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Abstract
A flat vector bundle on an algebraic variety supports
two natural definable structures given by the flat and
algebraic coordinates. In this note, we show these two
structures are compatible, subject to a condition on the
local monodromy at infinity that is satisfied for all flat
bundles underlying variations of Hodge structures.
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1 INTRODUCTION

Local systems arise frequently in algebraic geometry. For example, by Ehresmann’s theorem, a
smooth projective map ! ∶ # → % of algebraic varieties is topologically locally (on the base) triv-
ial, and so the cohomology of the fibers&'(#(,ℂ) is locally constant. These groups assemble into
the local system *'!∗ℂ# (see, for example, [12, 13] for background). Alternatively, we may view
the sections of *'!∗ℂ# as the solutions to an algebraic flat connection (namely, the Gauss–Manin
connection) on an algebraic vector bundle on % (namely, relative algebraic de Rham cohomol-
ogy). From this perspective, the local system encodes the monodromy of the analytic solutions to
an algebraic differential equation on % with regular singularities.
The above correspondence between local systems and algebraic flat vector bundles with regular

singularities holds generally (without the assumption of geometricity) and is called the Riemann–
Hilbert correspondence (see, for example, [4]). For a smooth algebraic variety #, to any complex
local system ,ℂ on #an we may associate a natural vector bundle ,#an ∶= #an ⊗ℂ#an ,ℂ with
flat connection ∇ given by / ⊗ id. The sheaf of flat sections of ,#an is naturally identified
with ,ℂ. By a theorem of Deligne [5], the analytic flat vector bundle (,#an ,∇) arises as the
analytification of a unique algebraic flat vector bundle (,# ,∇) with regular singularities.
In general, the flat sections of (,# ,∇) are highly transcendental with respect to the algebraic

structure. The purpose of this note is to show that with an assumption on the local monodromy
at infinity (which is, in particular, satisfied for Gauss–Manin local systems, or more generally
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2 BAKKER and MULLANE

local systems underlying polarized integral variations of Hodge structures), the change-of-basis
matrices between flat and algebraic frames are definable in the o-minimal expansion ℝan,exp of
the real field. The precise condition is as follows.

Definition 1.1. Let be a smooth analytic space and ( ,) a log smooth analytic spacewith = ⧵ and inclusion 2 ∶  →  .We say a complex local system,ℂ on has normone eigenvalues
at infinity with respect to ( ,) if the local monodromy of 2∗,ℂ has eigenvalues of complex
norm one.
Let # be a complex algebraic variety and ,ℂ a complex local system on #an. We say that ,ℂ

has norm one eigenvalues at infinity if for some resolution 3 ∶ #′ → # and some log smooth
compactification (%′,5′) of #′, the local system (3an)∗,ℂ has norm one eigenvalues at infinity
with respect to (%′an,5′an).
Concretely, the log smooth conditionmeans that for any 6 ∈  we can find a neighborhood 6 ∈ ⊂  with ≅ ∆; such that in the resulting local coordinates <1, … , <; the divisor is defined

by the equation <1⋯ <= = 0. Thus,  ∩  ≅ (∆∗)= × ∆;−=. The fundamental group of A ∩  is
then generated by the = loops around each component of  ∩. Choosing a point B ∈  ∩ 
themonodromy of the local system,ℂ around those loops gives commuting operators C1, … ,C= ∈End(,ℂ,B), and we ask that the eigenvalues of these operators have complex norm one.
It is easy to see that the pullback along an algebraic map of a local systemwith norm one eigen-

values at infinity also has norm one eigenvalues at infinity, and in particular the condition on
the local monodromy is independent of (%′,5′) in the definition. As mentioned above, for any
morphism ! ∶ # → % of algebraic varieties, any *'(!an)∗ℂ#an which is a local system (they all
are if ! is smooth projective) has quasi-unipotent monodromy at infinity when pulled back to a
smooth base [6, Theorem 3.1], and therefore satisfies the condition. More generally still, a local
system underlying a graded-polarizable integral variation of mixed Hodge structures satisfies the
condition [8, (4.5)].
Given an algebraic variety # and a fixed o-minimal structure we can form the associated

definable analytic variety #def , functions on which are definable holomorphic solutions to the
equations cutting out # (see Section 2 and [2] for full details). Vector bundles on #def are vector
bundles in the usual sense, except now the transition functions are required to be definable holo-
morphic functions. Even without assuming # is smooth (or even reduced), we have two sources
of vector bundles with flat connection on#def . On the one hand, any algebraic vector bundle with
flat connection (D,∇) naturally yields one (D,∇)def on #def by definabilization, that is, by using
the same transition functions, as algebraic functions are always definable holomorphic. On the
other hand, the topology of #def (which is the euclidean topology of #(ℂ)) can be trivialized on
a definable open cover, so we may form (#def ⊗ℂ#def ,ℂ,∇) directly, using constant transition
functions. In general, these two objects are not isomorphic (see Example 3.3), but in the case that,ℂ has norm one eigenvalues at infinity they are:

Theorem 1.2. Let # be a complex algebraic space and ,ℂ a local system on #an with norm one
eigenvalues at infinity. Then overℝan,exp the definable coherent sheaf#def ⊗ℂ#def ,ℂ has a unique
algebraic structure ,# . Moreover, the connection is algebraic with regular singularities.
The notation is justified as (,# ,∇) is necessarily the algebraic flat vector bundle correspond-

ing to ,ℂ via the Riemann–Hilbert correspondence. The equivalence of the flat and algebraic
structures can concretely be interpreted in any of the following equivalent ways:
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DEFINABLE STRUCTURES ON FLAT BUNDLES 3

(1) Over any definable open set, the (a priori only holomorphic) change of basis matrix between
a flat and an algebraic frame is given by definable holomorphic functions.

(2) Over any definable open set, the flat coordinates of any algebraic section are definable
holomorphic functions.

(3) The solutions to the corresponding algebraic differential equation over any definable open set
are definable holomorphic functions.

The ability to pass definably between the flat and algebraic structures is critical in the applications
of o-minimality to Hodge theory, see, for example, [1–3].
For a family of algebraic varieties, the flat coordinates of algebraic sections of the Gauss–Manin

local system are just period integrals, so we, for example, deduce:

Corollary 1.3. Let ! ∶ # → % be a smooth algebraic family and E ∈ &0(%,!∗ΩG#∕%) a relatively
closed algebraic G-form (or more generally a section of *G!∗Ω∙#∕%). If J is a section of the degree G
homology sheaf *G(!an)∗ℚ#an over a definable open setA of %, then the integral

∫JL EL
is a ℝan,exp-definable function onA.
Proof. By [5, Theorem 6.13], we may assume ,ℂ ∶= *G(!an)∗ℂ#an is a local system. By results
of Katz–Oda, Griffiths, and Deligne (see, for example, [5, section II.7]), the algebraic structure
on the flat vector bundle associated to ,ℂ is algebraic de Rham cohomology ,# = *G!∗Ω∙#∕% ,
equipped with the Gauss–Manin connection. Integration ∫J is a section of ,∨ℂ, hence a definable
section of #def ⊗ℂ# ,∨ℂ, while E is an algebraic section of ,# . As ,ℂ has norm one eigenval-
ues at infinity and the Riemann–Hilbert correspondence commutes with taking duals we have(,# )def ≅ (#def ⊗ℂ# ,∨ℂ)∨, and the claim follows. □

The same holds for relative periods as well. See, for instance, [7] for a discussion of periods of
algebraic de Rham cohomology classes in more general contexts.

Notation

All of our analytic spaces, definable analytic spaces, and algebraic spaces will be over ℂ and
assumed to be separated. In the algebraic category, our algebraic spaceswill be in addition, of finite
type. We use the symbol “⋐” to mean “relatively compact open subspace,” with “subspace” to be
interpreted as either an analytic subspace or a definable analytic subspace depending on context.

2 DEFINABLE STRUCTURES ON COMPACT ANALYTIC SPACES

Throughout this section, we work over an o-minimal expansion of ℝan. Recall that this means
any overconvergent real analytic function on a euclidean ball is definable. The main result is to
show that any compact analytic space admits a unique definable analytic structure and that the
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4 BAKKER and MULLANE

two categories of coherent sheaves are naturally equivalent.We refer to [2] for details on definable
analytic spaces.
Recall that a definable topological space  is a topological space equipped with an equiv-

alence class of finite atlases by definable open subsets of euclidean space with definable
transition functions. The definable site  of a definable topological space  is the cate-
gory of definable open subsets whose coverings are finite (definable) open coverings and we
refer to sheaves on  as just sheaves on  . A definable analytic space  is a definable
topological space || with a sheaf of local ℂ-algebras  on || which is on a covering
isomorphic to the zero locus  = ,(!1, … ,!') ⊂  ⊂ ℂ; of finitely many definable holo-
morphic functions !1, … ,!' ∶ A → ℂ on a definable open  ⊂ ℂ; equipped with the sheafℂ;∕(!1, … ,!')ℂ; | on  as a definable topological space. Here ℂ; is the sheaf of defin-
able holomorphic functions on ℂ; as a definable topological space in the obvious way. We
say a definable analytic space  is compact if the ordinary underlying topological space is
compact.
There is a natural analytification functor

