W) Check for updates

Received: 31 May 2022 Revised: 1 May 2023 Accepted: 19 May 2023

DOI: 10.1112/blms.12879

Bulletin of the London
RESEARCH ARTICLE Mathematical Society

Definable structures on flat bundles

Benjamin Bakker!' | Scott Mullane?

IDepartment of Mathematics, Statistics,

and Computer Science, University of Abstract
Ilinois at Chicago, Chicago, Illinois, USA A flat vector bundle on an algebraic variety supports
*Institut fiir Mathematik, two natural definable structures given by the flat and

Humboldt-Universitit zu Berlin, Berlin, . . .
Germany algebraic coordinates. In this note, we show these two
structures are compatible, subject to a condition on the
Correspondence local monodromy at infinity that is satisfied for all flat
Benjamin Bakker, Department of
Mathematics, Statistics, and Computer
Science, University of Illinois at Chicago,
Chicago, Illinois, USA. MSC 2020

Email: bakker.uic@gmail.com 03C64, 14D07 (primary)

bundles underlying variations of Hodge structures.

1 | INTRODUCTION

Local systems arise frequently in algebraic geometry. For example, by Ehresmann’s theorem, a
smooth projective map f : X — Y of algebraic varieties is topologically locally (on the base) triv-
ial, and so the cohomology of the fibers H¥(X, C) is locally constant. These groups assemble into
the local system R f,Cy (see, for example, [12, 13] for background). Alternatively, we may view
the sections of RK f,Cy, as the solutions to an algebraic flat connection (namely, the Gauss-Manin
connection) on an algebraic vector bundle on Y (namely, relative algebraic de Rham cohomol-
ogy). From this perspective, the local system encodes the monodromy of the analytic solutions to
an algebraic differential equation on Y with regular singularities.

The above correspondence between local systems and algebraic flat vector bundles with regular
singularities holds generally (without the assumption of geometricity) and is called the Riemann-
Hilbert correspondence (see, for example, [4]). For a smooth algebraic variety X, to any complex
local system V¢ on X*" we may associate a natural vector bundle Viy . := Oxan ®c¢,., Ve With
flat connection V given by d ® id. The sheaf of flat sections of Vy ,, is naturally identified
with V. By a theorem of Deligne [5], the analytic flat vector bundle (V@Xan,V) arises as the
analytification of a unique algebraic flat vector bundle (Vo , V) with regular singularities.

In general, the flat sections of (V@X, V) are highly transcendental with respect to the algebraic
structure. The purpose of this note is to show that with an assumption on the local monodromy
at infinity (which is, in particular, satisfied for Gauss-Manin local systems, or more generally
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2 | BAKKER and MULLANE

local systems underlying polarized integral variations of Hodge structures), the change-of-basis
matrices between flat and algebraic frames are definable in the o-minimal expansion R, .., of
the real field. The precise condition is as follows.

Definition 1.1. Let X be a smooth analytic space and (Y, D) a log smooth analytic space with X =
Y \ Dandinclusion j : & - Y. Wesay acomplexlocal system V- on X has norm one eigenvalues
at infinity with respect to (¥, D) if the local monodromy of j,V has eigenvalues of complex
norm one.

Let X be a complex algebraic variety and V- a complex local system on X?". We say that V-
has norm one eigenvalues at infinity if for some resolution 7 : X’ - X and some log smooth
compactification (Y’,D’) of X', the local system (7*")*V . has norm one eigenvalues at infinity
with respect to (Y31, Dan),

Concretely, the log smooth condition means that for any y € Y we can find a neighborhood y €
U C Y with U = A" such that in the resulting local coordinates z, ..., z,, the divisor D is defined
by the equation z; --- z, = 0. Thus, U' N X = (A*)" X A"". The fundamental group of U N X is
then generated by the r loops around each component of " N D. Choosing a point x € U' N X
the monodromy of the local system V- around those loops gives commuting operators T4, ..., T, €
End(V¢ ,), and we ask that the eigenvalues of these operators have complex norm one.

