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A unit-disk graph G(P ) of a set P of points in the plane is a graph with P as its vertex 
set such that two points of P are connected by an edge if the distance between the two 
points is at most 1 and the weight of the edge is equal to the distance of the two points. 
Given P and a source point s ∈ P , we consider the problem of finding shortest paths in 
G(P ) from s to all other vertices of G(P ). In the L2 case where the distance is measured 
by the L2 metric, the problem has been extensively studied and the current best algorithm 
runs in O (n log2 n) time, with n = |P |. In this paper, we study the L1 case in which the 
distance is measured under the L1 metric (and each disk becomes a diamond); we present 
an O (n logn) time algorithm, which matches the �(n logn)-time lower bound.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

Let P be a set of n points in the plane. The unit-disk graph G(P ) of P is a graph with P as its vertex set such that 
two points of P are connected by an edge if the distance between the two points is at most 1. Alternatively, G(P ) is the 
intersection graph of the set of disks centered at the points of P with radii equal to 1/2. Each edge of G(P ) has a weight 
that is equal to the distance of the two incident vertices of the edge.

In this paper, we consider the single-source shortest path (SSSP) problem on G(P ), i.e., given P and a source point s ∈ P , 
compute shortest paths in G(P ) from s to all other points of P . In particular, we consider the L1 case of the problem in 
which the distance is measured under the L1 metric (and each disk becomes a diamond).

The L2 case of the problem where the distance is measured under the L2 metric has been extensively studied [2,4,8,9,15,
16]. The current best algorithm, which was given by Wang and Xue [16], runs in O (n log2 n) time. The L1 case, however, has 
not been particularly studied before. To solve the L1 problem, we follow the algorithmic framework of Wang and Xue [16]
but give a faster implementation. The runtime of Wang and Xue’s algorithm [16] is dominated by a bottleneck subproblem. 
Due to some special properties of the L1 metric, we derive a more efficient algorithm for the bottleneck subproblem in the 
L1 case, which leads to an overall O (n logn)-time algorithm for the shortest path problem.

More specifically, the bottleneck subproblem is the offline insertion-only additively-weighted nearest-neighbor problem, 
where we are given an offline sequence of k insertions and queries such that an insertion inserts a weighted point to a 
point set U (which is ∅ initially) and a query asks for the additively-weighted nearest neighbor in U of a query point. The 
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goal is to answer all queries. Wang and Xue [16] solved the problem in O (k log2 k) time by using the standard logarithmic 
method [1,6]. This leads to the overall O (n log2 n) time for their shortest path algorithm [16]; reducing the time for the 
subproblem to O (k logk) would solve the shortest path problem in O (n logn) time. The difficulty in doing so is that there 
does not exist a semi-dynamic (for insertions only) weighted Voronoi diagram data structure that can perform each insertion 
in O (logk) amortized time (in order to answer queries, an efficient dynamic point location data structure is also needed). 
For solving our L1 shortest path problem, we first observe a special property of the bottleneck problem under our problem 
settings: sets U and V are separated by an axis-parallel line �, where V is the set of all query points. Without loss of 
generality, we assume that � is horizontal and U is below �. Based on the properties of the L1 metric, a critical observation 
we find is that the portion of the weighted L1 Voronoi diagram of U above � only consists of a set of vertical lines. 
Then, we can easily maintain these vertical lines by a balanced binary search tree so that each query can be answered in 
O (logk) time. Further, the special structure also allows us to update the portion of the Voronoi diagram above � in O (logk)
amortized time for each insertion. As such, the bottleneck subproblem can be solved in O (k logk) time in the L1 case, 
which leads to an overall O (n logn) time algorithm for the shortest path problem. Note that the space of our shortest path 
algorithm is O (n).

Cabello and Jejčič [2] observed that by a simple reduction from the max-gap problem, deciding whether the unit-disk 
graph G(P ) is connected requires �(n logn) time even if all points of P are on a line. This implies that �(n logn) is a lower 
bound for solving the shortest path problem in unit-disk graphs for both the L1 and L2 cases (because both cases are the 
same when all points of P are on a line). As such, our algorithm for the L1 case is optimal.

1.1. Related work

Before Wang and Xue’s work [16], the shortest path problem in the L2 case had been studied by many others. Roditty 
and Segal [15] gave the first sub-quadratic algorithm of O (n4/3+ε ) time for any constant ε > 0. Cabello and Jejčič [2] later 
proposed an improved algorithm of O (n1+ε) time. Following the framework of Cabello and Jejčič [2] but with a more 
efficient data structure for the bichromatic closest pair problem, Kaplan et al. [9] gave a randomized algorithm that solves 
the problem in O (n log12+o(1) n) expected time. Approximation algorithms for the problem have also been developed, e.g., 
see [4,8,16].

