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1. Introduction

1.1. The purpose of this paper is to prove a rather unexpected new Æniteness result for polarized integral
variations of Hodge structure, containing the theorem of Cattani, Deligne, and Kaplan for the locus of
Hodge classes [CDK95] as a special case. Instead of integral Hodge classes, we consider integral classes that
are “self-dual”, meaning that they are preserved by the action of the Weil operator; the motivation for this
comes from considerations in theoretical physics. Analyzing such classes using the methods in [CDK95]
becomes rather complicated, so our main tool is going to be the deÆnability of period mappings in the
o-minimal structure Ran,exp, recently proved by Bakker, Klingler, and Tsimerman [BKT20]. This transforms
the problem into a pleasant set of exercises about certain algebraic groups.

1.2. We begin by describing a toy case of the problem, to set up the notation. Suppose that H is a polarized
integral Hodge structure of even weight 2k. We denote by

HC =HZ ⌦Z C =

M

p+q=2k

Hp,q

the Hodge decomposition, and by Q : HZ ⌦Z HZ!Z the symmetric bilinear form giving the polarization.
If we deÆne the Weil operator by the formula

Cv = ip�qv for v 2Hp,q,

then C 2 End(HR) and C2
= id, and the expression

h�,�i : HR ⌦R HR! R, hv,wi =Q(v,Cw),

puts a positive deÆnite inner product on HR =HZ ⌦Z R. We usually write the resulting Hodge norm simply
as kvk2 = hv,vi.

We shall be interested in integral vectors v 2HZ with the property that Cv = v. Since C2
= id, any vector

v 2HR can of course be decomposed uniquely as

v = v+ + v� with Cv+ = v+ and Cv� = �v�;

concretely, v+ is the sum of all the “even” components in the Hodge decomposition of v, and v� the sum of
all the “odd” ones. By analogy with the action of the Hodge ⇤-operator on the cohomology of four-manifolds,
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we may call v+ and v� the self-dual respectively anti-self-dual part of v. We say that an integral class is
self-dual if v = v+; note that Hodge classes (in HZ \Hk,k ) are obviously self-dual. With this notation, we
have

kvk2 = kv+k
2
+ kv�k

2
� kv+k

2
� kv�k

2
=Q(v,v),

with equality exactly when Cv = v. Among integral vectors with a Æxed value of Q(v,v), those with Cv = v
therefore have the smallest possible Hodge norm kvk2. In this setting, we have the following completely
trivial Æniteness result: the set

H+

q =

n
v 2HZ

��� Cv = v and Q(v,v) = q
o

of self-dual integral vectors with a given self-intersection number q � 1 is Ænite. Our main theorem is a
generalization of this fact to arbitrary polarized integral variations of Hodge structure of even weight.

1.3. We now turn to the main result. Let X be a nonsingular complex algebraic variety, not necessarily
complete, and let H be a polarized integral variation of Hodge structure on X , of even weight 2k. Let
p : E ! X be the underlying complex vector bundle, whose sheaf of holomorphic sections is isomorphic
to OX ⌦ZHZ; here HZ denotes the underlying local system of free Z-modules. At each point x 2 X , the
complex vector space Ex = p�1(x) is equipped with a polarized integral Hodge structure of weight 2k; the
set of integral vectors coincides with the stalk HZ,x. We denote by Cx 2 End(Ex) the Weil operator, and by
Qx the polarization; it is the stalk of the pairing Q : HZ ⌦ZHZ!ZX that deÆnes the polarization on H.
We shall think of the points of E as pairs (x,v), where x 2 X and v 2 Ex.

Recall that E is actually an algebraic vector bundle [Del70]; the algebraic structure is uniquely determined
by H. We shall give both E and X the Ran,exp-deÆnable structure extending their algebraic structure; then
the projection p : E ! X becomes a morphism of deÆnable spaces. Our main result is that the set of all
self-dual integral classes with Æxed self-intersection number is a deÆnable subspace of E.

Theorem 1.1. Let H be a polarized integral variation of Hodge structure of even weight on a nonsingular complex
algebraic variety X . For each q � 1, the set

n
(x,v) 2 E

��� v 2 Ex is integral, Cxv = v, and Qx(v,v) = q
o

is a deÆnable, closed, real-analytic subspace of E, and the restriction of p : E! X to this set is proper with Ænite
Æbers.

1.4. By analogy with the theorem of Cattani, Deligne, and Kaplan, it is a natural to ask whether the locus of
self-dual classes is actually real (semi-)algebraic, meaning actually deÆnable in the much smaller structure
Ralg. Simple examples in dimension one show that semi-algebraic is the best one can hope for in general.
We do not know the answer to this question.

1.5. Several useful variants of the main result can be obtained by tensoring with certain auxiliary Hodge
structures. The Ærst one is the analogue of Theorem 1.1 for integral classes that are anti-self-dual.

Corollary 1.2. Let H be a polarized integral variation of Hodge structure of even weight on a nonsingular complex
algebraic variety X . For each q � 1, the set

n
(x,v) 2 E

��� v 2 Ex is integral, Cxv = �v, and Qx(v,v) = �q
o

is a deÆnable, closed, real-analytic subspace of E, and the restriction of p : E! X to this set is proper with Ænite
Æbers.

The second one is a generalization to polarized integral variations of Hodge structure of arbitrary weight,
where we now consider pairs of integral classes that are related by the Weil operator.
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Corollary 1.3. Let H be a polarized integral variation of Hodge structure on a nonsingular complex algebraic
variety X . For each q � 1, the set

n
(x,v,w) 2 E ⇥X E

��� v,w 2 Ex are integral, v = Cxw, and Qx(v,w) = q
o

is a deÆnable, closed, real-analytic subspace of E ⇥X E, and the restriction of p : E ⇥X E! X to this set is again
proper with Ænite Æbers.

Note that when H is an integral Hodge structure of odd weight, the Weil operator C 2 End(HR) satisÆes
C2

= � id, and so its eigenvalues are the two complex numbers ±i . The condition v = Cw is equivalent to

C(v + iw) = i(v + iw),

which is saying that v + iw 2HZ ⌦Z Z[i] is an eigenvector of the Weil operator that is integral with respect
to the Gaussian integers Z[i].

1.6. Unlike in the case of Hodge classes, the locus of self-dual (or anti-self-dual) classes is in general not a
complex analytic subset of the vector bundle E, hence in particular not algebraic. The reason is that the
Weil operator Cx 2 End(Ex) depends real analytically – but not complex analytically – on the point x 2 X ,
which means that Cxv = ±v is not a holomorphic condition. We intend to discuss both the local structure of
the locus of self-dual classes, and its more precise behavior near a divisor with normal crossing singularities,
in a future paper. Here we only give two examples to show what these loci can look like in practice.

1.7. Our Ærst example concerns anti-self-dual classes on K3 surfaces; these show up naturally in Verbitsky’s
study of ergodic complex structures on hyperkähler manifolds [Ver15, Ver17].

Example 1.1. Let S be a (not necessarily algebraic) K3 surface and let ⇤Z =H2
(S,Z) together with the cup

product pairing. The period domain D parametrizing the Hodge structures of K3 surfaces is a complex
manifold of dimension 20; concretely, if H2,0

(S) = C� , one has

D =

n
[�] 2 P⇤C � P

21
���Q(� ,�) = 0 and Q(� , �̄) < 0

o
.

The set of points where a given integral class v 2⇤Z is anti-self-dual, of Hodge type (2,0) + (0,2), is easily
seen to be n

[�] 2 P21
���Q(� , �̄)v =Q(v, �̄)� +Q(v,�)�̄)

o

This is a totally real submanifold of real dimension 20.

Using Ratner theory, Verbitsky shows that for any Ænite index subgroup � ⇢O(⇤Z), orbits �p of elements
p 2 ⇤Z come in three Øavors: closed orbits, dense orbits, and orbits whose closures are the �-orbit of an
anti-self-dual locus. The three behaviors correspond to the three possibilities rk((H2,0

�H0,2
)\⇤Z) = 2,0,1,

respectively, for the Hodge structure associated to p. The same analysis holds more generally for the period
domain associated to the degree two cohomology of any (possibly singular) hyperkähler variety, and is
important for instance in the proof of the global Torelli theorem in the singular case [BL18].

1.8. Our second example is self-dual classes in certain nilpotent orbits. This is less geometric, but provides
us with a large family of examples. For the general theory, see [CKS86, §3] and the survey paper [CK89, §3]
by Cattani and Kaplan.

Example 1.2. Let HZ be a free Z-module of Ænite rank, and let Q : HZ ⌦Z HZ! Z be a nondegenerate
symmetric bilinear pairing. Suppose that we have a representation ⇢ : sl2(C)! End(HC) of the Lie algebra
sl2(C), such that

N = ⇢

 
0 1

0 0

!
2 End(HQ) and Y = ⇢

 
1 0

0 �1

!
2 End(HR)
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satisfy Q(Nv,w) +Q(v,Nw) = 0 and Q(Yv,w) =Q(v,Yw) for all v,w 2HC, and such that eN 2 End(HZ).
Let W•(N ) denote the weight Æltration of the nilpotent operator N . Let F be a decreasing Æltration of HC

such that

Y (Fp
) ✓ Fp and N (Fp

) ✓ Fp�1 for all p 2Z.

