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Transforming photon statistics through zero-photon subtraction
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Zero-photon subtraction (ZPS) is a conditional measurement process that can reduce the mean photon number
of quantum optical states without physically removing any photons. Here we show that ZPS can also be used to
transform certain super-Poissonian states into sub-Poissonian states and vice versa. Combined with a well-known
“no-go” theorem on conditional measurements, this effect leads to a set of nonclassicality criteria that can be
experimentally tested through ZPS measurements.
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I. INTRODUCTION

The investigation of super-Poissonian and sub-Poissonian
light sources plays a significant role in the history of quantum
optics [1,2]. The photon-number distributions of these sources
display variances that are, respectively, wider or narrower
than the benchmark Poissonian statistics of a coherent state
with the same average photon number [3]. Experimentally,
these properties can be conveniently characterized by Man-
del’s Q parameter, with Q > 0 for super-Poissonian sources
and −1 ! Q < 0 for sub-Poissonian sources [4].

Given either type of source, it is also interesting to consider
the physical processes that can be used to actively transform
the emitted super-Poissonian light into sub-Poissonian light
and vice versa. Quintessential examples include the use of
optical nonlinearities such as two-photon absorption [5] or
photon blockades [6] to transform super- into sub-Poissonian
light and amplification [7,8] or phase randomization [9] to
transform sub- into super-Poissonian light. More recently, it
was shown that conditional measurement processes such as
photon addition and photon subtraction can also be used to
implement these statistical transformations [10–13]. Here, we
show that the relatively new conditional measurement process
of zero-photon subtraction (ZPS) can also transform certain
sub-Poissonian states into super-Poissonian states (and vice
versa), despite no photons being added to or subtracted from
the system. Other related work includes performing statis-
tical transformations by manipulating the initial parameters
in atomic fluorescence [14], sideband squeezing [15], photon
catalysis [16], and displacement operation [17] experiments.

Figure 1 shows an overview of a typical ZPS setup. ZPS
was originally proposed in the context of noiseless attenuation
[18], and its counterintuitive ability to reduce the mean photon
number of input states has now been demonstrated in several
experiments [19–24]. As illustrated in Fig. 1, an input state
ρ̂in with average photon number 〈n̂〉in passes through a beam
splitter with variable reflectance R, and the output state is
accepted only when no photons are reflected. This is accom-
plished by actively “heralding on zero” (HOZ) photons using
detector D1 [25], which occurs with a probability of success
Ps that decreases as R is increased. Upon successful opera-
tion, the properties of the heralded output state ρ̂out can then

be measured with an auxiliary detection system represented
by D2.

It can be shown that this conditional measurement process
implements the nonunitary operator t n̂, with transmittivity
|t |2 ≡ T = 1 − R. This results in an overall attenuation (i.e.,
〈n̂〉out < 〈n̂〉in) for all but Fock-state inputs [26]. Roughly
speaking, this attenuation effect can be understood by con-
sidering that larger-n terms in the Fock-state expansion of a
general input state are less likely to “survive” the HOZ pro-
cess, resulting in a conditional reweighting of the Fock-state
coefficients towards smaller-n terms in the heralded output
state. Here, we extend this idea to show how ZPS can also
transform the statistical properties of input states and then use
these transformations to define a set of nonclassicality criteria
based on ZPS measurements.

As a simple example of the ability of ZPS to perform
statistical transformations, consider an input superposition
state |ψ〉in = 1√

2
(|1〉 + |5〉), which has a mean photon number

〈n̂〉in = 3 and a positive Mandel Q parameter Qin ≈ 0.33,
denoting super-Poissonian photon statistics. After ZPS with
a standard 50:50 beam splitter (R = 1

2 ), the output state be-
comes |ψ〉out = 4√

17
(|1〉 + 1

4 |5〉), which has an attenuated
mean photon number 〈n̂〉out ≈ 1.2 and a negative Mandel Q
parameter Qout ≈ −0.28. This negative value denotes sub-
Poissonian photon statistics and thus nonclassical properties
of the heralded transmitted light [3].

Combined with a well-known “no-go” theorem which
states that conditional photon-counting measurements at a
beam splitter cannot produce nonclassical output states unless
the input is also nonclassical [27,28], this simple example
shows how even a super-Poissonian input state may pos-
sess other “hidden” nonclassical properties that could be
revealed by ZPS measurements. In this paper, we formalize
this argument by characterizing the ZPS measurement process
through a relative attenuation parameter K (R) and deriving
nonclassicality criteria based on its behavior. While K (R)
typically changes monotonically as beam-splitter reflectance
R is increased, we find that nonmonotonic behavior arises
for “transformable” states that change their sub- or super-
Poissonian character and that this “transformability” is always
nonclassical.
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FIG. 1. Overview of a typical zero-photon subtraction (ZPS)
setup. An input state ρ̂in enters one input port of a beam splitter with
variable reflectivity R, and the detection of zero reflected photons
at D1 heralds a noiselessly attenuated output state ρ̂out. Despite no
photons being removed from the system, ZPS can dramatically trans-
form the photon statistics of certain input states. These effects can be
observed and quantified by measuring trends in a relative attenuation
parameter K (R) using an auxiliary detector D2.

