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Abstract
Given in the plane a set S of m point sites in a simple polygon P of n vertices, we
consider the problem of computing the geodesic farthest-point Voronoi diagram for S
in P . It is known that the problem has an�(n+m logm) time lower bound. Previously,
a randomized algorithm was proposed [Barba, SoCG 2019] that solves the problem
in O(n + m logm) expected time. The previous best deterministic algorithms solve
the problem in O(n log log n + m logm) time [Oh, Barba, and Ahn, SoCG 2016] or
in O(n + m logm + m log2n) time [Oh and Ahn, SoCG 2017]. In this paper, we
present a deterministic algorithm that takes O(n + m logm) time, which is optimal.
This answers affirmatively an open question posed by Mitchell in the Handbook of
Computational Geometry two decades ago.

Keywords Farthest sites · Voronoi diagrams · Geodesic distance · Shortest paths ·
Simple polygons

Mathematics Subject Classification 68Q25 · 68W40 · 68U05

1 Introduction

Let P be a simple polygon of n vertices in the plane. Let S be a set of m points, called
sites, in P (each site can be either in the interior or on the boundary of P). For any two
points in P , their geodesic distance is the length of their Euclidean shortest path in P .
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We consider the problem of computing the geodesic farthest-point Voronoi diagram
of S in P , which is to partition P into Voronoi cells such that all points in the same
cell have the same farthest site in S with respect to the geodesic distance.

This problem generalizes the Euclidean farthest Voronoi diagram of m sites in the
plane, which can be computed in O(m logm) time [26]; this is optimal as�(m logm)

is a lower bound [18], e.g., by a reduction from determining the convex hull of a set of
points in the plane [5, 12, 30]. For the more general geodesic problem in P , Aronov
et al. [3] showed that the complexity of the diagram is �(n + m) and provided an
O(n log n+m logm) time algorithm.The runtime is close to optimal as�(n+m logm)

is a lower bound. No progress had been made for over two decades until in SoCG 2016
Oh et al. [23] proposed an O(n log log n + m logm) time algorithm. Later in SoCG
2017 Oh and Ahn [22] gave another O(n + m logm + m log2n) time algorithm and
in SoCG 2019 Barba [9] presented a randomized algorithm that solves the problem in
O(n + m logm) expected time.

In this paper, we give an O(n + m logm) time deterministic algorithm, which is
optimal. The space complexity of the algorithm is O(n + m), which is optimal. This
answers affirmatively an open question posed by Mitchell [20] in the Handbook of
Computational Geometry two decades ago, whether an O(n + m logm) time deter-
ministic algorithm exists for constructing the geodesic farthest-point Voronoi diagram
for S in P .

1.1 RelatedWork

If all sites of S are on the boundary of P , then better results exist. The algorithm of
Oh et al. [23] solves the problem in O((n + m) log log n) time while the randomized
algorithm of Barba [9] runs in O(n + m) expected time.

The geodesic nearest-point Voronoi diagram for point sites in a simple polygon
has also attracted much attention. The problem also has an �(n + m logm) time
lower bound. The first close-to-optimal algorithm was given by Aronov [2] with a
running time of O((n + m) log(n + m) log n). Papadopoulou and Lee [24] improved
the algorithm’s runtime to O((n + m) log(n + m)). Recent progress has been made
by Oh and Ahn [22] who presented an O(n +m logm log2n) time algorithm and also
by Liu [19] who designed an O(n + m(logm + log2n)) time algorithm. Finally the
problem was solved optimally in O(n + m logm) time by Oh [21].

Another closely related problem is to compute the geodesic center of a simple
polygon P , which is a point in P that minimizes the maximum geodesic distance
from all points of P . Asano and Toussaint [4] first gave an O(n4 log n) time algorithm
for the problem. Pollack et al. [25] derived an O(n log n) time algorithm. Recently the
problem was solved optimally in O(n) time by Ahn et al. [1]. The geodesic diameter
of P is the largest geodesic distance between any two points in P . Chazelle [10] first
gave an O(n2) time algorithm and then Suri [27] presented an improved O(n log n)

time solution. Hershberger and Suri [15] finally solved the problem in O(n) time,
which is optimal.

