𝜀-approximate (or exact) local trivialization. We remark that this witness is not part of the data of an
𝜀-approximate local trivialization and that we merely require that a witness exists.

An approximate local trivialization consists of an 𝜀-approximate local trivialization for some
𝜀 ∈ [0,∞]. We denote the set of 𝜀-approximate local trivializations subordinate to U by T𝜀 (U ; 𝑑). We
define a metric on T𝜀 (U ; 𝑑) by

dT (Φ,Ψ) := sup
𝑖∈𝐼

sup
𝑦∈𝑈𝑖

‖Φ𝑖 (𝑦) − Ψ𝑖 (𝑦)‖.

An approximate local trivialization {Φ𝑖}𝑖∈𝐼 is nondegenerate if, for every (𝑖 𝑗) ∈ 𝑁 (U ) and every
𝑦 ∈ 𝑈 𝑗 ∩𝑈𝑖 , the 𝑑 × 𝑑 matrix Φ𝑖 (𝑦)𝑡Φ 𝑗 (𝑦) has full rank.

3.3. Approximate classifying maps

Recall from Section 2.1.3 the definition of the thickened Grassmannians, and recall, in particular, that
the topology of Gr(𝑑) 𝜀 is the direct limit topology and not the one induced by the Frobenius metric.
Let B be a topological space.

Definition 3.9. An 𝜺-approximate classifying map consists of a continuous map 𝐵 → Gr(𝑑) 𝜀 .

The set of 𝜀-approximate classifying maps is denoted by Maps(𝐵,Gr(𝑑) 𝜀). We define a metric on
this set by

dC ( 𝑓 , 𝑔) = sup
𝑦∈𝐵

‖ 𝑓 (𝑦) − 𝑔(𝑦)‖.

We are also interested in the set of classifying maps up to homotopy, which we denote by [𝐵,Gr(𝑑) 𝜀].
Although we will not make use of this fact, we mention that one can interpret this as a persistent set
[𝐵,Gr(𝑑)−] : ([0,∞], ≤) → Set, in the sense of [15, Definition 2.2]. The following result is easily
proven using a linear homotopy.
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Lemma 3.10. Let 𝑓 , 𝑔 ∈ Maps(𝐵,Gr(𝑑) 𝜀), and let [ 𝑓 ] and [𝑔] denote their images in [𝐵,Gr(𝑑) 𝜀].
Let 𝛿 > 0. If ‖ 𝑓 (𝑦) − 𝑔(𝑦)‖ < 𝛿 for all 𝑦 ∈ 𝐵, then [ 𝑓 ] and [𝑔] become equal in

[
𝐵,Gr(𝑑) 𝜀+𝛿

]
. In

particular, if dC ( 𝑓 , 𝑔) < 𝛿, then [ 𝑓 ] and [𝑔] become equal in
[
𝐵,Gr(𝑑) 𝜀+𝛿

]
.

4. Relationships between the notions

We now consider the problem of going back and forth between the different notions of approximate
vector bundle. As a consequence of this study, we relate approximate vector bundles to true (exact)
vector bundles. In particular, this lets us extract a true vector bundle from an 𝜀-approximate vector
bundle when 𝜀 is sufficiently small.

There are two main results in this section. Theorem 4.21 associates an approximate classifying map
to any approximate cocycle and lets us, in particular, assign a true vector bundle to any 𝜀-approximate
cocycle as long as 𝜀 ≤ 1/2. This is done in a way that is stable and independent of arbitrary choices.
Theorem 4.27 gives an upper bound for the distance from an 𝜀-approximate cocycle to an exact cocycle
representing the same true vector bundle when 𝜀 ≤

√
2/4. This is used in Section 6 to prove the

consistency of algorithms to compute characteristic classes.
Many proofs in this section rely on various results stated and proven in Appendix A.

4.1. Cocycles and local trivializations

In this section, we relate approximate cocycles and approximate local trivializations. We give
constructions (Construction 4.2 and Construction 4.8) to go back and forth between the notions, and
we show that, in a sense, these constructions are approximate inverses of each other (Remark 4.11).
The construction to go from approximate local trivializations to approximate cocycles is in general not
canonical; we conclude the section by showing that, when 𝜀 ≤ 1, the construction can be made canonical.

To motivate the assumptions made in the following construction, recall that a set I is countable if
there exists an injection 𝜄 : 𝐼 → N≥1. Recall also that any vector bundle on a paracompact topological
space can be trivialized on a countable open cover [47, Lemma 5.9], and that every open cover of a
paracompact topological space admits a subordinate partition of unity.

We start with a simplification. Given V = {𝑉𝑖}𝑖∈𝐼 a countable open cover of a topological space B
and an injection 𝜄 : 𝐼 → N≥1, consider a new open cover U = 𝜄∗(V) of B indexed by N≥1 with 𝑈𝑛 = 𝑉𝑖
if 𝜄(𝑖) = 𝑛 or 𝑈𝑛 = ∅ if there is no 𝑖 ∈ 𝐼 such that 𝜄(𝑖) = 𝑛.

Remark 4.1. Note that, using 𝜄, one can construct a canonical bijection between the set of partitions of
unity subordinate to V and the set of partitions of unity subordinate to U . The same is true for the sets
of approximate cocycles subordinate to V and U and for the sets of approximate local trivializations
subordinate to V and U .

We give the main constructions of this section for covers indexed byN≥1, and we will later generalize
them to arbitrary countable covers, as this simplifies exposition.

Construction 4.2. Let B be a paracompact topological space and let V = {𝑉𝑖}𝑖∈N≥1 be a cover of B. Let
𝜑 be a partition of unity subordinate to V . Given a cochain Ω subordinate to V define, for each 𝑖 ∈ N≥1,
a map Φ𝑖 : 𝑉𝑖 → V(𝑑), where the rows of Φ𝑖 (𝑦) from 𝑑 × 𝑗 to 𝑑 × ( 𝑗 + 1) − 1 are given by√

𝜑 𝑗 (𝑦)Ω𝑖 𝑗 (𝑦)𝑡 . �

Note that the maps Φ𝑖 of Construction 4.2 are continuous and are well defined since, if 𝑦 ∉ 𝑉 𝑗 , then
𝜑 𝑗 (𝑦) = 0.

Lemma 4.3. Let 𝜀 ∈ [0,∞] and let Ω be an 𝜀-approximate cocycle subordinate to an open cover
V = {𝑉𝑖}𝑖∈N≥1 of a paracompact topological space. The maps Φ𝑖 of Construction 4.2 form an
𝜀-approximate local trivialization.
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Proof. We give the proof for 𝜀 ∈ (0,∞], the case 𝜀 = 0 being similar. Let (𝑖 𝑗) ∈ 𝑁 (V). We claim
that the original 𝜀-approximate cocycle Ω is a witness that the family Φ is an 𝜀-approximate local
trivialization. To prove this, we must show that, for all 𝑦 ∈ 𝑉 𝑗 ∩ 𝑉𝑖 , the Frobenius distance between
Φ𝑖 (𝑦)Ω𝑖 𝑗 (𝑦) and Φ 𝑗 (𝑦) is less than 𝜀. Carrying out the product Φ𝑖 (𝑦)Ω𝑖 𝑗 (𝑦), we get an element of
V(𝑑) with rows from 𝑑 × 𝑘 to 𝑑 × (𝑘 + 1) − 1 given by√

𝜑𝑘 (𝑦)Ω𝑖𝑘 (𝑦)𝑡Ω𝑖 𝑗 (𝑦).

So ‖Φ𝑖 (𝑦)Ω𝑖 𝑗 (𝑦) −Φ 𝑗 (𝑦)‖ =
(∑

𝑘≥1 ‖
√
𝜑𝑘 (𝑦)

(
Ω𝑖𝑘 (𝑦)𝑡Ω𝑖 𝑗 (𝑦) −Ω𝑘 𝑗 (𝑦)

)
‖2

)1/2
< 𝜀, as required. �

We have thus constructed a map

triv𝜑 : Z1
𝜀 (V;𝑂 (𝑑)) → T𝜀 (V; 𝑑),

for any cover V of a paracompact topological space B that is indexed by N≥1. It is important to note that
this map depends on the choice of partition of unity 𝜑. Nevertheless, using two different partitions of
unity gives homotopic local trivializations, in the following sense.

Lemma 4.4. Let Ω be an 𝜀-approximate cocycle subordinate to V = {𝑉𝑖}𝑖∈N≥1 . If 𝜑 and 𝜑′ are two
partitions of unity subordinate to V , then triv𝜑 (Ω) and triv𝜑′ (Ω) are homotopic through a family of
𝜀-approximate local trivializations that admit Ω as a witness.

Proof. For any 𝛼 ∈ [0, 1], the formula 𝜑𝛼
𝑖 = 𝛼𝜑𝑖 + (1 − 𝛼)𝜑′

𝑖 gives a partition of unity. Now observe
that the family of 𝜀-approximate local trivializations triv𝜑𝛼 (Ω) admit Ω as a witness. �

Next, we show that the construction assigning an approximate local trivialization to an approximate
cocycle is stable.

Lemma 4.5. LetV = {𝑉𝑖}𝑖∈N≥1 be a cover of a paracompact topological space B, and let 𝜑 be a partition
of unity subordinate to V . For Ω and Λ 𝜀-approximate cocycles subordinate to V ,

dT (triv𝜑 (Ω), triv𝜑 (Λ)) ≤ dZ (Ω,Λ).

Proof. Let dZ (Ω,Λ) = 𝛿, Φ := triv𝜑 (Ω), and Ψ := triv𝜑 (Λ). For 𝑦 ∈ 𝑉𝑖 , we have

‖Φ𝑖 (𝑦) − Ψ𝑖 (𝑦)‖2 =
∑
𝑘∈𝐼

𝜑𝑘 (𝑦)‖Ω𝑖𝑘 (𝑦) − Λ𝑖𝑘 (𝑦)‖2 ≤ 𝛿2
∑
𝑘∈𝐼

𝜑𝑘 (𝑦) = 𝛿2,

which proves the claim. �

Let U = {𝑈𝑖}𝑖∈𝐼 be a countable open cover of a paracompact topological space B, and let 𝜄 : 𝐼 → N≥1
be an injection. Using Remark 4.1, we can generalize Construction 4.2, Lemma 4.3, Lemma 4.4 and
Lemma 4.5 to U .

In particular, we have a map triv𝜑, 𝜄 : Z1
𝜀 (U ;𝑂 (𝑑)) → T𝜀 (U ; 𝑑) that now also depends on the choice

of injection 𝜄. We now prove that, up to homotopy, triv is independent of the choice of 𝜄. In order to show
this, we prove a more general lemma that will be of use later.

Lemma 4.6. Given an injection 𝜄 : N≥1 → N≥1 define 𝜒 𝜄 : V(𝑑) → V(𝑑) by mapping a frame
Φ ∈ V(𝑑) to the frame whose 𝜄(𝑘)th row is the kth row of Φ and whose other rows are identically 0. If
𝜄, 𝜄′ : N≥1 → N≥1 are injections, then 𝜒 𝜄 and 𝜒 𝜄′ : V(𝑑) → V(𝑑) are homotopic.

The proof of the lemma is standard, but we give it here for completeness.

Proof. Assume that 𝜄 and 𝜄′ have disjoint images. Then, there is a homotopy between 𝜒 𝜄 and 𝜒 𝜄′ given
by

√
𝛼𝜒 𝜄 +

√
1 − 𝛼𝜒 𝜄′ for 𝛼 ∈ [0, 1]. Let 2𝜄 : N≥1 → N≥1 be given by 2𝜄(𝑘) = 2 × 𝜄(𝑘) and define

2𝜄′ +1 in an analogous way. Since 2𝜄 and 2𝜄′ +1 have disjoint images, our previous reasoning reduces the
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problem to showing that 𝜒 𝜄 and 𝜒2 𝜄 are homotopic and that 𝜒 𝜄′ and 𝜒2 𝜄′−1 are homotopic. Since the two
proofs are entirely analogous, we give the details only for the case of 𝜄. Moreover, since 2𝜄 : N≥1 → N≥1
is the composite of 𝜄 with multiplication by 2, it is enough to give the proof for 𝜄 = id, which we now do.

We must show that the identity V(𝑑) → V(𝑑) is homotopic to 𝜒2 : V(𝑑) → V(𝑑). Informally, the
proof works by moving each row of Φ at a time. To simplify exposition, in the rest of this proof, the
notation Φ𝑚 will be used to refer to the mth row of a frame Φ ∈ V(𝑑). Consider the family of functions
𝑓 𝛼 : V(𝑑) → V(𝑑) indexed by 𝛼 ∈ [0, 1] defined as follows. For 𝛼 = 0, let 𝑓 𝛼 = id. For 𝑛 ∈ N≥1,
𝛼 ∈ [1/(𝑛 + 1), 1/𝑛], and 𝑚 ∈ N≥1, define

( 𝑓 𝛼 (Φ))𝑚 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Φ𝑚, 𝑚 < 𝑛
√
𝛽 Φ𝑚, 𝑚 = 𝑛

0, 𝑛 < 𝑚 < 2𝑛√
1 − 𝛽 Φ𝑚, 𝑚 = 2𝑛

Φ𝑚/2, 𝑚 > 2𝑛 and 𝑚 even
0, 𝑚 > 2𝑛 and 𝑚 odd,

where 𝛽 = (1/𝑛 − 𝛼) × (1/𝑛 − 1/(𝑛 + 1)). By inspection, we see that 𝑓 𝛼 gives a homotopy between the
identity and 𝜒2, using that V(𝑑) has the direct limit topology. �

Lemma 4.7. Let Ω be an 𝜀-approximate cocycle subordinate to a countable open cover U = {𝑈𝑖}𝑖∈𝐼
and let 𝜄, 𝜄′ : 𝐼 → N≥1 be injections. Let 𝜑 be a partition of unity subordinate to U . Then triv𝜑, 𝜄 (Ω)
and triv𝜑, 𝜄′ (Ω) are homotopic through a family of 𝜀-approximate local trivializations that admit Ω as a
witness.

Proof. The result follows at once from Lemma 4.6 by noticing that, for any two injections 𝜄, 𝜄′ : 𝐼 → N≥1,
there exists a bijection b of N≥1 such that 𝜄′ = 𝑏 ◦ 𝜄. �

We now consider the problem of assigning an approximate cocycle to an approximate local
trivialization.

Construction 4.8. Let Φ= {Φ𝑖}𝑖∈𝐼 be an 𝜀-approximate local trivialization subordinate to U = {𝑈𝑖}𝑖∈𝐼 .
By definition, there exists a witness that Φ is an 𝜀-approximate local trivialization. Choose, arbitrarily,
such a witness Ω. Without loss of generality, we may assume that Ω is symmetric and thus that it is a
cochain.

Lemma 4.9. Let 𝜀 ∈ [0,∞]. LetΦ be an 𝜀-approximate local trivialization. Then, the cochain described
in Construction 4.8 is a 3𝜀-approximate cocycle. Thus, Construction 4.8 gives a map w : T𝜀 (U ; 𝑑) →
Z1

3𝜀 (U ;𝑂 (𝑑)).

Proof. We address the case 𝜀 ∈ (0,∞], the case 𝜀 = 0 being similar. Let (𝑖 𝑗 𝑘) ∈ 𝑁 (U ) and let
𝑦 ∈ 𝑈𝑘 ∩𝑈 𝑗 ∩𝑈𝑖 . Since ‖Φ𝑖 (𝑦)Ω𝑖𝑘 (𝑦) − Φ𝑘 (𝑦)‖ < 𝜀, we have that ‖Φ𝑘 (𝑦)𝑡Φ𝑖 (𝑦)Ω𝑖𝑘 (𝑦) − id‖ < 𝜀,
by Lemma A.5. This implies that ‖Φ𝑖 (𝑦)𝑡Φ𝑘 (𝑦) −Ω𝑖𝑘 (𝑦)‖ < 𝜀.

A similar computation shows that ‖Φ𝑖 (𝑦)𝑡Φ 𝑗 (𝑦)Ω 𝑗𝑘 (𝑦) − Φ𝑖 (𝑦)𝑡Φ𝑘 (𝑦)‖ < 𝜀. Using the triangle
inequality and the first bound in the proof, we get that ‖Φ𝑖 (𝑦)𝑡Φ 𝑗 (𝑦)Ω 𝑗𝑘 (𝑦) − Ω𝑖𝑘 (𝑦)‖ < 2𝜀. By
Lemma A.5 and the first bound in this proof but for i and j, we have that ‖Φ𝑖 (𝑦)𝑡Φ 𝑗 (𝑦)Ω 𝑗𝑘 (𝑦) −
Ω𝑖 𝑗 (𝑦)Ω 𝑗𝑘 (𝑦)‖ < 𝜀. The triangle inequality then finishes the proof. �

Although we can associate a 3𝜀-approximate cocycle to every 𝜀-approximate local trivialization,
this choice is not canonical, as an approximate local trivialization can have many distinct witnesses.
Nonetheless, the following result says that any two witnesses cannot be too far apart.

Lemma 4.10. Let Ω and Λ be witnesses that Φ and Ψ are, respectively, 𝜀- and 𝛿-approximate local
trivializations. Then dZ (Ω,Λ) ≤ 𝜀 + 𝛿 +

√
2dT (Φ,Ψ).

https://doi.org/10.1017/fms.2023.16 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.16


18 L. Scoccola and J. A. Perea

Proof. We address the case in which 𝜀, 𝛿 > 0, the case in which any of them is 0 being similar. Let
(𝑖 𝑗) ∈ 𝑁 (U ) and 𝑦 ∈ 𝑈 𝑗 ∩𝑈𝑖 . We have ‖Ω𝑖 𝑗 (𝑦) −Φ𝑖 (𝑦)𝑡Φ 𝑗 (𝑦)‖ < 𝜀 and ‖Λ𝑖 𝑗 (𝑦) −Ψ𝑖 (𝑦)𝑡Ψ 𝑗 (𝑦)‖ < 𝛿,
so it suffices to show that ‖Φ𝑖 (𝑦)𝑡Φ 𝑗 (𝑦) − Ψ𝑖 (𝑦)𝑡Ψ 𝑗 (𝑦)‖ ≤

√
2‖Φ𝑖 (𝑦) − Ψ𝑖 (𝑦)‖, which follows from

Lemma A.6. �

Remark 4.11. From Lemma 4.10, it follows that, if Ω and Λ are witnesses that Φ is an 𝜀-approximate
local trivialization, then dZ (Ω,Λ) ≤ 2𝜀, and thus w is, approximately, a left inverse of triv𝜑 , in the sense
that dZ (Ω,w(triv𝜑 (Ω))) ≤ 2𝜀 for every 𝜀-approximate cocycleΩ. The following result can be interpreted
as saying that w is also a right inverse of triv𝜑 since it implies, in particular, that triv𝜑 (w(Φ)) is homotopic
to Φ through 3𝜀-approximate local trivializations, whenever Φ is an 𝜀-approximate local trivialization.

Lemma 4.12. Let 𝜀 ≥ 0. Let Ω be a witness that Φ and Ψ are 𝜀-approximate cocycles. Then Φ and Ψ
are homotopic through 𝜀-approximate local trivializations subordinate to U = {𝑈𝑖}𝑖∈𝐼 that admit Ω as
a witness.

Proof. We use the language of Lemma 4.6. Consider the maps 𝜄, 𝜄′ : N≥1 → N≥1 given by 𝜄(𝑘) = 2𝑘
and 𝜄′(𝑘) = 2𝑘 − 1. It is clear that Ω is a witness that {𝜒 𝜄 ◦ Φ𝑖}𝑖∈𝐼 is an 𝜀-local trivialization, and
Lemma 4.6 implies that Φ is homotopic to {𝜒 𝜄 ◦Φ𝑖}𝑖∈𝐼 through 𝜀-approximate local trivializations that
admit Ω as a witness. Similarly, we deduce that Ψ is homotopic to {𝜒 𝜄′ ◦Ψ𝑖}𝑖∈𝐼 through 𝜀-approximate
local trivializations that admit Ω as a witness.