The remainder of this paper is structured as follows: In
Sec. II we define the ZPS relative attenuation parameter K (R)
and explore its relationship with Q. We illustrate the key
features of K (R) by comparing its behavior for three ba-
sic (nontransformable) states with two simple examples of
transformable states. In Sec. III, we extend the concept of
transformability to define ZPS-based nonclassicality criteria,
and in Sec. IV we describe a method to predict which in-
put states will statistically transform under ZPS. In Sec. V
we consider two more rich examples of ZPS input states,
the displaced squeezed state [29] and the catalyzed coherent
state [30], which illustrate the concept of transformability
over a limited range of input-state parameter space. Finally,
in Sec. VI we consider the effects of realistic detectors on
experimentally observing these ZPS-based statistical transfor-
mations.

II. RELATIVE ATTENUATION PARAMETER

When exactly zero photons are reflected by the beam split-
ter in the setup in Fig. 1, ZPS is successful and noiselessly
attenuates the input state ρ̂in [18]. This process is described
by the nonunitary operator t n̂, producing a modified state ρ̂out
with resulting mean photon number

〈n̂〉out =
∑

n pnnT n

∑
n pnT n

, (1)

where {pn} are the diagonal elements of ρ̂in in the Fock basis.
With the exception of pure Fock-state inputs, this always re-
sults in 〈n̂〉out < 〈n̂〉in [26]. This can be seen by differentiating
Eq. (1) with respect to T ,

d〈n̂〉out

dT
= 1

T

[∑
n(n − 〈n̂〉out )2 pnT n

∑
n pnT n

]
= 〈(#n)2〉out

T
" 0,

(2)
and noting that as T decreases (R increases), 〈n̂〉out is non-
increasing and remains constant only in the case of zero
photon-number variance 〈(#n)2〉out = 0.

We quantify this photon-number reduction through the
relative attenuation parameter K (R), which is defined as the
ratio of the mean output photon number with HOZ (ZPS

attenuation) to the mean output photon number without HOZ
(“ordinary” beam-splitter attenuation) [24]:

K (R) ≡ 〈n̂〉out

(1 − R)〈n̂〉in
. (3)

This particular definition facilitates the use of coherent states
(Poissonian statistics) as a benchmark in experimental mea-
surements. Because a coherent state impinging on the beam
splitter will produce two completely uncorrelated coherent
states in the output ports [28], HOZ in the reflected port makes
no difference on 〈n̂〉out in the transmitted port. Consequently,
K (R) = 1 for all R for any coherent-state input |α〉.

In contrast, for any pure Fock-state input |n〉 (sub-
Poissonian statistics), ZPS will not reduce 〈n̂〉out, while
ordinary beam-splitter attenuation grows with R, causing
K (R) to increase monotonically. Conversely, for any thermal
state input ρ̂th (super-Poissonian statistics), ZPS will reduce
〈n̂〉out more than ordinary beam-splitter attenuation [20,24],
causing K (R) to decrease monotonically with R.

These trends in the behavior of K (R) for different types
of input-state statistics can be formally seen by noting from
Eq. (2) that the effects of ZPS are highly dependent on
photon-number variance and, by extension, Mandel’s Q pa-
rameter, defined as Q = 〈(#n)2〉

〈n̂〉 − 1 [4]. Combining the results
of Eqs. (1)–(3), one can obtain expressions for Q in terms of
the measurable quantity K :

Qout (R′) = − (1 − R′)
K (R′)

dK
dR

∣∣∣∣
R=R′

(4)

for the output state, and for the input state (R = 0),

Qin = −dK
dR

∣∣∣∣
R=0

. (5)

In both cases, the slope of K (R) is determined by the sign of
Q, with negative slopes denoting super-Poissonian statistics
(Q > 0) and positive slopes denoting sub-Poissonian statis-
tics (Q < 0). Consequently, the initial slope of K (R) near
R = 0 determines whether the input state was super- or sub-
Poissonian [24], while any changes in the sign of the slope as
R is increased denote the statistical transformations of interest
here.

Figure 2 illustrates these ideas by showing plots of relative
attenuation K (R) for five different input states. By defini-
tion, each state begins with K = 1 at R = 0 (〈n̂〉out = 〈n̂〉in),
and the plots diverge from this common point as reflectance
increases. Figures 2(a)–2(c) show the baseline examples of
the three nontransformable states mentioned above (|α〉, |n〉,
and ρ̂th), which show monotonic behavior with initial slopes
determined by Eq. (5). Figure 2(d) corresponds to the trans-
formable state described in Sec. I, |ψ〉in = 1√

2
(|1〉 + |5〉),

which shows nonmonotonic behavior with a local minimum
near R ∼ 0.4. Past this point, we see the state becomes sub-
Poissonian according to Eq. (4).