All above results are for simple polygons. For polygons with holes, the problems
become more difficult. The geodesic nearest-point Voronoi diagram for m point sites
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in a polygon with holes of n vertices can be solved in O((n + m) log(n + m)) time
by the algorithm of Hershberber and Suri [16]. Bae and Chwa [6] gave an algorithm
for constructing the geodesic farthest-point Voronoi diagram and the algorithm runs
in O(nm log2(n +m) logm) time. For computing the geodesic diameter in a polygon
with holes, Bae et al. [7] solved the problem in O(n7.73) or O(n7(h + log n)) time,
where h is the number of holes. For computing the geodesic center, Bae et al. [8] first
gave an O(n12+ε) time algorithm, for any constant ε > 0; Wang [29] presented an
improved algorithm of O(n11 log n) time.

1.2 Our Approach

Wefollow the algorithmic scheme in [22],which in turn follows that in [3]. Specifically,
we first compute the geodesic convex hull of all sites of S in O(n+m logm) time [13,
14, 28], and then compute the geodesic center c∗ of the hull in O(n + m) time [1].
Aronov [3] showed that the farthest-point Voronoi diagram forms a tree embedded
inside P with c∗ as the root and all leaves on ∂P , the boundary of P . We construct the
farthest-point Voronoi diagram restricted to ∂P; this can be done in O(n + m) time
by a recent algorithm of Oh et al. [23] once the geodesic convex hull of S is known.

Next we run a reverse geodesic sweeping algorithm to extend the diagram from
∂P to the interior of P (i.e., based on all leaves on ∂P and the root c∗ of the tree, we
want to construct the tree). Here we use a geodesic sweeping circle that consists of all
pointswith the samegeodesic distance from c∗. Aronov [3] implemented this sweeping
algorithm in O((n+m) log(n+m)) time. Oh and Ahn [22] gave an improved solution
of O(n + m logm + m log2n) time by using a data structure for the following query
problem: Given three points in P , compute the point that is equidistant from them. Oh
andAhn [22] built a data structure inO(n) time that can answer each query inO(log2n)

time, and that is why the time complexity of their algorithm has a log2n factor. We
improve the query time to O(log n) (with O(n) time preprocessing) with the help of
the following observations. First, the three points involved in a query are three sites
of S whose Voronoi cells are adjacent along the sweeping circle. Second, among the
three sites involved in a query, for every two sites whose Voronoi cells are adjacent, the
sweeping algorithm provides us with a point equidistant to them. These observations
along with the tentative prune-and-search technique of Kirkpatrick and Snoeyink [17]
lead us to a query algorithm of O(log n) time. Consequently, the sweeping algorithm
can be implemented in O(n + m logm) time.

We should point out that in her algorithm for computing the geodesic nearest-point
Voronoi diagram, Oh [21] also announced an O(log n) time algorithm for the above
query problem and her algorithm also uses the tentative prune-and-search technique
(although the details are omitted due to the page limit). However, the difference is
that she uses a balanced geodesic triangulation [11] and her result is based on the
assumption that the sought point of the query lies in a known geodesic triangle � and
the three query points are in the same subpolygon of P separated by a side of � (see
[21, Lemma4.2]). For our problem,wedonot need the balancedgeodesic triangulation
and do not have such an assumption. Instead, our algorithm relies on the observations
mentioned above.
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The rest of the paper is organized as follows. Section 2 defines notation and intro-
duces some concepts. The algorithm for constructing the geodesic Voronoi diagram
is described in Sect. 3. Section 4 presents the algorithm for a lemma about the query
problem discussed above.

2 Preliminaries

Like the previouswork [3, 9, 22, 23], for ease of discussion, wemake a general position
assumption that no vertex of P is equidistant from two sites of S and no point of P
has four farthest sites. We occasionally use polygon vertex to refer to a vertex of P
and use polygon edge to refer to an edge of P .

