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Abstract We prove a conjecture of Griffiths on the quasi-projectivity of
images of period maps using algebraization results arising from o-minimal
geometry. Specifically, we first develop a theory of analytic spaces and coher-
ent sheaves that are definable with respect to a given o-minimal structure,
and prove a GAGA-type theorem algebraizing definable coherent sheaves on
complex algebraic spaces. We then combine this with algebraization theorems
of Artin to show that proper definable images of complex algebraic spaces
are algebraic. Applying this to period maps, we conclude that the images of
period maps are quasi-projective and that the restriction of the Griffiths bundle
is ample.
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164 B. Bakker et al.

1 Introduction

Let X be a smooth complex algebraic variety supporting a pure polarized inte-
gral variation of Hodge structures (VZ, F•, Q). Let ! be the associated pure
polarized period domain with genericMumford–Tate groupG, and" ⊂ G(Q)
an arithmetic lattice containing the image of the monodromy representation
of VZ. There is a natural action of " on !, and the quotient "\! param-
eterizes pure Hodge structures up to integral framing in ". Associated to a
variation (VZ, F•, Q)with monodromy in " is a complex analytic period map
ϕ : X an → "\!, where X an is the analytification of X , that is, X (C) endowed
with its natural structure as a complex analytic manifold. The period map
satisfies Griffiths transversality: the derivative lands in a naturally defined dis-
tribution on"\! (see [41, pp. 224–225]). In general, for X a reduced separated
algebraic space of finite type over C, we define a period map ϕ : X an → "\!
to be a complex analytic map which locally lifts to ! and which satisfies
Griffiths transversality on the regular locus of X an. The main source of such
period maps (and the variations of Hodge structures they entail) are local sys-
tems of singular cohomology groups of smooth projective families of algebraic
varieties over X .

The complex analytic variety "\! itself rarely has an algebraic structure
[12,25]; nonetheless, the closure of the image of a periodmap ϕ : X an → "\!
as above was conjectured by Griffiths [23, p. 259] to be a quasi-projective
algebraic variety. Griffiths’ main motivation was the existence of a natural
line bundle (which we call the Griffiths bundle) L := ⊗

i det F
i which exists

universally on "\! as a Q-bundle and has natural positivity properties in
Griffiths transverse directions. Aside from this, a strong piece of evidence for
the conjecture is the result of Cattani–Deligne–Kaplan [13] on the algebraicity
of Hodge loci, which implies that the (reduced) analytic equivalence relation
X an ×"\! X an ⊂ X an × X an defining the image of ϕ set-theoretically is
algebraic.

Our main result is the following theorem, providing a solution to the con-
jecture:

Theorem 1.1 Let X be a reduced separated algebraic space of finite type over
C and ϕ : X an → "\! a period map. Then

(1) ϕ factors (uniquely up to unique isomorphism) as ϕ = ι ◦ f an where
f : X → Y is a dominant map of (reduced) finite-type algebraic spaces
and ι : Y an → "\! is a closed immersion of analytic spaces;

(2) the Griffiths Q-bundle L restricted to Y is the analytification of an ample
algebraic Q-bundle, and in particular Y is a quasi-projective variety.

Note that if the period map ϕ is proper and if X and the Griffiths bundle
on X are both defined over a subfield k of C (for example, if the variation
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O-minimal GAGA and a conjecture of Griffiths 165

comes from a smooth projective family defined over k), then it follows that

the first map g : X → Y ′ in the Stein factorization X
g−→ Y ′ h−→ Y of f will

also be defined over k, as this map is given by the complete linear system of
sections of a high enough power of the natural extension of L on a log smooth
compactification of X (see Theorem 6.14).

As a sample application, we have the following immediate corollary:

Corollary 1.2 LetM be a reduced separatedDeligne–Mumford stack of finite
type overC admitting a quasi-finite period map. Then the coarse moduli space
of M is quasi-projective.

The existence of the coarse moduli space is a general result of Keel–Mori
[30]; see Sect. 7 for a precise discussion of period maps on Deligne–Mumford
stacks. Corollary 1.2 for instance will apply to a reduced separated Deligne–
Mumford moduli stack of smooth polarized varieties with an infinitesimal
Torelli theorem. This provides an alternate approach to results of Viehweg
[49] on the quasi-projectivity of (normalizations of) coarse moduli spaces
of smooth polarized varieties X without assuming any positivity of KX . In
particular, Corollary 1.2 also applies to uniruled X provided deformations can
be detected byHodge theory (for instance, low-degree complete intersections).

The strategy of the proof of Theorem 1.1 hinges on algebraization results
in o-minimal geometry. Briefly, an o-minimal structure specifies a class of
“tame” subsets of Rn with strong finiteness properties. Such subsets are said
to be definable with respect to the structure. The resulting geometric category
of complex analytic varieties that are pieced together byfinitelymany definable
charts (which we call definable complex analytic varieties, see Sect. 2) on the
one hand allows some of the local flexibility of the analytic category but on the
other hand behaves globally like the algebraic category. An excellent example
of this is the celebrated “definable Chow theorem” of Peterzil–Starchenko
[40, Corollary 4.5], asserting that a closed complex analytic subvariety of a
(not necessarily proper) complex algebraic variety which is definable in an
o-minimal structure is in fact algebraic.

In [3], it is shown that "\! is in this sense a definable complex analytic
variety, and that period maps are definable with respect to this structure. To
prove the first part of Theorem 1.1, we prove a “dual” version of Peterzil–
Starchenko’s definableChow theorem, showing that imagesof algebraic spaces
under definable proper complex analytic maps are algebraic:

Theorem 1.3 Let X be a separated algebraic space of finite type over C, S
a definable complex analytic space, and ϕ : Xdef → S a proper definable
complex analytic map. Then ϕ : Xdef → ϕ(Xdef) is (uniquely up to unique
isomorphism) the definabilization of a morphism of algebraic spaces.

To prove Theorem 1.3 we use Artin’s theorems [2] on the algebraization of
formal modifications to inductively algebraize ϕ on strata. The category of
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algebraic spaces is needed in Artin’s theorems and so is the natural setting
for Theorem 1.3—even if X is an algebraic variety, the image may not be. To
apply Artin’s theorems, one must necessarily consider nilpotent thickenings
and thus deal with non-reduced spaces, even if one is only interested primarily
in varieties. In fact, the naive generalization of Theorem 1.1 to non-reduced
spaces is false, aswe show inExample 6.2.One of the benefits ofworking in the
definable complex analytic category is that it provides a natural admissibility
condition to extend Theorem 1.1 to this setting, and we prove the more general
statement in Sect. 6.

To algebraize the maps on nilpotent thickenings that arise when applying
Artin’s theorem, we develop a theory of coherent sheaves in the definable
complex analytic category, and a GAGA-type theorem for definable coherent
sheaves:

Theorem 1.4 Let X be a separated algebraic space of finite type over C and
Xdef the associated definable complex analytic space. The “definabilization”
functor Coh(X) → Coh(Xdef) is fully faithful, exact, and its essential image
is closed under subobjects and quotients.

It follows for example that definable coherent subsheaves of algebraic coherent
sheaves are algebraic. Note that X is not required to be proper over C, but in
contrast to Serre’s classical GAGA theorem [42] (aswell asmost otherGAGA-
type theorems for proper algebraic spaces), it is not true that every definable
coherent sheaf is algebraic (see Example 3.2).

Briefly, the proof of Theorem 1.4 is as follows. One must first develop
the theory of coherent sheaves on definable complex analytic spaces, and in
particular prove an Oka coherence theorem (on the coherence of the structure
sheaf, see Theorem 2.38) as well as a Nullstellensatz (Theorem 2.50) in this
category. The key point is to carefully keep track of the open refinements of
covers needed in the classical proofs in the complex analytic category, and to
show that in fact definable (in particular finite) refinements suffice. With the
sheaf theory in place, the main claim of Theorem 1.4 (that definable coherent
subsheaves of algebraic coherent sheaves are algebraic) follows inductively
using the Nullstellensatz from the fact that definable vector subbundles of
an algebraic vector bundle are algebraic, by applying Peterzil–Starchenko’s
definable Chow theorem to the associated geometric total space.

A tempting alternative to the use of Theorem 1.3 and the tameness of the
period map is provided by the result of Cattani–Deligne–Kaplan mentioned
earlier: one could try to prove that a surjective proper complex analytic map
X an → S from an algebraic variety to an analytic variety with algebraic
equivalence relation1 X an ×S X an ⊂ X an × X an is algebraic. This is not true
at this level of generality—see Example 4.13 and the surrounding discussion.

1 It is important to include the natural scheme structure on the equivalence relation.
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O-minimal GAGA and a conjecture of Griffiths 167

It is in general difficult to relate the metric positivity of the Hodge bundle to
its ampleness on Y an as the latter might be quite singular, and this has been the
main obstacle in proving the conjecture directly from the positivity. One can,
however, use it to show L is big and nef on a log resolution, and once Y an is
known to be algebraic, algebraic sections from a resolution can be descended
to deduce the second statement in Theorem 1.1.

Theorem 1.1 combined with the o-minimal algebraization results have a
number of applications, and we describe a few in the final section including:

(1) A version of the Borel algebraicity theorem for period images (Sect. 7.1).
(2) As a concrete example of Corollary 1.2, we deduce a general result

about the quasi-projectivity of moduli spaces of complete intersections
(Sect. 7.2).

(3) A theorem showing that pure polarized integral variations of Hodge struc-
tures over dense Zariski open subsets of compact Kähler manifolds are
pulled back from algebraic varieties (Sect. 7.3).

(4) A version of the ampleness result in Theorem 1.1 for the Hodge bundle
(Sect. 6.5).

1.1 Previous results

Griffiths proved his conjecture in the case that the image ϕan(X an) is compact
[24, III.9.7]. Sommese [43] proved the conjecture in the case that the image
has only isolated singularities, and later [44] proved a function field variant.
In particular, he proved that the image of a period map admits a proper desin-
gularization which is quasi-projective and such that the induced meromorphic
map is rational. However, for example it does not follow from their works that
period images admit a compactification by a compact analytic space.

The subject of o-minimal sheaves and the development of a cohomology
theory were treated in [18], and this was further developed in subsequent
papers. Variants of the o-minimal Nullstellensatz and Weierstrass preparation
theorems were proven by Kaiser [28].

Kashiwara–Schapira [29] have constructed a subanalytic site as well as
a theory of subanalytic sheaves which is in general different from our con-
struction in Sect. 2 for the subanalytic o-minimal structure Ran—see the end
of Sect. 2 for a more precise discussion. Petit [37] has defined a “tempered
analytification” functor on smooth algebraic varieties and proven a conditional
GAGA theorem reminiscent of Theorem 1.4 on the subanalytic sites of smooth
algebraic varieties in the sense of Kashiwara–Schapira.
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168 B. Bakker et al.

1.2 Outline

In Sect. 2 we develop the theory of definable coherent sheaves and definable
complex analytic spaces. We also define and prove some basic properties of
the definabilization functor on algebraic spaces and the analytification functor
on definable complex analytic spaces. In Sect. 3 we prove Theorem 1.4 (see
Theorem 3.1), and in Sect. 4 we prove Theorem 1.3 (see Theorem 4.2). We
prove a general quasi-projectivity criterion in Sect. 5. In Sect. 6 we apply the
results of Sects. 4 and 5 to prove a stronger version of Theorem 1.1 allowing
for non-reduced bases (see Theorems 6.4 and 6.14). In Sect. 7 we deduce some
applications, including Corollary 1.2 (see Corollary 7.3).

1.3 Notation

All schemes and algebraic spaces are assumed to be separated and of finite
type over C, and all definable topological spaces, definable complex analytic
spaces, and analytic spaces are assumed to beHausdorff.When helpful (mostly
in Sects. 3, 4 and 6), wewill loosely adopt the convention that algebraic objects
are denoted by roman letters, and (definable) analytic objects by script letters.

Throughout, we fix an o-minimal structure with respect to whichwewill use
the word “definable”. The reader unfamiliar with these notions may assume
for concreteness the structure Ralg for which the definable subsets of Rn are
the real semi-algebraic subsets. For the applications to Hodge theory in Sect. 6
we restrict to the o-minimal structure Ran,exp. For a general introduction to o-
minimality, see [47,48] for a discussion of o-minimality in a similar language
to this paper.

2 Definable complex analytic spaces

2.1 Definable topological spaces

Definable subsets U ⊂ Rn have important finiteness properties. To develop a
theory of topological spaces which are locally modeled on definable sets and
which preserves these finiteness properties, it is important to insist that only
finite covers by open sets are used.

We begin with a straightforward definition (cf. [47, Chapter 10]):

Definition 2.1 Let X be a topological space. A definable atlas {(Ui ,ϕi )} for X
is a finite open covering {Ui } of X and homeomorphisms ϕi : Ui

∼=−→ Vi ⊂ Rni

such that

(1) The Vi and the pairwise intersections Vi j := ϕi (Ui ∩Uj ) are definable;
(2) The transition functions ϕi j := ϕ j ◦ ϕ−1

i : Vi j → Vji are definable.
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O-minimal GAGA and a conjecture of Griffiths 169

For topological spaces X, Y equipped with definable atlases {(Ui ,ϕi )},
{(U ′

i ′,ϕ
′
i ′)}, we say a map f : X → Y is definable if for all i and i ′ the

composition

ϕi (Ui ∩ f −1(U ′
i ′))

ϕ−1
i−−→ f −1(U ′

i ′)
f−→ U ′

i ′
ϕ′
i ′−→ V ′

i ′

is definable. Note that this is a condition both on the source and the map.
Finally, we say two atlases {(Ui ,ϕi )}, {(U ′

i ′,ϕ
′
i ′)} on X are equivalent if the

identity id : X → X is definable with respect to {(Ui ,ϕi )} on the source and
{(U ′

i ′,ϕ
′
i ′)} on the target.

Definition 2.2 A definable topological space X = (|X |, ξX ) is a Hausdorff
topological space |X |with a choice of equivalence class ξX of definable atlases
on |X |.Amorphism f : X → Y of definable topological spaces is a continuous
map | f | : |X | → |Y |which is definable with respect to any choice of atlases in
ξX , ξY .We denote the category of definable topological spaces by (DefTopSp),
suppressing the implicit o-minimal structure.

There is an obvious functor | · | : (DefTopSp) → (TopSp) to the category
of topological spaces sending X to |X |. Given a topological space S, we refer
to a lift of S to (DefTopSp) as a definable structure on S. If X is a definable
topological space, we say a subspace T ⊂ |X | is definable (in X ) if ϕi (T ∩
Ui ) ⊂ Rni is definable for all i . In this case there is a natural definable structure
Z on T for which the inclusion Z → X is a morphism, and it is the unique one
with this property. We refer to such a Z as a definable subspace Z ⊂ X , and
we often blur the notational distinction between definable subspaces Z ⊂ X
and subspaces Z ⊂ |X | which are definable (in X ). Note that for a definable
topological space X and a choice of atlas {(Ui ,ϕi )}, the open sets Ui ⊂ |X |
have natural definable structures as open definable subspaces Ui ⊂ X .

If X, Y are definable topological spaces, X ×Y naturally acquires the struc-
ture of a definable topological space, and we say a map ϕ : |X | → |Y | is
definable (in X and Y ) if the graph is in X × Y . One easily shows that a mor-
phism f : X → Y of definable topological spaces is equivalent to a definable
continuous map | f | : |X | → |Y |, and that images and preimages of definable
subsets under a morphism f : X → Y are definable.

We finish this section by studying finite maps in the definable category.
Recall that a topological space X is regular if for every point x ∈ X and open
x ∈ U ⊂ X there is an open x ∈ V ⊂ U such that the closure V̄ of V in
X is contained in U . We say a definable topological space is regular if the
underlying topological space is.

Definition 2.3 Let f : X → Y be amorphismof definable topological spaces.
We say that f is quasi-finite if | f | has finite fibers, and proper if | f | is. We
say f is finite if it is quasi-finite and proper.
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170 B. Bakker et al.

Proposition 2.4 Let f : X → Y be a finite morphism of regular definable
topological spaces, and let {Xi } be a definable open cover of X. Then there is
a definable open cover {Wj } refining {Xi } and a definable open cover {Yk} of
Y such that each f −1(Yk) is a disjoint union of W j .

Proof By [47, Chapter 10, Sect. 1.8] X (resp. Y ) can be definably embedded
as a definable subspace of Rm (resp. Rn). Moreover, by passing to a definable
cover of Y , we may assume there is a coordinate of Rm which separates the
points in each fiber of f . Thus by projecting we may assume X ⊂ Y ×R and
f is the first projection.

Recall that a definable triangulation of a definable topological space X is a
definable homeomorphism & : X → tot(K ) for a (finite) simplicial complex
K (see [47, Chapter 8]).

Lemma 2.5 Let Y ⊂ Rn be a definable set, X ⊂ Y × R a definable set such
that the first projection f : X → Y is proper. Let {Ai } be a finite set of
definable subsets of X. Then there exist definable triangulations of X and Y
such that

(1) each Ai is a subcomplex of X with respect to the triangulation;
(2) for each open simplex D of Y , f −1(D) is a disjoint union of open simplices

of X, each mapping isomorphically to D;
(3) the closure of each simplex of X injects into Y .

Proof Applying normal definable cell decomposition to X [47, Chapter 3,
Sect. 2.11], we obtain cell decompositions of X and Y such that each Ai is a
union of cells of X and each cell of X is the graph of a continuous definable
function over a cell ofY . In particular, for any cell D ofY the preimage f −1(D)
is a disjoint union of cells each mapping isomorphically to D.

By definable triangulation [47, Chapter 8, Sect. 2.9], there is a definable
triangulation of Y for which each of the above cells of Y is a subcomplex.
By [47, Chapter 8, Sect. 2.8] this triangulation lifts to X , and clearly satisfies
properties (1) and (2). Note that in the terminology of [47], the properness of
f guarantees the multivalued function π2 ◦ f −1 is closed via [47, Chapter 8,
Sect. 2.6], and we may reduce to the case that π2 ◦ f −1 is full as in the proof
of [47, Chapter 8, Sect. 2.9].

By taking the barycentric subdivisions of these triangulations, properties
(1) and (2) still hold, and we claim we additionally have property (3). Indeed,
the closure of each simplex of the subdivision of a simplex ( only intersects
one face of ( of each dimension, and so (3) follows from (2). *+
Let {C j } (resp. {Dk}) be the open simplices of the triangulation of X (resp.
Y ) guaranteed by the lemma, taking {Ai } = {Xi }. For each C ∈ {C j }, let
X (C) be the union of open simplicies in {C j } having C as a face; likewise for
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O-minimal GAGA and a conjecture of Griffiths 171

D ∈ {Dk} define Y (D). We claim that {Yk} = {Y (Dk)} and {Wj } = {X (C j )}
are the desired open covers.

