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ABSTRACT. We equip integral graded-polarized mixed period spaces with a natural
Rajg-definable analytic structure, and prove that any period map associated to an
admissible variation of integral graded-polarized mixed Hodge structures is definable
in Ran,exp With respect to this structure. As a consequence we reprove that the zero
loci of admissible normal functions are algebraic.

1. INTRODUCTION

1.1. Summary. The purpose of this paper is to continue the development of o-
minimality as a natural setting for the study of Hodge theory. In [3] it was shown that
the moduli of integral polarized pure Hodge structures—known as period spaces—
admit natural structures of definable analytic spaces, in such a way that all period
maps from algebraic varieties are definable. The general functorial setting of defin-
able analytic spaces was studied in [2]. The purpose of this article is to extend this
technology to the setting of mixed Hodge structures.

One complication that enters when studying variations of mixed Hodge structures
(VMHS) is that one must additionally restrict to admissible ones in the sense of
Steenbrink-Zucker and Kashiwara, instead of just ones that are holomorphic and Grif-
fiths transverse. This apparent complication, crucial for the internal coherence of
Hodge theory as developed in the theory of Hodge modules [20], fits perfectly with the
o-minimal setting. For any smooth complex algebraic variety S the (not necessarily
admissible) VMHSs extensions of Zgan(0) by Zgan (1) are parametrized by I'(S, O%ax ),
corresponding to holomorphic period maps ¢ : S* — Ext?,,175(Z(0), Z(1)) = C* from
520 to the mixed period space C*. For S = A! the period map exp : C — C* cannot
possibly be definable in any o-minimal structure; however the VMHS on A! it defines
is not admissible.

Unlike in the pure case, there is some ambiguity in the choice of definable structure.
Indeed, if we think only of the “unipotent” ﬁber we end up with a quotient of
unipotent groups, for which there are many choices of which definable structure—this
is already the case for C*. The definable structure appearing in Theorem is built
using the “sly” real splitting (also known as the “canonical” real splitting), but it is
not inconceivable to us that one could use other natural definable structures and retain
our main results.

1.2. Results. In section §3 we equip any graded-polarized integral mixed period space
"M with the structure of a R,jg-definable analytic space which is functorial with
respect to morphisms of mixed period spaces (see Theorem . Our main result is
the following:

Theorem 1.1 (cf. Theorem. Let T\ M be a graded-polarized integral mixed period
space equipped with the Ry, -definable structure associated to the slp-splitting. Let S be
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lFormally, the fibers of the map from the mixed period space to the product of the pure period
spaces corresponding to taking the associated graded variation.
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a reduced complex algebraic space and ¢ : S — I'\M an admissible period map. Then
¢ 15 Ran exp-definable.

It should be noted that the work of Brosnan—Pearlstein [5] building on the mixed
SLo-orbit theorem of Kato-Nakayama—Usui [14] is a key ingredient in our proofs, giving
the necessary boundedness statement for us to prove definability.

In [3] we recovered as an immediate corollary of the definability of the period map
for pure VHS the algebraicity of the corresponding Hodge loci proven in [9]. Similarly
as an immediate corollary of Theorem [4.4| we recover the algebraicity of (possibly non-
reduced) mixed Hodge loci (in particular the zero-loci of admissible normal functions)
obtained in [6, 18, 5, [7]. Recall that for a graded-polarized integral mixed Hodge struc-
ture V = (Vz, W, F, qx) the set of integral weight zero Hodge classes is Hdgy(V)z :=
Homy_nus(Z(0), V) = (Wo)z n FO, and we define Hdgd(V)z < Hdgy(V)z as the sub-
set of Hodge classes v with go(v,v) < d, where g is the polarization form on Grgv V.
The locus Hdgd(I'\M) < I'\M of points V for which Hdgd(V) # 0 is a definable
analytic subspace, and for any period map ¢ : S — I'\M we define Hdgd(S) < S to
be the pullback of Hdgd(I"\ M) with its natural not-necessarily-reduced structure as a
definable analytic subspace.

Corollary 1.2. Let ¢ : S — I'\M be as in the theorem. Then the Hodge subspace
Hdgd(S) < S is algebraic.

Without too much difficulty, the same can be shown for the locus of bounded-norm
Hodge classes Hdgd(V) < Ve in the total space of an admissible variation (V, W, F),
but we leave this to the reader.

1.3. Outline. In §2 we recall some facts about how definable quotients work, and
the relation between definable structures on quotients and choices of fundamental
sets. In §3 we recall relevant background from mixed Hodge theory and the various
real splittings that we use, and put a definable structure on graded-polarized integral
mixed period spaces. In §4 we give a notion of variations of mixed Hodge structure
and period maps on arbitrary algebraic varieties, review the notion of admissibility
and its consequences, and state our main theorem. In §5 we prove our main theorem.
Finally, in §6 we generalize the construction of §3 to place a definable structure on
mixed Hodge varieties and prove functoriality.

1.4. Acknowledgements. We thank the referees for their careful reading of the pa-
per.

2. DEFINABLE QUOTIENTS

In this section we fix an o-minimal structure and we work in the category of defin-
able locally compact Hausdorff topological spaces and definable continuous maps.

Let X be a locally compact Hausdorff definable topological space and I' a group
acting on X by definable homeomorphisms.