For any two points p and q in P , let π(p, q) denote the (Euclidean) shortest path
from p to q in P; let d(p, q) denote the length of π(p, q). π(p, q) is also called the
geodesic path and d(p, q) is called the geodesic distance between p and q. The vertex
of π(p, q) adjacent to q (resp., p) is called the anchor of q (resp., p) in π(p, q).

For any two points a and b in the plane, denote by ab the line segment with a and
b as endpoints, and denote by |ab| the length of the segment.

For any two sites s and t of S, their bisector, denoted by B(s, t), consists of all
points of P equidistant from them, i.e., B(s, t) = {p | d(s, p) = d(t, p), p ∈ P}.
Due to the general position assumption, Aronov et al. [2] showed that B(s, t) is a
smooth curve connecting two points on ∂P with no other points common with ∂P and
B(s, t) comprises O(n) straight and hyperbolic arcs (a straight arc is a line segment);
the endpoints of the arcs are breakpoints, each of which is the intersection of B(s, t)
and a half-line extended from a polygon vertex u to another polygon vertex v such
that u is an anchor of v in π(s, v) or in π(t, v) (it is possible that u = s or u = t);
e.g., see Fig. 1.

For any site s ∈ S, define C(s) as the region consisting of all points p of P whose
farthest site is s, i.e., C(s) = {p | d(p, s) ≥ d(p, s′), s′ ∈ S}; e.g., see Fig. 2. We call
C(s) the (farthest)Voronoi cell of s. Note thatC(s)may be empty; ifC(s) is not empty,
then it is simply connected [3]. The Voronoi cells of all sites of S form a partition of P .
We define the geodesic farthest-point Voronoi diagram (or farthest Voronoi diagram
for short), denoted by FVD(S), as the closure of the interior of P minus the union
of the interior of C(s) for all s ∈ S; alternatively, FVD(S) = {p ∈ B(s, t) | s, t ∈
S and d(s, p) = maxr∈S d(r , p)}; e.g., see Fig. 2. A point v of FVD(S) is a Voronoi
vertex if it is an intersection of a bisector with ∂P or if it has degree 3 (i.e., it has three
equidistant sites). The curve of FVD(S) connecting two adjacent vertices is called
a Voronoi edge, which is a portion of a bisector of two sites. Note that a Voronoi
edge may not be of constant size because it may contain multiple breakpoints. While
FVD(S) has O(m) Voronoi vertices and edges, the total complexity of FVD(S) is
O(n + m) [3].

A subset P ′ of P is geodesically convex if π(p, q) is in P ′ for any two points p
and q in P ′. The geodesic convex hull of S in P , denoted by GCH(S), is the common
intersection of all geodesically convex sets containing S (e.g., see Fig. 3). GCH(S) is
a weakly simple polygon of at most n + m vertices. Let c∗ be the geodesic center of
GCH(S), which is also the geodesic center of S [3]. Note that c∗ must be on a Voronoi
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Fig. 1 Illustrating the bisector B(s, t) (the dashed curve) with three breakpoints. The extension from u to
v defines a break point
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Fig. 2 Illustrating a geodesic farthest-point Voronoi diagram for three points s, t , and r

edge of FVD(S). Indeed, if c∗ has three farthest sites in S, then c∗ is a Voronoi vertex;
otherwise it has two farthest sites and thus is in the interior of an edge of FVD(S).
Aronov [3] proved that FVD(S) is a tree with c∗ as the root and all leaves on ∂P;
he also showed that only sites on the boundary of GCH(s) have nonempty cells in
FVD(S) and the ordering of the sites with nonempty cells around the boundary of
GCH(s) is the same as the ordering of their Voronoi cells around ∂P (the ordering
lemma). Note that a site on the boundary of GCH(s) may still have an empty Voronoi
cell and intuitively this is because P is not large enough [3].