The super- to sub-Poissonian statistical transformation re-
vealed by this nonmonotonic behavior in K (R) can be loosely
understood in the following way: when R = 0, the equal
weighting of |1〉 and |5〉 in |ψ〉in yields a photon-number
variance larger than that of the coherent-state benchmark (i.e.,
super-Poissonian), resulting in a negative initial slope for
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FIG. 2. Plots of the ZPS relative attenuation parameter K (R) for
five different input states. Nonmonotonic behavior is a signature
of a nonclassical input state, with local extrema denoting trans-
formations between super- and sub-Poissonian photon statistics in
the output state. (a)–(c) represent standard baseline examples of
nontransformable input states, while (d) and (e) represent simple
examples of states that are transformable by the ZPS process. For
comparative purposes, 〈n̂〉in = 3 in (a)–(c).

K (R). As R is increased, ZPS increasingly drives the equally
weighted superposition towards the Fock state |1〉, causing a
reduction in the photon-number variance below that of the
coherent-state benchmark (i.e., sub-Poissonian) and thus a
transition to a positive slope for K (R).

Finally, Fig. 2(e) displays a reverse transformation from
sub- to super-Poissonian statistics. Here, we use the input state
|ψ ′〉in = 1√

10
|1〉 + 3√

10
|5〉, which is heavily weighted towards

|5〉 and thus starts with a small (sub-Poissonian) photon-
number variance and a positive initial slope for K (R). As
R is increased, ZPS drives the state towards a more equally
weighted superposition of |1〉 and |5〉, which has a larger
(super-Poissonian) photon-number variance and causes the
transition to a negative slope for K (R). As R is further in-
creased (past R ∼ 0.7), we replicate the behavior seen in
Fig. 2(d): ZPS drives the superposition closer to the Fock state
|1〉, and K (R) once again has a positive slope. Overall, this
state undergoes two statistical transformations—from sub-
to super-Poissonian statistics and back again—over the full
range of R.

III. NONCLASSICALITY CRITERIA

It is well known that conditional measurements at a beam
splitter (such as ZPS) cannot produce a nonclassical output
unless the input is also nonclassical [27,28]. Here, nonclas-
sical states are defined in the usual sense as those which
cannot be expressed as a mixture of coherent states [31]. The

Glauber-Sudarshan P representation for such states cannot
be interpreted as a valid probability distribution, becoming
highly singular or taking on negative values [32,33]. It is gen-
erally accepted that sub-Poissonian statistics are nonclassical
by this definition [3,31]. It follows, therefore, that any input
state which becomes sub-Poissonian after ZPS must have been
nonclassical to begin with.

This useful restriction can be formulated in terms of
the relative attenuation parameter K (R). Any classical (i.e.,
not nonclassical) input state ρ̂in is bound by the following
inequality:

dK
dR

! 0 ∀ R. (6)

Any state which is sub-Poissonian before or after ZPS will
violate the above inequality and certify ρ̂in as nonclassical.
Given that K = 1 at R = 0 by definition, it immediately fol-
lows that for classical states,

K (R) ! 1 ∀ R. (7)

As seen in Fig. 2(a), the coherent-state input |α〉 saturates
these bounds with K (R) = 1 and dK/dR = 0 for all R.

To summarize, violations of Eqs. (6) and/or (7) represent
nonclassicality criteria that can be easily measured with the
ZPS setup in Fig. 1 and are based on the ability of ZPS to
generate sub-Poissonian statistics in the output. This trans-
formation occurs if and only if the slope of K (R) is positive
for some value of R. Alternatively, a single measurement of
K (R) > 1 for some R is sufficient (although not necessary) to
identify such a nonclassical state. The set of input states which
violate either criterion include both sub-Poissonian states and
transformable states that can generate sub-Poissonian statis-
tics after ZPS. A more in-depth analysis of the nature of this
nonclassicality is given in the Appendix.

IV. PREDICTING TRANSFORMABILITY

From the simple examples in Sec. II, it is clear that not
all super-Poissonian states can transform into sub-Poissonian
states under ZPS or vice versa. We have shown that trans-
formable states must be nonclassical in Sec. III, but the
nonclassicality criteria in Eqs. (6) and (7) provide little a
priori insight into which states will actually transform. In this
section, we derive sufficient conditions for predicting trans-
formability based on the first few terms of the photon-number
distribution.