It is easy to see that the pullback along an algebraic map of a local system with norm one eigen-
values at infinity also has norm one eigenvalues at infinity, and in particular the condition on
the local monodromy is independent of (Y’, D) in the definition. As mentioned above, for any
morphism f : X — Y of algebraic varieties, any R¥(f"),Cy.n which is a local system (they all
are if f is smooth projective) has quasi-unipotent monodromy at infinity when pulled back to a
smooth base [6, Theorem 3.1], and therefore satisfies the condition. More generally still, a local
system underlying a graded-polarizable integral variation of mixed Hodge structures satisfies the
condition [8, (4.5)].

Given an algebraic variety X and a fixed o-minimal structure we can form the associated
definable analytic variety X9¢f, functions on which are definable holomorphic solutions to the
equations cutting out X (see Section 2 and [2] for full details). Vector bundles on X% are vector
bundles in the usual sense, except now the transition functions are required to be definable holo-
morphic functions. Even without assuming X is smooth (or even reduced), we have two sources
of vector bundles with flat connection on X9¢f, On the one hand, any algebraic vector bundle with
flat connection (E, V) naturally yields one (E, V)4¢f on X9¢f by definabilization, that is, by using
the same transition functions, as algebraic functions are always definable holomorphic. On the
other hand, the topology of X def (which is the euclidean topology of X(C)) can be trivialized on
a definable open cover, so we may form (Oyder Oc qer Vo V) directly, using constant transition
functions. In general, these two objects are not isomorphic (see Example 3.3), but in the case that
V¢ has norm one eigenvalues at infinity they are:

Theorem 1.2. Let X be a complex algebraic space and V- a local system on X" with norm one
eigenvalues at infinity. Then over Ry, .., the definable coherent sheaf Oxaer ®Cx s« Ve has aunique
algebraic structure V o . Moreover, the connection is algebraic with regular singularities.

The notation is justified as (Vo , V) is necessarily the algebraic flat vector bundle correspond-
ing to V via the Riemann-Hilbert correspondence. The equivalence of the flat and algebraic
structures can concretely be interpreted in any of the following equivalent ways:
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DEFINABLE STRUCTURES ON FLAT BUNDLES | 3

(1) Over any definable open set, the (a priori only holomorphic) change of basis matrix between
a flat and an algebraic frame is given by definable holomorphic functions.

(2) Over any definable open set, the flat coordinates of any algebraic section are definable
holomorphic functions.

(3) The solutions to the corresponding algebraic differential equation over any definable open set
are definable holomorphic functions.

The ability to pass definably between the flat and algebraic structures is critical in the applications
of o-minimality to Hodge theory, see, for example, [1-3].

For a family of algebraic varieties, the flat coordinates of algebraic sections of the Gauss-Manin
local system are just period integrals, so we, for example, deduce:

Corollary 1.3. Let f : X — Y be a smooth algebraic family and w € HO(Y,f*Qi/Y) a relatively

closed algebraic p-form (or more generally a section of RP f, Q5 Ify is a section of the degree p

).
/Y
homology sheaf R,(f*"),Qxan over a definable open set U of Y, then the integral

14

u

is a Ry, exp-definable function on U.
Proof. By [5, Theorem 6.13], we may assume V¢ := RP(f?"),Cxan is a local system. By results
of Katz-Oda, Griffiths, and Deligne (see, for example, [5, section I1.7]), the algebraic structure
on the flat vector bundle associated to V¢ is algebraic de Rham cohomology Vo, = RPf.Q5 Iy
equipped with the Gauss-Manin connection. Integration fy is a section of VY, hence a definable
section of Oxaer ®c, V{, while w is an algebraic section of V. As V¢ has norm one eigenval-
ues at infinity and the Riemann-Hilbert correspondence commutes with taking duals we have
(VOX)def & (Oxar ®c, V)Y, and the claim follows. O

The same holds for relative periods as well. See, for instance, [7] for a discussion of periods of
algebraic de Rham cohomology classes in more general contexts.

Notation

All of our analytic spaces, definable analytic spaces, and algebraic spaces will be over C and
assumed to be separated. In the algebraic category, our algebraic spaces will be in addition, of finite
type. We use the symbol “€” to mean “relatively compact open subspace,” with “subspace” to be
interpreted as either an analytic subspace or a definable analytic subspace depending on context.

2 | DEFINABLE STRUCTURES ON COMPACT ANALYTIC SPACES

Throughout this section, we work over an o-minimal expansion of R,,. Recall that this means
any overconvergent real analytic function on a euclidean ball is definable. The main result is to
show that any compact analytic space admits a unique definable analytic structure and that the
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4 | BAKKER and MULLANE

two categories of coherent sheaves are naturally equivalent. We refer to [2] for details on definable
analytic spaces.