Definition 2.1. A fundamental set for the action of I' on X is an open definable
subset F' < X such that

() T'-F =X,

(2) the set {yeI'|vy-F n F # @} is finite.
Remark 2.2. The existence of a fundamental set for the action of I' on X implies that

I equipped with the discrete topology acts properly on X. In particular, the set I'\ X
equipped with the quotient topology is a locally compact Hausdorff topological space.



DEFINABILITY OF MIXED PERIOD MAPS 3

Proposition 2.3. If F' is a fundamental set for the action of I' on X, then there
exists a unique definable structure on I'\X such that the canonical map F — T\ X is

definable.

Proof. Let R < X x X be the equivalence relation associated to the action of I' on
X, that is, R = {(x,7v-x)}. As observed before, the action of I" on X is necessarily
proper, hence R is a closed subset of X x X. It follows that the induced equivalence
relation Rp := R n (F x F') on F is closed. Moreover, the set

Rp = U{(ZL‘,’}/IL‘) eF x F}
~yel
is definable, since only matter the finite number of v for which v- FF n F' # @. We
conclude using that T'\X = F/Rp as topological spaces and that the equivalence
relation Ry on F' is closed, definable and étale. O

Remark 2.4. (1) The definable structure on I'\ X depends on the choice of F'. (For
example, two strips in C with different slopes give different definable structures
on the quotient C/Z = C*.)

(2) Two fundamental sets F' and F” define the same definable structure on I'\ X if
and only if F' is contained in a finite union of translates of F’ under elements
of T.

(3) The map FF — I'\X admits locally on the base some continuous definable
section. Therefore, giving a morphism from a definable space Y to I'\X is
equivalent to giving a finite definable cover Y = UY; and morphisms Y; — F
such that the induced maps Y; — I'\ X coincide on overlaps.

(4) In case X is a complex manifold and I" acts by definable biholomorphism the
construction above is compatible with the complex structure.

Proposition 2.5. If F' is a fundamental set for the action of I on X and I' < T°
is a finite index subgroup, then for any finite subset C < I' mapping surjectively onto
/T the set UWEC ~ - F is a fundamental set for the action of I on X. Moreover, the
induced definable structure on T'\X is independent of C' and the map T"\X — I\ X is
definable.

Proposition 2.6. Let X and Y be locally compact Hausdorff definable topological
spaces and I' a group acting on both X and Y by definable homeomorphisms. Let
f: X Y be al'-equivariant continuous map.

e If F is a fundamental set for the action of T on 'Y, then f~1(F) is a funda-
mental set for the action of I' on X.
e The induced continuous map T\X — T'\Y is definable.

Proof. First note that T - f~Y(F) = f~1('- F) = f~}(Y) = X. On the other hand,
the set {y € T'|v- f~YF) n f71(F) # @} is finite, since it is clearly a subset of
{yeT|v-FnF # @}, and the latter is finite by assumption. O

2.1. Fundamental sets for arithmetic groups. Arithmetic quotients of reductive
groups are endowed with R,.-definable structures using a Siegel set fundamental do-
main:

Theorem 2.7 (Theorem 1.1 of [3]). Let G be a reductive algebraic group over Q, I'
G(Q) an arithmetic subgroup and M < G(R) a compact subgroup. Then the quotient
MNG(R)/M admits a structure of Rag-definable analytic space, functorial in the triple
(G,T', M) and characterized by the following property. Let G(R)/M be endowed with
its natural semi-algebraic structure and & < G(R)/M be an open semi-algebraic Siegel
set. Then & — I'\G(R)/M is Raig-definable.
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Note that the statement in [3] is for G semi-simple (and that is all we will need),
although the reductive case easily follows.

3. BACKGROUND IN MIXED HODGE THEORY

3.1. Splittings. (cf. [10, §2].)

Fix a field K of characteristic zero and a finite-dimensional K-vector space V
equipped with an increasing filtration {Wy}. Note that any K-vector space obtained
from V using duals, tensor products and subspaces inherits an increasing filtration
from {W}.

Definition 3.1. A splitting of {W}} is a direct sum decomposition V' = @ V. such
k
that W; = @ V4.

k<l
Let S(W) denote the variety of all splittings of {W}}. It is a smooth algebraic vari-
ety defined over K (a Zariski-open in a product of Grassmannians) such that S(W)(L)
is the set of all splittings of {Wj, ®x L} for every field L 2 K.

The natural left action of GL(V') on V induces an algebraic left action of the K-
algebraic group GL(V)W = {g € GL(V) | g(W}) < W}, for all k} on S(W). Its unipo-
tent radical is the K-algebraic subgroup U := exp(W_; End(V')). One easily checks
that for every field L © K the group U(L) acts simply transitively on S(W)(L), cf.
[16, §3.6] or [10, Prop. 2.2].

There is a natural closed immersion S(W) < Wy End(V) which on K-points asso-
ciates to any given splitting V' = @, V) the semisimple endomorphism 7' € End(V)
with integral eigenvalues whose I-eigenspace is V. This realizes S(W) as an affine sub-
space of Wy End (V') directed by the subvector space W_; End(V'). In this realization,
the left action of GL(V)" on S(W) is induced by the adjoint action of GL(V) on
End(V), and the K-algebraic group U acts on S(W) by affine transformations.

There is an exact sequence of K-algebraic groups
1-U—-GLWY - GLG V) -1,

and the choice of a splitting T € S(W)(K) induces a section GL(Gr" V) — GL(V)",
whose image we denote by GL(V)7.