The key insight is that if a state transforms only once over
the full range of R, we need to consider only the behavior of
K (R) at maximum attenuation to verify whether the statistics
have changed. In the limit R → 1, K (R) and its derivative are
given by

lim
R→1

K (R) = 1
〈n̂〉in

(
p1

p0

)
, (8)

lim
R→1

dK
dR

= 1
〈n̂〉in

(
p2

1 − 2p0 p2

p2
0

)
. (9)

Remarkably, these values are entirely determined by the mean
photon number 〈n̂〉in and first three photon-number probabili-
ties (p0, p1, p2) of the input state.
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For a super-Poissonian input state, transformability
amounts to violating the classical bounds in Eqs. (6) and (7),
meaning dK/dR > 0 or K > 1 for some value of R. Com-
bining this with Eqs. (8) and (9), we obtain the following
transformability criteria:

p0 = 0, (10)

p0〈n̂〉in < p1, (11)

2p0 p2 < p2
1. (12)

Satisfying any of the above is sufficient to show that a super-
Poissonian input state will transform for sufficiently large R.

We note that Eq. (10) is equivalent to Lee’s theorem, which
states that any input state with zero vacuum probability p0 =
0 is nonclassical [34] and is often invoked to understand the
nonclassical nature of photon-added states [10,13]. In the case
of ZPS, it is clear that if p0 = 0, K (R) and its derivative will
diverge to infinity as R → 1, triggering both nonclassicality
criteria in Eqs. (6) and (7). In addition, Eq. (12) is equivalent
to Klyshko’s well-known nonclassicality criterion [35]. Thus,
all super-Poissonian states which trigger Lee’s or Klyshko’s
nonclassicality criteria are transformable.

Conversely, a sub-Poissonian input state will transform if
dK/dR < 0 or K < 1 for some value of R. It follows that
satisfying either Eq. (11) or (12), with the inequalities re-
versed, is sufficient to show that a sub-Poissonian state is
transformable. Lee’s criteria [Eq. (10)] cannot be used to
predict transformability for sub-Poissonian states.

The above methods for predicting transformability rely
only on comparing statistics at R = 0 and R → 1. Thus,
states which transform an even number of times over the full
range of R may not trigger these criteria, as in the exam-
ple in Fig. 2(e), which is sub-Poissonian at both extremes.
This also holds for super-Poissonian input states, so satis-
fying Klyshko’s inequality [Eq. (12)] is sufficient but not
necessary to be transformable. For example, any mixture or
superposition of zero, two, and six photons does not satisfy
Klyshko’s inequality, yet it can be shown that the specific
case of p0 = 0.04, p2 = 0.48, and p6 = 0.48 corresponds to
a transformable super-Poissonian state.

In summary, photon-number probabilities (p0, p1, p2) can
be used to predict the limiting behavior of K (R) without full
knowledge of the number distribution and thus transforma-
bility in many cases. In practice, however, these predictive
criteria must be expressed in terms of more experimentally ac-
cessible input parameters. The following section will consider
this kind of parameter dependence for two practical examples
of transformable input states.

V. INPUT-STATE PARAMETERS

For many types of quantum optical states, the initial statis-
tical character is determined by a set of input parameters. A
trivial example is the two-term Fock-state superposition con-
sidered in Figs. 2(d) and 2(e), |ψ〉in = γ |1〉 +

√
(1 − γ 2)|5〉,

which was initially super- or sub-Poissonian based on the
value of γ . More complex examples include squeezed and/or
displaced states, in which the magnitude and angle of squeez-
ing and displacement can result in dramatically different

(a) (b)

(c) (d)

FIG. 3. Relative attenuation K (R) for a displaced squeezed state
with parameters (a) z = 1, r = 0.05, (b) z = 1, r = 0.35, (c) z = 1,
r = 1, and (d) z = 0.1, r = 0.1. (a), (b), and (d) do not exhibit
statistical transformations, while (c) illustrates a transformation from
super- to sub-Poissonian statistics under ZPS.

photon statistics [15,17] and conditional state-preparation
techniques like photon catalysis [16].

It is interesting to extend this idea to address the following
question: for a given type of input state, what regions of its
input parameter space will enable it to transform under ZPS?
Here, we consider two rich examples within this context:
displaced squeezed states, as considered by Dodonov et al.
[29], and catalyzed coherent states [30].

A. Displaced squeezed state

Noiseless attenuation of general Gaussian states was pre-
viously considered in Ref. [26], and it was shown that ZPS
preserves Gaussianity. However, we show here that ZPS may
not preserve the sub- or super-Poissonian character of these
states for a significant portion of their parameter space. We
consider a displaced squeezed state with real squeezing pa-
rameter r and displacement magnitude z. To restrict our space
to two variables, the angles of squeezing and displacement
are chosen so the two quadrature variances are equal, σx = σp,
and their means are opposite, 〈x̂〉 = −〈p̂〉, following Dodonov
et al. [29].

Starting with the photon statistics derived in [29], the rela-
tive attenuation K (R) can be shown to be

K (R) = 1
sinh2 r + z2

[
1

2[coth r − (1 − R)]

− 1
coth r + (1 − R)

(
1
2

− 2z2 coth 2r + 1
1 + (1 − R) tanh r

)]
.