First, it is clear that each X (C) is definable and open in X , and likewise
for each Y (D). Moreover, if C ⊂ Xi then X (C) ⊂ Xi , so {Wj } refines {Xi }.
Next, suppose D ∈ {Dk}, and C,C ′ ∈ {C j } are distinct open simplices in X
mapping to D. By property (3) of the lemma no open simplex has both C and
C ′ as faces, so X (C) and X (C ′) are disjoint.

We finally claim that f −1(Y (D)) is the disjoint union of X (C) for open
simplices C of X mapping to D. To see this, if is sufficient to know that if D′

is an open simplex having D as a face, then every lift C ′ of D′ has some lift of
D as a face. This is immediate by the properness of f and property (2), and
the proof is therefore complete. *+
Remark 2.6 By definable triangulation [47, Chapter 8, Sect. 2.9], any finite
definable open cover of a definable topological space can be refined by a finite
cover by simply-connected definable open subsets.

2.2 Sheaves on definable topological spaces

In this section we collect some basic notions regarding sheaves on definable
topological spaces. Because of the insistence on finite covers, the sheaf theory
requires a very mild use of Grothendieck topologies.

Definition 2.7 Let X be a definable topological space. The definable site X
of X is the site whose underlying category is the category of definable open
subsets of X (with inclusions as morphisms) and whose coverings are finite
coverings by definable open sets.

We sometimes abusively refer to sheaves on the definable site as sheaves on X .
Given a morphism f : X → Y of definable topological spaces, there are in the
usual way adjoint functors f∗ : Ab(X) → Ab(Y ) and f −1 : Ab(Y ) → Ab(X)
on the categories of abelian sheaves.

Remark 2.8 We remark that exactness in Ab(X) cannot be checked on stalks.
See Example 2.18. There is a space obtained by adjoining model-theoretic
“generic points” called types whose conventional category of sheaves is equiv-
alent to sheaves on the definable site, and this is the perspective taken by, e.g.,
Edmundo–Jones–Peatfield [18]. In particular, exactness can be checked on
stalks if we include these additional points.

From Proposition 2.4 we deduce the following:

Corollary 2.9 Let f : X → Y be a finite morphism of regular definable
topological spaces. Then f∗ : Ab(X) → Ab(Y ) is exact.
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Proof Let A → B → C be an exact sequence of sheaves on X ; we want to
prove the exactness of f∗A → f∗B → f∗C . For a definable open U of Y , if
a section s in f∗B(U ) = B( f −1(U )) is zero in f∗C(U ), then after taking an
open definable cover of f −1(U ), s is in the image of A. By Proposition 2.4
we refine our open definable cover by components of f −1(Yk), where {Yk} is
an open cover of Y . It follows that for each k, s|Yk is in the image of f∗A(Yk),
completing the proof. *+

Definition 2.10 A locally C-ringed definable space (X,OX ) is a definable
topological space X and a sheaf OX of C-algebras on the definable site X
whose stalks are local rings. A morphism of locallyC-ringed definable spaces
f : (X,OX ) → (Y,OY ) is a morphism f : X → Y of definable spaces and
a morphism f ) : f −1OY → OX of sheaves of C-algebras which is local on
stalks.

Remark 2.11 In general some care must be taken to define a locally ringed
site when the site does not have enough points, see for example the discussion
surrounding [45, Tag 04EU]. For our purposes the above definitionwill suffice.

Remark 2.12 The notions of closed and open immersions of locally ringed
spaces naturally generalize to locallyC-ringed definable spaces. See for exam-
ple [45, Tag 01HK,Tag 01HE].

For X a locally C-ringed definable space, denote by Mod(OX ) the abelian
category of OX -modules. Given a morphism f : X → Y of locally C-ringed
definable spaces, we naturally have a functor f∗ : Mod(OX ) → Mod(OY ),
and we define a functor f ∗ : Mod(OY ) → Mod(OX ) via

f ∗ : F -→ OX ⊗ f −1OY
f −1F

where as usual we have used the adjoint map f ) : f −1OY → OX to make
OX an f −1OY -algebra.

Definition 2.13 Let X be a locally C-ringed definable space. Given an OX -
module M , we say that M is of finite type (as an OX -module) if there exists
a definable cover Xi of X and surjections On

Xi
! MXi for some positive

integer n on each of those open sets. We say M is of finite presentation (as an
OX -module) if there is a definable cover Xi of X and finite presentations

Om
Xi

→ On
Xi

→ MXi → 0.

Wesay thatM is coherent (as anOX -module) if it is of finite type, and given any
definable open U ⊂ X and any OU -module homomorphism ϕ : On

U → MU ,
the kernel of ϕ is of finite type.
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O-minimal GAGA and a conjecture of Griffiths 173

Note that it easily follows that if M is a coherent OX -module and N ⊂ M is
an OX -submodule of finite type, then N is coherent. Moreover, the kernel of
any homomorphism M → M ′ of coherent OX -modules is of finite type and
therefore coherent. The following is also standard and we include the proof to
give a flavor of the types of arguments used.

Lemma 2.14 Let 0 → M1 → M → M2 → 0 be an exact sequence of
sheaves on a locally C-ringed definable space X. If two of {M,M1,M2} are
coherent then so is the third.

Proof (1) Assume M,M1 are coherent. Since M is of finite type, so is M2.
Let us show that M2 is coherent. Suppose V ⊂ X is a definable open and
ϕ : On

V → M2|V is any map. The map ϕ is determined by the image of
a basis. Since M surjects onto M2, by further restricting to a finite open
cover we can assume that ϕ lifts to a map ϕ′ : On

V → M|V .

Since M1 is coherent we may choose a surjection ψ : Om
V → M1|V by

further restricting to a finite open cover. Consider ψ ⊕ ϕ′ : Om
V ⊕On

V →
M|V . Then the kernel of ψ ⊕ ϕ′ is finitely generated since M is coherent,
and surjects onto the kernel of ϕ. Thus the kernel of ϕ is finitely generated,
and so M2 is coherent.

(2) Assume M,M2 are coherent. Then any map to M1 is also a map to M , and
thus has finitely generated kernel. Moreover, if ϕ : On

X ! M , then the
kernel of the inducedmap toM2 is finitely generated sinceM2 is coherent,
and surjects to M1.

(3) Assume M1,M2 are coherent. To see that M is of finite type, we first
restrict to a finite open covering so that one can choose surjections ϕi :
OnI

X → Mi . By further restricting,wemay liftϕ2 to amapϕ′
2 : O

n2
X → M .

Now the map ϕ1 ⊕ ϕ′
2 : O

n1+n2
X → M is a surjection.

Finally, let ϕ : Om
X → M be any map. When continued to M2, the kernel

K of ϕ0 : Om
X ! M2 is of finite type. The induced map from K to M1

has kernel which is of finite type, and this kernel is in fact ker ϕ. This
completes the proof. *+

Corollary 2.15 The full subcategoryCoh(OX ) ⊂ Mod(OX ) of coherentOX -
modules is an extension closed abelian subcategory.

Proof By the lemma and the remarks after Definition 2.13. *+

Corollary 2.16 Assume OX is a coherent OX -module. Then:

(1) On
X is coherent for any n.

(2) An OX -module M is coherent iff it is of finite presentation.
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2.3 Basic definable complex analytic spaces

Identify C = R2 using the real and imaginary parts, and give Cn the definable
structure coming from the identification Cn = R2n . For a definable open set
U ⊂ Cn we let OCn (U ) be the definable holomorphic functions on U , that is
the maps U → C that are both definable and holomorphic.

Lemma 2.17 The presheaf OCn : Cn → Ab which to U ∈ Cn associates
OCn (U ) is a sheaf on Cn.

Proof Let U ⊂ Cn be a definable open set and let Ui be a finite definable
covering of U . If a function f ∈ OCn (U ) vanishes on each Ui , it must be
identically 0.Moreover, if fi are definable holomorphic functions onUi which
agree on overlaps, they by analytic continuation glue to a single holomorphic
function f onU . Since theUi are a finite covering ofU and each fi is definable,
it follows that f is also definable and hence f ∈ OCn (U ) as required. *+

Note that the stalks OCn,x := colimx∈U OCn (U ) are local rings.

Example 2.18 The sheaf O(Cn)an of holomorphic functions is a sheaf on Cn .
If our structure containsRan, thenOCn ⊂ O(Cn)an have the same stalks but are
not equal, and therefore exactness on the definable site cannot be checked on
stalks.Crucially,wewill show (seeCorollary 2.40) that exactness inCoh(OCn )
can be checked on stalks.

Definition 2.19 Given an open definable subset U ⊂ Cn and a finitely gen-
erated ideal I of OCn (U ), the vanishing locus2 X = |V (I )| is naturally a
definable topological space. We call the data of U ⊂ Cn and I a basic defin-
able complex analytic space. We often refer to the basic definable complex
analytic space via X ⊂ U ⊂ Cn , and denote by IX := IOU .

There is a sheaf OU/IX on U which is supported on X . We set OX to be
the restriction of OU/IX to X , and refer to the pair (X,OX ) as the associated
locally C-ringed definable space.

Remark 2.20 We will eventually see in Corollary 2.34 that given two basic
definable complex analytic spaces X ⊂ U ⊂ Cn and Y ⊂ V ⊂ Cn , a
morphism of the associated locally C-ringed definable spaces (X,OX ) →
(Y,OY ) is, after passing to a definable cover of X inU , the natural one induced
by a definable holomorphic map f : U → V for which f )( f −1 IY ) ⊂ IX .
This will allow us to glue basic definable complex analytic spaces by gluing
the C-locally ringed definable spaces.

2 Here we use | · | to denote the vanishing locus as a definable topological space—that is,
forgetting the sheaf of functions—rather than the underlying topological space as in Sect. 2.1.
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2.4 Definable Oka coherence

In this section we prove the analog of the Oka coherence theorem [22, Chapter
2, Sect. 5.2] for basic definable complex analytic spaces:

Theorem 2.21 The definable structure sheaf OCn of Cn is a coherent OCn -
module.

The statement of Theorem 2.21 is local. The proof will largely follow the
classical proof (e.g. [22, Chapter 2, Sect. 5]) by observing that whenever one
must pass to a refinement of an open cover in the classical setting, a definable
refinement is sufficient in our setting. One example is the following definable
version of Weierstrass division:

Lemma 2.22 Let V ⊂ Cn be a definable open set, P ∈ OCn (V )[w] a monic
polynomial in w with coefficients that are definable holomorphic functions on
V . Let U ⊂ V ×C be a definable open set containing X := |V (P)| ⊂ V ×C.
Then given any definable holomorphic function f on U, one can uniquely
write f = QP + R for definable holomorphic functions Q, R on U with
R ∈ OCn (V )[w] of degree less than the degree of P.
Proof The claimed Q, R exist uniquely in the analytic category [22, Chapter
2, Sect. 1.2], so it suffices to prove they are definable. Let Xi be the irreducible
analytic components of X and Pi be the minimal polynomial of w over Xi .
Note that the Xi are definable sets and so each Pi is definable. Also, P must
be a product of the Pi , and so by induction on deg Pi it suffices to prove the
theorem for each Pi one at a time. We may thus assume that P is irreducible.
Let V1 ⊂ V be the dense open set where P(w) has distinct roots, which is
definable. On V1 the coefficients of R are the a0, . . . , an−1 ∈ OCn (V1) such
that

∑n−1
i=0 aiwi agrees with f on X , where n = deg P . Thus, it follows that

R1 := R|V1 is definable. Since U1 := V1 ∩ U is dense in U it follows that
R is definable as well, since the graph of R is the closure of the graph of R1.
Hence Q is definable since Q = f −R

P , and the proof is complete. *+
Another important input of a similar flavor is a definable version of Noether

normalization:

Theorem 2.23 (Peterzil–Starchenko [39, Theorem 2.14]) Given an open
definable subset U ⊂ Cn and a closed definable complex analytic subset
X ⊂ U of dimension d, there is a definable cover {Ui } of U and linear pro-
jections πi : Cn → Cd such that the restrictions pi : Xi → πi (Ui ) are finite,
where Xi = X ∩Ui .

Proof of Theorem 2.21 Following [22, Chapter 2, Sect. 5.1], we start with a
coherence criterion.
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Lemma 2.24 The following are equivalent.

(1) For any connected open definable U ⊂ Cn and any nonzero definable
holomorphic function f ∈ OCn (U ) we have that M = OU/ fOU is a
coherent M-module.

(2) OCn is a coherent OCn -module.

Proof The backward implication is immediate from Corollary 2.15. For the
forward implication, suppose U ⊂ Cn is a definable open which we may
assume is connected and ϕ : Om

U → OU an OU -module homomorphism
given by f1, . . . , fm ∈ OCn (U ). Evidently ker(ϕ) is finitely generated if all
the fi vanish, so we may assume without loss of generality that f = f1 is
nonzero.

Consider the projection π : OU → M := OU/ fOU and note we have a
commutative diagram

Om
U

πm

ϕ OU

π

Mm ϕ̄
M.

The vertical maps clearly have finitely generated kernels (as OU -modules).
As M is coherent by hypothesis, ker(ϕ̄) is of finite type as an M-module (and
therefore also anOU -module), and it follows by lifting the generators (possibly
after passing to a finite refinement) that ker(π ◦ϕ) is a finite typeOU -module.
The OU -module homomorphism s -→ s − (ϕ(s)/ f )e1 gives a section of the
inclusion ker(ϕ) → ker(π ◦ ϕ), and therefore ker(ϕ) is of finite type. *+

It therefore suffices to prove the criterion in the lemma; we do so by induction
on n, the case n = 0 being obvious. We thus assume that OCn−1 is coherent.

Let U ⊂ Cn be a connected definable open set and f ∈ OCn (U ) nonzero.
Let X := |V ( f )| be the zero set of f . Using Lemma 2.23, there is a covering
of U by finitely many definable open sets Ui such that for each Ui there is a
linear set of coordinates for which Xi = X ∩ Ui is finite over its projection
down to Cn−1. Replacing X with Xi we may therefore assume without loss
of generality that there is a linear projection π : U → Cn−1 whose restriction
p : X → V is finite over its image V := π(U ) ⊂ Cn−1. It follows that V is a
definable open set of Cn−1.

LetWj be the irreducible components of X , and let Pj (w) ∈ O(Cn−1)an(V )[w]
be the unique irreducible polynomials whose zero-locus is Wj . Note that the
coefficients of Pj (w) are definable since it canbedefinedon thedense definable
openW ′

j ⊂ Wj whereWj → π(Wj ) is étale as Pj (v,w) = ∏
(v,t)∈W ′

j
(w− t).

By the analytic Weierstrass preparation theorem, there are positive integers ki
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such that f∏
i Pi (w)ki

is nowhere vanishing, and thus must be a definable unit.

Hence we may assume f = P(w) := ∏
i Pi (w)ki .

Let k = deg P and let M = OU/ fOU , which we consider (by restricting)
as a sheaf on X . It suffices to show that the kernel of any homomorphism
ϕ : Mn → M of M-modules is of finite type (as an M-module). By
Lemma 2.22 we have p∗M ∼= Ok

V as OV -modules. Thus, p∗ϕ is a homomor-
phismof coherentOV -modules by the inductive hypothesis andCorollary 2.16,
hence ker(p∗ϕ) is of finite type as an OV -module. By Corollary 2.9 (any
definable subspace of Rn is regular) we have p∗ ker(ϕ) = ker(p∗ϕ), and if
p∗ ker(ϕ) is of finite type as anOV -module clearly ker(ϕ) is of finite type as an
M-module. *+

Corollary 2.25 For a basic definable complex analytic space X the structure
sheaf OX is a coherent OX -module.

Proof First, for any definable open U ⊂ Cn , OU is clearly coherent. Let
X = V (IX ) where U ⊂ Cn is definable open and IX ⊂ OU is a finitely
generated subsheaf. Let i : X → U be the natural injection, which is a closed
immersion on locally C-ringed definable spaces. Note that M → i∗M gives
an equivalence of categories betweenOX -modules on X andOU -modules on
U killed by I , with inverse M → i−1M . By definition i∗OX = OU/IX is
a finitely presented OU -module and therefore coherent by Theorem 2.21 and
Corollary 2.15.

As any open subset of X is itself a basic definable complex analytic space,
it is enough to check that for an OX -module homomorphism ϕ : Om

X → OX
the kernel is of finite type. We may consider i∗ϕ : i∗Om

X → i∗OX which is
a map of coherent OU -modules. Since OU is coherent, we may locally form
an exact sequence Ot

U → i∗Om
X → i∗OX . The first map is killed by I , so we

get an exact sequence i∗Ot
X → i∗Om

X → i∗OX , and thus an exact sequence
Ot

X → Om
X → OX as desired. *+

2.5 Analytification

Given a basic definable complex analytic space X ⊂ U ⊂ Cn , we may
naturally consider X as an analytic space, which we denote X an. We for sim-
plicity denote Coh(X) := Coh(OX ) and Coh(X an) := Coh(OXan). There is
a natural morphism g : (X an,OXan) → (X ,OX ) of locally C-ringed sites,
and a resulting analytification functor (−)an : Coh(X) → Coh(X an) given by
Fan := OXan ⊗g−1OX

g−1F together with a natural identificationOan
X

∼= OXan .

Example 2.26 It is instructive to observe that if the underlying o-minimal
structure contains Ran, then (−)an : Coh(X) → Coh(X an) is just sheafifica-
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tion in the analytic topology. In particular, (−)an is exact and for any x ∈ X
we canonically have OX,x = OXan,x .

Given the above example, the more contentful part of the following result is
the faithfulness statement.

Theorem 2.27 Let X be a basic definable complex analytic space and (−)an :
Coh(X) → Coh(X an) the analytification functor. Then

(1) (−)an is exact;
(2) (−)an is faithful.

For the proof of Theorem 2.27, we first need some preliminary observations.

Lemma 2.28 For X a basic definable complex analytic space and x ∈ X, the
stalk OX,x is a Noetherian ring.

Proof Suppose X = V (I ) ⊂ U ⊂ Ck for I a finitely generated ideal. Then
OX,x is a quotient ofOCn,x . Thus it is sufficient to proveOCn,x is Noetherian.

