

An optimal algorithm for L_1 shortest paths in unit-disk graphs

Haitao Wang, Yiming Zhao*

Department of Computer Science, Utah State University, Logan, UT 84322, USA

ARTICLE INFO

Article history:

Received 24 November 2021

Received in revised form 28 August 2022

Accepted 18 October 2022

Available online 24 October 2022

Keywords:

Unit-disk graphs

Shortest paths

L_1 metric

Voronoi diagrams

ABSTRACT

A unit-disk graph $G(P)$ of a set P of points in the plane is a graph with P as its vertex set such that two points of P are connected by an edge if the distance between the two points is at most 1 and the weight of the edge is equal to the distance of the two points. Given P and a source point $s \in P$, we consider the problem of finding shortest paths in $G(P)$ from s to all other vertices of $G(P)$. In the L_2 case where the distance is measured by the L_2 metric, the problem has been extensively studied and the current best algorithm runs in $O(n \log^2 n)$ time, with $n = |P|$. In this paper, we study the L_1 case in which the distance is measured under the L_1 metric (and each disk becomes a diamond); we present an $O(n \log n)$ time algorithm, which matches the $\Omega(n \log n)$ -time lower bound.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

Let P be a set of n points in the plane. The *unit-disk graph* $G(P)$ of P is a graph with P as its vertex set such that two points of P are connected by an edge if the distance between the two points is at most 1. Alternatively, $G(P)$ is the intersection graph of the set of disks centered at the points of P with radii equal to $1/2$. Each edge of $G(P)$ has a weight that is equal to the distance of the two incident vertices of the edge.

In this paper, we consider the *single-source shortest path* (SSSP) problem on $G(P)$, i.e., given P and a source point $s \in P$, compute shortest paths in $G(P)$ from s to all other points of P . In particular, we consider the L_1 case of the problem in which the distance is measured under the L_1 metric (and each disk becomes a diamond).

The L_2 case of the problem where the distance is measured under the L_2 metric has been extensively studied [2,4,8,9,15,16]. The current best algorithm, which was given by Wang and Xue [16], runs in $O(n \log^2 n)$ time. The L_1 case, however, has not been particularly studied before. To solve the L_1 problem, we follow the algorithmic framework of Wang and Xue [16] but give a faster implementation. The runtime of Wang and Xue's algorithm [16] is dominated by a bottleneck subproblem. Due to some special properties of the L_1 metric, we derive a more efficient algorithm for the bottleneck subproblem in the L_1 case, which leads to an overall $O(n \log n)$ -time algorithm for the shortest path problem.

More specifically, the bottleneck subproblem is the offline insertion-only additively-weighted nearest-neighbor problem, where we are given an offline sequence of k insertions and queries such that an *insertion* inserts a weighted point to a point set U (which is \emptyset initially) and a *query* asks for the additively-weighted nearest neighbor in U of a query point. The

* A preliminary version of this paper appeared in Proceedings of the 33rd Canadian Conference on Computational Geometry (CCCG 2021). This research was supported in part by NSF under Grant CCF-2005323.

* Corresponding author.

E-mail addresses: haitao.wang@usu.edu (H. Wang), yiming.zhao@usu.edu (Y. Zhao).

goal is to answer all queries. Wang and Xue [16] solved the problem in $O(k \log^2 k)$ time by using the standard logarithmic method [1,6]. This leads to the overall $O(n \log^2 n)$ time for their shortest path algorithm [16]; reducing the time for the subproblem to $O(k \log k)$ would solve the shortest path problem in $O(n \log n)$ time. The difficulty in doing so is that there does not exist a semi-dynamic (for insertions only) weighted Voronoi diagram data structure that can perform each insertion in $O(\log k)$ amortized time (in order to answer queries, an efficient dynamic point location data structure is also needed). For solving our L_1 shortest path problem, we first observe a special property of the bottleneck problem under our problem settings: sets U and V are separated by an axis-parallel line ℓ , where V is the set of all query points. Without loss of generality, we assume that ℓ is horizontal and U is below ℓ . Based on the properties of the L_1 metric, a critical observation we find is that the portion of the weighted L_1 Voronoi diagram of U above ℓ only consists of a set of vertical lines. Then, we can easily maintain these vertical lines by a balanced binary search tree so that each query can be answered in $O(\log k)$ time. Further, the special structure also allows us to update the portion of the Voronoi diagram above ℓ in $O(\log k)$ amortized time for each insertion. As such, the bottleneck subproblem can be solved in $O(k \log k)$ time in the L_1 case, which leads to an overall $O(n \log n)$ time algorithm for the shortest path problem. Note that the space of our shortest path algorithm is $O(n)$.

Cabello and Jejčić [2] observed that by a simple reduction from the max-gap problem, deciding whether the unit-disk graph $G(P)$ is connected requires $\Omega(n \log n)$ time even if all points of P are on a line. This implies that $\Omega(n \log n)$ is a lower bound for solving the shortest path problem in unit-disk graphs for both the L_1 and L_2 cases (because both cases are the same when all points of P are on a line). As such, our algorithm for the L_1 case is optimal.

1.1. Related work

Before Wang and Xue's work [16], the shortest path problem in the L_2 case had been studied by many others. Roditty and Segal [15] gave the first sub-quadratic algorithm of $O(n^{4/3+\epsilon})$ time for any constant $\epsilon > 0$. Cabello and Jejčić [2] later proposed an improved algorithm of $O(n^{1+\epsilon})$ time. Following the framework of Cabello and Jejčić [2] but with a more efficient data structure for the bichromatic closest pair problem, Kaplan et al. [9] gave a randomized algorithm that solves the problem in $O(n \log^{12+o(1)} n)$ expected time. Approximation algorithms for the problem have also been developed, e.g., see [4,8,16].

The shortest path problem we consider is actually on a *weighted* unit-disk graph. In the *unweighted* case, the weight of each edge of the graph is 1. The unweighted problem is much easier. The L_2 unweighted problem can be solved in $O(n \log n)$ time [2,4]. In particular, if all input points of P are presorted by their x - and y -coordinates, the algorithm of Chan and Skrepetos [3] runs in $O(n)$ time.

