Computational Geometry: Theory and Applications 110 (2023) 101960

Contents lists available at ScienceDirect = o
Geometry
Computational Geometry: Theory and ﬂ
o o)
Applications
journal homepage: www.elsevier.com/locate/comgeo wms
An optimal algorithm for L shortest paths in unit-disk n
W Check for
graphs < updates
Haitao Wang, Yiming Zhao *
Department of Computer Science, Utah State University, Logan, UT 84322, USA
ARTICLE INFO ABSTRACT
Article history: A unit-disk graph G(P) of a set P of points in the plane is a graph with P as its vertex
Received 24 November 2021 set such that two points of P are connected by an edge if the distance between the two

Received in revised form 28 August 2022
Accepted 18 October 2022
Available online 24 October 2022

points is at most 1 and the weight of the edge is equal to the distance of the two points.
Given P and a source point s € P, we consider the problem of finding shortest paths in
G(P) from s to all other vertices of G(P). In the L, case where the distance is measured
by the L, metric, the problem has been extensively studied and the current best algorithm

Keywords:

Unit-disk graphs runs in O(n log2 n) time, with n = |P|. In this paper, we study the L; case in which the
Shortest paths distance is measured under the Ly metric (and each disk becomes a diamond); we present
L1 metric an O(nlogn) time algorithm, which matches the Q(nlogn)-time lower bound.

Voronoi diagrams © 2022 Elsevier B.V. All rights reserved.

1. Introduction

Let P be a set of n points in the plane. The unit-disk graph G(P) of P is a graph with P as its vertex set such that
two points of P are connected by an edge if the distance between the two points is at most 1. Alternatively, G(P) is the
intersection graph of the set of disks centered at the points of P with radii equal to 1/2. Each edge of G(P) has a weight
that is equal to the distance of the two incident vertices of the edge.

In this paper, we consider the single-source shortest path (SSSP) problem on G(P), i.e., given P and a source point s € P,
compute shortest paths in G(P) from s to all other points of P. In particular, we consider the L case of the problem in
which the distance is measured under the L1 metric (and each disk becomes a diamond).

The L, case of the problem where the distance is measured under the L, metric has been extensively studied [2,4,8,9,15,
16]. The current best algorithm, which was given by Wang and Xue [16], runs in O (n log2 n) time. The L case, however, has
not been particularly studied before. To solve the L; problem, we follow the algorithmic framework of Wang and Xue [16]
but give a faster implementation. The runtime of Wang and Xue’s algorithm [16] is dominated by a bottleneck subproblem.
Due to some special properties of the L1 metric, we derive a more efficient algorithm for the bottleneck subproblem in the
L1 case, which leads to an overall O (nlogn)-time algorithm for the shortest path problem.

More specifically, the bottleneck subproblem is the offline insertion-only additively-weighted nearest-neighbor problem,
where we are given an offline sequence of k insertions and queries such that an insertion inserts a weighted point to a
point set U (which is ¢ initially) and a query asks for the additively-weighted nearest neighbor in U of a query point. The

A preliminary version of this paper appeared in Proceedings of the 33rd Canadian Conference on Computational Geometry (CCCG 2021). This research
was supported in part by NSF under Grant CCF-2005323.
* Corresponding author.
E-mail addresses: haitao.wang@usu.edu (H. Wang), yiming.zhao@usu.edu (Y. Zhao).

https://doi.org/10.1016/j.comgeo.2022.101960
0925-7721/© 2022 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.comgeo.2022.101960
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/comgeo
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comgeo.2022.101960&domain=pdf
mailto:haitao.wang@usu.edu
mailto:yiming.zhao@usu.edu
https://doi.org/10.1016/j.comgeo.2022.101960

H. Wang and Y. Zhao Computational Geometry: Theory and Applications 110 (2023) 101960

goal is to answer all queries. Wang and Xue [16] solved the problem in O (klog?k) time by using the standard logarithmic
method [1,6]. This leads to the overall O(nlog?n) time for their shortest path algorithm [16]; reducing the time for the
subproblem to O (klogk) would solve the shortest path problem in O (nlogn) time. The difficulty in doing so is that there
does not exist a semi-dynamic (for insertions only) weighted Voronoi diagram data structure that can perform each insertion
in O(logk) amortized time (in order to answer queries, an efficient dynamic point location data structure is also needed).
For solving our Li shortest path problem, we first observe a special property of the bottleneck problem under our problem
settings: sets U and V are separated by an axis-parallel line ¢, where V is the set of all query points. Without loss of
generality, we assume that ¢ is horizontal and U is below ¢. Based on the properties of the L metric, a critical observation
we find is that the portion of the weighted L; Voronoi diagram of U above ¢ only consists of a set of vertical lines.
Then, we can easily maintain these vertical lines by a balanced binary search tree so that each query can be answered in
0O (logk) time. Further, the special structure also allows us to update the portion of the Voronoi diagram above ¢ in O (logk)
amortized time for each insertion. As such, the bottleneck subproblem can be solved in O(klogk) time in the L case,
which leads to an overall O (nlogn) time algorithm for the shortest path problem. Note that the space of our shortest path
algorithm is O (n).

Cabello and Jejci¢ [2] observed that by a simple reduction from the max-gap problem, deciding whether the unit-disk
graph G(P) is connected requires (nlogn) time even if all points of P are on a line. This implies that Q(nlogn) is a lower
bound for solving the shortest path problem in unit-disk graphs for both the L1 and L, cases (because both cases are the
same when all points of P are on a line). As such, our algorithm for the L; case is optimal.