Notation 3.2. In the sequel we will frequently identify a splitting of W with the
corresponding semisimple endomorphism 7" of V.

3.2. Mixed Hodge structures. (cf. [11].)

A decreasing filtration F' of an object V is said to be finite if there exists two integers
m and n such that FV =V and F"V = 0, and similarly for increasing filtrations.
In what follows, all filtrations are implicitely supposed to be finite.

Let R =7Z,Q or R. A mixed R-Hodge structure is a triple V = (Vg, W, F') consisting
of
e a R-module Vg of finite type,

e an increasing filtration {W}} of Vi (the weight filtration),
e a decreasing filtration {FP} of Vi := Vg ®r C (the Hodge filtration),
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such that Gr?, Grqf Gr}¥ (Vc) = {0} when p + g # [, where we denote by the same

symbol W the filtration induced by W on V¢ and by F the conjugate filtration of F'
defined by F? := Fa.

A morphism of mixed R-Hodge structure is a R-linear morphism of the underlying
R-modules that preserves both filtrations. The category of mixed R-Hodge structures
is abelian, and it admits both duals and tensor products (hence internal homs).

Let V = (Vg, W, F') be a pure R-Hodge structure of weight n, meaning that Ger (Vg) =
{0} when [ # n. In that case, we have the Hodge decomposition

V(CZ @ yPA
pt+g=n

with VP9 := FP A F? so that V% = VP4, The Weil operator C' € End(Vg) is then
the real endomorphism satisfying

Cc = (—D P71 idyp.a .
P
Let ¢ : VR ® Vg — R be a (—1)"-symmetric bilinear form—that is, ¢ is symmetric
if n is even and skew-symmetric if n is odd. We say that the pure R-Hodge structure
V is polarized by ¢ if the hermitian form h on V¢ defined by h(u,v) = qc(Cu,v) is
positive-definite and the Hodge decomposition of V¢ is h-orthogonal.

3.3. Bigradings.

Definition 3.3. A bigrading of a real mixed Hodge structure (V, W, F) is a direct sum

decomposition Vg = @ JP? such that:
X

FP =@ J"® and (Wy)c = @ J™°.

T=p,s r+s<k

The bigradings of a real mixed Hodge structure (V, W, F') are easily seen to be in
bijection with the splittings 7' € S(W¢) such that T'(FP) < FP, via V)(T) = @ JP1.
p+q=l

Lemma 3.4 (Deligne [11]). If (V,W, F) is a real mized Hodge structure, then it admits
a unique bigrading {IP1} which satisfies:

17?7 = J&P  mod (—B I3,

r<p,s<q

Deligne bigrading is functorial and is given explicitely by the formula:

— —ag—1—1
1P = (FP A (Wpig)c) N (Fq A Wprge+ D F7 7 (Wp+q2j)c> .

j=0
3.4. Real splittings.
Proposition 3.5. A real mized Hodge structure (V,W, F) is said to split over R if it

satisfies one of the equivalent following properties:

(1) it is a direct sum of pure real Hodge structures of different weights,
(2) it admits a real splitting, i.e. a bigrading {JP9} such that JP? = J**,
(8) there exists T € Sg(W) such that T(FP) < FP.
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If (V,W, F) admits a real splitting {J9}, then one has necessarily
JPU = FP A F? A Wiy,

so that it is unique and coincides with Deligne bigrading.

3.5. Graded-polarized mixed period domains. (cf. [23|[18].)

Let V be a finite dimensional R-vector space equipped with an increasing filtration
{Wx} and a collection of non-degenerate bilinear forms g : Grj) V ®r Gri''V — R
that are (—1)¥-symmetric. Fix a partition of dimg V' into non-negative integers {hP}
such that hP9 = h?P.

For any integer k, we denote by €2 the Griffiths period domain parametrizing
all decreasing filtrations {F}'}, on Gr}Y V¢ with dimc F} = Ysp h7FT that define
a real pure Hodge structure of weight k polarized by ¢z, and by Q its compact
dual parametrizing the (gi)c-isotropic filtrations {F}'}, on Gr}/ V¢ with dimc F} =
Yrsp hTE=T . Letting Q := [, Q% and Q := [], Q, and denoting by H the real alge-
braic group [ [, Aut(gx), it follows from Griffiths theory that §) is a smooth projective
complex variety on which the complex algebraic group H(C) acts transitively by al-
gebraic automorphisms and € < € is a real semi-algebraic open subset on which the
real algebraic group H(R) acts transitively by semi-algebraic automorphisms.

Let M denote the corresponding mixed period domain, i.e. the set of decreasing
filtrations {FP} of V¢ such that (V,W,F) is a real mixed Hodge structure graded-
polarized by the g;’s and such that

dimc ((F? G

g V) O (F*arl”

p+q Vc)) = hP1,

By definition, M is a semi-algebraic open subset of the smooth projective complex
variety M that parametrizes the decreasing filtrations {F?} of V¢ by complex vector
subspaces such that the filtration induced on the graded pieces GrkW Ve is inside €
for each k.

Let G denotes the real algebraic group defined as the preimage of H GL(GrW V)
through the natural homomorphism GL(V)" — GL(Gr" V), and let U be its unipo-
tent radical. Let G denote the preimage of H(R) by the homomorphism G(C) — H(C).
It is naturally a group object in the category of R,j,-definable topological spaces, and
the following inclusions hold in this category:

G(R) € G = U(C) - G(R) < G(C).