As an important class of geometric intersection graphs, unit-disk graphs have been widely studied due to many of their applications, e.g., in wireless sensor networks [13,14]. In addition to the shortest path problem, many other problems on unit-disk graphs have also been considered in the literature, such as the clique problem [5], the independent set problem [12], all pairs shortest paths [3,4,8], the reverse shortest path problem [17,19], the diameter problem [3,4,8], etc. Comparing to general graphs, these problems in unit-disk graphs can be solved more efficiently by exploiting their underlying geometric structures.

Outline In the following, we describe the main algorithm in Section 2 while the bottleneck subproblem is tackled in Section 3. Section 4 concludes our paper.

2. The main algorithm

In this section, we describe the main algorithm for the shortest path problem. Our algorithm follows Wang and Xue's algorithmic framework [16]. In the following, we will adapt their algorithm to the L_1 case. We will also borrow some of their notation.

For any two points p and q in the plane, we use $d(p, q)$ to denote their L_1 distance. For any point p , we use \odot_p to denote the unit disk centered at p , which is a diamond in the L_1 metric. Let s be the source point of P , from which the shortest paths must be computed. Throughout the paper, we will use the points of P and the vertices of the unit-disk graph $G(P)$ interchangeably.

The algorithm follows the basic idea of Dijkstra's shortest path algorithm with the help of a grid. The grid technique was widely used in algorithms related to unit-disk graphs [3,16–19]. At the outset, we implicitly build a grid Γ of square cells of side length $1/2$. For simplicity of discussion, we assume that each vertex of $G(P)$ lies in the interior of a single cell of Γ . A *patch* of Γ is a square area consisting of 5×5 cells of Γ . For any point p in the plane, let \square_p denote the cell of Γ that contains p and \boxplus_p denote the patch whose central cell is \square_p (see Fig. 1). Since the side length of each cell of Γ is $1/2$, if two vertices of $G(P)$ are in a single cell of Γ , they must be connected by an edge in $G(P)$. On the other hand, if two points p and q are connected by an edge in $G(P)$, then q must be in a cell of \boxplus_p . Unlike Dijkstra's shortest path algorithm, which selects one single vertex in each iteration to compute shortest-path information, our algorithm tries to compute shortest-path information for all vertices in a cell of Γ and then pass shortest-path information to the vertices in the neighboring cells.

For a subset $Q \subseteq P$ and a cell \square (resp., a patch \boxplus) of Γ , define $Q_{\square} = Q \cap \square$ (resp., $Q_{\boxplus} = Q \cap \boxplus$).

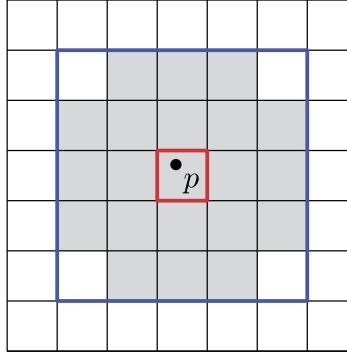


Fig. 1. The side length of each square cell in the grid Γ is $\frac{1}{2}$. For the black point p , the red cell that contains it is \square_p , and the square area bounded by blue segments which contains 5×5 cells is the patch $\square\square_p$. For any point in \square_p , its neighboring points in $G(P)$ must lie in the grey region. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

To implicitly compute the grid Γ , we actually perform the following preprocessing. We compute P_{\square} for all cells \square of Γ that contain at least one point of P . We also associate pointers to each point $p \in P$ such that from p we can access \square_p and $\square\square_p$. The preprocessing can be done in $O(n \log n)$ time and $O(n)$ space [16].

The algorithm will compute a table $dist[\cdot]$ for all vertices of $G(P)$, where $dist[p]$ is the length of a shortest path between s and a point $p \in P$. Note that we should also maintain the corresponding path-predecessor information to form a shortest path tree; this can be done by standard techniques [16], so we omit the discussions.

One important subroutine that will be extensively used in the algorithm is $UPDATE(U, V)$. For two subsets $U, V \subseteq P$, $UPDATE(U, V)$ is to update the shortest-path information of vertices in the set V by using the shortest-path information of vertices in U . More specifically, for each $v \in V$, let $q_v = \arg \min_{u \in U \cap \bigcirc_v} \{dist[u] + d(u, v)\}$. The purpose of $UPDATE(U, V)$ is to find q_v for all $v \in V$ and update $dist[v] = \min\{dist[v], dist[q_v] + d(q_v, v)\}$.

With $UPDATE(U, V)$, the algorithm works as follows (refer to Algorithm 1 for the pseudocode). Initially, for each vertex $p \in P$, $dist[p]$ is set to ∞ , except that $dist[s] = 0$. Initialize $Q = P$. In the main loop, as long as $Q \neq \emptyset$, in each iteration we find a vertex $q \in Q$ who has a minimum $dist[q]$. Subsequently there are two subroutines $UPDATE(Q_{\square_q}, Q_{\square_q})$ and $UPDATE(Q_{\square_q}, Q_{\square\square_q})$. Finally, vertices in Q_{\square_q} are removed from Q , because $dist[p]$ for all $p \in Q_{\square_q}$ have been correctly computed. Refer to [16] for the correctness proof, which is applicable to the L_1 case.

Algorithm 1: The SSSP Algorithm [16].

```

1 Function SSSP( $P, s$ ):
2   for each  $p \in P$  do
3     |  $dist[p] = \infty$ 
4   end
5    $dist[s] = 0$ 
6    $Q = P$ 
7   while  $Q \neq \emptyset$  do
8     |  $q = \arg \min_{p \in Q} \{dist[p]\}$ 
9     |  $UPDATE(Q_{\square_q}, Q_{\square_q})$  // first update
10    |  $UPDATE(Q_{\square_q}, Q_{\square\square_q})$  // second update
11    |  $Q = Q \setminus Q_{\square_q}$ 
12  end
13  return  $dist[\cdot]$ 
14 end

```

Implementing the algorithm efficiently hinges on the two $UPDATE$ procedures.