Further assume that F] = eiNF is the Hodge Æltration of an integral Hodge structure of even weight on HZ,
polarized by the pairing Q. Then it is known [CK89, Proposition 3.9] that the nilpotent orbit

H!D, z 7! ezNF,

descends to a polarized integral variation of Hodge structure on �⇤, whose monodromy transformation is
T = eN . Let us describe the locus of points in H where a given integral class v 2 HZ is self-dual. Write
z = x + iy. Let C] 2 End(HR) denote the Weil operator of the Hodge structure F]. From the identity

ezNF = exNeiyNF = exNe�
1

2
logy Y eiN e

1

2
logy YF = exNe�

1

2
logy YF]

and the fact that both exponential factors are elements of the real Lie group G(R), it follows that the Weil
operator of the Hodge structure ezNF is

exNe�
1

2
logy YC]e

1

2
logy Y e�xN .

The set of points z 2 H where our integral class v 2 HZ is self-dual is therefore deÆned by the simple
equation

(1.3) C]
✓
e
1

2
logy Y e�xNv

◆
= e

1

2
logy Y e�xNv.

At each point, the Hodge norm of v is of course equal to Q(v,v). If the set contains points with y = Imz
arbitrarily large, then necessarily v 2W0(N ). Since

W0(N ) =

M

`0

E`(Y ),

we have a decomposition v = v0 + v�1 + · · · , where Yv` = `v` . Now the Weil operator C] interchanges
the two weight spaces E±`(Y ), because YC] +C]Y = 0, for example by [CKS86, formulas (6.35)]. Since

e
1

2
logy Y e�xNv 2W0(N ), the identity in (1.3) implies that e

1

2
logy Y e�xNv 2 E0(Y ), and hence that

v = exNe�
1

2
logy Y v0 = exNv0.

Now there are two possibilities. Either Nv = 0 and v = v0, or Nv , 0. In the Ærst case, v is self-dual at
every point z 2H; in the second case, the equation v = exNv0 uniquely determines the value of x 2 R, and
v is self-dual along the vertical ray Rez = x. The connected components of the locus of self-dual classes are
therefore of two di�erent kinds: one kind projects isomorphically to the entire punctured disk �⇤; the other
to a single angular ray in �⇤.

2. Background on deÆnability

2.1. The theory of o-minimal structures provides a precise notion of tameness for subsets of euclidean space
and functions on them. It is Øexible enough to allow for complicated constructions but restrictive enough to
imply strong Æniteness properties. A general reference for this section is [vdD98].
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2.2. To formalize this notion, we Ærst introduce a way to describe collections of subsets of Rn which are
closed under a variety of natural operations.

DeÆnition 2.1. A structure S is a collection (Sn)n2N where each Sn is a set of subsets of Rn satisfying the
following conditions:

(1) Each Sn is closed under Ænite intersections, unions, and complements;
(2) The collection (Sn)n2N is closed under Ænite Cartesian products and coordinate projections;
(3) For every polynomial P 2 R[x1, . . . ,xn], the zero set

(P = 0) := {x 2 Rn
| P(x) = 0} ⇢ R

n

is an element of Sn.

We refer to an element U 2 Sn as an S-deÆnable subset U ⇢ R
n. For U 2 Sn, and V 2 Sm, we say a map

f :U ! V of S-deÆnable sets is S-deÆnable if the graph is as a subset of Rm+n. When the structure S is
clear from context, we will often just refer to “deÆnable" sets and functions.

2.3. For each n taking Sn to be the Boolean algebra generated by real algebraic subsets (P = 0) of Rn, the
resulting S is not a structure. For example, the algebraic set (x2 � y = 0) ⇢ R

2 projects to the semialgebraic
set (y � 0) ⇢ R. On the other hand, if we take Sn to be the Boolean algebra generated by real semialgebraic
subsets (P � 0) of Rn, then by the Tarski–Seidenberg theorem the resulting S = Ralg is a structure.

Note. Tarski–Seidenberg is usually phrased as quantiÆer elimination for the real ordered Æeld. Indeed, the
above axioms for a structure say that deÆnable sets are closed under Ærst order formulas, as intersections,
unions, and complements correspond to the logical operators “and", “or", and “not", while the projection
axiom corresponds to universal and existential quantiÆers. For this reason, structures have been studied
extensively in model theory.

2.4. Surprisingly, a good notion of tame structure can be achieved by simply restricting the deÆnable subsets
of the real line.

DeÆnition 2.2. A structure S is said to be o-minimal if S1 = (Ralg)1—that is, if the S-deÆnable subsets of
the real line are exactly Ænite unions of intervals.

Sets and functions which are deÆnable in an o-minimal structure have very nice properties, including the
following. Here we Æx an o-minimal structure S and by “deÆnable" we mean “S-deÆnable."

• For any deÆnable function f :U ! V with Ænite Æbers, the Æber size |f �1(v)| is a deÆnable function.
In particular, it is uniformly bounded, and for any n the set

{v 2 V | |f �1(v)| = n}

is deÆnable.
• Any deÆnable subset U ⇢ R

n admits a deÆnable triangulation: it is deÆnably homeomorphic to a
Ænite simplicial complex.
• Any deÆnable subset U ⇢ R

n has a well-deÆned dimension, namely, the dimension as a simplicial
complex for any deÆnable triangulation. Moreover, for any deÆnable map f :U ! V and any n the
set

{v 2 V | dim f �1(v) = n}

is deÆnable.
• For any k and any deÆnable function f : U ! R, there is a deÆnable triangulation of U such that
f is Ck on each simplex. As a consequence, any deÆnable U ⇢ R

n can be partitioned into Ænitely
many Ck-submanifolds of Rn.
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2.5. We give some examples of o-miminal structures. As discussed above, the structure Ralg is o-minimal;
in fact, it is the smallest o-minimal structure.

Given a collection ⌃ = (⌃n)n2N of subsets of Rn for each n, we say the structure generated by ⌃ is the
smallest structure in which each set in each ⌃n is deÆnable. It is the structure whose deÆnable sets are
given by Ærst order formulas involving real polynomials, inequalities, and the sets in ⌃. The structure
Rexp generated by the graph of the real exponential exp : R ! R is o-minimal by a result of Wilkie
[Wil96]. However, the function sin : R! R is not deÆnable in any o-minimal structure, as the deÆnable set
⇡Z = sin

�1
(0) is both discrete and inÆnite.

2.6. To get a much larger o-minimal structure, let Ran be the structure generated by the graphs of all
restrictions f |B(R), where f : B(R0)! R is a real analytic functions on a Ænite radius R0 <1 open euclidean
ball (centered at the origin) and B(R) ⇢ B(R0) is a ball of strictly smaller radius R < R0 . Via the embedding
R
n
⇢ RP

n, this is equivalent to the structure of subsets of Rn that are subanalytic in RP
n. As observed by

van-den-Dries [vdD98], Gabrielov’s theorem of the complement implies that Ran is o-minimal. Note that
while the sine function is not Ran-deÆnable, its restriction to any Ænite interval is.

Finally, let Ran,exp be the structure generated by Ran and Rexp. Then Ran,exp is o-minimal by a result of
van-den-Dries–Miller [vdDM96]. Most of the applications to algebraic geometry currently use the structure
Ran,exp, and this will be the default structure we work with.

2.7. For applications, we typically wish to discuss deÆnability for manifolds that don’t arise as subsets of
R
n, and for this we need an appropriate notion of deÆnable atlas.

DeÆnition 2.3. Let M be a topological space and S a structure.

• A (S-)deÆnable atlas {(Ui,�i )} consists of a Ænite open covering Ui of M , and homeomorphisms
�i :Ui ! Vi ⇢ R

ni such that
(1) The Vi and the pairwise intersections Vij := �i(Ui \Uj ) are deÆnable sets;
(2) The transition functions �ij := �j ��

�1

i : Vij ! Vji are deÆnable.
• If M is equipped with a deÆnable atlas {(Ui,�i )}, we say a subset Z ⇢ M is deÆnable if each
�i(Ui \Z) is.
• If M,M 0 are equipped with deÆnable atlases {(Ui,�i )}, {(U

0

i 0 ,�
0

i 0 )}, a map f :M!M 0 is deÆnable if
each f �1(U 0i 0 ) ⇢M is deÆnable and moreover for each i, i 0 the composition

(f ���1i )
�1
(U 0i 0 )

��1i
���! f �1(U 0i 0 )

f
�!U 0i 0

�0i0
��! V 0i 0

is (S-)deÆnable.
• We say two atlases {(Ui,�i )}, {(U

0

i 0 ,�
0

i 0 )} on M are equivalent if the identity map is deÆnable with
respect to {(Ui,�i )} on the source and {(U 0i 0 ,�

0

i 0 )} on the target.
• A (S-)deÆnable topological space is a topological space M equipped with an equivalence class of
deÆnable atlases. A morphism of (S-)deÆnable topological spaces is a continuous map f :M!M 0

which is deÆnable for any choice of atlases in the equivalence classes on the source and target.
• We likewise deÆne (S-)deÆnable manifolds (resp. (S-)deÆnable complex manifolds) by in addition
requiring that the charts map to open subsets of Rn (resp. Cn) and that the transition functions are
smooth (resp. holomorphic). Here we make sense of deÆnability in C

n via the identiÆcation C
n � R

2n

by taking real and imaginary parts.