The shortest path problem we consider is actually on a weighted unit-disk graph. In the unweighted case, the weight 
of each edge of the graph is 1. The unweighted problem is much easier. The L2 unweighted problem can be solved in 
O (n logn) time [2,4]. In particular, if all input points of P are presorted by their x- and y-coordinates, the algorithm of 
Chan and Skrepetos [3] runs in O (n) time.

As an important class of geometric intersection graphs, unit-disk graphs have been widely studied due to many of 
their applications, e.g., in wireless sensor networks [13,14]. In addition to the shortest path problem, many other prob-
lems on unit-disk graphs have also been considered in the literature, such as the clique problem [5], the independent 
set problem [12], all pairs shortest paths [3,4,8], the reverse shortest path problem [17,19], the diameter problem [3,4,8], 
etc. Comparing to general graphs, these problems in unit-disk graphs can be solved more efficiently by exploiting their 
underlying geometric structures.

Outline In the following, we describe the main algorithm in Section 2 while the bottleneck subproblem is tackled in 
Section 3. Section 4 concludes our paper.

2. The main algorithm

In this section, we describe the main algorithm for the shortest path problem. Our algorithm follows Wang and Xue’s 
algorithmic framework [16]. In the following, we will adapt their algorithm to the L1 case. We will also borrow some of 
their notation.

For any two points p and q in the plane, we use d(p, q) to denote their L1 distance. For any point p, we use 
⊙

p to 
denote the unit disk centered at p, which is a diamond in the L1 metric. Let s be the source point of P , from which the 
shortest paths must be computed. Throughout the paper, we will use the points of P and the vertices of the unit-disk graph 
G(P ) interchangeably.

The algorithm follows the basic idea of Dijkstra’s shortest path algorithm with the help of a grid. The grid technique 
was widely used in algorithms related to unit-disk graphs [3,16–19]. At the outset, we implicitly build a grid � of square 
cells of side length 1/2. For simplicity of discussion, we assume that each vertex of G(P ) lies in the interior of a single cell 
of �. A patch of � is a square area consisting of 5 × 5 cells of �. For any point p in the plane, let �p denote the cell of 
� that contains p and �p denote the patch whose central cell is �p (see Fig. 1). Since the side length of each cell of �
is 1/2, if two vertices of G(P ) are in a single cell of �, they must be connected by an edge in G(P ). On the other hand, 
if two points p and q are connected by an edge in G(P ), then q must be in a cell of �p . Unlike Dijkstra’s shortest path 
algorithm, which selects one single vertex in each iteration to compute shortest-path information, our algorithm tries to 
compute shortest-path information for all vertices in a cell of � and then pass shortest-path information to the vertices in 
the neighboring cells.

For a subset Q ⊆ P and a cell � (resp., a patch �) of �, define Q� = Q ∩� (resp., Q� = Q ∩�).
2
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Fig. 1. The side length of each square cell in the grid � is 12 . For the black point p, the red cell that contains it is �p , and the square area bounded by blue 
segments which contains 5 × 5 cells is the patch �p . For any point in �p , its neighboring points in G(P ) must lie in the grey region. (For interpretation 
of the colors in the figure(s), the reader is referred to the web version of this article.)

To implicitly compute the grid �, we actually perform the following preprocessing. We compute P� for all cells � of �
that contain at least one point of P . We also associate pointers to each point p ∈ P such that from p we can access �p and 
�p . The preprocessing can be done in O (n logn) time and O (n) space [16].

The algorithm will compute a table dist[·] for all vertices of G(P ), where dist[p] is the length of a shortest path between 
s and a point p ∈ P . Note that we should also maintain the corresponding path-predecessor information to form a shortest 
path tree; this can be done by standard techniques [16], so we omit the discussions.

One important subroutine that will be extensively used in the algorithm is Update(U , V ). For two subsets U , V ⊆ P ,
Update(U , V ) is to update the shortest-path information of vertices in the set V by using the shortest-path information of 
vertices in U . More specifically, for each v ∈ V , let qv = argminu∈U∩⊙

v
{dist[u] + d(u, v)}. The purpose of Update(U , V ) is 

to find qv for all v ∈ V and update dist[v] = min{dist[v], dist[qv ] + d(qv , v)}.
With Update(U , V ), the algorithm works as follows (refer to Algorithm 1 for the pseudocode). Initially, for each vertex 

p ∈ P , dist[p] is set to ∞, except that dist[s] = 0. Initialize Q = P . In the main loop, as long as Q �= ∅, in each itera-
tion we find a vertex q ∈ Q who has a minimum dist[q]. Subsequently there are two subroutines Update(Q�q , Q�q ) and
Update(Q�q , Q�q ). Finally, vertices in Q�q are removed from Q , because dist[p] for all p ∈ Q�q have been correctly 
computed. Refer to [16] for the correctness proof, which is applicable to the L1 case.