The first update For the first update $UPDATE(Q_{\square_q}, Q_{\square_q})$, the key is to find a point $q_v \in Q_{\square_q} \cap \bigcirc_v$ that minimizes $dist[q_v] + d(q_v, v)$ for each point $v \in Q_{\square_q}$. If we assign each point in Q_{\square_q} a weight equal to its $dist$ -value, then q_v is essentially the additively-weighted nearest neighbor of v in $Q_{\square_q} \cap \bigcirc_v$. To find q_v efficiently, a crucial observation found by Wang and Xue [16] (see Lemma 2.5 in [16], whose proof is applicable to the L_1 case) is that any point $p \in Q_{\square_q}$ that minimizes $dist[p] + d(p, v)$ must be in \bigcirc_v , i.e., the nearest neighbor of v in Q_{\square_q} is also the nearest neighbor of v in $Q_{\square_q} \cap \bigcirc_v$. Due to this observation, we can find q_v for all $v \in Q_{\square_q}$ as follows. First, we build an L_1 additively-weighted Voronoi diagram on vertices in Q_{\square_q} and then use the diagram to find the nearest neighbor for each $v \in Q_{\square_q}$. Constructing the diagram can be done in $O(|Q_{\square_q}| \log |Q_{\square_q}|)$ time and $O(|Q_{\square_q}|)$ space (e.g., by using the abstract Voronoi diagram algorithm [11]), and all queries together take $O(|Q_{\square_q}| \log |Q_{\square_q}|)$ time (e.g., build a point location data structure on the diagram in $O(|Q_{\square_q}|)$ time [7,10] and then perform point location queries for points of Q_{\square_q} , which take $O(\log |Q_{\square_q}|)$ time each).

Algorithm 2: UPDATE(U, V) [16].

```

1 Function Update( $U, V$ ):
2   Sort( $U = \{u_1, u_2, \dots, u_{|U|}\}$ ) //  $\text{dist}[u_1] \leq \dots \leq \text{dist}[u_{|U|}]$ 
3   for  $i = 1, 2, \dots, |U|$  do
4      $| V_i = \{v \in V \mid v \in \bigodot_{u_i}, v \notin \bigodot_{u_j} \text{ for all } j < i\}$ 
5   end
6    $U' = \emptyset$ 
7   for  $i = |U|, |U| - 1, \dots, 1$  do
8      $| U' = U' \cup \{u_i\}$ 
9     for each  $v \in V_i$  do
10     $| q_v = \arg \min_{u \in U'} \{\text{dist}[u] + d(u, v)\}$ 
11     $| \text{dist}[v] = \min\{\text{dist}[v], \text{dist}[q_v] + d(q_v, v)\}$ 
12  end
13 end
14 end

```

The second update Implementing the second update $\text{UPDATE}(Q_{\square_q}, Q_{\square_q})$ is not that easy anymore because the above crucial observation does not hold. Since Q_{\square_q} has $O(1)$ cells of Γ , it suffices to perform $\text{UPDATE}(Q_{\square_q}, Q_{\square})$ for all cells $\square \in \boxplus_q$.

If \square is \square_q , then $Q_{\square_q} = Q_{\square}$. Since the distance between any two points in \square_q is at most 1, we can use the following algorithm to implement $\text{UPDATE}(Q_{\square_q}, Q_{\square})$. We first build an L_1 weighted Voronoi diagram on points of Q_{\square_q} in $O(|Q_{\square_q}| \log |Q_{\square_q}|)$ time and $O(|Q_{\square_q}|)$ space [11], and then use it to find the weighted nearest neighbor q_v for each point $v \in Q_{\square_q}$. Clearly, the total time is $O(|Q_{\square_q}| \log |Q_{\square_q}|)$.

If \square is not \square_q , then a critical property is that \square and \square_q are separated by an axis-parallel line ℓ . To perform $\text{UPDATE}(Q_{\square_q}, Q_{\square})$, Wang and Xue [16] proposed the following approach (see Algorithm 2 for the pseudocode). Let $U = Q_{\square_q}$ and $V = Q_{\square}$. We first sort vertices in $U = \{u_1, u_2, \dots, u_{|U|}\}$ by their dist -values such that $\text{dist}[u_1] \leq \text{dist}[u_2] \leq \dots \leq \text{dist}[u_{|U|}]$. Then we partition V into subsets $V_i = \{v \in V \mid v \in \bigodot_{u_i}, v \notin \bigodot_{u_j} \text{ for all } j < i\}$, for all $i = 1, 2, \dots, |U|$. For each $1 \leq i \leq |U|$, for each vertex $v \in V_i$, we find $q_v = \arg \min_{p \in U_i} \{\text{dist}[p] + d(p, v)\}$, where $U_i = \{u_i, u_{i+1}, \dots, u_{|U|}\}$, and update $\text{dist}[v] = \min\{\text{dist}[v], \text{dist}[q_v] + d(q_v, v)\}$. This step is implemented by a for loop (Lines 6–13) in Algorithm 2. By the definition of V_i , we have $U \cap \bigodot_v \subseteq U_i$ for all $v \in V_i$. Also, Wang and Xue [16] proved that q_v found as above must be in \bigodot_v (see Lemma 2.6 in [16], whose proof is applicable to the L_1 case).¹ As such, $q_v = \arg \min_{p \in U \cap \bigodot_v} \{\text{dist}[p] + d(p, v)\}$. This proves the correctness of the algorithm.

We now analyze the runtime of the above algorithm. Sorting the vertices of U takes $O(|U| \log |U|)$ time. To compute the subsets V_i , $1 \leq i \leq |U|$, Wang and Xue [16] gave an algorithm of $O(k \log k)$ time (and $O(k)$ space) for the L_2 case (see Section 2.2.1 [16]) by making use of the property that U and V are separated by ℓ , where $k = |U| + |V|$. For the L_1 case, we can use the same algorithm; in fact, the algorithm becomes easier as a disk in the L_1 case is a diamond. We omit the details and conclude that the subsets V_i , $1 \leq i \leq |U|$, can be computed in $O(k \log k)$ time in the L_1 case. Next, the for loop (Lines 6–13) is for the bottleneck subproblem mentioned in Section 1, i.e., the offline insertion-only additively-weighted nearest-neighbor problem. Indeed, if we assign each vertex in U a weight equal to its dist -value, then q_v is essentially the additively-weighted nearest neighbor of v in U' , where $U' = U_i$ in the i -th iteration of the for loop. The set U' is dynamically changed with point insertions. Using the standard logarithmic method [16], Wang and Xue [16] solves the problem in $O(k \log^2 k)$ time. By exploring the properties of the L_1 metric, we give an $O(k \log k)$ time (and $O(k)$ space) algorithm in Section 3. As such, $\text{UPDATE}(Q_{\square_q}, Q_{\square})$ can be performed in $O(k \log k)$ time and $O(k)$ space, with $k = |Q_{\square_q}| + |Q_{\square}|$.