Example 2.1. Any complex algebraic variety X naturally has the structure of an S-deÆnable topological space
for any structure S . It admits a Ænite covering Ui by a�ne algebraic varieties, each of which is a complex
(hence real) algebraic subset of some C

ni , and the transition functions are given by algebraic functions.
Likewise, any nonsingular complex algebraic variety has a natural structure as an S-deÆnable complex
manifold. We denote this deÆnable complex manifold by Xdef.
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2.8. One common method of producing interesting deÆnable topological spaces is by taking quotients of
other deÆnable topological spaces by deÆnable group actions.

DeÆnition 2.4. Let X be a locally compact Hausdor� deÆnable topological space and � a group acting on
X by deÆnable homeomorphisms. A deÆnable fundamental set for the action of � on X is an open deÆnable
subset F ✓ X such that

(1) � ·F = X ,
(2) the set {� 2 � |� ·F \F , ?} is Ænite.

We shall require the following proposition:

Proposition 2.5 (cf. [BBKT20, Proposition 2.3]). If F is a deÆnable fundamental set for the action of � on X ,
then there exists a unique deÆnable structure on �\X such that the canonical map F! �\X is deÆnable.

3. Background on Siegel sets

3.1. In this section, we give some background on Siegel sets for symmetric spaces of the type that appear in
the study of period mappings. We begin by recalling the deÆnition of a Siegel set; a good general discussion
is [BJ06, § 2]. Let G be a reductive Q-algebraic group. The set of real points G(R) is a real Lie group,
and we Æx a maximal compact subgroup K ✓ G(R). By [BS73, Proposition 1.6], this determines a Cartan
involution ✓ of the R-algebraic group GR, whose Æxed point set is K . Let P ✓ G be a minimal parabolic
Q-subgroup, and let U ✓ P be its unipotent radical. The dimension of any maximal split Q-torus in P is
called the Q-rank of G; we shall denote it by rkG. The Levi quotient P/U is isomorphic to the product of a
split Q-torus of dimension rkG and a maximal anisotropic Q-subgroup. According to [BS73, Corollary 1.9],
there is a unique Levi subgroup

L = S ⇥M ✓ PR
that maps isomorphically to the Levi quotient PR/UR and is stable under the Cartan involution ✓. In
particular, S is a split R-torus of dimension rkG that is conjugate over GR to a maximal Q-split torus of
G, such that ✓(g) = g�1 for every g 2 S(R); compare [Orr18, Lemma 2.1]. Moreover, M is contained in the
centralizer of S in GR. The adjoint action of S on the Lie algebra of PR determines a root system, and we
write � for the set of simple roots.

We use the deÆnition of Siegel sets in [Orr18, § 2.2]; for a discussion of how it relates to the original
deÆnition in [Bor19, § 12], see [Orr18, § 2.3]. For our purposes, a Siegel set in G(R), with respect to the
maximal compact subgroup K and the minimal parabolic Q-subgroup P , is any set of the form

S(⌦, t) =⌦ ·At ·K ✓ G(R),

where ⌦ ✓U(R)M(R)
+ is a compact set, t > 0 is a positive real number, and

At =
n
g 2 S(R)

+
��� �(g) � t for all simple roots � 2 �

o
.

We say that a Siegel set is subalgebraic if ⌦ ✓ U(R)M(R)
+ is subalgebraic, meaning deÆnable in the

o-minimal structure Ralg.

Note. More generally, it is known that any set of the form S(⌦, t) with ⌦ ✓ P(R) compact is contained in a
Siegel set in the above sense [Orr18, § 2.3].

3.2. We are only going to be interested in Siegel sets with respect to a Æxed maximal compact subgroup. To
emphasize this, we usually talk about Siegel sets for K , meaning that the maximal compact subgroup K in
the deÆnition is Æxed, whereas the minimal parabolic Q-subgroup P is allowed to be arbitrary. For later
use, let us brieØy recall how Siegel sets for di�erent minimal parabolic Q-subgroups are related to each
other. Let K ✓ G(R) be a Æxed maximal compact subgroup, and P ✓ G be a minimal parabolic Q-subgroup.
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Since all minimal parabolic Q-subgroups are conjugate to each other, any other choice P 0 ✓ G has the form
P 0 = gPg�1 for a suitable element g 2 G(Q). Write g = kp with k 2 K and p 2 P(R)

+, so that

P 0(R) = gP(R)g�1 = kP(R)k�1.

Now suppose that S ✓ G(R) is a Siegel set for K and P . By [Bor19, § 12.4], the translate pS is contained in
a larger Siegel set ⌦AtK ✓ G(R) with respect to K and P ; here ⌦ ✓ U(R)M(R)

+ is compact and t > 0.
Consequently,

gS ✓ k⌦AtK = k⌦k�1 · kAtk
�1
·K,

and the right-hand side is now a Siegel set with respect to K and P 0 = gPg�1. This shows that any Siegel
set for K is contained in a G(Q)-translate of a Siegel set with respect to K and a Æxed minimal parabolic
Q-subgroup P .

3.3. Now we specialize to the case that is of interest in the study of period mappings. The general setting
is as follows. Let HQ be a Ænite-dimensional Q-vector space, of dimension n = dimHQ, equipped with a
nondegenerate symmetric bilinear form

Q : HQ ⌦QHQ!Q.

Further suppose that there is an endomorphism C 2 End(HR) of the real vector space HR =HQ ⌦Q R that
satisÆes C2

= id, such that

h�,�iC : HR ⌦R HR! R, hv,wi =Q(v,Cw),

is a positive deÆnite inner product on HR. By analogy with the case of Hodge structures, we shall say that C
is a Weil operator for the pair (HQ,Q).

3.4. The orthogonal group G = O(HQ,Q) is a reductive Q-algebraic group, in general not connected,
whose set of real points is the real Lie group

G(R) =

n
g 2 Aut(HR)

���Q(gv,gw) =Q(v,w) for all v,w 2HR

o
.

Evidently, C 2 G(R). It is easy to see that an element g 2 G(R) preserves the inner product h�,�iC if and
only if gC = Cg ; therefore the subgroup

K =

n
g 2 G(R)

��� gC = Cg
o

is compact. It is proved in [Sch73, (8.4)] that K is actually a maximal compact subgroup of G(R), and that
the associated Cartan involution is given by the simple formula

✓ : G(R)! G(R), ✓(g) = CgC.

The following result is well-known.

Lemma 3.1. The symmetric space G(R)/K parametrizes Weil operators for (HQ,Q), with the coset gK correspond-
ing to the Weil operator gCg�1 2 End(HR).

Proof. All elements in the coset gK give us the same operator gCg�1 2 End(HR), which is a Weil operator
for the pair (HQ,Q) because

Q(v,gCg�1w) =Q(g�1v,Cg�1w) = hg�1v,g�1wiC

is positive deÆnite. Conversely, suppose that C 0 2 End(HR) is another Weil operator for (HQ,Q). Let
n = dimHR. Since Q has a Æxed signature, we have

dimE1(C
0
) = dimE1(C) = p and dimE�1(C

0
) = dimE�1(C) = n� p.
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Pick a basis e1, . . . , en 2HR that is orthonormal for the inner product h�,�iC , in such a way that e1, . . . , ep 2
E1(C) and ep+1, . . . , en 2 E�1(C). Pick a second basis e0

1
, . . . , e0n 2HR that is similarly adapted to h�,�iC 0 and

C 0 , and let g 2 Aut(HR) be the unique automorphism such that gei = e0i for i = 1, . . . ,n. Then

Q(ei ,Cej ) =Q(e0i ,C
0e0j ) =Q(gei ,C

0gej ) =Q(gei ,gCej ),

and therefore g 2 G(R) by the nondegeneracy of Q. By construction, C 0g = gC, which makes C 0 = gCg�1

equal to the image of the coset gK . ⇤

3.5. Now let us turn our attention to Siegel sets in G(R). The Q-rank of G and the collection of minimal
parabolic Q-subgroups P ✓ G can be described concretely as follows. Let r � 0 be the Witt rank of Q,
meaning the dimension of a maximal Q-isotropic subspace of HQ. Let

{0} ⇢ V1 ⇢ V2 ⇢ · · · ⇢ Vr

be a maximal Øag of isotropic subspaces, with dimVi = i . As explained in [Bor19, § 11.16], the stabilizer P of
this Øag is a minimal parabolic Q-subgroup of G, and every minimal parabolic Q-subgroup arises in this
way; moreover, the Q-rank of G is equal to r . Since Q is nondegenerate, it is possible to choose vectors
v0
1
, . . . , v0r 2HQ with the property that

Q(vi ,v
0

j ) = [i = j] =

8>><>>:
1 if i = j ,

0 otherwise.