Moreover the action of G(C) on M induces an action of G on M. The following
proposition is well-known, see |23, Prop. 2.11] for instance:

Proposition 3.6. The real algebraic group G acts transitively on M by semi-algebraic
automorphisms.

Proof. Recall that S(W) denotes the variety of splittings of W, cf. section The
complex variety 2 x S(W)(C) parametrizes the elements of M equipped with a bi-
grading, cf. section[3.3] Thanks to the existence of Deligne bigrading, the natural map
O xS(W)(C) - M is surjective. Since this map is also G-equivariant and the G-action
on Q x S(W)(C) is transitive by [10, Prop. 2.2], it follows that G acts transitively on
M. O
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Note that the morphism M —  which is equivariant with respect to the homo-
morphism G — H(R) is the restriction of a complex algebraic map M — ) which is
equivariant with respect to the homomorphism G(C) — H(C).

Let Mr < M denote the subset consisting of those Hodge filtrations for which the
corresponding mixed Hodge structure is split over R. The group G(R) acts transi-
tively on Mg, so that it is a smooth real semi-algebraic subset of M. Moreover, Mg
is naturally in bijection with @ x S(W)(R), and this bijection is compatible with the
G(RR)-actions, so that it is an isomorphism of real semi-algebraic spaces.

Observe that the action of G on M is not proper, since the stabilizer of a point is
non-compact.

Proposition 3.7. The actions of G(R) on Mg and M are proper.

Proof. Let Br denote the set of real Hodge frames of mixed Hodge structures that are
split over R. It is a G(R)-torsor, hence the G(R)-action on By is proper. But the
surjective and proper morphism Br — Mp is G(R)-equivariant, therefore the G(R)-
action on My is proper too, cf. [4, Prop. 5.i) in TG II1.29]. By [4} Prop. 5.ii) in TG
I11.29], the properness of the action of G(R) on M follows, once we know the existence
of a G(R)-equivariant continuous map M — Mg, for which we can refer for example
to Proposition O

Corollary 3.8. If T is a discrete subgroup of G(R), then the induced action of T on
M is proper and the quotient T\ M admits a canonical structure of complex analytic
space such that the natural map M — T'\M is holomorphic.

3.6. The J-splitting. Given a real mixed Hodge structure (V, W, F') with Deligne
bigrading {IP?}, we define a nilpotent Lie subalgebra of End(V')¢ by

Loy = (X € End(Ve) | X (1P) < r<§Ds<qF’$}'
It is defined over R with real form (L(_V%,’_;)R = L(_thfl_?; N End(V).

Proposition 3.9 (Deligne, cf. Prop. 2.20 in [10]). Given a real mized Hodge structure
(V,W, F), there exists a unique 0 € (L(V‘I,E)R such that (V,W, e~ - F) is a real mized
Hodge structure which splits over R.

This splitting is functorial (§ commutes with every morphism of real mixed Hodge
structures) and satisfies L(ml,;)l = L(V%,;MF)
Proposition 3.10 (|10, Prop. 2.24)). The Deligne §-splitting yields a G(R)-equivariant
smooth real semi-algebraic retraction M — Mg of the inclusion Mg € M (over Q).

3.7. The sly-splitting, aka canonical splitting, aka £-splitting.

Theorem 3.11 (Deligne, cf. [5, Theorem 2.18]). The sly-splitting is the unique, functo-
rial splitting of real mized Hodge structures which is given by universal Lie polynomials
in the Hodge components of the Deligne d-splitting such that if (exp(zN) - F, W) is an
admissible nilpotent orbit with limit mized Hodge structure (F, M) which is split over
R then the Deligne grading of the splitting of (expiN - F,W) is a morphism of type
(0,0) for (F,M).

Corollary 3.12. The sly-splitting yields a G(R)-equivariant smooth real semi-algebraic
retraction v : M — Mg of the inclusion Mr € M (over Q).
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3.8. The definable structure on arithmetic quotients of period domains. In
the following proposition we continue to identify Mgr = Q x S(W)(R).

Proposition 3.13. Let I' € G(Q) be an arithmetic subgroup. Then T\Mpg admits a
structure of a Rag-definable analytic space characterized by the following property: for

any semi-algebraic Siegel set & < Q and bounded semi-algebraic ¥ < S(W)(R), the
map & x ¥ — I'\Mp is Ruig-definable.

Proof. Let U be the unipotent radical of G, 'y := I' n U(Q), and 'y the image of
I' in H(Q). By [10, Prop. 2.2], U(R) acts simply transitively on S(W)(R). Taking
B < S(W)(R) to be a bounded semi-algebraic fundamental set for the cocompact
action of I'y and F' to be a definable fundamental set for T'g\Q2, we use F' x B as a
definable fundamental set to induce the definable structure on I'\ My via Proposition
Let & < Q be any semi-algebraic Siegel set and ¥ < S(W)(R) be any bounded
semi-algebraic subset. Then & meets only finitely many I'yg-translates of F', and for any
any v € G(Q) we have that ¥ meets only finitely many I'y-translates of YB, so & x X
meets only finitely many I'-translates of F' x B. Therefore the map & x ¥ — I'\\ Mg
is Ryg-definable. O

Definition 3.14. Let I' € G(Q) be an arithmetic subgroup and r : M — Mp the
slo-splitting. Let = < Mg be a definable fundamental set for I\ Mpg. We endow "\ M
with a structure of a Ryg-definable analytic space via Proposition using r~1(Z) as
a definable fundamental set.