In summary, since Q_{\boxplus_q} has $O(1)$ cells, the second update $\text{UPDATE}(Q_{\square_q}, Q_{\boxplus_q})$ can be implemented in $O(|Q_{\boxplus_q}| \log |Q_{\boxplus_q}|)$ time as $Q_{\square_q} \subseteq Q_{\boxplus_q}$. This leads to the following theorem.

Theorem 1. Given a set P of n points in the L_1 plane and a source point $s \in P$, the shortest paths from s to all vertices in the unit-disk graph $G(P)$ can be computed in $O(n \log n)$ time and $O(n)$ space.

Proof. As discussed before, constructing the grid Γ implicitly can be done in $O(n \log n)$ time and $O(n)$ space [16]. We have shown that both UPDATE procedures can be implemented in $O(|Q_{\boxplus_q}| \log |Q_{\boxplus_q}|)$ time and $O(|Q_{\boxplus_q}|)$ space. As such, each iteration of the while loop of Algorithm 1 can be implemented in $O(|Q_{\boxplus_q}| \log |Q_{\boxplus_q}|)$ time and $O(|Q_{\boxplus_q}|)$ space. As $\sum_{q \in Q} |Q_{\boxplus_q}| \leq 25n$, the total time of the algorithm is $O(n \log n)$. Note that the overall time of Line 8 and Line 11 of Algorithm 1 can be easily bounded by $O(n \log n)$ by using a balanced binary search tree. The total space of the algorithm is $O(n)$. \square

¹ Indeed, suppose to the contrary that q_v is not in \bigodot_v . Then we have $d(q_v, v) > 1$. Recall that $d(u_i, v) \leq 1$ since point $v \in V_i$, and $\text{dist}[q_v] \geq \text{dist}[u_i]$ since $q_v \in U_i = \{u_i, u_{i+1}, \dots, u_{|U|}\}$. This implies that $\text{dist}[u_i] + d(u_i, v) \leq \text{dist}[q_v] + 1 < \text{dist}[q_v] + d(q_v, v)$, which contradicts with that q_v is the additively weighted nearest neighbor of v in U_i .

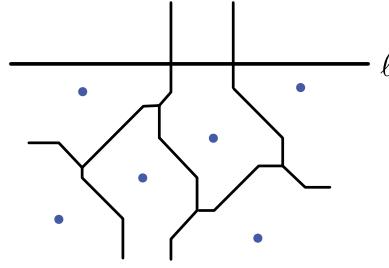


Fig. 2. Illustrating $VD(U')$, where U' has six blue points (with the same weight). $VD_h(U')$ consists of two vertical half-lines.

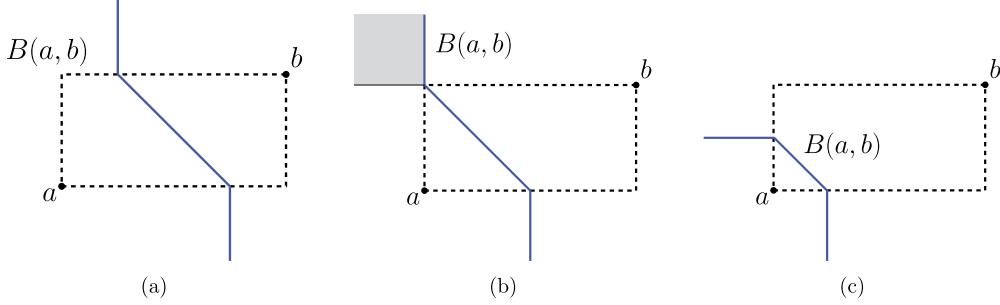


Fig. 3. Possible cases for the bisector $B(a, b)$ of two weighted points a and b .

3. The bottleneck subproblem

In this section, we present an $O(k \log k)$ time and $O(k)$ space algorithm to solve the bottleneck subproblem on U and V , with $k = |U| + |V|$. Recall U and V are separated by an axis-parallel line ℓ . Without loss of generality, we assume that ℓ is horizontal such that U is below ℓ and V is above ℓ . Our goal is to find $q_v \in U'$ for all $v \in V_i$ (i.e., Line 10 in Algorithm 2), for a subset $U' \subseteq U$.

In the following, we first discuss some observations about the geometric structure of the problem and then describe the algorithm.

3.1. Observations

Let $VD(U')$ denote the weighted Voronoi diagram of U' . To find q_v , it suffices to locate the cell of $VD(U')$ that contains v . Let h denote the upper half-plane bounded by ℓ . As v is above ℓ , it suffices to maintain the portion of $VD(U')$ above ℓ , denoted by $VD_h(U')$. In what follows, we first show that $VD_h(U')$ has a very simple structure: it only consists of a set of vertical half-lines with endpoints on ℓ and going upwards to infinity (e.g., see Fig. 2). Then, we will show that $VD_h(U')$ can be updated in $O(\log k)$ amortized time for each insertion (i.e., inserting a point into U').

We say a vertical half-line is *grounded* on ℓ if it goes upwards to infinity and has its endpoint on ℓ . For any point or a vertical line segment p in the plane, we use $x(p)$ to denote its x -coordinate. For each point $u \in U$, we define its weight $w(u) = \text{dist}[u]$.

Properties of bisectors of two weighted points Consider two weighted points a and b in the plane with nonnegative weights $w(a)$ and $w(b)$, respectively. The *bisector* $B(a, b)$ of a and b is the locus of points with equal (additively-)weighted distance to a and b , i.e., $B(a, b) = \{p \in \mathbb{R}^2 \mid w(a) + d(a, p) = w(b) + d(b, p)\}$ (e.g., see Fig. 3). Note that in the degenerate case it is possible that an entire quadrant of the plane is in $B(a, b)$ (e.g., see Fig. 3b), in which case it suffices to only consider the vertical boundary of the quadrant to be in $B(a, b)$. Hence, $B(a, b)$ in general consists of three parts: two axis-parallel half-lines with a segment in the middle. Suppose both a and b are below the line ℓ and $x(a) \leq x(b)$. Define $B_h(a, b) = B(a, b) \cap h$. Then either $B_h(a, b) = \emptyset$ or $B_h(a, b)$ is a vertical half-line grounded on ℓ ; in the latter case $x(a) \leq x(B_h(a, b)) \leq x(b)$. Note that if $x(a) = x(b)$, then $B(a, b)$ is a horizontal line between a and b and thus $B_h(a, b) = \emptyset$.