Algorithm 1: The SSSP Algorithm [16].

1 Function SSSP(P , s):
2 for each p ∈ P do
3 dist[p] = ∞
4 end
5 dist[s] = 0
6 Q = P
7 while Q �= ∅ do
8 q = argminp∈Q {dist[p]}
9 Update(Q�q

, Q�q
) // first update

10 Update(Q�q
, Q�q

) // second update
11 Q = Q \ Q�q

12 end
13 return dist[·]
14 end

Implementing the algorithm efficiently hinges on the two Update procedures.

The first update For the first update Update(Q�q , Q�q ), the key is to find a point qv ∈ Q�q ∩⊙
v that minimizes dist[qv ] +

d(qv , v) for each point v ∈ Q�q . If we assign each point in Q�q a weight equal to its dist-value, then qv is essentially 
the additively-weighted nearest neighbor of v in Q�q ∩ ⊙

v . To find qv efficiently, a crucial observation found by Wang 
and Xue [16] (see Lemma 2.5 in [16], whose proof is applicable to the L1 case) is that any point p ∈ Q�q that minimizes 
dist[p] + d(p, v) must be in 

⊙
v , i.e., the nearest neighbor of v in Q�q is also the nearest neighbor of v in Q�q ∩ ⊙

v . Due 
to this observation, we can find qv for all v ∈ Q�q as follows. First, we build an L1 additively-weighted Voronoi diagram 
on vertices in Q�q and then use the diagram to find the nearest neighbor for each v ∈ Q�q . Constructing the diagram can 
be done in O (|Q�q | log |Q�q |) time and O (|Q�q |) space (e.g., by using the abstract Voronoi diagram algorithm [11]), and 
all queries together take O (|Q�q | log |Q�q |) time (e.g., build a point location data structure on the diagram in O (|Q�q |)
time [7,10] and then perform point location queries for points of Q� , which take O (log |Q� |) time each).
q q

3
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Algorithm 2: Update(U , V ) [16].

1 Function Update(U , V ):
2 Sort(U = {u1, u2, ..., u|U |}) // dist[u1] ≤ ... ≤ dist[u|U |]
3 for i = 1, 2, ..., |U | do
4 Vi = {v ∈ V | v ∈ ⊙

ui
, v /∈ ⊙

u j
for all j < i}

5 end
6 U ′ = ∅
7 for i = |U |, |U | − 1, ..., 1 do
8 U ′ = U ′ ∪ {ui}
9 for each v ∈ Vi do

10 qv = argminu∈U ′ {dist[u] + d(u, v)}
11 dist[v] = min{dist[v], dist[qv ] + d(qv , v)}
12 end
13 end
14 end

The second update Implementing the second update Update(Q�q , Q�q ) is not that easy anymore because the above crucial 
observation does not hold. Since Q�q has O (1) cells of �, it suffices to perform Update(Q�q , Q�) for all cells � ∈ �q .

If � is �q , then Q�q = Q� . Since the distance between any two points in �q is at most 1, we can use the fol-
lowing algorithm to implement Update(Q�q , Q�). We first build an L1 weighted Voronoi diagram on points of Q�q in 
O (|Q�q | log |Q�q |) time and O (|Q�q |) space [11], and then use it to find the weighted nearest neighbor qv for each point 
v ∈ Q�q . Clearly, the total time is O (|Q�q | log |Q�q |).

If � is not �q , then a critical property is that � and �q are separated by an axis-parallel line �. To perform Up-

date(Q�q , Q�), Wang and Xue [16] proposed the following approach (see Algorithm 2 for the pseudocode). Let U = Q�q

and V = Q� . We first sort vertices in U = {u1, u2, ..., u|U |} by their dist-values such that dist[u1] ≤ dist[u2] ≤ ... ≤ dist[u|U |]. 
Then we partition V into subsets Vi = {v ∈ V | v ∈ ⊙

ui
, v /∈ ⊙

u j
for all j < i}, for all i = 1, 2, . . . , |U |. For each 

1 ≤ i ≤ |U |, for each vertex v ∈ Vi , we find qv = argminp∈Ui {dist[p] + d(p, v)}, where Ui = {ui, ui+1, . . . , u|U |}, and up-
date dist[v] = min{dist[v], dist[qv ] + d(qv , v)}. This step is implemented by a for loop (Lines 6–13) in Algorithm 2. By the 
definition of Vi , we have U ∩ ⊙

v ⊆ Ui for all v ∈ Vi . Also, Wang and Xue [16] proved that qv found as above must be in ⊙
v (see Lemma 2.6 in [16], whose proof is applicable to the L1 case).1 As such, qv = argminp∈U∩⊙