We proceed by induction on n. Suppose 0 0= f ∈ OCn,x . As in the proof of
Theorem 2.21, using Theorem 2.23 we can change coordinates such that f is
a unit times a Weierstrass polynomial P(w) ∈ OCn−1,x [w]. Thus OCn,x/( f )
is finite over OCn−1,x by Lemma 2.22. As a finite extension of a Noetherian
ring is Noetherian, the result follows by induction. *+
Lemma 2.29 For X a basic definable complex analytic space and x ∈ X, the
completions of OX,x and Oan

X,x are canonically isomorphic.

Proof For X an open set in Cn the claim is clear since both completions are
canonically the formal power series ring Rn in n variables. By the Artin–Rees
lemma, it follows that tensoring with Oan

Cn,x over OCn,x is exact for finitely
generated modules.

Suppose X = V (I ) ⊂ U . By the above I anx := Ip ⊗OU,x Oan
U,x is an ideal

of Oan
U,x , and we have the isomorphisms

OX,x ∼= OU,x/Ix , and Oan
X,x

∼= Oan
U,x/I

an
x

It follows that the completions of OX,x and Oan
X,x are both isomorphic to

Rn/(Ix ⊗OU,x Rn). *+
Corollary 2.30 For X a basic definable complex analytic space and x ∈ X,
the stalk OX,x is an excellent ring.

Proof As OX,x is a quotient of OCn,x , it suffices to take X = Cn [45, Tag
07QU]. The previous two lemmas then imply that OCn,x is regular, since
regularity of Noetherian local rings can be checked on completions. Using [34,
Theorem 102] and the fact that derivatives of definable holomorphic functions
are definable, the claim follows. *+
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Proof of Theorem 2.27 Sheafification in the analytic topology is exact and ten-
sor products are always right exact, so it is sufficient to prove left-exactness
of the tensor product. Suppose that 0 → E → F is an exact sequence of
definable coherent sheaves. Then we get an injection of stalks 0 → Ex → Fx
for x ∈ X . To show that Ean injects into Fan it is sufficient to prove that Ean

x
injects into Fan

x . Note that Ean
x

∼= Ex ⊗OX,x Oan
X,x . Since both OX,x and Oan

X,x
are Noetherian local rings by Lemma 2.28, the completion is faithfully flat
[45, Tag 00MC]. Since they have isomorphic completions by Lemma 2.29,
claim (1) follows.

For the second part, we need to show that if we have E
f−→ F in Coh(X)

such that f an = 0, then f = 0. By considering the image, it is enough to show
that if for F ∈ Coh(X) we have Fan = 0, then F = 0. The statement is local,
so we may assume F has a presentation

Om
X

g−→ On
X → F → 0

and by part (1) we reduce to the following lemma.

Lemma 2.31 If gan is surjective then g is.

Proof We may think of g as an n × m matrix M consisting of elements of
OX (X). Since gan admits a section at each point, at each point some n × n
minor of M is invertible. Thus on a definable cover given by the nonvanishing
of these minors, a section is given by a rational function in the entries of g,
which is therefore definable. It follows that g is surjective. *+
Corollary 2.32 For X a basic definable complex analytic space, a sequence
M ′ → M → M ′′ of coherentOX -modules is exact if and only if it is exact on
stalks (or even analytic stalks).

Proof By the exactness of (−)an, it suffices to show that if Man = 0 then
M = 0, but this is exactly the faithfulness of (−)an. *+
Corollary 2.33 Given coherent sheaves E ⊂ F and a section s ∈ F(X), then
s ∈ E(X) if and only if (san)x ∈ (Ean)x for all x ∈ X.

In view of Remark 2.8 (and Example 2.18), Corollary 2.32 is quite strong.
In particular, it implies that basic definable complex analytic spaces can be
glued as locally C-ringed definable spaces:

Corollary 2.34 Let X ⊂ U ⊂ Cn and Y ⊂ V ⊂ Cm be basic definable
complex analytic spaces and ϕ : (X,OX ) → (Y,OY ) a morphism of the
associated locally C-ringed definable spaces. Then there are definable open
subsetsU j ⊂ U covering X ⊂ U and definable holomorphic maps g j : Uj →
V with g)

j (g
−1
j IY ) ⊂ IX∩Uj which induce ϕ|X∩Uj in the natural way.
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Proof The coordinates give sections z1, . . . , zm of OY (Y ) which pull back to
functions wi = ϕ)zi ∈ OX (X). By the definition ofOX , there are open defin-
able subset Uj ⊂ U covering X on which all of the wi extend to definable
holomorphic functions. Replacing X ⊂ U with X ∩Uj ⊂ Uj , we may there-
fore assume the sections wi lift to the coordinates of a definable holomorphic
function g : U → Cm . From classical theory we know that g restricts to an
analytic morphism X an → Y an which induces ϕan. Thus, on the level of defin-
able topological spaces g induces ϕ. Moreover, from Corollary 2.33 we have
that g)(g−1 IY ) ⊂ IX , and it remains to show that the induced pullback map
g) : |ϕ|−1OY → OX is the same as ϕ). But on the one hand by Lemmas 2.28
and 2.29 both pullbacks agree on completions since they agree on the coordi-
nates zi , and therefore they also agree on stalks. On the other hand, sections
are determined by their stalks by Corollary 2.33, so the lemma is proved. *+

2.6 Definable complex analytic spaces

Equipped with Corollary 2.34, we are in a position to give a concise definition
of global spaces locally modeled on basic definable complex analytic spaces.

Definition 2.35 We say a locallyC-ringed definable spaces (X,OX ) is locally
a basic definable complex analytic space if on a definable cover it is isomorphic
to the locallyC-ringed definable space associated to a basic definable complex
analytic space. We define the category of definable complex analytic spaces
(DefAnSp/C) to be the full subcategory of the category of locally C-ringed
definable spaces consisting of (X,OX ) which are locally a basic definable
complex analytic space.

Remark 2.36 We require the underlying definable topological space X to be
Hausdorff. In particular, as X is locally compact (as it is locally a locally closed
subset of Rn), it is regular.

Remark 2.37 As in Remark 2.12, we define closed (resp. open) immersions
of definable complex analytic spaces to be closed (resp. open) immersions on
the level of C-ringed definable spaces.

The local results of the previous sections immediately globalize; we record
them here for convenience.

Theorem 2.38 Let X be a definable complex analytic space. Then OX is a
coherent OX -module.

Denote by (AnSp/C) the category of complex analytic spaces. As in
the previous section, there is naturally an analytification functor (−)an :
(DefAnSp/C) → (AnSp/C), as well as analytification functors (−)an :
Coh(X) → Coh(X an) on the level of sheaves for which we have a natural
identification Oan

X
∼= OXan .
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Theorem 2.39 Let X be a definable complex analytic space. Then the ana-
lytification functor (−)an : Coh(X) → Coh(X an) is exact and faithful.

Corollary 2.40 For X a definable complex analytic space, a sequence M ′ →
M → M ′′ of coherent OX -modules is exact if and only if it is exact on stalks
(or even analytic stalks).

Finally, as a concrete example and sanity check, we have the following:

Lemma 2.41 Let X be a definable complex analytic space. Then elements
of "(X,OX ) are in natural bijection with morphisms of definable complex
analytic spaces f : X → C.

Proof Given a morphism f : X → C we get a map f # : "(C,OC) →
"(C, f∗OX ) andwe pullback theC-coordinate f #(z) to obtain a global section
of OX .

We now define the inverse correspondence from sections s ∈ "(X,OX ) to
morphisms s+ : X → C. It is enough to consider X a basic definable complex
analytic space, as the resultingmorphismsof definable complex analytic spaces
X → C glue together. Thus suppose X = V (I )where I is a finitely generated
ideal sheaf in a definable open set U ⊂ Cn . Given s ∈ "(X,OX ), after
passing to a definable cover s extends to a section t ∈ "(U,OU ), and thus to
a morphism of definable complex analytic spaces t+ : U → Cwhich restricts
to a morphism s+ : X → C. Note that if we pick a different section lift t ′ then
t − t ′ ∈ "(U, I ) and we obtain the same morphism. To see this, note that it is
obvious that t+, t ′+ give the same map on points |X | → C. As t+, t ′+ induce
the same analytic morphism, it follows from Theorem 2.39 that they induce
the same map on the sheaf of rings. One easily check that s -→ s+ is inverse
to f -→ f )z. *+

2.7 Reduced spaces

The goal of this section is to show that any definable complex analytic space
X has a canonical reduced subspace X red which analytifies to the analytic
reduced subspace of X an.

Definition 2.42 For X a definable complex analytic space, we define NX ⊂
OX to be the sheaf of ideals given by nilpotent elements of OX . We say X is
reduced if NX is the zero ideal.

Note that for any x ∈ X , the stalk NX,x is the ideal of nilpotents of OX,x .

Proposition 2.43 Let X be a definable complex analytic space. ThenNX is a
coherent sheaf of ideals.
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Proof We may assume X ⊂ U ⊂ Cn is a basic definable complex analytic
space. The underlying set |X | ⊂ U is set-theoretically cut out by generators
for the ideal of X in U , so |X | is a C-analytic set in the terminology of [39].
Let I ⊂ OU be the ideal sheaf of |X |; it suffices to prove that I is a coherent
sheaf of ideals. By [39, Theorem 11.1], up to a definable cover there is a
finitely generated ideal sheaf J ⊂ I ⊂ OU which agrees with I on stalks. By
Corollary 2.40 we have J = I . *+

Corollary 2.44 Let X be a definable complex analytic space. There is a unique
closed definable complex analytic subspace X red ⊂ X for which (X red)an =
(X an)red. Moreover, X red is reduced.

Proof The uniqueness follows from Theorem 2.39. For the existence take
X red = V (NX ), which is clearly reduced. Recall that an excellent local ring
is reduced if and only the completion is [7.8.3(v)]. From Corollary 2.30,
Lemma 2.29, and the excellence of analytic local rings we deduce that NX,x
analytifies to the idealNXan,x ⊂ OXan,x of nilpotents in the analytic local ring.
Thus, (X red)an = (X an)red. *+

We call the subspace X red ⊂ X of the corollary the reduced subspace. For the
rest of this section and subsequently, by a closed definable complex analytic
subset Y ⊂ X of a definable complex analytic space X we mean a subset
Y ⊂ X on the level of points which is simultaneously a closed analytic subset
of X an and a definable subset of the definable topological space underlying X .

Proposition 2.45 Let X be a definable complex analytic space and Y ⊂ X a
closed definable complex analytic subset. ThenY canonically has the structure
of a reduced closed definable complex analytic subspace Y ⊂ X.

Proof ByCorollary 2.44, it suffices to find a closed definable analytic subspace
Y ′ ⊂ X whose underlying definable topological space is Y . We may assume
Y is equidimensional by passing to irreducible components. By passing to
definable covers, we may first assume that X = U ⊂ Cn is a definable
open subset of Cn and then by Lemma 2.23 that there are linear coordinates
Cn ∼= Cn−d × Cd for which projection to the second factor π : U → Cd

restricts to a finite map p : Y → V where V := π(U ) ⊂ Cd .
As p is analytically étale over a dense open subset V0 ⊂ V , after possibly

passing to connected components (of V ) we obtain a definable holomorphic
map f0 : V0 → Symk Cn−d mapping v -→ p−1(v) ⊂ Cn−d whose image
is contained in the complement W ⊂ Symk Cn−d of the diagonals. Note that
Symk Cn−d is an affine complex algebraic variety and therefore naturally a
definable complex analytic space. Let Z ⊂ Cn−d ×Symk Cn−d be the closure
of the universal reduced length k subscheme of Cn−d over W , which is also
naturally an affine complex algebraic variety. The coordinate functions of
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Symk Cn−d are clearly locally bounded around V \ V0, so f0 extends to a
definable holomorphic function f : V → Symk Cn−d , and the base-change
of Z along f yields the desired Y ′. *+

2.8 Noetherian induction and the Nullstellensatz

Proposition 2.46 (Definable Noetherian induction)
Let X be a definable complex analytic space and F a coherent sheaf on X.

Any increasing chain of coherent subsheaves of F must stabilize.

Proof It is enough to prove the statement on every open of a definable cover.
As F is locally a quotient of Om

X , by pulling back our chain we may assume
F = Om

X . The statement for Om
X clearly follows from the statement for OX

so we may assume F = OX . We may take X to be a basic definable complex
analytic space, and then as OX is a quotient of OCn we assume U ⊂ Cn is an
open definable set.

We now induct on n to show the claim forOU forU ⊂ Cn open. Our chain
of definable coherent subsheaves corresponds to a chain of ideal sheaves I j .
We may assume after passing to a further cover that all of the I j contain a
function f ∈ OU (U ). As in the proof of Theorem 2.21, we may assume we
have a linear projection π : Cn → Cn−1 with V = π(U ) and that f = P ∈
O(V )[w] is a Weierstrass polynomial with zero locus X = V (P) ⊂ U such
that p = π |X : X → V is finite. Letting Q j = I j/POX , the Q j are coherent
sheaves supported on X and it is sufficient to show that the Q j stabilize.

Lemma 2.47 With the above notation, the pushforwardmap p∗ takes coherent
sheaves to coherent sheaves.

Proof By Lemma 2.22 we know that p∗OX ∼= Odeg P
V . Let Q be a coherent

sheaf. This means that Q has a finite presentation on a definable open cover,
and by Proposition 2.4 we may assume Q has a global finite presentation. By
Corollary 2.9 this yields a presentation of p∗Q. *+

By induction, the sequence p∗Q j stabilizes. The theoremwill thus follow if
we show that p∗Q j = p∗Q j+1 implies that Q j = Q j+1. By Corollary 2.9 the
pushforward p∗ is exact, and thus it suffices to show that for a coherent sheaf
Q, p∗Q = 0 implies that Q = 0. This easily follows from Proposition 2.4. *+

Lemma 2.48 Let X be a definable complex analytic space and F, F ′ definable
coherent sheaves on X. Then Hom OX (F, F

′) is a definable coherent sheaf.
Moreover, if Supp(F) is the subspace cut out by the kernel of the natural map
OX → Hom OX (F, F), then:
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(1) Supp(F)an = Supp(Fan).
(2) The underlying definable complex analytic set of Supp(F) is the set of

x ∈ X for which Fx 0= 0.

Proof For the first claim, we may assume F has a presentation

On
X

g−→ Om
X → F → 0

in which case we have an exact sequence

0 → Hom OX (F, F
′) → Hom OX (O

m
X , F

′) → Hom OX (O
n
X , F

′)

and therefore Hom OX (F, F
′) is coherent. The remaining parts of the lemma

follow from Theorem 2.39 and the same statements in the analytic category. *+

Corollary 2.49 Let X be a definable complex analytic space.

(1) Any decreasing chain of closed definable complex analytic subspaces sta-
bilizes.

(2) Any decreasing chain of closed definable complex analytic sets stabilizes.

Proof For (1), consider the corresponding chain of ideals. This also handles
(2), by endowing the subsets with the reduced induced structure provided by
Proposition 2.45. Note that by the lemma a definable complex analytic set
Y may be recovered by the ideal sheaf IY defining the subspace Y with the
reduced induced structure as the underlying set of Supp(OX/IY ). *+

We therefore deduce a definable Nullstellensatz:

Corollary 2.50 Let X be a definable complex analytic space and IX red ⊂ OX
the ideal sheaf of the reduced subspace X red ⊂ X. Then I nX red = 0 for some
integer n > 0.

Proof For each x ∈ X we have I nX red,x = 0 for some n, sinceOX,x is Noethe-
rian. By the previous lemma, for any inclusion of definable coherent sheaves
E ⊂ E ′ on X we have Supp(E) ⊂ Supp(E ′). Thus, Supp(I kX red) gives a
decreasing chain of definable complex analytic subspaces which must even-
tually not contain any given point. Therefore, by Corollary 2.49 we have that
Supp(I kX red) is eventually empty, and thus by the lemma I nX red = 0 for some
positive integer n. *+

Corollary 2.51 Let X be a definable complex analytic space and Z ⊂ X a
closed definable complex analytic subspace. Then for some integer n > 0 we
have I nZ red ⊂ IZ .
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2.9 Finite push-forward

Proposition 2.52 Let f : X → Y be a finite morphism of definable complex
analytic spaces. Then f∗ takes coherentOX -modules to coherentOY -modules
and commutes with analytification.

Proof Let X0 ⊂ X be a closed definable complex analytic subspace with
a square-zero ideal. For any coherent OX -module F we have a short exact
sequence

0 → E → F → F0 → 0

where F0 is the restriction of F to X0 and both E and F0 are coherent
OX0-modules. If f∗E and f∗F0 are coherent OY -modules which analytify to
( f an)∗Ean and ( f an)∗Fan

0 , then f∗F is coherent and analytifies to ( f an)∗Fan

by Corollary 2.9 and Theorem 2.39. Therefore by induction using Corol-
lary 2.50 we may assume X is reduced. As X red → Y factors through the
reduction of Y and the claim is obviously true for closed immersions, we may
assume Y is reduced as well.

Likewise, for any sheaf F and any irreducible component X0 of X (with its
reduced structure), we have a short exact sequence

0 → E → F → F0 → 0

where F0 is the restriction of F to X0 and E has support a subspace supported
on the union of the other irreducible components of X . By induction we may
thus assume that X (and therefore also Y ) is reduced and irreducible.

Using Proposition 2.4, we may assume X ⊂ U ⊂ Cm and Y ⊂ V ⊂ Cn

are both basic definable complex analytic spaces. By considering the graph,
we reduce to the following:

Claim Let Y ⊂ V ⊂ Cn be a reduced and irreducible basic definable complex
analytic space and X ⊂ Cm × Y a reduced and irreducible closed definable
complex analytic subspace. Assume the second projection p : X → Y is
proper. Then p∗ takes coherent sheaves to coherent sheaves and commutes
with analytification.

Proof We proceed by induction onm, the base case being trivial. Take a linear
projection Cm → Cm−1 and consider the morphism g : X → Cm−1 × Y .
As g is proper, by Remmert’s theorem the image of gan is a closed complex
analytic subvariety and obviously definable, hence by Proposition 2.45 the
image canonically has the structure of a reduced and irreducible closed com-
plex analytic subspace Y ′ ⊂ Cm−1 × Y . By induction, the claim is true for
the push-forward along Y ′ → Y , so it is enough to show that push-forward
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along X → Y ′ sends coherent sheaves to coherent sheaves and commutes
with analytification. As X ⊂ C × Y ′ is a closed definable complex analytic
subspace which is proper over Y ′, we are reduced to the following:

Lemma 2.53 Let Y be a reduced and irreducible basic definable complex
analytic space and X ⊂ C × Y a reduced and irreducible closed complex
analytic subspace which maps finitely and surjectively onto Y via the second
projection π : X → Y . Then π∗ takes coherent sheaves to coherent sheaves.