Consider, for 𝛼 ∈ [0, 1], the family {
√
𝛼(𝜒 𝜄 ◦Φ𝑖) +

√
1 − 𝛼(𝜒 𝜄′ ◦Ψ𝑖)}𝑖∈𝐼 . Since the images of 𝜄 and 𝜄′

are disjoint, this constitutes an 𝜀-approximate local trivialization that admits Ω as a witness that varies
continuously with 𝛼. The result follows. �

The following result gives conditions under which there is a canonical approximate cocycle associated
to an approximate local trivialization.

Lemma 4.13. Let Φ be a nondegenerate 𝜀-approximate local trivialization. For (𝑖 𝑗) ∈ 𝑁 (U ) and
𝑦 ∈ 𝑈 𝑗 ∩ 𝑈𝑖 , let Ω𝑖 𝑗 (𝑦) ∈ 𝑂 (𝑑) minimize ‖Φ𝑖 (𝑦)Ω − Φ 𝑗 (𝑦)‖, where Ω ranges over 𝑂 (𝑑). Then, the
matrices Ω𝑖 𝑗 (𝑦) assemble into a 3𝜀-approximate cocycle.

Proof. To see that the mappings Ω𝑖 𝑗 : 𝑈 𝑗 ∩𝑈𝑖 → 𝑂 (𝑑) are continuous, use Corollary A.4. To see that
Ω𝑖 𝑗 = Ω𝑡

𝑗𝑖 use that the minimizers are unique. Then, Lemma 4.9 directly implies that Ω satisfies the
3𝜀-approximate cocycle condition, as required. �

We now give sufficient conditions for an approximate local trivialization to be nondegenerate.

Lemma 4.14. If 𝜀 ≤ 1, then any 𝜀-approximate local trivialization is nondegenerate.

Proof. This is a consequence Lemma A.15, which says that a matrix that is at Frobenius distance less
than 1 from an orthogonal matrix is invertible. �

We conclude by remarking that Lemma 4.14 implies that, if 𝜀 ≤ 1, we have a canonical map (that is
independent of any arbitrary choices)

w : T𝜀 (U ; 𝑑) → Z1
3𝜀 (U ;𝑂 (𝑑))

given by taking the best witness, as in Lemma 4.13.

4.2. Local trivializations and classifying maps

In this section, we give a construction that, given an approximate local trivialization, returns an approx-
imate classifying map. We also observe that this construction behaves well with respect to homotopies
between approximate local trivializations.

Recall from Section 2.1.2 the definition of the map Proj : V(𝑑) → Gr(𝑑).
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Construction 4.15. Let U be a countable open cover of a paracompact topological space B and let 𝜑
be a partition of unity subordinate to U . Let Φ be an approximate local trivialization subordinate to U .
Define a map av𝜑 (Φ) : 𝐵 → R∞×∞ by

av𝜑 (Φ) (𝑦) =
∑
𝑖∈𝐼

𝜑𝑖 (𝑦)Proj(Φ𝑖 (𝑦)). �

Note that the map av𝜑 (Φ) is continuous.

Lemma 4.16. Let 𝜀 ∈ [0,∞]. Under the hypotheses of Construction 4.15, if Φ is an 𝜀-approximate
local trivialization, then av𝜑 (Φ) is a

√
2𝜀-approximate classifying map.

Proof. We address the case 𝜀 ∈ (0,∞], the case 𝜀 = 0 being similar. By definition, there exist, for each
(𝑖 𝑗) ∈ 𝑁 (U ), a continuous map Ω𝑖 𝑗 : 𝑈 𝑗 ∩𝑈𝑖 → 𝑂 (𝑑) such that ‖Φ𝑖 (𝑦)Ω𝑖 𝑗 (𝑦) −Φ 𝑗 (𝑦)‖ < 𝜀 for every
𝑦 ∈ 𝑈 𝑗 ∩𝑈𝑖 . Since Proj : V(𝑑) → Gr(𝑑) is 𝑂 (𝑑)-invariant and

√
2-Lipschitz (Lemma A.6), it follows

that ‖Proj(Φ𝑖 (𝑦)) − Proj(Φ 𝑗 (𝑦))‖ <
√

2𝜀. The result then follows from Lemma A.2. �

The following is clear.

Lemma 4.17. Let Φ and Ψ be approximate local trivializations subordinate to U , a countable open
cover of a paracompact topological space B. Let 𝜑 be a partition of unity subordinate to U .

1. We have that dC(av𝜑 (Φ), av𝜑 (Ψ)) ≤
√

2dT (Φ,Ψ).
2. If Φ and Ψ are homotopic through 𝜀-approximate local trivializations subordinate to U , then av𝜑 (Φ)

and av𝜑 (Ψ) are homotopic as maps 𝐵 → Gr(𝑑)
√

2𝜀 .

4.3. Cocycles and classifying maps

In this section, we relate approximate cocycles to approximate classifying maps in a way that is
independent of any partition of unity and of any enumeration of the sets in the open cover the cocycle is
subordinate to (Theorem 4.21). We also study the action of refinements on approximate cohomology.

Let B be a paracompact topological space and let U = {𝑈𝑖}𝑖∈𝐼 be a countable open cover. Let 𝜑
be a partition of unity subordinate to U and let 𝜄 : 𝐼 → N≥1 be an injection. Using Lemma 4.3 and
Lemma 4.16, we get a map av𝜑 ◦ triv𝜑, 𝜄 : Z1

𝜀 (U ;𝑂 (𝑑)) → Maps
(
𝐵,Gr(𝑑)

√
2𝜀

)
which we compose with

the quotient map Maps
(
𝐵,Gr(𝑑)

√
2𝜀

)
→

[
𝐵,Gr(𝑑)

√
2𝜀

]
to obtain a map

cl′ : Z1
𝜀 (U ;𝑂 (𝑑)) →

[
𝐵,Gr(𝑑)

√
2𝜀

]
.

Together, Lemma 4.4, Lemma 4.17, and Lemma 4.7 imply that this map is independent of the choice
of partition of unity 𝜑 and of injection 𝜄. The following result says that two approximate cocycles that
differ in a 0-cochain are sent to the same approximate classifying map by cl′.

Lemma 4.18. Let B be a paracompact topological space and let U be a countable open cover. The map
cl′ : Z1

𝜀 (U ;𝑂 (𝑑)) →
[
𝐵,Gr(𝑑)

√
2𝜀

]
factors through Ȟ1

𝜀 (U ;𝑂 (𝑑)).

Proof. By construction, we may assume that U is indexed by 𝐼 = N. Consider the following open cover
V = {𝑉 𝑗 } 𝑗∈𝐽 indexed by 𝐽 = N. Let 𝑉 𝑗 = 𝑈𝑖 whenever 𝑗 = 2𝑖 + 𝑧 with 𝑧 = 0 or 𝑧 = 1. So the open cover
V consists of two copies of each open set of U , where each open 𝑈𝑖 appears with an even index as 𝑉2𝑖
and with an odd index as 𝑉2𝑖+1.

Suppose that Ω and Ω′ are equal in Ȟ1
𝜀 (U ;𝑂 (𝑑)) so that there is a 0-cochain Θ such that Θ ·Ω = Ω′.

Let 𝜑 be a partition of unity subordinate to U . This induces two partitions of unity 𝜑0 and 𝜑1 subordinate
to V , where 𝜑0

𝑗 is equal to 𝜑 𝑗/2 if j is even and is identically 0 if j is odd. Similarly, 𝜑1
𝑗 is equal to 𝜑 ( 𝑗−1)/2

if j is odd and identically 0 if j is even.
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Consider the following cochain Λ subordinate to V . For ( 𝑗 𝑘) ∈ 𝑁 (V), define Λ 𝑗𝑘 = Ω 𝑗/2 𝑘/2 if j
and k are even, Λ 𝑗𝑘 = Θ𝑡

( 𝑗−1)/2Ω( 𝑗−1)/2 (𝑘−1)/2Θ(𝑘−1)/2 if j and k are odd, Λ 𝑗𝑘 = Θ𝑡
( 𝑗−1)/2Ω( 𝑗−1)/2 𝑘/2 if

j is odd and k is even, and Λ 𝑗𝑘 = Ω 𝑗/2 (𝑘−1)/2Θ(𝑘−1)/2 if j is even and k is odd. It is clear that Λ is an
𝜀-approximate cocycle subordinate to V .

Finally, using Lemma 4.7, if we use the partition of unity 𝜑0, we see that cl′(Λ) = cl′(Ω), and if we
use the partition of unity 𝜑1, we see that cl′(Λ) = cl′(Ω′). The result follows. �

Recall from Section 2.2.4 the notion of refinement of a cover.
Construction 4.19. Let 𝜈 : U → V be a refinement of covers of a topological space B and let 𝜀 ∈ [0,∞].
Let Ω ∈ Z1

𝜀 (V;𝑂 (𝑑)). Define 𝜈(Ω) ∈ Z1
𝜀 (U ;𝑂 (𝑑)) by letting 𝜈(Ω) 𝑗𝑘 = Ω𝜈 ( 𝑗)𝜈 (𝑘) for all ( 𝑗 𝑘) ∈ 𝑁 (U ).

Construction 4.19 gives a map 𝜈 : Z1
𝜀 (V;𝑂 (𝑑)) → Z1

𝜀 (U ;𝑂 (𝑑)) that descends to a map

𝜈 : Ȟ1
𝜀 (V;𝑂 (𝑑)) → Ȟ1

𝜀 (U ;𝑂 (𝑑)).

It is clear that both these maps are 1-Lipschitz with respect to dZ and with respect to dȞ.
Lemma 4.20. Let 𝜀 ∈ [0,∞], let 𝜇, 𝜈 : U → V and let Ω ∈ Z1

𝜀 (V;𝑂 (𝑑)). Then, for all ( 𝑗 𝑘) ∈ 𝑁 (U )
and 𝑦 ∈ 𝑈𝑘 ∩𝑈 𝑗 , we have ‖𝜇(Ω) 𝑗𝑘 (𝑦) − 𝜈(Ω) 𝑗𝑘 (𝑦)‖ < 2𝜀, and thus dȞ(𝜇(Ω), 𝜈(Ω)) ≤ 2𝜀.
Proof. We address the case 𝜀 ∈ (0,∞], the case 𝜀 = 0 being similar. We start by defining a 0-cochain
Θ subordinate to U . Given 𝑗 ∈ 𝑁 (U ), let Θ 𝑗 = Ω𝜇 ( 𝑗)𝜈 ( 𝑗) if 𝜇( 𝑗) ≠ 𝜈( 𝑗) and the identity if 𝜇( 𝑗) = 𝜈( 𝑗).
Let ( 𝑗 𝑘) ∈ 𝑁 (U ), and let 𝑦 ∈ 𝑈𝑘 ∩ 𝑈 𝑗 . To simplify notation in the rest of this proof, let us denote
Ω𝑎𝑏 (𝑦) by Ω𝑎𝑏 . We have

‖𝜇(Ω) 𝑗𝑘 (𝑦) − (Θ · 𝜈(Ω)) 𝑗𝑘 (𝑦)‖ = ‖Ω𝜇 ( 𝑗)𝜇 (𝑘) −Ω𝜇 ( 𝑗)𝜈 ( 𝑗)Ω𝜈 ( 𝑗)𝜈 (𝑘)Ω𝜈 (𝑘)𝜇 (𝑘) ‖
= ‖Ω𝜈 ( 𝑗)𝜇 ( 𝑗)Ω𝜇 ( 𝑗)𝜇 (𝑘) −Ω𝜈 ( 𝑗)𝜈 (𝑘)Ω𝜈 (𝑘)𝜇 (𝑘) ‖
≤ ‖Ω𝜈 ( 𝑗)𝜇 ( 𝑗)Ω𝜇 ( 𝑗)𝜇 (𝑘) −Ω𝜈 ( 𝑗)𝜇 (𝑘) ‖

+ ‖Ω𝜈 ( 𝑗)𝜇 (𝑘) −Ω𝜈 ( 𝑗)𝜈 (𝑘)Ω𝜈 (𝑘)𝜇 (𝑘) ‖
< 2𝜀,

where for the second equality we used the fact that Ω𝜈 ( 𝑗)𝜇 ( 𝑗) = Ω−1
𝜇 ( 𝑗)𝜈 ( 𝑗) combined with the fact that

the Frobenius norm is invariant under multiplication by an orthogonal matrix, and for the inequalities
we used the triangle inequality and the approximate cocycle condition. �

We are now ready to state and prove the main result of this section.
Theorem 4.21. Let B be a paracompact topological space, and let U be a countable cover of B. Let
𝜀 ∈ [0,∞]. The map cl′ induces a map

cl : Ȟ1
𝜀 (U ;𝑂 (𝑑)) →

[
𝐵,Gr(𝑑)

√
2𝜀

]
such that, if dȞ(Ω,Λ) < 𝛿 in Ȟ1

𝜀 (U ;𝑂 (𝑑)), then cl(Ω) and cl(Λ) become equal in
[
𝐵,Gr(𝑑)

√
2(𝜀+𝛿)

]
.

Moreover, if 𝜇, 𝜈 : V → U are refinements and V is a countable cover of B, then cl(𝜇(Ω)) and cl(𝜈(Ω))
become equal in

[
𝐵,Gr(𝑑)2

√
2𝜀

]
.

Proof. The map cl is well defined thanks to Lemma 4.18. For the stability of cl, note that, using
Lemma 4.17, we see that if Ω and Λ are 𝜀-approximate cocycles subordinate to a countable cover
U = {𝑈𝑖}𝑖∈𝐼 , 𝜑 is a partition of unity subordinate to U , and 𝜄 : 𝐼 → N≥1 is an injection, then

dC(av𝜑 ◦ triv𝜑, 𝜄 (Ω) , av𝜑 ◦ triv𝜑, 𝜄 (Λ)) ≤
√

2dZ (Ω,Λ).

The stability then follows from Lemma 3.10. Finally, the claim about refinements follows directly from
Lemma 4.20. �
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Note that the map cl is independent of any choice of partition of unity or enumeration of the cover U .
We conclude with an interesting remark that is not used in the rest of the paper.

Remark 4.22. Let cov(𝐵) be the category whose objects are the countable covers of a paracompact
topological space B and whose morphisms are the refinements. Let 𝜀 ∈ [0,∞]. Construction 4.19 gives
a functor Ȟ1

𝜀 (−;𝑂 (𝑑)) : cov(𝐵)op → Met. We can then define

Ȟ1
𝜀 (𝐵;𝑂 (𝑑)) = colim

U ∈cov(𝐵)
Ȟ1
𝜀 (U ;𝑂 (𝑑)),

with the caveat that Ȟ1
𝜀 (𝐵;𝑂 (𝑑)) may be a pseudo metric space. Theorem 4.21 implies that there is a

well-defined map cl : Ȟ1
𝜀 (𝐵;𝑂 (𝑑)) →

[
𝐵,Gr(𝑑)2

√
2𝜀

]
, natural in 𝜀 ∈ [0,∞].

4.4. Relationship to classical vector bundles

We now relate approximate vector bundles to exact vector bundles, following the intuition that
𝜀-approximate vector bundles should correspond to true vector bundles as long as 𝜀 is sufficiently
small. For this, we use Theorem 4.21. In the case where an approximate cocycle represents a true vector
bundle, we study the problem of constructing an exact cocycle that represents the same vector bundle.
We also give upper and lower bounds for the distance from an approximate cocycle to an exact cocycle
representing the same vector bundle (Theorem 4.27 and Lemma 4.30).

We start by recalling that small thickenings of the Grassmannian embedded in R∞×∞ retract to
the Grassmannian. More precisely, if 𝜀 ≤

√
2/2, there is a map 𝜋 : Gr(𝑑) 𝜀 → Gr(𝑑) which is a

homotopy inverse of the inclusion Gr(𝑑) ⊆ Gr(𝑑) 𝜀 , by Proposition A.12. Let B be a topological space.
By postcomposing with 𝜋, we get an inverse for the natural map [𝐵,Gr(𝑑)] → [𝐵,Gr(𝑑) 𝜀] which we
denote by

𝜋∗ : [𝐵,Gr(𝑑) 𝜀] → [𝐵,Gr(𝑑)] .

By an abuse of notation, we also let 𝜋∗ : Maps(𝐵,Gr(𝑑) 𝜀) → Maps(𝐵,Gr(𝑑)).
Recall that we constructed a map cl : Ȟ1

𝜀 (U ;𝑂 (𝑑)) →
[
𝐵,Gr(𝑑)

√
2𝜀

]
, so, if 𝜀 ≤ 1/2, then any 𝜀-

approximate cocycle Ω represents a true vector bundle, namely 𝜋∗(cl(Ω)) ∈ [𝐵,Gr(𝑑)]. To summarize,
if 𝜀 ≤ 1/2, we have defined a map

𝜋∗ ◦ cl : Ȟ1
𝜀 (U ;𝑂 (𝑑)) → [𝐵,Gr(𝑑)] .

Upper bound.
For the rest of this section, we let Φ be an 𝜀-approximate local trivialization subordinate to a countable
cover U = {𝑈𝑖}𝑖∈𝐼 of a paracompact topological space B, with 𝜀 ∈ [0,∞]; we let 𝜑 be a partition of
unity subordinate to U and let 𝜄 : 𝐼 → N≥1 be an injection. Recall from Lemma 4.16 that

av𝜑 (Φ) (𝑦) =
∑
𝑖∈𝐼

𝜑𝑖 (𝑦) Proj(Φ𝑖 (𝑦))

defines a
√

2𝜀-approximate classifying map 𝐵 → Gr(𝑑)
√

2𝜀 . We will make use of results in
Appendix A.2.

Lemma 4.23. If 𝜀 ∈ (0,∞], then for, 𝑖 ∈ 𝐼 and 𝑦 ∈ 𝑈𝑖 , we have��Φ𝑖 (𝑦)Φ𝑖 (𝑦)𝑡 − 𝜋∗(av𝜑 (Φ) (𝑦))
�� < 2

√
2𝜀 and ‖Φ𝑖 (𝑦) − 𝜋∗(av𝜑 (Φ) (𝑦))Φ𝑖 (𝑦)‖ < 2

√
2𝜀.

If 𝜀 = 0, then Φ𝑖 (𝑦)Φ𝑖 (𝑦)𝑡 = 𝜋∗(av𝜑 (Φ) (𝑦)) and Φ𝑖 (𝑦) = 𝜋∗(av𝜑 (Φ) (𝑦))Φ𝑖 (𝑦).
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Proof. We address the case 𝜀 ∈ (0,∞], the case 𝜀 = 0 being similar. The second inequality is a
consequence of the first one and Lemma A.5. For the first inequality, use Lemma A.2 together with
Lemma A.6. �

Lemma 4.24. Assume that 𝜀 ≤
√

2/4. For every 𝑖 ∈ 𝐼 and 𝑦 ∈ 𝑈𝑖 , the matrix 𝜋∗(av𝜑 (Φ) (𝑦))Φ𝑖 (𝑦) has
rank d.

Proof. To simplify notation, let us omit from the formulas the evaluations on 𝑦 ∈ 𝑈𝑖 . It is enough to
show that (𝜋∗(av𝜑 (Φ))Φ𝑖)𝑡𝜋∗(av𝜑 (Φ))Φ𝑖 has full rank. Note that

(𝜋∗(av𝜑 (Φ))Φ𝑖)𝑡 𝜋∗(av𝜑 (Φ)) Φ𝑖 = Φ𝑡
𝑖 𝜋∗(av𝜑 (Φ)) 𝜋∗(av𝜑 (Φ)) Φ𝑖 = Φ𝑡

𝑖 𝜋∗(av𝜑 (Φ)) Φ𝑖 .

Using Lemma 4.23 and Lemma A.5, we conclude that��Φ𝑡
𝑖 𝜋∗(av𝜑 (Φ)) Φ𝑖 − id

�� = ‖Φ𝑡
𝑖 𝜋∗(av𝜑 (Φ)) Φ𝑖 −Φ𝑡

𝑖 Φ𝑖 Φ
𝑡
𝑖 Φ𝑖 ‖ < 2

√
2𝜀.