Recall that a definable topological space X is a topological space equipped with an equiv-
alence class of finite atlases by definable open subsets of euclidean space with definable
transition functions. The definable site & of a definable topological space X is the cate-
gory of definable open subsets whose coverings are finite (definable) open coverings and we
refer to sheaves on X as just sheaves on X. A definable analytic space & is a definable
topological space |X| with a sheaf of local C-algebras @, on |X| which is on a covering
isomorphic to the zero locus V = V(f,,..., f;) CU C C" of finitely many definable holo-
morphic functions f,..., f; : U = C on a definable open U C C" equipped with the sheaf
Ocn/(f155 f1)Ocnly on V as a definable topological space. Here O¢n is the sheaf of defin-
able holomorphic functions on C" as a definable topological space in the obvious way. We
say a definable analytic space X is compact if the ordinary underlying topological space is
compact.

There is a natural analytification functor

(—)*" : (definable analytic spaces) — (analytic spaces).
The underlying topological space of X" is the ordinary topological space underlying & and © yan
is in this case (as we work over an o-minimal expansion of R,,) the sheafification of @, in the
euclidean topology. Likewise there is a natural analytification functor
(=) : Coh(&X) — Coh(X?"),
which is just sheafification in the euclidean topology. We say objects or morphisms in the essential
image of either analytification functor are definabilizable.

Both analytification functors are faithful [2], but are in general far from equivalences. In the
case of compact spaces, however, we have the following.

Proposition 2.1.

(1) The restriction of the analytification functor to the full subcategories of compact spaces
(—)*" : (compact definable analytic spaces) — (compact analytic spaces)

is an equivalence of categories.
(2) For any compact definable analytic space X, the analytification functor

(—=)* : Coh(X) — Coh(x?")
is an equivalence of abelian categories.

From classical GAGA [9] (see [10, Theorem 5.10] for the statement for algebraic spaces) we
immediately deduce the following:
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DEFINABLE STRUCTURES ON FLAT BUNDLES 5

Corollary 2.2. Let X be a proper complex algebraic space. Then the three functors

_ \def
Coh(X) =) Coh(Xdef)

<N (=)

Coh(X ™)

are equivalences of abelian categories.

‘We prove Proposition 2.1 via two slightly more general lemmas. The first establishes the fullness
of the analytification functors up to restricting to a relatively compact open subspace.

Lemma 2.3. Let 2" be an analytic space, X, Y definable analytic spaces, and £, F coherent sheaves
onX.

(1) Every point x € Z admits a definabilizable relatively compact open neighborhood x € % €
Z.

(2) For any morphism ¢ : X*" — Y2 and any definable relatively compact open U" € X, the
restriction @|yran @ U™ — Y0 is definabilizable.

(3) For any morphism ¢ : £ — F2" and any definable relatively compact open U € X, the
restriction @|ran : £ — F2" is definabilizable.

Proof. For part (1), we may assume 2 is locally the zero locus V(I) C # C (C")?" of a finitely
generated ideal I = (f7, ..., f,) C Ocnyan (#) of holomorphic functions on an open subset %" C
(C™)™. The topology of (C™)2™ has a basis by relatively compact definable open subsets (for exam-
ple, euclidean balls) and for each definable open (W')** € # C (C")*", the restrictions f;|yran
are R, -definable and hence V(I)|)ynn is definabilizable open and V(I)|yyan € V(I) C 2. This
proves part (1).

For parts (2), (3), by the faithfulness of analytification the claim is local on /. Observe that
by part (1) and the relative compactness of 1/, any collection of open subspaces of X?" covering
U™ can be refined by finitely many open &; C & and Xl.’ € &; such that the Xl.’ cover U'. It then
suffices to prove the claim replacing U" C X with X/ C &X;.