Proof Let w be the C-coordinate in C × Y . Since X, Y are irreducible and π
is surjective, the number d of pre-images (with multiplicity) is constant, and
w is a root of the polynomial P(t) := ∏

(s,y)∈X (t − s) ∈ OY (Y )[t].
LetW be the analytic subspace cut out by P andψ : W → Y the projection.

We claim that ψ∗OW is free overOY . When Y is a domain in Cn , this follows
from Lemma 2.22 and Proposition 2.4. In the general case, we have to prove
that every function g on W can uniquely be written as a polynomial in w of
degree d − 1 over OY .

To show existence, note that we can find a neighborhood V of Y which is
open inCn such that P extends to V and cuts out a definable complex analytic
space WV . Shrinking further and using Proposition 2.4 we may assume that g
extends to WV , and so it can be written as a polynomial in w of degree d − 1
overOV . Restricting to Y proves existence. Uniqueness is true in the analytic
category (see e.g. [22, p. 56]) so follows from Theorem 2.39.

As ψ∗OW ∼= Od
Y , it follows that ψ∗ takes coherent sheave to coherent

sheaves (as in Lemma 2.47) and commutes with analytification. The same is
obviously true for push-forward along the closed embedding X → W , an
therefore also for the composition π∗. *+

Corollary 2.54 Let f : X → Y be a finite morphism of definable complex
analytic spaces. Then there is a diagram of definable complex analytic spaces

X Y

Z
g

f

i

where i is a closed immersion, g is surjective on points, and OZ → g∗OX is
injective. Moreover, Z analytifies to the analytic image.

Proof The ideal of Z is the kernel of the mapOY → f∗OX which is coherent
by the proposition. The remaining statements are clear. *+
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2.10 Analytic factorization

The purpose of this section is to prove the following factorization statement,
which says that if h : X → Y is a “scheme”-theoretically surjective morphism
of definable complex analytic spaces, then a morphism g : X → Z factors
through h if and only if it factors analytically.

Proposition 2.55 Let X, Y, Z be definable complex analytic spaces and sup-
pose we have (solid) diagrams

X Y X an Y an

Z Z an

g

h

f
gan

han

ϕ

such that h is proper, surjective on points, andOY → h∗OX is injective. Then
a unique f exists such that f an = ϕ.

In preparation, we need the following lemma:

Lemma 2.56 Let f : X → Y be a proper morphism of definable complex
analytic spaces that is surjective on points and such that OY → f∗OX is
injective. Let s ∈ "(Y an,OY an) be such that ( f an))s ∈ "(X,OX ). Then
s ∈ "(Y,OY ).

Proof The section ( f an))s corresponds to a morphism g : X → C by
Lemma 2.41. The resultingmorphism h = f ×g : X → Y×C is proper, so by
Proposition 2.45 the reduced analytic image is naturally a definable complex
analytic subspace Z ⊂ Y × C. Note that the projection Z → Y is finite. Let
IZ be the coherent ideal sheaf of Z in Y × C. The pullback (h) IZ )OX is a
nilpotent coherent sheaf on X and thus some power of it is 0 by Theorem 2.50.
Say (h) IZ )kOX = 0. Set Zk ⊂ Y × C to be the definable complex analytic
space cut out by I kZ . Then the map h factors through Zk , and thus the mor-
phism a : Zk → Y is surjective on points, with the natural mapOY → a∗OZk

being injective. By Proposition 2.52 we see that a∗OZk is a coherent sheaf.
Let w be the C coordinate of Y × C. Then w ∈ "(Y, a∗OZk ) is the image of
s ∈ "(Y an,OY an), and so the claim follows by Corollary 2.33. *+

Proof of Proposition 2.55 The uniqueness statement follows immediately
from Theorem 2.39 so we need only show the existence of f . By defin-
able choice ϕ is a morphism of definable topological spaces. Let U ⊂ Z
be definable open and s ∈ OZ (U ). Then by Lemma 2.56 the section
ϕ)s ∈ "(ϕ−1(U ),OY an) is actually in "(ϕ−1(U ),OY ). We thus get a mor-
phism f : Y → Z and it follows from Theorem 2.39 that g = f ◦ h. *+
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2.11 Étale descent

The purpose of this section is to show that quotients by closed étale equivalence
relations exist in the category of definable complex analytic spaces.

For X a definable complex analytic space, an equivalence relation in the
category of definable complex analytic spaces is a diagram R ⇒ X such
that for any definable complex analytic space S, Hom(S, R) ⇒ Hom(S, X)
is an equivalence relation.3 We define the big definable complex analytic site
DefAnSp/C to be the category of definable complex analytic spaces andwhose
covers arefinite covers byopendefinable subspaces.Given an equivalence rela-
tion R ⇒ X , we define the sheaf X/R on DefAnSp/C to be the sheafification
of

S -→ Hom(S, X)/Hom(S, R).

We say π : X → Y is a quotient of X by R if Y is a definable complex
analytic space which represents the sheaf X/R. Concretely, this means that
a morphism S → Y is given by taking a definable cover Si of S and giving
morphisms Si → X that agree on overlaps up to the equivalence relation. A
quotient is unique up to unique isomorphism provided it exists.

We say that a morphism f : X → Y of definable complex analytic spaces
is étale if it is open and locally an isomorphism onto its image (or equivalently
if it is analytically étale, by Theorem 2.39). We say an equivalence relation
R ⇒ X is étale if the two maps are étale and closed if R → X × X is a closed
immersion.

Proposition 2.57 Let U be a definable complex analytic space and R ⇒ U
a closed étale definable equivalence relation. Then there exist finitely many
definable open sets Ui of U such that R ∩ (Ui × Ui ) = (Ui , and such that⋃

Ui surjects on the set-theoretic quotient U/R.

Proof Step 1. By definable choice [47, Chapter 6, Sect. 1.2], we can find a
definable subset T ofU which has exactly one point for each R-representative
class. Let us stratify T by submanifolds Ti [39, Theorem 6.1]. For each i let
Si be the set of all points equivalent to Ti but not actually in Ti . It is easy to
see that Si is also a submanifold. Now we will show how to further stratify
such that Ti is disjoint from S̄i . To do this, note that Ti ∩ S̄i is of smaller
dimension than Ti . Thus by successively iterating in this way we can obtain
our desired stratification. By further stratifying, we can assume that the number
of R-pre-images along Ti is constant, and that each Ti is a cell and is therefore
simply-connected.

3 That is, the resulting map Hom(S, R) → Hom(S, X) × Hom(S, X) is the inclusion of a
set-theoretic equivalence relation.
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Step2.By the argument inProposition2.4wemay takeVi to be adefinable open
neighbourhood of Ti such that R ∩ (Vi ×U ) consists of k étale sections over
Vi—which we denote by R0—and another piece R′ which does not intersect
Ti ×U .
Step 3.Pick a definable distance functiond(x, y)onU×U , and pick a definable
exhaustion function E : U → R≥0. In other words, E−1([0, c]) is compact
for all c ∈ R. For a set S ⊂ U we write Sc to mean S ∩ E−1([0, c]).
Step 4. By definable choice we may let h : R2

≥0 → (0, 1) be a definable,
positive function such that: for all (c, c′), if we set set ε = h(c, c′) then
R′ ∩ Bd,ε(T c

i ) × Bd,ε(T c′
i ) = ∅. Consider the function

g(c) := min
c1,c2<c

h(c1, c2)
2

.

We let f (c) be a definable positive, continuous, decreasing function strictly
smaller than g(c). Note that h(c, c′) > min( f (c), f (c′)).
Step 5. Define d ′(u, Ti ) := minc,t∈T c

i
d(u, t) f (c)−1. Define Wi to consist of

all points u ∈ Vi such that d ′(u, Ti ) < minu′∈R(u)\u d ′(u′, Ti ). We claim that
Wi contains an open neighbourhood around Ti . Let t ∈ Ti . For ε > 0, consider
the ball Bd,ε(t). It is clear that for sufficiently small ε, d ′ is smaller on this ball
than on R0, and d ′ is smaller than 1/2. Suppose that u ∈ Bd,ε(t), u′ ∈ R′ and
d(u′, t ′) ≤ f (c) for t ′ ∈ T c

i . It follows that the point (u, u
′) ∈ R′∩Bd,ε(T c

i )×
Bd,ε(T c′

i ) for ε = min( f (c), f (c′)) < h(c, c′). This is a contradiction. Setting
Ui ⊂ Wi to be the maximal open subset (which is a definable condition), the
proof is completed. *+
Corollary 2.58 Quotients by closed étale equivalence relations exist in the
category of definable complex analytic spaces.

Proof The quotient can be glued together from the cover provided fromPropo-
sition 2.57. *+
Corollary 2.59 Let X, Y be definable complex analytic spaces and f : X →
Y an étale morphism. Then there is a definable open cover Xi of X such that
the restrictions f j : X j → Y are open immersions.

Proof Apply the proposition to the equivalence relation X ×Y X ⊂ X × X . *+
Asan applicationweend this subsectionwith a definable versionofRiemann

existence.

Lemma 2.60 Let Y be a definable complex analytic space and ϕ : X →
Y an a finite étale morphism. Then ϕ is the analytification of a finite étale
morphism f : X → Y which is uniquely determined by the property that for
any morphism g : Z → Y , any analytic lift of g to X is definable.
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Proof First, the lifting property is easily seen to uniquely specify the definable
structure on X . For the existence, we may assume Y (and X ) are reduced,
as the structure sheaf on X is uniquely determined as the pull-back from
Y . Let Ui → Y be a definable simply-connected cover (see Remark 2.6),
and denote by (U j

i )
an → X the possible lifts of U an

i → Y an to X . Let
U = +i, jU

j
i and U an → X the obvious morphism. We claim the closed

analytic subvarietyU an×X U an ⊂ U an×U an has a natural definable structure
R ⊂ U × U . Indeed, U an ×X U an → U an × U an is a disjoint union of
(U j

i )
an ×X (U j ′

i ′ )
an → (U j

i )
an × (U j ′

i ′ )
an, which is a union of components of

U an
i ×Y an U an

i ′ → U an
i ×U an

i ′ and therefore can be given a definable structure
by taking the union of the same components ofUi ×Y ×Ui ′ → Ui ×Ui ′ . The
quotient X of the equivalence relation R ⊂ U ×U has a finite étale morphism
f : X → Y , definabilizes to ϕ, and clearly has the lifting property. *+

2.12 Definabilization

Recall that throughout by scheme (resp. algebraic space) we mean a finite
type separated scheme over C (resp. a finite type separated algebraic space
overC). If X is an affine scheme presented as SpecC[x1, . . . , xn]/I we define
the definabilization Xdef to be the definable complex analytic subspace of Cn

given by the coherent ideal sheaf IOCn . Note that the category of sheaves on
the Zariski site XZar of X is naturally equivalent to the category of sheaves on
the site X fZar only allowing finite Zariski covers, as an arbitrary cover is refined
by a finite one. It is then easy to see we obtain a functor from affine schemes
to definable complex analytic spaces which is functorial and maps finite open
covers to open covers, and thereby extends uniquely to a functor from schemes
to definable complex analytic spaces (−)def : (Sch/C) → (DefAnSp/C).

For X a scheme, the definabilization functor yields a morphism of locally
C-ringed definable spaces

g : (Xdef ,OXdef ) → (X fZar,OX )

as there is a natural map g−1OX → OXdef . Let Coh(X) be the category of
coherent sheaves on X , and Coh(Xdef) the category of definable coherent
sheaves on Xdef . We then define a definabilization functor

(−)def : Coh(X) → Coh(Xdef) : F -→ Fdef := OXdef ⊗g−1OX
g−1F.

Evidently there is a natural isomorphism (OX )
def ∼= OXdef .

We now extend this picture to algebraic spaces. This level of generality is
necessary for Sect. 4 as Artin’s algebraization theorem does not hold true for
schemes.
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Proposition 2.61 There is a unique extension

(−)def : (AlgSp/C) → (DefAnSp/C)

of the definabilization functor on affine schemes to algebraic spaces.Moreover,
for each algebraic space X there is a definabilization functor on sheaves

(−)def : Coh(X) → Coh(Xdef)

which is compatible with the definabilization of sheaves on affine schemes for
any affine (étale) open of X.

Proof Suppose that X is an algebraic space, and that we have a presentation
R ⇒ U → X as the quotient of U by a closed étale equivalence relation
R ⇒ U where R,U are schemes. Recall that we think of X as a sheaf on
the big étale site (Sch/C)ét of schemes, and that for X to be presented by
R ⇒ U means that we have a morphism π : U → X of sheaves on (Sch/C)ét
identifying X as the quotient U/R (see Sect. 2.11).

We obtain a definable closed étale equivalence relation Rdef ⇒ U def (using
Theorem 2.39), and by Corollary 2.58 we can define the definabilization Xdef

of X to be the quotient. We claim that this is independent of the presentation
and yields a functorial extension (−)def : (AlgSp/C) → (DefAnSp/C). It
suffices to show that for any algebraic spaces X, Y with presentations R ⇒ U
and T ⇒ V and any morphism f : X → Y we obtain a morphism f def :
Xdef → Y def and that the formation of f def is compatible with compositions.
Both claims are clear from the universal property satisfied by the quotient.

We finally show the existence of the definabilization functor on sheaves
(−)def : Coh(X) → Coh(Xdef). For this, given a presentation R ⇒ U →
X , the category Coh(X) is naturally equivalent via pullback to the category
Desc(R ⇒ U ) of descent data [45, Tag 03M3]: pairs (F,ϕ) where F ∈
Coh(U ) andϕ : π∗

1 F → π∗
2 F is an isomorphism such that on R×U Rwe have

π∗
13ϕ = π∗

23ϕ ◦π∗
12ϕ, where πi : U ×U → U and πi j : R×U R → U ×U are

the natural projections. Corollary 2.58 likewise shows that for a quotientR ⇒
U → X of a definable complex analytic space by a closed étale equivalence
relation, the natural functor Coh(X ) → Desc(R ⇒ U) is an equivalence.
With these identifications we then define (−)def : Coh(X) → Coh(Xdef) as
(−)def : Desc(R ⇒ U ) → Desc(Rdef ⇒ U def) by (F,ϕ) -→ (Fdef ,ϕdef),
and this is easily seen as above to be independent of the choice of presentation
and compatible with restrictions to open subspaces. *+
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2.13 Quotients by finite groups

The purpose of this section is to show that quotients by finite group actions
exist in the category of definable complex analytic spaces. This will be used
to endow "\! with a definable structure when " is not torsion-free.

Definition 2.62 Let X be a definable complex analytic space with a left action
(in the category of definable complex analytic spaces) by a finite group G. A
geometric quotient of X by G is definable complex analytic space Y and
a morphism q : X → Y which on the level of topological spaces is the
quotient map to the set of orbits (with the quotient topology) and such that
OY = (q∗OX )

G . A geometric quotient is a categorical quotient and is therefore
unique up to unique isomorphismwhen it exists, in which case we will usually
denote it q : X → G\X .
Proposition 2.63 Let X be a definable complex analytic space with a left
action by a finite group G. Then the geometric quotient q : X → G\X of X
by G exists. Moreover, q analytifies to the analytic geometric quotient.

Proof We first prove a special case. Recall that for affine varieties, geometric
quotients by finite groups exist.

Lemma 2.64 Let V be an affine complex algebraic variety with a left action by
a finite group G. Then the definabilization of the algebraic geometric quotient
q : V → G\V is the definable geometric quotient.

Proof By [38, Remark 1.6] the analytification of q : V → G\V is an
analytic geometric quotient. Thus, qdef : V def → (G\V )def is the defin-
able quotient on the level of topological spaces. It remains to show that
O(G\V )def = (qdef∗ OV def )G . Observe that q is finite so qdef∗ OV def is a coherent
O(G\V )def -module by Proposition 2.52. It follows that (qdef∗ OV def )G is a coher-
ent O(G\V )def -module, since it is the intersection of the kernels of the maps
g) − 1 : qdef∗ OV def → qdef∗ OV def for all g ∈ G. Thus by Theorem 2.39, the
image of the natural morphism O(G\V )def → qdef∗ OV def is (qdef∗ OV def )G since
the analytifications agree. *+
Lemma 2.65 Let X be a definable complex analytic space with a left action
by a finite group G and q : X → G\X the geometric quotient. Let Z ⊂ X be a
closed G-invariant definable complex analytic subspace. Then q : Z → q(Z)
is a geometric quotient of Z by G.

Proof Note that q is finite. According to Corollary 2.54, the image q(Z) exists
as a closed definable complex analytic subspace of G\X . By Proposition 2.55
it is enough to show that qan : Z an → q(Z)an is the analytic quotient. On the
underlying topological spaces this is clear, and the image of (qan∗ OXan)G in
qan∗ OZan is clearly (qan∗ OZan)G . *+
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We now prove the proposition. Suppose first that X is a basic definable
analytic space, given by definable ideal sheaf I ⊂ OCn (U ), where U ⊂ Cn

is open and definable. Denote by UG the |G|-fold cartesian product of U ,
indexed by the elements of G. There is a natural map i : X ↪→ UG given by
i(x) := (g−1x)g, which is G-equivariant.

NowUG is open inside (Cn)G which is naturally an algebraic variety. Thus
the geometric quotientG\(Cn)G exists by Lemma 2.64. It trivially follows that
G\UG also exists as it is just a definable open subspace. Thus, by Lemma 2.65
the quotient G\X also exists.

Finally, we handle the case of general X . Note first that the quotient q : X →
G\X exists in the category of definable topological spaces by [47,Cor 10.2.18].
Pick a covering of X by basic definable open subspacesUi . By Lemma 2.4 we
may thus pick a covering of G\X such that the inverse image of every open is
a disjoint union of opens subsets each of which is contained in some Ui , and
hence themselves basic definable open spaces. Since the geometric quotient is
local on G\X for the definable site, the proof is complete. *+

2.14 Previous related work

For a real analytic manifold M , Kashiwara–Schapira [29, Sect. 7] have intro-
duced the subanalytic site Msa of M . The objects of Msa consist of subanalytic
open subsets of M whose coverings satisfy a local finiteness condition: for any
subanalytic open setU ⊂ M , any coveringUi ofU in Msa, and any relatively
compact K ⊂ M , the cover K ∩Ui of K ∩U has a finite refinement.

It is natural to compare this site to our notion of a definable topological
space and its associated definable site when working with the subanalytic o-
minimal structureRan (see e.g. [48]). On the one hand, a compact real analytic
manifold M admits a unique structure of an Ran-definable topological space.
Moreover, all coverings refine to be finite coverings, and so in this case the
Kashiwara–Schapira site and the Ran-definable site give equivalent categories
of sheaves.