The 2r-dimensional subspace spanned by v1, . . . , vr ,v
0

1
, . . . , v0r is uniquely determined by Vr ; so is its

orthogonal complement with respect to Q. Let U ✓ P denote the unipotent radical; concretely, g 2U(Q) i�
gvi � vi 2 Vi�1 for i = 1, . . . , r .

3.6. The unique Levi subgroup S ⇥M ✓ PR that is stable under the Cartan involution can be described
concretely as follows. Using the Gram–Schmidt process, construct an orthonormal basis e1, . . . , er 2 Vr

relative to the inner product h�,�iC , in such a way that

Vi ⌦Q R = Re1 � · · ·�Rei

for i = 1, . . . , r . Since Vr is isotropic, the vectors e1, . . . , er ,Cer , . . . ,Ce1 are still orthonormal, and we get an
embedding

s : Gm,R ⇥ · · ·⇥Gm,R ,! PR

by letting s(�1, . . . ,�r ) act as multiplication by �i on the vector ei , as multiplication by ��1i on the vector Cei ,
and as the identity on the orthogonal complement of e1, . . . , er ,Cer , . . . ,Ce1. The image of this embedding is
the desired R-torus S . The other factor of the Levi subgroup S ⇥M has as its set of real points

M(R) =

n
g 2 G(R)

��� gei = CgCei = ei for all i = 1, . . . , r
o
,

which is clearly stable under the Cartan involution ✓(g) = CgC . Note in particular that M(R) preserves the
orthogonal complement of e1, . . . , er ,Cer . . . ,Ce1.

3.7. We also need to know the set of simple roots � for the action of S on the Lie algebra of PR. These are
computed in [Bor19, § 11.16]. There are two cases, depending on the value of the integer n� 2r � 0:

(1) If n = 2r, the simple roots are �1/�2, . . . ,�r�1/�r and �r�1�r ; this is the case where (HQ,Q) is split,
hence isomorphic to a sum of hyperbolic planes.

(2) If n > 2r, the simple roots are �1/�2, . . . ,�r�1/�r and �r ; this is the case where (HQ,Q) has a
nontrivial anisotropic summand.
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3.8. As in the case of the general linear group, Siegel sets in G(R) are closely related to the reduction
theory of positive deÆnite quadratic forms. We are going to make this idea precise by comparing Siegel
sets for the two Q-algebraic groups G =O(HQ,Q) and G̃ = GL(HQ). In G̃, we have the maximal compact
subgroup

K̃ =

n
g 2 G̃(R)

��� hg�1v,g�1wiC = hv,wiC for v,w 2HR

o
.

The associated Cartan involution is g 7! C(gt)�1C, where gt means the adjoint of g with respect to the
nondegenerate pairing Q. Clearly, K̃ \G(R) = K . The relevant minimal parabolic Q-subgroup P̃ ✓ G̃ is
obtained as follows. Complete the given Øag V1 ⇢ · · · ⇢ Vr of isotropic subspaces to a maximal Øag

{0} ⇢ V1 ⇢ · · · ⇢ Vr ⇢ · · · ⇢ Vn�r ⇢ Vn�r+1 ⇢ · · · ⇢ Vn =HQ

by deÆning Vn�r = V?r and Vn�r+i = V?r �Qv0r � · · ·�Qv0r+1�i for i = 1, . . . , r, and then Ælling in the n� 2r
steps in between Vr and V?r . Let P̃ ✓ G̃ be the stabilizer of this maximal Øag, and let Ũ ✓ P̃ be its unipotent
radical; then

P̃ \G ✓ P and Ũ \G =U.

Using the Gram-Schmidt process, construct an orthonormal basis e1, . . . , en 2 HR with the property that
Vi ⌦Q R = Re1 � · · ·�Rei ; a short calculation shows that

en�r+1 = Cer , en�r+2 = Cer�1, . . . , en = Ce1.

In this case, the Levi subgroup S̃ ⇥ M̃ reduces to the split R-torus S̃ ✓ P̃R consisting of all diagonal matrices
diag(�1, . . . ,�n) with respect to the basis e1, . . . , en; with a little bit of work, one can show that S̃ \G(R) = S .
The simple roots are computed in [Bor19, § 1.14] to be �1/�2, . . . ,�n�1/�n.

3.9. We can now compare Siegel sets in G(R) = O(HR,Q) and G̃(R) = GL(HR). The result is a more
precise version of a general theorem by Orr [Orr18, Theorem 1.2], with a small correction contained in
[OS21].

Proposition 3.2. Any Siegel set in G(R) for the maximal compact subgroup K is contained in at most two
G(Q)-translates of a Siegel set in G̃(R) (for K̃).

Proof. We need to consider the two cases n > 2r and n = 2r separately. Let us Ærst deal with the easier case
n > 2r (where HQ has a nontrivial anisotropic summand). Without loss of generality, we can assume that the
Siegel set in G(R) has the form

⌦U ·⌦M ·At ·K,

where ⌦U ✓U(R) and ⌦M ✓M(R)
+ are compact subsets and t > 0 is a real number. From the description

of the simple roots above, we know that

At =
n
s(�1, . . . ,�r )

��� �1/�2 � t, . . . , �r�1/�r � t, and �r � t
o
.

It will be convenient to write elements of G̃(R) as matrices with respect to our Æxed orthonormal basis
e1, . . . , en 2HR. With this convention, the set At consists of all diagonal matrices of the form

diag(�1, . . . ,�r ,1, . . . ,1,�
�1

r , . . . ,��1
1
)

with �1/�2 � t, . . . , �r�1/�r � t and �r � t. The crucial point is that every such matrix belongs to
Ãt ✓ S̃(R), because the number of 1’s in the middle is n� 2r � 1. Consider an arbitrary element

u ·m · a · k 2⌦U ·⌦M ·At ·K.

As a matrix, u is upper triangular with all diagonal elements equal to 1, and m is block-diagonal, with the
Ærst r and last r diagonal entries equal to 1; in particular, we have ma = am. Since m 2 ⌦M varies in a
compact set, the components of the polar decomposition

m = p̃m · k̃m 2 P̃(R) · K̃
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also belong to compact subsets of P̃(R) and K̃ ; moreover, p̃m is again block-diagonal, and therefore
ap̃m = p̃ma. This gives

u ·m · a · k = up̃m · a · k̃mk 2 P̃(R) · Ãt · K̃ .

The Ærst factor lies in a compact subset of P̃(R), and we have already noted that a 2 Ãt ; consequently, our
Siegel set is contained in a Siegel set in G̃(R).

The split case n = 2r is less straightforward. Here the subgroup M is trivial, and therefore our Siegel set
takes the form

S(⌦, t) =⌦ ·At ·K ✓ G(R),

where ⌦ ✓ U(R) is compact. The simple roots for the action of S on the Lie algebra of PR are now
�1/�2, . . . ,�r�1/�r , and �r�1�r ; with respect to our orthonormal basis e1, . . . , e2r 2HR, the set At consists
of all diagonal matrices of the form

0
BBBBBBBBBBBBBBBBBBBBBBBBB@

�1
. . .

�r
��1r

. . .
��1
1

1
CCCCCCCCCCCCCCCCCCCCCCCCCA

with �1/�2 � t, . . . , �r�1/�r � t, and �r�1�r � t. As long as �r � 1, this matrix belongs to Ãmin(1,t); but if
�r  1, this only holds after we swap �r and ��1r , which amounts to conjugating by the permutation matrix

� =

0
BBBBBBBBBBBBBBBBBBBBBBBBB@

1

. . .
0 1

1 0

. . .
1

1
CCCCCCCCCCCCCCCCCCCCCCCCCA

2 K̃ .

In a nutshell, this is the reason why we need two translates of a Siegel set. Getting down to the details,
consider again an arbitrary element

u · a · k 2⌦ ·At ·K.

If a 2 At is such that �r � 1, then a 2 Ãmin(1,t), and we can argue as before to show that this part of S(⌦, t)
is contained in a Siegel set in G̃(R). Let us therefore suppose that �r  1. We can rewrite our element in the
form

u · a · k = � ·u� · a� ·�k 2 � ·u� · Ãmin(1,t) · K̃ ,

where a� = �a� etc. Now the crucial point is that u� 2 Ũ(R), which puts this part of S(⌦, t) into the
translate by � of a Siegel set in G̃(R).

Here is the reason why u� = �u� 2 Ũ(R). The matrix for u is upper triangular with all diagonal entries
equal to 1; in particular, there is some x 2 R such that

uer+1 ⌘ er+1 + xer mod he1, . . . , er�1i.

Because of the special shape of � , having u� 2 Ũ(R) is now equivalent to

x = huer+1, eriC =Q(uer+1,Cer ) =Q(uer+1, er+1) = 0.