(−)an ∶ (definable analytic spaces)→ (analytic spaces).
The underlying topological space of an is the ordinary topological space underlying  and an
is in this case (as we work over an o-minimal expansion of ℝan) the sheafification of  in the
euclidean topology. Likewise there is a natural analytification functor

(−)an ∶ NOP()→ NOP(an),
which is just sheafification in the euclidean topology.We say objects ormorphisms in the essential
image of either analytification functor are definabilizable.
Both analytification functors are faithful [2], but are in general far from equivalences. In the

case of compact spaces, however, we have the following.

Proposition 2.1.

(1) The restriction of the analytification functor to the full subcategories of compact spaces

(−)an ∶ (compact definable analytic spaces)→ (compact analytic spaces)
is an equivalence of categories.

(2) For any compact definable analytic space  , the analytification functor
(−)an ∶ NOP()→ NOP(an)

is an equivalence of abelian categories.

From classical GAGA [9] (see [10, Theorem 5.10] for the statement for algebraic spaces) we
immediately deduce the following:
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DEFINABLE STRUCTURES ON FLAT BUNDLES 5

Corollary 2.2. Let # be a proper complex algebraic space. Then the three functors

Coh(X) Coh(Xdef)

Coh(Xan)
(−)an

(−)def

(−)an

are equivalences of abelian categories.

Weprove Proposition 2.1 via two slightlymore general lemmas. The first establishes the fullness
of the analytification functors up to restricting to a relatively compact open subspace.

Lemma 2.3. LetX be an analytic space, , definable analytic spaces, and  , coherent sheaves
on  .
(1) Every point B ∈ X admits a definabilizable relatively compact open neighborhood B ∈ U ⋐

X .
(2) For any morphism Q ∶ an → an and any definable relatively compact open  ⋐  , the

restriction Q| an ∶  an → an is definabilizable.
(3) For any morphism Q ∶ an → an and any definable relatively compact open  ⋐  , the

restriction Q| an ∶ an → an is definabilizable.
Proof. For part (1), we may assume X is locally the zero locus ,(R) ⊂ W ⊂ (ℂ;)an of a finitely
generated ideal R = (!1, … ,!S) ⊂ (ℂ;)an(W ) of holomorphic functions on an open subset W ⊂(ℂ;)an. The topology of (ℂ;)an has a basis by relatively compact definable open subsets (for exam-
ple, euclidean balls) and for each definable open ( ′)an ⋐ W ⊂ (ℂ;)an, the restrictions !T| ′an
are ℝan-definable and hence ,(R)| ′an is definabilizable open and ,(R)| ′an ⋐ ,(R) ⊂ X . This
proves part (1).
For parts (2), (3), by the faithfulness of analytification the claim is local on  . Observe that

by part (1) and the relative compactness of  , any collection of open subspaces of an covering an can be refined by finitely many open T ⊂  and  ′T ⋐ T such that the  ′T cover  . It then
suffices to prove the claim replacing ⊂  with  ′T ⊂ T .
Applying this observation to Q−1(anT ) for a definable cover T of  , we may assume  is a

local model ,(R) ⊂  ⊂ ℂ;; applying it to a definable cover of  , we may assume  is a local
model ,(R′) ⊂  ′ ⊂ ℂS, and moreover that ! is given by a holomorphic map g ∶  ′an → an
with g♯R ⊂ R′. We then have that g| is ℝan-definable, and ! is the analytification of the induced
morphism  →  . This yields part (2)
Likewise, by passing to a covering of wemay first assume  is a local model,(R) ⊂  ⊂ ℂ;,

next that  and  are both quotients of ' , and finally that Q ∶ an → an lifts to a morphism
'an → 'an . We therefore reduce to  =  ⊂ ℂ; a definable open subset and  =  = ' .
The morphism Q is given by a matrix of holomorphic functions on an, which when restricted to an are ℝan-definable. □

The next lemma handles the essential surjectivity of the analytification functors.