v
{dist[p] +d(p, v)}. This 

proves the correctness of the algorithm.
We now analyze the runtime of the above algorithm. Sorting the vertices of U takes O (|U | log |U |) time. To compute the 

subsets Vi , 1 ≤ i ≤ |U |, Wang and Xue [16] gave an algorithm of O (k logk) time (and O (k) space) for the L2 case (see Section 
2.2.1 [16]) by making use of the property that U and V are separated by �, where k = |U | +|V |. For the L1 case, we can use 
the same algorithm; in fact, the algorithm becomes easier as a disk in the L1 case is a diamond. We omit the details and 
conclude that the subsets Vi , 1 ≤ i ≤ |U |, can be computed in O (k logk) time in the L1 case. Next, the for loop (Lines 6–13) 
is for the bottleneck subproblem mentioned in Section 1, i.e., the offline insertion-only additively-weighted nearest-neighbor 
problem. Indeed, if we assign each vertex in U a weight equal to its dist-value, then qv is essentially the additively-weighted 
nearest neighbor of v in U ′ , where U ′ = Ui in the i-th iteration of the for loop. The set U ′ is dynamically changed with 
point insertions. Using the standard logarithmic method [1,6], Wang and Xue [16] solves the problem in O (k log2 k) time. 
By exploring the properties of the L1 metric, we give an O (k logk) time (and O (k) space) algorithm in Section 3. As such,
Update(Q�q , Q�) can be performed in O (k logk) time and O (k) space, with k = |Q�q | + |Q�|.

In summary, since Q�q has O (1) cells, the second update Update(Q�q , Q�q ) can be implemented in O (|Q�q | log |Q�q |)
time as Q�q ⊆ Q�q . This leads to the following theorem.

Theorem 1. Given a set P of n points in the L1 plane and a source point s ∈ P , the shortest paths from s to all vertices in the unit-disk 
graph G(P ) can be computed in O (n logn) time and O (n) space.

Proof. As discussed before, constructing the grid � implicitly can be done in O (n logn) time and O (n) space [16]. We 
have shown that both Update procedures can be implemented in O (|Q�q | log |Q�q |) time and O (|Q�q |) space. As such, 
each iteration of the while loop of Algorithm 1 can be implemented in O (|Q�q | log |Q�q |) time and O (|Q�q |) space. 
As 

∑
q∈Q |Q�q | ≤ 25n, the total time of the algorithm is O (n logn). Note that the overall time of Line 8 and Line 11 of 

Algorithm 1 can be easily bounded by O (n logn) by using a balanced binary search tree. The total space of the algorithm is 
O (n). �

1 Indeed, suppose to the contrary that qv is not in ⊙v . Then we have d(qv , v) > 1. Recall that d(ui, v) ≤ 1 since point v ∈ Vi , and dist[qv ] ≥ dist[ui ]
since qv ∈ Ui = {ui , ui+1, . . . , u|U |}. This implies that dist[ui ] + d(ui , v) ≤ dist[qv ] + 1 < dist[qv ] + d(qv , v), which contradicts with that qv is the additively 
weighted nearest neighbor of v in Ui .
4
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Fig. 2. Illustrating VD(U ′), where U ′ has six blue points (with the same weight). VDh(U ′) consists of two vertical half-lines.

Fig. 3. Possible cases for the bisector B(a,b) of two weighted points a and b.

3. The bottleneck subproblem

In this section, we present an O (k logk) time and O (k) space algorithm to solve the bottleneck subproblem on U and V , 
with k = |U | + |V |. Recall U and V are separated by an axis-parallel line �. Without loss of generality, we assume that � is 
horizontal such that U is below � and V is above �. Our goal is to find qv ∈ U ′ for all v ∈ Vi (i.e., Line 10 in Algorithm 2), 
for a subset U ′ ⊆ U .

In the following, we first discuss some observations about the geometric structure of the problem and then describe the 
algorithm.

3.1. Observations

Let VD(U ′) denote the weighted Voronoi diagram of U ′ . To find qv , it suffices to locate the cell of VD(U ′) that contains 
v . Let h denote the upper half-plane bounded by �. As v is above �, it suffices to maintain the portion of VD(U ′) above �, 
denoted by VDh(U ′). In what follows, we first show that VDh(U ′) has a very simple structure: it only consists of a set of 
vertical half-lines with endpoints on � and going upwards to infinity (e.g., see Fig. 2). Then, we will show that VDh(U ′) can 
be updated in O (logk) amortized time for each insertion (i.e., inserting a point into U ′).

We say a vertical half-line is grounded on � if it goes upwards to infinity and has its endpoint on �. For any point or 
a vertical line segment p in the plane, we use x(p) to denote its x-coordinate. For each point u ∈ U , we define its weight 
w(u) = dist[u].