The result then follows from Lemma A.15, as 2
√

2𝜀 ≤ 1 by assumption. �

Given an 𝜀-approximate local trivialization Φ with 𝜀 ≤
√

2/4, we now define an exact local trivial-
ization Ψ that represents the same vector bundle. Given 𝑖 ∈ 𝐼 and 𝑦 ∈ 𝑈𝑖 , we let

Ψ𝑖 (𝑦) := 𝑄(𝜋∗(av𝜑 (Φ) (𝑦)) Φ𝑖 (𝑦)),

where the map Q is the one of Corollary A.4. By Lemma 4.24 and Corollary A.4, the maps Ψ𝑖 are
well defined and continuous. To see that it is an exact local trivialization it suffices to check that, if
𝑦 ∈ 𝑈 𝑗 ∩𝑈𝑖 , then the columns of Ψ𝑖 (𝑦) and Ψ 𝑗 (𝑦) span the same subspace of R∞. This is a consequence
of the fact that the columns of Ψ𝑖 (𝑦) span the image of 𝜋∗(av𝜑 (Φ) (𝑦). We also deduce the following.

Lemma 4.25. Let 𝜑 be a partition of unity subordinate to U . Then av𝜑 (Ψ) = 𝜋∗(av𝜑 (Φ)).

We now bound the distance between Ψ and Φ.

Lemma 4.26. Assume that 𝜀 ≤
√

2/4, then dT (Φ,Ψ) ≤ 4
√

2𝜀.

Proof. To simplify notation, let us omit from the formulas the evaluations on 𝑦 ∈ 𝑈𝑖 . For every 𝑖 ∈ 𝐼
and 𝑦 ∈ 𝑈𝑖 , we have

‖Φ𝑖 −𝑄(𝜋∗(av𝜑 (Φ))Φ𝑖)‖ ≤ ‖Φ𝑖 − 𝜋∗(av𝜑 (Φ))Φ𝑖 ‖ + ‖𝜋∗(av𝜑 (Φ))Φ𝑖 −𝑄(𝜋∗(av𝜑 (Φ))Φ𝑖)‖

< 2
√

2𝜀 + 2
√

2𝜀 = 4
√

2𝜀,

where we bounded the first summand using Lemma 4.23 and the second summand using Lemma A.8.
In order to satisfy the hypotheses of Lemma A.8, we use the same argument as in Lemma 4.24. �

Theorem 4.27. Let 𝜀 ≤
√

2/4 and let Ω ∈ Z1
𝜀 (U ;𝑂 (𝑑)). There exists Λ ∈ Z1(U ;𝑂 (𝑑)) such that

cl(Λ) = 𝜋∗(cl(Ω)) and such that dZ(Ω,Λ) ≤ 9𝜀.

Proof. Let 𝜑 be a partition of unity subordinate to U . Since 𝜀 ≤
√

2/4 ≤ 1/2, it follows that 𝜋∗(cl(Ω)) is
well defined. By construction, 𝜋∗(cl(Ω)) is the homotopy class of 𝜋∗ ◦av𝜑 ◦ triv𝜑, 𝜄 (Ω). By Lemma 4.26,
there is an exact local trivialization Ψ such that dT (triv𝜑, 𝜄 (Ω),Ψ) ≤ 4

√
2𝜀 and such that av𝜑 (Ψ) =

𝜋∗ ◦ av𝜑 ◦ triv𝜑, 𝜄 (Ω). Let Λ = w(Ψ). Then Λ is a witness that Ψ is an exact cocycle, so, by Lemma 4.10,
we have that dZ (Ω,Λ) ≤ 𝜀 +

√
2 × 4

√
2𝜀 = 9𝜀. To conclude, note that cl(Λ) = [av𝜑 ◦ triv𝜑, 𝜄 ◦ w(Ψ)] =

[av𝜑 (Ψ)] = [𝜋∗ ◦ av𝜑 ◦ triv𝜑, 𝜄 (Ω)] = 𝜋∗(cl(Ω)), where in the second equality we used Lemma 4.12 to
conclude that triv𝜑, 𝜄 (w(Ψ)) and Ψ are homotopic through 0-approximate local trivializations. �
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Lower bound.
The following definition and result are inspired by Robinson’s notion of consistency radius [55, 54].
The idea of this short section is to give a lower bound for the distance from an approximate cocycle to
an exact cocycle.

Definition 4.28. Let Ω be a cochain subordinate to U . The consistency radius of Ω, denoted by 𝑟 (Ω),
is the infimum over all 𝜀 such that Ω belongs to Z1

𝜀 (U ;𝑂 (𝑑)).

A similar argument to the one in Lemma 4.9 proves the following.

Lemma 4.29. Let Λ ∈ Z1
𝜀 (U ;𝑂 (𝑑)) and Ω ∈ 𝐶1(U ;𝑂 (𝑑)). Let 𝛿 > 0. If dZ (Λ,Ω) < 𝛿, then Ω ∈

Z1
𝜀+3𝛿 (U ;𝑂 (𝑑)).

Lemma 4.30. Let Ω be a cochain, and let 𝜀 > 𝑟 (Ω). Then, the distance from Ω to Ȟ1
𝜀 (U ;𝑂 (𝑑)) is

bounded below by 𝑟 (Ω)−𝜀
3 . In particular, if Λ is an exact cocycle, then dȞ (Ω,Λ) ≥ 𝑟 (Ω)/3.

Proof. Let Λ be an exact cocycle, and let 𝛿 > dZ (Ω,Λ). It is enough to show that 𝛿 ≥ 𝑟 (Ω)/3.
Equivalently, it is enough to show that, for every (𝑖 𝑗 𝑘) ∈ 𝑁 (U ) and 𝑦 ∈ 𝑈𝑘 ∩ 𝑈 𝑗 ∩ 𝑈𝑖 , we have
‖Ω𝑖 𝑗 (𝑦)Ω 𝑗𝑘 (𝑦) −Ω𝑖𝑘 (𝑦)‖ < 3𝛿. This follows from Lemma 4.29. �

5. Discrete approximate vector bundles

In this section, we specialize the notions of approximate cocycle and approximate local trivialization
to a certain open cover associated to any simplicial complex. This gives us the notions of discrete
approximate cocycle and of discrete approximate local trivializations.

We show in Proposition 5.7 that any vector bundle over a compact triangulable space can be
represented by a discrete approximate cocycle over a sufficiently fine triangulation of the space. In
Section 5.2, we study the problem of reconstructing a vector bundle from finite samples as a discrete
approximate local trivialization and as a discrete approximate cocycle. We prove in Theorem 5.15 that
this is possible provided the classifying map of the vector bundle we wish to reconstruct is sufficiently
regular and that we are given a sufficiently dense sample.

5.1. Discrete approximate vector bundles over simplicial complexes

We introduce two notions of discrete approximate vector bundle over a simplicial complex. These
notions of discrete approximate vector bundle induce approximate vector bundles over the geometric
realization of the simplicial complex.

Since this will be relevant in Section 6, we define discrete approximate cocycles with values in an
arbitrary metric group G. Fix a simplicial complex K.

Definition 5.1. A discrete 𝜺-approximate cocycle on K with values in G consists of, for every ordered
1-simplex (𝑖 𝑗) ∈ 𝐾 , an element Ω𝑖 𝑗 ∈ 𝐺 such that, for every ordered 2-simplex (𝑖 𝑗 𝑘) ∈ 𝐾 , we have
𝑑𝐺

(
Ω𝑖 𝑗Ω 𝑗𝑘 ,Ω𝑖𝑘

)
< 𝜀, and such that Ω = {Ω𝑖 𝑗 }(𝑖 𝑗) ∈𝐾 is symmetric, that is, we have Ω𝑖 𝑗 = Ω𝑡

𝑗𝑖 . A
discrete exact cocycle consists of the same data but subject to Ω𝑖 𝑗Ω 𝑗𝑘 = Ω𝑖𝑘 .

We denote the set of discrete 𝜀-approximate cocycles on a simplicial complex K with values in G by
DZ1

𝜀 (𝐾;𝐺).

Definition 5.2. Let 𝑖 ∈ 𝐾 be a vertex. Let st(𝑖) be the geometric realization of the open star of i seen
as a vertex of the geometric realization |𝐾 |. The star cover of |𝐾 | consists of the family of open sets
{st(𝑖)}(𝑖) ∈𝐾 . Denote the star cover of |𝐾 | by st𝐾 .

Note that there is a canonical isomorphism of simplicial complexes 𝑁 (st𝐾 ) � 𝐾 that maps a vertex
𝑖 ∈ 𝐾 to itself.
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Construction 5.3. Let Ω be a discrete 𝜀-approximate cocycle on a simplicial complex K with values
in G. Define, for each (𝑖 𝑗) ∈ 𝐾 , a continuous map st( 𝑗) ∩ st(𝑖) → 𝐺 that is constantly Ω𝑖 𝑗 . This defines
a natural map DZ1

𝜀 (𝐾;𝐺) → Z1
𝜀 (st𝐾 ;𝐺).

Note that the map DZ1
𝜀 (𝐾;𝐺) → Z1

𝜀 (st𝐾 ;𝐺) is injective. With this in mind, we endow DZ1
𝜀 (𝐾;𝐺)

with the metric dZ, and interpret the map DZ1
𝜀 (𝐾;𝐺) → Z1

𝜀 (st𝐾 ;𝐺) as an embedding of metric spaces.

Definition 5.4. A discrete 𝜺-approximate local trivialization on a simplicial complex K consists of
a frame Φ𝑖 ∈ V(𝑑) for every (𝑖) ∈ 𝐾 such that, for every (𝑖 𝑗) ∈ 𝐾 , there exists Ω𝑖 𝑗 ∈ 𝑂 (𝑑) such
that ‖Φ𝑖Ω𝑖 𝑗 − Φ 𝑗 ‖ < 𝜀. A discrete exact local trivialization consists of the same data but subject to
Φ𝑖Ω𝑖 𝑗 = Φ 𝑗 .

Denote the set of discrete 𝜀-approximate local trivializations on a simplicial complex K by DT𝜀 (𝐾; 𝑑).
In this discrete case too, the witness Ω that Φ is a discrete 𝜀-approximate local trivialization is not part
of the data of the approximate local trivialization.

Construction 5.5. Let Φ be a discrete 𝜀-approximate local trivialization on K. Define, for each (𝑖) ∈ 𝐾 ,
a map st(𝑖) → V(𝑑) that is constantly Φ𝑖 . This defines a natural map DT𝜀 (𝐾; 𝑑) → T𝜀 (st𝐾 ; 𝑑).

Remark 5.6. Using Construction 4.8 we obtain a map DT𝜀 (𝐾; 𝑑) → DZ1
3𝜀 (𝐾;𝑂 (𝑑)). If K is finite, this

map is algorithmic since the minimization problem

min
Ω∈𝑂 (𝑑)

‖Φ𝑖Ω −Φ 𝑗 ‖

can be solved by using the polar decomposition (Appendix A.2).

The next result guarantees that any vector bundle on a compact triangulable space can be encoded
as a discrete approximate cocycle on a sufficiently fine triangulation of the space.

Proposition 5.7. Let 𝐸 → 𝐵 be a vector bundle over a compact triangulable space B, and let 𝜀 ≤ 3/8.
There exists a triangulation K of B and a discrete 𝜀-approximate cocycle Ω ∈ DZ1

𝜀 (𝐾;𝑂 (𝑑)) such that
𝜋∗(cl(Ω)) represents the vector bundle 𝐸 → 𝐵.

Proof. Let S be a finite simplicial complex such that |𝑆 | � 𝐵. Without loss of generality, we assume
|𝑆 | = 𝐵. Since the star cover of S consists of contractible sets, the vector bundle 𝐸 → |𝑆 | trivializes over
st𝑆 and thus is represented by an exact cocycle Λ ∈ Z1(st𝑆;𝑂 (𝑑)). Moreover, since the closed stars st(𝑖)
are also contractible, for each (𝑖 𝑗) ∈ 𝑆, the continuous map Λ𝑖 𝑗 : st( 𝑗) ∩ st(𝑖) → 𝑂 (𝑑) can be taken
such that it extends to st( 𝑗) ∩ st(𝑖), which is a closed set. Pick a metric that metrizes |𝑆 |, which must
exists since S is a finite simplicial complex. It follows that the maps Λ𝑖 𝑗 are uniformly continuous, and
thus there exists 𝛿 > 0 such that for every (𝑖 𝑗) ∈ 𝑆 and every 𝑇 ⊆ st( 𝑗) ∩ st(𝑖) of diameter less than 𝛿,
the diameter of Λ𝑖 𝑗 (𝑇) ⊆ 𝑂 (𝑑) is less than 𝜀/3.

For 𝑛 ∈ N, let 𝑆 (𝑛) denote the nth barycentric subdivision of S. Note that, for every 𝑛 ∈ N, the star
cover st𝑆 (𝑛+1) refines the star cover st𝑆 (𝑛) . Choose a refinement map 𝑟𝑛 : st𝑆 (𝑛+1) → st𝑆 (𝑛) for each n,
and let Λ𝑛 ∈ Z1

𝜀

(
st𝑆 (𝑛) ;𝑂 (𝑑)

)
denote the restriction of Λ along these refinements, obtained by using

Construction 4.19. Note that, by Lemma 4.20, Λ still represents the original vector bundle 𝐸 → |𝑆 |.
As n goes to ∞, the maximum of the diameters max𝑖∈𝑆 (𝑛) diam(st𝑖) goes to 0, since the diameter of

simplices goes to 0 uniformly, as S has finitely many simplices. In particular, there exists 𝑛0 such that
the diameter of the image of Λ𝑛0

𝑖 𝑗 is less than 𝜀/3 for every (𝑖 𝑗) ∈ 𝑆 (𝑛0) since the original Λ consists of
uniformly continuous maps. Let 𝐾 = 𝑆𝑛0 .

For every (𝑖 𝑗) ∈ 𝐾 , pick a matrix Ω𝑖 𝑗 in the image of Λ𝑛0
𝑖 𝑗 in such a way that Ω𝑖 𝑗 = Ω𝑡

𝑗𝑖 . The
matrices Ω𝑖 𝑗 assemble into a cochain Ω ∈ 𝐶1(st𝐾 ;𝑂 (𝑑)) such that dZ(Ω,Λ𝑛0) < 𝜀/3. It follows from
Lemma 4.29 that Ω is a 𝜀-approximate cocycle, and since it is constant on each intersection, we have
Ω ∈ DZ1

𝜀 (𝐾;𝑂 (𝑑)).
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To conclude, note that, by Theorem 4.21, we have that cl(Ω) and cl(Λ𝑛0 ) = cl(Λ) become equal in[
𝐵,Gr(𝑑)

√
2(𝜀+𝜀/3)

]
. Since

√
2(𝜀 + 𝜀/3) ≤

√
2/2, by assumption, we have that 𝜋∗(cl(Ω)) = cl(Λ), as

required. �

5.2. Reconstruction of vector bundles from finite samples

Let 𝛿 ≥ 0 and ℓ > 0. A function 𝑓 : 𝑋 → 𝑌 between metric spaces is a 𝜹-approximate ℓ-Lipschitz
map if, for every 𝑥, 𝑥 ′ ∈ 𝑋 , we have ℓ𝑑𝑋 (𝑥, 𝑥 ′) + 𝛿 ≥ 𝑑𝑌 ( 𝑓 (𝑥), 𝑓 (𝑥 ′)).

Definition 5.8. Let 𝑋 ⊆ R𝑁 . The Čech complex of X at distance scale 𝜀 > 0, denoted Č(𝑋) (𝜀), consists
of the simplicial complex given by the nerve of the cover {𝐵(𝑥, 𝜀)}𝑥∈𝑋 of 𝑋 𝜀 .

Note that the cover {𝐵(𝑥, 𝜀)}𝑥∈𝑋 is indexed by the elements of X, so the 0-simplices of Č(𝑋) (𝜀)
consist of the elements of X. As a set, |Č(𝑋) (𝜀) | consists of formal linear combinations

𝑝 =
∑
𝑥∈𝑋

𝑐𝑥 [𝑥]

such that 𝑆𝑝 = {𝑥 ∈ 𝑋 : 𝑐𝑥 > 0} is a finite set with the property that the intersection∩𝑥∈𝑆𝑝𝐵(𝑥, 𝜀) ⊆ R𝑁
is nonempty. We will often write Č(𝑋) (𝜀) for the geometric realization |Č(𝑋) (𝜀) |.

Construction 5.9. Let 𝑋 ⊆ R𝑁 and let 𝜀 > 0, 𝛿 ≥ 0 and ℓ > 0. Assume that X is finite. Let 𝑌 ⊆ R𝑀 ,
and let 𝑓 : 𝑋 → 𝑌 be a 𝛿-approximate ℓ-Lipschitz map with respect to the distances induced by the
Euclidean norm ‖ − ‖2. Define a continuous map

Č( 𝑓 ) (𝜀) : Č(𝑋) (𝜀) → 𝑌2ℓ 𝜀+𝛿 ⊆ R𝑀∑
𝑥∈𝑋

𝑐𝑥 [𝑥] ↦→
∑
𝑥∈𝑋

𝑐𝑥 𝑓 (𝑥). �

The map Č( 𝑓 ) is well defined since, if 𝑝 =
∑

𝑥∈𝑋 𝑐𝑥 [𝑥] is such that 𝑐𝑥0 > 0, then ‖ 𝑓 (𝑧) − 𝑓 (𝑥0)‖2 <
ℓ2𝜀 + 𝛿 for every 𝑧 ∈ 𝑋 such that 𝑐𝑧 > 0, since, in that case, ‖𝑥0 − 𝑧‖ < 2𝜀, as the balls 𝐵(𝑥0, 𝜀) and
𝐵(𝑧, 𝜀) must intersect.

Lemma 5.10. Let 𝑋 ⊆ R𝑁 and let 𝜀 > 0, 𝛿 ≥ 0 and ℓ > 0. Assume that X is finite. Let 𝑓 : 𝑋 →
Gr(𝑛, 𝑑) ⊆ R𝑛×𝑛 be a 𝛿-approximate ℓ-Lipschitz map with respect to the Euclidean norm and the
Frobenius norm. The (2ℓ𝜀 + 𝛿)-approximate classifying map Č( 𝑓 ) (𝜀) : Č(𝑋) (𝜀) → Gr(𝑑, 𝑛)2ℓ 𝜀+𝛿 of
Construction 5.9 can be represented by a discrete approximate local trivialization, in the sense that
there exists a partition of unity 𝜑 of the star cover of Č(𝑋) (𝜀) and Φ ∈ DT2ℓ 𝜀+𝛿

(
Č(𝑋) (𝜀); 𝑑

)
such that

av𝜑 (Φ) = Č( 𝑓 ) (𝜀).
Moreover, there is a discrete (3(2ℓ𝜀 + 𝛿))-approximate cocycle w(Φ) such that cl(Ω) is equal to

Č( 𝑓 ) (𝜀) in
[
Č(𝑋) (𝜀),Gr(𝑑, 𝑛)3

√
2(2ℓ 𝜀+𝛿)

]
.

Proof. The second claim is a consequence of the first one and Lemma 4.12, where w is the map defined
in Lemma 4.9.

For the first claim, for each 𝑥 ∈ 𝑋 , let Φ𝑥 ∈ V(𝑑, 𝑛) be an orthonormal basis of the subspace of
R
𝑛 spanned by 𝑓 (𝑥) ∈ Gr(𝑑, 𝑛). Since f is a 𝛿-approximate ℓ-Lipschitz map, the family {Φ𝑥}𝑥∈𝑋

constitutes a discrete (2ℓ𝜀 + 𝛿)-approximate local trivialization on the simplicial complex Č(𝑋) (𝜀),
by Lemma A.9. By taking the partition of unity 𝜑 subordinate to the star cover of Č(𝑋) (𝜀) given by
𝜑𝑥 (

∑
𝑥∈𝑋 𝑐𝑥 [𝑥]) = 𝑐𝑥 , we see that av𝜑 (Φ) = Č( 𝑓 ) (𝜀). �

The following result is well known; see, for example, [26, Corollary 4G.3].