1.1. Related work

Before Wang and Xue’s work [16], the shortest path problem in the L, case had been studied by many others. Roditty
and Segal [15] gave the first sub-quadratic algorithm of O (n*3+€) time for any constant € > 0. Cabello and Jeji¢ [2] later
proposed an improved algorithm of O (n'*€) time. Following the framework of Cabello and Jej¢i¢ [2] but with a more
efficient data structure for the bichromatic closest pair problem, Kaplan et al. [9] gave a randomized algorithm that solves
the problem in O (nlog!?t°™M n) expected time. Approximation algorithms for the problem have also been developed, e.g.,
see [4,8,16].

The shortest path problem we consider is actually on a weighted unit-disk graph. In the unweighted case, the weight
of each edge of the graph is 1. The unweighted problem is much easier. The L, unweighted problem can be solved in
O(nlogn) time [2,4]. In particular, if all input points of P are presorted by their x- and y-coordinates, the algorithm of
Chan and Skrepetos [3] runs in O (n) time.

As an important class of geometric intersection graphs, unit-disk graphs have been widely studied due to many of
their applications, e.g., in wireless sensor networks [13,14]. In addition to the shortest path problem, many other prob-
lems on unit-disk graphs have also been considered in the literature, such as the clique problem [5], the independent
set problem [12], all pairs shortest paths [3,4,8], the reverse shortest path problem [17,19], the diameter problem [3,4,8],
etc. Comparing to general graphs, these problems in unit-disk graphs can be solved more efficiently by exploiting their
underlying geometric structures.

Outline In the following, we describe the main algorithm in Section 2 while the bottleneck subproblem is tackled in
Section 3. Section 4 concludes our paper.

2. The main algorithm

In this section, we describe the main algorithm for the shortest path problem. Our algorithm follows Wang and Xue’s
algorithmic framework [16]. In the following, we will adapt their algorithm to the L; case. We will also borrow some of
their notation.

For any two points p and q in the plane, we use d(p,q) to denote their L; distance. For any point p, we use (), to
denote the unit disk centered at p, which is a diamond in the L metric. Let s be the source point of P, from which the
shortest paths must be computed. Throughout the paper, we will use the points of P and the vertices of the unit-disk graph
G(P) interchangeably.

The algorithm follows the basic idea of Dijkstra’s shortest path algorithm with the help of a grid. The grid technique
was widely used in algorithms related to unit-disk graphs [3,16-19]. At the outset, we implicitly build a grid I of square
cells of side length 1/2. For simplicity of discussion, we assume that each vertex of G(P) lies in the interior of a single cell
of I". A patch of T' is a square area consisting of 5 x 5 cells of I". For any point p in the plane, let (0, denote the cell of
I" that contains p and H), denote the patch whose central cell is [J, (see Fig. 1). Since the side length of each cell of T"
is 1/2, if two vertices of G(P) are in a single cell of I', they must be connected by an edge in G(P). On the other hand,
if two points p and q are connected by an edge in G(P), then g must be in a cell of Bj,. Unlike Dijkstra’s shortest path
algorithm, which selects one single vertex in each iteration to compute shortest-path information, our algorithm tries to
compute shortest-path information for all vertices in a cell of I and then pass shortest-path information to the vertices in
the neighboring cells.

For a subset Q € P and a cell (J (resp., a patch H) of T, define Q= Q N (resp., Qm = Q NH).

2

H. Wang and Y. Zhao Computational Geometry: Theory and Applications 110 (2023) 101960

Fig. 1. The side length of each square cell in the grid I is % For the black point p, the red cell that contains it is [Jp, and the square area bounded by blue

segments which contains 5 x 5 cells is the patch H,. For any point in [J,, its neighboring points in G(P) must lie in the grey region. (For interpretation
of the colors in the figure(s), the reader is referred to the web version of this article.)

To implicitly compute the grid I", we actually perform the following preprocessing. We compute P for all cells [J of T’
that contain at least one point of P. We also associate pointers to each point p € P such that from p we can access [, and
Hp. The preprocessing can be done in O(nlogn) time and O (n) space [16].

The algorithm will compute a table dist[-] for all vertices of G(P), where dist[p] is the length of a shortest path between
s and a point p € P. Note that we should also maintain the corresponding path-predecessor information to form a shortest
path tree; this can be done by standard techniques [16], so we omit the discussions.

One important subroutine that will be extensively used in the algorithm is UpPDATE(U, V). For two subsets U,V C P,
UPDATE(U, V) is to update the shortest-path information of vertices in the set V by using the shortest-path information of
vertices in U. More specifically, for each v € V, let gy = argminycyng, {dist[u] + d(u, v)}. The purpose of UPDATE(U, V) is
to find g, for all v € V and update dist[v] = min{dist[v], dist[qy,] + d(qy, v)}.

With UpDATE(U, V), the algorithm works as follows (refer to Algorithm 1 for the pseudocode). Initially, for each vertex
p € P, dist[p] is set to oo, except that dist[s] = 0. Initialize Q = P. In the main loop, as long as Q # ¢, in each itera-
tion we find a vertex ¢ € Q who has a minimum dist[q]. Subsequently there are two subroutines UPDATE(Qm,, Q1) and
UPDATE(Q[,, Qm,)- Finally, vertices in Qq, are removed from Q, because dist[p] for all p € Qq, have been correctly
computed. Refer to [16] for the correctness proof, which is applicable to the L case.

Algorithm 1: The SSSP Algorithm [16].
1 Function SSSP (P, s):

2 for each p € P do

3 | dist[p] = o0

4 end

5 dist[s] =0

6 Q=P

7 while Q # ¢ do

8 q = argminpcq {dist[p]}

9 UPDATE(Q_EE(I,QD(]) // first update
10 UPDATE(QDq, QEEq) // second update
1 Q=0\Qg,
12 end
13 return dist[-]
14 end

Implementing the algorithm efficiently hinges on the two UPDATE procedures.