Be careful that two different retractions will yield in general two different definable
structures on "\ M.

4. VARIATIONS OF MIXED HODGE STRUCTURES AND THEIR PERIOD MAPS

4.1. Variation of mixed Hodge structures. Let R = Z,Q or R. A variation of
mixed R-Hodge structures over a (possibly non-reduced) complex analytic space S is
the data of

e a R-local system £ on the underlying topological space,

e an increasing filtration W of £ by sublocal systems (the weight filtration),

e a decreasing filtration F' of L& Og by locally split Og-submodules (the Hodge
filtration)

such that

e [ satisfies Griffiths transversality in the usual sense on the reducedE regular
locus of S.
e for every s € S, (Ls, Ws, Fy) is a mixed R-Hodge structure.

We say the variation is graded-polarized if we are given a parallel polarization on each
of the associated variation of pure Hodge structures.

Lemma 4.1. Consider a variation of integral mized Hodge structures over a complex
analytic space S. Then, up to replacing S by a finite étale cover, the pull-back of the
underlying local system by any holomorphic map A* — S has unipotent monodromy.

Proof. We can assume without loss of generality that S is connected. Fix s € .S and let
m1(S,s) — GL(Ls) denote the monodromy representation of the underlying Z-local
system L. Consider the pull-back of the variation of integral mixed Hodge struc-
tures to the finite étale cover corresponding to the kernel of the group homomorphism

2Note in particular that we do not require the nilpotent tangent directions to be Griffiths transverse,
though it is not clear that this level of generality is useful: variations coming from geometry will satisfy
Griffiths transversality in the nilpotent directions as well.
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m1(S,s) = GL(Ls ®z F,) for a prime number p, so that all the monodromy operators
are now trivial modulo p. By applying Borel’s monodromy theorem [21, Lemma 4.5]
to the associated variations of pure Hodge structures, one sees that the eigenvalues of
the monodromy operator corresponding to a holomorphic map A* — S are roots of
unity of degree bounded by the rank of £. Since roots of unity of a fixed degree inject
modulo p for sufficiently large p, the claim follows. O

4.2. Period maps. Let S be a (possibly non-reduced) complex analytic space. By a
mixed period map from S we mean a locally liftable analytic map ¢ : S — G(Z)\M
which is tangent to the Griffiths transverse foliation of M on the reduced regular locus
of S. Evidently, a mixed period map from S is equivalent to giving a variation of
graded-polarized integral mixed Hodge structures on S in the sense of the previous
section.

4.3. Admissibility. The notion of admissibility for a variation of mixed Hodge struc-
tures was introduced by Steenbrink and Zucker over one-dimensional bases [22] and
by Kashiwara [13] in higher dimensions. Let us recall the definitions.

Let (£, W, F) be a graded-polarizable variation of real mixed Hodge structures on
A* with unipotent monodromy. Let V and W}, denote the canonical extensions of L&r
Oax and Wi, ®r Oax to A respectively, equipped with their logarithmic connections.
The variation (£, W, F') is called pre-admissible if the following conditions hold:

(1) The residue at the origin of the logarithmic connection on V, which is an
endomorphism of the fiber V|y of V at the origin, admits a weight filtration

relative to W|O.

(2) The Hodge filtration F extends to a subbundle F' of V such that Gr% GrkWV
is locally-free for all p and k.

Given a Zariski-open subset S in a reduced complex analytic space S, we say that
a graded-polarized variation of real mixed Hodge structures (£, W, F') on S is admis-
sible with respect to the inclusion S < S if for any holomorphic map f : A — S such
that f(A*) < S and f*£ has unipotent monodromy, the pull-back variation on A* is
pre-admissible.

One easily verifies that a variation of real mixed Hodge structures on A* with unipo-
tent monodromy which is pre-admissible is admissible with respect to the inclusion
A* < A, cf. [13] Lemma 1.9.1].

Proposition 4.2. If a graded-polarizable variation of real mixed Hodge structures over
a complex algebraic variety S is admissible with respect to an algebraic compactification
S of S, then it is admissible with respect to any other algebraic compactification of S.

Proof. Indeed, a holomorphic map f : A* — S is the restriction of a holomorphic
A — S exactly when it is definable in R,;,, hence this property in independent of the
compactification. O

4.4. Nilpotent orbit theorem. Consider a graded-polarized variation of real mixed
Hodge structures over (A*)™ with unipotent monodromies. Let H denote the Poincaré
upper half-plane and e : H* — (A*)™ the uniformizing map given by e(z1, -, z,) =
(exp(2mi-z1),- -+ ,exp(2mi-zy,)). Choosing a reference point in H", we get a period map
¢ : H" — M. Denoting by N; (1 < j < n) the logarithm of the monodromy operators
corresponding to counterclockwise simple circuits around the various punctures, the

- . - n
holomorphic map ¥ : H" — M given by ¥(z) := exp(— >, zj - INVj) - ¢(2) factorizes
j=1
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through the projection map e : H* — (A*)". Let ¥ : (A*)" — M denote the
factorization. Thanks to Schmid’s nilpotent orbit theorem [21, Theorem 4.12], the
composition of ¥ with the projection M — € extend as a holomorphic map A™ — €.
If one assume from now on that the variation is admissible with respect to the inclusion
(A*)™ < A™, then by definition the restriction of ¥ to any punctured disk A* < (A*)"
extends as a holomorphic map A — M. Since the projection M — € is an affine
holomorphic map, it follows that ¥ extends as a holomorphic map A" — M. Indeed,
since the projection M is locally on € a closed analytic subspace of § x CN for
some positive integer N, this reduces eventually to the fact that a holomorphic map
(A*)" — C extends as a holomorphic map A™ — C if it does in restriction to any
punctured disk A* < (A*)". Therefore we have proved:

Proposition 4.3. Let S be the complement of a normal crossing divisor in a complex
manifold S. Let (L, W, F) be a graded-polarized variation of real mized Hodge struc-
tures over S with unipotent monodromies at infinity which is admissible with respect
to the inclusion S < S. If V and W), denote the canonical extensions of L @r Oax
and Wi, @r Opx to S respectively, then the Hodge filtration F extends to a subbundle

F of V such that Gr% Gr%vv 1s locally-free for all p and k.
4.5. Admissible period maps are definable.

Theorem 4.4. Consider an admissible variation of graded-polarized integral mixed
Hodge structures over a reduced complex algebraic variety S, and let ¢ : S — G(Z)\M
be the associated period map. Then ¢ is definable in Ray exp, where we equip G(Z)\M
with the Raig-definable structure associated to the slp-splitting, cf. section .

This generalizes to the mixed case [3, Theorem 1.3] for pure variations of Hodge
structures.

5. PROOF OF THEOREM [4.4]

Recall that it is sufficient to prove the definability of the map obtained by precom-
posing ¢ by a surjective definable holomorphic map. In particular, by looking at a
desingularization of S, one can assume from the beginning that S is smooth. More-
over, up to replacing S by a finite étale cover, one can assume that the monodromies
at infinity are unipotent, c.f. Lemma [4.1

Taking a covering of S in Ryig (or just Rap exp) by open subsets isomorphic to (A*)",
one sees that we are reduced to proving:

Theorem 5.1. Consider an admissible variation of graded-polarized integral mized
Hodge structures with unipotent monodromies over the punctured polydisk (A*)"™, and
let o : (A*)" — G(Z)\M be the associated period map. Then ¢ is definable in Rap exp-

Let H denote the Poincaré upper half-plane and e : H” — (A*)" the uniformizing
map given by e(z1,- -+ ,2n) = (exp(27i- z1),- -+ ,exp(27mi- z,)). By choosing a lifting @
of the period map ¢, we obtain a commutative diagram of holomorphic maps

H”—¢>M

| l

(A*)™ — G(Z)\M
A vertical strip in H” is by definition a product of sets of the form

{(z,y)eH|a <z <b, c<y}
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for some real numbers a < b and ¢ > 0. Let & < H" be a vertical strip mapped by e
surjectively onto (A*)™, and consider the induced commutative diagram of holomorphic
maps

Ple
_ M

o ]

(A%)" —— G(Z)\M

Since the holomorphic map e|g is definable and surjective, the definability of ¢ will
be proved if we show that ¢g : & — M is definable and that the image of & by ¢
is contained in a finite union of definable fundamental sets. This is the content of the
next two results.

Proposition 5.2. If ¢ : H* — M is a lifting of the period map of an admissible
variation of mized Hodge structures over (A*)™ with unipotent monodromies, then its
restriction to any vertical strip is definable in Rap exp-

Proof. Denoting by N; (1 < j < n) the logarithm of the monodromy operators
corresponding to counterclockwise simple circuits around the various punctures, the

- . - n
holomorphic map ¥ : H" — M given by ¥(z) := exp(— >, z; - Nj) - ¢(2) factor-
j=1

izes through the projection map e : H* — (A*)". If ¥ : (A*)® — M denote the
factorization, it follows from the admissibility condition that ¥ extends as a holo-
morphic map A" — M, cf. Proposition For any vertical strip & < H", the
restriction of ¥ to its image by e is the restriction to a relatively compact set of
a holomorphic map, therefore it is definable in R,,. As e : 6 — A" is Ranexp-

definable, it follows that (& — M,z — ¥(2) = ¥(e(2)) is Ray exp-definable. Since
both the action of G(C) on the compact dual M and the morphism C* — G(C)

given by (z1,---,2,) — exp( ), z; - N;) are algebraic, it follows from the equality
j=1
n -
P(z) = exp( Y zj - Nj) - U(z) that the restriction of ¢ to any vertical strip is definable
j=1
in Ran exp- O

Proposition 5.3. If ¢ : H* — M is a lifting of the period map of an admissible
variation of mized Hodge structures over (A*)", then the image by ¢ of a vertical strip
1s contained in a finite union of definable fundamental sets.

Given the definition of the definable structure in Definition Theorem is a
consequence of its special pure case proved in [3] and the following result of Brosnan—
Pearlstein.

Theorem 5.4 (Cor. 2.34 of [5]). Let H" — M be a lifting of the period map of an
admissible variation of mized Hodge structures over (A*)". If M — S(W)(R) is the
map associated to the sla-splitting, then the composition H" — S(W)(R) is bounded on
any vertical strip.