Lemma 2.4. LetX be an analytic space, a definable analytic space, E a coherent sheaf onan.
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6 BAKKER and MULLANE

(1) Any relatively compact openU ⋐ X is relatively compact in a definabilizable relatively compact
openU ′ ⋐ X .

(2) For any definable relatively compact ⋐  , the restriction E | an is definabilizable.
Proof. For part (1), as in Lemma 2.3 we may take finitely many open definabilizable XT ⊂ X
with definabilizable X ′T ⋐ XT such that the X ′T cover U . The proof is completed by inductively
applying the following:

Claim. For T = 1, 2, letXT ⊂ X be a definabilizable open subspacewith definabilizableX ′T ⋐ XT .
Then there exists a definabilizable X ′′ such thatX ′1 ∪X ′2 ⋐ X ′′ ⋐ X1 ∪X2.
Proof. By Lemma 2.3(2), wemay supposeX ′T ⊂ XT is the analytification of ′T ⊂ T . We have that
X ′1 ∩X ′2 ⋐ X1 ∩X2, hence there is a definable  ⋐ 1 for which X ′1 ∩X ′2 ⋐ an ⋐ X1 ∩X2
under the identification an1 ≅ X1. By Lemma 2.3(2), the composition an ⊂ X1 ∩X2 → X2 ≅an2 is the analytification of an open immersion 2 ∶  → 2. Let ⋐ 2 be a definable open sub-
space such that  ′2 ⋐  and an ∩X ′1 = 2()an ∩X ′1 under the identification an2 ≅ X2, which
is possible because X ′2 ⧵ 2(W)an is relatively compact in X2 ⧵X ′1 . Then we have a natural open
immersion ( ′1 ∪ )an → X with the required properties. □

For part (2), we may likewise refine any cover of  by finitely many open definable T ⊂ 
with  ′′T ⋐  ′T ⋐ T such that the  ′′T cover  . Then provided each E |anT is definabilizable, the
gluingmaps on ( ′′T ∩  ′′2 )an will be definabilizable by Lemma 2.3(3) (uniquely by the faithfulness
of analytification), and it will follow that E | an is definabilizable. We may therefore assume we
have a presentation

San QX→ ;an → E → 0.
By Lemma 2.3, Q| is definabilizable, and as analytification is exact it follows that E | an is
definabilizable. □

Proof of Proposition 2.1. We already know faithfulness. Lemma 2.3 yields the fullness, and
Lemma 2.4 the essential surjectivity. □

3 PROOF OF THEOREM 1.2

In this section, we prove Theorem 1.2. Themain input is to show that the Deligne canonical exten-
sion can be formed definably, provided the monodromy has norm one eigenvalues at infinity. We
work throughout over an o-minimal structure containing ℝan,exp.
On a smooth analytic space X , the categories of complex local systems on X and locally freeX -modules with flat connection are naturally equivalent via ,ℂ ↦ (,X

,∇). Suppose (Y ,D)
is a log smooth pair with Y ⧵D = X and that (,X

,∇) is a locally free X -module with flat
connection.According to [5, section 5.3] (see also [4, Theorem 4.4]), for any choice of sectionΣ ⊂ ℂ
of the complex exponential [(⋅) = [23T⋅ ∶ ℂ → ℂ∗ (that is, a set Σ ⊂ ℂ for which [(⋅) ∶ Σ → ℂ∗ is
bijective) there is an extension (,Y

,∇) of (,X
,∇) to Y as a locally free Y -module with flat

logarithmic connection, unique up to unique isomorphism, such that the eigenvalues of Res∇
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DEFINABLE STRUCTURES ON FLAT BUNDLES 7

are contained in Σ pointwise. Here by an extension \ of a locally free sheaf \ on X we mean a
locally free sheaf together with an isomorphism \|X ≅ \, and we further ask the isomorphism
to be compatible with the connection.
For # a smooth algebraic variety, ,#an a locally free #an -module with flat connection, Σ a

choice of section of [, and (%,5) a choice of log smooth compactification of#, we therefore obtain
by classical GAGA a functorial algebraic structure (,% ,∇) on (,%an ,∇). The fact that the con-
nection of,%an has logarithmic singularities means in particular that it induces a connection on
the associated meromorphic bundle and therefore that the connection is algebraic (with logarith-
mic singularities) with respect to the algebraic structure ,% . We therefore obtain an algebraic
structure (,# ,∇) with regular singularities on (,#an ,∇). One further shows (see, e.g., [4, IV
section 5]) that flat sections extend meromorphically, and this implies that analytification yields
an equivalence of categories between #-modules with flat connection and regular singularities
and complex local systems on #an.
Let  be a definable analytic space and ,ℂ a complex local system on an. The restriction of,ℂ to  naturally sheafifies to ,ℂ because  has a definable cover by simply connected open