As u 2 G(R), we have Q(uer+1, er+1) =Q(u�1er+1, er+1), and therefore

huer+1, eriC = hu�1er+1, eriC.
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From the relation uer+1 ⌘ er+1 + xer , we deduce that

u�1er+1 ⌘ er+1 � xer mod he1, . . . , er�1i,

and after taking the inner product with er , we get x = �x or x = 0.
It remains to argue that the translate is actually by an element of G(Q); note that � 2 K̃ is not rational

in general. To that end, we deÆne an involution g 2 G(Q) by requiring that gvi = vi and gv0i = v0i for
i = 1, . . . , r � 1, and gvr = v0r and gv0r = vr . Then it is easy to check that the matrix for g� in the basis
e1, . . . , e2r is upper triangular, which means that g� 2 P̃(R). Using [Bor19, § 12.4], it follows that the translate
by � of a Siegel set in G̃(R) with respect to K̃ and P̃ is contained in the translate by g of a bigger Siegel set
in G̃(R), which is enough for our purposes. ⇤

3.10. Let us now relate Siegel sets in G(R) to reduction theory for quadratic forms. Following [Kli90,
Section I.2], we shall say that a positive deÆnite inner product h�,�i on the vector space HR is t-reduced
relative to an ordered basis v1, . . . , vn 2HQ (where t > 0 is a real number) if the following three conditions
hold:

(a) For every 1  i  n� 1, one has kvik2  tkvi+1k2.
(b) For every 1  i < j  n, one has 2|hvi ,vji|  tkvik2.
(c) The matrix of the quadratic form satisÆes the inequality

nY

i=1

kvik
2
 t · c1(n)det

⇣
hvi ,vji

⌘
i,j
,

where c1(n) the optimal constant in Minkowski’s inequality.

For a given basis v1, . . . , vn 2HQ and a given number t > 0, consider the set of elements g 2GL(HR) such
that the inner product

(v,w) 7! hg�1v,g�1wiC =Q(g�1v,Cg�1w)

is t-reduced relative to the basis v1, . . . , vn. It is known that every Siegel set in GL(HR) for the maximal
compact subgroup K̃ is contained in a set of this type; conversely, every set of this type is contained in a
Siegel set (for K̃ ).

3.11. To simplify the discussion, let us denote by

S(v1, . . . , vn, t)

the set of elements g 2 G(R) such that the inner product

(v,w) 7! hv,wigCg�1 =Q(v,gCg�1w)

is t-reduced relative to a given basis v1, . . . , vn 2 HQ. Being deÆned by a collection of inequalities, this is
clearly a subalgebraic subset of G(R). It is easy to see that

gS(v1, . . . , vn, t) = S(gv1, . . . , gvn, t)

for any g 2 G(Q), which means that the collection of these sets is stable under translation by elements
in G(Q). The following theorem gives a useful criterion for checking whether a given subset of G(R) is
contained in Ænitely many G(Q)-translates of a Siegel set for K .

Theorem 3.3. Any Siegel set in G(R) for the maximal compact subgroup K is contained in a Ænite union of sets
of the form S(v1, . . . , vn, t); conversely, any set of the form S(v1, . . . , vn, t) is contained in a Ænite union of Siegel
sets (for K).
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Proof. The Ærst assertion follows immediately from Proposition 3.2 and the discussion above. To prove the
second assertion, observe that any set of the form S(v1, . . . , vn, t) is contained in a Siegel set in GL(HR) (for
K̃ ); moreover, the intersection of such a Siegel set with the subgroup G(R) is contained in Ænitely many
G(Q)-translates of a Siegel set in G(R) by Proposition 3.4 below. We then get the desired result by recalling
that any G(Q)-translate of a Siegel set for K is again a Siegel set for K (with a possibly di�erent minimal
parabolic Q-subgroup). ⇤

3.12. In this section, we prove a proposition concerning the intersection of a Siegel set with a reductive
subgroup. The result is similar to [BHC62, Lemma 7.5], except that we are working with Siegel sets for
Q-algebraic groups (instead of with Siegel domains for R-algebraic groups), and that we are making a
di�erent set of assumptions about the subgroup. To simplify the notation, let G be an arbitrary reductive
Q-algebraic group, and H ✓ G a reductive Q-algebraic subgroup. Further, let KG ✓ G(R) and KH ✓H(R)

be maximal compact subgroups such that KH = KG \H(R). Note that the Cartan involutions on GR and
HR are not necessarily compatible with each other.

Proposition 3.4. Suppose that every Siegel set in H(R) for the maximal compact subgroup KH is contained in
Ænitely many G(Q)-translates of a Siegel set in G(R) (for KG). Let SG ✓ G(R) be any Siegel set for KG. Then
there is a Siegel set SH ✓H(R) for KH , and a Ænite set F ✓H(Q), such that

SG \H(R) ✓ F ·SH.

Proof. This is an easy consequence of reduction theory, and all that is required is collecting some results from
[Bor19]. Let �G ✓ G(Q) be an arithmetic subgroup; the intersection �H = �G \H(Q) is then an arithmetic
subgroup of H(Q). According to [Bor19, Theorem 15.5], there exists a Siegel set SH ✓H(R) for the maximal
compact subgroup KH , and a Ænite set CH ✓H(Q), such that

H(R) = �H ·CH ·SH.

Since the intersection SG \H(R) is of course contained in �HCSH , it is therefore enough to prove Æniteness
of the set

B =

n
� 2 �H

��� SG intersects �CHSH

o
.

After enlarging SG, if necessary, our assumption about Siegel sets in H(R) implies that there is a Ænite set
A ✓ G(Q) such that SH ✓ ASG . Consequently, our set B ✓ �H is contained in the larger set

n
� 2 �G

��� SG intersects �CHASG

o
,

which is Ænite because SG has the Siegel property [Bor19, Theorem 15.4].
It remains to justify our claim that SH ✓ ASG . By assumption, SH is contained in many G(Q)-translates

of a Siegel set in G(R), but probably with respect to a di�erent minimal parabolic Q-subgroup. After
translation by an element of G(Q), we can assume that the minimal parabolic Q-subgroup is the same as for
SG; and then we can enlarge SG and assume that the Siegel set in question is actually SG . This completes
the proof. ⇤

3.13. Let us return to the setting considered in § 3.3, but add one additional piece of data. We still assume
that G = O(HQ,Q), and that we have a Æxed Weil operator C 2 End(HR) for which (v,w) 7! hv,wiC =

Q(v,Cw) is a positive deÆnite inner product on the R-vector space HR. Let us now assume in addition that
we have a nonzero element a 2HQ with the property that Ca = a. In particular,

Q(a,a) = ha,aiC > 0.

The stabilizer of this vector is a reductive Q-subgroup Ga ✓ G; concretely,

Ga(Q) =

n
g 2 G(Q)

��� ga = a
o
.
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We are interested in Weil operators C 0 2 End(HR) with the property that C 0a = a. The following result says
that all such Weil operators are conjugate to C by elements of the real group Ga(R).

Lemma 3.5. Let C 0 2 End(HR) be a Weil operator for (HQ,Q). If C 0a = a, then there is an element g 2 Ga(R)

such that C 0 = gCg�1.

Proof. The proof is similar to that of Lemma 3.1. We have

kak2C 0 =Q(a,a) = kak2C,

because C 0a = a = Ca. Let n = dimHR. Since Q has a Æxed signature, we have

dimE1(C
0
) = dimE1(C) = p and dimE�1(C

0
) = dimE�1(C) = n� p.

The unit vector e1 = a/kakC can be completed to a basis e1, . . . , en 2HR that is orthonormal for the inner
product h�,�iC , in such a way that e1, . . . , ep 2 E1(C) and ep+1, . . . , en 2 E�1(C). Choose a second basis
e0
1
, . . . , e0n 2 HR with e0

1
= a/kakC 0 that is similarly adapted to h�,�iC 0 and C 0 , and let g 2 Aut(HR) be the

unique automorphism such that gei = e0i for i = 1, . . . ,n. Then obviously ga = a. As in the proof of Lemma 3.1,
one shows that C 0 = gCg�1 and g 2 G(R), which then implies that g 2 Ga(R) because ga = a. ⇤

3.14. The orthogonal complement of a relative to Q is the subspace

H 0
Q
=

n
v 2HQ

���Q(a,v) = 0

o
=

n
v 2HQ

��� ha,viC = 0

o
.

Evidently, HQ =Qa�H 0
Q
. It is also easy to see that C(H 0

R
) ✓H 0

R
; consequently, the restriction of C to H 0

Q

is a Weil operator for the pair (H 0
Q
,Q). We denote by

Ka =
n
g 2 Ga(R)

��� gC = Cg
o

the resulting maximal compact subgroup; note that Ka = K \Ga(R).

Proposition 3.6. Any Siegel set in Ga(R) for the maximal compact subgroup Ka is contained in Ænitely many
G(Q)-translates of a Siegel set in G(R) (for K).

Proof. The criterion in Theorem 3.3 reduces the problem to the following concrete statement: suppose that
g 2 Ga(R) is an element with the property that

(v,w) 7! hv,wigCg�1 =Q(v,gCg�1w)

is t-reduced relative to an ordered basis v1, . . . , vn�1 2H 0Q; then it is possible to add the vector a to the basis
(in one of the n possible places) and still keep the inner product t-reduced. This is completely elementary.
To simplify the notation, let us agree to write hv,wi and kvk instead of hv,wigCg�1 and kvkgCg�1 . Without
loss of generality, we may assume that t � 1. Recall that kak2 =Q(a,a). Since

hvi ,ai =Q(vi ,gCg
�1a) =Q(vi ,a) = 0,

the second and third condition in the deÆnition are trivially satisÆed. For the Ærst condition, note that for
every i = 1, . . . ,n� 1, at least one of the inequalities

kak2  tkvik
2 or kvik

2
 tkak2

will be true (because t � 1). Consequently, there is some value of i 2 {1, . . . ,n� 1} with the property that

kvik
2
 tkak2 and kak2  tkvi+1k

2.