On the other hand, for non-compact M the two sites end up being different
in a few important ways:

(1) If M is non-compact, then M does not have a canonical structure as an
Ran-definable topological space. This is because the classical notion of
subanalyticity of a subset Z ⊂ Rn (see e.g. [7]) is a local condition, which
does not see the behavior ‘at infinity’. By contrast, Ran-definability of
a subset Z ⊂ Rn is a stronger condition, which roughly says that Z is
globally subanalytic up to a finite cover.

(2) If M is non-compact, even if one equips M with the structure of an Ran-
definable space, the objects of Msa and the definable site are different.
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Indeed, an open set U ⊂ Rn is definable in Ran iff its closure U ⊂ Pn(R)
in real projective space is subanalytic.

(3) The definable site only allows finite coverings, so the sheaf axiom is much
less restrictive. As a notable example, taking M to be affine space the
definable site does not allow the covering by open balls of radius ε, whereas
Msa does.

As demonstrated more clearly by (3) above, the Kashiwara-Schapira site
does not restrict behaviour at infinity. As such, it is inadequate for our purposes
as one of our main motivations is to provide non-trivial global restrictions on
holomorphic functions beyond what one sees locally.

3 Definable GAGA

In this section we prove an algebraization theorem for definable coherent
sheaves on algebraic spaces. Precisely, we show:

Theorem 3.1 Let X be an algebraic space and (−)def : Coh(X) →
Coh(Xdef) the definabilization functor. Then

(1) (−)def is fully faithful and exact.
(2) The essential image of (−)def is closed under taking subobjects and quo-

tients.

Example 3.2 (−)def is not essentially surjective. Let X = Gm and let α ∈ C.
Note that the rank one C-local system V on X an with monodromy λ = e2π iα

can be trivialized on a definable open cover—take for instance a finite union of
overlapping angular sectors. It follows thatF = V ⊗CXdef

OXdef is a definable
coherent sheaf. Note that the only algebraic line bundle on X is the trivial
bundle OX .

We claim that F can be nontrivial as a definable coherent sheaf; in fact, if
α /∈ R, F will not be trivial in any o-minimal structure. A trivializing section
is of the form v ⊗ f for a nowhere zero multivalued holomorphic function
f on C∗ with monodromy λ. Taking q to be the standard coordinate on Gm ,
after multiplying by some power qn we may assume f = eα log q+g(q) for a
holomorphic function g : C∗ → C. As f ′/ f = αq−1+ g′(q) is single-valued
and definable, it cannot have essential singularities at 0 or ∞ (or else it would
have infinite fibers), and therefore g is algebraic—in particular, a polynomial
in q, q−1. But restricting to positive real q, we have that

{q ∈ R>0 | f (q) ∈ R} = {q ∈ R>0 | (Im g)(q)+ (Im α) log q ∈ πZ}

is definable, which is only the case if Im g is constant and Im α = 0.
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We will make extensive use of the following version of the definable Chow
theorem of Peterzil–Starchenko:

Theorem 3.3 (Peterzil–Starchenko [40, Corollary 4.5]) Let Y be a reduced
algebraic space and X ⊂ Y def a closed definable complex analytic subset.
Then X is algebraic.

Proof The statement in [40, Corollary 4.5] is for Y affine; see also the version
in [35, Theorem 2.2] for Y a variety. We may deduce the same statement for
algebraic spaces using an étale cover or the fact that every algebraic space has
a dense open subspace which is a scheme [45, Tag 06NH]. *+

Before the proof we make some preliminary observations.

Lemma 3.4 (−)def is faithful and exact.

Proof By Lemma 2.39 the map (−)an : Coh(Xdef) → Coh(X an) is faithful
and exact. By [42, Prop. 10 a,b], the usual analytification functor (−)an◦(−)def

is faithful and exact. It follows that (−)def is also faithful and exact. *+
Observe that a homomorphism F1 → F2 of coherent sheaves can be recov-

ered from its graph as a subsheaf of F1 ⊕ F2. It follows that part (2) of
Theorem 3.1 implies part (1) using Lemma 3.4. Moreover, the first part of
(2) clearly implies the second part by considering the kernel and using the
exactness part of Lemma 3.4. We therefore have:

Lemma 3.5 Let X be an algebraic space. Then Theorem 3.1 holds for X if
and only if for every algebraic coherent sheaf F on X, any definable coherent
subsheaf E ⊂ Fdef is the definabilization of an algebraic coherent subsheaf
E ⊂ F.

The two preceding observations together imply that Theorem 3.1 holds on
X if and only if it holds on the reduction X red:

Lemma 3.6 Let X be an algebraic space with a nilpotent sheaf of ideals I
cutting out a subspace X0. Then Theorem 3.1 holds for X0 if and only if it
holds for X.

Proof Note that for any definable complex analytic space Y and closed defin-
able complex analytic subspace X ⊂ Y cut out by an ideal I, Coh(X ) is
naturally identified via push-forward with the full subcategory of sheaves in
Coh(Y) annihilated by I. The if direction is therefore obvious. Let us prove
the converse direction. By induction on the order of nilpotence of I , we may
assume I is square-zero.

Let F be a coherent sheaf on X and E ⊂ Fdef a definable coherent subsheaf.
By Lemma 3.5 it will be enough to show that E is algebraic. Using Lemma 3.4
we have the diagram
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0 (I F)def Fdef (F/I F)def 0

0 I defE E E/I defE 0

Note that the ideal I being square-zero, both (I F)def and I defE are coherent
OXdef

0
-modules. Since Theorem 3.1 holds for X0, we have that I defE = Mdef

for a coherent M ⊂ I F . But E is equal to the preimage of its image by the map
Fdef → (F/M)def ; we may thus replace F by F/M , and reduce to the case
I defE = 0. Likewise, E maps to (F/I F)def and must have algebraic image
N def for a coherent N ⊂ F/I F . Replacing F by the inverse image of N , we
may assume that E maps isomorphically to (F/I F)def . Thus we are reduced
to showing that if F → (F/I F) has a definable section then it is algebraic.
Note that this section would have to land in Pdef , where P ⊂ F is the subsheaf
annihilated by I . Since both F/I F and P are both coherent sheaves on X0,
this follows from Theorem 3.1 for X0. *+

Proof of Theorem 3.1 We proceed by Noetherian induction on X , assuming
Theorem 3.1 holds for every proper subspace of X . By Lemma 3.6 we may
assume X is reduced. Let F be an algebraic coherent sheaf on X and E ⊂ Fdef

a definable coherent subsheaf. By Lemma 3.5 we must show that E is the
definabilization of an algebraic coherent subsheaf E ⊂ F .

Step 1.

Lemma 3.7 Any exact sequence

0 → E → Fdef → G → 0

in Coh(Xdef) for which E and G are locally free is the definabilization of an
exact sequence

0 → E → F → G → 0

in Coh(X) where E and G are locally free.

Proof Observe that Fdef (and hence F) is locally free. It is sufficient to con-
struct the quotient G and then define E as the kernel of F → G → 0. By
working separately on every connected component of X , one can assume that
G has constant rank r . Let Gr(r, F) be the Grassmannian of quotient modules
of F that are locally free of rank r . Then G corresponds to a definable section
of Gr(r, F)def , which is necessarily algebraic by Theorem 3.3, as X is reduced.

*+
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Step 2.

Lemma 3.8 For some dense open U ⊂ X, E|U is algebraic.

Proof On some dense open set U , F is locally free since X is reduced. The
(reduced) locus where E and Fdef/E have non-maximal rank is definable,
analytic, and closed, hence algebraic by Theorem 3.3. After possibly shrinking
U to a smaller dense open set, the claim then follows from the previous step.

*+
Step 3.
With the notation of the previous step, let EU be the algebraic sheaf on U

for which (EU )
def ∼= E|U . Let Ẽ be the “closure" of EU in F , i.e. the pullback

F j∗ j∗F

Ẽ j∗EU

where j : U ↪→ X denotes the inclusion. The sheaf Ẽ is evidently quasi-
coherent and so it is coherent since it is a subsheaf of F . Thus, Ẽdef and
E are both definable coherent subsheaves of Fdef , and therefore so is their
intersection G.

Let IZ be the ideal sheaf of Z = X ! U with the reduced algebraic space
structure, and I = I defZ .

Lemma 3.9 Suppose we have definable coherent sheaves G ⊂ G′ for which
G|U = G′

|U . Then for some positive integer n, I
nG′ ⊂ G.

Proof Take the quotient

0 → G′ → G → Q → 0.

By Lemma 2.50, In killsQ for some positive integer n, and thus InG ⊂ G′. *+
Applying the lemma to G ⊂ Ẽdef , we have (I nZ Ẽ)

def ⊂ E for some positive
integer n. The quotient E ′ is then a subsheaf of (F ′)def , where F ′ = F/I nZ Ẽ is
supported on a subspace whose reduction is Z . By the inductive hypothesis,
E ′ is algebraic, and E is the preimage in F , hence algebraic, so the proof is
complete. *+

As an immediate corollary to Theorem 3.1, we obtain a version of the
definable Chow theorem for arbitrary (nonreduced) algebraic spaces.

Corollary 3.10 Let Y be an algebraic space andX ⊂ Y def a closed definable
complex analytic subspace. Then X is (uniquely) the definabilization of an
algebraic subspace.
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Proof We need only algebraize the quotientOdef
Y → OX , which follows from

Theorem 3.1. *+

Corollary 3.11 Let X, Y be algebraic spaces. Then any morphism Xdef →
Y def of definable complex analytic spaces is (uniquely) the definabilization of
an algebraic morphism.

Proof Apply the previous corollary to the graph. *+

4 Definable images

The purpose of this section is to prove an algebraization theorem for definable
images of algebraic spaces.

4.1 Main statement

For convenience we make the following definition.

Definition 4.1 A morphism f : X → Y of algebraic spaces is dominant if
OY → f∗OX is injective.

Note that a proper dominant morphism is surjective on complex points. Our
goal is to prove the following result.

Theorem 4.2 Let X be an algebraic space, S a definable complex analytic
space, and ϕ : Xdef → S a proper definable complex analytic morphism.
Then there exists a (unique) factorization

Xdef S.

Y def

ϕ

f def ι

where f : X → Y is dominant algebraic and ι is a definable closed immersion.
Moreover, ιan(Y an) coincides with the image ϕan(X an).

Remark 4.3 The uniqueness property in Theorem 4.2 is the following: for
any other factorization ϕ = ι′ ◦ f ′def with f ′ : X → Y ′ dominant and
ι′ : Y ′def → S a definable closed immersion there is a unique isomorphism
g : Y → Y ′ for which the following diagram commutes.
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Xdef S.

Y def

Y ′def

f ′def

ϕ

f def

gdef

ι

ι′

Remark 4.4 We expect the theorem to hold without the properness assumption
on ϕ.

4.2 First reductions in the proof of Theorem 4.2

The proof of Theorem 4.2 involves two main steps: the case that X is reduced
and the reduction to this case. In this subsection we give the proof of Theo-
rem 4.2 assuming Propositions 4.5 and 4.6 below, which are the main steps
in these two reductions. The proofs of these propositions are given in the
subsequent subsections.

For a closed algebraic subspace X ⊂ X ′ for which X and X ′ have the
same associated topological space, we say X ′ is a thickening of X (see for
example [45, Tag 05ZK]), and a square-zero thickening if the ideal I of X in
X ′ is square-zero. Likewise for definable complex analytic spaces and analytic
spaces.

The following proposition allows us to lift algebraizations through definable
thickenings.

Proposition 4.5 Let f : W → Z be a proper dominantmorphismof algebraic
spaces. Suppose we have an algebraic square-zero thickening W → W ′, a
definable closed immersion Zdef → Z ′, and a morphism ϕ′ : W ′def → Z ′

which fits into a commutative diagram

W def

f def

W ′def

ϕ′

Zdef Z ′

Then the following are uniquely defined: an algebraic square-zero thick-
ening Z → Z ′′, a definable closed immersion Z ′′def → Z ′, and a (proper)
dominant morphism f ′ : W ′ → Z ′′ of algebraic spaces, such that we have
commutative diagrams
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W

f

W ′

f ′

W ′def
ϕ′

f ′def Z ′

Z Z ′′ Z ′′def .

For an algebraic space X , let Hilb(X) be the Hilbert space (see for example
[45, Tag 0D01]) of proper algebraic subspaces of X , andD(X an) be theDouady
space of compact analytic subspaces of X an [17]. Since the analytification of a
flat family of proper algebraic subspaces of X yields a flat family of compact
analytic subspaces of X an, the universal family on Hilb(X) yields a canonical
analytic map Hilb(X)an → D(X an), which is a bijection on points since every
compact analytic subspace of X an is algebraic by ordinary GAGA (or for
example Theorem 3.3). As the functors represented by Hilb(X) and D(X an)
are the same over artinian rings (since by GAGA again the deformation spaces
are the same and the algebraic obstruction clearly analytifies to the analytic
one), Hilb(X)an → D(X an) is in fact an isomorphism.

The next proposition essentially says that when X is reduced in the setup
of Theorem 4.2, the morphism ϕ is generically algebraic.

Proposition 4.6 Let X be a smooth algebraic space, U a smooth definable
complex analytic space, and ϕ : Xdef → U a smooth proper definable ana-
lytic morphism. Then ϕ : Xdef → U is the definabilization of an algebraic
morphism f : X → U and the associated morphism U → Hilb(X) is a
closed embedding.

Proof that Propositions 4.5 and 4.6 imply Theorem 4.2 The uniqueness prop-
erty follows immediately from Proposition 2.55, Corollary 3.11, and the
corresponding uniqueness property of the analytic image, so we need only
prove the existence of such a factorization.

The proof proceeds by induction on dim X , the base case being trivial.
By repeatedly applying Proposition 4.5, we may assume X is reduced. By
Remmert’s theorem, the analytic image ϕan(X an) is an analytic subvariety of
San. By Propposition 2.45 there is a unique structure of a reduced definable
complex analytic space on ϕan(X an) through which ϕ factors, and so replacing
S with ϕan(X an) we may assume ϕan is surjective on points and S is reduced.
By Corollary 3.11 it suffices to algebraize S.

We next reduce to the case that the analytification of ϕ is a proper
modification—that is, ϕan : X an → San is proper and induces an isomor-
phism (ϕan)−1(U) → U for a dense analytic Zariski open subset U ⊂ San.
For this reduction it is enough to assume S is (analytically) irreducible: if Sk is
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the image of an irreducible component Xk of X , and if there is a proper mod-
ification ψ : Bdef

k → Sk , then we may replace ϕ with the proper modification
+kψk : +k Bk → S. We may additionally assume X is smooth and irreducible
by replacing X with a component of a resolution which dominates S.

Observe that ϕ is smooth over a dense smooth definable Zariski open subset
U ⊂ S. Indeed, the regular locus Sreg ⊂ S is a dense definable Zariski
open subset, and the smooth locus over Sreg is determined by the rank of the
Jacobian. Both of these conditions are clearly definable on covers by basic
definable analytic varieties. Let (XU )

def = ϕ−1(U), which is algebraic by
Theorem 3.3. Applying Proposition 4.6 we conclude that ϕU : Xdef

U → U
is the definabilization of fU : X → U and that U → Hilb(XU ) is a closed
embedding. Evidently fU is the restriction of the universal family.

Obviously Hilb(XU ) is an open subset of Hilb(X). Let B be the closure of
the image of U in Hilb(X), VB → B the restriction of the universal family,
B̃ → B the normalization, and VB̃ → B̃ the base-change of the universal
family. We then have solid diagrams

VB̃

VB B̃ (VB̃)
def

X B Xdef B̃def .

S
ψ

The compact complex analytic subspaces of X an that are contained in a fibre
of ϕan form a closed analytic subset of D(X an). Since it contains the image
of U an, it contains its closure Ban. It follows that the vertical arrow V def

B̃
→

S set-theoretically factors through B̃an, hence topologically factors through
B̃an (since we get a continuous map by precomposing with the open map
V an
B̃

→ B̃an), hence analytically factors through B̃an (since by the normality

of B̃, the holomorphic functions on an open subset of B̃an are the continuous
functions that are holomorphic in restriction to the trace of (B ′)an), hence
definably factors through B̃def by Proposition 2.55. The resulting morphism
ψ is a proper modification, as it is proper (since V def

B̃
→ S is proper and

VB̃ → B̃ is surjective) and an isomorphism over U .
We may therefore assume that the analytification of Xdef → S is a proper

modification. By the inductive hypothesis and Theorem 3.3, the center4 of

4 That is, the image of the exceptional locus in Xdef .
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Xdef → S can be algebraized, so let Zdef ⊂ S be the reduced center, and
W def = ϕ−1(Zdef) equipped with its reduced induced structure. For every
positive integer k let Wk be the kth order thickening of W , and Zk the kth
order thickening of Zdef in S.

By the inductive hypothesis, the induced morphism ϕk : W def
k → S factors

asW def
k

f defk−−→ Zdef
k → S where the firstmap is dominant and the secondmap is

a closed immersion—in particular a definable thickening of Z by Theorem 3.1.
Let W̄ be the completion of X along W and Z̄ = colim Zk , both of which are
formal algebraic spaces (see e.g. [45, Tag 0AIL]); we then have a morphism
f̄ : W̄ → Z̄ . Let ¯Zan be the completion of San along Zan, which is a formal
analytic space. By the theorem on formal functions in the analytic category
(see e.g. [4, Corollary 4.5]), the natural map (ϕan

∗ OXan)∧ → lim ϕ∗OW an
k
is an

isomorphism, and therefore the Z an
k are cofinal in the Zan

k . Thus, the natural
map (Z̄)an → ¯Zan is an isomorphism.

Lemma 4.7 The morphism f̄ : W̄ → Z̄ is a formal modification.

Proof We refer to [2, Definition (1.7)] for the notion of a formal modification.
The proof of the claim is the same word for word as in [2, Lemma (7.7)],
using that X an → San is a proper modification, as the verification5 is entirely
Zariski-local on Z . *+
Remark 4.8 The reason [2, Lemma (7.7)] requires compactness is because
compact spaces have at most one algebraization, making the statement a lot
cleaner. Note that we are essentially getting around this non-uniqueness issue
by working with the ambient structure of a definable complex analytic space,
which is compatible with at most one algebraization.