Geometric structure of $VD_h(U')$ Since all points of U are below ℓ , according to the discussion above, for any two points u_i and u_j of U , $B_h(u_i, u_j)$ is either \emptyset or a vertical half-line grounded on ℓ (and the vertical half-line is between u_i and u_j). These properties guarantee that $VD_h(U')$ consists of a set of $O(|U'|)$ vertical half-lines grounded on ℓ (e.g., see Fig. 2), and between each pair of adjacent half-lines is the portion of the Voronoi cell of a vertex $u \in U'$. As such, we can use a balanced binary search tree $T(U')$ to store the x -coordinates of the vertical half-lines of $VD_h(U')$. Given a query point $v \in V$, we can use $T(U')$ to find the cell of $VD_h(U')$ containing v and thus obtain q_v in $O(\log |U'|)$ time, which is $O(\log k)$.

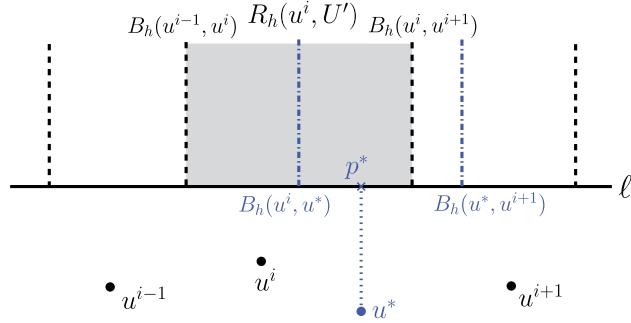


Fig. 4. Illustrating $VD_h(U')$, and $VD_h(U'')$ after u^* is inserted. The two dash dotted blue segments are new half-lines in $VD_h(U'')$ while $B_h(u^i, u^{i+1})$ does not appear in $VD_h(U'')$. $R_h(u^i, U')$ is the grey area and $R_h(u^*, U'')$ is the region between the two dash dotted blue segments. Note that $B_h(u^{i-1}, u^i)$ is $l_{u^i} = r_{u^{i-1}}$ and $B_h(u^i, u^{i+1})$ is $r_{u^i} = l_{u^{i+1}}$.

as $|U'| \leq |U| \leq k$. In the following, we will discuss how to update $VD_h(U')$ after a point of U is inserted to U' . We first prove some properties about the geometric structure of $VD_h(U')$.

For each point $u \in U'$, let $R(u)$ denote the Voronoi cell of u in $VD(U')$ and let $R_h(u) = R(u) \cap h$. The above shows that if $R_h(u)$ is not empty, then it is bounded by two vertical half-lines from the left and right; let l_u and r_u denote these two half-lines, respectively. We call l_u the *left bounding half-line* and r_u the *right bounding half-line* of $R_h(u)$. Note that if $R_h(u)$ is the leftmost (resp., rightmost) cell of $VD_h(U')$, then we let l_u (resp., r_u) refer to the vertical half-line grounded on ℓ with x -coordinate $-\infty$ (resp., $+\infty$).

We say that a point $u \in U'$ is *relevant* if $R_h(u) \neq \emptyset$ and *irrelevant* otherwise. The following lemma proves several properties about the geometric structure of $VD_h(U')$, which will be useful for processing insertions.

Lemma 1. Suppose u^1, u^2, \dots, u^t is the list of relevant vertices of U' whose Voronoi cells intersect h in the order from left to right. Then, the followings hold.

1. $x(u^1) < x(u^2) < \dots < x(u^t)$.
2. For each $1 \leq i < t$, r_{u^i} is $l_{u^{i+1}}$.
3. For each $1 \leq i \leq t$, $x(l_{u^i}) \leq x(u^i) \leq x(r_{u^i})$.
4. For each $1 \leq i \leq t$, p^i is in $R_h(u^i)$, where p^i is the vertical projection of u^i on ℓ .

Proof. Consider a point u^i for any $i > 1$. By the definition of the list u^1, u^2, \dots, u^t , l_{u^i} belongs to the bisector $B_h(u^{i-1}, u^i)$ of u^{i-1} and u^i , i.e., $l_{u^i} = B_h(u^{i-1}, u^i)$. According to the properties of bisectors, $x(u_{i-1}) \leq x(l_{u^i}) \leq x(u^i)$. Note that $x(u^{i-1}) = x(u^i)$ is not possible since otherwise $B_h(u^{i-1}, u^i)$ would be \emptyset (contradicting with $l_{u^i} = B_h(u^{i-1}, u^i)$). As such, $x(u^{i-1}) < x(u^i)$ holds. This proves the first lemma statement.

According to our definition of the list u^1, u^2, \dots, u^t , the left bounding half-line of $R_h(u^{i+1})$ must be the right bounding half-line of $R_h(u^i)$. Hence, the second lemma statement holds.

The above shows that $x(l_{u^i}) \leq x(u^i)$ for $i > 1$. If $i = 1$, $x(l_{u^i}) \leq x(u^{i-1})$ also holds, for $x(l_{u^i}) = -\infty$. This proves that $x(l_{u^i}) \leq x(u^i)$ for any $1 \leq i \leq t$. By a symmetric analysis, we can show that $x(u^i) \leq x(r_{u^i})$ for any $1 \leq i \leq t$. This proves the third lemma statement.

The fourth lemma statement is an immediate consequence of the third lemma statement. \square

3.2. Processing insertions

We are now in a position to describe our algorithm for processing insertions.

Consider inserting a point $u^* \in U \setminus U'$ into U' . As $u^* \in U$, u^* is below ℓ . Let $U'' = U' \cup \{u^*\}$. Our goal is to construct $VD_h(U'')$ by modifying $VD_h(U')$, or more precisely, obtain the tree $T(U'')$ by modifying $T(U')$. For differentiation, for each vertex $u \in U''$, we use $R(u, U'')$ to denote the Voronoi cell of u in $VD(U'')$ and use $R(u, U')$ to denote the Voronoi cell of u in $VD(U')$. We define $R_h(u, U'')$ and $R_h(u, U')$ similarly. Let u^1, u^2, \dots, u^t be the list of relevant vertices of U' whose Voronoi cells intersect h ordered from left to right.