Lemma 5.11 (Nerve lemma). Let U = {𝑈𝑖}𝑖∈𝐼 be an open cover of a paracompact topological space
B, and let 𝜑 be a partition of unity subordinate to B. If U has the property that any finite intersection of
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its elements is either contractible or empty, then the map 𝐵 → |𝑁 (U ) | that sends y to
∑
𝑖∈𝐼 𝜑𝑖 (𝑦) [𝑖] is

well defined, continuous and a homotopy equivalence.

Corollary 5.12. Let 𝑋 ⊆ R𝑁 be a finite subset, let 𝜀 > 0 and let 𝜑 = {𝜑𝑥}𝑥∈𝑋 be a partition of unity
subordinate to {𝐵(𝑥, 𝜀)}𝑥∈𝑋 . Then, the following map is a homotopy equivalence:

𝑅𝜑 : 𝑋 𝜀 → Č(𝑋) (𝜀)

𝑧 ↦→
∑
𝑥∈𝑋

𝜑𝑥 (𝑧) [𝑥] . �

Our reconstruction theorem for vector bundles builds on the following result by Niyogi, Smale and
Weinberger, which allows one to recover the homotopy type of a compact manifold smoothly embedded
into R𝑁 from a sufficiently close and dense sample. In the result, 𝑑𝐻 denotes the Hausdorff distance.

Proposition 5.13 [49, Proposition 7.1]. Let M ⊆ R𝑁 be a smoothly embedded compact manifold with
𝜏 = reach(𝑀) > 0. Let 𝑃 ⊆ R𝑁 such that 𝑑𝐻 (𝑃,M) < 𝜀 < (3 −

√
8)𝜏 and let

𝛼 ∈
(
(𝜀 + 𝜏) −

√
𝜀2 + 𝜏2 − 6𝜏𝜀
2

,
(𝜀 + 𝜏) +

√
𝜀2 + 𝜏2 − 6𝜏𝜀
2

)
,

which is a nonempty open interval. Then M ⊆ 𝑃𝛼 and the inclusion M → 𝑃𝛼 is a homotopy
equivalence.

We are now ready to prove the reconstruction theorem for vector bundles. Before doing so, we give
a short remark about representing vector bundles by Lipschitz maps.

Remark 5.14. In [53, Proposition 3.1] it is shown that any rank-d vector bundle on a compact metric
space X can be represented by a Lipschitz map 𝑋 → Gr(𝑑, 𝑛) for some n, where Gr(𝑑, 𝑛) is seen as a
subspace of the space of square matrices R𝑛×𝑛 with the operator norm. It follows that a vector bundle on
X can also be represented by a Lipschitz map 𝑋 → Gr(𝑑, 𝑛) where now we use the Frobenius distance
on Gr(𝑑, 𝑛), as we do in this paper. This motivates the assumptions made in the following result.

Theorem 5.15. Let M ⊆ R𝑁 be a smoothly embedded compact manifold and let 𝑓 : M → Gr(𝑑, 𝑛)
be an ℓ-Lipschitz map with respect to the Euclidean distance on M and the Frobenius distance on
Gr(𝑑, 𝑛). Assume that reach(M) = 𝜏 > 0. Let 𝑃 ⊆ R𝑁 be a finite set and let 𝑔 : 𝑃 → Gr(𝑑, 𝑛) be a
function. Let 𝜀, 𝛿 > 0 be such that

◦ for every 𝑥 ∈ M there exists 𝑝 ∈ 𝑃 such that ‖𝑝 − 𝑥‖2 < 𝜀;
◦ for every 𝑝 ∈ 𝑃 there exists 𝑥 ∈ M such that ‖𝑝 − 𝑥‖2 < 𝜀 and ‖𝑔(𝑝) − 𝑓 (𝑥)‖ < 𝛿

so that g is a 2(𝛿 + ℓ𝜀)-approximate ℓ-Lipschitz map. If 𝜀 < (3 −
√

8)𝜏, then, for every

𝛼 ∈
(
(𝜀 + 𝜏) −

√
𝜀2 + 𝜏2 − 6𝜏𝜀
2

,
(𝜀 + 𝜏) +

√
𝜀2 + 𝜏2 − 6𝜏𝜀
2

)
∩

(
0,

√
2/2 − 2𝛿 − 2ℓ𝜀

2ℓ

)
,

there is a homotopy commutative diagram as follows, in which the vertical maps are homotopy equiva-
lences:

M Gr(𝑛, 𝑑)

Č(𝑃) (𝛼) Gr(𝑛, 𝑑)2(ℓ𝛼+ℓ 𝜀+𝛿) .

𝑓

Č(𝑔)

Note that the interval to which 𝛼 must belong to is nonempty as long as 𝜀 and 𝛿 are sufficiently small,
a condition that depends only on 𝜏 and ℓ.
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Proof. We start by showing that g is indeed a 2(𝛿 + ℓ𝜀)-approximate ℓ-Lipschitz map so that the bottom
map of the diagram in the statement is well defined. To do this, note that, if 𝑝, 𝑞 ∈ 𝑃, then there exist
𝑥, 𝑦 ∈ M with ‖𝑝 − 𝑥‖2, ‖𝑞 − 𝑦‖2 < 𝜀 and ‖𝑔(𝑝) − 𝑓 (𝑥)‖, ‖𝑔(𝑞) − 𝑓 (𝑦)‖ < 𝛿. Since f is ℓ-Lipschitz,
we have ‖𝑔(𝑝) − 𝑔(𝑞)‖ ≤ 2𝛿 + ℓ‖𝑥 − 𝑦‖ ≤ 2𝛿 + ℓ2𝜀 + ℓ‖𝑝 − 𝑞‖, as required.

The homotopy equivalence M → Č(𝑃) (𝛼) is given by composing the inclusion M ⊆ 𝑃𝛼 with the
map 𝑅𝜑 : 𝑃𝛼 → Č(𝑃) (𝛼) for a choice of partition of unity 𝜑 subordinate to {𝐵(𝑝, 𝛼)}𝑝∈𝑃 . The map
𝑅𝜑 is a homotopy equivalence by Corollary 5.12. The fact that the inclusion M → 𝑃𝛼 is well defined
and a homotopy equivalence is the content of Proposition 5.13, whose hypotheses are satisfied since our
conditions imply that 𝑑𝐻 (𝑃,M) < 𝜀.

The map Gr(𝑛, 𝑑) → Gr(𝑛, 𝑑)2(ℓ𝛼+ℓ 𝜀+𝛿) is simply the inclusion and it is a homotopy equivalence by
Proposition A.12 since 𝛼 < (

√
2/2 − 2𝛿 − 2ℓ𝜀)/(2ℓ).

To conclude the proof, we must show that the diagram in the statement commutes up to homotopy.
For this, let 𝑧 ∈ M. We have Č(𝑔) (𝑅𝜑 (𝑧)) = Č(𝑔)

(∑
𝑝∈𝑃 𝜑𝑝 (𝑧) [𝑝]

)
=

∑
𝑝∈𝑃 𝜑𝑝 (𝑧)𝑔(𝑥). Consider the

linear path 𝛽 𝑓 (𝑧) + (1 − 𝛽)
∑

𝑝∈𝑃 𝜑𝑝 (𝑧)𝑔(𝑝) for 𝛽 ∈ [0, 1]. It suffices to show that it is included in
Gr(𝑛, 𝑑)2ℓ𝛼+2ℓ 𝜀+2𝛿 for all 𝛽 ∈ [0, 1], and we will show that it is at distance less than ℓ𝛼 + ℓ𝜀 + 𝛿 from
𝑓 (𝑧). We compute ����� 𝑓 (𝑧) −

(
𝛽 𝑓 (𝑧) + (1 − 𝛽)

∑
𝑝∈𝑃

𝜑𝑝 (𝑧)𝑔(𝑥)
)�����

2

=

�����𝛽 𝑓 (𝑧) + (1 − 𝛽) 𝑓 (𝑥) −
(
𝛽 𝑓 (𝑧) + (1 − 𝛽)

∑
𝑝∈𝑃

𝜑𝑝 (𝑧)𝑔(𝑝)
)�����

2

≤ (1 − 𝛽)
∑
𝑝∈𝑃

𝜑𝑝 (𝑧) ‖ 𝑓 (𝑧) − 𝑔(𝑝)‖2

< (1 − 𝛽)
∑
𝑥∈𝑋

𝜑𝑥 (𝑧) (ℓ𝛼 + ℓ𝜀 + 𝛿) ≤ ℓ𝛼 + ℓ𝜀 + 𝛿,

where the strict inequality comes from the fact that, if 𝜑𝑝 (𝑧) is nonzero, then 𝑧 ∈ 𝐵(𝑝, 𝛼), and thus
there exists 𝑥 ∈ M such that ‖ 𝑓 (𝑧) − 𝑔(𝑝)‖2 ≤ ‖ 𝑓 (𝑧) − 𝑓 (𝑥)‖ + ‖ 𝑓 (𝑥) − 𝑔(𝑝)‖ < ℓ‖𝑧 − 𝑥‖2 + 𝛿 ≤
ℓ(‖𝑧 − 𝑝‖2 + ‖𝑝 − 𝑥‖2) + 𝛿 < ℓ𝛼 + ℓ𝜀 + 𝛿. �

We conclude this section with a few remarks.

Remark 5.16. For simplicity, we have proven Theorem 5.15 using the Čech complex. A similar result
can be obtained for the Vietoris–Rips complex, using, for instance, the results of [2].

Remark 5.17. As proven in Lemma 5.10, the map reconstructed in Theorem 5.15 has a combinatorial
description using a discrete approximate local trivialization that in turn induces a discrete approximate
cocycle. This discrete approximate cocycle can be used to compute characteristic classes combinatorially,
which is the subject of the next section.

6. Effective computation of characteristic classes

In this section, we present three algorithms to compute, respectively, the first two Stiefel–Whitney
classes of an approximate vector bundle given by an approximate𝑂 (𝑑)-cocycle and the Euler class of an
oriented approximate vector bundle of rank 2 given by an approximate 𝑆𝑂 (2)-cocycle. The algorithms
are based on well-known results which say that the characteristic classes we consider are obstructions
to lifting the structure group of the cocycle to certain other Lie groups. The difficulty is in showing that
these algorithms can be extended in a stable and consistent way to 𝜀-approximate cocycles, provided 𝜀 is
sufficiently small. Throughout the section, we will make use of basic Riemannian geometry; a reference
for this topic is [39].
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In Section 6.1, we recall two standard constructions used to change the coefficient group of a Čech
cocycle and we extend them to approximate cocycles. In Section 6.2, we give the algorithm for the first
Stiefel–Whitney class, in Section 6.3 we give the algorithm for the Euler class and in Section 6.4 we
give the algorithm for the second Stiefel–Whitney class.

6.1. Change of coefficients

In this section, we will make use of basic Čech cohomology with coefficients in a sheaf of abelian
groups. We recall the essential components now; for an introduction to the subject, see, for example,
[66, Chapter 5].

Let U be a cover of a topological space B. For A an abelian group and 𝑛 ∈ N, we let Ȟ𝑛 (U ; 𝐴)
denote the nth Čech cohomology group of (𝐵,U ) with coefficients in the sheaf of locally constant
functions with values in A [66, p. 201]. This cohomology group is a quotient of the subgroup of
cocycles of 𝐶𝑛 (U ; 𝐴), which is the abelian group of locally constant functions defined on all (𝑛 + 1)-
fold intersections 𝑈𝑖𝑛 ∩ · · · ∩ 𝑈𝑖0 → 𝐴. As usual, the Čech cohomology of B with values in A is
defined as Ȟ𝑛 (𝐵; 𝐴) = colimU cover Ȟ𝑛 (U ; 𝐴). It is well known that, when B is paracompact and locally
contractible, there is a natural isomorphism Ȟ𝑛 (𝐵; 𝐴) � 𝐻𝑛 (𝐵; 𝐴), where the right-hand side denotes
singular cohomology with coefficients in A.

Since we use these constructions only for 𝑛 = 1, 2, we elaborate on these two cases. For 𝑛 = 1, the
Čech cohomology is precisely the one we introduced in Section 2.2.4, where the group A is endowed
with the discrete topology. For 𝑛 = 2, the 2-cocycles Z2(U ; 𝐴) consist of families of locally constant
functions {Γ𝑖 𝑗𝑘 : 𝑈𝑘 ∩ 𝑈 𝑗 ∩ 𝑈𝑖 → 𝐴}(𝑖 𝑗𝑘) ∈𝑁 (U) such that, for every (𝑖 𝑗 𝑘𝑙) ∈ 𝑁 (U ) and every
𝑦 ∈ 𝑈𝑙 ∩𝑈𝑘 ∩𝑈 𝑗 ∩𝑈𝑖 , we have

Γ𝑖 𝑗𝑘 (𝑦)Γ𝑖 𝑗𝑙 (𝑦)−1Γ𝑖𝑘𝑙 (𝑦)Γ 𝑗𝑘𝑙 (𝑦)−1 = 1𝐴,

where we are writing the operations of the abelian group A multiplicatively. The operation on Z2 (U ; 𝐴) is
pointwise multiplication. The cohomology group Ȟ2 (U ; 𝐴) is the quotient of Z2(U ; 𝐴) by the subgroup
of 2-cocycles of the form 𝑦 ↦→ Ω𝑖 𝑗 (𝑦)Ω 𝑗𝑘 (𝑦)Ω𝑘𝑖 (𝑦), for Ω ∈ 𝐶1 (U ; 𝐴).

Let G and H be topological groups, and let 𝜁 : 𝐺 → 𝐻 be a continuous group morphism. The map 𝜁
induces a map Z1(U ;𝐺) → Z1(U ;𝐻), simply by applying 𝜁 pointwise to a cocycle. This map induces a
well-defined map Ȟ1(U ;𝐺) → Ȟ1 (U ;𝐻). A bit more interestingly, given a central extension of groups
1 → 𝐹 → 𝐺 → 𝐻 → 1, there is a well-defined so-called connecting morphism Ȟ1(U ;𝐻) → Ȟ2(U ; 𝐹).
For a short introduction to these concepts, see [38, Appendix A].

In this section, we generalize these two constructions to the case of approximate cocycles when F, G
and H are well-behaved metric groups. We start by generalizing the first construction.

Construction 6.1. Let 𝜁 : 𝐺 → 𝐻 be a continuous group morphism between topological groups.
Given Ω ∈ 𝐶1 (U ;𝐺), define a cochain 𝜁 (Ω) with values in H by 𝜁 (Ω)(𝑖 𝑗) (𝑦) = 𝜁 (Ω(𝑖 𝑗) (𝑦)) for every
(𝑖 𝑗) ∈ 𝑁 (U ) and 𝑦 ∈ 𝑈 𝑗 ∩𝑈𝑖 .

Lemma 6.2. Let G and H be metric groups and let 𝜁 : 𝐺 → 𝐻 be an ℓ-Lipschitz group morphism.
Let 𝜀 ∈ [0,∞]. Construction 6.1 induces maps 𝜁 : Z1

𝜀 (U ;𝐺) → Z1
ℓ 𝜀 (U ;𝐻) and 𝜁 : Ȟ1

𝜀 (U ;𝐺) →
Ȟ1
ℓ 𝜀 (U ;𝐻) and these maps are ℓ-Lipschitz with respect to the distances dZ and dȞ, respectively.
In particular, if the infimum over all distances between distinct elements of H is bounded below by 𝛿

and ℓ𝜀 ≤ 𝛿, then 𝜁 induces a map 𝜁 : Ȟ1
𝜀 (U ;𝐺) → Ȟ1 (U ;𝐻), such that, if Ω,Ω′ ∈ Ȟ1

𝜀 (U ;𝐺) satisfy
dZ (Ω,Ω′) < 𝛿/ℓ, then 𝜁 (Ω) = 𝜁 (Ω′) ∈ Ȟ1 (U ;𝐻).

Proof. We start by checking that, if Ω ∈ Z1
𝜀 (U ;𝐺), then 𝜁 (Ω) is an ℓ𝜀-approximate cocycle. For

this, let (𝑖 𝑗 𝑘) ∈ 𝑁 (U ) and let 𝑦 ∈ 𝑈𝑘 ∩ 𝑈 𝑗 ∩ 𝑈𝑖 . We have 𝑑𝐻
(
𝜁 (Ω)𝑖 𝑗 (𝑦)𝜁 (Ω) 𝑗𝑘 (𝑦), 𝜁 (Ω)𝑖𝑘 (𝑦)

)
=

𝑑𝐻
(
𝜁 (Ω𝑖 𝑗 (𝑦)Ω 𝑗𝑘 (𝑦)), 𝜁 (Ω𝑖𝑘 (𝑦))

)
≤ ℓ𝑑𝐺

(
Ω𝑖 𝑗 (𝑦)Ω 𝑗𝑘 (𝑦),Ω𝑖𝑘 (𝑦)

)
< ℓ𝜀, using the fact that 𝜁 is an ℓ-

Lipschitz group morphism. The fact that the maps are ℓ-Lipschitz is clear.
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To see that 𝜁 descends to approximate cohomology, note that, if Θ ∈ 𝐶0(U ;𝐺), then we can define
𝜁 (Θ) ∈ 𝐶0(U ;𝐻) by 𝜁 (Θ)𝑖 (𝑦) = 𝜁 (Θ𝑖 (𝑦)) for all 𝑖 ∈ 𝑁 (U ) and 𝑦 ∈ 𝑈𝑖 and that, with this definition,
we have 𝜁 (Θ) · 𝜁 (Ω) = 𝜁 (Θ · Ω), for every Ω ∈ Z1

𝜀 (U ;𝐺).
The second claim is a consequence of the first one. �

We now generalize the connecting morphism construction.

Construction 6.3. Let 𝜁 : 𝐺 → 𝐻 be a continuous and surjective group morphism between metric
groups and let 𝜀 ≥ 0. Let F be the kernel of 𝜁 and assume that F is locally compact and discrete in
G so that, in particular, 𝐺 → 𝐻 is a covering map. Suppose that U is a cover of a topological space
with the property that nonempty binary intersections of elements of U are locally path connected and
simply connected. Let Ω ∈ 𝐶1 (U ;𝐻). Given (𝑖 𝑗) ∈ 𝑁 (U ), choose a continuous lift Λ𝑖 𝑗 : 𝑈 𝑗 ∩𝑈𝑖 → 𝐺
of Ω𝑖 𝑗 : 𝑈 𝑗 ∩𝑈𝑖 → 𝐻 such that Λ𝑖 𝑗 = (Λ 𝑗𝑖)−1. Finally, for (𝑖 𝑗 𝑘) ∈ 𝑁 (U ) and 𝑦 ∈ 𝑈𝑘 ∩𝑈 𝑗 ∩𝑈𝑖 , let
Γ𝑖 𝑗𝑘 (𝑦) ∈ 𝐹 be a closest point of F to Λ𝑖 𝑗 (𝑦)Λ 𝑗𝑘 (𝑦)Λ𝑘𝑖 (𝑦).

A priori, the maps Γ𝑖 𝑗𝑘 of Construction 6.3 do not necessarily assemble into a 2-cocycle with values
in F since the maps may not even be continuous. We now give conditions under which the maps Γ𝑖 𝑗𝑘
constitute a 2-cocycle. In order to do this, we need to introduce some definitions.

Definition 6.4. Let M be a metric space. The systole of M, denoted sys(𝑀), is the infimum of the
lengths of all nonnullhomotopic loops of M.

Recall from, for example, [39, Chapter 2], that any connected Riemannian manifold M can be
endowed with the geodesic distance where the distance between two points is taken to be the infimum
of the lengths of all piecewise regular (i.e., with nonzero velocity) paths between the two points. If the
manifold is not connected, then the same construction gives an extended distance, meaning a distance
that can also take the value ∞. Whenever we endow a Riemannian manifold with the geodesic distance,
we are referring to this extended distance. Finally, recall that, if the manifold is complete (as are all
the examples we consider here), then the geodesic distance between two points can be calculated as the
infimum of the length of all geodesics between the two points [39, Corollary 6.21].