Properties of bisectors of two weighted points Consider two weighted points a and b in the plane with nonnegative weights 
w(a) and w(b), respectively. The bisector B(a, b) of a and b is the locus of points with equal (additively-)weighted distance 
to a and b, i.e., B(a, b) = {p ∈ R2 | w(a) + d(a, p) = w(b) + d(b, p)} (e.g., see Fig. 3). Note that in the degenerate case it is 
possible that an entire quadrant of the plane is in B(a, b) (e.g., see Fig. 3b), in which case it suffices to only consider the 
vertical boundary of the quadrant to be in B(a, b). Hence, B(a, b) in general consists of three parts: two axis-parallel half-
lines with a segment in the middle. Suppose both a and b are below the line � and x(a) ≤ x(b). Define Bh(a, b) = B(a, b) ∩h. 
Then either Bh(a, b) = ∅ or Bh(a, b) is a vertical half-line grounded on �; in the latter case x(a) ≤ x(Bh(a, b)) ≤ x(b). Note 
that if x(a) = x(b), then B(a, b) is a horizontal line between a and b and thus Bh(a, b) = ∅.

Geometric structure of VDh(U ′) Since all points of U are below �, according to the discussion above, for any two points 
ui and u j of U , Bh(ui, u j) is either ∅ or a vertical half-line grounded on � (and the vertical half-line is between ui and 
u j). These properties guarantee that VDh(U ′) consists of a set of O (|U ′|) vertical half-lines grounded on � (e.g., see Fig. 2), 
and between each pair of adjacent half-lines is the portion of the Voronoi cell of a vertex u ∈ U ′ . As such, we can use 
a balanced binary search tree T (U ′) to store the x-coordinates of the vertical half-lines of VDh(U ′). Given a query point 
v ∈ V , we can use T (U ′) to find the cell of VDh(U ′) containing v and thus obtain qv in O (log |U ′|) time, which is O (logk)
5
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Fig. 4. Illustrating VDh(U ′), and VDh(U ′′) after u∗ is inserted. The two dash dotted blue segments are new half-lines in VDh(U ′′) while Bh(ui , ui+1) does 
not appear in VDh(U ′′). Rh(ui , U ′) is the grey area and Rh(u∗, U ′′) is the region between the two dash dotted blue segments. Note that Bh(ui−1, ui) is 
lui = rui−1 and Bh(ui , ui+1) is rui = lui+1 .

as |U ′| ≤ |U | ≤ k. In the following, we will discuss how to update VDh(U ′) after a point of U is inserted to U ′ . We first 
prove some properties about the geometric structure of VDh(U ′).

For each point u ∈ U ′ , let R(u) denote the Voronoi cell of u in VD(U ′) and let Rh(u) = R(u) ∩ h. The above shows that 
if Rh(u) is not empty, then it is bounded by two vertical half-lines from the left and right; let lu and ru denote these two 
half-lines, respectively. We call lu the left bounding half-line and ru the right bounding half-line of Rh(u). Note that if Rh(u) is 
the leftmost (resp., rightmost) cell of VDh(U ′), then we let lu (resp., ru) refer to the vertical half-line grounded on � with 
x-coordinate −∞ (resp., +∞).

We say that a point u ∈ U ′ is relevant if Rh(u) �= ∅ and irrelevant otherwise. The following lemma proves several proper-
ties about the geometric structure of VDh(U ′), which will be useful for processing insertions.

Lemma 1. Suppose u1, u2, . . . , ut is the list of relevant vertices of U ′ whose Voronoi cells intersect h in the order from left to right. 
Then, the followings hold.

1. x(u1) < x(u2) < · · · < x(ut).
2. For each 1 ≤ i < t, rui is lui+1 .
3. For each 1 ≤ i ≤ t, x(lui ) ≤ x(ui) ≤ x(rui ).
4. For each 1 ≤ i ≤ t, pi is in Rh(ui), where pi is the vertical projection of ui on �.

Proof. Consider a point ui for any i > 1. By the definition of the list u1, u2, . . . , ut , lui belongs to the bisector B(ui−1, ui) of 
ui−1 and ui , i.e., lui = Bh(ui−1, ui). According to the properties of bisectors, x(ui−1) ≤ x(lui ) ≤ x(ui). Note that x(ui−1) = x(ui)

is not possible since otherwise Bh(ui−1, ui) would be ∅ (contradicting with lui = Bh(ui−1, ui)). As such, x(ui−1) < x(ui) holds. 
This proves the first lemma statement.

According to our definition of the list u1, u2, . . . , ut , the left bounding half-line of Rh(ui+1) must be the right bounding 
half-line of Rh(ui). Hence, the second lemma statement holds.