subsets by definable triangulation [11, chapter 8, (2.9)]. This follows as, after sufficiently many
barycentric subdivisions, the star of each vertex is contained in the interior of a simplex of the
original triangulation and therefore contractible. We denote the restriction by ,ℂ as well. Then, ∶=  ⊗ℂ ,ℂ is naturally a definable coherent sheaf with flat connection∇, and naturally
analytifies to (,an ,∇).
Proposition 3.1. Let ( ,) be a definable analytic log smooth pair, and let ⋐  be a relatively
compact definable open subspace. Set =  ⧵, =  ⧵. Let,ℂ be a complex local system onan with norm one eigenvalues at infinity with respect to ( ,).
(1) There is an extension (, ,∇) of (, ,∇) as a locally free sheaf with logarithmic connection

whose residue has eigenvalues in Σ.
(2) Any two such extensions of (, ,∇) are isomorphic by a unique isomorphism (as extensions

and compatibly with the connection) over .

Note that the extension (, ,∇) provided by the proposition analytifies to the Deligne
canonical extension (, an ,∇) as an extension of (an ⊗ℂan ,ℂ,∇).
Proof. We first treat the local case. □

Lemma 3.2. Let  = (∆∗)' × ∆% ⊂  = ∆'+% with their standard structures as definable complex
analytic spaces. Then for any local system ,ℂ on  whose monodromy has norm one eigenvalues,, admits an extension to  as a locally free sheaf with logarithmic connection ∇ in the definable
analytic category and the residues of ∇ have eigenvalues in Σ.
Proof. Choose a basepoint B ∈  and consider the universal cover 3 ∶ ℍ' × ∆% → (∆∗)' × ∆%

given by 3(<1, … , <', ^1, … , ^%) = ([(<1), … , [(<'), ^1, … , ^%) where [(<) = [23T<. Note that for any
open bounded vertical strip _ ⊂ ℍ with its standard definable structure, the restriction 3|\ to\ = _' × ∆% is ℝan,exp-definable. Set ̃ = ℍ' × ∆% . A local system ,ℂ on  corresponds to a
monodromy representation a ∶ 31( ,B)→ GL(,ℂ,B). We canonically trivialize3∗,ℂ ≅ ̃ × ,ℂ,B
with 31( ,B)-action J ∶ (<, b)↦ (J<, a(J)b).
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8 BAKKER and MULLANE

Let CT be the monodromy around the Tth punctured disk factor. As 31( ,B) is abelian, theCT commute. By taking the Jordan decomposition, we see that there are unique cT ∈ de(,ℂ,B)
with eigenvalues in Σ such that CT = exp(23TcT). Let cT = cffT +cLT be the Jordan decomposi-
tion of cT , and note that the cffT ,cLT all commute. For any bB ∈ ,ℂ,B, b̃ = exp(23T∑T <T ⊗ cT)bB
is a 31( ,B)-invariant section of 3∗(an ⊗ℂan ,ℂ) and therefore descends to a section b ofan ⊗ℂan ,ℂ. We claim that b is in fact a section of  ⊗ℂ ,ℂ. This may be checked on a
definable open cover provided by maps of the form 3|\ as above, and exp(23T∑2 <2 ⊗ cL2 ) is
polynomial in the <2 while exp(23T∑2 <2 ⊗ cff2 ) is ℝan,exp-definable on \ because thecffT is real
by the condition on the eigenvalues of CT .
The assignment bB ↦ b provides an isomorphism ⊗ℂ ,ℂ,B →  ⊗ℂ ,ℂ and therefore an

extension  ⊗ℂ ,ℂ,B . We see that Res∇ = c2 along the 2th boundary divisor as usual. □