Applying this observation to go—l(yfn) for a definable cover Y; of Y, we may assume Y is a
local model V(I) C W C C"; applying it to a definable cover of X, we may assume X is a local
model V(I') c W' c C™, and moreover that f is given by a holomorphic map g : W'at — yan
with g*I ¢ I’. We then have that glyr is R, -definable, and f is the analytification of the induced
morphism X — Y. This yields part (2)

Likewise, by passing to a covering of X we may first assume X’ is a local model V(I) c W c C",
next that £ and F are both quotients of ©X , and finally that ¢ : £2" — F2" lifts to a morphism
O’;Van - (9’;\73“. We therefore reduce to X = W C C" a definable open subset and € = F = (9’(‘\,.
The morphism ¢ is given by a matrix of holomorphic functions on X2", which when restricted to
U are R, -definable. O

The next lemma handles the essential surjectivity of the analytification functors.

Lemma?2.4. Let 2 bean analytic space, X a definable analytic space, & a coherent sheaf on X*".
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6 | BAKKER and MULLANE

(1) Anyrelatively compactopen % € 2 isrelatively compactin a definabilizable relatively compact
open %' € X.
(2) For any definable relatively compact U € X, the restriction & |,ran is definabilizable.

Proof. For part (1), as in Lemma 2.3 we may take finitely many open definabilizable .Z; Cc 2
with definabilizable 2" € 2] such that the 2 cover % . The proof is completed by inductively
applying the following:

Claim. Fori = 1,2,let Z; C 2 be a definabilizable open subspace with definabilizable 27/ € 2;.
Then there exists a definabilizable 2" such that 2/ U 2] € 2" € 2, U 2.

Proof. By Lemma 2.3(2), we may suppose 5‘5;’ C %, is the analytification of Xl’ C X;. We have that
2! n 2] € 21 n 2, hence there is a definable B € & for which 2]/ n 2] € B € 21 n 2,
under the identification X" = 2. By Lemma 2.3(2), the composition 5" C 27N 2, - 2, =
7" is the analytification of an open immersion j : B — &,. Let Y € &, be a definable open sub-
space such that Xé € Yand Y* N 3&”1’ = j(B)* N 5&”1’ under the identification X3" = 25, which

is possible because 5’{2’ \ j(B)?" is relatively compact in 2, \?1’. Then we have a natural open
immersion (Xl’ Up V)2 — 2 with the required properties. 1

For part (2), we may likewise refine any cover of X by finitely many open definable X; C X
with X" € X/ € &; such that the X/’ cover U". Then provided each &l o 18 definabilizable, the
gluing maps on (X" N X}’ " will be deflnablhzable by Lemma 2.3(3) (unlquely by the faithfulness
of analytification), and it will follow that &|; - is definabilizable. We may therefore assume we
have a presentation
- & — 0.

(9}’1

i
(9 Xan

Xan
By Lemma 2.3, ¢|;, is definabilizable, and as analytification is exact it follows that &|;ran is
definabilizable. O

Proof of Proposition 2.1. We already know faithfulness. Lemma 2.3 yields the fullness, and
Lemma 2.4 the essential surjectivity. O

3 | PROOF OF THEOREM 1.2

In this section, we prove Theorem 1.2. The main input is to show that the Deligne canonical exten-
sion can be formed definably, provided the monodromy has norm one eigenvalues at infinity. We
work throughout over an o-minimal structure containing Ry, eyp-

On a smooth analytic space 27, the categories of complex local systems on 2" and locally free
O 4 -modules with flat connection are naturally equivalent via Vi = (V¢ ., V). Suppose (¢, 2)
is a log smooth pair with %'\ ¥ = 2" and that (V o V) is a locally free @ ,--module with flat
connection. According to [5, section 5.3] (see also [4, Theorem 4.4]), for any choice of sectionZ C C
of the complex exponential e(-) = 2™ : C — C* (that is, a set = C C for which e(-) : = — C* is
bijective) there is an extension (V o V) of (Vo o V) to & as alocally free O, -module with flat
logarithmic connection, unique up to unique isomorphism, such that the eigenvalues of Res V
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DEFINABLE STRUCTURES ON FLAT BUNDLES 7

are contained in ¥ pointwise. Here by an extension F of a locally free sheaf F on .2" we mean a
locally free sheaf together with an isomorphism F| o = F, and we further ask the isomorphism
to be compatible with the connection.