By the following theorem of Artin, we then conclude from Lemma 4.7 that
ϕ : X an → San is algebraized by f : X → S, and by Proposition 2.55 we
have Sdef ∼= S.
Theorem 4.9 (Artin [2, Theorem (3.1)]) Let X be an algebraic space of
finite type over a field, and W ⊂ X be a closed subspace. Let W̄ denote
the formal completion of X along W, and suppose that f̄ : W̄ → Z̄ is a
formal modification. Then there is a modification f : X → S which is an
isomorphism on the complement of W and such that the completion of f
along W is isomorphic to f̄ . *+

5 Note that Artin uses the notation

X ′ X X S

for our

Y ′ Y W Z .
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4.3 Proof of Proposition 4.5

We have an exact sequence of coherent OW ′-modules on W ′:

0 → I → OW ′ → OW → 0 (1)

where both I and OW are coherent OW -modules. Taking the analytification
on W ′, by Theorem 2.39 we get a sequence of coherent OW ′an -modules6:

0 → I an → OW ′an → OW an → 0. (2)

Viewing (1) [resp. (2)] in the category of sheaves of abelian groups on W

(resp. W an), we have a natural coboundary map of sheaves f∗OW
∂−→ R1 f∗ I

(resp. f an∗ OW an
∂ ′
−→ R1 f an∗ I an). Furthermore, the sheaves f∗OW and R1 f∗ I

(resp. f an∗ OW an and R1 f an∗ I an) canonically have the structure ofOZ -modules
(resp. OZan -modules). Finally, we have natural morphisms of OZan -modules
( f∗OW )an → f an∗ OW an and (R1 f∗ I )an → R1 f an∗ I an which are isomorphisms
byordinaryGAGA(see e.g. [46,Théorème5.10] for the statement for algebraic
spaces—here we are using that f is compactifiable).

Observe that OZ ′an surjects onto OZan by Theorem 2.39 as OZ ′ surjects
onto OZdef . Thus, we have a commutative diagram of homomorphisms of
OZ ′an -modules with exact rows

f an∗ OW ′an f an∗ OW an R1 f an∗ I an

OZ ′an OZan 0

∂ ′

(3)

where the first row comes from the long exact sequence associated to (2).

Lemma 4.10 The coboundary map f∗OW
∂−→ R1 f∗ I associated to (1) is

a homomorphism of OZ -modules and analytifies to the coboundary map

f an∗ OW an
∂ ′
−→ R1 f an∗ I an associated to (2).

Proof Both statements are local on Z , so we replace Z with an affine (étale)
open. By the Leray spectral sequence (and the fact that affines are Stein), the
canonical C-linear maps H1(W, I ) → H0(Z , R1 f∗ I ) and H1(W an, I an) →
H0(Z an, R1 f an∗ I an) are isomorphisms. It is therefore enough to prove the

6 Note that the analytifications of OW , I as OW ′ -modules are naturally the analytifications as
OW -modules.
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corresponding two statements for the coboundary map on global cohomology.
Taking the cohomology of (1) and (2), it follows thatwe have a natural diagram

H0(W,OW ) H1(W, I )

H0(W an,OW an) H1(W an, I an).

∂

∂ ′
(4)

As the cohomology of algebraic and analytic coherent sheaves can both be
computed via Čech cohomology with respect to an affine (étale) cover, it
follows that this diagram commutes.

Note that for any algebraic coherent sheaf F on W , the map H0(W, F) →
H0(W an, Fan) is injective since the maps Fw → Fan

w on stalks are injective.
This together with the ordinary GAGA isomorphisms mentioned above imply
both vertical maps are injective. Now, by a diagram chase in (3) we have that
H0(Z an,OZan) is killed by ∂ ′, and therefore that H0(Z ,OZ ) is killed by ∂ .
Since ∂ is a derivation, it follows that it is a homomorphism of H0(Z ,OZ )-
modules, and the second claim follows from the commutativity of (4) and the
ordinary GAGA isomorphisms. *+

Let F be the image of f∗OW ′ → f∗OW , which is also the kernel of
f∗OW → R1 f∗ I . By the preceding lemma, F is an OZ -module and ana-
lytifies to the kernel of f an∗ OW an → R1 f an∗ I an. From (3), Fan contains the
image ofOZan in f an∗ Oan

W , and so by faithfulness of ordinary analytification F
contains the image of OZ in f∗OW . We define the sheaf of rings R on Z as
R = OZ ⊕ f∗OW f∗OW ′ . It follows that R surjects onto OZ , with square-zero
kernel J = f∗ I .

Lemma 4.11 Suppose Z is an algebraic space, and J is a coherent sheaf on
Z. Let R be a sheaf of rings on the étale site Zét of Z such that

0 → J → R → OZ → 0

is a first order thickening.7 Then (Zét, R) is an algebraic space.

Proof See for example [45, Tag 05ZT]. *+

7 Recall this means that R → OZ is a homomorphisms of sheaves of rings and that J with its
induced ideal structure is of square zero.
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We thus have an algebraic thickening Z0 = (Z ét, R) and a diagram

W W ′

Z Z0

where W ′ → Z0 is dominant, since f is dominant. By Proposition 2.55 we
also have a diagram

W def W ′def

Z ′

Zdef Zdef
0

Note that Zdef
0 → Z ′ may well not be immersive. We claim that the image

is algebraic. The definable complex analytic space structure on the image is
defined by the image T of the mapOZ ′ → Rdef , and we have a diagram with
exact rows

0 J def Rdef OZdef 0

0 K T OZdef 0.

Now K is a coherent OZdef -submodule of J def and therefore the definabi-
lization of an algebraic K ⊂ J by Theorem 3.1. Letting R′ = R/K , we have
another algebraic space (Z ét, R′) by Lemma 4.11. Note that T /K def ∼= OZdef

is a section of R′def → OZdef which is algebraic by Theorem 3.1 as it gives an
isomorphism R′def ∼= OZdef ⊕ (J/K )def . It is easy to check that the sheaf of
rings T = R ⊕R′ OZ definabilizes to T , and by Lemma 4.11, Z ′′ = (Z ét, T )
is algebraic.

Since (Zdef , T ) is the image of ϕ′ by construction, this concludes the proof
of Proposition 4.5. *+
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4.4 Proof of Proposition 4.6

First observe the following:

Lemma 4.12 For a smooth proper morphism of smooth irreducible complex
analytic spaces g : Y → Z with g∗OY = OZ , the irreducible component D
of D(Y) containing the fibers of g is canonically identified with Z together
with g as the universal family.

Proof Wewill show the induced holomorphicmapZ → D is an isomorphism.
For any z ∈ Z , and recalling that Z , Y and Yz are smooth, we have on the

one hand that the normal bundle NYz/Y of Yz in Y is canonically identified
with TZ,z ⊗OYz , whereas on the other hand the tangent space of D(Y) at the
point corresponding to Ys is canonically identified with H0(Ys,NYz/Y). Since
g∗OY = OZ , it follows that the holomorphic mapZ → D is an isomorphism
on tangent spaces. As Z is smooth, it follows that Z → D is an isomorphism
on completed local rings.

It remains to show thatZ → D is bijective on points. The injectivity is clear
since there is only one reduced compact analytic space of maximal dimension
contained in a given (necessarily irreducible) fibre of g.

It follows that Z → D is an open immersion with dense image. But the
compact complex analytic subspaces ofY that are mapped to a point by g form
a closed analytic subset of D(Y). Therefore, the compact complex analytic
subspaces of Y that correspond to points of D are mapped to a point by
g. Letting V → D be the universal family, it follows that the composition
V → Y → Z of the evaluation map V → Y with g factors through the Stein
factorization of the projectionV → D′ → D by the universal property of Stein
factorization (see [22, p. 214]). Since the resulting compositionD′ → Z → D
is D′ → D, the map Z → D is surjective on points. *+

It then follows from the lemma that for d such maps g j : Y j → Z with
g j ∗OY j = OZ , letting g : Y := + jY j → Z , the irreducible component of
D(Y) containing the fibres of g is canonically identifiedwithZd with universal
family given by

d⊔

j=1

Z × · · · × Y j × · · · × Z → Zd

where Y j is inserted in the j th slot in the j th factor.
Returning to the setup of Proposition 4.6, let X an → U ′ → Uan be the

Stein factorization of ϕan. SinceU ′ → Uan is finite étale, by Lemma 2.60 and

Proposition 2.4 this diagram is the analytification of a diagram Xdef ϕ′
−→ U ′ ν−→
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Udef , as ϕ′ is obtained by taking connected components of ϕ on a definable
cover of U .

Let H be the component of Hilb(X) which contains the general fiber of
Xdef → U , and V ⊂ X × H the universal subscheme with projections p1 :
V → X and p2 : V → H . We therefore obtain a cartesian diagram in the
analytic category

X an V an

Uan H an.

ϕan pan2
β

(5)

By definable Chow (Theorem 3.3), the proposition will follow if this dia-
gram is the analytification of a diagram of definable complex analytic spaces
and moreover if β is a closed immersion. It will be sufficient to verify that this
is the case on a definable open cover of Hdef .

Let Ui be a definable simply-connected cover of U as in Remark 2.6, and
let U ′

i,1, . . . ,U
′
i,d be the d = deg(U ′/U) components of ν−1(Ui ). For a fixed i ,

consider in H an the subset of compact analytic subspaces of X an which meet
each component ϕ′−1(U ′

i, j ). This is naturally a definable open subset Hi of
Hdef , since in the diagram

V def

Xdef Hdef

U ′

p1 p2

ϕ′

(6)

it is the intersection of p2
(
(ϕ′ ◦ p1)−1(U ′

i, j )
)
for j = 1, . . . , d, and p2 is flat

hence open. Moreover, β(Uan) is contained in the union of the (Hi )
an.

Let Xi, j := ϕ′−1(U ′
i, j ) and consider

Xi :=
d⊔

j=1

U ′
i,1 × · · · × Xi, j × · · · × U ′

i,d → U ′
i :=

d∏

j=1

U ′
i, j .

This is the analytic family of subschemes of X obtained by taking a union of
fibers of ϕ′ : Xdef → U ′ over each of the open setsU ′

i, j ⊂ U ′ for j = 1, . . . , d.
In particular, it is a flat analytic family of subvarieties parametrized byHi , and
by Lemma 4.12 and the ensuing discussion, the horizontal morphisms in the
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resulting cartesian diagram

X an
i (V an)Hi

(U ′
i )

an Han
i

pan2 (7)

are isomorphisms. The inverse of the top map is obtained by taking a union
of base-changes of connected components of the map pdef1 : (V def)Hi → XUi

and is definable. Thus, by Proposition 2.55, (7) is the analytification of the
right part of the diagram

XUi Xi (V def)Hi

Ui U ′
i Hi .

ϕUi

∼=

pdef2
∼=

The left part of the diagram consists of the natural maps and is obviously
definable, and Ui → U ′

i is a clearly closed immersion. The outer square
analytifies to (5) restricted to Hi , thus proving the claim. *+

4.5 Algebraizing analytic maps from algebraic varieties

We conclude this section with a brief discussion of some of the subtleties
involved in algebraizing a proper analytic morphism ϕ : X an → S from an
algebraic space X without tameness hypotheses. For simplicity assume S and
X are irreducible.
The Hilbert space part of the proof in Sect. 4.2 that Propositions 4.5 and 4.6

imply Proposition 4.2 shows that if X an → S is flat with reduced irreducible
generic fiber, then ϕ identifies S with a component of the Hilbert space of
X and is therefore algebraic. This is the same argument used by Sommese to
prove [44, Proposition III and Remark III-C] (see Theorem 7.7).

On the other hand, it is not hard to produce examples of nonalgebraizable
finite flat maps ϕ : X an → S. The following example shows this is possible
even assuming the “equivalence relation” Rϕ := X an ×S X an ⊂ X an × X an of
ϕ is the analytification of a (possibly non-reduced) algebraic subspace, albeit
for S non-normal.

Example 4.13 Let X = A2 with coordinates (x, y). Let S ⊂ C4 with coordi-
nates x, A, B,C be cut out by A5 = B3, AC = B2 sin(x), BC = A4 sin(x).
Let X an → S be the map (x, y) -→ (x, y3, y5, y7 sin(x)). First, observe that

Rϕ = V (x1 − x2, y31 − y32 , y
5
1 − y52) ⊂ X an × X an
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where (x1, y1) and (x2, y2) are the coordinates on the two factors. Indeed,
we can think of X an as defined in S × C (with y being the last coordinate)
by the ideal (A − y3, B − y5,C − y7 sin(x)), in which case Rϕ is cut out
in X an × C (with y2 being the last coordinate) by the ideal (y31 − y32 , y

5
1 −

y52 , (y
7
1 − y72) sin(x)), but

y71 − y72 = −y21 y
2
2(y

3
1 − y32)+ (y21 − y22)(y

5
1 − y52).

On the other hand, the rational function y on X descends to a meromorphic
function on S but cannot be rational on S with respect to any algebraic struc-
ture, since it is nonregular along infinitely many divisors.

It seems likely to the authors that for X an,S normal analytic varieties (in
particular irreducible and reduced), a proper analytic morphism X an → S
with connected fibers and an algebraic equivalence relation could still be non-
algebraizable, but we have not been able to construct such an example.

5 A quasi-projectivity criterion

Recall that by convention all the algebraic spaces that we consider are of finite
type over C.

Given a line bundle L on an algebraic space X , we prove in this section two
criteria ensuring that X is a scheme and that L is ample.

Proposition 5.1 Let X be an algebraic space and L a line bundle on X. Let
S ⊂ "∗(X, L) :=

⊕
d≥0 "(X, Ld) be an integrally closed graded subalgebra

that separates points of X. Then there exist an integer d ≥ 1 and a finite-
dimensional subspace V ⊂ Sd such that the corresponding morphism X →
P(V∨) is defined everywhere and is an immersion. In particular, X is a scheme
and L is ample.

In the statement, the condition that S separates points means that for any
two distinct points P and Q in X there exists a section in some Sd that vanishes
on P but not on Q.

Proof If V is a finite-dimensional subspace of Sd for some positive integer
d, and BV is the reduced support of the cokernel of the canonical morphism
of coherent OX -modules V ⊗C OX → Ld , then we have a canonical map
ϕV : X − BV → P(V∨) such that ϕ∗

VO(1) 7 (Ld)|X−BV .
We denote by Bd the intersection of the BV ’s over all finite-dimensional

V ⊂ Sd . Observe that Bd·d ′ ⊂ Bd ∩ Bd ′ for every integers d, d ′ ≥ 1 since
S is a graded algebra. Since by assumption the intersection of the Bd , d ≥ 1,
is empty, the noetherianity of X implies that there exists d ≥ 1 and a finite-
dimensional V ⊂ Sd such that BV is empty.
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Given a finite-dimensional V ⊂ Sd for some d ≥ 1 such that BV is empty,
let RV ⊂ X×X denote the reduced equivalence relation induced by ϕV . Since
S separates points, the intersection of the RV ’s over all such V ’s is equal to
the reduced diagonal, therefore by noetherianity of X there exists V such that
ϕV is defined everywhere and injective on points.

In particular, X is in fact a scheme since it admits a quasi-finite map to a
scheme [45, Tag 0417]. Moreover, by Zariski’s main theorem [45, Tag 082K],
the map ϕV : X → P(V∨) factors as g ◦ i for g : X ′ → P(V∨) finite and
i : X → X ′ an open immersion. Since the pull-back of an ample line bundle
by a finite map or an immersion is still ample, we get that L is ample.

Finally, i and g induce morphisms of graded algebras:
⊕

d≥0

Symd V →
⊕

d≥0

"(X ′, g∗OP(V∨)(d)) →
⊕

d≥0

"(X, Ld).

Note that we can assume without loss of generality that i(X) is dense in
X ′, so that the morphism on the right is injective. Since by construction the
composition of the two morphisms is also injective, the morphism on the left
is injective too. The morphism g being finite, it follows that the extension

⊕

d≥0

Symd V →
⊕

d≥0

"(X ′, g∗OP(V∨)(d))

is finite. But S is integrally closed in
⊕

d≥0 "(X, Ld) by assumption, hence
we get that

⊕
d≥0 "(X ′, g∗OP(V∨)(d)) is contained in S. *+

In what follows, given a reduced algebraic space Y , we say that a projective
log smooth pair (X̄ , D) is a log-resolution of Y if, setting X := X̄ − D, one
is given a proper morphism X → Y which is birational in restriction to any
irreducible component of Y . Existence of log-resolutions can be proved as
follows. Thanks to Chow’s lemma [45, Tag 088U], there exists a complex
projective scheme W̄ , a dense open W ⊂ W̄ and a proper morphism W → Y
which is an isomorphism in restriction to a dense open of Y . A log-resolution
is then obtained by first replacing W̄ with its normalization and then applying
Hironaka desingularization Theorem to its irreducible components.

Setting 5.2 Let L be a line bundle on an algebraic space Y with the following
property. For every reduced closed subspace Z ↪→ Y and any log-resolution
(X̄ , D) of Z , the pull-back of the restriction LZ extends as a nef and big line
bundle L X̄ on X̄ , and this extension is functorial with respect to morphisms
of log-resolutions of Z .

Definition 5.3 Assume Setting 5.2. Given a closed subscheme Z ↪→ Y , we
say a section s of Lm

Z vanishes at the boundary if for some log-resolution
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(X̄ , D) of Z the section s pulls backs and extends to a section of Lm
X̄
(−D). We

let "van(Z , Lm
Z ) ⊂ "(Z , Lm

Z ) denote the linear subspace of sections vanish-
ing at the boundary, which is finite-dimensional as "van(Z , Lm

Z ) injects into
"(X̄ , Lm

X̄
).

Note that if the condition on s holds for one log-resolution then it holds
for any log-resolution, since any morphism of log-pairs (X̄ ′, D′) → (X̄ , D)
which is birational in restriction to any irreducible component of X̄ induces an
isomorphism ofC-vector spaces"(X̄ , Lm

X̄
(−D) → "(X̄ ′, Lm

X̄ ′(−D′), and any
two log-resolutions are dominated by a third-one. Moreover, s vanishes at the
boundary if and only if sred does. Note finally that the ring

⊕
n "van(Y, Ln

Y ) is
integrally closed in

⊕
n "(Y, Ln

Y ), since a meromorphic section s which satis-
fies a monic polynomial relation with coefficients that vanish at the boundary
must also vanish at the boundary.

Theorem 5.4 Assume Setting 5.2. Then Y is a scheme and L is an ample
line bundle. Moreover, for every n 8 1, the natural morphism Y →
P("van(Y, Ln)∨) is defined everywhere and is an immersion.

Proof The theorem is a consequence of the following more precise result,
thanks to Proposition 5.1:

Claim For any closed, reduced zero-dimensional subscheme P ⊂ Y , the
restriction "van(Y, Ln

Y ) → "(P, Ln
P) is surjective for some positive integer

n.