The first update For the first update UPDATE(Qm,, QO,), the key is to find a point gy, € Qm, N (©, that minimizes dist[q,]+
d(qy, v) for each point v € Qo,- If we assign each point in Qm, a weight equal to its dist-value, then q, is essentially
the additively-weighted nearest neighbor of v in Qm, N ©,. To find q, efficiently, a crucial observation found by Wang
and Xue [16] (see Lemma 2.5 in [16], whose proof is applicable to the L; case) is that any point p € Qm, that minimizes
dist[p]+d(p, v) must be in (©),, i.e., the nearest neighbor of v in Qgm, Is also the nearest neighbor of v in Qm, NQ,. Due
to this observation, we can find q, for all v € Qqo, as follows. First, we build an L; additively-weighted Voronoi diagram
on vertices in Qm, and then use the diagram to find the nearest neighbor for each v € Qr,- Constructing the diagram can
be done in O(|Qagq|log|QEEq|) time and 0(1Qm, D) space (e.g., by using the abstract Voronoi diagram algorithm [11]), and
all queries together take O(|ng|log|QEq|) time (e.g., build a point location data structure on the diagram in 0(Qm,D
time [7,10] and then perform point location queries for points of Qo, which take O(log|Q53q |) time each).

3

H. Wang and Y. Zhao Computational Geometry: Theory and Applications 110 (2023) 101960

Algorithm 2: UppATE(U, V) [16].
1 Function Update (U, V):

2 Sort(U = {uq,uz,...,uy)}) // distlu;l < ... < distl[upyl
3 fori=1,2,..,|U| do
4 | Vi={veV|veQ, . vE¢Q, forallj<i}
5 end
6 Uu=0
7 for i=|U[,|U|—1,..,1do
8 U =U'"U{u;}
9 for each v € V; do
10 qy = argminyey {dist[u] +d(u, v)}
1 dist[v] = min{dist[v], dist[qy] + d(qv, v)}
12 end
13 end
14 end

The second update Implementing the second update UPDATE(Q[g,, Qm,) is not that easy anymore because the above crucial
observation does not hold. Since Qm, has O (1) cells of T, it suffices to perform UPDATE(Q[3,, Q) for all cells O € Hg.

If O is Og, then Qo, = Qo Since the distance between any two points in [y is at most 1, we can use the fol-
lowing algorithm to implement UPDATE(Q[,, Q). We first build an L; weighted Voronoi diagram on points of Qp, in
O(|Q|:|q|log|QDq|) time and 0(Qq,D space [11], and then use it to find the weighted nearest neighbor q, for each point
veQn,. Clearly, the total time is o(Qg,! longDqD.

If O is not Oy, then a critical property is that [J and [J; are separated by an axis-parallel line ¢. To perform Up-
DATE(Q[,, Q), Wang and Xue [16] proposed the following approach (see Algorithm 2 for the pseudocode). Let U = Q,
and V = Q. We first sort vertices in U = {u1, up, ..., ujy|} by their dist-values such that dist[u] < dist[uz] < ... < dist[u)y,].
Then we partition V into subsets Vi ={veV | ve @ui,v ¢ Quj forall j <i}, for all i =1,2,...,|U|. For each
1 <i<|U|, for each vertex v € V;, we find q, = argminycy,{dist[p] + d(p, v)}, where U; = {u;, Ujy1,...,ujyj}, and up-
date dist[v] = min{dist[v], dist[qy] + d(qv, v)}. This step is implemented by a for loop (Lines 6-13) in Algorithm 2. By the
definition of V;, we have UN (), € U; for all v € V;. Also, Wang and Xue [16] proved that g, found as above must be in
(®, (see Lemma 2.6 in [16], whose proof is applicable to the L, case).! As such, q, = argminyeyne, {dist[p]+d(p, v)}. This
proves the correctness of the algorithm.

We now analyze the runtime of the above algorithm. Sorting the vertices of U takes O (|U|log|U|) time. To compute the
subsets Vi, 1 <i < |U|, Wang and Xue [16] gave an algorithm of O (klogk) time (and O (k) space) for the L, case (see Section
2.2.1 [16]) by making use of the property that U and V are separated by ¢, where k = |U|+|V|. For the L, case, we can use
the same algorithm; in fact, the algorithm becomes easier as a disk in the Ly case is a diamond. We omit the details and
conclude that the subsets Vj, 1 <i <|U|, can be computed in O (klogk) time in the L case. Next, the for loop (Lines 6-13)
is for the bottleneck subproblem mentioned in Section 1, i.e., the offline insertion-only additively-weighted nearest-neighbor
problem. Indeed, if we assign each vertex in U a weight equal to its dist-value, then q, is essentially the additively-weighted
nearest neighbor of v in U’, where U’ = U; in the i-th iteration of the for loop. The set U’ is dynamically changed with
point insertions. Using the standard logarithmic method [1,6], Wang and Xue [16] solves the problem in O (klog?k) time.
By exploring the properties of the L; metric, we give an O (klogk) time (and O (k) space) algorithm in Section 3. As such,
UPDATE(Q[y,, Q) can be performed in O (klogk) time and O (k) space, with k=|Qp,| +1Qnl.

In summary, since Qm, has O (1) cells, the second update UPDATE(Q[g,, Qm,) can be implemented in O(| Qm, | lOg|Q53q D
time as ng - Qggq. This leads to the following theorem.