But this is saying exactly that our inner product is t-reduced relative to the ordered basis

v1, . . . , vi ,a,vi+1, . . . , vn�1 2HQ.

⇤
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4. DeÆnable structures on Øat bundles

4.1. Let X be a nonsingular complex algebraic variety, and let E be a locally free OX -module of Ænite rank
with a Øat holomorphic connection r : E !⌦1

X ⌦OX E . We denote by p : E! X the associated holomorphic
vector bundle. Recall that E is actually an algebraic vector bundle; the algebraic structure on E is uniquely
determined by the Øat connection. Let us brieØy review the construction. Choose an embedding X ,! Y
into a complete nonsingular variety, such that D = Y \X is a simple normal crossing divisor. Let (Ẽ ,r) be
Deligne’s canonical extension of the pair (E ,r); up to isomorphism, it is determined by the following two
conditions:

(1) Ẽ is a locally free OY -module with a Øat logarithmic connection

r : Ẽ !⌦1

Y (logD)⌦OY
Ẽ ,

such that (Ẽ ,r)
���
X
� (E ,r).

(2) For each irreducible component Dj of the divisor D, the pointwise eigenvalues of the residue operator

ResDj
r 2 End

⇣
Ẽ

���
Dj

⌘

are complex numbers whose real part is contained in the interval [0,1).

The canonical extension has the following simple description in local coordinates. Let U � �n be an
open neighborhood of a point y 2 Y , with local holomorphic coordinates t1, . . . , tn centered at y, such that
the divisor D \U is deÆned by the equation t1 · · · tk = 0. Let V be the Æber of the vector bundle Ẽ at the
point y. Then there is a unique holomorphic trivialization

Ẽ

���
U
� OU ⌦C V

that restricts to the identity on V at the point y, such that the logarithmic connection takes the form

r(1⌦ v) =
kX

j=1

dtj
tj
⌦Rjv

for commuting operators R1, . . . ,Rk 2 End(V ), all of whose eigenvalues have real part in [0,1); here Rj is
the residue operator along tj = 0. It is easy to see that

e�2⇡i
Pk

j=1 log tjRj (1⌦ v)

deÆnes a multivalued Øat section of (E ,r) on U \X . The monodromy transformation around the divisor
tj = 0 is therefore described by the operator

e�2⇡iRj 2GL(V ).

In particular, the following two conditions are equivalent:

(a) The eigenvalues of the local monodromy transformations around the components of D are complex
numbers of absolute value 1.

(b) For each irreducible component Dj of the divisor D, the pointwise eigenvalues of the residue operators
ResDj

r are real numbers.

Since Y is complete, the holomorphic vector bundle p : Ẽ! Y associated to the locally free sheaf Ẽ has a
unique algebraic structure; the algebraic structure on the bundle E is obtained by restriction. As before, we
give Y and Ẽ the structure of Ran,exp-deÆnable complex manifolds extending their algebraic structures; this
induces deÆnable complex manifold structures on X and E. The former is the canonical algebraic deÆnable
structure Xdef on X and we call the latter the algebraic deÆnable structure on E. It is uniquely described as
that for which any holomorphic section s of p : Ẽ! Y over an open subset U 0 ⇢ Y restricts to a deÆnable
map on any deÆnable U ⇢U 0 \X which has compact closure in U 0 .
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4.2. The holomorphic vector bundle E naturally comes equipped with another Ran,exp-deÆnable structure
coming from the Øat coordinates which we construct as follows. The subsheaf E r ⇢ E of Øat sections
is a complex local system. By deÆnable triangulation, the deÆnable topological space Xdef admits a
deÆnable atlas {(Ui,�i )} with each Ui simply connected. Choosing a basis of Øat sections s1, . . . , sr of E r|Ui

,

we therefore obtain a holomorphic trivialization  i : Ui ⇥C
r �
�! p�1(Ui ) via (u,z1, . . . , zr ) 7!

P
i zi si(u).

Moreover, on intersections Uij := Ui \Uj the transition functions are constant: there are gij 2 GLr(C)

such that  i =  j � (id⇥gij ). The Øat deÆnable structure on E is then given by the deÆnable complex
manifold atlas {(p�1(Ui ), (�i ⇥ id)� 

�1

i )}. It is uniquely characterized by the property that any Øat section s
of p : E! X over a deÆnable open subset U ⇢ X is deÆnable.

4.3. From now on, we assume that the local monodromy transformations around the components of D have
eigenvalues of absolute value 1; in this case we say that E has norm one eigenvalues at inÆnity. Under this
assumption, the two deÆnable structures from the previous two paragraphs are equivalent.

Proposition 4.1 (cf. [BM22, Theorem 1.2]). Let X be a nonsingular complex algebraic variety and E a holomorphic
Øat vector bundle over X with norm one eigenvalues at inÆnity in the above sense. Then the Øat and algebraic
deÆnable complex manifold structures on E are equivalent.

The idea of the proof can be seen from the construction of the Deligne canonical extension as above. An
algebraic frame for E extends to an algebraic frame for the canonical extension Ẽ on the compactiÆcation Y .
Thus, locally on the boundary it is related by a matrix of restricted analytic functions to a basis of sections of

the form e�2⇡i
Pk

j=1 log tjRj (1⌦ v). This basis is in turn related to the Øat basis by the matrix e�2⇡i
Pk

j=1 log tjRj ,
which is Ran,exp-deÆnable on bounded angular sectors. Indeed, the functions log tj are Ran,exp-deÆnable on
bounded angular sectors in polydisk neighborhoods of the boundary in Xdef. If Rj = Rss

j +Ru
j is the Jordan

decomposition, then e�2⇡i
Pk

j=1 log tjR
u
j is polynomial in the log tj , while e�2⇡i

Pk
j=1 log tjR

ss
j is Ran,exp-deÆnable

since the Rss
j are real.

In particular, we have the following concrete corollary, which we will use.

Corollary 4.2. Let Z be a complex manifold, and let f : Z ! X be a holomorphic mapping that is moreover
Ran,exp-deÆnable. Let � 2 �(Z,f ⇤E ) be a holomorphic section with r� = 0. Then the resulting function
� : Z! E is Ran,exp-deÆnable with respect to the algebraic deÆnable structure.

5. Proof of the main theorem

5.1. We now come to the proof of Theorem 1.1. Let X be a nonsingular complex algebraic variety, H a
polarized integral variation of Hodge structure on X , of even weight 2k. Fix a base point x0 2 X and let
HZ =HZ,x0 ; this is a free Z-module of Ænite rank, which comes with a symmetric bilinear pairing

Q =Qx0 : HZ ⌦Z HZ!Z.

As usual, we set HQ = HZ ⌦Z Q and HR = HZ ⌦Z R; for simplicity, we shall use the notation C = Cx0 2

End(HR) for the Weil operator of the Hodge structure at the point x0. In particular,

(v,w) 7! hv,wiC =Q(v,Cw)

is a positive deÆnite inner product on the vector space HR.

5.2. Let D be the period domain parametrizing integral Hodge structures of weight 2k on HZ that are
polarized by Q. Since the statement of Theorem 1.1 only involves the Weil operator (instead of the full Hodge
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structure), it makes sense to consider not the period domain D, but rather the associated symmetric space
(which is a quotient of D). Consider the Q-algebraic group

G =O(HQ,Q),

whose set of real points is the real Lie group

G(R) =

n
g 2GL(HR)

���Q(gv,gw) =Q(v,w) for all v,w 2HR

o
.

Recall that G(R) acts transitively on the period domain D, and that D = G(R)/V , where V ✓ G(R) is the
stabilizer of the Hodge structure at x0. Clearly, the Weil operator satisÆes C 2 G(R) and C2

= id. It is easy
to see that

K =

n
g 2 G(R)

��� gC = Cg
o

is a maximal compact subgroup of G(R) containing the compact subgroup V ; by Lemma 3.1, the points
of the quotient G(R)/K can be identiÆed with Weil operators for the pair (HQ,Q), with the coset gK
corresponding to the Weil operator gCg�1.

5.3. Consider now the arithmetic subgroup

(5.1) � =O(HZ,Q) = G(Q)\GL(HZ).

Note that � is quite a bit larger than the monodromy group of the variation of Hodge structure; this will be
important in what follows. Instead of the usual period mapping to �\D, we consider the (Weil operator)
period mapping

(5.2) � : X! �\G(R)/K

to the arithmetic quotient of the symmetric space G(R)/K . It associates to every point x 2 X the Weil
operator Cx 2 Aut(Ex), viewed as an automorphism of the Æxed vector space HC by parallel transport; this
is well-deÆned in the quotient �\G(R)/K since � contains the monodromy group of the variation of Hodge
structure. According to [BKT20, Theorem 1.3], the mapping � in (5.2) is Ran,exp-deÆnable. The main result
is stated for the usual period mapping into �\D, but what is actually proved in [BKT20, Theorem 4.1] is the
Ran,exp-deÆnability of (5.2).