(13)

Figure 3 shows plots of K (R) for multiple combinations of
displacement and squeezing parameters z and r. For z = 1 and
r = 1 in Fig. 3(c), a local minimum appears. This indicates
that after sufficient noiseless attenuation, the super-Poissonian
input state undergoes a transition to sub-Poissonian statistics
in the output.

There is a wide portion of parameter space for which
this transition is possible, as shown by the blue shaded
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(a () b)

FIG. 4. Regions shaded blue and red correspond to parameter
spaces for which the input of (a) a displaced squeezed state and
(b) a catalyzed coherent state has a local minimum and maximum,
respectively, in K (R). For (b), these regions overlap. An example
from within the overlapping region is shown in Fig. 5(c).

region in Fig. 4(a). The bounding curves are calculated an-
alytically in Mathematica. The bottom curve corresponds
to the bound of Klyshko’s inequality [Eq. (12)], while the
top curve divides sub- from super-Poissonian input states.
This leaves three total regions: (i) the blank bottommost
region which contains super-Poissonian states with low
displacement, including squeezed vacuum states; (ii) the
transformable super-Poissonian states, with moderate dis-
placement and squeezing; and (iii) the topmost region of
sub-Poissonian states, including those with the highest dis-
placement. There are no cases in which ZPS transforms a
sub-Poissonian state of this kind into a super-Poissonian one.

As discussed in Sec. III, the transition in Fig. 3(c) is
clearly nonclassical according to Eq. (6) and likewise satisfies
Klyshko’s inequality [Eq. (12)]. However, it is interesting to
note that the input has no hidden higher-order sub-Poissonian
statistics as defined in Ref. [36]. In other words, it can be
shown that the normalized correlation functions for this state
satisfy g(n)(0) > 1 for all n. In this sense, ZPS does not reveal
sub-Poissonian statistics, but rather generates them from other
nonclassical aspects of the initial number distribution.

B. Catalyzed coherent state

Catalyzed coherent states (CCSs) can be generated by
mixing a coherent state |α〉 with a single-photon Fock state
at a beam splitter with reflectance ' and conditioning the
output on the detection of exactly one photon in the auxiliary
output mode [30]. As first proposed by Xu and Yuan, a similar
catalysis procedure can be implemented with the signal and
idler modes of an optical parametric amplifier (OPA) with an
equivalent catalysis parameter ' = 1 − 1/g2, where g is the
gain of the OPA [37–39].

Here, we consider an input CCS with coherent-state am-
plitude α and catalysis parameter '. It can be shown that the
photon-number distribution for this state is

pn = e−|α|2(1−')|α|2n(1 − ')n−1(' + 'n − 1)2

n![1 − ' − |α|2'('2 − 4' + 2)]
. (14)

Using Eqs. (1) and (3), K (R) is then given by

K (R) ∝ 1 − 4'(1 − ') − α2'(2 − 5')(1 − R)+α4'2(1 − ')2(1 − R)2

1 − ' − α2'(2 − 3')(1 − R)+α4'2(1 − ')(1 − R)2
, (15)

with the necessary normalization such that K = 1 at R = 0.
Like the displaced squeezed state, relative attenuation of

the CCS can exhibit a local minimum for particular values of
the input parameters. In Fig. 5(a), a minimum is found for
' = 0.3 and α = 1. Just like the example in Fig. 3(c), this
state is super-Poissonian to arbitrarily high order [g(n)(0) > 1]
and satisfies Klyshko’s nonclassicality criteria. Unlike the pre-
vious example, however, K (R) can also have a local maximum
for different parameters, as in Fig. 5(b). In this example, all
higher-order statistics of the input state are sub-Poissonian
[g(n)(0) < 1], and yet attenuation by ZPS produces super-
Poissonian output statistics for R ! 0.52.

The parameter space for local minima and maxima is
shown in Fig. 4(b), again calculated analytically with Math-
ematica. Interestingly, the two regions overlap, allowing for
input cases with both a minimum and maximum, as in
Fig. 5(c). Additionally, Klyshko’s inequality is satisfied when
' " 0.365 and when ' ! 0.775. The former region contains
all super- to sub-Poissonian transformations, while the latter
contains no transforming states.

VI. REALISTIC DETECTORS

In a real experiment, the ability to observe the statistical
transformations of interest will critically depend on the per-

formance of detectors D1 and D2 in Fig. 1. Here, we consider
the effects of dark counts and inefficiency in both detectors,

(a) (b)

(c) (d)

FIG. 5. Relative attenuation K (R) for a catalyzed coherent state
with parameters (a) ' = 0.3, α = 1, (b) ' = 0.75, α = 1, (c) ' =
0.2, α = 4, and (d) ' = 0.9, α = 1. (a) and (b) exhibit a super- to
sub-Poissonian and sub- to super-Poissonian transformation, respec-
tively, while (c) shows both and (d) shows neither.
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FIG. 6. ZPS measurement with two non-PNR detectors. Detector
D2 measures the rate of clicks with and without conditioning on a
no-click event at D1. Detector inefficiencies η1 and η2 are modeled
with beam splitters that reflect photons into the environment. To
approximate K (R) without PNR, the effective efficiency of D2 must
satisfy |η2n| , 1.

as well as the lack of photon-number resolution (PNR) for D2
in the transmitted output port of the beam splitter.