Theorem 1. Given a set P of n points in the L1 plane and a source point s € P, the shortest paths from s to all vertices in the unit-disk
graph G(P) can be computed in O (nlogn) time and O (n) space.

Proof. As discussed before, constructing the grid I'" implicitly can be done in O(nlogn) time and O(n) space [16]. We
have shown that both UPDATE procedures can be implemented in O(|Q53q|log|QEEq|) time and 0(1Qm,D) space. As such,
each iteration of the while loop of Algorithm 1 can be implemented in O(|Q53q|log|QEEq|) time and 0(|Qm,) space.
As quQ |Qm,| < 25n, the total time of the algorithm is O (nlogn). Note that the overall time of Line 8 and Line 11 of
Algorithm 1 can be easily bounded by O (nlogn) by using a balanced binary search tree. The total space of the algorithm is
om. O

1 Indeed, suppose to the contrary that g, is not in (©,- Then we have d(qy,v) > 1. Recall that d(u;, v) <1 since point v € V;, and dist[q,] > dist[u;]
since qy € Uj = {uj, Ujy1, ..., ujy}. This implies that dist[u;]+ d(u;, v) < dist[qy] + 1 < dist[qy]+ d(qv, v), which contradicts with that g, is the additively
weighted nearest neighbor of v in Uj.

H. Wang and Y. Zhao Computational Geometry: Theory and Applications 110 (2023) 101960

(b)

Fig. 3. Possible cases for the bisector B(a, b) of two weighted points a and b.
3. The bottleneck subproblem

In this section, we present an O (klogk) time and O (k) space algorithm to solve the bottleneck subproblem on U and V,
with k= |U|+ |V]|. Recall U and V are separated by an axis-parallel line £. Without loss of generality, we assume that ¢ is
horizontal such that U is below ¢ and V is above £. Our goal is to find g, € U’ for all v € V; (i.e., Line 10 in Algorithm 2),
for a subset U’ C U.

In the following, we first discuss some observations about the geometric structure of the problem and then describe the
algorithm.

3.1. Observations

Let VD(U’) denote the weighted Voronoi diagram of U’. To find q, it suffices to locate the cell of VD(U’) that contains
v. Let h denote the upper half-plane bounded by ¢. As v is above ¢, it suffices to maintain the portion of VD(U’) above ¢,
denoted by VDy(U’). In what follows, we first show that VD, (U’) has a very simple structure: it only consists of a set of
vertical half-lines with endpoints on ¢ and going upwards to infinity (e.g., see Fig. 2). Then, we will show that VD, (U’) can
be updated in O(logk) amortized time for each insertion (i.e., inserting a point into U’).

We say a vertical half-line is grounded on ¢ if it goes upwards to infinity and has its endpoint on ¢. For any point or
a vertical line segment p in the plane, we use x(p) to denote its x-coordinate. For each point u € U, we define its weight
w(u) = dist[u].

Properties of bisectors of two weighted points Consider two weighted points a and b in the plane with nonnegative weights
w(a) and w(b), respectively. The bisector B(a,b) of a and b is the locus of points with equal (additively-)weighted distance
to a and b, i.e, B(a,b) = {p € R? | w(a) +d(a, p) = w(b) +d(b, p)} (e.g., see Fig. 3). Note that in the degenerate case it is
possible that an entire quadrant of the plane is in B(a, b) (e.g., see Fig. 3b), in which case it suffices to only consider the
vertical boundary of the quadrant to be in B(a, b). Hence, B(a, b) in general consists of three parts: two axis-parallel half-
lines with a segment in the middle. Suppose both a and b are below the line ¢ and x(a) < x(b). Define By(a,b) = B(a, b) Nh.
Then either By(a,b) =@ or Bp(a,b) is a vertical half-line grounded on ¢; in the latter case x(a) < x(Bj(a, b)) < x(b). Note
that if x(a) = x(b), then B(a, b) is a horizontal line between a and b and thus By(a, b) = @.

Geometric structure of VDp(U’) Since all points of U are below ¢, according to the discussion above, for any two points
u; and u; of U, By(uj, uj) is either ¥ or a vertical half-line grounded on ¢ (and the vertical half-line is between u; and
u;j). These properties guarantee that VD, (U’) consists of a set of O(|U’|) vertical half-lines grounded on ¢ (e.g., see Fig. 2),
and between each pair of adjacent half-lines is the portion of the Voronoi cell of a vertex u € U’. As such, we can use
a balanced binary search tree T(U’) to store the x-coordinates of the vertical half-lines of VDp(U’). Given a query point
v eV, we can use T(U’) to find the cell of VD (U’) containing v and thus obtain g, in O(log|U’|) time, which is O (logk)

5

H. Wang and Y. Zhao Computational Geometry: Theory and Applications 110 (2023) 101960

Bh(1) R})(U U) Bi(u i ui+1)

P’ ¢
Bp(u',u*) : By (u*, ui*1)
L
1
® -1 u : e itl
u ot u

Fig. 4. lllustrating VD, (U’), and VD, (U") after u* is inserted. The two dash dotted blue segments are new half-lines in VD, (U”) while Bj,(u', ui+1) (_ioes
not appear in VDh(U”) Rp(ul, U’) is the grey area and Ry(u*,U”) is the region between the two dash dotted blue segments. Note that By (u'~!,u') is
lyi =7y and Bpu', ui*l) is ryi =lyin.

as |U’| <|U| <k. In the following, we will discuss how to update VD, (U’) after a point of U is inserted to U’. We first
prove some properties about the geometric structure of VDp(U").