For X a smooth algebraic variety, V_,, a locally free Ox.n-module with flat connection, £ a
choice of section of e, and (Y, D) a choice of log smooth compactification of X, we therefore obtain
by classical GAGA a functorial algebraic structure (Voy, V) on (VOYan , V). The fact that the con-
nection of Viy , has logarithmic singularities means in particular that it induces a connection on
the associated meromorphic bundle and therefore that the connection is algebraic (with logarith-
mic singularities) with respect to the algebraic structure Vo, . We therefore obtain an algebraic
structure (V@X, V) with regular singularities on (V@Xﬂ, V). One further shows (see, e.g., [4, IV
section 5]) that flat sections extend meromorphically, and this implies that analytification yields
an equivalence of categories between Oy-modules with flat connection and regular singularities
and complex local systems on X?".

Let X be a definable analytic space and V a complex local system on X2". The restriction of
V¢ to & naturally sheafifies to V- because & has a definable cover by simply connected open
subsets by definable triangulation [11, chapter 8, (2.9)]. This follows as, after sufficiently many
barycentric subdivisions, the star of each vertex is contained in the interior of a simplex of the
original triangulation and therefore contractible. We denote the restriction by V- as well. Then
Vo, = Oy ®¢, V¢ is naturally a definable coherent sheaf with flat connection V, and naturally
analytifies to (V. ,,, V).

Proposition 3.1. Let (Y, D) be a definable analytic log smooth pair, and let U" € Y be a relatively
compact definable open subspace. Set X = Y \ D, W = U\ D. Let V be a complex local system on
X2 with norm one eigenvalues at infinity with respect to (Y, D).

(1) There is an extension (V@U, V) of (V@W, V) as a locally free sheaf with logarithmic connection
whose residue has eigenvalues in %.

(2) Any two such extensions of (V,,, V) are isomorphic by a unique isomorphism (as extensions
and compatibly with the connection) over U'.

Note that the extension (VOU,V) provided by the proposition analytifies to the Deligne
canonical extension (V, .., V) as an extension of (Oyyan ®c, .0 Ve, V).

Proof. We first treat the local case. O

Lemma 3.2. Let X = (A*)X x AY ¢ ¥ = AK+7 with their standard structures as definable complex
analytic spaces. Then for any local system V- on X whose monodromy has norm one eigenvalues,
Vo, admits an extension to Y as a locally free sheaf with logarithmic connection V in the definable
analytic category and the residues of V have eigenvalues in .

Proof. Choose a basepoint x € X and consider the universal cover 7 : HK x A” — (A*)k x AY
given by 7(zy, ..., 2, q1, -, qz) = (e(21), ... ,e(Zx), qy, --- »q,) Where e(z) = e?7iZ Note that for any
open bounded vertical strip S C H with its standard definable structure, the restriction 7|z to
F=5kxA” is Ran,exp-definable. Set X = Hk x A”. A local system V. on X corresponds to a
monodromy representation p : 7,(X,x) - GL(V ,). We canonically trivialize 7V = X X V¢
with 7, (X, x)-action y : (z,v) = (yz, p(y)v).
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8 | BAKKER and MULLANE

Let T; be the monodromy around the ith punctured disk factor. As 7;(X, x) is abelian, the
T; commute. By taking the Jordan decomposition, we see that there are unique N; € gl(V¢ )
with eigenvalues in X such that T; = exp(27iN;). Let N; = N7* + N}' be the Jordan decomposi-
tion of N;, and note that the N**, N** all commute. For any v, € V¢ ., U = exp(27i 3, z; ® N;)v,
is a 7y (X, x)-invariant section of 7*(Oyam ®c,., V) and therefore descends to a section v of
Oxan @ .an Ve We claim that v is in fact a section of Oy ®¢,, V. This may be checked on a
definable open cover provided by maps of the form 7|, as above, and exp(27i ) iZi® NJL.‘) is
polynomial in the z; while exp(27i }; z; @ N js.s) i8 Ry exp-definable on F because the N?* is real
by the condition on the eigenvalues of T;.

The assignment v, — v provides an isomorphism Oy Q¢ V¢ x = Oy ®¢, V¢ and therefore an
extension Oy Q¢ V¢ . We see that Res V = Nj; along the jth boundary divisor as usual. O

By Lemma 2.3(1) and the relative compactness of 1", we may take finitely many open subspaces
Y, C Y with yl.’ 'e yl.’ € Y, such that the yl.' ! cover V. Then the existence statement for J?i’ cY
coupled with the uniqueness for y;’ N J?J’.’ C yl.’ N y}’. for each i, j will yield part (1), while the
uniqueness on yl.’ C Y; for each i yields part (2). We can take such a cover such that each pair
X N Y, C Y, is isomorphic to (A*)% x A%i ¢ Aki*7i, and moreover such that the Y/ and Y/ are
identified with concentric polydisks.