Consider any three points s, t, r in P . The vertex farthest to s in π(s, t) ∩ π(s, r)
is called the junction vertex of π(s, t) and π(s, r). The closure of the interior of the
geodesic convex hull GCH(s, t, r) is called the geodesic triangle of s, t , and r , denoted
by �(s, t, r), whose boundary is composed of three convex chains π(s′, t ′), π(t ′, r ′),
π(r ′, s′), where s′ is the junction vertex of π(s, t) and π(s, r), and t ′ and r ′ are defined
likewise; e.g., see Fig. 4. The three convex chains are called sides of �(s, t, r). The
three vertices s′, t ′, and r ′ are called the apexes of �(s, t, r).

3 Computing the Farthest Voronoi Diagram FVD(S)

In this section, we present our algorithm for computing the farthest Voronoi diagram
FVD(S). First, we compute the geodesic convex hull GCH(S) of S in O(n+m logm)

time [13, 14, 28]. Second, we compute the geodesic center c∗ of GCH(S) in O(n+m)

time [1]. Third, we compute the portion of FVD(S) restricted to the polygon bound-
ary ∂P , i.e., the leaves of FVD(S). This can be done in O(n+m) time by the algorithm
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Fig. 3 Illustrating the geodesic convex hull (the grey region) for a set of points in P
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Fig. 4 Illustrating a geodesic triangle �(s, t, r) (the grey region)

in [23].1 The fourth step is to extend the diagram to the interior of P , i.e., construct
the tree FVD(S) based on all its leaves and the root c∗. This is achieved by a reverse
geodesic sweeping algorithm, whose details are described below.

The algorithm first computes the adjacency information of FVD(S). Specifically,
we will compute the locations of all Voronoi vertices of FVD(S); for Voronoi edges,
however, we will not compute them exactly (i.e., the locations of their breakpoints
will not be computed) but only output their incident Voronoi vertices, i.e., if u and v

are the two Voronoi vertices incident to the same Voronoi edge, then we will output
the pair (u, v) as an abstractVoronoi edge. In this way, we will output the abstract tree
FVD(S) with the exact locations of all Voronoi vertices; this is called the topological
structure of FVD(S) in [22]. After having the topological structure, Oh and Ahn [22]
gave an algorithm that can construct FVD(S) in additional O(n+m logm) time.More
specifically, with O(n) time preprocessing, each Voronoi edge can be computed in
O(log n+ k) time, where k is the number of breakpoints in the Voronoi edge (see [22,
Sect. 4] for details). As FVD(S) has O(m)Voronoi edges, the total time for computing
all Voronoi edges is O(m log n + K ), where K is the total number of breakpoints on
all Voronoi edges. As K = O(n+m) [3], the total time is bounded by O(n+m log n),

1 Note that the result was not explicitly given in [23] but can be obtained from their O(n log log n+m logm)

time algorithm for computing FVD(S). Indeed, given GCH(S), the algorithm first partitions P in O(n+m)

time into O(1) subpolygons such that each subpolygon P ′ is for a problem instance where all involved
sites are on the boundary of P ′ (see [23, Sect. 7]). Then, each problem instance is further reduced in linear
time to a problem instance where all sites are vertices of P ′ (see [23, Sect. 6]), and each such problem
instance can be solved in linear time (see [23, Sect. 3]). The total running time of all above is O(n + m)

(for computing FVD(S) restricted to the boundary of P only). This result was also used by Oh and Ahn
[22] in their O(n + m logm + m log2n) time algorithm for computing FVD(S).
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which isO(n+m logm).2 In the following,wewill focus on computing the topological
structure of FVD(S).