Observe that all the closed subschemes of Y satisfy the assumptions of
Theorem 5.4, therefore by Noetherian induction we can assume that the claim
is satisfied by any closed subscheme distinct from Y . The case where Y has
dimension zero being trivial, we assume from now on that d = dim Y ≥ 1.
Step 1.We first show we may assume Y is reduced. If Y is non-reduced, then
we can write Y as a thickening of a subspace Y0 by a square-zero sheaf of
ideals I . By the induction statement and Proposition 5.1 applied to Y0, we can
pick an embedding Y0 → Pm corresponding only to sections that vanish at
the boundary. Thus, we can find a section g ∈ "van(Y0, Ln

Y0
) such that (Y0)g

is affine and contains P . Also, we may pick vanishing sections s1, . . . , sk of
Lm
Y0

whose image span "(P, Lm
P). It follows that the images of the vanishing

sections g · s1, . . . , g · sk of Ln+m
Y0

span "(P, Ln+m
P ). Finally, since the open

subschemes (Y0)g·si are affine, the vanishing sections (g · si )r lift to vanishing
sections of Lr(n+m) for some r ≥ 1 thanks to [26, Lemme 4.5.13.1].
Step 2. By Step 1, we assume Y is reduced. Take a log-resolution (X̄ , D) of
Y . Letting X := X̄ − D, the corresponding morphism f : X → Y is an
isomorphism outside of a dimension d − 1 subset.
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Lemma 5.5 Let X, Y be algebraic spaces and f : X → Y a proper dominant
morphism. Then there is an algebraic subspace S ⊂ Y supported on the locus
where f is not an isomorphism, such that for any line bundle L on Y , a
section s ∈ "(X, f ∗L) is in the image of "(Y, L) if and only if its restriction
s|T ∈ "(T, f ∗L|T ) is in the image of "(S, L|S), where T = S ×Y X.

Proof Let Q be the cokernel of the map OY → f∗OX and S its scheme-
theoretic support. Then we have a diagram

0 OY f∗OX Q 0

OS f∗OT Q 0.

Tensoring by L and taking cohomology, the result follows. *+
In the present context, let S ⊂ Y and T ⊂ X be the closed subspaces

guaranteed by the lemma, and let Z be the scheme theoretic union of S and P ,
that is the closed subscheme of X defined by the intersection of the two ideal
sheaves defining S and P . Likewise, let W be the scheme theoretic union of
T and f −1(P).
Step 3.

Lemma 5.6 There is a (nonzero) effective divisor Ē in X̄ containing W
such that for m 8 1 and for every section s ∈ "(Ē, Lm

X̄
(−D)|Ē ) whose

restriction s|W ∈ "(W, Lm
W ) is in the image of "(Z , Lm

Z ), there is a section
t ∈ "van(Y, Lm

Y ) with s|Ē∩X = ( f ∗t)|Ē∩X .

Proof Let A be an ample divisor on X̄ . The line bundle L X̄ is big on every
component by the assumptions, so for some n there is a section α of Ln

X̄
(−A)

whose zero locus Ē0 contains W . For any r > 0, setting Ē = r Ē0 we thus
have an exact sequence

H0(X̄ , Lm
X̄
(−D)) → H0(Ē, Lm

X̄
(−D)|Ē ) → H1(X̄ , Lm−nr

X̄
(−D + r A)).

The line bundle L X̄ is nef, so by Fujita vanishing ([21, Theorem 1], see also
[33, Theorem 1.4.35]) the rightmost group is zero—and thus the first map is
surjective—for some r and any m ≥ nr . Now apply the previous step. *+
Step 4.

Lemma 5.7 There is a (nonzero) effective divisor E ′ of X containing W such
that for some integer k and all m 8 1, denoting Ē ′ the closure of E ′ in X̄ , we
have that for every section s ∈ "(Ē ′, Lm

X̄
(−kD)|Ē ′) whose restriction s|W ∈

"(W, Lm
W ) is in the image of "(Z , Lm

Z ), there is a section t ∈ "van(Y, Lm
Y )

with s|E ′ = ( f ∗t)|E ′ .
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Proof Write Ē = Ē ′ + D′ where D′ is supported on the boundary and every
component of Ē ′ meets X . Set E ′ = Ē ′ ∩ X . Note that we have an exact
sequence

0 → OĒ ′(−D′) → OĒ → OD′ → 0

and so "(Ē ′, Lm
X̄
(−kD)|Ē ′) injects into "(Ē, Lm

X̄
(−D)|Ē ) for some fixed k

and all m ≥ 0. Now apply the previous step. *+

Step 5. Let F ⊂ Y be the image of E ′. Applying the induction step to F , it
follows that for some positive integer n the map "van(F, Ln

F ) → "(P, Ln
P) is

surjective. Pulling an appropriate symmetric power of these sections back to
Ē ′ and applying Step 4, we see that these sections extend to vanishing sections
of Y , as desired. *+

6 Algebraicity and quasi-projectivity of period maps

In this section we prove the Theorem 1.1. For this section we work over the
o-minimal structure Ran,exp.

6.1 Period images

For background on period domains see for example [11]. Let ! be a pure
polarized period domain with generic Mumford–Tate groupG and " ⊂ G(Q)
an arithmetic lattice. By [3, Theorem 1.1], if" is neat then"\! has a canonical
structure of a definable complex analytic variety (in fact, even overRalg). Since
every arithmetic lattice has a normal neat subgroup "′, using Proposition 2.63
we can equip "\! with a definable complex analytic space structure as the
categorical quotient of "′\! by G = "/"′.

Corollary 6.1 Let X be a reduced algebraic space, and ϕ : X an → ("\!)an a
period map as in the introduction.8 Then ϕ (uniquely) factors as ϕ = ιan ◦ f an

for a dominant map f : X → Y of algebraic spaces and a closed immersion
ι : Y def → "\! of definable complex analytic varieties.

Proof Taking a resolution, it is enough to assume X is smooth, and by a
theorem of Griffiths [24, Theorem 9.5] we may then assume that ϕ is proper.
By [3, Theorem 1.3], ϕ : X an → ("\!)an is the analytification of a map
Xdef → "\! of definable complex analytic varieties.NowapplyTheorem4.2.

*+

8 That is, a locally liftable map satisfying Griffiths transversality on the regular locus.
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The uniqueness of the factorization is in the same sense as in Theorem 4.2
(see Remark 4.3). In fact, we obtain a version of Corollary 6.1 over non-
reduced bases, but as the following example illustrates we must require an
admissibility condition for period maps on non-reduced bases.

Example 6.2 Let San = "\! be a modular curve with level structure so that
it is a smooth scheme, and let Y = S ×SpecC SpecC[ε]/(ε2) be the trivial
thickening of it. Given a global holomorphic derivation D on San we can
define a map ϕ : Y an → San extending the identity map via ϕ)(s) = s+ εDs.
Since S is affine we can pick D to be non-algebraic, and then the map ϕ will
be non-algebraizable.

Definability provides a natural notion of admissibility forwhich the conclusion
of Corollary 6.1 holds true for non-reduced bases. Moreover, Proposition 6.10
below shows that period maps associated to variations coming from algebraic
families are automatically definable.

Definition 6.3 Let X be an algebraic space (possibly non-reduced). A defin-
able period map of X is a locally liftable map ϕ : Xdef → "\! of definable
complex analytic spaces such that for each irreducible component Y of X
equipped with its reduced structure the associated (locally liftable definable)
map ϕY : Y def → "\! satisfies Griffiths transversality—that is, the (locally
defined) map TY def → ϕ∗

Y T! on the tangent sheaf TY = (!1
Y )

∨ factors through
the Griffiths transverse subbundle.

Note that we do not require ϕ to be Griffiths transverse in the nilpotent
tangent directions. Moreover, note that the definition is functorial in the sense
that for any definable period map ϕ : Xdef → "\! and any map f : Y → X ,
we have that f ◦ ϕ is a period map. Finally, for X integral, the Griffiths
transversality condition is equivalent to the usual condition on the regular
locus X reg ⊂ X .

The local liftability condition is equivalent to ϕ factoring through the stack
quotient ["\!] which is naturally a definable complex analytic Deligne–
Mumford stack using the proof of Proposition 2.63. There are no new subtleties
in the definition of a definable complex analytic Deligne–Mumford stack, but
we do not pursue these ideas here. Note that by Remark 2.6, ϕ is definably
locally liftable if and only if it is analytically locally liftable.

With these preliminaries, we now state a more general version of Corol-
lary 6.1, to be proven in the next subsection.

Theorem 6.4 Let X be an algebraic space and ϕ : Xdef → "\! a definable
period map. Then ϕ (uniquely) factors as ϕ = ι ◦ f def for a dominant map
f : X → Y of algebraic spaces and a closed immersion ι : Y def → "\! of
definable complex analytic spaces.
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Definition 6.5 We refer to an algebraic space Y with a closed immersion
ι : Y def → "\! of definable complex analytic spaces arising from the theorem
as a definable period image.

Note that for a proper definable period map Xdef → "\! Theorem 6.4
holds over an arbitrary o-minimal structure.

6.2 Algebraicity of the Hodge filtration

We make the following definition along the same lines as in the previous
subsection:

Definition 6.6 Let Y be an algebraic space (possibly non-reduced). A defin-
able variation of Hodge structures on Y is a triple (VZ, F•, Q) where VZ is a
local system VZ on Y def , F• is a definable coherent locally split filtration of
VZ ⊗Z OY def satisfying Griffiths transversality (in the same sense as Defini-
tion 6.3), and Q is a quadratic form on VZ, such that (VZ, F•, Q) is a pure
polarized integral Hodge structure fiberwise.

As above, every local system on Y an is definable by definable triangula-
tion, see Remark 2.6. By the following lemma, if " is torsion-free the triple
(VZ, F•, Q) exists universally on"\! as a definable analytic variety, although
of course it is not in general a variation as it does not satisfy Griffiths transver-
sality.

Lemma 6.7 Suppose " is torsion-free and equip VZ ⊗ZO"\! with its canon-
ical definable structure. Then the Hodge filtration F• of VZ ⊗Z O"\! is by
definable coherent subsheaves.

Proof For any definable fundamental set 2 ⊂ !, letting π : 2 → "\! be
the restriction of the quotient map, we must check that π∗F• ⊂ VZ ⊗Z O! is
a definable coherent filtration, but this is obvious as it extends algebraically to
!̌. *+

When Y carries a definable variation that’s clear from context, we denote
by F•

Y def the filtered Hodge bundle. If Y is smooth (in particular reduced) with
a log smooth compactification Ȳ and the variation has unipotent monodromy
at infinity, we know that F•

Y an := (F•
Y def )

an has a canonical algebraic structure
F•
Y . In fact, the ambient flat bundle VZ⊗ZOY an has a canonical extension V̄ (the

Deligne canonical extension [15], uniquely determined by the condition that
the connection have log poles with nilpotent residues9), in which the filtration

9 The proof in the algebraic space case is the same as that of varieties, as it relies on the existence
and uniqueness of the analytic extension and ordinary GAGA.
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F•
Y an extends as a filtration F•

Ȳ an by subbundles (which we call the Schmid
extension) as a consequence of the nilpotent orbit theorem [41, Theorem 4.12].
By ordinary GAGA, the vector bundle V̄ has a unique algebraic structure V̄ ,
as does the filtration.

We now show the following generalization of the first claim of the second
part of Theorem 1.1:

Theorem 6.8 For Y an algebraic space with a definable variation, F•
Y def is

the definabilization of a (unique) algebraic filtered bundle F•
Y .

Proof For a positive integer N , let YN denote an irreducible component of
the finite étale cover of Y trivializing N -torsion in the local system VZ. The
monodromy of YN is then a subset of Idim V + N · Mdim V (Z). For N ≥ 3, the
eigenvalues of such an element cannot be roots of unity except for 1, since if
(ε − 1)/N is integral and ε is a root of unity, we must have N ≤ 3. It follows
that for the pullback variation on YN , the monodromy at infinity, which is a
priori only quasi-unipotent thanks to a well-known result of Borel [41, Lemma
4.5], must in fact be unipotent. As F•

Y def embeds in f def∗ F•
Y def
N
, by Theorem 3.1

we may assume that the monodromy at infinity is unipotent.
Let Y0 be the reduced space of Y . Then Y0 can be resolved by successive

blow-ups, and performing the same blow-ups on Y we obtain X → Y whose
reduced space X0 is smooth. By taking some compactification and again blow-
ing up to resolve the reduced boundary, we obtain a compactification X̄ of X
whose reduced space is log smooth.

Lemma 6.9 Let X̄ be a proper algebraic space, and D a closed subspace
such that the reduced spaces (X̄0, D0) are a log smooth pair, and such that
X = X̄ ! D has a definable variation with unipotent monodromy at infinity.
There is a unique map f : X̃ → X̄ which is an isomorphism on reductions
and over X, and minimal with respect to the following property: F•

Xdef extends
as a filtered vector bundle to X̃def and restricts to the Schmid extension on the
reduced space (X̄0)

def . Moreover, F•
Xdef is algebraic, F

•
Xdef

∼= (F•
X )

def , and
the restriction of F•

X to X0 agrees with the canonical algebraic structure on
F•
X0
.

Proof The space X̄def
0 admits a definable cover by polydisks P = (n such that

Xdef
0 is locally P∗ = ((∗)m ×(n−m . LetR be the restriction of the definable

structure sheaf of X̄def to P . Since an analytic space is Stein if and only if its
reduction is Stein, (Pan,Ran) is a Stein space, and so we may and do choose
lifts tk of the coordinate functions zk on the reduction (by possibly shrinking
further, these lifts are also definable). Note that a surjective exponential map
R → R× is still well defined with kernel Zn .

Let qk be a choice of logarithm of tk for each k, definable on vertical strips,
and N1, . . . , Nm the nilpotent monodromy logarithms. We have a definable
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mapϕ : ((∗)m×(n−m → "\!, and soψ = exp(− ∑
qkNk)ϕ lifts definably

to !̌. Thanks to Schmid’s nilpotent orbit theorem [41, Theorem 4.12]), themap
on the reduction extends to P .

Let i : X → X̄ and j : P∗ → P be the inclusions, and consider the sheaf
j∗ j∗R as a sheaf of rings on P . We have a pullback map of sheaves of rings
ψ−1O!̌def → j∗ j∗R, and we take T to be the subsheaf of rings of j∗ j∗R
generated by its image and R. We first claim that (P, T ) has the structure
of a definable complex analytic space. Consider the pullback f ∈ j∗ j∗R(P)
of an algebraic coordinate on !̌. As (Pan,Ran) is Stein, we may assume the
reduction f0 of f lifts to a definable section f̃ of R (after shrinking P),
and as f − f̃ is nilpotent, f satisfies a monic polynomial. Thus, R[ f ] is
a definable coherent R-module, and it follows that (P,R[ f ]) is a definable
analytic subspace of (P,R) × C. Adjoining the pullbacks of all algebraic
coordinates we conclude that (P, T ) is a definable complex analytic space.

The subsheaf T ⊂ j∗ j∗R is uniquely determined as the “minimal thicken-
ing” of X such that ψ extends, so we globally obtain a well-defined definable
complex analytic space X̃ = (X̄0, T ). By ordinary GAGA, (X̃ )an is the ana-
lytification of an algebraic space X̃ . As (X̃ )an is proper it admits a unique
Ran-definable structure, and so we must in fact have X̃ = (X̃)def .

We can pull back the Hodge filtration on !̌ to get a definable filtered vector
bundle F•

X̃ on X̃ extending F•
Xdef , and X̃ is locally determined as the minimal

such extension of X over X̄ . The gluing follows because the filtration on !̌ is
invariant under G(C). Once again by ordinary GAGA, (F•

X̃ )
an has a unique

algebraic structure F•
X̃
which must agree with the definable structure, F•

X̃
∼=

(F•
X̃
)def . The construction is evidently functorial with respect to morphisms

X̄ → X̄ ′ which are isomorphisms on reductions, and for X̄ reduced agreeswith
the construction of the canonical algebraic structure, whence the last claim. *+
Note that X → Y may not be dominant, but its image Y ′′ is isomorphic to Y
on a dense open setU . Let Z be a sufficiently thick nilpotent neighborhood of
the complement of U and A = Y ′′ ×Y Z . Then Y is naturally the pushout

A Y ′′

Z Y

As f : X → Y ′′ is proper dominant, F•
Y ′′def embeds in f∗(F•

X )
def , so it is the

definabilization of some algebraic F•
Y ′′ by Theorem 3.1. Since Z has smaller

dimension than Y , by induction F•
Zdef = (F•

Z )
def is algebraic, and F•

Y def is the
definabilization of the pushout of F•

Y ′′ and F•
Z . *+
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Proof of Theorem 6.4 Let X be an algebraic space and ϕ : Xdef → "\!
a definable period map. The proof of the previous theorem implies we can
produce a proper X ′ → X such that the definable period map of X ′ has
unipotent monodromy at infinity and X ′ → X is dominant on some dense
open setU of X . Moreover, we get a partial compactification X̄ ′ which admits
a definable proper period map ϕ̄ : X̄ ′def → "\! restricting to that of X ′.
Applying Theorem 4.2 to X̄ ′, we obtain X̄ ′ → Y ′ (proper) dominant and
Y ′def → "\! a closed immersion.

Let X ′′ be the image of X ′ in X , and let W be a sufficiently thick nilpotent
neighborhood of the complement ofU such that X is the pushout ofW and X ′′.
By induction we may apply Theorem 4.2 to W to obtain a dominant W → Z
and a closed immersion Zdef → "\!. The sought for Y is then the pushout
of Z and Y ′ (which exists by [45, Tag 07VX]). *+

Thanks to Lemma 6.7, every definable period map yields a definable vari-
ation by pulling back,10 and we conclude this subsection with a converse.

Proposition 6.10 Let Y be an algebraic space. An analytic period map ϕ :
Y an → ("\!)an associated to a definable variation is definable.

Proof Again we may produce a proper X → Y such that the pull back of
the variation to X has unipotent monodromy at infinity, has smooth reduced
space, and for which X → Y is dominant on a dense open set U of Y . Let X ′

be the image of X in Y , and let Z be a sufficiently thick nilpotent thickening
of the complement of U such that Y is the pushout of X ′ and Z . By induction
we may assume the claim for Z . It will be enough to show the claim for X ,
for then by Proposition 2.55 we have it for X ′, hence for the disjoint union of
X ′ and Z and finally for Y by applying again Proposition 2.55 (note that the
map from the disjoint union to the pushout is dominant, see for example [45,
Tag 07VX]).