We first compute the vertical projection of u^* on ℓ and let p^* denote the projection point (e.g., see Fig. 4). Then, using the tree $T(U')$, we find the cell $R_h(u^i, U')$ of $VD_h(U')$ that contains p^* , for some relevant point $u^i \in U'$. For ease of discussion, we assume $1 < i < t$ and other cases can be handled similarly. The following lemma is obtained based on Lemma 1.

Lemma 2. $R_h(u^*, U'') \neq \emptyset$ if and only if $d(p^*, u^i) + w(u^i) \geq d(p^*, u^*) + w(u^*)$, and if $R_h(u^*, U'') \neq \emptyset$, then $p^* \in R_h(u^*, U'')$.

Proof. If $R_h(u^*, U'') \neq \emptyset$, then by Lemma 1, p^* must be in $R_h(u^*, U'')$ and this implies $d(p^*, u^i) + w(u^i) \geq d(p^*, u^*) + w(u^*)$ must hold. On the other hand, suppose $d(p^*, u^i) + w(u^i) \geq d(p^*, u^*) + w(u^*)$. Then, since $p^* \in R_h(u^i, U')$, $d(p^*, u^i) + w(u^i) \leq d(p^*, u) + w(u)$ holds for any vertex $u \in U'$. Therefore, $d(p^*, u) + w(u) \geq d(p^*, u^*) + w(u^*)$ holds for any $u \in U''$. This implies that u^* is the nearest neighbor of p^* in U'' . As such, the point p^* must be in $R_h(u^*, U'')$ and $R_h(u^*, U'')$ cannot be empty. \square

With Lemma 2, our insertion algorithm proceeds as follows. We check whether $d(p^*, u^i) + w(u^i) \geq d(p^*, u^*) + w(u^*)$. If not, then $R_h(u^*, U'') = \emptyset$ by Lemma 2 and thus $VD_h(U'') = VD_h(U')$; hence, $T(U'') = T(U')$ and we are done with processing the insertion of u^* . In the following, we assume that $d(p^*, u^i) + w(u^i) \geq d(p^*, u^*) + w(u^*)$. By Lemma 2, $R_h(u^*, U'') \neq \emptyset$ and thus $VD_h(U'') \neq VD_h(U')$. Below we discuss how to modify $VD_h(U')$ to obtain $VD_h(U'')$.

For each vertex $u \in U'$, we still use l_u and r_u to denote the left and right bounding vertical half-lines of $R_h(u, U')$, respectively.

Since $p^* \in R_h(u^i, U')$, we have $x(u^*) = x(p^*) \in [x(l_{u^i}), x(r_{u^i})]$. By Lemma 1, $x(u^{i-1}) \leq x(r_{u^{i-1}}) = x(l_{u^i})$ and $x(r_{u^i}) = x(l_{u^{i+1}}) \leq x(u^{i+1})$. Therefore, $x(p^*) \in [x(u^{i-1}), x(u^{i+1})]$. Also by Lemma 1, $x(u^{i-1}) < x(u^i) < x(u^{i+1})$. Without loss of generality, we assume that $x(u^i) \leq x(p^*) < x(u^{i+1})$. We first discuss how to obtain the portion of $VD_h(U'')$ to the left of p^* . To this end, we consider the points u^i, u^{i-1}, \dots, u^1 in this order.

First, for u^i , we compute the bisector $B_h(u^i, u^*)$ of u^i and u^* . Depending on whether $B_h(u^i, u^*) = B(u^i, u^*) \cap h$ is \emptyset , there are two cases.

- If $B_h(u^i, u^*) \neq \emptyset$, then $B_h(u^i, u^*)$ is a vertical half-line grounded on ℓ . Since $x(u^i) \leq x(u^*)$, according to the properties of bisectors, $x(u^i) \leq x(B_h(u^i, u^*)) \leq x(u^*)$. As $x(l_{u^i}) \leq x(u^i)$ and $x(u^*) \leq x(r_{u^i})$, $B_h(u^i, u^*)$ must be in the Voronoi cell $R_h(u^i, U')$ between l_{u^i} and p^* (e.g., see Fig. 4). Hence, $B_h(u^i, u^*)$ must be the right bounding half-line of the cell $R_h(u^i, U'')$ in $VD_h(U'')$ as well as the left bounding half-line of the cell $R_h(u^*, U'')$. We update the tree $T(U')$ accordingly (i.e., insert $B_h(u^i, u^*)$ to $T(U')$) and then halt the algorithm (i.e., the construction of $VD_h(U'')$ on the left of p^* is finished).
- If $B_h(u^i, u^*) = \emptyset$, then by our definition of bisectors (including our way for handling the degenerating case), since $d(p^*, u^i) + w(u^i) \geq d(p^*, u^*) + w(u^*)$, $d(p, u^i) + w(u^i) \geq d(p, u^*) + w(u^*)$ holds for any point $p \in h$. This implies that u^i is dominated by u^* with respect to the points of h , and thus u^i becomes irrelevant in $VD_h(U'')$. As such, we remove l_{u^i} from $T(U')$. Note that l_{u^i} is $r_{u^{i-1}}$ by Lemma 2.

Next, we consider u^{i-1} in a way similar to the above for u^i . If $B_h(u^{i-1}, u^*) \neq \emptyset$, then $B_h(u^{i-1}, u^*)$ becomes the right bounding half-line of the cell $R_h(u^{i-1}, U'')$ in $VD_h(U'')$ as well as the left bounding half-line of $R_h(u^*, U'')$. We insert $B_h(u^{i-1}, u^*)$ into $T(U')$ and halt the algorithm. If $B_h(u^{i-1}, u^*) = \emptyset$, then since $p^* \in R_h(u^*, U'')$ by Lemma 2, $d(p^*, u^{i-1}) + w(u^{i-1}) \geq d(p^*, u^*) + w(u^*)$. Further, by our definition of bisectors (including our way for handling the degenerating case), $d(p, u^{i-1}) + w(u^{i-1}) \geq d(p, u^*) + w(u^*)$ holds for any point $p \in h$. Therefore, as above, u^{i-1} becomes irrelevant in $VD_h(U'')$. Accordingly, we remove $l_{u^{i-1}}$ from $T(U')$. We then proceed to considering u^{i-2} in the same way as above. Such a procedure continues until a new bounding half-line between u^* and some point u^j , $1 \leq j < i$ is found eventually or u^* becomes the leftmost relevant vertex ($R_h(u^*, U'')$ only has a right bounding half-line). Then the algorithm is halted.