We use a reverse geodesic sweeping as in [3, 22]. Roughly speaking, the sweep line
is a geodesic circle C consisting of all points in P that have the same geodesic distance
from the geodesic center c∗ of S. This statement is actually not quite accurate as initially
the sweep circle is just the boundary of P . During the sweep, we maintain the sites
whose Voronoi cells currently intersectC ; these sites are stored in a cyclic linked listL
ordered by their intersections with C . Initially when C = ∂P , as we already have the
leaves of FVD(S), we can buildL in O(n+m) time. Note that |L| = O(m). During the
algorithm, C will shrink until arriving at c∗; an event happens when C hits a Voronoi
vertex, which will be computed on the fly. Specifically, for each triple of adjacent
sites s, t, r in the list L, we compute the point, denoted by α(s, t, r), equidistant from
them, which is the intersection of the bisectors B(s, t) and B(t, r). Due to our general
position assumption, α(s, t, r) is unique if it exists (see [3, Lemma 2.5.3]). We store
all these α-points in a priority queue Q, ordered by decreasing geodesic distance
from c∗. In order to compute the α-points, for any pair of adjacent sites s and t in L,
we maintain a Voronoi vertex, denoted by β(s, t), on their bisector B(s, t) with the
following property: β(s, t) is outside or on the current geodesic circle C . Initially, we
set β(s, t) to be the Voronoi vertex on ∂P incident to the Voronoi cells of s and t ; so
the above property holds as C = ∂P .

The main loop of the algorithm works as follows. As long as Q is not empty, we
repeatedly extract the point with largest geodesic distance from c∗ and let the point
be α(s, t, r) defined by three sites s, t, r in this order in L. We report α(s, t, r) as a
Voronoi vertex and report (β(s, t), α(s, t, r)) and (β(t, r), α(s, t, r)) as two abstract
Voronoi edges.We remove t fromL and set β(s, r) = α(s, t, r). Let x be the neighbor
of s other than r in L and let y be the neighbor of r other than s. We remove α(x, s, t)
and α(t, r , y) from Q if they exist. Next, we compute α(x, s, r) and α(s, r , y) (if they
exist) as well as their geodesic distances from c∗, and insert them into Q.

For the running time, there are O(m) events, because the total number of Voronoi
vertices of FVD(S) is O(m) [3], and thus the total time of the algorithm is O(m(σ +
logm)), where O(σ ) is the time for computing each α-point. Lemma 3.1, which will
be proved later in Sect. 4, is for computing the α-points.

Lemma 3.1 With O(n) time preprocessing, for any triple of adjacent sites s, t, r in
L at any moment during the algorithm, given the two Voronoi vertices β(s, t) and
β(t, r), our algorithm can do the following in O(log n) time: if α(s, t, r) is a Voronoi
vertex, then compute it; otherwise, either compute α(s, t, r) or return null.

We remark that Lemma3.1 is sufficient for the correctness of our geodesic sweeping
algorithm as only Voronoi vertices are essential. If the algorithm returns null, the
event will not be inserted to Q. With Lemma 3.1 at hand, our geodesic sweeping
algorithm computes the topological structure of FVD(S) in O(n + m logm) time.
After that, as discussed above, we can compute the full diagram FVD(S) in additional
O(n + m logm) time by the techniques of Oh and Ahn [22]. Also, the space of the
algorithm is bounded by O(n + m).

2 Indeed, ifm < n/log n, then n+m log n = �(n), which is O(n+m logm); otherwise, log n = O(logm)

and n + m log n = O(n + m logm).
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Theorem 3.2 The geodesic farthest-point Voronoi diagram of a set of m points in a
simple polygon of n vertices can be computed in O(n +m logm) time and O(n +m)

space.

4 Algorithm for Lemma 3.1

In this section, we present our algorithm for Lemma 3.1. We first present an algorithm
in Sect. 4.1 for the following triple-point geodesic center query problem: given any
three points in P , compute their geodesic center in P , which is a point that minimizes
the largest geodesic distance from the three query points. Oh and Ahn [22] solved
this problem in O(log2n) time, after O(n) time preprocessing. Our algorithm runs in
O(log n) time also with O(n) time preprocessing.3 This algorithm will be used as a
subroutine in our algorithm for Lemma 3.1, which will be discussed in Sect. 4.2.