By Lemma 2.3(1) and the relative compactness of , wemay take finitely many open subspacesT ⊂  with  ′′T ⋐  ′T ⋐ T such that the  ′′T cover . Then the existence statement for  ′T ⊂ T
coupled with the uniqueness for  ′′T ∩  ′′2 ⊂  ′T ∩  ′2 for each T, 2 will yield part (1), while the
uniqueness on  ′T ⊂ T for each T yields part (2). We can take such a cover such that each pair ∩ T ⊂ T is isomorphic to (∆∗)'T × ∆%T ⊂ ∆'T+%T , and moreover such that the  ′′T and  ′T are
identified with concentric polydisks.
We therefore restrict to the case  ⊂  are concentric polydisks. Lemma 3.2 implies the

existence of , (and therefore , ). Given two extensions  , , by the uniqueness in the

analytic case there is an isomorphism Q ∶ an ≅X→ an of extensions that is compatible with the
connections, and by Lemma 2.1(1) it follows that Q| is definabilizable, whence the claim.

Proof of Theorem 1.2. By definable GAGA [2], the algebraic structure is unique if it exists. Observe
that if,#def has an algebraic structure, then so does \def ⊗ℂ#def ,ℂ ≅ \def ⊗#def ,#def for anycoherent sheaf \ on #.
We now show that,#def is algebraic. By definable GAGA, we may assume # is affine, as if the

claim is true in this case then the gluingmaps associated to an affine (étale) coverwill be algebraic.
Assume first that# is smooth and let (%,5) be a log smooth compactification. By Proposition 3.1,(,#def ,∇) admits an extension (,%def ,∇). By classical GAGA, (,%def )an has an algebraic struc-
ture ,% , and by Proposition 2.1 we have (,% )def ≅ ,%def . If # is possibly nonreduced but #red
is smooth, then the inclusion T ∶ #red → # admits a finite section = ∶ # → #red. It follows by the
above that =∗(,#def ) ≅ =∗#def ⊗ℂ#def ,ℂ is algebraic, and by definable GAGA that the =∗#def -
module structure is algebraic as well. Thus,,#def is algebraic. Finally, for arbitrary#, by blowing
up along reduced centers wemay produce a proper map 3 ∶ % → # for which%red is smooth and
which is dominant on a dense Zariski open set A of #. Let g ⊂ # be the reduced complement ofA and #′ the image of 3. Then for a sufficiently large thickening g′ of g, the pushout h of the
diagram
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DEFINABLE STRUCTURES ON FLAT BUNDLES 9

has a natural proper dominant map ! ∶ h → #. By Noetherian induction g′def ⊗ℂg′def (,ℂ|g′def )
is algebraic while by definable GAGA we have that #′def ⊗ℂ#′def ,ℂ ⊂ 3∗(%def ⊗ℂ% 3−1,ℂ)
is algebraic. The pushout hdef ⊗ℂhdef !−1,ℂ is therefore also algebraic, as is ,#def ⊂!∗(hdef ⊗ℂhdef !−1,ℂ) by definable GAGA.
It remains to show that the connection is algebraicwith regular singularities. For the first claim,

we may assume # is affine and that,# is free as an#-module. Then for any algebraic section f
of,#def ,∇f is a definable section of,#def ⊗#def Ω#def ≅ (,# ⊗# Ω#)def , hence algebraic by
definable GAGA. Finally, from the construction (in particular Proposition 3.1) it is clear that the
singularities of the connection are regular. □

We conclude this section with an example (see [2, Example 3.2]), which shows Theorem 1.2 is
false without the condition on the monodromy at infinity.

Example 3.3. Let # = iS with coordinate ^. Let j ∈ ℂ and consider the rank one ℂ-local sys-
tem , on #an with multiplicative monodromy k = [23Tj. If  = #def ⊗ℂ#def , were algebraic, it
would necessarily be trivial; we claim that if j ∉ ℝ then  will not be trivial in any o-minimal
structure. A trivializing section is of the form b ⊗ ! for a nowhere zero multivalued holomor-
phic function ! on ℂ∗ with monodromy k. After multiplying by some power ^;, we may assume! = [j log ^+g(^) for a holomorphic function g ∶ ℂ∗ → ℂ. As !′∕! = j^−1 + g ′(^) is single-valued
and definable, it cannot have essential singularities at 0 or∞ (or else it would have infinite fibers),
and therefore g is algebraic, in particular, a polynomial in ^, ^−1. But restricting to positive real ^,
we have that

{^ ∈ ℝ>0 ∣ !(^) ∈ ℝ} = {^ ∈ ℝ>0 ∣ (Im g)(^) + (Imj) log ^ ∈ 3ℤ}
is definable, which is only the case if Im g is constant and Imj = 0.
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