The above shows that x(lui ) ≤ x(ui) for i > 1. If i = 1, x(lui ) ≤ x(ui−1) also holds, for x(lui ) = −∞. This proves that 
x(lui ) ≤ x(ui) for any 1 ≤ i ≤ t . By a symmetric analysis, we can show that x(ui) ≤ x(rui ) for any 1 ≤ i ≤ t . This proves the 
third lemma statement.

The fourth lemma statement is an immediate consequence of the third lemma statement. �
3.2. Processing insertions

We are now in a position to describe our algorithm for processing insertions.
Consider inserting a point u∗ ∈ U \ U ′ into U ′ . As u∗ ∈ U , u∗ is below �. Let U ′′ = U ′ ∪ {u∗}. Our goal is to construct 

VDh(U ′′) by modifying VDh(U ′), or more precisely, obtain the tree T (U ′′) by modifying T (U ′). For differentiation, for each 
vertex u ∈ U ′′ , we use R(u, U ′′) to denote the Voronoi cell of u in VD(U ′′) and use R(u, U ′) to denote the Voronoi cell of 
u in VD(U ′). We define Rh(u, U ′′) and Rh(u, U ′) similarly. Let u1, u2, . . . , ut be the list of relevant vertices of U ′ whose 
Voronoi cells intersect h ordered from left to right.

We first compute the vertical projection of u∗ on � and let p∗ denote the projection point (e.g., see Fig. 4). Then, 
using the tree T (U ′), we find the cell Rh(ui, U ′) of VDh(U ′) that contains p∗ , for some relevant point ui ∈ U ′ . For ease 
of discussion, we assume 1 < i < t and other cases can be handled similarly. The following lemma is obtained based on 
Lemma 1.

Lemma 2. Rh(u∗, U ′′) �= ∅ if and only if d(p∗, ui) + w(ui) ≥ d(p∗, u∗) + w(u∗), and if Rh(u∗, U ′′) �= ∅, then p∗ ∈ Rh(u∗, U ′′).
6
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Proof. If Rh(u∗, U ′′) �= ∅, then by Lemma 1, p∗ must be in Rh(u∗, U ′′) and this implies d(p∗, ui) +w(ui) ≥ d(p∗, u∗) +w(u∗)
must hold. On the other hand, suppose d(p∗, ui) +w(ui) ≥ d(p∗, u∗) +w(u∗). Then, since p∗ ∈ Rh(ui, U ′), d(p∗, ui) +w(ui) ≤
d(p∗, u) + w(u) holds for any vertex u ∈ U ′ . Therefore, d(p∗, u) + w(u) ≥ d(p∗, u∗) + w(u∗) holds for any u ∈ U ′′ . This 
implies that u∗ is the nearest neighbor of p∗ in U ′′ . As such, the point p∗ must be in Rh(u∗, U ′′) and Rh(u∗, U ′′) cannot be 
empty. �

With Lemma 2, our insertion algorithm proceeds as follows. We check whether d(p∗, ui) + w(ui) ≥ d(p∗, u∗) + w(u∗). If 
not, then Rh(u∗, U ′′) = ∅ by Lemma 2 and thus VDh(U ′′) = VDh(U ′); hence, T (U ′′) = T (U ′) and we are done with process-
ing the insertion of u∗ . In the following, we assume that d(p∗, ui) + w(ui) ≥ d(p∗, u∗) + w(u∗). By Lemma 2, Rh(u∗, U ′′) �= ∅
and thus VDh(U ′′) �= VDh(U ′). Below we discuss how to modify VDh(U ′) to obtain VDh(U ′′).

For each vertex u ∈ U ′ , we still use lu and ru to denote the left and right bounding vertical half-lines of Rh(u, U ′), 
respectively.

Since p∗ ∈ Rh(ui, U ′), we have x(u∗) = x(p∗) ∈ [x(lui ), x(rui )]. By Lemma 1, x(ui−1) ≤ x(rui−1 ) = x(lui ) and x(rui ) =
x(lui+1 ) ≤ x(ui+1). Therefore, x(p∗) ∈ [x(ui−1), x(ui+1)]. Also by Lemma 1, x(ui−1) < x(ui) < x(ui+1). Without loss of gen-
erality, we assume that x(ui) ≤ x(p∗) < x(ui+1). We first discuss how to obtain the portion of VDh(U ′′) to the left of p∗ . To 
this end, we consider the points ui, ui−1, . . . , u1 in this order.

First, for ui , we compute the bisector B(ui, u∗) of ui and u∗ . Depending on whether Bh(ui, u∗) = B(ui, u∗) ∩ h is ∅, there 
are two cases.