Before being able to give conditions under which the connecting morphism is well behaved, we need
to prove the following technical lemma.

Lemma 6.5. Let 𝐹 ⊆ 𝐺 be an isometric inclusion of a discrete subgroup into a metric group. Let 2𝑟 be
the infimum of the distances between distinct elements of F. Let 〈−〉 : 𝐹𝑟 → 𝐹 denote the projection to
the closest element of F, which is well-defined and continuous.

1. If 𝑎 ∈ 𝐹𝑠 , 𝑏 ∈ 𝐹𝑡 , 𝑐 ∈ 𝐹𝑢 with 𝑠 + 𝑡 + 𝑢 ≤ 𝑟 then 〈𝑎〉〈𝑏〉〈𝑐〉 = 〈𝑎𝑏𝑐〉.
2. If 𝑎 ∈ 𝐹𝑟 and 𝑏 ∈ 𝐹, then 〈𝑎𝑏〉 = 〈𝑎〉𝑏.
3. If 𝑎, 𝑐 ∈ 𝐺, 𝑏 ∈ 𝐹𝑠 , and 𝑎〈𝑏〉𝑐 ∈ 𝐹𝑡 with 𝑠 + 𝑡 ≤ 𝑟, then 〈𝑎〈𝑏〉𝑐〉 = 〈𝑎𝑏𝑐〉.
Proof. As we will use this for each claim, start by noting that, if 𝑔 ∈ 𝐺, ℎ ∈ 𝐹 and 𝑑𝐺 (𝑔, ℎ) < 𝑟 , then
〈𝑔〉 = ℎ. Since multiplication is an isometry, we have 𝑑𝐺 (𝑎𝑏𝑐, 〈𝑎〉𝑏𝑐) < 𝑠. Using this idea two more
times and the triangle inequality, we deduce 𝑑𝐺 (𝑎𝑏𝑐, 〈𝑎〉〈𝑏〉〈𝑐〉) < 𝑠 + 𝑡 + 𝑢 ≤ 𝑟 and the first claim
follows. For the second claim, note that 𝑑𝐺 (𝑎𝑏, 〈𝑎〉𝑏) < 𝑟 . Since 〈𝑎〉𝑏 ∈ 𝐹, the second claim follows.
Finally, 𝑑𝐺 (〈𝑎〈𝑏〉𝑐〉, 𝑎〈𝑏〉𝑐) < 𝑠 and 𝑑𝐺 (𝑎〈𝑏〉𝑐, 𝑎𝑏𝑐) < 𝑡, so 𝑑𝐺 (〈𝑎〈𝑏〉𝑐〉, 𝑎𝑏𝑐) < 𝑠 + 𝑡 ≤ 𝑟 and the
third claim follows. �

Theorem 6.6. Let 1 → 𝐹 → 𝐺 → 𝐻 → 1 be a central extension of Lie groups with H compact
and F discrete. Fix a bi-invariant Riemannian metric on H and use it to metrize H and G with the
geodesic distance and F with the distance inherited from G. Let U be a cover of a topological space
B such that each set and each nonempty binary intersection is locally path connected and simply
connected. Let 𝜀 ≤ sys(𝐻)/8. Then, Construction 6.3 induces maps 𝜕 : Z1

𝜀 (U ;𝐻) → Z2(U ; 𝐹) and
𝜕 : Ȟ1

𝜀 (U ;𝐻) → Ȟ2(U ; 𝐹).
The second map is independent of any choice of lift and is stable in the sense that ifΩ,Ω′ ∈ Ȟ1

𝜀 (U ;𝐻)
are such that dȞ (Ω,Ω′) < sys(𝐻)/8, then 𝜕 (Ω) = 𝜕 (Ω′) ∈ Ȟ2(U ; 𝐹).
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Proof. Let 2𝑟 denote the infimum over the distances between distinct elements of F. By Lemma A.19,
we have sys(𝐻)/2 ≤ 𝑟 and thus 𝜀 ≤ 𝑟/4. For 𝑥 ∈ 𝐹𝑟 , let 〈𝑥〉 ∈ 𝐹 denote its closest point in F, which is
well defined and continuous.

We start by showing that, for (𝑖 𝑗 𝑘) ∈ 𝑁 (U ), the map Γ𝑖 𝑗𝑘 : 𝑈𝑘 ∩ 𝑈 𝑗 ∩ 𝑈𝑖 → 𝐹 is continuous. It
suffices to show that Λ𝑖 𝑗 (𝑦)Λ 𝑗𝑘 (𝑦)Λ𝑘𝑖 (𝑦) ∈ 𝐹𝑟 , as Γ𝑖 𝑗𝑘 (𝑦) = 〈Λ𝑖 𝑗 (𝑦)Λ 𝑗𝑘 (𝑦)Λ𝑘𝑖 (𝑦)〉. By definition
of the metrics on G and H, the distance from Λ𝑖 𝑗 (𝑦)Λ 𝑗𝑘 (𝑦)Λ𝑘𝑖 (𝑦) to F is equal to the distance from
Ω𝑖 𝑗 (𝑦)Ω 𝑗𝑘 (𝑦)Ω𝑘𝑖 (𝑦) to the identity of H, which is less than 𝜀 ≤ 𝑟/4, by assumption.

We now show that Γ is an H-valued 2-cocycle. Fix 𝑦 ∈ 𝑈𝑙 ∩𝑈𝑘 ∩𝑈 𝑗 ∩𝑈𝑖 and let us write (𝑖 𝑗) for
Λ𝑖 𝑗 (𝑦) and likewise for the other elements of G. We must show that

〈(𝑖 𝑗) ( 𝑗 𝑘) (𝑘𝑖)〉 〈(𝑖 𝑗) ( 𝑗 𝑙) (𝑙𝑖)〉−1〈(𝑖𝑘) (𝑘𝑙) (𝑙𝑖)〉 〈( 𝑗 𝑘) (𝑘𝑙) (𝑙 𝑗)〉−1 = 1𝐹 .

Note that, although F is abelian, we are using multiplicative notation to be consistent with the fact that
G need not be abelian. We now compute:

〈(𝑖 𝑗) ( 𝑗 𝑘) (𝑘𝑖)〉 〈(𝑖 𝑗) ( 𝑗 𝑙) (𝑙𝑖)〉−1〈(𝑖𝑘) (𝑘𝑙) (𝑙𝑖)〉 〈( 𝑗 𝑘) (𝑘𝑙) (𝑙 𝑗)〉−1

= 〈(𝑖 𝑗) ( 𝑗 𝑘) (𝑘𝑖)〉 〈(𝑖𝑙) (𝑙 𝑗) ( 𝑗𝑖)〉 〈(𝑖𝑘) (𝑘𝑙) (𝑙𝑖)〉 〈( 𝑗 𝑙) (𝑙𝑘) (𝑘 𝑗)〉 (taking inverse is an isometry)

= 〈(𝑖 𝑗) ( 𝑗 𝑘) (𝑘𝑖)〉 〈(𝑖𝑘) (𝑘𝑙) (𝑙𝑖)〉 〈(𝑖𝑙) (𝑙 𝑗) ( 𝑗𝑖)〉 〈( 𝑗 𝑙) (𝑙𝑘) (𝑘 𝑗)〉 (𝐹 is central)
= 〈(𝑖 𝑗) ( 𝑗 𝑘) (𝑘𝑖) (𝑖𝑘) (𝑘𝑙) (𝑙𝑖) (𝑖𝑙) (𝑙 𝑗) ( 𝑗𝑖)〉 〈( 𝑗 𝑙) (𝑙𝑘) (𝑘 𝑗)〉 (Lem. 6.5(1), with 𝑠, 𝑡, 𝑢 = 𝜀 ≤ 𝑟/4)
= 〈(𝑖 𝑗) ( 𝑗 𝑘) (𝑘𝑙) (𝑙 𝑗) ( 𝑗𝑖)〉 〈( 𝑗 𝑙) (𝑙𝑘) (𝑘 𝑗)〉 (cancellations)

= 〈(𝑖 𝑗) ( 𝑗 𝑘) (𝑘𝑙) (𝑙 𝑗) ( 𝑗𝑖) 〈( 𝑗 𝑙) (𝑙𝑘) (𝑘 𝑗)〉 〉 (Lem. 6.5(2), with 𝑠 = 3𝜀 ≤ 3/4𝑟)
= 〈(𝑖 𝑗) ( 𝑗 𝑘) (𝑘𝑙) (𝑙 𝑗) 〈( 𝑗 𝑙) (𝑙𝑘) (𝑘 𝑗)〉 ( 𝑗𝑖)〉 (𝐹 is central)

= 〈(𝑖 𝑗) ( 𝑗 𝑘) (𝑘𝑙) (𝑙 𝑗) ( 𝑗 𝑙) (𝑙𝑘) (𝑘 𝑗) ( 𝑗𝑖)〉 (Lem. 6.5(3), with 𝑠 = 𝜀, 𝑡 = 3𝜀)
= 1𝐹 (cancellations).

We now prove that the composite Z1
𝜀 (U ;𝐻) → Z2(U ; 𝐹) → Ȟ2 (U ; 𝐹) is independent of the choice

of lifts Λ. In order to see this note that, if Λ𝑖 𝑗 ,Λ′
𝑖 𝑗 : 𝑈 𝑗 ∩𝑈𝑖 → 𝐺 are two lifts of Ω𝑖 𝑗 : 𝑈 𝑗 ∩𝑈𝑖 → 𝐻,

then they differ by a function 𝑓𝑖 𝑗 : 𝑈 𝑗 ∩𝑈𝑖 → 𝐹. Since F is central, it follows that Γ𝑖 𝑗𝑘 and Γ′
𝑖 𝑗𝑘 differ

by 𝑓𝑖 𝑗 𝑓 𝑗𝑘 𝑓𝑘𝑖 , using Lemma 6.5(2).
Now, let Θ ∈ 𝐶0(U ;𝐻) and let Π ∈ 𝐶0 (U ;𝐺) be a lift of it, which exists since the elements of U are

simply connected. Let us write (𝑖) for Π𝑖 (𝑦). A lift for Θ ·Ω is given by Π · Λ and the 2-cochain in this
case is

〈(𝑖) (𝑖 𝑗) ( 𝑗)−1( 𝑗) ( 𝑗 𝑘) (𝑘)−1(𝑘) (𝑘𝑖) (𝑖)−1〉 = 〈(𝑖) (𝑖 𝑗) ( 𝑗 𝑘) (𝑘𝑖) (𝑖)−1〉 =
〈
(𝑖) 〈(𝑖 𝑗) ( 𝑗 𝑘) (𝑘𝑖)〉 (𝑖)−1〉

=
〈
(𝑖) (𝑖)−1 〈(𝑖 𝑗) ( 𝑗 𝑘) (𝑘𝑖)〉

〉
= Γ𝑖 𝑗𝑘 (𝑦),

where in the second equality we used Lemma 6.5(3) and in the third one we used that F is central. This
shows that the map 𝜕 : Ȟ1

𝜀 (U ;𝐻) → Ȟ2 (U ; 𝐹) is well defined.
We conclude the proof by proving the stability claim. Let [Ω], [Ω′] ∈ Ȟ1

𝜀 (U ;𝐻) be such that
dȞ ( [Ω], [Ω′]) < sys(𝐻)/8 and choose representatives Ω,Ω′ ∈ Z1

𝜀 (U ;𝐻) such that dZ (Ω,Ω′) <
sys(𝐻)/8. By Lemma A.20(2), we can pick lifts Λ,Λ′ ∈ 𝐶1 (U ;𝐺) of Ω and Ω′, respectively, such that
dZ (Λ,Λ′) < sys(𝐻)/8. Now, let 𝑦 ∈ 𝑈𝑘 ∩𝑈 𝑗 ∩𝑈𝑖 , and let us write (𝑖 𝑗)′ for Λ′

𝑖 𝑗 (𝑦). We have

𝑑𝐺 ((𝑖 𝑗)′( 𝑗 𝑘)′(𝑘𝑖)′, 〈(𝑖 𝑗) ( 𝑗 𝑘) (𝑘𝑖)〉) ≤ 𝑑𝐺 ((𝑖 𝑗)′( 𝑗 𝑘)′(𝑘𝑖)′, (𝑖 𝑗) ( 𝑗 𝑘) (𝑘𝑖))
+ 𝑑𝐺 ((𝑖 𝑗) ( 𝑗 𝑘) (𝑘𝑖), 〈(𝑖 𝑗) ( 𝑗 𝑘) (𝑘𝑖)〉)

< 3 sys(𝐻)/8 + 𝜀 = sys(𝐻)/2,

so 〈Λ′
𝑖 𝑗 (𝑦)Λ′

𝑗𝑘 (𝑦)Λ
′
𝑘𝑖 (𝑦)〉 = 〈Λ𝑖 𝑗 (𝑦)Λ 𝑗𝑘 (𝑦)Λ𝑘𝑖 (𝑦)〉, and the result follows. �
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Table 1. Pseudocode for the algorithm sw1..

Input: A simplicial complex K with vertices {1, . . . , 𝑘 } and a discrete approximate cocycle Ω ∈ DZ1
𝜀 (𝐾 ;𝑂 (𝑑)) with 𝜀 ≤ 2.

Output: A simplicial cocycle sw1 (Ω) ∈ 𝑍 1 (𝐾 ;Z/2) .

For each (𝑖 𝑗)1-simplex of K with 𝑖 < 𝑗, let sw1 (Ω)𝑖 𝑗 := det(Ω 𝑗𝑖) .

6.2. First Stiefel–Whitney class

Consider the map det : 𝑂 (𝑑) → {±1} � Z/2, and metrize 𝑂 (𝑑) using the Frobenius distance and {±1}
by 𝑑 (1,−1) = 2. It follows from Lemma A.13 that det is 1-Lipschitz.

Algorithm.
Let U be a cover of a topological space. Let 𝜀 ≤ 2. By applying det to a representative cocycle, we get a
map sw1 : Ȟ1

𝜀 (U ;𝑂 (𝑑)) → Ȟ1 (U ;Z/2) such that, if Ω,Ω′ ∈ Ȟ1
𝜀 (U ;𝑂 (𝑑)) satisfy dZ (Ω,Ω′) < 2, then

sw1(Ω) = sw1(Ω′) ∈ Ȟ1 (U ;Z/2). This follows directly from Lemma 6.2.
In particular, if K is a simplicial complex, we get an algorithm sw1 : DH1

𝜀 (𝐾;𝑂 (𝑑)) → 𝐻1(𝐾;Z/2)
that is polynomial in the number of vertices of K; see Table 1 for the pseudocode of this algorithm.
From Lemma 6.2, it follows that the algorithm is stable, in the sense that if Ω,Ω′ ∈ DH1

𝜀 (𝐾;𝑂 (𝑑))
satisfy dZ (Ω,Ω′) < 2, then sw1 (Ω) = sw1 (Ω′) ∈ 𝐻1(𝐾;Z/2).

Oriented approximate vector bundles.
The following observation is relevant for the computation of Euler classes in the next section. Let U
be a cover of a topological space with the property that nonempty binary intersections are locally path
connected and simply connected. If 𝜀 ≤ 2 and Ω ∈ Ȟ1

𝜀 (U ;𝑂 (𝑑)) is such that sw1(Ω) = 0, then Ω = [Λ]
for some Λ ∈ Z1

𝜀 (U ; 𝑆𝑂 (𝑑)). To prove this, let [Γ] = sw1(Ω), let Θ ∈ 𝐶0 (U ;Z/2) be such that Θ ·Γ = id
and lift Θ to Π ∈ 𝐶0 (U ;𝑂 (𝑑)). Then Π · Ω ∈ Z1

𝜀 (U ; 𝑆𝑂 (𝑑)).

Consistency of the algorithm.
The following well-known result can be found in, for example, [38, Example A.3].

Lemma 6.7. Let U be a cover of a locally contractible topological space. If 𝜀 = 0, the construction sw1 :
Ȟ1
𝜀 (U ;𝑂 (𝑑)) → Ȟ1 (U ;Z/2) computes the first Stiefel–Whitney class of the vector bundle represented

by the cocycle.

Proposition 6.8. LetU be a countable cover of a locally contractible, paracompact space B. Let 𝜀 < 2/9,
and let Ω ∈ Ȟ1

𝜀 (U ;𝑂 (𝑑)). Then sw1(Ω) ∈ Ȟ1 (U ;Z/2) coincides with the first Stiefel–Whitney class of
the vector bundle classified by 𝜋∗(cl(Ω)) : 𝐵 → Gr(𝑑).

Proof. Since 2/9 ≤
√

2/4, there exists, by Theorem 4.27, an exact cocycle Λ ∈ Ȟ1 (U ;𝑂 (𝑑)) such that
dȞ (Ω,Λ) < 2/9 × 9 = 2 and such that 𝜋∗(cl(Ω)) = cl(Λ). From the stability of sw1, it follows that
sw1(Ω) = sw1(Λ). Finally, by Lemma 6.7, sw1(Λ) is the first Stiefel–Whitney class of the vector bundle
classified by cl(Λ), so the result follows. �

6.3. Euler class of oriented, rank-2 vector bundles

Consider the group 𝑆𝑂 (2) of orthogonal 2-by-2 matrices with positive determinant. There is a short
exact sequence of Lie groups 1 → Z → R → 𝑆𝑂 (2) → 1 given by mapping a real number r to the
rotation matrix (

cos(2𝜋𝑟) − sin(2𝜋𝑟)
sin(2𝜋𝑟) cos(2𝜋𝑟)

)
.
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Table 2. Pseudocode for the algorithm eu..

Input: A simplicial complex K with vertices {1, . . . , 𝑘 } and a discrete approximate cocycle Ω ∈ DZ1
𝜀 (𝐾 ; 𝑆𝑂 (2)) with 𝜀 ≤ 1.

Output: A simplicial cocycle eu(Ω) ∈ 𝑍 2 (𝐾 ;Z) .

1. For each (𝑖 𝑗)1-simplex of K with 𝑖 < 𝑗, let Λ𝑖 𝑗 ∈ R be a lift of Ω𝑖 𝑗 ∈ 𝑆𝑂 (2) .

2. For each (𝑖 𝑗𝑘)2-simplex of K with 𝑖 < 𝑗 < 𝑘, let eu(Ω)𝑖 𝑗𝑘 ∈ Z ⊆ R the closest element to Λ𝑖 𝑗 + Λ 𝑗𝑘 − Λ𝑖𝑘 ∈ R, using the
usual distance of R.

Algorithm.
Let U be a cover of a topological space with the property that nonempty binary intersections are locally
path connected and simply connected. As usual, we endow 𝑆𝑂 (2) with the Frobenius distance, and we
let 𝑆𝑂 (2)𝑔 denote the same group but endowed with the geodesic distance, with Riemannian structure
inherited from the inclusion 𝑆𝑂 (2) ⊆ R2×2 = R4.

By Lemma A.18, we have sys(𝑆𝑂 (2)) = 2
√

2𝜋, so, applying Theorem 6.6 to the extension 1 →
Z → R → 𝑆𝑂 (2)𝑔 → 1, we see that Construction 6.3 gives a map eu : Ȟ1

𝜀

(
U ; 𝑆𝑂 (2)𝑔

)
→ Ȟ2 (U ;Z),

as long as 𝜀 ≤
√

2𝜋/4. In order to give an algorithm using Frobenius distances, we note that, if 𝜀 ≤ 1,
then, by Corollary A.17, any 𝜀-approximate 𝑆𝑂 (2)-cocycle is a (

√
2𝜋/4)-approximate 𝑆𝑂 (2)𝑔-cocycle.

So Construction 6.3 gives a map eu : Ȟ1
𝜀 (U ; 𝑆𝑂 (2)) → Ȟ2 (U ;Z), as long as 𝜀 ≤ 1. By the stability

statement of Theorem 6.6, we see that, if Ω,Ω′ ∈ Ȟ1
𝜀 (U ; 𝑆𝑂 (2)) are such that dȞ (Ω,Ω′) < 1, then

eu(Ω) = eu(Ω′).
In particular, if K is a simplicial complex, we get a 1-stable algorithm eu : DH1

𝜀 (𝐾; 𝑆𝑂 (2)) →
𝐻2 (𝐾;Z); see Table 2 for the pseudocode of this algorithm.