The above describes the algorithm for constructing $VD_h(U'')$ to the left of p^* . The algorithm for constructing $VD_h(U'')$ to the right of p^* is similar. One slight difference is that the algorithm starts with considering u^{i+1} instead of u^i by first removing r_{u^i} from $T(U')$. Then, we compute the bisector $B(u^*, u^{i+1})$. If $B_h(u^*, u^{i+1}) \neq \emptyset$, then $B_h(u^*, u^{i+1})$ becomes the right bounding half-line of $R_h(u^*, U'')$ as well as the left bounding half-line of $R_h(u^{i+1}, U'')$. We insert $B_h(u^*, u^{i+1})$ into $T(U')$ and halt the algorithm. If $B_h(u^*, u^{i+1}) = \emptyset$, then u^{i+1} becomes irrelevant and we proceed to considering u^{i+2} in the same way. Similarly, the algorithm halts if a new bounding half-line between u^* and some point u^j , $i < j \leq t$ is found or u^* becomes the rightmost relevant vertex ($R_h(u^*, U'')$ only has a left bounding half-line).

The above describes the algorithm for constructing $VD_h(U'')$ from $VD_h(U')$. The resulting tree $T(U')$ is $T(U'')$. The following lemma summarizes the time complexity of the insertion algorithm described above and proves the correctness of the algorithm.

Lemma 3. After a point $u^* \in U$ is inserted into U' , $VD_h(U'')$ can be computed from $VD_h(U')$ in $O((\delta + 1) \log k)$ time, where $U'' = U' \cup \{u^*\}$ and δ is the number of relevant vertices of $VD_h(U')$ that become irrelevant in $VD_h(U'')$.

Proof. The runtime of the insertion algorithm is obvious from our algorithm description. In the following, we prove the correctness of the algorithm.

If $d(p^*, u^i) + w(u^i) < d(p^*, u^*) + w(u^*)$, then $VD_h(U'') = VD_h(U')$ by Lemma 2 and thus our algorithm is correct in this case. In the following, we assume that $d(p^*, u^i) + w(u^i) \geq d(p^*, u^*) + w(u^*)$ and prove that the diagram $VD_h(U'')$ constructed by our algorithm is correct.

Let p be any point in h and let u be the point of U'' such that p is in the cell of u after our insertion algorithm for u^* is finished, i.e., $p \in R_h(u, U'')$. To prove the correctness of our algorithm, it suffices to show that $d(p, u) + w(u) \leq$

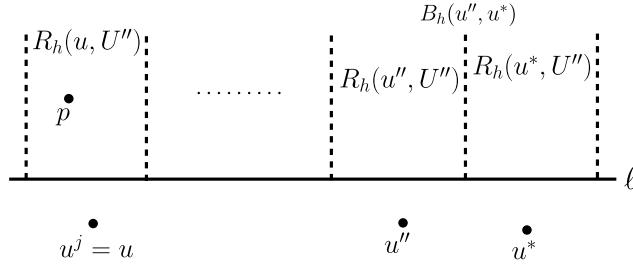


Fig. 5. Illustrating the proof of Lemma 3 for the case where u is not adjacent to u^* in L .

$d(p, u') + w(u')$ holds for every point $u' \in U''$. Depending on whether $u = u^*$, there are two cases. Let u^j be the point of U' such that $p \in R_h(u^j, U')$.

- We first consider the case $u = u^*$. As $p \in R_h(u^j, U')$, $d(p, u^j) + w(u^j) \leq d(p, u') + w(u')$ holds for any $u' \in U'$. As p is in the cell of u^* after the insertion algorithm finishes, according to our algorithm, $d(p, u^*) + w(u^*) \leq d(p, u^j) + w(u^j)$ must hold. Since $u = u^*$, we obtain that $d(p, u) + w(u) = d(p, u^*) + w(u^*) \leq d(p, u^j) + w(u^j) \leq d(p, u') + w(u')$ holds for any $u' \in U''$.
- We then consider the case $u \neq u^*$. In this case, according to our algorithm, u must be u^j and u and u^* define different cells in $VD_h(U'')$, i.e., $R_h(u, U'') \neq R_h(u^*, U'')$. Without loss of generality, we assume that $R_h(u, U'')$ is to the left of $R_h(u^*, U'')$. Depending on whether u is adjacent to u^* in the relevant point list L after the insertion algorithm (L is defined in the same way as Lemma 1 with respect to $VD_h(U'')$), there are two subcases.

If u is adjacent to u^* in L , then since p is in the cell of u after the insertion algorithm, it holds that $d(p, u) + w(u) \leq d(p, u^*) + w(u^*)$. Since $u = u^j$ and $d(p, u^j) + w(u^j) \leq d(p, u') + w(u')$ holds for any $u' \in U'$, we obtain that $d(p, u) + w(u) \leq d(p, u') + w(u')$ holds for any $u' \in U''$.

If u is not adjacent to u^* in L , then let u'' be the left neighboring relevant point of u^* in L (e.g., see Fig. 5). Since $R_h(u, U'')$ is to the left of $R_h(u^*, U'')$ and $p \in R_h(u, U'')$, p must be to the left of $B_h(u'', u^*)$, which is the right bounding half-line of $R_h(u'', U'')$. As u'' is the left neighboring relevant point of u^* in L , according to our insertion algorithm, $d(p', u'') + w(u'') \leq d(p', u^*) + w(u^*)$ for any point $p' \in h$ to the left of $B_h(u'', u^*)$. Because p is in h to the left of $B_h(u'', u^*)$, $d(p, u'') + w(u'') \leq d(p, u^*) + w(u^*)$ holds. As $d(p, u^j) + w(u^j) \leq d(p, u') + w(u')$ for any $u' \in U'$, we have $d(p, u^j) + w(u^j) \leq d(p, u'') + w(u'')$. We thus derive $d(p, u^j) + w(u^j) \leq d(p, u^*) + w(u^*)$. Since $u = u^j$, we obtain that $d(p, u) + w(u) \leq d(p, u') + w(u')$ for any $u' \in U''$.