4.1 The Triple-Point Geodesic Center Query Problem

For preprocessing, we construct the two-point shortest path query data structure by
Guibas and Hershberger [13, 14] and we refer to it as the GH data structure. The
data structure can be constructed in O(n) time, after which given any two points p
and q in P , the geodesic distance d(p, q) can be computed in O(log n) time and the
geodesic path π(p, q) can be output in additional time linear in the number of edges
of π(p, q).

Consider three query points s, t , and r in P . Our goal is to compute their geodesic
center, denoted by c. We follow the algorithmic scheme in [22]. Consider the geodesic
convex hull GCH(s, t, r) and the geodesic triangle �(s, t, r). We know that c is the
geodesic center of GCH(s, t, r) [3]. Depending on whether c is in the interior of
�(s, t, r), there are two cases.

4.1.1 c is not in the Interior of�(s, t, r)

If c is not in the interior of �(s, t, r), then it must be on the geodesic path of two
points of {s, t, r}. Without loss of generality, we assume that c ∈ π(s, t). Note that c
must be the middle point of π(s, t). To locate c in π(s, t), we wish to do binary search
on the vertices of π(s, t). It was claimed in [22] that the query algorithm of the GH
data structure returns π(s, t) as a binary tree (so that binary search can be done in a
straightforward way), in particular, when the simpler approach in [14] is utilized. In
fact, this is not quite precise. Indeed, the binary tree structures in both [13] and [14]
are used for representing convex chains (or more rigorously, semiconvex chains [14]).
However, π(s, t) is actually a string [13], which in general is not a semiconvex chain.
The data structure for representing a string is a tree but not necessarily a binary tree
because a node in the tree may have three children.

3 To be fair, this problem is not a dominant one in their algorithm, which might be a reason Oh and Ahn
[22] did not push their result further.
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Here for completeness, we provide a general binary search scheme on the geodesic
path π(p, q) returned by the GH data structure for any two query points p and q in P .
Suppose we are looking for either a vertex or an edge of π(p, q), denoted by w∗ in
either case, and we have access to an oracle such that given any vertex v ∈ π(p, q),
the oracle can determine whether w∗ is in π(p, v) or in π(v, q). Then, we have the
following lemma.

Lemma 4.1 With O(n) time preprocessing, given any two query points p and q, the
sought vertex or edge w∗ can be located by a binary search algorithm that calls
the oracle on O(log n) vertices of π(p, q), and the total time of the binary search
excluding the time for calling the oracle is O(log n). In particular, the middle point
of π(p, q) can be found in O(log n) time.

Proof We will use notation and concepts from the GH data structure [13] without
much explanation. To represent convex chains, we utilize the simpler way given in
[14], i.e., persistent binary trees with the path-copying method.

Consider the query points p and q. The GH query algorithm combines O(log log n)

“small” hourglasses of size O(log n) and two “big” hourglasses of size O(n) to assem-
ble the path π(p, q), which is represented as a string [13]. Combining two hourglasses
involves computing a tangent between them such that the tangent belongs to π(p, q).
Thus, the algorithmwill produce O(log log n) tangents. For our problem, we explicitly
consider these tangents and call the oracle on every vertex of these tangents. This calls
the oracle O(log log n) times. After that we can determine an hourglass containingw∗.
If it is a small hourglass, then since it has O(log n) vertices, we can simply call the
oracle on every vertex to locate w∗. In the following, we assume that w∗ is in a big
hourglass and let π be the portion of π(p, q) in the hourglass.

The endpoints of π can be obtained during the GH query algorithm. π from one
end to the other consists of a convex chain, a string, and another convex chain in order.
The two connection vertices between the string and the two convex chains can be
maintained during the preprocessing. We call the oracle on these two vertices, after
which we can determine the one of the three portions of π that contains w∗. If it is a
convex chain, then as a convex chain is represented by a binary tree of height O(log n)

[14], we can apply binary search on this tree in a standard way; after calling the oracle
on O(log n) vertices, w∗ can be obtained. In the following, we assume that the string
of π contains w∗. By slightly abusing notation, we still use π to denote the string.