Consistency of the algorithm.
We need the following well known result.

Lemma 6.9. Let U be a cover of locally contractible space with the property that nonempty bi-
nary intersections are locally path connected and simply connected. If 𝜀 = 0, the construction
eu : Ȟ1

𝜀 (U ; 𝑆𝑂 (2)) → Ȟ2 (U ;Z) computes the Euler class of the vector bundle represented by the
cocycle.

Proof. In this proof, we freely use the language of complex vector bundles. The Lie group 𝑆𝑂 (2) is
isomorphic to the group of unit complex numbers 𝑈 (1) and thus, up to isomorphism, real, oriented,
rank-2 vector bundles are exactly the same as complex rank-1 vector bundles. By [7, (20.10.6)], the top
Chern class of a complex vector bundle coincides with the Euler class of the bundle, seen as an oriented
real vector bundle in view of the inclusions 𝑈 (𝑛) ⊆ 𝑆𝑂 (2𝑛). Finally, when 𝜀 = 0, the construction eu
computes the first Chern class [38, Example A.5]. �

Proposition 6.10. Let U be a countable cover of a locally contractible, paracompact space B, with
the property that nonempty binary intersections are locally path connected and simply connected. Let
𝜀 < 1/9 and let Ω ∈ Ȟ1

𝜀 (U ;𝑂 (𝑑)). Then eu(Ω) ∈ Ȟ2 (U ;Z) coincides with the Euler class of the vector
bundle classified by 𝜋∗(cl(Ω)) : 𝐵 → Gr(𝑑).

Proof. Since 1/9 ≤
√

2/4, there exists, by Theorem 4.27, an exact cocycle Λ ∈ Ȟ1 (U ;𝑂 (𝑑)) such that
dȞ (Ω,Λ) < 1 and such that 𝜋∗(cl(Ω)) = cl(Λ). From the stability of eu, it follows that eu(Ω) = eu(Λ).
Finally, by Lemma 6.9, eu(Λ) is the Euler class of the vector bundle classified by cl(Λ). �

6.4. Second Stiefel–Whitney class

In order to compute the second Stiefel–Whitney class, we will use a certain short exact sequence
1 → Z/2 → Pin(𝑑) → 𝑂 (𝑑) → 1. To describe this sequence, we introduce the Clifford algebra
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Table 3. Pseudocode for the algorithm sw2..

Input: A simplicial complex K with vertices {1, . . . , 𝑘 } and a discrete approximate cocycle Ω ∈ DZ1
𝜀 (𝐾 ;𝑂 (𝑑)) with 𝜀 ≤ 1.

Output: A simplicial cocycle sw2 (Ω) ∈ 𝑍 2 (𝐾 ;Z/2) .

1. For each (𝑖 𝑗)1-simplex of K with 𝑖 < 𝑗, let Λ𝑖 𝑗 ∈ Pin(𝑑) be a lift of Ω𝑖 𝑗 ∈ 𝑂 (𝑑) .

2. For each (𝑖 𝑗𝑘)2-simplex of K with 𝑖 < 𝑗 < 𝑘, let sw2 (Ω)𝑖 𝑗𝑘 ∈ {±1} ⊆ Pin(𝑑) the closest element to Λ𝑖 𝑗Λ 𝑗𝑘Λ−1
𝑖𝑘 ∈ Pin(𝑑) ,

using the geodesic distance of Pin(𝑑) .

associated to the standard inner product of R𝑑 . We state some well-known results whose proofs can be
found in [36], [38, Chapter 1] and [8, Chapter 1, Section 6].

The group Pin.
Fix 𝑑 ∈ N≥1. The Clifford algebra corresponding to the inner product space

(
R
𝑑 , 〈−,−〉

)
, which we

denote by Cl(𝑑), is the quotient of the tensor algebra T(R𝑑) by the two-sided ideal generated by elements
of the form 𝑣 ⊗𝑤 +𝑤 ⊗ 𝑣−2〈𝑣, 𝑤〉 1, for 𝑣, 𝑤 ∈ R𝑑 , where 1 is the unit of T(R𝑑). We denote the product
of two elements 𝑥, 𝑦 ∈ Cl(𝑑) by 𝑥 · 𝑦 ∈ Cl(𝑑).

Here, we are using the ‘positive convention’ for Clifford algebras, as we want the Pin group to be the
group Pin+ discussed in, for example, [36]. We refer the interested reader to [36, Section 1] for further
details about this choice.

Remark 6.11. A more concrete description of Cl(𝑑) is given by the free noncommutative R-algebra
generated by elements {𝑒1, . . . , 𝑒𝑑} subject to the relations 𝑒𝑖 · 𝑒 𝑗 = −𝑒 𝑗 · 𝑒𝑖 if 𝑖 > 𝑗 , and 𝑒2

𝑖 = 1.
This description makes it evident that dim(Cl(𝑑)) = 2𝑑 since the elements of the form 𝑒𝑖1 · · · 𝑒𝑖𝑘 for
𝑖1 < · · · < 𝑖𝑘 form a basis of Cl(𝑑) [8, Chapter 1, Corollary 6.7].

If 𝑣 ∈ R𝑑 is of unit length, then it is invertible when seen as an element of Cl(𝑑) since 𝑣 · 𝑣 = 1. Let
Pin(𝑑) ⊆ Cl(𝑑)× be the subgroup of the group of units of Cl(𝑑) generated by elements 𝑣 ∈ R𝑑 of unit
length. There is a group morphism 𝜌 : Pin(𝑑) → 𝑂 (𝑑) that is defined on generators by mapping 𝑣 ∈ R𝑑
with ‖𝑣‖ = 1 to the orthogonal transformation given by reflection about the hyperplane orthogonal to v.
This morphism is surjective and its kernel consists of {±1} [36, Section 1]. This gives a central sequence
of Lie groups Z/2 � {±1} → Pin(𝑑) → 𝑂 (𝑑).

Algorithm.
Let U be a cover of a topological space with the property that nonempty binary intersections are locally
path connected and simply connected. Let 𝜀 ≤ 1. An analogous analysis to the one made for the Euler
class shows that, applying Theorem 6.6 to the extension 1 → Z/2 → Pin(𝑑) → 𝑂 (𝑑) → 1, we get
a map sw2 : Ȟ1

𝜀 (U ;𝑂 (𝑑)) → Ȟ2(U ;Z/2). And that sw2 is such that, if Ω,Ω′ ∈ Ȟ1
𝜀 (U ;𝑂 (𝑑)) satisfy

dZ (Ω,Ω′) < 1, then sw2 (Ω) = sw2 (Ω′) ∈ Ȟ2 (U ;Z/2).
In particular, if K is a simplicial complex, we get a 1-stable algorithm sw2 : DH1

𝜀 (𝐾;𝑂 (𝑑)) →
𝐻2 (𝐾;Z/2); see Table 3 for the pseudocode of this algorithm.

Technicalities about the algorithm.
In order to see that sw2 is really an algorithm, we must explain how to lift elements from𝑂 (𝑑) to Pin(𝑑),
how to multiply elements in Pin(𝑑) and how to decide, given an element 𝑥 ∈ Pin(𝑑), which one of 1 or
−1 is closest to it in the geodesic distance.

We see Pin(𝑑) as a subset of the Clifford algebra, which we represent as in Remark 6.11. By definition
of the map 𝜌 : Pin(𝑑) → 𝑂 (𝑑), to lift a matrix 𝑀 ∈ 𝑂 (𝑑) to an element of Pin(𝑑), we must write M as
a product of reflection matrices, which is exactly what the QR factorization of an orthogonal matrix by
means of Householder reflections does [31, Theorem 2.1.14].

In order to multiply elements of Pin(𝑑), we again use the representation of Remark 6.11. We can
thus multiply elements of Pin(𝑑) in O(4𝑑) time.
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The problem of deciding which of 1 or −1 is closest to an arbitrary element of Pin(𝑑) in the geodesic
distance is more involved, as it depends on the geometry of Pin(𝑑). We explain how this can be done
explicitly for the cases 𝑑 = 2, 3, 4 using extraordinary isomorphisms. The same idea works for 𝑑 = 5, 6
but one must be able to compute geodesic distances in 𝑆𝑝(4) and 𝑆𝑈 (4).

We first remark that, since 𝑂 (𝑑) has two connected components, so must Pin(𝑑), and that +1 and
−1 belong to the same connected component of Pin(𝑑), as they are both preimages of the identity
matrix under the covering map Pin(𝑑) → 𝑂 (𝑑). Let the spin group Spin(𝑑) ⊆ Pin(𝑑) be the connected
component of +1. Checking if 𝑥 ∈ Pin(𝑑) belongs to Spin(𝑑) is easy since it amounts to checking if its
image in 𝑂 (𝑑) has positive determinant.

If 𝑥 ∈ Pin(𝑑) does not belong to Spin(𝑑), then its distance to +1 is the same as the distance to −1,
namely infinity. With this in mind, we may assume that 𝑥 ∈ Spin(𝑑) and that we want to know if x is
closest to +1 or to −1 in the geodesic distance of Spin(𝑑).

For explicit formulas for the extraordinary isomorphisms mentioned below, see the example after
Lemma 1.8.3 in [35] or [42]. One should keep in mind that [35] is working with the ‘negative convention’
for the Clifford algebra, and thus the isomorphisms are given for Spin(𝑑) ⊆ Cl−(𝑑), but it is not hard to
modify their formulas to get the isomorphisms when Spin(𝑑) ⊆ Cl(𝑑).

(d = 2) In this case, Spin(𝑑) is isomorphic to the circle as Lie groups, so the geodesic distance on
Spin(2) can be computed, up to a multiplicative constant, using arclengths on the circle. Note
that the multiplicative constant is inconsequential for the purposes of determining if an element
is closer to +1 or to −1.

(d = 3) In this case, Spin(𝑑) is isomorphic to 𝑆𝑈 (2), which in turn is diffeomorphic to the 3-sphere 𝑆3.
The geodesic distance is again computed, up to a multiplicative constant, using arcs.

(d = 4) In this case, Spin(𝑑) is isomorphic to 𝑆𝑈 (2) × 𝑆𝑈 (2), which in turn is diffeomorphic to 𝑆3 × 𝑆3.
Moreover, the Riemannian metric on Spin(4) induced by the double cover Spin(4) → 𝑆𝑂 (4)
coincides, up to a multiplicative constant, with the product metric on 𝑆3 × 𝑆3, where the two
copies of 𝑆3 are endowed with the Riemannian metric inherited from the inclusion 𝑆3 ⊆ R4.
To compute the geodesic distance on 𝑆3 × 𝑆3, recall that a geodesic in a product Riemannian
manifold corresponds to a pair of geodesics, one on each factor [39, Problem 5-7]. This implies
that, in a product of complete Riemannian manifolds 𝑋 × 𝑌 , the geodesic distance satisfies the
Pythagorean theorem, meaning that the geodesic distance from (𝑥, 𝑦) to (𝑥 ′, 𝑦′) is equal to the
square root of the sum of the squares of the geodesic distances from x to 𝑥 ′ and from y to 𝑦′.

So, when 𝑑 = 2, 3, 4, this results in a numerical algorithm sw2 that is polynomial in the number of
vertices of K.

Consistency of the algorithm.
We need a well-known result; see, for example, [36, Lemma 1.3].

Lemma 6.12. Let U be a cover of a locally contractible space with the property that nonempty
binary intersections are locally path connected and simply connected. If 𝜀 = 0, the construction
sw2 : Ȟ1

𝜀 (U ;𝑂 (𝑑)) → Ȟ2 (U ;Z/2) computes the second Stiefel–Whitney class of the vector bundle
represented by the cocycle.

Note that, also by [36, Lemma 1.3], if we would have used the negative convention for the Clifford
algebra, the algorithm would be computing sw2

1 + sw2 instead of sw2.
The proof of the following proposition is analogous to the proof of Proposition 6.10 but uses

Lemma 6.12 instead of Lemma 6.9.

Proposition 6.13. Let U be a countable cover of a locally contractible, paracompact space B, with
the property that nonempty binary intersections are locally path connected and simply connected. Let
𝜀 < 1/9 and let Ω ∈ Ȟ1

𝜀 (U ;𝑂 (𝑑)). Then sw2 (Ω) ∈ Ȟ2 (U ;Z/2) is the second Stiefel–Whitney class of
𝜋∗(cl(Ω)).
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7. Computational examples

In this section, we run the algorithms of Section 6 on data. We describe the basic pipeline used in the
examples in Lemma 7.1.

In Section 7.2, we use sw1 to study the topology and, in particular, the orientability of attractors in
the time-variant double-gyre dynamical system. This illustrates how characteristic classes can be used to
classify such attractors. The trajectory of particles in the dynamical system was computed numerically
using the code in [16].

In Section 7.3, we use sw1 and sw2 to provide experimental evidence that confirms that a certain
dataset of lines in R2 can be parametrized by a projective plane. The theoretical explanation of this
phenomenon appears in [52, Section 2.4]. The code used to generate the dataset is from [64].

In Section 7.4, we show how eu can be used to detect nonsynchronizability of data. The example is
a version of the cryo-EM problem mentioned in Section 1.1.1.

In Table 4, we summarize the runtime of our algorithms. Code to replicate these examples can be
found at [56].

7.1. Pipeline

We make free use of basic tools from persistence theory such as Vietoris–Rips complexes, persistent
cohomology and persistence diagrams; see, for example, [20, 50]. The persistent cohomology compu-
tations are done using the Python interface [65] for Ripser [4].

Let {𝐾𝑟 }𝑟 ∈R≥0 be a filtration of a finite simplicial complex K by subcomplexes so that we have
𝐾𝑠 ⊆ 𝐾𝑟 ⊆ 𝐾 for 𝑠 ≤ 𝑟 ∈ R. For Ω ∈ Ȟ1

∞(𝐾;𝑂 (𝑑)) and 𝜀 ≥ 0, define the 𝜺-death of Ω as

𝛿 = sup({𝑟 ≥ 0 : Ω is an 𝜀-approximate cohomology class on 𝐾𝑟 } ∪ {0}).

The 𝜺-span of Ω is the subset of the persistence diagram of K of classes whose (homological) birth is
at most 𝛿 and whose (homological) death is at least 𝛿.

Fix a basis for the persistent cohomology of K, that is, cocycles 𝐵 = {Λ1, . . . ,Λ𝑛} representing each
point of the persistence diagram of the Z/2-cohomology of K. Let 𝜀 = 2. For any 𝑟 < 𝛿, we can write
sw1(Ω) in the basis B. To represent sw1(Ω) in the persistence diagram of K, we decorate the diagram
by circling the classes of B that appear with a nonzero coefficient. Note that any such class must live
inside the 2-span of Ω. An analogous analysis, replacing 2 with 1, applies for sw2. For eu, we use
Z/3-cohomology and the mod 3 reduction of the Euler class.

7.2. Orientability of attractors

The double-gyre is the dynamical system characterized by the differential equations �𝑥 = 𝜕𝜓/𝜕𝑦 and
�𝑦 = −𝜕𝜓/𝜕𝑥, where

𝜓(𝑥, 𝑦, 𝑡) = 𝐴 sin(𝜋 𝑓 (𝑥, 𝑡)) sin(𝜋𝑦), 𝑓 (𝑥, 𝑡) = 𝑎(𝑡) 𝑥2 + (1 − 2𝑎(𝑡)) 𝑥, 𝑎(𝑡) = 𝜀 sin(𝜔𝑡),

and A, 𝜀 and 𝜔 are positive parameters. The system is defined over the domain (𝑥, 𝑦) ∈ [0, 2] × [0, 1]
with 𝑡 ∈ R representing time. It was introduced in [57] as a simplified model of the double-gyre pattern

Table 4. Runtime of the algorithms on laptop with a 2.20 GHz Intel Core i7 and 16GB of RAM..

Dataset X VR(𝑋 ) size Algorithms Time

ATTR1 22921-simplices at 2-death of Ω w and sw1 180ms
ATTR2 78341-simplices at 2-death of Ω w and sw1 450ms
LINES 31741-simplices at 2-death of Ω w and sw1 270ms
LINES 266832-simplices at 1-death of Ω w and sw2 3950ms
PROJS 455732-simplices at 1-death of Ω eu 180ms
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observed in geophysical flows. Geometrically, the double-gyre system consists of a pair of vortices
oscillating back and forth, horizontally, in time; see, for example, [57, Figure 5].

Since the vector field characterizing the system varies periodically with time, the flow line of a particle
initially at (𝑥0, 𝑦0) depends on the time 𝑡0 at which the particle is at that spot. Because of this, the phase
space of the system (the space parametrizing the possible states of a particle) is [0, 2] × [0, 1] × 𝑆1,
where the last coordinate represents time R modulo the period 𝜋/𝜔.

Dynamical systems can be analyzed by studying the topology of their attractors [62, 1, 51]. Informally,
an attractor M of a dynamical system consists of a subset of the phase space that is invariant under the
action of the system and such that any point sufficiently close to the attractor gets arbitrarily close to it
as the system evolves. We refer the interested reader to [60, 67, 62] for formal notions of attractor.

Usually, one only has access to partial information about the trajectory of a particle, which one wants
to use to study the topology of the attractor M the particle is converging to. For example, one may be
given a real-valued time series {𝑥𝑛}𝑛=1,...,𝑁 , which comes from applying a differentiable map F defined
on the phase space to a finite sample of the trajectory of the particle. If the attractor M is a smooth
manifold and certain other technical conditions are satisfied, a theorem of Takens [62] implies that the
delay embedding of the time series

𝑋 =
{
(𝑥𝑖 , 𝑥𝑖+𝜏 , 𝑥𝑖+2𝜏 , . . . , 𝑥𝑖+(𝑑−1)𝜏)

}
𝑖=1,...,𝑁−(𝑑−1)𝜏 ⊆ R𝑑

is concentrated around a diffeomorphic copy of M, and is sufficiently dense in M so that the Vietoris–
Rips complex of X can be used to estimate the homology of M, and local PCA can be used to estimate
the tangent bundle of M. Here, d is the target dimension and 𝜏 is the delay. We refer the reader to [62, 1,
51, 68] for more information about recovering the geometry of attractors from a delay embedding.

In [13, Section 4.1], four attractors of the double-gyre dynamical system are studied. The four
attractors can be distinguished using their homology, except for two of them which, topologically, look
like a cylinder and a Möbius strip, respectively, and thus have the same homology groups. In order to
deal with such examples, the authors of [13] develop an algorithm for detecting orientability of this
kind of data. Here, we show that our general purpose algorithms readily apply to this kind of data
and confirm, using sw1, that [13, Section 4.1, Example 4] is parametrized by a Möbius band and [13,
Section 4.1, Example 1] by a cylinder.

Fixing the initial condition (𝑥0, 𝑦0, 𝑡0) = (0.55, 0.5, 0) ∈ [0, 2] × [0, 1] × 𝑆1, for a double-gyre with
𝐴 = 0.1, 𝜀 = 0.1, and 𝜔 = 𝜋/5, as in [13], we sample the trajectory of the particle at 2000 equally spaced
times from 𝑡 = 0 to 𝑡 = 1000, obtaining a time series of positions {(𝑥𝑛, 𝑦𝑛)}𝑛=1,...,2000 ⊆ [0, 2] × [0, 1].
We take the function F to be projection onto the x-coordinate, as in [13], the delay 𝜏 = 5 and the
target dimension 𝑑 = 5. A 2D projection of X is depicted in Figure 2a. The dataset ATTR1 consists of a
subsample of 1000 points of X.

Figure 2. 2D projections of samples approximating two attractors of the double-gyre dynamical system.
Consecutive samples are joined by an edge.
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Figure 3. Persistence diagrams of the Vietoris–Rips cohomology of finite samples approximating two
attractors of the double-gyre dynamical system, with Stiefel–Whitney classes highlighted.