If heralding detector D1 has a reduced effective efficiency
η1 (including losses in the reflected mode or before the beam
splitter), then it can be shown that [24]

Kexp(R) = Kideal(Rη1). (16)

If η1 is known, then Kideal(R) can be recovered over the smaller
domain R ∈ [0, η1). However, if any statistical transforma-
tions or other interesting behavior exist only beyond R = η1,
they can no longer be generated in the transmitted output
port. In the limit of η1 → 0, ZPS is equivalent to ordinary
attenuation, which can never change the sign of Mandel’s Q
parameter [40].

Meanwhile, D2 efficiency η2 or loss in the output mode
has no effect on K (R) as defined in Eq. (3). The numerator
and denominator of this ratio would be reduced by the same
efficiency factor η2, which then cancels. However, the effi-
ciency η2 must be carefully considered when using a non-PNR
detector D2 (see Fig. 6). In this case, the mean intensity or
expected photon number at D2 is replaced with the probability
of a click event:

Kclick(R) ≡ P(C2|¬C1)
P(C2)

=
tr
{
B̂ρ̂inB̂†)̂(¬C)

1 )̂(C)
2

}

tr
{
B̂ρ̂inB̂†)̂(C)

2

}
tr
{
B̂ρ̂inB̂†)̂(¬C)

1

}

=
∑

n pn[(1 − Rη1)n − (1 − Rη1 − T η2)n][∑
n pn(1 − Rη1)n

][
1 −

∑
n pn(1 − T η2)n

] ,

(17)

where subscripts 1 and 2 indicate detection channels D1
and D2, B̂ is the unitary beam-splitter operator [3], and we
have used the standard positive operator-valued measures
for non-PNR detectors for “click” (C) and “no-click” (¬C)

events [41]:

)̂(C)
i = 1 − )(¬C)

i ,

)̂(¬C)
i =

∑

n

(1 − ηi )n |n〉 〈n| (18)

for i = 1, 2. When η2 is relatively large, the measured ratio
of clicks given by Eq. (17) can deviate significantly from
the true K (R). However, we find that the two functions
agree in the low-efficiency limit: limη2→0 Kclick(η1, η2, R) =
K (η1R) after applying L’Hôpital’s rule. Alternatively, the bi-
nomial approximation can be applied as long as |η2n| , 1
and higher-number terms are insignificant. This is similar to
the requirements for measuring normalized correlation func-
tions g(n). In these multiphoton coincidence measurements,
non-PNR detectors are effective for low efficiency and low
counting rates when the detector response to photon number
is approximately linear [42]. These measurements are consid-
ered loss tolerant exactly like the transmitted mode in ZPS.

Dark counts at the heralding detector D1 have no effect on
K (R), reducing only the probability of success for HOZ [25].
These false-click events can be safely ignored as long as D1
dark counts are completely uncorrelated with the counts at the
other detector D2.

In contrast, dark counts at D2 do have an effect on the mea-
sured relative attenuation. For some dark-count probability pd
at D2, Eq. (17) is modified as follows:

Kdark(R) = P(C2|¬C1) + pd P(¬C2|¬C1)
P(C2) + pd P(¬C2)

. (19)

If we assume the probability of a simultaneous dark and “true”
count is negligible (i.e., counting rates are sufficiently low
with and without HOZ), then this becomes

Kdark(R) ≈ P(C2|¬C1) + pd

P(C2) + pd
. (20)

If the dark-count rate pd is simply subtracted from both the
numerator and denominator, we regain the original ratio Kclick.
In any case, lower D2 dark counts are desirable to improve the
signal-to-noise ratio.

In summary, the function K (R) can be reliably measured
with currently available single-photon detectors, even without
PNR capability. The heralding detector D1 requires high effi-
ciency to generate the full range of possible output statistics
but is robust to dark counts and other uncorrelated background
noise. The output detector D2 has essentially opposite require-
ments, requiring low effective efficiency (if non-PNR) and
relatively low dark counts.

VII. SUMMARY AND CONCLUSIONS

We have shown how the conditional measurement process
of zero-photon subtraction can transform certain super-
Poissonian states into sub-Poissonian states and vice versa.
These effects can be experimentally observed by measur-
ing the relative attenuation parameter K (R), which is simply
defined as the ratio of ZPS-based attenuation to ordinary
beam-splitter attenuation. Because the slope of K (R) is
proportional to Mandel’s Q parameter, an observed local min-
imum or maximum as the beam-splitter reflectivity is tuned
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from R = 0 → 1 is the signature of a statistical transformation
of interest.