The string π is represented by a tree T . However, each node of T may have three
children. Consider the root v of T . In general, π is a derived string and v has three chil-
dren: a left subtree L representing a derived string, a middle subtree M representing
a fundamental string, and a right subtree R representing another derived string. The
fundamental string consists of two convex chains linked by a tangent edge and each
derived string consists of two derived strings and a fundamental string in the middle.
The height of T is O(log n). The connecting vertex between the left string and the
middle string and the connecting vertex between the middle string and the right string
are maintained in the preprocessing and thus available during the query algorithm.
We call the oracle on the two connecting vertices and then determine which string
contains w∗. If the left or the right string contains w∗, then we proceed on the corre-
sponding subtree of v recursively. Otherwise, the middle string contains w∗. Again,
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the middle string consists of two convex chains linked by a tangent edge, which is
available to us due to the preprocessing. We call the oracle on the two vertices of the
tangent edge to determine which convex chain contains w∗ (or whether the tangent
edge contains w∗). After that, since a convex chain is represented by a binary tree of
height O(log n), we can finally locate w∗ by calling the oracle on O(log n) vertices
using the binary tree. In this way, after O(log n) oracle calls, we can reach a funda-
ment string and then w∗ can be finally located after another O(log n) oracle calls. In
summary, by calling the oracle on O(log n) vertices of π(p, q), w∗ can be found.

To compute the middle point of π(p, q), we first compute the geodesic distance
d(p, q) in O(log n) time by using the GH data structure. Then, we can follow the
above binary search scheme and each time when the oracle is called on a vertex v,
we also keep track of the geodesic distance d(p, v) using the GH data structure. By
comparing d(p, v) with d(p, q)/2, we can decide which way to proceed the search.
In this way, the middle point of π(p, q) can be determined in O(log n) time. �	

With Lemma 4.1 at hand, we can find c on π(s, t) in O(log n) time. We can
determine whether c is in the interior of �(s, t, r) in O(log n) time using Lemma 4.1
as follows. First, we determine whether c is the middle point of π(s, t). To do so,
we first compute the middle point pst of π(s, t) by Lemma 4.1. Then, we compute
d(s, pst ) and d(r , pst ) in O(log n) time using the GH data structure. It is not difficult
to see that pst is c if and only if d(s, pst ) ≥ d(r , pst ). If pst 
= c, then we use the
same way to determine whether the middle point of π(s, r) (resp., π(r , t)) is c. If the
above algorithm fails to locate c, then we know that c is in the interior of �(s, t, r).

The above finds c in O(log n) time for the case where c is not in the interior of
�(s, t, r).

4.1.2 c is in the Interior of�(s, t, r)

Weproceed to the casewhere c is in the interior of�(s, t, r). Our algorithm utilizes the
tentative prune-and-search technique of Kirkpatrick and Snoeyink [17]. First observe
that in this case c must be equidistant from all three points s, t , and r . Let s′ be the
junction vertex of π(s, t) and π(s, r). Define t ′ and r ′ similarly. With the GH data
structure, each junction vertex can be computed in O(log n) time [13]. Define ps , pt ,
and pr to be the anchors of c in π(s, c), π(t, c), and π(r , c), respectively. Note that
the segment connecting c to ps (resp., pt , pr ) is tangent to the side of �(s, t, r) that
contains it. As c is equidistant to s, t , and r , c is the common intersection of the three
bisectors B(s, t), B(s, r), and B(t, r).

Observation 4.2 The middle point pst of π(s, t) must be in π(s′, t ′); the middle point
psr of π(s, r) must be in π(s′, r ′); the middle point ptr of π(t, r) must be in π(t ′, r ′).