We approximate the tangent bundle ofM using local PCA as sketched in Section 1.1.2. This give us a
discrete approximate local trivialization Φ, which we use to compute an approximate cocycle Ω = w(Φ)
over the Vietoris–Rips complex of X. We choose 𝑘 = 58 for the local PCA computations as this value
maximizes the 2-death of Ω.

Finally, we apply the algorithm sw1 to Ω and write the cohomology class thus obtained in the basis
of the persistent cohomology provided by Ripser. The classes circled in red in Figure 3a are the classes
that sum to sw1 (Ω). The fact that the most persistent class of the persistent diagram is colored in red
tells us that, as one goes around the one-dimensional hole this class represents, the approximate vector
bundle given by local PCA is changing orientation. This, coupled with the fact that the dataset is locally
two-dimensional, suggests that the dataset is parametrized by a Möbius band.

We run the same pipeline but with initial condition (𝑥0, 𝑦0, 𝑡0) = (0.25, 0.125, 0), as in [13, Sec-
tion 4.1, Example 1]; we refer to this second dataset as ATTR2. In this case, regardless of the parameters
chosen for local PCA, the first Stiefel–Whitney class of the approximate cocycle it gives is zero, as we
see in Figure 3b.

7.3. Projective space of lines

Datasets of simple geometrical shapes, such as lines inR2 with different orientations, appear, for instance,
as datasets of weights learned by autoencoders and other neural networks [29, Figure 2.A], [30, Figures 2
and 3] and as datasets of local patches of natural images [12]. It has been shown that topology can be
used to understand these datasets by giving insight into the functions learned by the hidden layers of
neural networks [10, 48], and by finding convenient parametrizations of spaces of image patches [52].

Here, we show how characteristic classes can be used to understand the topology of a set of lines
in R2. The dataset LINES consists of 160 grayscale images represented by a 10 × 10 real matrix. Each
image represents a fuzzy line in R2 with a certain slope and offset. A sample of 56 elements of LINES
is displayed in Figure 4a. We interpret this dataset as a point cloud 𝑋 ⊆ R10×10.

We proceed with the same pipeline as in Section 7.2. We compute the persistence diagram of VR(𝑋)
with coefficients in Z/2 and observe that there are two significant classes, one in 𝐻1 and the other
in 𝐻2 (Figure 4b). By applying local PCA with a range of values k, we see that the dataset seems to
have an intrinsic dimension of 2. This may lead one to suspect that the dataset is parametrized by the
real projective plane. One way to confirm this suspicion is by computing persistent cohomology with
coefficients in Z/3 and seeing that the most persistent classes in 𝐻1 and 𝐻2 disappear.
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Figure 4. Samples of a dataset parametrized by the real projective plane and the persistence diagram
of its Vietoris–Rips cohomology, with Stiefel–Whitney classes highlighted.

Another method to corroborate the hypothesis is the following. Local PCA gives a discrete approxi-
mate local trivialization Φ over VR(𝑋), and the 1-death of Ω = w(Φ) is maximized using 𝑘 = 18. We
apply the algorithms sw1 and sw2 to Ω and see that the cohomology classes thus obtained coincide with
the most persistent 𝐻1 and 𝐻2 classes of Figure 4b, respectively. This confirms the hypothesis that the
dataset is parametrized by a projective plane, as we know that 𝐻1 (R𝑃2;Z/2) � 𝐻2 (R𝑃2;Z/2) � Z/2
and that the Stiefel–Whitney classes of the tangent bundle of R𝑃2 are nonzero.

7.4. Lack of global synchronization in cryo-EM

We give an example of how characteristic classes provide an obstruction to synchronization. In order to
do this, we simulate an instance of the main problem of cryo-EM [18, 28]. In this problem, one is given
a set of 2D projections of an unknown 3D shape and is asked to reconstruct the shape. One possible
formalism is to assume that the shape is given by a density 𝑆 : R3 → R. We think of the projection
process as first acting on the molecule by an unknown element 𝑣 ∈ 𝑆𝑂 (3), which we call projection
angle, giving 𝑆 ◦ 𝑣 : R3 → R, and then integrating 𝑆 ◦ 𝑣 along the z-axis, yielding a map 𝑆𝑣 : R2 → R.

One of the main difficulties is that one is only given a set of projected images and is not given the
projection angle v corresponding to each image. Much attention has thus been given to the problem of
recovering the projection matrices corresponding to each image, up to a global rigid automorphism of
𝑆2, that is, an element of 𝑆𝑂 (3).

Let X be a set of 2D projections of an unknown 3D shape. A successful approach [23, 24, 69] to
recovering the projection angles starts by computing rotations 𝑔𝑖 𝑗 ∈ 𝑆𝑂 (2) that best align 𝑥𝑖 , 𝑥 𝑗 ∈ 𝑋 .
Formally, one chooses a distance d between maps R2 → R and finds 𝑔𝑖 𝑗 ∈ 𝑆𝑂 (2) that minimizes the
distance between 𝑥𝑖 : R2 → R and 𝑔𝑖 𝑗 ◦ 𝑥 𝑗 : R2 → R. One then fixes a threshold 𝛿 and constructs a
two-dimensional simplicial complex K with 0-simplices given by the elements of X, 1-simplices given
by pairs (𝑖 𝑗) such that 𝑑 (𝑥𝑖 , 𝑔𝑖 𝑗𝑥 𝑗 ) < 𝛿 and having a 2-simplex (𝑖 𝑗 𝑘) anytime (𝑖 𝑗), ( 𝑗 𝑘) and (𝑖𝑘) are 1-
simplices of K. This construction can be interpreted as giving an approximate 𝑆𝑂 (2)-cocycle over K. This
cocycle approximates the tangent bundle of 𝑆2 ⊆ R3 and can be used to recover the projection angles.

We are interested in simulating an instance of this problem and in computing the Euler class of
the approximate cocycle. As we expect this class to be nonzero, this shows that characteristic classes
of approximate vector bundles can be used for model validation and to detect nonsynchronizability of
data. This also confirms the theoretical analysis of [58], which shows that global synchronization is not
possible.
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Figure 5. A sample of a synchronization problem parametrized by a bundle over the sphere and the
persistence diagram of the base of the bundle with the Stiefel–Whitney classes highlighted.

In order to construct an instance of the problem, we define 𝑆 : R3 → R to be the characteristic
function of a union of four balls of different radii, centered at different points of R3. We then compute
400 projections {𝑆𝑣𝑖 : R2 → R}𝑖=1,...,400 for {𝑣𝑖 ∈ 𝑆𝑂 (3)} a well-distributed random sample of 𝑆𝑂 (3).
We save these projections as 100× 100 grayscale images, which constitute the dataset PROJS. A sample
of 9 elements of PROJS is displayed in Figure 5a.

Since aligning images optimally is a difficult problem in itself, we simplify our computations by
using our knowledge of the projection angles 𝑣𝑖 and 𝑣 𝑗 to align the images 𝑥𝑖 and 𝑥𝑖 . More specifically,
given 𝑣 ∈ 𝑆𝑂 (3), let 𝑣3 ∈ 𝑆2 denote its third column. We compose 𝑣𝑖 with the rotation 𝑟𝑖 𝑗 ∈ 𝑆𝑂 (3)
along a minimizing geodesic between 𝑣3

𝑖 and 𝑣3
𝑗 and define Ω𝑖 𝑗 ∈ 𝑆𝑂 (2) such that

𝑟𝑖 𝑗𝑣𝑖 =

(
Ω𝑖 𝑗 0
0 1

)
𝑣 𝑗 .

We let X be a sample of 300 elements of PROJS and compute the Vietoris–Rips complex of X, where
the dissimilarity function 𝑑 (𝑖, 𝑗) is given by the distance between the image 𝑥𝑖 and the rotated image
Ω𝑖 𝑗𝑥 𝑗 .

Finally, we compute the persistence diagram of VR(𝑋) with coefficients in Z/3, compute the Euler
class of Ω at its 1-death, reduce it mod 3 and write it in the basis provided by the persistent cohomology
computations. We see that the persistent class representing the reduction mod 3 of the Euler class, which
appears circled in red in Figure 5b, is the most persistent class of VR(𝑋).

8. Future work

Robustness and applications.

The notions of vector bundle we have presented can tolerate a certain amount of noise but are not robust
to outliers. What this means is that an 𝜀-approximate cocycle on a simplicial complex can satisfy the 𝛿-
approximate cocycle condition for a very small 𝛿 on almost all 2-simplices, except on very few, and this
can still make 𝜀 very large. This problem is similar to the robustness problem of persistent homology,
where the addition of a few outliers to the dataset can completely alter the inferred persistent homology.

We are interested in studying extensions of our framework that lead to algorithms for the inference
of topological information of approximate vector bundles even in the presence of outliers. The work
in [59] is an example of such an algorithm, as it can be interpreted as a robust algorithm for inferring
whether the first Stiefel–Whitney class of the tangent space of an embedded manifold is 0 or not.
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Invariants of approximate cocycles.

A related problem is that of defining invariants of 𝜀-approximate cocycles that do not require 𝜀 to
be sufficiently small. A possible avenue is to consider the persistent cohomology of the thickened
Grassmannians and use 𝜀-approximate classifying maps to pull back the cohomology classes of these
Grassmannians. The question of how long the universal Stiefel–Whintey classes persist in the thickened
Grassmannians is related to the filling radius introduced by Gromov [22] and to the generalization
considered by Lim, Mémoli and Okutan in [40]. A related question is whether better bounds for our
results can be obtained by using the Vietoris–Rips complex of the Grassmannians, instead of the
thickening.

Approximate sections.

In applications, one is interested in finding sections of approximate vector bundles. In order to do this
in practice and to prove consistency theorems for this kind of computation, a notion of approximate
section needs to be introduced and studied.

Approximate vector bundles with connection.

Discrete approximate cocycles over simplicial complexes, as in Definition 5.1, appear in the physics
literature (e.g., [14]), where they have a different interpretation: The value Ω𝑖 𝑗 ∈ 𝑂 (𝑑) of the (discrete)
cocycle Ω on the 1-simplex (𝑖 𝑗) represents parallel transport from the fiber of the vertex i to the fiber
of the vertex j. It would be interesting to relate this intepretation to the results in this paper and to study
to what extent a discrete approximate cocycle can be used to reconstruct a vector bundle together with
a connection.

Algorithms for higher characteristic classes.

Finding algorithms for the effective computation of higher characteristic classes, at least in the exact case,
has been the subject of much research in the past. For instance, [9] and [44] give cocycles representing
Chern, Pontryajin, Stiefel–Whitney and Euler classes of vector bundles over compact manifolds. One
should note that many of the formulas are not entirely algorithmic, as they require to determine, for
example, whether certain singular cycles are 0 in homology or not.

Other structure groups.

Some synchronization problems are most naturally described using a structure group different from the
orthogonal group 𝑂 (𝑑). We hope our theory can be extended to bundles having other structure groups,
such as 𝑈 (𝑑), 𝑃𝑂 (𝑑), and (R𝑛, +).

A. Technical details

A.1. Reach and thickenings

Let ∅ ≠ 𝑋 ⊆ R𝑁 be closed. For 𝜀 ∈ [0,∞], define the 𝜺-thickening of X by 𝑋 𝜀 = 𝑋 if 𝜀 = 0, and
otherwise by

𝑋 𝜀 =
{
𝑦 ∈ R𝑁 : ∃𝑥 ∈ 𝑋, ‖𝑥 − 𝑦‖2 < 𝜀

}
.

A closest point of 𝑦 ∈ R𝑁 in X is a point 𝑥 ∈ 𝑋 that minimizes ‖𝑥 − 𝑦‖2. The medial axis of
X, denoted med(𝑋), consists of all points 𝑦 ∈ R𝑁 that admit more than one closest point in X. The
reach of X is the supremum of 𝜀 ≥ 0 such that 𝑋 𝜀 does not intersect med(𝑋). Define a function
𝜋 : R𝑁 \ med(𝑋) → 𝑋 by mapping a point y to its closest point of X.
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Lemma A.1. If ∅ ≠ 𝑋 ⊆ R𝑁 is closed, then the map 𝜋 : R𝑁 \med(𝑋) → 𝑋 is continuous. In particular,
if X has strictly positive reach and 𝜀 ≤ reach(𝑋), then 𝜋 : 𝑋 𝜀 → 𝑋 is well defined and continuous. It
follows that the map 𝜋 : 𝑋 𝜀 → 𝑋 is a homotopy equivalence, with inverse the inclusion 𝑋 → 𝑋 𝜀 .

Proof. We start by proving the first claim. For this, we show that 𝜋 maps convergent sequences to
convergent sequences. Let 𝑦𝑛 → 𝑦 be a convergent sequence inR𝑁 \med(𝑋). By the triangle inequality,
we have

‖𝜋(𝑦𝑛) − 𝜋(𝑦)‖ ≤ ‖𝜋(𝑦𝑛) − 𝑦𝑛‖ + ‖𝑦𝑛 − 𝑦‖ + ‖𝑦 − 𝜋(𝑦)‖ = 𝑑 (𝑦𝑛, 𝑋) + ‖𝑦𝑛 − 𝑦‖ + 𝑑 (𝑦, 𝑋) → 2𝑑 (𝑦, 𝑋).

Thus, for n sufficiently large, we have that 𝑦𝑛 is inside the closed ball of radius 2𝑑 (𝑦, 𝑋) + 1 around
𝜋(𝑦), which is a compact set. Combining this with the fact that X is closed, we can assume, without
loss of generality, that 𝜋(𝑦𝑛) converges to some point 𝑥 ∈ 𝑋 . We must show that 𝑥 = 𝜋(𝑦), and to
prove this it is enough to show that ‖𝑦 − 𝑥‖2 = 𝑑 (𝑦, 𝑋), by uniqueness of minimizers. By definition,
‖𝑦𝑛 − 𝜋(𝑦𝑛)‖2 = 𝑑 (𝑦𝑛, 𝑋) and 𝑑 (−, 𝑋) is a continuous function, so, taking a limit, we see that
‖𝑦 − 𝑥‖2 = 𝑑 (𝑦, 𝑋).

For the second claim, it suffices to show that 𝑋 reach(𝑋 ) does not intersect med(𝑋), which is clear
since any point of 𝑋 reach(𝑋 ) belongs to 𝑋 𝛿 for some 𝛿 < reach(𝑋).

Finally, to see that 𝜋 is a homotopy equivalence, note that the inclusion followed by the projection is
certainly the identity of X and the projection followed by the inclusion is homotopic to the identity of
𝑋 𝜀 by means of a linear homotopy. �

Lemma A.2. Let 𝑋 ⊆ R𝑁 be closed with strictly positive reach r. Let z be a convex combination of
𝑥1, . . . , 𝑥𝑛 ∈ 𝑋 such that ‖𝑥𝑖 − 𝑥 𝑗 ‖ < 𝑟 for all 1 ≤ 𝑖, 𝑗 ≤ 𝑛. Then ‖𝑧 − 𝑥 𝑗 ‖ < 𝑟 and ‖𝜋(𝑧) − 𝑥 𝑗 ‖ < 2𝑟
for all 1 ≤ 𝑗 ≤ 𝑛.

Proof. Fix 1 ≤ 𝑗 ≤ 𝑛. The points 𝑥1, . . . , 𝑥𝑛 are all contained in the open ball of radius r around 𝑥 𝑗 .
It follows that z is also contained in this ball by the convexity of open balls. In particular, 𝑧 ∈ 𝑋𝑟 and
‖𝜋(𝑧) − 𝑧‖ < 𝑟 . By the triangle inequality, we have ‖𝜋(𝑥) − 𝑥 𝑗 ‖ < 2𝑟, as required. �

A.2. Polar decomposition and orthogonal Procrustes problem

In this section, we collect a few standard facts about the orthogonal Procrustes problem; a standard
reference is [31].

Let 𝑛 ≥ 𝑚 ≥ 1 ∈ N. Let 𝑁 ∈ R𝑛×𝑚. A polar decomposition of N consists of matrices 𝑈 ∈ R𝑛×𝑚
and 𝑃 ∈ R𝑚×𝑚 such that 𝑁 = 𝑈𝑃, the matrix U has orthonormal columns and the matrix P is positive
semidefinite. We will need the following well known fact about polar decompositions; for a reference,
see [31, Theorem 7.3.1]. In the statement, for A a symmetric positive semidefinite matrix, 𝐴1/2 denotes
the unique positive semidefinite square root [31, Theorem 7.2.6], also called the principal square root
of A.

Lemma A.3. Any matrix admits a polar decomposition. The factor P is uniquely determined and satisfies
𝑃 = (𝑁 𝑡𝑁)1/2. The factor U is uniquely determined if N has full rank.

Let V(𝑚, 𝑛) ⊆ R𝑛×𝑚 denote the subset of matrices with orthonormal columns. Consider the map
𝑄 : R𝑛×𝑚 → V(𝑚, 𝑛) that assigns to a matrix N a matrix U that is part of a polar decomposition
𝑁 = 𝑈𝑃. Note that, for general matrices, this map depends on a choice of polar decomposition.

Corollary A.4. The map 𝑄 : R𝑛×𝑚 → V(𝑚, 𝑛) is uniquely determined and continuous if we restrict its
domain to matrices with full rank.

Proof. By Lemma A.3, if N has full rank, we have 𝑈 = 𝑁𝑃−1 = 𝑁
(
(𝑁 𝑡𝑁)1/2)−1. The map 𝐴 ↦→ 𝐴1/2

that takes a symmetric positive definite matrix to its principal square root is continuous [32, Chapter
6.2, Problem 26] and so is the map that takes an invertible matrix to its inverse. The result follows. �
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For 𝑀, 𝑁 ∈ R𝑛×𝑑 , the orthogonal Procrustes problem is the following optimization problem:

min
Ω∈𝑂 (𝑑)

‖𝑀Ω − 𝑁 ‖.

It is well known (see, e.g., [31, Section 7.4.5]) that the solutions to the above orthogonal Procrustes
problem are precisely the orthogonal matrices U that are part of a polar decomposition 𝑀 𝑡𝑁 = 𝑈𝑃.
In particular, if 𝑀 𝑡𝑁 has full rank, then the above problem admits exactly one solution. Moreover, this
solution varies continuously in 𝑀 𝑡 and N, as long as we restrict ourselves to problems for which 𝑀 𝑡𝑁
has full rank.

A.3. Metrics on Grassmannians

In this section, we compare two metrics on the Grassmannians and we recall the computation of the
reach of the Grassmannians due to Tinarrage [63].

Recall that Proj : V(𝑑, 𝑛) → Gr(𝑑, 𝑛) is 𝑂 (𝑑)-invariant, with 𝑂 (𝑑) acting by matrix multiplication
on the right. This means that we have Proj(𝑀) = Proj(𝑀Ω) for every Ω ∈ 𝑂 (𝑑). In fact, it is easy to see
that, for 𝑁, 𝑀 ∈ V(𝑑, 𝑛), one has Proj(𝑁) = Proj(𝑀) if and only if 𝑁Ω = 𝑀 for some Ω ∈ 𝑂 (𝑑). This
shows that, as a set, Gr(𝑑, 𝑛) is the quotient of V(𝑑, 𝑛) by the action of 𝑂 (𝑑) by matrix multiplication
on the right. Since 𝑂 (𝑑) acts by isometries, this induces a metric dq on Gr(𝑑, 𝑛), given by

dq (𝐴, 𝐵) = min
𝑁 ,𝑀 ∈V(𝑑,𝑛)

Proj(𝑁 )=𝐴,Proj(𝑀 )=𝐵

‖𝑁 − 𝑀 ‖.

We now prove some useful comparisons between the metric and the Frobenius distance.

Lemma A.5. Let 𝑀 ∈ V(𝑑, 𝑛), 𝐴 ∈ R𝑑×𝑚, and 𝐵 ∈ R𝑛×𝑚. Then ‖𝑀𝐴‖ = ‖𝐴‖ and ‖𝑀 𝑡𝐵‖ ≤ ‖𝐵‖.

Proof. For the first claim, we compute

‖𝑀𝐴‖2 = tr((𝑀𝐴)𝑡 (𝑀𝐴)) = tr(𝐴𝑡𝑀 𝑡𝑀𝐴) = tr(𝐴𝑡 𝐴) = ‖𝐴‖2.