For each point u € U’, let R(u) denote the Voronoi cell of u in VD(U’) and let Ry(u) = R(u) Nh. The above shows that
if Ry(u) is not empty, then it is bounded by two vertical half-lines from the left and right; let [, and r, denote these two
half-lines, respectively. We call [, the left bounding half-line and r,, the right bounding half-line of Ry (u). Note that if Ry (u) is
the leftmost (resp., rightmost) cell of VD, (U’), then we let I, (resp., ry) refer to the vertical half-line grounded on ¢ with
x-coordinate —oo (resp., +00).

We say that a point u € U’ is relevant if Rj(u) # ¢ and irrelevant otherwise. The following lemma proves several proper-
ties about the geometric structure of VDp(U’), which will be useful for processing insertions.

Lemma 1. Suppose ul, u?, ... ut is the list of relevant vertices of U’ whose Voronoi cells intersect h in the order from left to right.
Then, the followings hold.

1 x(ul) <x@?) <--- < x(ub).

2. Foreach 1 <i <t,ryiislyit1.

3. Foreach1 <i<t, x(l i) <x(u) < X(ryi).

4. Foreach 1 <i<t, p'isin Ry (u'), where p' is the vertical projection of u' on .

Proof. Consider a point u! for any i > 1. By the definition of the list u!, u2, ..., uf, Ii belongs to the bisector Bui~1, ut) of
u=1 and u', ie., i = By (u'~', u'). According to the properties of bisectors, x(u;_1) < x(l;i) < x(u"). Note that x(u’~1) = x(u’)
is not possible since otherwise By (u'~!, u’) would be ¢ (contradicting with I, = B, (u'~', u')). As such, x(u'~!) < x(u') holds.
This proves the first lemma statement.

According to our definition of the list ul, u2, ... ut, the left bounding half-line of R, (u'*!) must be the right bounding
half-line of Rj(u'). Hence, the second lemma statement holds. ‘
The above shows that x(I,i) <x') for i > 1. If i =1, x(l,i) < x(u=1) also holds, for x(l,i) = —oo. This proves that

x(l,i) < x(u') for any 1 <i <t. By a symmetric analysis, we can show that x(u') < X(r,i) for any 1 <i <t. This proves the
third lemma statement.
The fourth lemma statement is an immediate consequence of the third lemma statement. O

3.2. Processing insertions

We are now in a position to describe our algorithm for processing insertions.

Consider inserting a point u* € U \ U’ into U’. As u* € U, u* is below ¢. Let U” = U’ U {u*}. Our goal is to construct
VDp(U") by modifying VD (U’), or more precisely, obtain the tree T(U”) by modifying T (U’). For differentiation, for each
vertex u € U”, we use R(u, U”) to denote the Voronoi cell of u in VD(U”) and use R(u, U’) to denote the Voronoi cell of
u in VD(U’). We define Ry(u,U”) and Ry (u,U’) similarly. Let u',u?, ..., u’ be the list of relevant vertices of U’ whose
Voronoi cells intersect h ordered from left to right

We first compute the vertical projection of u* on ¢ and let p* denote the projection point (e.g., see Fig. 4). Then,
using the tree T(U’), we find the cell Ry(u’,U’) of VD, (U’) that contains p*, for some relevant point u' € U’. For ease
of discussion, we assume 1 <i <t and other cases can be handled similarly. The following lemma is obtained based on
Lemma 1.

Lemma 2. R, (u*, U") # @ if and only if d(p*, u') + w(u®) > d(p*, u*) + w(u*), and if R, (u*, U”) # @, then p* € R, (u*, U").

6

H. Wang and Y. Zhao Computational Geometry: Theory and Applications 110 (2023) 101960

Proof. If Ry(u*, U”) # @, then by Lemma 1, p* must be in R (u*, U”) and this implies d(p*, u’) + wu’) > d(p*, u*) + w(u*)
must hold. On the other hand, suppose d(p*, u')+wu!) > d(p*, u*)+w(u*). Then, since p* € Ry (u, U’), d(p*, u)) + w(ul) <
d(p*,u) + w(u) holds for any vertex u € U’. Therefore, d(p*,u) + w(u) > d(p*, u*) + w(u*) holds for any u € U”. This
implies that u* is the nearest neighbor of p* in U”. As such, the point p* must be in Ry(u*, U”) and Ry (u*,U”) cannot be
empty. O

With Lemma 2, our insertion algorithm proceeds as follows. We check whether d(p*, ul) + w(u') > d(p*, u*) + wu*). If
not, then Ry (u*, U”) =@ by Lemma 2 and thus VD,(U"”) = VDy(U"); hence, T(U"”) = T(U’) and we are done with process-
ing the insertion of u*. In the following, we assume that d(p*, u’) + w(u®) > d(p*, u*) + w(u*). By Lemma 2, R, (u*, U") #
and thus VDp(U") # VD, (U’). Below we discuss how to modify VD, (U’) to obtain VDy(U").

For each vertex u € U’, we still use I, and r, to denote the left and right bounding vertical half-lines of Ry (u,U’),
respectively

Since p* € Rp(ut,U’), we have x(u*) = x(p*) € [x(l,i), x(r,i)]. By Lemma 1, x(ui= ‘) < x(ryi-1) = x(l,i) and x(r,i) =
X(Ii+1) < x(u't1). Therefore, x(p*) € [x(u'~1), x(u'*1)]. Also by Lemma 1, x(u'~ l) < x(u') < xu't?). Without loss of gen-
erality, we assume that x(u') < x(p*) < x(u’“) We first discuss how to obtain the portion of VD, (U”) to the left of p*. To
this end, we consider the points u', ui=t - in thlS order.