5.4. Let ⇡ : X̃! X be the universal covering space of X . Since the period mapping is locally liftable, there
is a real-analytic mapping �̃ : X̃ ! G(R)/K , unique up to a choice of base point, making the following
diagram commute:

X̃ G(R)/K

X �\G(R)/K

�̃

⇡

�

We now extend the deÆnability result to the vector bundle p : E ! X . On G(R)/K , consider the trivial
complex vector bundle G(R)/K ⇥HC, where HC =HZ ⌦Z C. The arithmetic group � acts on this bundle
via the formula

� · (gK,v) =
⇣
�gK,�(v)

⌘
,

and the quotient gives us a “universal” complex vector bundle

�\
⇣
G(R)/K ⇥HC

⌘
! �\G(R)/K

with Æber HC. The pullback ⇡⇤E has a canonical trivialization by r-Øat sections, hence ⇡⇤E � X̃ ⇥HC. The
trivial morphism of vector bundles

�̃ ⇥ id : X̃ ⇥HC! G(R)/K ⇥HC
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therefore descends to a morphism of complex vector bundles

E �\
⇣
G(R)/K ⇥HC

⌘

X �\G(R)/K.

�E

p

�

Proposition 5.1. The morphism of complex vector bundles

�E : E! �\
⇣
G(R)/K ⇥HC

⌘

is Ran,exp-deÆnable.

Proof. Let Y be a complete nonsingular variety containing X , such that X = Y \D for a simple normal
crossing divisor D. By the same argument as in [BKT20, § 4.1], the problem is local on Y , and so we
may assume that Y = �n, with holomorphic coordinates t1, . . . , tn, and that the divisor D is deÆned by the
equation t1 · · · tk = 0. Let H =

n
z 2 C

��� Imz > 0

o
and ⌃ =

n
z 2H

��� 0  Rez  1

o
. By [BKT20, Theorem 1.5],

there is a subalgebraic Siegel set S ✓ G(R) for the maximal compact subgroup K , and a Ænite set A ✓ G(Q),
such that the image of

�̃ : ⌃k
⇥�n�k

! G(R)/K

is contained in A ·S. We get the following commutative diagram:

⌃k
⇥�n�k A ·S

H
k
⇥�n�k G(R)/K

(�⇤)k ⇥�n�k �\G(R)/K

�̃

⇡ �̃

⇡

�

.

Now ⇡ : ⌃k
⇥�n�k

! (�⇤)k ⇥�n�k is Ran,exp-deÆnable, and so Corollary 4.2 implies that the isomorphism
of complex vector bundles

⇡⇤E � ⌃k
⇥�n�k

⇥HC

is actually Ran,exp-deÆnable. Since the morphism of trivial bundles

�̃ ⇥ id : ⌃k
⇥�n�k

⇥HC! (A ·S)⇥HC

is obviously Ran,exp-deÆnable, we get the desired result. ⇤

5.5. We are ready to prove a Ærst deÆnability result for self-dual vectors in a single �-orbit. Suppose that we
have an integral vector a 2HZ such that Ca = a. We are interested in self-dual classes in the orbit �a ✓HZ.
As noted after Lemma 3.1, points of the symmetric space G(R)/K correspond to Weil operators for (HQ,Q);
we identity a coset gK with the Weil operator Cg = gCg�1.

Proposition 5.2. Let a 2HZ be a nonzero integral vector with Ca = a. The set
n
�(gK,v) 2 �\

⇣
G(R)/K ⇥HC

⌘ ��� v 2 �a and Cgv = v
o

is Ralg-deÆnable.

Proof. We introduce the additional subgroups

Ka = Ga(R)\K and �a = Ga(Q)\ �.
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For the same reason as before, Ka is a maximal compact subgroup of Ga(R), and �a is an arithmetic subgroup
of Ga(Q). Lemma 3.5 shows that the image of

Ga(R)/Ka ,! G(R)/K

consists of all cosets gK whose corresponding Weil operator Cg = gCg�1 satisÆes Cga = a. According to
Proposition 3.6 and [BKT20, Theorem 1.2], the morphism of arithmetic quotients

�a\Ga(R)/Ka! �\G(R)/K

is Ralg-deÆnable. This morphism has a well-deÆned lifting

i : �a\Ga(R)/Ka! �\
⇣
G(R)/K ⇥HC

⌘
, �ahKa 7! �(hK,a),

which is Ralg-deÆnable for the same reason. In more detail, let S be an arbitrary Siegel set in Ga(R) with
respect to the maximal compact subgroup Ka. The formula

ĩ : S! G(R)/K ⇥HC, ĩ(h) = (hK,a)

gives us an Ralg-deÆnable local lifting of i . Because of Proposition 3.6, the composition of ĩ with the
projection to �\(G(R)/K ⇥HC) is deÆnable; it follows that the mapping i is itself Ralg-deÆnable.

Now the image of i is exactly the set we are interested in. Indeed, suppose that �(gK,v) = �(hK,a) for
some g 2 G(R), h 2 Ga(R), and v 2HC. Then there is an element � 2 � such that g = �h and v = �a, and
one easily deduces that v 2 �a and Cgv = v. In fact, the mapping i is an embedding: if �(hK,a) = �(h0K,a)
for two elements h,h0 2 Ga(R), then there is some � 2 � and some k 2 K such that h0 = �hk and �a = a; but
then � 2 �a, and therefore k 2 Ka, and so the double cosets �ah0Ka = �ahKa are equal. The locus of self-dual
classes in our given �-orbit is therefore an Ralg-deÆnable subset that is isomorphic to the smaller arithmetic
quotient �a\Ga(R)/Ka. ⇤

5.6. We now extend the above result to integral vectors v 2 HZ with a Æxed self-intersection number
Q(v,v).

Proposition 5.3. Let q 2N be a positive integer. Then the set
n
�(gK,v) 2 �\

⇣
G(R)/K ⇥HC

⌘ ��� v 2HZ, Q(v,v) = q, and Cgv = v
o

is Ralg-deÆnable.

Proof. The crucial point is that � acts on the set
n
v 2HZ

���Q(v,v) = q
o
with only Ænitely many orbits; this

makes the result a direct consequence of Proposition 5.2. The Æniteness of the number of �-orbits follows
from [Kne02, Satz 30.2]; since Kneser works in much greater generality, let us brieØy explain how to deduce
the statement we need. The quadratic form v 7! Q(v,v) makes HZ into a lattice in the Q-vector space
HQ, and an integral vector v 2 HZ with Q(v,v) = q deÆnes an isometry v : [q]! HZ, where [q] means
the lattice Z with the quadratic form n 7! qn2. (Kneser calls this a “Darstellung” of [q] in HZ.) Now
[`] is nondegenerate because ` � 1, and [Kne02, Satz 30.2] guarantees that there are only Ænitely many
equivalence classes of such isometries. But since � = O(HZ,Q), two vectors v,v0 2 HZ are in the same
equivalence class, in the sense of [Kne02, DeÆnition 30.1], exactly when there is an element � 2 � such that
v0 = �v. ⇤

5.7. Finally, we assemble all the pieces and prove Theorem 1.1.

Proof of Theorem 1.1. The polarized integral variation of Hodge structure H on X gives rise to a kind of
period mapping

� : X! �\G(R)/K
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that, up to the action by �, associates to every point x 2 X the Weil operator Cx of the corresponding Hodge
structure. We already know that � is Ran,exp-deÆnable [BKT20, Theorem 1.2]. We also have a morphism of
complex vector bundles

�E : E! �\
⇣
G(R)/K ⇥HC

⌘

from the algebraic vector bundle p : E! X to the “universal” vector bundle on the right. We also know that
�E is Ran,exp-deÆnable (by Proposition 5.1). The two morphisms Æt into the following commutative diagram:

E �\
⇣
G(R)/K ⇥HC

⌘

X �\G(R)/K.

�E

p

�

Fix a positive integer q 2N. By Proposition 5.3, the set
n
�(gK,v) 2 �\

⇣
G(R)/K ⇥HC

⌘ ��� v 2HZ, Q(v,v) = q, and Cgv = v
o

is Ralg-deÆnable, and so its preimage under �E is an Ran,exp-deÆnable subset of E. Since it is easy to see
that a point (x,v) 2 E lies in the preimage exactly when v 2 Ex is integral and satisÆes Qx(v,v) = q and
Cxv = v, we get the result. ⇤

6. Additional results

6.1. In this section, we prove the two variants of the main theorem stated in the introduction. The idea is
simple enough: we tensor a given integral variation of Hodge structure by an auxiliary Hodge structure of
weight 1 or 2, and then apply Theorem 1.1. The Ærst Hodge structure that we need is the following.

Example 6.1. Consider the Hodge structure on the Ærst cohomology of the elliptic curve C/(Z �Zi).
Concretely, this is an integral Hodge structure of weight 1 on the free Z-module Z

�2, whose Hodge
decomposition is given by

C
�2

= C(1, i)�C(1,�i).