• If Bh(ui, u∗) �= ∅, then Bh(ui, u∗) is a vertical half-line grounded on �. Since x(ui) ≤ x(u∗), according to the proper-
ties of bisectors, x(ui) ≤ x(Bh(ui, u∗)) ≤ x(u∗). As x(lui ) ≤ x(ui) and x(u∗) ≤ x(rui ), Bh(ui, u∗) must be in the Voronoi 
cell Rh(ui, U ′) between lui and p∗ (e.g., see Fig. 4). Hence, Bh(ui, u∗) must be the right bounding half-line of the cell 
Rh(ui, U ′′) in VDh(U ′′) as well as the left bounding half-line of the cell Rh(u∗, U ′′). We update the tree T (U ′) accord-
ingly (i.e., insert Bh(ui, u∗) to T (U ′)) and then halt the algorithm (i.e., the construction of VDh(U ′′) on the left of p∗ is 
finished).

• If Bh(ui, u∗) = ∅, then by our definition of bisectors (including our way for handling the degenerating case), since 
d(p∗, ui) + w(ui) ≥ d(p∗, u∗) + w(u∗), d(p, ui) + w(ui) ≥ d(p, u∗) + w(u∗) holds for any point p ∈ h. This implies that 
ui is dominated by u∗ with respect to the points of h, and thus ui becomes irrelevant in VDh(U ′′). As such, we remove 
lui from T (U ′). Note that lui is rui−1 by Lemma 2.
Next, we consider ui−1 in a way similar to the above for ui . If Bh(ui−1, u∗) �= ∅, then Bh(ui−1, u∗) becomes the right 
bounding half-line of the cell Rh(ui−1, U ′′) in VDh(U ′′) as well as the left bounding half-line of Rh(u∗, U ′′). We in-
sert Bh(ui−1, u∗) into T (U ′) and halt the algorithm. If Bh(ui−1, u∗) = ∅, then since p∗ ∈ Rh(u∗, U ′′) by Lemma 2, 
d(p∗, ui−1) +w(ui−1) ≥ d(p∗, u∗) +w(u∗). Further, by our definition of bisectors (including our way for handling the de-
generating case), d(p, ui−1) + w(ui−1) ≥ d(p, u∗) + w(u∗) holds for any point p ∈ h. Therefore, as above, ui−1 becomes 
irrelevant in VDh(U ′′). Accordingly, we remove lui−1 from T (U ′). We then proceed to considering ui−2 in the same 
way as above. Such a procedure continues until a new bounding half-line between u∗ and some point u j , 1 ≤ j < i is 
found eventually or u∗ becomes the leftmost relevant vertex (Rh(u∗, U ′′) only has a right bounding half-line). Then the 
algorithm is halted.

The above describes the algorithm for constructing VDh(U ′′) to the left of p∗ . The algorithm for constructing VDh(U ′′)
to the right of p∗ is similar. One slight difference is that the algorithm starts with considering ui+1 instead of ui by first 
removing rui from T (U ′). Then, we compute the bisector B(u∗, ui+1). If Bh(u∗, ui+1) �= ∅, then Bh(u∗, ui+1) becomes the 
right bounding half-line of Rh(u∗, U ′′) as well as the left bounding half-line of Rh(ui+1, U ′′). We insert Bh(u∗, ui+1) into 
T (U ′) and halt the algorithm. If Bh(u∗, ui+1) = ∅, then ui+1 becomes irrelevant and we proceed to considering ui+2 in the 
same way. Similarly, the algorithm halts if a new bounding half-line between u∗ and some point u j , i < j ≤ t is found or 
u∗ becomes the rightmost relevant vertex (Rh(u∗, U ′′) only has a left bounding half-line).

The above describes the algorithm for constructing VDh(U ′′) from VDh(U ′). The resulting tree T (U ′) is T (U ′′). The 
following lemma summarizes the time complexity of the insertion algorithm described above and proves the correctness of 
the algorithm.

Lemma 3. After a point u∗ ∈ U is inserted into U ′ , VDh(U ′′) can be computed from VDh(U ′) in O ((δ + 1) logk) time, where U ′′ =
U ′ ∪ {u∗} and δ is the number of relevant vertices of VDh(U ′) that become irrelevant in VDh(U ′′).

Proof. The runtime of the insertion algorithm is obvious from our algorithm description. In the following, we prove the 
correctness of the algorithm.

If d(p∗, ui) + w(ui) < d(p∗, u∗) + w(u∗), then VDh(U ′′) = VDh(U ′) by Lemma 2 and thus our algorithm is correct in 
this case. In the following, we assume that d(p∗, ui) + w(ui) ≥ d(p∗, u∗) + w(u∗) and prove that the diagram VDh(U ′′)
constructed by our algorithm is correct.

Let p be any point in h and let u be the point of U ′′ such that p is in the cell of u after our insertion algorithm 
for u∗ is finished, i.e., p ∈ Rh(u, U ′′). To prove the correctness of our algorithm, it suffices to show that d(p, u) + w(u) ≤
7
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Fig. 5. Illustrating the proof of Lemma 3 for the case where u is not adjacent to u∗ in L.

d(p, u′) + w(u′) holds for every point u′ ∈ U ′′ . Depending on whether u = u∗ , there are two cases. Let u j be the point of U ′
such that p ∈ Rh(u j, U ′).