We described how input states which transform in this
way are necessarily nonclassical, which allowed us to estab-
lish nonclassicality criteria based on ZPS measurements. The
connection between these criteria and Klyshko’s and Lee’s
theorems [34,35] showed that certain restrictions on photon-
number probabilities provide sufficient, but not necessary,
conditions to predict a priori which input states will transform
through the ZPS process.

We considered several simple examples of input states that
illustrated the basic physics of these ZPS-based statistical
transformations, as well as two more complex example states
that showed interesting parameter-dependent behavior. In all
cases, the effects of realistic detector parameters (low effi-
ciency and dark counts) were found to only moderately reduce
the ability to observe the statistical transformations of interest.
Consequently, an experimental demonstration could be feasi-
ble with currently available detector technology [43], although
high-fidelity preparation of the various quantum optical input
states considered here would remain a challenge.
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APPENDIX: ALTERNATE NONCLASSICALITY
DERIVATION

The classical condition dK/dR ! 0 for all R [Eq. (6)] was
argued in the main text via a no-go theorem for conditional
measurements at a beam splitter [27,28]. States that vio-
late this condition are either sub-Poissonian or transformable
states which can become sub-Poissonian after ZPS. Here, we
show such states must be nonclassical by explicitly relating
K (R) to the Glauber-Sudarshan P function.

First, we can express K (R) in terms of the moment-
generating function (MGF) of the photon-number distribu-
tion:

K (R) = − 1
〈n̂〉in

M′(R)
M(R)

, (A1)

where the prime indicates the first derivative with respect to R
and the MGF is defined as

M(R) ≡
∞∑

n=0

pn(1 − R)n. (A2)

Using the product rule, the first derivative of K (R) can be
expressed in terms of the MGF and its first two derivatives:

dK
dR

= − 1
〈n̂〉in

M′′(R)M(R) − [M′(R)]2

[M(R)]2 . (A3)

It will suffice to show that the numerator of Eq. (A3) is
non-negative for classical states, using the properties of the P
function.

The MGF can be computed directly from the P function
[13]:

M(R) = 〈(1 − R)n̂〉 =
∫

d2α e−R|α|2 P(α). (A4)

Furthermore, the kth derivatives of the MGF can be consid-
ered moments of the distribution P̃(α) = P(α)e−R|α|2 :

M(k)(R) = (−1)k
∫

d2α|α|2k e−R|α|2 P(α)

≡ (−1)k〈|α|2k〉P̃, (A5)

where 〈·〉P̃ indicates an expectation value over the P̃ distri-
bution. If the state in question is classical, then P(α) and
P̃(α) must be positive semidefinite. Using majorization theory
[44,45], it is then possible to show the following must hold for
classical states:

〈|α|2(l+1)〉P̃〈|α|2(m−1)〉P̃ " 〈|α|2l〉P̃〈|α|2m〉P̃. (A6)

From Eq. (A5), this allows for the construction of a series of
inequalities for classical states:

M(l+1)(R)M(m−1)(R) " M(l )(R)M(m)(R). (A7)

The condition that dK/dR ! 0 corresponds to the first of
these inequalities: l = m = 1.

This more general framework allows us to place trans-
formability within the broader context of phase-insensitive
nonclassicality criteria. Using the properties of the MGF [46],
the above inequalities [Eq. (A7)] can also be used to restrict
photon probabilities when evaluated at R = 1, as in Klyshko’s
inequality [Eq. (12)] [35]. Alternatively, evaluating them at
R = 0 restricts the factorial moments of the number distribu-
tion, as shown by Lee [44]. This suggests that the category
of transformable states is most closely related to Lee’s and
Klyshko’s criteria, as they are linked through the general
inequalities shown in Eqs. (A6) and (A7).
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[18] M. Mičud, I. Straka, M. Miková, M. Dušek, N. J. Cerf,
J. Fiurášek, and M. Ježek, Phys. Rev. Lett. 109, 180503
(2012).

[19] A. Allevi, A. Andreoni, M. Bondani, M. G. Genoni, and S.
Olivares, Phys. Rev. A 82, 013816 (2010).

[20] Y. Zhai, F. Becerra-Chavez, B. Glebov, J. Fan, S. W. Nam, and
A. Migdall, Opt. Lett. 38, 2171 (2013).

[21] Y. I. Bogdanov, K. G. Katamadze, G. V. Avosopiants, L. V.
Belinsky, N. A. Bogdanova, A. A. Kalinkin, and S. P. Kulik,
Phys. Rev. A 96, 063803 (2017).

[22] O. S. Magaña-Loaiza, R. de J. León-Montiel, A. Perez-Leija,
A. B. U’Ren, C. You, K. Busch, A. E. Lita, S. W. Nam, R. P.
Mirin, and T. Gerrits, npj Quantum Inf. 5, 80 (2019).

[23] K. G. Katamadze, G. V. Avosopiants, N. A. Bogdanova,
Y. I. Bogdanov, and S. P. Kulik, Phys. Rev. A 101, 013811
(2020).