The Hodge structure is polarized by the skew-symmetric bilinear form

Z
�2
⌦Z

�2
!Z,

⇣
(a1, a2), (b1, b2)

⌘
7! a1b2 � a2b1,

and the Weil operator is easily seen to be the operator (a1, a2) 7! (a2,�a1); note that it happens to preserve
the integral structure in this case.

Now suppose that H is a polarized integral Hodge structure of odd weight 2k�1. Let Q : HZ⌦ZHZ!Z

be the skew-symmetric bilinear form giving the polarization, and let C 2 End(HR) be the Weil operator
(which now satisÆes C2

= � id). After taking the tensor product with the above Hodge structure of weight 1,
we obtain a polarized integral Hodge structure H̃ of weight 2k on

H̃Z =HZ �HZ,

polarized by the symmetric bilinear form Q̃
⇣
(a1, a2), (b1, b2)

⌘
=Q(a1, b2)�Q(a2, b1), and with Weil operator

C̃(a1, a2) = (Ca2,�Ca1). Evidently,

H̃+

2q =
n
(a1, a2) 2HZ �HZ

��� a1 = Ca2 and Q(a1, a2) = q
o
;

for polarized integral variations of Hodge structure of odd weight, Corollary 1.3 is therefore an immediate
consequence of Theorem 1.1.
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6.2. The remaining assertions concern variations of Hodge structure of even weight. We can deal with them
by the same method, using the following Hodge structure.

Example 6.2. Consider now the symmetric square of the Hodge structure in Example 6.1. Concretely, we get
an integral Hodge structure of weight 2 on the free Z-module Z

�3, whose Hodge decomposition is

C
�3

= C(1,2i,�1)�C(1,0,1)�C(1,�2i,�1).

The Hodge structure is polarized by the symmetric bilinear form

Z
�3
⌦Z

�3
!Z,

⇣
(a1, a2, a3), (b1, b2, b3)

⌘
7! a1b3 + a3b1 � a2b2,

and the Weil operator is easily seen to be the operator (a1, a2, a3) 7! (a3,�a2, a1), which again preserves the
integral structure.

Suppose that H is a polarized integral Hodge structure of even weight 2k, with polarization Q : HZ ⌦Z

HZ ! Z and Weil operator C 2 End(HR). After taking the tensor product with the Hodge structure in
Example 6.2, we obtain a polarized integral Hodge structure H̃ of weight 2k +2 on

H̃Z =HZ �HZ �HZ,

polarized by the symmetric bilinear form

Q̃
⇣
(a1, a2, a3), (b1, b2, b3)

⌘
=Q(a1, b3) +Q(a3, b1)�Q(a2, b2),

and with Weil operator C̃(a1, a2, a3) = (Ca3,�Ca2,Ca1). This time around,

H̃+

q =

n
(a1, a2, a3) 2HZ �HZ �HZ

��� a1 = Ca3, Ca2 = �a2, and 2Q(a1, a3)�Q(a2, a2) = q
o
.

We now obtain Corollary 1.3 for polarized integral variations of Hodge structure of even weight by looking at
triples of the form (a1,0, a3), and Corollary 1.2 by looking at triples of the form (0, a2,0).

7. Motivation from string theory

7.1. A motivation for studying the locus of self-dual integral Hodge classes stems from string theory.
String theory is a candidate theory of quantum gravity that uniÆes Einstein’s theory of general relativity
and quantum Æeld theory. Quantum consistency forces the string to travel through a higher-dimensional
space-time manifold, extending beyond the four space-time dimensions that we currently observe in our
universe. In prominent variants of string theory this implies that either six or eight extra dimensions need to
be present. These extra dimensions are often considered to be on a tiny compact manifold. Particularly
well-studied choices are Calabi-Yau manifolds, which are deÆned to be Kähler manifolds that admit a
Ricci-Øat metric. While it is not known which Calabi-Yau manifold one should pick, it has been studied
intensively how the physical four-dimensional theory can be determined after making a choice.

7.2. We now describe one example from physics that originally suggested the result in Theorem 1.1. Let Y
be a compact polarized Calabi-Yau manifold of complex dimension D, with D = 3,4 being the cases most
relevant in the string theory application. One can associate a family of manifolds Yt to Y that is obtained by
deforming its complex structure. It is shown by the Bogomolov-Tian-Todorov theorem [Tia87, Tod89] that
the Kuranishi space of Y is unobstructed. Hence Yt varies over a Ænite-dimensional moduli spaceM if one
demands that all Yt are Calabi-Yau manifolds. For polarized Calabi-Yau manifolds of complex dimension D
the moduli spaceM is quasi-projective [Vie95] and of complex dimension hD�1,1 = dimHD�1,1

(Y ). The
existence of such a moduli space leads to several physical problems when using such Yt as backgrounds
of string theory. In particular, one Ænds modiÆcations of Newton’s law or Einstein’s equations that are
in contradiction with observations. To avoid this immediate conclusion further ingredients known as
background Øuxes can be introduced. These Øuxes are integral classes in the cohomology of Y . Compared
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with the general considerations above, we thus identify X = cM, where cM is the resolution ofM [Hir64].
Furthermore, we set HZ =HD

(Y,Z) and Q =

R
Y
v ^w. Introducing a Weil operator C acting on Hp,q

(Yt)
with ip�q, we deÆne a norm kwk2 =Q(w̄,Cw).

7.3. The best understood string theory settings with integral Øuxes are obtained from Type IIB string
theory [GVW00, GKP02]. Let us consider this ten-dimensional theory on a Calabi-Yau manifold Y of
complex dimension three. In this string theory setting one is also free to chose in addition to Y two
integral three-forms F,H 2H3

(Y,Z), which set the Øux background. They naturally combine to a complex
three-form G = F � ⌧H with ⌧ 2 C. The Øuxes F,H are constrained by a consistency condition

(7.1) Q(F,H) = ` ,

where ` is a Æxed positive rational number that can be derived for a given setting. This condition is known
as a tadpole cancellation condition and plays a crucial role in Ænding consistent solutions of string theory.
Furthermore, the presence of G impacts the physical four-dimensional theory by giving rise to an energy
potential V (G), which generally changes for di�erent choices Yt within the family. Concretely, it takes the
form [GKP02]

(7.2) V (G) = kG�k2 ,

where CG� = �iG� and  is ⌧-dependent but constant overM. The loci inM that minimize this energy
potential with G� = 0 have been shown to be consistent background solutions of Type IIB string theory
[GKP02]. It has been a long-standing question of whether or not the number of distinct H,F with G� = 0

and (7.1) is Ænite.

7.4. A more general setting that leads to a similar question arises in a geometric higher-dimensional
version of Type IIB string theory known as F-theory [Vaf96, Den08]. In F-theory the extra dimensions are
constrained to reside on an eight-dimensional compact manifold to extract a four-dimensional physical
theory. The consistency equations for such twelve-dimensional string backgrounds admit solutions that are
(conformal) Calabi-Yau manifolds Y of complex dimension D = 4 that admit a four-form Øux background.
Let us consider v 2H4

(Y,Z) and assume that v is primitive with respect to the Kähler form J of Y . The
condition (7.1) generalizes to Q(v,v) = `, which is the consistency condition every solution to F-theory with
a compact Y has to satisfy. A non-trivial v induces again an energy potential

(7.3) V (v) = �kv�k
2 ,

where Cv� = �v� and � is a constant. V (v) changes in the family Yt and hence is a function on the moduli
space M. The self-dual loci in M are by deÆnition those that satisfy Cv = v and hence minimize V (v).
They comprise consistent solutions to F-theory and are of central interest to some of the most prominent
scenarios on realizing our four-dimensional universe in string theory. Each choice of v satisfying these
consistency conditions can imply di�erent values for physical observables. It is thus of profound importance
to know if there are inÆnitely many choices for v.

7.5. Finiteness statements about the set of self-dual v 2H4
(Y,Z) with Q(v,v) = ` have been conjectured in

[Dou03, AD06]. In order to provide evidence for these statements and to estimate the number of distinct
solutions it was suggested in [AD04, DD04] to introduce a critical point density on the moduli space.
Mathematically rigorous proofs on estimating this density were given in [DSZ04, DSZ06a, DSZ06b]. Strong
Æniteness results have been shown in [DL06, DL13] for a certain index counting solutions to the self-duality
relations for Calabi-Yau manifolds by applying a Gauss-Bonnet-Chern theorem on the moduli space. In
this work we have given an a�rmative answer to the Æniteness conjectures without using a density function.
We have also shown that in the complex structure moduli space there is no need to introduce a reÆned
notion of physically distinct vacua to ensure Æniteness as suggested in [AD06]. The Æniteness statement is
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centrally based on the deÆnability of the period mapping which su�ces to exclude the pathological examples
discussed in [AD06]. In dimension 1, it is possible to prove Theorem 1.1 along the lines of [CDK95], by using
more details about the SL(2)-orbit theorem [Sch20], see also [Gri21] for a sketch of the argument. In higher
dimensions, this kind of argument looks completely infeasible.
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