First, for u!, we compute the bisector B(u! ,u*) of u' and u*. Depending on whether By, (u!, u*) = B(u!, u*) Nh is @, there
are two cases.

o If By(ul,u*) # ¢, then Bp(u, u*) is a vertical half-line grounded on ¢. Since x(uh) < x(u*), according to the proper-
ties of bisectors, x(u' By < x(Bp(u, u*)) < x(u*). As x(li) < x(u') and x(u*) < x(r,i), Bp(u',u*) must be in the Voronoi
cell Rh(u U’) between I,; and p* (e.g., see Fig. 4). Hence, Bp(ui, u*) must be the right bounding half-line of the cell
Rp(u',U”) in VDR (U") as well as the left bounding half-line of the cell Ry(u*, U”). We update the tree T(U’) accord-
ingly (i.e., insert By (u', u*) to T(U’)) and then halt the algorithm (i.e., the construction of VD,(U") on the left of p*
finished).

o If Bh(u' u*) = ¢, then by our definition of bisectors (including our way for handling the degenerating case), since

d(p) + wl) > d(p u*) + w*), d(p,u’) + wu') > d(p, u*) + w(u*) holds for any point p € h. This implies that
u' is dominated by u* with respect to the points of h, and thus u’ becomes irrelevant in VD, (U”). As such, we remove
l,i from T(U’). Note that [; is r i1 by Lemma 2.
Next, we consider u'~! in a way similar to the above for u'. If By (ui~1, u*) # @, then By(u'~", u*) becomes the right
bounding half-line of the cell R,(ui=1,U”) in VD,(U") as well as the left bounding half-line of Rj(u*, U”). We in-
sert By(ui~1,u*) into T(U’) and halt the algorithm. If B,(ui~',u*) = @, then since p* € R,(u*,U”) by Lemma 2,
d(p*, ui- 1)+w(u' 1y > d(p*, u*)+ w(u*). Further, by our deﬁmtlon of bisectors (including our way for handling the de-
generating case), d(p, u'=1) + w(!~1) > d(p, u*) + w(u*) holds for any point p € h. Therefore, as above, u’ 1 becomes
irrelevant in VDj(U”). Accordingly, we remove [,i-1 from T(U’). We then proceed to considering u'~“ in the same
way as above. Such a procedure continues until a new bounding half-line between u* and some point uf, 1<j<iis
found eventually or u* becomes the leftmost relevant vertex (Ry(u*, U”) only has a right bounding half-line). Then the
algorithm is halted.

The above describes the algorithm for constructing VDp(U”) to the left of p*. The algorithm for constructing VD, (U")
to the right of p* is similar. One slight difference is that the algorithm starts with considering ut! instead of u' by first
removing r,i from T(U’). Then, we compute the bisector B(u*, ul TN, If By(u*, u't?) # @, then By (u*, u'*!) becomes the
right bounding half-line of Ry(u*, U”) as well as the left bounding half-line of R, (ut!, U”). We insert Bj(u*, u*!) into
T(U’) and halt the algorithm. If By (u*, ut1) = ¢, then u'*! becomes irrelevant and we proceed to considering u*2 in the
same way. Similarly, the algorithm halts if a new bounding half-line between u* and some point u/, i < j <t is found or
u* becomes the rightmost relevant vertex (Rp(u*, U”) only has a left bounding half-line).

The above describes the algorithm for constructing VDp(U”) from VDp(U’). The resulting tree T(U’) is T(U"). The
following lemma summarizes the time complexity of the insertion algorithm described above and proves the correctness of
the algorithm.

Lemma 3. After a point u* € U is inserted into U’, VD (U") can be computed from VDy(U’) in O((§ + 1) logk) time, where U" =
U’ U {u*} and § is the number of relevant vertices of VD, (U") that become irrelevant in VD, (U").

Proof. The runtime of the insertion algorithm is obvious from our algorithm description. In the following, we prove the
correctness of the algorithm.

If d(p*, ul) + w') < d(p*, u*) + w(u*), then VD,(U”) = VD,(U’) by Lemma 2 and thus our algorithm is correct in
this case. In the following, we assume that d(p*,u’) + w(u') > d(p*, u*) + w(u*) and prove that the diagram VD,(U")
constructed by our algorithm is correct.

Let p be any point in h and let u be the point of U” such that p is in the cell of u after our insertion algorithm
for u* is finished, i.e., p € Ry(u, U”). To prove the correctness of our algorithm, it suffices to show that d(p, u) + w(u) <

7

H. Wang and Y. Zhao Computational Geometry: Theory and Applications 110 (2023) 101960

B},(U/G U*)
R (u, U"): ' : '
: . ‘R (u” U//)IRh(U*, U
Lo] i
[} [] [} : : g
u’ .: U U” u.*

Fig. 5. lllustrating the proof of Lemma 3 for the case where u is not adjacent to u* in L.

d(p,u’) + w(u’) holds for every point u’ € U”. Depending on whether u = u*, there are two cases. Let uJ be the point of U’
such that p € R (u/, U’).

e We first consider the case u = u*. As p € R,(u’, U"), d(p,ud) + wui) <d(p,u’) + w’) holds for any u’ € U’. As p is
in the cell of u* after the insertion algorithm finishes, according to our algorithm, d(p, u*) + w(u*) < d(p, ud) + w(u’)
must hold. Since u = u*, we obtain that d(p, u) + w(u) =d(p, u*) + wu*) <d(p, u)) + wl) <d(p,u’) + w’) holds
for any u’ e U”.

e We then consider the case u = u*. In this case, according to our algorithm, u must be u/ and u and u* define different
cells in VDp(U"), i.e., Ry(u, U") # Ry (u*, U”). Without loss of generality, we assume that Ry(u,U”) is to the left of
Rp(u*,U"”). Depending on whether u is adjacent to u* in the relevant point list L after the insertion algorithm (L is
defined in the same way as Lemma 1 with respect to VD (U")), there are two subcases.