Therefore, replacing Y with X , we may assume Y has smooth reduced
space Y red. From [3], there is a definable fundamental set2 for " such that the
quotient map 2 → "\! realizes "\! as a definable complex analytic space
as the quotient of 2 by a closed definable equivalence relation. As above, the
reduced period map ϕred : (Y red)an → ("\!)an is definable, so there is a
definable open cover Yi of Y def such that we can choose lifts Yi → 2 which
are definable on reduced spaces. But !̌ is a flag variety and maps Yi → !̌ are
clearly definable if and only if F•|Yi is definable, and this implies Yi → 2 is
definable. *+

Thus a definable variation on Y is equivalent to a definable period map.

10 Strictly speaking, pulling back from the stack. Alternatively, one can take a definable cover
by simply-connected opens, lift to !, pull back and glue.
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Corollary 6.11 Let Y be an algebraic space. A period map associated to an
algebraic subquotient of a variation Rk f∗Z for a smooth projective family
f : X → Y is definable.

Proof In this case the filtered Hodge bundle is algebraic. *+

6.3 The Griffiths bundle

Let as before! be a pure polarized period domainwith genericMumford–Tate
group G and " ⊂ G(Q) an arithmetic lattice. The Hodge filtration F• and
the Griffiths line bundle L := ⊗

i det F
i exist universally on !. Moreover, L

descends to "\!, but only as aQ-bundle in general due to the possible torsion
in ". For any algebraic space Y with a definable map Y def → "\! we denote
by LY def the pullback of the Griffiths Q-bundle.

Lemma 6.12 Let Y be a definable period image. Then LY def is the definabi-
lization of a (unique) algebraic Q-bundle LY .

Proof By definition there is an algebraic space X with a definable period map
factoring through Y def such that f : X → Y is dominant. By a similar argu-
ment as in the proof of Theorem 6.8, by possibly thickening Y wemay assume
f is proper. By Theorem 6.8 the Griffiths bundle on X is the definabilization
of an algebraic bundle LX . Let m be a positive integer such that Lm

Y is a bona
fide line bundle. As Lm

Y def embeds in f∗(Lm
X )

def , it follows from Theorem 3.1
that Lm

Y def is the definabilization of a (unique) algebraic line bundle. *+

6.4 Quasi-projectivity of period images

Let Y be a definable period image in "\!. From the last subsection, we
know that the Griffiths Q-bundle LY is algebraic. In this subsection we apply
Theorem 5.4 to prove the second part of Theorem 1.1.

Definition 6.13 Assume Y is a definable period image. For Y reduced, we say
a section s of Lm

Y vanishes at the boundary if the following condition holds:
for some period map Xdef → "\! factoring through Y such that X → Y
is generically finite, X is smooth, and the variation on X has unipotent mon-
odromy at infinity, s pulls backs to a section of Lm

X̄
(−D) where (X̄ , D) is a

log smooth compactification of X and L X̄ is the Schmid extension [41] of LX
to the Deligne canonical extension [15] of the ambient flat vector bundle. We
let "van(Y, Lm

Y ) ⊂ "(Y, Lm
Y ) denote the linear subspace of sections vanish-

ing at the boundary, which is finite-dimensional as "van(Y, Lm
Y ) injects into

"(X̄ , Lm
X̄
).
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Note that as in Definition 5.3, the condition is independent of (X̄ , D): any
two X, X ′ satisfying the conditions can be dominated by a third X ′′, and for
the resulting map f : (X̄ ′′, D′′) → (X̄ , D) of log smooth pairs we naturally
have an isomorphism f ∗L X̄ → L X̄ ′′ . Once again, s vanishes at the boundary
if and only if sred does, and the ring

⊕
n "van(Y, Ln

Y ) is integrally closed in⊕
n "(Y, Ln

Y ).
We are now in a position to state the main result of this section:

Theorem 6.14 Let Y be a definable period image. Then the GriffithsQ-bundle
LY is ample on Y . Moreover, sections of some positive power Ln

Y which vanish
at the boundary realize Y as a quasi-projective scheme.

In the proof of the theorem, the positivity of the Griffiths bundle will be
deduced from the special case of variations over smooth bases, where we have
the following:

Lemma 6.15 Let X be the complement of a normal crossing divisor D in a
compact Kähler manifold X̄ . Consider a polarized real variation of Hodge
structure V = (VR, F•, Q) over X with unipotent monodromies around D
and let L X̄ be as defined above. Then L X̄ is a nef line bundle. Moreover, L X̄
is big if and only if the associated period map is generically immersive.

Proof Letting rp = rank(F p), observe that the Griffiths bundle of V appears
as the lowest nonzero piece in the Hodge filtration of the auxiliary polarized
real variation of Hodge structure V′ := ⊗p∈Z

∧rp V, and L X̄ is the Schmid
extension of the latter. Therefore the canonical metric h on LX induced by the
polarization Q has non-negative curvature and extends as a singular metric on
L X̄ with zero Lelong numbers, see [20, Theorem 1.1] or [10]. Therefore the
line bundle L X̄ is nef thanks to [16, Corollary 6.4]. In particular, L X̄ is big if
and only if c1(L X̄ )

dim X > 0, cf. [9, Theorem 1.2]. Denoting byC1(LX , h) the
Chern form of the hermitian line bundle (LX , h), it follows by applying [The-
orem 5.1] to the auxiliary variation V′ that the integral

∫
X (C1(LX , h))dim X is

convergent and that we have the equality:

c1(L X̄ )
dim X =

∫

X
(C1(LX , h))dim X .

We conclude using that the real (1, 1)-form C1(LX , h) is strictly positive at a
point x ∈ X if and only if the periodmap is immersive at x , cf. [24, Proposition
7.15]. *+

Proof of Theorem 6.14 We first reduce to the case that " is neat. Take "′ ⊂ "
be a normal, neat subgroup of finite index 3, with quotient G. Let Y be the
period image of X , and Y ′ the period image of the level cover of X ′ in "′\!.
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Then we have a surjective, dominant, finite map π : Y ′ → Y , and a group
action G on Y ′ such that π is G-invariant. For any section σ of Lk

Y ′ we claim
that Nm(σ ) := ∏

g∈G gσ descends to Y as a section of Lk3
Y . It is enough to

work on stalks, sowemay assume LY and LY ′ are trivial. Let y ∈ Y , R = Oan
Y,y

and S = Oan
Y ′,π−1(y). For f ∈ S, we have that f lifts to a section fU on some

(G-invariant) open neighborhoodU of π−1(y). Now Nm( fU ) is in the image
of OG

("′\!)an = O("\!)an and thus has an image r ∈ R, whose image in S is
therefore Nm( f ). We therefore have norm maps

Nm : "(Y ′, Lk
Y ′) → "(Y, Lk3

Y )

for each k. Clearly the norm of a vanishing section in the sense of Defini-
tion 6.13 is a vanishing section. Thus, if vanishing sections of Y ′ yield an
embedding of Y ′ as a quasi-projective scheme, then by taking norms and
applying Proposition 5.1 the same will be true of Y .

We therefore assume " is neat, and in particular that the restriction of the
variation to any subvariety of Y has unipotent monodromy at infinity. By the
above remarks and Lemma 6.15, the Schmid extension L X̄ satisfies the condi-
tions in Setting 5.2 and the two notions of vanishing sections in Definitions 5.3
and 6.13 agree. Therefore, the claim follows from Theorem 5.4. *+

6.5 An ampleness criterion for the Hodge bundle

Often in applications the Hodge bundle (namely the determinant of the deepest
piece of the Hodge filtration) is more accessible than the Griffiths bundle, and
we prove in this section an ampleness criterion for the Hodge bundle.

Let (VZ, F•, Q) be a pure polarized integral variation of Hodge structure
on a (reduced) separated algebraic space X . Using that the induced con-
nection on VOX := VZ⊗ZOX satisfies Griffiths transversality, we get for
every integer p an induced OX -linear map of OX -modules ψp : TX →
HomOX (F

p/F p+1, F p−1/F p).

Theorem 6.16 Let Fn be the lowest piece of the Hodge filtration, mean-
ing that Fn 0= 0 but Fn+1 = 0. Assume that for any germ of a curve
ϕ : ( → X, the O(-linear map of O(-modules ϕ∗(ψn) : T( →
Hom(ϕ∗(Fn),ϕ∗(Fn−1/Fn)) is injective. Then the line bundle det(Fn) is
ample on X.

Observe that for X smooth the condition in the theorem is satisfied when the
OX -linear map of OX -modules ψn : TX → Hom(Fn, Fn−1/Fn) is injective
with image a locally split OX -submodule of Hom(Fn, Fn−1/Fn). This last
condition implies that the period map is immersive, but the converse is not
true.
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The proof of Theorem 6.16 is parallel to the proof of Theorem 6.14 (replace
Lemma 6.15 by the lemma below). Note that in fact the latter is a particular
case of the former since one easily check that Griffiths line bundle is the
lowest piece of the Hodge filtration of the auxiliary variation ⊗p∈Z ∧rp V
where rp = rk F p.

Lemma 6.17 Let X be a smooth algebraic variety, X ⊂ X̄ a smooth com-
pactification such that X̄ − X = D is a normal crossing divisor. Let
(VR, F•, Q) be a polarized real variation of Hodge structure over X with
unipotent monodromies around D. Let Fn

X̄
be the Schmid extension of the

lowest piece of the Hodge filtration. Then the line bundle det(Fn
X̄
) is nef.

Moreover, det(Fn
X̄
) is big if and only if the OX -linear map of OX -modules

ψn : TX → HomOX (F
n, Fn−1/Fn) is injective.

Proof The polarization Q permits to define a canonical positive definite Her-
mitian metric h on det(Fn). Denote by C1(det(Fn), h) the Chern form of the
hermitian line bundle (det(Fn), h). It follows from the computation of the
curvature of the Hodge bundles (see [24, Theorem 5.2] or [41, Lemma 7.18])
that C1(det(Fn), h) is a positive real (1, 1)-form on X , and C1(det(Fn), h)
is strictly positive at a point x ∈ X if and only if the OX -linear map of OX -
modules ψn : TX → HomOX (F

n, Fn−1/Fn) is injective at x . With this fact
at hand, the rest of the proof is parallel to the proof of Lemma 6.15. *+

7 Applications

We start by making some remarks related to the first two applications below.
We may more generally speak of period maps from a separated Deligne–
Mumford stack M of finite type over C as follows. We say a period map
Man → "\! consists of an étale atlas U → M by an algebraic space and
a period map ϕ : U an → "\! for which the resulting two compositions
(U ×M U )an ⇒ "\! are equal. For example, for a smooth projective family
π : X → M, the local system Rkπ∗Z will underly such a variation. We say
that the period map is either quasi-finite or Ran,exp-definable if this is so for
the period map on the atlas, and we say the image of the period map in "\!
is the image of the period map on the atlas (since any two atlases are the same
up to an etale cover, these definitions are independent of the atlas).

Recall that the definability condition is again automatic ifM is reduced [3,
Theorem 1.3], and is satisfied for all period maps arising from geometry, by
Corollary 6.11.
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7.1 Borel algebraicity

The following is an analog of a theorem proven by Borel [8, Theorem 3.1]
(see also [14, Theorem 5.1]) for locally symmetric varieties:

Corollary 7.1 Let M be a separated Deligne–Mumford stack of finite type
over C admitting a quasi-finite Ran,exp-definable period map, and let Z be a
reduced algebraic space. Then any analytic map Z an → Man is algebraic.

Proof Let U → M be a finite-type étale atlas. It is enough to algebraize
the base-change of the map Z an → Man to U along with the descent data,
so we may assume M = U . Let Y be the period image of the period map
U def → "\!. The composition Z an → U an → ("\!)an is a period map
and thus by Corollary 6.1 it follows that Z an → Y an is Ran,exp-definable. As
U → Y is quasi-finite, Z an → U an is also Ran,exp-definable, and therefore by
Theorem 3.3 algebraic. *+
Applied to a separated Deligne–Mumford moduli stack of smooth polarized
varieties with an infinitesimal Torelli theorem, for example, Corollary 7.1
implies that any analytic family of such varieties over (the analytification) of
a reduced algebraic base Z is in fact algebraic.

Corollary 7.2 ForM as above, ifM is in addition reduced, thenMan admits
a unique algebraic structure.

7.2 Quasi-projectivity of moduli spaces

Recall by a well-known result of Keel–Mori [30] that a separated Deligne–
Mumford stackM of finite type overC admits a coarsemoduli spaceM which
is a separated algebraic space of finite type over C.
Corollary 7.3 Let M be a separated Deligne–Mumford stack of finite type
overC admitting a quasi-finiteRan,exp-definable period map. Then the coarse
moduli space of M is quasi-projective.

Proof The Griffiths bundle exists on the coarse moduli space M as aQ-bundle
by general results [32, Lemma 2]. Let U → M be a finite-type étale atlas by
an algebraic space, so that we have a definable period map ϕ : U def → "\!.
Let Y be the period image. We claim that the map U → Y factorizes through
the coarse moduli space M of M. Let M′ → M and U ′ → U be the étale
covers corresponding to a normal finite index neat "′ ⊂ " with quotient G.
Let Y ′ be the period image ofU ′ in "′\!. Then as the variation onU ′ is pulled
back from Y ′, the map U ′ → Y ′ factorizes throughM′. As U = [G\U ′] and
M = [G\M′], it follows thatU → [G\Y ′] factorizes throughM. Therefore,
the map U → [G\Y ′] → Y factorizes through M .
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Thus we get a quasi-finite map M → Y . By Theorem 6.14, LY is ample, so
we have an immersion Y → Pn . We then have a quasi-finite map M → Pn ,
which by Zariski’s main theorem factors as an open immersion and a finite
map. It follows that LM is ample. *+

Remark 7.4 The construction of [G\Y ′] as in the proof can be used to construct
the algebraic image of a periodmap in the quotient stack ["\!]. One could also
develop the theory of definable complex analytic Deligne–Mumford stacks,
although we have not pursued this level of generality.

Corollary 7.3 applies to any (separated finite-type) smooth Deligne–
Mumford stack that is the moduli stack of smooth polarized varieties X with
an infinitesimal Torelli theorem. By work of Viehweg [49], such results are
known for varieties X with a semi-ample canonical bundle, and so the case
of Fano varieties is of particular interest. For concreteness, we deduce some
new results about moduli spaces of complete intersections, on which previous
work has been done for hypersurfaces by Mumford [36] and more generally
by Benoist [5,6].

We fix a collection of integers T = (d1, · · · , dc; n) with n ≥ 1, c ≥ 1 and
2 ≤ d1 ≤ · · · ≤ dc. Recall that a complete intersection of type T is a closed
subscheme of codimension c inPn+c

C which is the zero locus of c homogeneous
polynomials of degrees d1, · · · , dc respectively. Let H be the Zariski-open
subset of the Hilbert scheme of Pn+c

C that parametrizes the smooth complete
intersections of type T . Let MT be the moduli stack of smooth complete
intersections polarized by O(1), i.e. the quotient stack [PGLn+c+1(C)\H ].

When T 0= (2; n) Benoist proved that MT is a separated smooth Deligne-
Mumford stack of finite type [5, Theorem 1.6 and 1.7], and therefore has a
coarse moduli space MT . If in addition d1 = · · · = dc then MT is an affine
scheme, [6, Theorem 1.1.i)], while if c > 1 and d2 = · · · = dc, MT is quasi-
projective by [6, Corollary 1.2]. Finally, for T = (3; 2),MT is quasi-projective
by [1].

Corollary 7.5 For all T 0= (2; n), the coarse moduli space MT is quasi-
projective.

Proof This follows from Corollary 7.3 and Flenner’s infinitesimal Torelli the-
orem [19, Theorem 3.1], which applies for T 0= (3; 2) and T 0= (2, 2; n) for
n even—in particular, to all remaining cases. *+

7.3 A factorization result

We prove here a result which, intuitively, says that all interesting variations of
Hodge structures on compactKählermanifolds come fromalgebraic geometry.
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Theorem 7.6 Let X be a dense Zariski open subset of a compact Kähler
manifold X̄ , and let (VZ,F•, Q) be a pure polarized integral variation of
Hodge structure on X. Assume that the monodromy of VZ is torsion-free (this
is always achieved by going to a finite étale cover of X) and that X is the
biggest open subset of X̄ on which VZ extends.

Then there exist a proper surjective holomorphic map with connected fibres
π : X → Y for a normal quasi-projective variety Y such that (VZ,F•, Q) is
the pull-back by π of a polarized integral variation of Hodge structure on Y .

Proof By hypothesis, the monodromy " of (VZ,F•, Q) is torsion-free and
the associated period map ϕ : X → "\! is proper. We denote by X

π−→
Y → "\! its Stein factorization, so that Y is a normal analytic space and
π : X → Y is surjective with connected fibres. Since " is torsion-free,
(VZ,F•, Q) descends to Y . To finish the proof, it remains to prove that Y ,
a priori only an analytic space, is in fact a quasi-projective variety. We cannot
apply directly Theorem 1.1 since X is not assumed to be algebraic. However
one can proceed as follows. First observe that thanks to the following result
of Sommese Y admits a proper modification Y ′ → Y such that Y ′ is a dense
Zariski open subset of a compact Kähler manifold Y ′.

Theorem 7.7 (Sommese [44, Proposition III and Remark III-C]) Let X be a
dense Zariski open subset in a compact Kähler manifold X̄ , Y be a complex
analytic space and π : X → Y be a surjective proper holomorphic map with
connected fibres. Then there exists X ′ (resp. Y ′) a dense Zariski open subset
in a compact Kähler manifold X̄ ′ (resp. Ȳ ′) and a commutative diagram

X̄ X̄ ′

X X ′

Ȳ ′

Y Y ′

π ′

α′

π

α

π ′
|X ′

β

where α : X ′ → X (resp. β : Y ′ → Y ) are proper modifications and π ′, π ′
|X ′

are surjective proper maps with connected fibres.

The composition Y ′ → Y → "\! endows Y ′ with a polarized integral
variation of Hodge structure. Take"′ ⊂ " neat of finite index and let Y ′′ → Y ′

be the base-change along "′\! → "\!. If Y ′′ denotes a compactification of
Y ′′whoseboundary is a normal crossingdivisor, the polarized integral variation
ofHodge structure induced onY ′′ has unipotentmonodromy at infinity. Thanks
to Lemma 6.15 the associated Griffiths line bundle LY ′′ is big, hence Y ′′ is
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Moishezon. It follows that the compact Kähler manifold Y ′ is Moishezon,
hence it is in fact projective algebraic. Since Y ′ → Y is the Stein factorization
of the composition Y ′ → Y → "\!, it follows now from Theorem 1.1 and
Riemann existence theorem that Y is quasi-projective. *+
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