[24] C. M. Nunn, J. D. Franson, and T. B. Pittman, Phys. Rev. A 105,
033702 (2022).

[25] C. M. Nunn, J. D. Franson, and T. B. Pittman, Phys. Rev. A 104,
033717 (2021).

[26] C. N. Gagatsos, J. Fiurášek, A. Zavatta, M. Bellini, and N. J.
Cerf, Phys. Rev. A 89, 062311 (2014).

[27] M. Ban, J. Mod. Opt. 43, 1281 (1996).
[28] M. S. Kim, W. Son, V. Bužek, and P. L. Knight, Phys. Rev. A

65, 032323 (2002).
[29] V. V. Dodonov, I. M. Dremin, P. G. Polynkin, and V. I. Man’ko,

Phys. Lett. A 193, 209 (1994).
[30] A. I. Lvovsky and J. Mlynek, Phys. Rev. Lett. 88, 250401

(2002).
[31] V. V. Dodonov, J. Opt. B 4, R1 (2002).
[32] R. J. Glauber, Phys. Rev. 130, 2529 (1963).
[33] E. C. Sudarshan, Phys. Rev. Lett. 10, 277 (1963).
[34] C. T. Lee, Phys. Rev. A 52, 3374 (1995).
[35] D. Klyshko, Phys. Lett. A 213, 7 (1996).
[36] D. Erenso, R. Vyas, and S. Singh, J. Opt. Soc. Am. B 19, 1471

(2002).
[37] X. X. Xu and H. C. Yuan, Phys. Lett. A 380, 2342 (2016).
[38] S. U. Shringarpure and J. D. Franson, Phys. Rev. A 100, 043802

(2019).
[39] S. M. Barnett, D. T. Pegg, and J. Jeffers, Opt. Commun. 172, 55

(1999).
[40] R. Alléaume, F. Treussart, J. M. Courty, and J. F. Roch, New J.

Phys. 6, 85 (2004).
[41] M. J. Stevens, Photon Statistics, Measurements, and Measure-

ments Tools, edited by A. Migdall, S. Polyakov, J. Fan, and
J. Bienfang, Experimental Methods in the Physical Sciences,
Vol. 45 (Academic Press, San Diego, 2013), pp. 25–68.

[42] M. Avenhaus, K. Laiho, M. V. Chekhova, and C. Silberhorn,
Phys. Rev. Lett. 104, 063602 (2010).

[43] M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, Rev.
Sci. Instrum. 82, 071101 (2011).

[44] C. T. Lee, Phys. Rev. A 41, 1721 (1990).
[45] C. T. Lee, Phys. Rev. A 55, 4449 (1997).
[46] S. Barnett and P. Radmore, Methods in Theoretical Quantum

Optics (Oxford University Press, Oxford, 2010).

043711-8

https://doi.org/10.1016/j.optcom.2008.03.022
https://doi.org/10.1103/PhysRevA.101.063806
https://doi.org/10.1103/PhysRevA.43.492
https://doi.org/10.1126/science.1122858
https://doi.org/10.1088/1367-2630/10/12/123006
https://doi.org/10.1103/PhysRevA.98.013809
https://doi.org/10.1080/713821098
https://doi.org/10.1103/PhysRevLett.98.153603
https://doi.org/10.1103/PhysRevA.86.043820
https://doi.org/10.1103/PhysRevA.41.2645
https://doi.org/10.1103/PhysRevLett.109.180503
https://doi.org/10.1103/PhysRevA.82.013816
https://doi.org/10.1364/OL.38.002171
https://doi.org/10.1103/PhysRevA.96.063803
https://doi.org/10.1038/s41534-019-0195-2
https://doi.org/10.1103/PhysRevA.101.013811
https://doi.org/10.1103/PhysRevA.105.033702
https://doi.org/10.1103/PhysRevA.104.033717
https://doi.org/10.1103/PhysRevA.89.062311
https://doi.org/10.1080/09500349608232803
https://doi.org/10.1103/PhysRevA.65.032323
https://doi.org/10.1016/0375-9601(94)90585-1
https://doi.org/10.1103/PhysRevLett.88.250401
https://doi.org/10.1088/1464-4266/4/1/201
https://doi.org/10.1103/PhysRev.130.2529
https://doi.org/10.1103/PhysRevLett.10.277
https://doi.org/10.1103/PhysRevA.52.3374
https://doi.org/10.1016/0375-9601(96)00091-6
https://doi.org/10.1364/JOSAB.19.001471
https://doi.org/10.1016/j.physleta.2016.05.025
https://doi.org/10.1103/PhysRevA.100.043802
https://doi.org/10.1016/S0030-4018(99)00458-7
https://doi.org/10.1088/1367-2630/6/1/085
https://doi.org/10.1103/PhysRevLett.104.063602
https://doi.org/10.1063/1.3610677
https://doi.org/10.1103/PhysRevA.41.1721
https://doi.org/10.1103/PhysRevA.55.4449