If u is adjacent to u* in L, then since p is in the cell of u after the insertion algorithm, it holds that d(p, u) + w(u) <
d(p, u*) + w*). Since u = ul and d(p, u)) + w(ul) <d(p,u’) + w(u’) holds for any u’ € U’, we obtain that d(p, u) +
w(u) <d(p,u’) +w(u’) holds for any u’ € U”.

If u is not adjacent to u* in L, then let u” be the left neighboring relevant point of u* in L (e.g., see Fig. 5). Since
Rp(u,U") is to the left of Ry(u*, U”) and p € Ry (u, U”), p must be to the left of By (u”, u*), which is the right bounding
half-line of Ry(u”,U”). As u” is the left neighboring relevant point of u* in L, according to our insertion algorithm,
d(p’,u”) + wu”) <d(p’,u*) + w(u*) for any point p’ € h to the left of Bn(u”,u*). Because p is in h to the left of
Br(u”, u*), d(p,u”") + w”) <d(p, u*) + w(u*) holds. As d(p, ud) + wud) <d(p,u’) + w(') for any u’ € U’, we have
d(p, ud) + wd) <d(p,u”) + w”). We thus derive d(p, ud) + w(u’) <d(p, u*) + w(u*). Since u = u’, we obtain that
d(p,u) +w() <d(p,u’) +w’) for any u’ e U”.

In summary, d(p, u) + w(u) <d(p,u’) + w(u’) holds for every point u’ € U”. This proves the correctness of our algo-
rithm. O

Note that once a relevant point becomes irrelevant after an insertion, it will never become relevant again for any in-
sertions in future. Therefore, the total sum of § in Lemma 3 for processing all insertions of U is at most k. As such, by
Lemma 3, the total time for processing all insertions is O (klogk).

Recall that all query operations can be performed in overall O (klogk) time by using the tree T(U’). Note that the space
of our algorithm is bounded by O (k). Therefore, we obtain the following result.

Lemma 4. The bottleneck subproblem on U and V can be solved in O (klogk) time and O (k) space, where k = |U| + |V|.
4. Conclusion

In this paper, we proposed an algorithm for solving the single-source shortest path (SSSP) problem for unit-disk graphs
in the L1 metric. Our algorithm runs in O (nlogn) time, which matches the Q(nlogn) lower bound and thus is optimal. The
space complexity of the algorithm is O(n). Note that our algorithm immediately solves the same problem in the L., metric
with the same complexities, e.g., by first rotating the plane by 45° and then applying our L algorithm.

Our algorithm follows the framework of the previous O (nlog®n) time algorithm [16] for the L, case of the problem. An
interesting open problem is whether the time of the algorithm in [16] can be reduced to O (nlogn). As discussed before,
the key is to solve the bottleneck subproblem, i.e., the offline insertion-only additively-weighted nearest-neighbor problem,
in O(klogk) time, where k is the number of insertion and query operations. We are able to do so for the L; problem by
exploiting some special properties of the L1 metric. It would be interesting to see whether the same result can be achieved
for the L, metric.

H. Wang and Y. Zhao Computational Geometry: Theory and Applications 110 (2023) 101960

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Data availability
No data was used for the research described in the article.

References

[1] J.L. Bentley, Decomposable searching problems, Inf. Process. Lett. 8 (1979) 244-251.
[2] S. Cabello, M. Jej€i¢, Shortest paths in intersection graphs of unit disks, Comput. Geom. Theory Appl. 48 (4) (2015) 360-367.
[3] T.M. Chan, D. Skrepetos, All-pairs shortest paths in unit-disk graphs in slightly subquadratic time, in: 27th International Symposium on Algorithms and
Computation (ISAAC 2016), in: Leibniz International Proceedings in Informatics (LIPIcs), vol. 64, 2016, pp. 24:1-24:13.
[4] T.M. Chan, D. Skrepetos, Approximate shortest paths and distance oracles in weighted unit-disk graphs, in: 34th International Symposium on Compu-
tational Geometry (SoCG 2018), in: Leibniz International Proceedings in Informatics (LIPIcs), vol. 99, 2018, pp. 24:1-24:13.
[5] B.N. Clark, CJ. Colbourn, D.S. Johnson, Unit disk graphs, Discrete Math. 86 (1-3) (1990) 165-177.
[6] M. de Berg, K. Buchin, B.M.P. Jansen, G. Woeginger, Fine-grained complexity analysis of two classic TSP variants, ACM Trans. Algorithms 17 (1) (2021)
5:1-5:29.
[7] H. Edelsbrunner, L. Guibas,]. Stolfi, Optimal point location in a monotone subdivision, SIAM]. Comput. 15 (2) (1986) 317-340.
[8] J. Gao, L. Zhang, Well-separated pair decomposition for the unit-disk graph metric and its applications, SIAM J. Comput. 35 (1) (2005) 151-169.
[9] H. Kaplan, W. Mulzer, L. Roditty, P. Seiferth, M. Sharir, Dynamic planar Voronoi diagrams for general distance functions and their algorithmic applica-
tions, in: Proceedings of the 28th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 2017, pp. 2495-2504.
[10] D. Kirkpatrick, Optimal search in planar subdivisions, SIAM J. Comput. 12 (1) (1983) 28-35.
[11] R. Klein, Concrete and Abstract Voronoi Diagrams, Lecture Notes in Computer Science, vol. 400, Springer-Verlag, 1989.
[12] T. Matsui, Approximation algorithms for maximum independent set problems and fractional coloring problems on unit disk graphs, in: Japanese
Conference on Discrete and Computational Geometry, 1998, pp. 194-200.
[13] C.E. Perkins, P. Bhagwat, Highly dynamic destination-sequenced distance-vector routing (DSDV) for mobile computers, in: Proceedings of the Conference
on Communications Architectures, Protocols and Applications (SIGCOMM), 1994, pp. 234-244.
[14] CE. Perkins, E.M. Royer, Ad-hoc on-demand distance vector routing, in: Proceedings of the 2nd IEEE Workshop on Mobile Computing Systems and
Applications (WMCSA), 1999, pp. 90-100.
[15] L. Roditty, M. Segal, On bounded leg shortest paths problems, Algorithmica 59 (4) (2011) 583-600.
[16] H. Wang,]. Xue, Near-optimal algorithms for shortest paths in weighted unit-disk graphs, Discrete Comput. Geom. 64 (2020) 1141-1166.
[17] H. Wang, Y. Zhao, Reverse shortest path problem for unit-disk graphs, in: Proceedings of the 17th International Symposium of Algorithms and Data
Structures (WADS), 2021, pp. 655-668, Full version available at https://arxiv.org/abs/2104.14476.
[18] H. Wang, Y. Zhao, Computing the minimum bottleneck moving spanning tree, in: Proceedings of the 47th International Symposium on Mathematical
Foundations of Computer Science (MFCS), 2022, pp. 82:1-82:15, Full version available at https://arxiv.org/abs/2206.12500.
[19] H. Wang, Y. Zhao, Reverse shortest path problem for weighted unit-disk graphs, in: Proceedings of the 16th International Conference and Workshops
on Algorithms and Computation (WALCOM), 2022, pp. 135-146.