In summary, $d(p, u) + w(u) \leq d(p, u') + w(u')$ holds for every point $u' \in U''$. This proves the correctness of our algorithm. \square

Note that once a relevant point becomes irrelevant after an insertion, it will never become relevant again for any insertions in future. Therefore, the total sum of δ in Lemma 3 for processing all insertions of U is at most k . As such, by Lemma 3, the total time for processing all insertions is $O(k \log k)$.

Recall that all query operations can be performed in overall $O(k \log k)$ time by using the tree $T(U')$. Note that the space of our algorithm is bounded by $O(k)$. Therefore, we obtain the following result.

Lemma 4. *The bottleneck subproblem on U and V can be solved in $O(k \log k)$ time and $O(k)$ space, where $k = |U| + |V|$.*

4. Conclusion

In this paper, we proposed an algorithm for solving the single-source shortest path (SSSP) problem for unit-disk graphs in the L_1 metric. Our algorithm runs in $O(n \log n)$ time, which matches the $\Omega(n \log n)$ lower bound and thus is optimal. The space complexity of the algorithm is $O(n)$. Note that our algorithm immediately solves the same problem in the L_∞ metric with the same complexities, e.g., by first rotating the plane by 45° and then applying our L_1 algorithm.

Our algorithm follows the framework of the previous $O(n \log^2 n)$ time algorithm [16] for the L_2 case of the problem. An interesting open problem is whether the time of the algorithm in [16] can be reduced to $O(n \log n)$. As discussed before, the key is to solve the bottleneck subproblem, i.e., the offline insertion-only additively-weighted nearest-neighbor problem, in $O(k \log k)$ time, where k is the number of insertion and query operations. We are able to do so for the L_1 problem by exploiting some special properties of the L_1 metric. It would be interesting to see whether the same result can be achieved for the L_2 metric.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

References

- [1] J.L. Bentley, Decomposable searching problems, *Inf. Process. Lett.* 8 (1979) 244–251.
- [2] S. Cabello, M. Jejičić, Shortest paths in intersection graphs of unit disks, *Comput. Geom. Theory Appl.* 48 (4) (2015) 360–367.
- [3] T.M. Chan, D. Skrepetos, All-pairs shortest paths in unit-disk graphs in slightly subquadratic time, in: 27th International Symposium on Algorithms and Computation (ISAAC 2016), in: Leibniz International Proceedings in Informatics (LIPIcs), vol. 64, 2016, pp. 24:1–24:13.
- [4] T.M. Chan, D. Skrepetos, Approximate shortest paths and distance oracles in weighted unit-disk graphs, in: 34th International Symposium on Computational Geometry (SoCG 2018), in: Leibniz International Proceedings in Informatics (LIPIcs), vol. 99, 2018, pp. 24:1–24:13.
- [5] B.N. Clark, C.J. Colbourn, D.S. Johnson, Unit disk graphs, *Discrete Math.* 86 (1–3) (1990) 165–177.
- [6] M. de Berg, K. Buchin, B.M.P. Jansen, G. Woeginger, Fine-grained complexity analysis of two classic TSP variants, *ACM Trans. Algorithms* 17 (1) (2021) 5:1–5:29.
- [7] H. Edelsbrunner, L. Guibas, J. Stolfi, Optimal point location in a monotone subdivision, *SIAM J. Comput.* 15 (2) (1986) 317–340.
- [8] J. Gao, L. Zhang, Well-separated pair decomposition for the unit-disk graph metric and its applications, *SIAM J. Comput.* 35 (1) (2005) 151–169.
- [9] H. Kaplan, W. Mulzer, L. Roditty, P. Seiferth, M. Sharir, Dynamic planar Voronoi diagrams for general distance functions and their algorithmic applications, in: Proceedings of the 28th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 2017, pp. 2495–2504.
- [10] D. Kirkpatrick, Optimal search in planar subdivisions, *SIAM J. Comput.* 12 (1) (1983) 28–35.
- [11] R. Klein, Concrete and Abstract Voronoi Diagrams, Lecture Notes in Computer Science, vol. 400, Springer-Verlag, 1989.
- [12] T. Matsui, Approximation algorithms for maximum independent set problems and fractional coloring problems on unit disk graphs, in: Japanese Conference on Discrete and Computational Geometry, 1998, pp. 194–200.
- [13] C.E. Perkins, P. Bhagwat, Highly dynamic destination-sequenced distance-vector routing (DSDV) for mobile computers, in: Proceedings of the Conference on Communications Architectures, Protocols and Applications (SIGCOMM), 1994, pp. 234–244.
- [14] C.E. Perkins, E.M. Royer, Ad-hoc on-demand distance vector routing, in: Proceedings of the 2nd IEEE Workshop on Mobile Computing Systems and Applications (WMCSA), 1999, pp. 90–100.
- [15] L. Roditty, M. Segal, On bounded leg shortest paths problems, *Algorithmica* 59 (4) (2011) 583–600.
- [16] H. Wang, J. Xue, Near-optimal algorithms for shortest paths in weighted unit-disk graphs, *Discrete Comput. Geom.* 64 (2020) 1141–1166.
- [17] H. Wang, Y. Zhao, Reverse shortest path problem for unit-disk graphs, in: Proceedings of the 17th International Symposium of Algorithms and Data Structures (WADS), 2021, pp. 655–668, Full version available at <https://arxiv.org/abs/2104.14476>.
- [18] H. Wang, Y. Zhao, Computing the minimum bottleneck moving spanning tree, in: Proceedings of the 47th International Symposium on Mathematical Foundations of Computer Science (MFCS), 2022, pp. 82:1–82:15, Full version available at <https://arxiv.org/abs/2206.12500>.
- [19] H. Wang, Y. Zhao, Reverse shortest path problem for weighted unit-disk graphs, in: Proceedings of the 16th International Conference and Workshops on Algorithms and Computation (WALCOM), 2022, pp. 135–146.