6. MiXED HODGE VARIETIES

6.1. Mixed Mumford-Tate groups. (cf. [1] and 15| §2].)

We first briefly summarize Mumford—Tate groups of mixed Hodge structures. For
simplicity we focus on rational mixed Hodge structures, though the same holds for
any subfield of R. Let S = Resc/r G, and define the weight torus to be the diagonal
w : Gy, — S. For a rational mixed Hodge structure V = (Vp, W, F'), the associated
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Deligne torus is the homomorphism h : S¢ — GL(V¢) by which (21, 22) € Sc(C) =
C* x C* acts as 2)'24 on IP? in the Deligne splitting of V. Recall that the weight zero
Hodge classes of V are defined as Hdgy(V)q := (Wo)g n F°.

Let (V') be the smallest full subcategory of the category of rational mixed Hodge
structures which contains both V' and Q(0) and is closed under subquotients, ®, and ®.
The Mumford-Tate group MT(V) < GL(V) is then the Tannakian group associated
to (V) with its obvious tensor functor. By |1, Lemma 2], MT (V) is equal to the largest
Q-subgroup of GL(V') which fixes Hdgy(T"™"™(V)) for all m,n > 0 where T""(V) :=
VT @ (VV)". It is connected and equal to the Q-Zariski closure of h in GL(V), is
contained in GL(V)", and if Gr"" V is polarizable then MT(CGr" V) is the quotient
of MT(V) by its unipotent radical (cf. [15, §2.4]).

The Mumford—Tate group of an integral mixed Hodge structure is simply the Mumford-
Tate group of the associated rational mixed Hodge structure.

6.2. Mixed Hodge varieties. In this section we largely follow the setup in [15| §3],
which we refer to for details (see also [19]). The following definition serves as an
abstract model for a Mumford—Tate group.

Definition 6.1. A mixed Hodge datum is a pair (G, X¢g) where G is a connected
linear algebraic Q-group and X¢g is a G(R)U(C)-conjugacy class of homomorphisms
Sc — G¢ where U is the unipotent radical of G satisfying the following conditions.
For some (hence any) h € Xg, letting H = G/U, we have

(1) Sc LN G¢ — Hc is defined over R;
(2) G 2 Sc LN G¢ — Hc is defined over Q;
(3) The rational mixed Hodge structure on the Lie algebra g of G induced by the
adjoint action has W_;g = u.
A morphism of mixed Hodge data p : (G,Xg) — (G’, X&) is a Q-homomorphism
p: G — G’ sending X¢g to X¢/.

The first two conditions guarantee that if p : G — GL(Vp) is a Q-representation,
then p o h endows Vg with the structure of a rational mixed Hodge structure for each
h € Xg. If p is moreover faithful the third condition ensures that U is the group acting
trivially on the associated graded. When p is faithful the map

X — {rational mixed Hodge structures on V'}

factors through a complex manifold Dg x, which is independent of p.

Definition 6.2.

(1) A connected mixed Hodge datum is a triple (G, Xg, D') where (G, Xg) is a
mixed Hodge datum and D is a connected component of D¢, x, ; the stabilizer
G(R)" of D" in G(R) is a connected component. We refer to D as a connected
mixed Hodge domain.

(2) For (G, Xq,D") a connected mixed Hodge datum and I' € G(Q)* := G(Q) n
G(R)* an arithmetic subgroup, the associated connected mixed Hodge variety
is the complex manifold T\D™.

(3) A morphism f : D — D’ of connected mixed Hodge domains corresponding

to connected mixed Hodge data (G(’ ), X g)(/),D(’ )) is a map induced from a Q-
homomorphism p : G — G’ sending Xg to X, and D to D’. If in addition T
is sent to IV we call the induced map f : I'\D — I"\D’ a morphism of connected
mixed Hodge varieties.

(4) A Hodge datum (G, X¢) is graded-polarizable if for some (hence any) h € Xg

and some (hence any) faithful representation p : G — GL(Vg) the induced
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mixed Hodge structure on Vg is graded-polarizable. In this case we say the as-
sociated connected mixed Hodge domains and varieties are graded-polarizable
as well.

Remark 6.3. For simplicity we only deal with connected mixed Hodge varieties, as this
is all that is needed for definability questions: a general mixed Hodge variety as in [15]
is a finite union of connected ones.

Note that any connected mixed Hodge domain D* has a functorial R,ie-definable
structure for which the action of G(R)" is definable.

For any graded-polarizable connected mixed Hodge datum (G, Xg,D") and a faith-
ful Q-representation p : G — GL(Vgp) we obtain a holomorphic embedding of D% in a
graded-polarizable mixed period domain M as a p(G(R)"U(C))-orbit after choosing
an integral structure for Vg and graded polarization forms. For a generic V' in this
orbit we have:

(1) MT(V) = p(G); )

(2) p(G(C)) -V is a closed algebraic subvariety of M;

(3) p(G(R)TU(C)) - V is a semialgebraic open subset of p(G(C)) - V, equal to the
component of (p(G(C))-V) n M containing V.

Theorem 6.4. Any connected graded-polarizable mized Hodge variety has the structure
of an Rye-definable analytic space which is functorial with respect to morphisms of
connected mized Hodge varieties and which agrees with that of T\M from Definition

.17

Before the proof we make some preliminary observations. For any connected mixed
Hodge datum (G, Xg,D") we define the real-split locus Df < D% as the locus of
h € D whose Deligne torus is defined over R, and likewise define the real split locus
of any connected mixed Hodge variety as (I\D*)g := I'\Dg. Evidently both are
R,jg-definable subspaces and morphisms preserve the real split loci and their definable
structures.