We therefore restrict to the case " C Y are concentric polydisks. Lemma 3.2 implies the
existence of V@y (and therefore V@V). Given two extensions &, F, by the uniqueness in the

o~

analytic case there is an isomorphism ¢ : £ — F2" of extensions that is compatible with the
connections, and by Lemma 2.1(1) it follows that ¢|, is definabilizable, whence the claim.

Proof of Theorem 1.2. By definable GAGA [2], the algebraic structure is unique if it exists. Observe
thatifV, . hasan algebraic structure, then so does F def ®c, g Ve =F def ®0 s VO, 4 fOT ANy
coherent sheaf F on X.

We now show that V@X . 1S algebraic. By definable GAGA, we may assume X is affine, as if the
claim is true in this case then the gluing maps associated to an affine (étale) cover will be algebraic.
Assume first that X is smooth and let (Y, D) be a log smooth compactification. By Proposition 3.1,
(VOX wr V) admits an extension (VOY i V- By classical GAGA, (VOY )" has an algebraic struc-
ture Vo, ., and by Proposition 2.1 we have (V@Y ydef ~ V@Y « - HX is possibly nonreduced but X red
is smooth, then the inclusion i ; X4 — X admits a finite section r : X — X', It follows by the

above that r, (VOX der) Z T Oxaet ®c . Ve is algebraic, and by definable GAGA that the r, Oxae-
module structure is algebraic as well. Thus, VOX « 1s algebraic. Finally, for arbitrary X, by blowing
up along reduced centers we may produce a proper map 7 : Y — X for which Y™ is smooth and
which is dominant on a dense Zariski open set U of X. Let Z C X be the reduced complement of
U and X’ the image of z. Then for a sufficiently large thickening Z’ of Z, the pushout P of the
diagram

7' xx X' —— X'

|

Z/
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has a natural proper dominant map f : P — X. By Noetherian induction O et ®cC, et Vel gret)
is algebraic while by definable GAGA we have that Oyaer ®Oc, et Ve C 7, (Oyaet Qc,, 77WVe)
is algebraic. The pushout Opdet Oc et f~1Ve is therefore also algebraic, as is VOX wr C
f(Opaet @ s f~1V¢) by definable GAGA.

It remains to show that the connection is algebraic with regular singularities. For the first claim,
we may assume X is affine and that Vy_is free as an Ox-module. Then for any algebraic section s
of Vy_,..» Vsisadefinable section of VO, qer B0, qer Qxder = Vo, oy Qy )%, hence algebraic by
definable GAGA. Finally, from the construction (in particular Proposition 3.1) it is clear that the
singularities of the connection are regular. [l

We conclude this section with an example (see [2, Example 3.2]), which shows Theorem 1.2 is
false without the condition on the monodromy at infinity.

Example 3.3. Let X = G,, with coordinate q. Let « € C and consider the rank one C-local sys-
tem V on X*" with multiplicative monodromy 4 = emia Ifp = Oxaet ®CX e V were algebraic, it
would necessarily be trivial; we claim that if @ ¢ R then 7 will not be trivial in any o-minimal
structure. A trivializing section is of the form v @ f for a nowhere zero multivalued holomor-
phic function f on C* with monodromy A. After multiplying by some power g", we may assume
f = e*1024+9(@) for a holomorphic function g : C* — C. As f//f = ag~! + ¢/(q) is single-valued
and definable, it cannot have essential singularities at 0 or oo (or else it would have infinite fibers),
and therefore ¢ is algebraic, in particular, a polynomial in g, g!. But restricting to positive real g,
we have that

g €Ro | f(@) €ER}=1g €R,, | Img)(g) + (ma)logq € 77}
is definable, which is only the case if Im g is constant and Ima = 0.