http://refhub.elsevier.com/S0925-7721(22)00103-1/bibA6D6153DAC32D8DFC35D90AE1F0A252Ds1
http://refhub.elsevier.com/S0925-7721(22)00103-1/bib8C765DABFBE0FF2F7C22E6714738B46Fs1
http://refhub.elsevier.com/S0925-7721(22)00103-1/bibDEACB025DCCA5F0740118E234DB4AD25s1
http://refhub.elsevier.com/S0925-7721(22)00103-1/bibDEACB025DCCA5F0740118E234DB4AD25s1
http://refhub.elsevier.com/S0925-7721(22)00103-1/bibB8C5C5169E97E5F6F9C02F28B7294F6Fs1
http://refhub.elsevier.com/S0925-7721(22)00103-1/bibB8C5C5169E97E5F6F9C02F28B7294F6Fs1
http://refhub.elsevier.com/S0925-7721(22)00103-1/bibA49F255DE5348191E5B0E7D8E089B406s1
http://refhub.elsevier.com/S0925-7721(22)00103-1/bib6ADA252330B343375D6DE7A911E64650s1
http://refhub.elsevier.com/S0925-7721(22)00103-1/bib6ADA252330B343375D6DE7A911E64650s1
http://refhub.elsevier.com/S0925-7721(22)00103-1/bibCD796D1792931DC9685946B1247A70A5s1
http://refhub.elsevier.com/S0925-7721(22)00103-1/bib1FAA6856CF88C0FA33256DBBFA07B65Es1
http://refhub.elsevier.com/S0925-7721(22)00103-1/bib59280350809E7FBF73C7FCC0168EEEC0s1
http://refhub.elsevier.com/S0925-7721(22)00103-1/bib59280350809E7FBF73C7FCC0168EEEC0s1
http://refhub.elsevier.com/S0925-7721(22)00103-1/bibD9E3B9CC488EDF599F7D12B257B435B7s1
http://refhub.elsevier.com/S0925-7721(22)00103-1/bib817375AF91390B062C41E9F66DB10C65s1
http://refhub.elsevier.com/S0925-7721(22)00103-1/bibC3CC898173DA472570EEBA937B58F14Ds1
http://refhub.elsevier.com/S0925-7721(22)00103-1/bibC3CC898173DA472570EEBA937B58F14Ds1
http://refhub.elsevier.com/S0925-7721(22)00103-1/bibF86644EA80843840B282D58BFEAF7FFCs1
http://refhub.elsevier.com/S0925-7721(22)00103-1/bibF86644EA80843840B282D58BFEAF7FFCs1
http://refhub.elsevier.com/S0925-7721(22)00103-1/bibF843FEF89C106D96C61D229D8A4BFB1Bs1
http://refhub.elsevier.com/S0925-7721(22)00103-1/bibF843FEF89C106D96C61D229D8A4BFB1Bs1
http://refhub.elsevier.com/S0925-7721(22)00103-1/bib96FE33A8D5627643D3CFE227F161226Fs1
http://refhub.elsevier.com/S0925-7721(22)00103-1/bibF70FFE657F0F62C09DDD298DC950F6DCs1
https://arxiv.org/abs/2104.14476
https://arxiv.org/abs/2206.12500
http://refhub.elsevier.com/S0925-7721(22)00103-1/bib0C9857DFEABE8EB767F3C747E17A0604s1
http://refhub.elsevier.com/S0925-7721(22)00103-1/bib0C9857DFEABE8EB767F3C747E17A0604s1

	An optimal algorithm for L1 shortest paths in unit-disk graphs
	1 Introduction
	1.1 Related work

	2 The main algorithm
	3 The bottleneck subproblem
	3.1 Observations
	3.2 Processing insertions

	4 Conclusion
	Declaration of competing interest
	Data availability
	References