For any graded-polarized connected mixed Hodge datum (G, Xg,D*), we have a
natural mixed Hodge datum (H, Xy, Dér) of the associated graded. As in section ,
we have a semi-algebraic G(R)"-equivariant identification

(1) Df =~ Df, x UR).

The map to D¢, is the obvious one; the map to U(R) is obtained by taking the
Deligne splitting of the weight filtration of the induced mixed Hodge structure on g
in S(Wg)(R), and observing that the image is a U(R)-orbit. The identification is not
canonical but the semi-algebraic structure is.

Proposition 6.5. The real split locus (T\D")r of any connected graded-polarizable
mized Hodge variety admits a structure of a Rag-definable topological space charac-
terized by the following property: for any semi-algebraic Siegel set & < (Dar)R and
bounded semi-algebraic ¥ < U(R), the map & x X — (I'\D1)gr is Ryjg-definable. More-
over, the definable structure is compatible with morphisms of connected mired Hodge
varieties.

Proof. The first part is the same as in the proof of Proposition As the iden-
tification is clearly functorial in morphisms of connected mixed Hodge data, the
second statement follows from Theorem and the fact that a bounded set of Deligne
gradings G,,, — G is mapped to a bounded set. U

Proof of Theorem [6.4] We start by generalizing the slo-splitting:
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Lemma 6.6. For any connected graded-polarized mixed Hodge domain DT there is a
Raig-definable G(R)" -equivariant retraction r : DT — Dﬁ{ which is compatible with
morphisms of connected mized Hodge domains.

Proof. A faithful Q-representation p : G — GL(Vp) yields an embedding ¢ : Dt — M
into a graded-polarizable mixed period domain and we may pull back the slo-retraction
r: M — Mg to DV.

It remains to show that the sly-retraction commutes with a morphism D+ — D't
induced by a morphism of mixed Hodge data p : (G,Xg) — (G',Xg/). For any
h € Xqg, p induces a morphism dp : g — g’ of mixed Hodge structures induced by h
and poh. The Deligne é-splitting of g is Ad(e™*) - h where 6 € (L;l’fl)R is the unique
element for which T' = Ad(e~2")T, where T is the Deligne grading [10, Prop. 2.20].
From the proof of [10, Prop. 2.2], § is contained in ad gg, in fact in the Lie algebra
generated by the weight torus and its conjugate. Obviously dp(T) is the Deligne
grading of po h, and so dp(d) is the 0 operator for g’. As the sly-splitting is defined by
universal Lie polynomials in J, the result follows. U

As in Definition we endow I'\M with a definable structure coming from the
definable set r~!(Z) for a definable fundamental set = for (I'\M)g. By the lemma this
definable structure is compatible with morphisms. O

6.3. (Weakly) special subvarieties. Briefly, as in [15] we define the collection of
weakly special subvarieties of connected mixed Hodge varieties to be the minimal
collection which is closed under finite unions, taking connected components, and taking
images and preimages under morphisms of mixed Hodge varieties and which contains
points. For an algebraic variety S with an admissible variation of integral graded-
polarized mixed Hodge structures (£, W, F') with monodromy contained in T, we define
the weakly special subspaces of S to be the pull-backs of weakly special subvarieties
of "M along the associated period map ¢ : S — I'\M with their natural structure
as locally closed Ry, exp-definable analytic subspaces, by Theorem From definable
GAGA [2, Theorem 3.1] we conclude:

Corollary 6.7. Weakly special subspaces of S are algebraic.

As a concrete example of the corollary, we specifically treat the case of Noether—
Lefschetz loci in more detail, and leave the general setup to the reader. For any V € M,
define the Noether—Lefschetz locus

NLV)={V'e M| MT(V') c MT(V)} €« M.
and let NL(V') < I'\\M be the image. The following is the mixed analog of [12) Theorem

I1.C.1]; the same proof works with essentially no modification.

Proposition 6.8. For Ve M, let G := MT(V) with unipotent radical U and let
Xg be the G(R)U(C)-conjugacy class of the Deligne torus of V. Then the compo-
nent of NL(V) passing through V is the connected mized Hodge domain for (G, Xg)
containing V.

Corollary 6.9. NL(V) c I'\M is a definable analytic subspace.

Proof. From the proposition and Theorem each connected component of NL(V) is
a definable analytic subspace, and it remains to check there are finitely many compo-
nents. For V' € M, to have MT (V') € MT(V) we must check if finitely many vectors
in finitely many 7" (V") are Hodge, that is, contained in FOT™™ (V") n WoT™"™(V').
Thus, NL(V) = /\ﬁ(V) N M for a natural algebraic subvariety /\72(V) c M. As
/\\/'/E(V) intersects a definable fundamental set for I'\ M in finitely many components,
the result follows. O
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For any algebraic variety S with an admissible variation of integral graded-polarized
mixed Hodge structures (£, W, F') with monodromy contained in I and any s € S we
define NLg < S to be the pull back of NL(Ls, Wy, Fs) < I'\M with its natural structure
as a definable analytic subspace.

Corollary 6.10. NL; < S is algebraic.

Recall the definition of Hdgd(S) < S from the introduction. Using that there are
finitely many O(Gry" Vz, go)-orbits of primitive vectors v with fixed square go(v,v) =
d # 0 (for instance using [17]), and therefore finitely many I'-orbits of v € WV with
qo(v,v) = 0, we deduce in the same fashion:

Corollary 6.11. Hdgd(S) c S is algebraic.
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