JOURNAL INFORMATION

The Bulletin of the London Mathematical Society is wholly owned and managed by the London
Mathematical Society, a not-for-profit Charity registered with the UK Charity Commission.
All surplus income from its publishing programme is used to support mathematicians and
mathematics research in the form of research grants, conference grants, prizes, initiatives for
early career researchers and the promotion of mathematics.

REFERENCES

1. B. Bakker, Y. Brunebarbe, and J. Tsimerman, Quasiprojectivity of images of mixed period maps,
arXiv:2006.13709, 2020.

2. B.Bakker, Y. Brunebarbe, and J. Tsimerman, o-minimal GAGA and a conjecture of Griffiths, Invent. Math. 232
(2023), no. 1, 163-228.

3. B.Bakker and J. Tsimerman, Functional transcendence of periods and the geometric André-Grothendieck period
conjecture, arXiv:2208.05182, 2022.

4. A.Borel, P.-P. Grivel, B. Kaup, A. Haefliger, B. Malgrange, and F. Ehlers, Algebraic D-modules, Perspectives in
Mathematics, vol. 2, Academic Press, Inc., Boston, MA, 1987.

5. P. Deligne, Equations différentielles a points singuliers réguliers, Lecture Notes in Mathematics, vol. 163,
Springer, Berlin-New York, 1970.

6. P.Griffiths, Periods of integrals on algebraic manifolds: summary of main results and discussion of open problems,
Bull. Amer. Math. Soc. 76 (1970), 228-296.

d‘0°0TIT69r1

sdny woxy

sdny) suonIpuOD) pue swIR, ) 33§ “[£20¢/80/4¢] U0 AIQIT AUIUQ) AL “(-2U] BANGET) 24NOPUSY AQ 6LSTI'SWIA/TL [ 101/10p/uwiod K[y &

put-suLialwoo KA A

25UADIT SUOWIWIOY) ATERI) A[qEat]ddE oy Aq PAUIAOT ATE SPOTIE YO 15T JO SAINI 10§ ATRIQIT AUIUQ) ADTIAL UO (



10

BAKKER and MULLANE

12.

13.

. A. Huber and S. Miiller-Stach, Periods and Nori motives, Ergebnisse der Mathematik und ihrer Grenzgebiete.

3. Folge. A Series of Modern Surveys in Mathematics (Results in Mathematics and Related Areas. 3rd Series.
A Series of Modern Surveys in Mathematics), vol. 65, Springer, Cham, 2017. (With contributions by Benjamin
Friedrich and Jonas von Wangenheim.)

. W.Schmid, Variation of Hodge structure: the singularities of the period mapping, Invent. Math. 22 (1973), 211-319.
. J.-P. Serre, Géométrie algébrique et géométrie analytique, Ann. Inst. Fourier (Grenoble) 6 (1955/56), 1-42.

10.
11.

B. Toén, K-théorie et cohomologie des champs algébriques, Ph.D. thesis, Universit de Toulouse 3, 1999.

L. van den Dries, Tame topology and o-minimal structures, London Mathematical Society Lecture Note Series,
vol. 248, Cambridge University Press, Cambridge, 1998.

C. Voisin, Hodge theory and complex algebraic geometry. I, Cambridge Studies in Advanced Mathematics,
vol. 76, Cambridge University Press, Cambridge, English edition, 2007. Translated from the French by Leila
Schneps.

C. Voisin, Hodge theory and complex algebraic geometry. II, Cambridge Studies in Advanced Mathematics,
vol. 77, Cambridge University Press, Cambridge, English edition, 2007. Translated from the French by Leila
Schneps.

d‘0°0TIT69r1

sdny woxy

sdny) suonIpuoy) pue swia, a1 23§ “[€20¢/80/4¢] U0 AIqIT AuIuQ) AL “(-2U] BANQET) 2ANOPUSY Aq 6LSTI'SWIA/CI [ 101/10p/wioD Ko &

put-suLialwoo KA A

25UADIT SUOWIWIOY) ATERI) A[qEat]ddE oy Aq PAUIAOT ATE SPOTIE YO 15T JO SAINI 10§ ATRIQIT AUIUQ) ADTIAL UO (



	Definable structures on flat bundles
	Abstract
	1 | INTRODUCTION
	Notation

	2 | DEFINABLE STRUCTURES ON COMPACT ANALYTIC SPACES
	3 | PROOF OF THEOREM 1.2
	JOURNAL INFORMATION
	REFERENCES