• We first consider the case u = u∗ . As p ∈ Rh(u j, U ′), d(p, u j) + w(u j) ≤ d(p, u′) + w(u′) holds for any u′ ∈ U ′ . As p is 
in the cell of u∗ after the insertion algorithm finishes, according to our algorithm, d(p, u∗) + w(u∗) ≤ d(p, u j) + w(u j)

must hold. Since u = u∗ , we obtain that d(p, u) + w(u) = d(p, u∗) + w(u∗) ≤ d(p, u j) + w(u j) ≤ d(p, u′) + w(u′) holds 
for any u′ ∈ U ′′ .

• We then consider the case u �= u∗ . In this case, according to our algorithm, u must be u j and u and u∗ define different 
cells in VDh(U ′′), i.e., Rh(u, U ′′) �= Rh(u∗, U ′′). Without loss of generality, we assume that Rh(u, U ′′) is to the left of 
Rh(u∗, U ′′). Depending on whether u is adjacent to u∗ in the relevant point list L after the insertion algorithm (L is 
defined in the same way as Lemma 1 with respect to VDh(U ′′)), there are two subcases.
If u is adjacent to u∗ in L, then since p is in the cell of u after the insertion algorithm, it holds that d(p, u) + w(u) ≤
d(p, u∗) + w(u∗). Since u = u j and d(p, u j) + w(u j) ≤ d(p, u′) + w(u′) holds for any u′ ∈ U ′ , we obtain that d(p, u) +
w(u) ≤ d(p, u′) + w(u′) holds for any u′ ∈ U ′′ .
If u is not adjacent to u∗ in L, then let u′′ be the left neighboring relevant point of u∗ in L (e.g., see Fig. 5). Since 
Rh(u, U ′′) is to the left of Rh(u∗, U ′′) and p ∈ Rh(u, U ′′), p must be to the left of Bh(u′′, u∗), which is the right bounding 
half-line of Rh(u′′, U ′′). As u′′ is the left neighboring relevant point of u∗ in L, according to our insertion algorithm, 
d(p′, u′′) + w(u′′) ≤ d(p′, u∗) + w(u∗) for any point p′ ∈ h to the left of Bh(u′′, u∗). Because p is in h to the left of 
Bh(u′′, u∗), d(p, u′′) + w(u′′) ≤ d(p, u∗) + w(u∗) holds. As d(p, u j) + w(u j) ≤ d(p, u′) + w(u′) for any u′ ∈ U ′ , we have 
d(p, u j) + w(u j) ≤ d(p, u′′) + w(u′′). We thus derive d(p, u j) + w(u j) ≤ d(p, u∗) + w(u∗). Since u = u j , we obtain that 
d(p, u) + w(u) ≤ d(p, u′) + w(u′) for any u′ ∈ U ′′ .

In summary, d(p, u) + w(u) ≤ d(p, u′) + w(u′) holds for every point u′ ∈ U ′′ . This proves the correctness of our algo-
rithm. �

Note that once a relevant point becomes irrelevant after an insertion, it will never become relevant again for any in-
sertions in future. Therefore, the total sum of δ in Lemma 3 for processing all insertions of U is at most k. As such, by 
Lemma 3, the total time for processing all insertions is O (k logk).

Recall that all query operations can be performed in overall O (k logk) time by using the tree T (U ′). Note that the space 
of our algorithm is bounded by O (k). Therefore, we obtain the following result.

Lemma 4. The bottleneck subproblem on U and V can be solved in O (k logk) time and O (k) space, where k = |U | + |V |.

4. Conclusion

In this paper, we proposed an algorithm for solving the single-source shortest path (SSSP) problem for unit-disk graphs 
in the L1 metric. Our algorithm runs in O (n logn) time, which matches the �(n logn) lower bound and thus is optimal. The 
space complexity of the algorithm is O (n). Note that our algorithm immediately solves the same problem in the L∞ metric 
with the same complexities, e.g., by first rotating the plane by 45◦ and then applying our L1 algorithm.

Our algorithm follows the framework of the previous O (n log2 n) time algorithm [16] for the L2 case of the problem. An 
interesting open problem is whether the time of the algorithm in [16] can be reduced to O (n logn). As discussed before, 
the key is to solve the bottleneck subproblem, i.e., the offline insertion-only additively-weighted nearest-neighbor problem, 
in O (k logk) time, where k is the number of insertion and query operations. We are able to do so for the L1 problem by 
exploiting some special properties of the L1 metric. It would be interesting to see whether the same result can be achieved 
for the L2 metric.
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