For the second, note that ‖𝑀 𝑡𝐵‖2 = tr(𝑀𝑀 𝑡𝐵𝐵𝑡 ). Since 𝑀𝑀 𝑡 is an orthogonal projection to a subspace,
there is an orthogonal change of basis such that 𝑀𝑀 𝑡 is diagonal, with diagonal entries 1 repeated d
times and 0 repeated 𝑛 − 𝑑 times. The result follows by computing tr(𝑀𝑀 𝑡𝐵𝐵𝑡 ) in that basis. �

Let dFr denote the metric on Grassmannians induced by the Frobenius norm.

Lemma A.6. The map Proj : V(𝑑, 𝑛) → Gr(𝑑, 𝑛) given by Proj(𝑀) = 𝑀𝑀 𝑡 is
√

2-Lipschitz. In
particular, we have dFr ≤

√
2dq.

Simple examples with 𝑑 = 1 and 𝑛 = 2 show that this bound is tight.

Proof. The second claim is a consequence the first one. For the first claim, we start by recalling that, for
any matrix A, one has ‖𝐴𝑡 𝐴‖ = ‖𝐴𝐴𝑡 ‖. In particular, if A is square, ‖𝐴𝐴𝑡 − id‖2 = ‖𝐴𝐴𝑡 ‖2 + ‖id‖2 −
2 tr(𝐴𝐴𝑡 ) = ‖𝐴𝑡 𝐴‖2 + ‖id‖2 − 2 tr(𝐴𝑡 𝐴) = ‖𝐴𝑡 𝐴 − id‖2.

Now, let 𝑀, 𝑁 ∈ V(𝑑, 𝑛). Since multiplication by an orthogonal matrix preserves the Frobenius
norm, we may assume that M and N are matrices given by blocks:

𝑀 =

[
𝐴
𝐵

]
, 𝑁 =

[
id
0

]
,

where the top block is 𝑑 × 𝑑 and the bottom one is (𝑛 − 𝑑) × 𝑑. Note that, by assumption, we have
𝐴𝑡 𝐴 + 𝐵𝑡𝐵 = id. We now bound as follows:
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‖𝑀𝑀 𝑡 − id‖2 = ‖𝐴𝐴𝑡 − id‖2 + ‖𝐴𝐵𝑡 ‖2 + ‖𝐵𝐴𝑡 ‖2 + ‖𝐵𝐵𝑡 ‖2

= ‖𝐴𝑡 𝐴 − id‖2 + 2‖𝐵𝐴𝑡 ‖2 + ‖𝐵𝐵𝑡 ‖2

= 2
(
‖𝐵𝐴𝑡 ‖2 + ‖𝐵𝐵𝑡 ‖2

)
= 2‖𝐵𝑀 𝑡 ‖2 = 2‖𝐵‖2

≤ 2
(
‖𝐴 − id‖2 + ‖𝐵𝑡 ‖2

)
= 2‖𝑀 − id‖2,

where we used the previous observations in the second and third equality and Lemma A.5 in the fifth
equality. �

To prove a partial converse, we need the following lemma.

Lemma A.7. If P is a symmetric and positive semidefinite 𝑑 × 𝑑 matrix, then ‖𝑃1/2 − id‖ ≤ ‖𝑃 − id‖.

Proof. Diagonalizing P in an orthonormal basis, we can assume that P is diagonal with nonnegative
entries. Since then the square root of P corresponds to taking the square root of each diagonal entry, it is
enough to prove that, for any nonnegative real number a one has |

√
𝑎 − 1| ≤ |𝑎 − 1|, which is clear. �

The next lemma is not needed in what follows, but, since it is a direct consequence of the previous
result, we give it here.

Lemma A.8. Let 𝑀 ∈ R𝑛×𝑑 and 𝑀 = 𝑈𝑃 be a polar decomposition. Then ‖𝑀 −𝑈‖ ≤ ‖𝑀 𝑡𝑀 − id‖.

Proof. By definition, 𝑃2 = 𝑀 𝑡𝑀 . So the result follows from Lemma A.7. �

We are ready to prove the converse.

Lemma A.9. Let 𝑀, 𝑁 ∈ V(𝑑, 𝑛). Then there exists Ω ∈ 𝑂 (𝑑) such that ‖𝑀Ω− 𝑁 ‖ ≤ ‖𝑀𝑀 𝑡 − 𝑁𝑁 𝑡 ‖.
In particular, dq ≤ dFr.

Proof. The second claim is a consequence of the first one. For the first claim, let Ω ∈ 𝑂 (𝑑) min-
imize ‖𝑀Ω − 𝑁 ‖. From Appendix A.2, we know that Ω is part of a polar decomposition 𝑀 𝑡𝑁 =
Ω(𝑁 𝑡𝑀𝑀 𝑡𝑁)1/2. Now, ‖𝑀Ω−𝑁 ‖ ≤ ‖Ω−𝑀 𝑡𝑁 ‖ = ‖Ω−Ω(𝑁 𝑡𝑀𝑀 𝑡𝑁)1/2‖ = ‖(𝑁 𝑡𝑀𝑀 𝑡𝑁)1/2− id‖ ≤
‖(𝑁 𝑡𝑀𝑀 𝑡𝑁)1/2 − id‖, by Lemma A.7. �

We now recall the computation of the reach of the Grassmannians due to Tinarrage [63].

Construction A.10. Let 𝐴 ∈ R𝑛×𝑛. Define 𝐴𝑠 = (𝐴+ 𝐴𝑡 )/2 and let 𝐴𝑠 = Ω𝐷Ω𝑡 be a diagonalization of
𝐴𝑠 by an ordered orthonormal basis Ω ∈ 𝑂 (𝑛), where the diagonal entries of D contain the eigenvalues
of 𝐴𝑠 in decreasing order. Let 𝐽𝑑 be the diagonal 𝑛 × 𝑛 matrix with the first d diagonal entries equal to
1 and the rest equal to 0. Let 𝜋(𝐴) = Ω𝐽𝑑Ω𝑡 .

Lemma A.11 [63, Lemma 2.1]. If dFr (𝐴,Gr(𝑑, 𝑛)) <
√

2/2, then 𝜋(𝐴) is the unique minimizer of

min
𝐵∈Gr(𝑑,𝑛)

‖𝐴 − 𝐵‖.

Moreover, we have reach(Gr(𝑑, 𝑛)) =
√

2/2.

In particular, if 𝐴 ∈ Gr(𝑑, 𝑛) 𝜀 for 𝜀 ≤
√

2/2, then 𝜋(𝐴) is independent of the choice of orthonormal
basis Ω. We deduce the following.

Proposition A.12. Let 𝜀 ≤
√

2/2. The inclusion Gr(𝑑, 𝑛) ⊆ Gr(𝑑, 𝑛) 𝜀 is a homotopy equivalence, with
inverse given by the projection 𝜋. This is natural in both n and 𝜀. Moreover, the projections assemble
into a homotopy inverse of the inclusion Gr(𝑑) ⊆ Gr(𝑑) 𝜀 .

Proof. The first claim follows from Lemma A.1 and Lemma A.11. In the second claim, naturality means
that the inclusion maps 𝑖 : Gr(𝑑, 𝑛) → Gr(𝑑, 𝑛) 𝜀 commute with the inclusions into Gr(𝑑, 𝑛 + 1) and
Gr(𝑑, 𝑛+1) 𝜀 , which is clear, and that the projections do as well. The fact that projections commute with
the inclusion i follows from Construction A.10. The third claim follows at once from naturality. �
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A.4. Metrics on orthogonal groups

In this section, we will make use of basic Riemannian geometry; see, for instance, [39]. Our main
goals are to calculate the reach (Appendix A.1) of the orthogonal groups, seen as a subspace of the
metric space of square matrices, with metric given by the Frobenius distance; to compare the Frobenius
distance to the geodesic distance; and to calculate the systole (Definition 6.4) of the orthogonal groups
using the geodesic distance.

The geodesic distance we consider on the orthogonal groups is the one that comes from the bi-
invariant metric given by the smooth inclusion 𝑂 (𝑑) ⊆ R𝑑×𝑑 , where the inner product on R𝑑×𝑑 is the
one associated to the Frobenius norm [39, Example 3.16(e)].

Lemma A.13. Let 𝑀, 𝑁 ∈ 𝑂 (𝑑) such that det(𝑀) = 1 = − det(𝑁). Then ‖𝑀 − 𝑁 ‖ ≥ 2.

Proof. Since 𝑂 (𝑑) acts on itself by isometries, it suffices to show that ‖𝑁 − id‖ ≥ 2 whenever
det(𝑁) = −1. Since N is orthogonal, there is an orthogonal change of basis that takes it to be diagonal
by blocks, where blocks are 1× 1 and equal 1 or −1, or 2× 2 and rotation matrices. We can thus assume
that N is diagonal by blocks of the form above. If any of the blocks is a 1×1 block of the form −1 we are
done. Otherwise, there must be a block that consists of a rotation with negative determinant. In this case,

‖𝑁 − id‖ ≥
√

2(sin(𝜃))2 + (1 − cos(𝜃))2 + (1 + cos(𝜃))2 = 2. �

The following lemma appears in [5] and is a key result that lets us compare the geodesic distance
of the orthogonal groups to the Frobenius distance. Before giving the result, we recall that any metric
space has an induced geodesic distance (also known as a path-length distance), where the distance
between any two points is taken to be the infimum of the lengths of the continuous paths between them
[5, Section 2], [11, Section 2.3.3]. If the metric space is not connected, this is an extended distance.
Finally, if the metric space consists of a manifold smoothly embedded in Euclidean space, then this
geodesic distance coincides with the geodesic distance associated to the Riemannian metric induced by
the embedding into Euclidean space [11, Exercise 5.1.8].

Lemma A.14 [5, Lemma 3]. Let 𝑆 ⊆ R𝑁 be a closed set such that 𝑅 = reach(𝑆) > 0. Let 𝑑𝑆 denote
the geodesic distance on S induced by the restriction of the Euclidean distance. If 𝑥, 𝑦 ∈ 𝑆 are such that
‖𝑥 − 𝑦‖2 < 2𝑅, then 𝑑𝑆 (𝑥, 𝑦) ≤ 2 𝑅 arcsin

(
‖𝑥−𝑦 ‖

2𝑅

)
.

Lemma A.15. Let 𝐴 ∈ R𝑑×𝑑 and Ω ∈ 𝑂 (𝑑) such that ‖𝐴 −Ω‖ < 1, then A has full rank.

Proof. It is enough to show that Ω𝑡 𝐴 has full rank, so, since the Frobenius norm is 𝑂 (𝑑)-invariant, it
is sufficient to prove it for the case Ω = id. Let 𝐵 = id − 𝐴. Since ‖𝐵‖ < 1, and the Frobenius norm
is submultiplicative, the matrix

∑
𝑛≥0 𝐵

𝑛 is well defined. Finally, we have (id − 𝐵)
(∑

𝑛≥0 𝐵
𝑛
)
= id, so

id − 𝐵 = 𝐴 is invertible, as required. �

Lemma A.16. Consider 𝑂 (𝑑) ⊆ R𝑑×𝑑 with the Frobenius distance. Then reach(𝑂 (𝑑)) = 1.

Proof. Let 𝑀𝑥 denote the 𝑑× 𝑑 diagonal matrix with 1 in all diagonal entries except the first one, which
is x. Since a polar decomposition of 𝑀0 is given by 𝑀0 = id𝑀0, we have that the identity is a closest
orthogonal matrix to 𝑀0, by Appendix A.2. Now, note that ‖𝑀0 − id‖ = 1 = ‖𝑀0 − 𝑀−1‖, so 𝑀−1 is a
closest orthogonal matrix to 𝑀0 too, and thus reach(𝑂 (𝑑)) ≤ 1.

To conclude, we must show that, if ‖𝑀 − id‖ < 1, then M has a unique closest orthogonal matrix.
This is a consequence of Lemma A.15 and Lemma A.3. �

Combined, Lemma A.14 and Lemma A.16 give us upper bounds for the geodesic distance of 𝑂 (𝑑)
in terms of the Frobenius distance. We will need the following specific bound.

Corollary A.17. Let 𝑑𝐺 be the geodesic distance on 𝑂 (𝑑) induced by the embedding 𝑂 (𝑑) ⊆ R𝑑×𝑑 .
For 𝑀, 𝑁 ∈ 𝑂 (𝑑), if ‖𝑀 − 𝑁 ‖ < 1, then 𝑑𝐺 (𝑀, 𝑁) <

√
2𝜋/4.
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Proof. By inspection, 2 arcsin(1/2) <
√

2𝜋/4. Note that a slightly tighter bound is possible, but we
prefer this one for readability. �

Lemma A.18. Using the geodesic distance 𝑑𝐺 , we have sys(𝑂 (𝑑)) = 2
√

2𝜋.

Proof. Since𝑂 (𝑑) is a group acting on itself by isometries, to compute sys(𝑂 (𝑑)), it suffices to consider
loops on the identity matrix id ∈ 𝑂 (𝑑). We observe that the constant speed, locally length-minimizing
curves from the identity to itself are in bijection with the logarithms 𝐿 ∈ 𝔰𝔬(𝑑) of the identity. More
specifically, any such curve can be written as 𝑡 ↦→ exp(𝑡𝐿) with 𝐿 ∈ 𝔰𝔬(𝑑) [39, Proposition 5.19]. We
also observe that the speed of such a curve is ‖𝐿‖, the Frobenius norm of L.

So let 𝐿 ∈ 𝔰𝔬(𝑑) be a skew-symmetric matrix such that exp(𝐿) = id. Since L is skew-symmetric,
there exists an orthogonal change of basis such that L is a block-diagonal matrix with either 1× 1 blocks
containing a 0 or 2 × 2 blocks with 0 in the diagonal and 𝜆,−𝜆 ∈ R in the antidiagonal. Since L is
a logarithm of the identity, the number 𝜆 in any of these blocks must be an integer multiple of 2𝜋. It
follows that ‖𝐿‖ =

√
2
∑
(2𝜋𝑛𝑖)2 = 2𝜋

√
2
√∑

𝑛2
𝑖 . Since we are considering nonnullhomotopic loops, at

least one of the integers 𝑛𝑖 must be nonzero, and thus the smallest value of ‖𝐿‖ is attained when one of
the 𝑛𝑖 is 1 and the rest are zero, and in such case we have ‖𝐿‖ = 2

√
2𝜋, concluding the proof. �

A.5. Riemannian manifolds and covering spaces

In this section, we use the systole to give a lower bound for the distance between two distinct elements in
the fiber of a covering map between Riemannian manifolds and we prove a metrically controlled lifting
property for covering maps between Riemannian manifolds.

Lemma A.19. Let 𝐺 → 𝐻 be a covering map between Riemannian manifolds. Fix ℎ ∈ 𝐻, and let
𝐹 ⊆ 𝐺 be the fiber of h. Then, the infimum of the distances between distinct elements of F is bounded
below by sys(𝐻).

Proof. Let 𝑎 ≠ 𝑏 ∈ 𝐹 and consider a geodesic between them. The length of this path is equal to
the length of the path mapped to H since 𝐺 → 𝐻 is a local isometry. The path mapped to H cannot
be nullhomotopic since a and b are distinct points of the fiber, so its length is bounded below by the
systole of H. �

Lemma A.20. Let 𝜁 : 𝐺 → 𝐻 be a covering map between Riemannian manifolds, with H compact.

1. Let ℎ, ℎ′ ∈ 𝐻 be such that 𝑑𝐻 (ℎ, ℎ′) < sys(𝐻)/2 and let 𝑔 ∈ 𝐺 be a preimage of h. Then, there
exists a unique preimage 𝑔′ of ℎ′ such that 𝑑𝐺 (𝑔, 𝑔′) < sys(𝐻)/2 and 𝑔′ has the property that
𝑑𝐺 (𝑔, 𝑔′) = 𝑑𝐻 (ℎ, ℎ′).

2. Let U be locally path connected and simply connected and let 𝑣, 𝑤 : 𝑈 → 𝐻 continuous such that, for
all 𝑧 ∈ 𝑈, 𝑑𝐻 (𝑣(𝑧), 𝑤(𝑧)) < sys(𝐻)/2. Then, there exist lifts 𝑣, 𝑤 : 𝑈 → 𝐺 of v and w, respectively,
such that, for all 𝑧 ∈ 𝑈, 𝑑𝐺 (𝑣(𝑧), 𝑤(𝑧)) = 𝑑𝐻 (𝑣(𝑧), 𝑤(𝑧)).

Proof. We start with the first claim. To prove existence, consider a shortest geodesic from h to ℎ′, whose
length must be strictly less than sys(𝐻)/2. By lifting this path, we get a preimage 𝑔′ of ℎ′ such that
𝑑𝐺 (𝑔, 𝑔′) ≤ 𝑑𝐻 (ℎ, ℎ′). To prove uniqueness, suppose that 𝑔′′ ≠ 𝑔′ is a preimage of ℎ′. By Lemma A.19,
we have 𝑑𝐺 (𝑔′′, 𝑔′) ≥ sys(𝐻), so 𝑑𝐺 (𝑔, 𝑔′′) ≥ sys(𝐻)/2. Finally, since 𝐺 → 𝐻 is 1-Lipschitz, we
have 𝑑𝐻 (ℎ, ℎ′) ≤ 𝑑𝐺 (𝑔, 𝑔′), and thus 𝑑𝐺 (𝑔, 𝑔′) = 𝑑𝐻 (ℎ, ℎ′).

For the second claim, let 𝑦 ∈ 𝑈 and use the first claim to choose lifts 𝑔, 𝑔′ ∈ 𝐺 of 𝑣(𝑦) and 𝑤(𝑦),
respectively, such that 𝑑𝐺 (𝑔, 𝑔′) = 𝑑𝐻 (𝑣(𝑦), 𝑤(𝑦)). Since U is locally path connected and simply
connected, there exist unique lifts 𝑣 and 𝑤 of v and w, respectively, such that 𝑣(𝑦) = 𝑔 and 𝑤(𝑦) = 𝑔′.
Consider the subset 𝑈 ′ = {𝑧 ∈ 𝑈 : 𝑑𝐺 (𝑣(𝑧), 𝑤(𝑧)) = 𝑑𝐻 (𝑣(𝑧), 𝑤(𝑧))} ⊆ 𝑈. This subset is closed and
nonempty, so it suffices to show that it is open, since U is connected. We conclude the proof by proving
this fact.
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Let 𝑧 ∈ 𝑈 ′, and let 𝜀 = sys(𝐻)/2 − 𝑑𝐻 (𝑣(𝑧), 𝑤(𝑧)) > 0. Let N be an open neighborhood of z such
that 𝑣(𝑁) is contained in the open ball of radius 𝜀/2 around 𝑣(𝑧), and 𝑤(𝑁) is contained in the open
ball of radius 𝜀/2 around 𝑤(𝑧). If 𝑧′ ∈ 𝑁 , then

𝑑𝐺 (𝑣(𝑧′), 𝑤(𝑧′)) ≤ 𝑑𝐺 (𝑣(𝑧′), 𝑣(𝑧)) + 𝑑𝐺 (𝑣(𝑧), 𝑤(𝑧)) + 𝑑𝐺 (𝑤(𝑧), 𝑤(𝑧′))
= 𝑑𝐺 (𝑣(𝑧′), 𝑣(𝑧)) + 𝑑𝐻 (𝑣(𝑧), 𝑤(𝑧)) + 𝑑𝐺 (𝑤(𝑧), 𝑤(𝑧′))
< 𝑑𝐻 (𝑣(𝑧), 𝑤(𝑧)) + 2𝜀/2 = sys(𝐻)/2.

From the first claim, it follows that 𝑑𝐺 (𝑣(𝑧′), 𝑤(𝑧′)) = 𝑑𝐻 (𝑣(𝑧′), 𝑤(𝑧′)), so 𝑁 ⊆ 𝑈 ′, and thus 𝑈 ′ is
open, concluding the proof. �
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