Proof We only prove the case for pst since the other two cases are similar. Assume to
the contrary that pst /∈ π(s′, t ′). Then, either pst ∈ π(s, s′)\{s′} or pst ∈ π(t, t ′)\{t ′}.
We assume it is the former case as the analysis for the latter case is similar. Then,
d(s, s′) > d(t, s′). Note that d(s, c) = d(s, s′) + d(s′, c) as c is in the interior of
�(s, t, r).Hence,d(s, c) > d(t, s′)+d(s′, c) ≥ d(t, c). But this incurs a contradiction
as c is equidistant from s and t . �	
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Since ps is the anchor of c in π(s, c), ps has smaller geodesic distance from s than
from t or r . Hence, by Observation 4.2, ps must be in γs = π(s′, pst ) ∪ π(s′, psr ),
which consists of two convex chains; we call γs a pseudo-convex chain. Similarly, pt
must be in γt = π(t ′, pst )∪π(t ′, ptr ) and pr must be in γr = π(r ′, ptr )∪π(r ′, psr ).
We consider pst and psr as two ends of γs . If we move a point p on γs from one end to
the other, then the slope of the tangent line of γs at p continuously changes. Further,
ps is the only point on γs such that cps is tangent to γs . Similar properties hold for γt ,
pt , γr , and pr .

With the above discussion, we are now in a position to describe our algorithm for
computing c. First, we compute the three junction vertices and the three middle points
s′, t ′, r ′, pst , psr , and ptr . This can be done in O(log n) time using the GH data
structure. To compute c (as well as locate ps , pt , and pr ), we resort to the tentative
prune-and-search technique [17], as follows.

To avoid the lengthy background explanation,we follow the notation in [17]without
definition. We will rely on [17, Theorem 3.9]. To this end, we need to define three
continuous and monotone-decreasing functions f , g, and h. We define them in a
way similar in spirit to [17, Theorem 4.10] for finding a point equidistant to three
convex polygons. Indeed, our problem may be considered as a weighted case of their
problem because each point in our pseudo-convex chains has a weight that is equal to
its geodesic distance from one of s, t , and r .

We parameterize over [0, 1] each of the three pseudo-convex chains A = γs ,
B = γt , and C = γr from one end to the other in counterclockwise order around
�(s, t, r). For example, without loss of generality, we assume that s′, t ′, and r ′ are
counterclockwise around �(s, t, r). Then, γs is parameterized from psr to pst over
[0, 1], i.e., each value of [0, 1] corresponds to a slope of a tangent at a point on γs .
For each point a of A, we define f (a) to be the parameter of the point b ∈ B such
that the tangent of A at a and the tangent of B at b intersect at a point on the bisector
B(s, t) of s and t (e.g., see Fig. 5). Similarly, we define g(b) for b ∈ B with respect to
C and define h(c) for c ∈ C with respect to A. One can verify that all three functions
are continuous and monotone-decreasing (the tangent at an apex of �(s, t, r) is not
unique but the issue can be handled [17]). The fixed-point of the composition of the
three functions h · g · f corresponds to c, which can be computed by applying the
tentative prune-and-search algorithm of [17, Theorem 3.9].

To see that the algorithm can be implemented in O(log n) time, we need to show
that given any a ∈ A and any b ∈ B, we can determine whether f (a) > b in O(1)
time. To this end, we first find the intersection p of the tangent of A at a and the tangent
of B at b. Then, d(s, a) + |pa| < d(t, b) + |pb| if and only if f (a) > b. We will
discuss below that the values d(s, a) and d(t, b) will be available during the tentative
prune-and-search algorithm. Note that here the tangent of A at a actually refers to
the half-line of the tangent whose concatenation with π(s′, a) is still a convex chain
(so that the shortest path can follow that half-line), as shown in Fig. 5. Hence, it is
possible that the tangent half-line of a does not intersect the tangent half-line of b. If
that happens, either the tangent half-line of a intersects the backward extension of the
tangent half-line of b or the backward extension of the tangent half-line of a intersects
the tangent half-line of b; in the former case we have f (a) < b and in the latter case
f (a) > b. Similar properties hold for functions g and h. Finally, we show that we have

123



Discrete & Computational Geometry (2023) 70:426–454 437

s
t

r

B (s, t ) t

r

s a

b = f (a)

psr

pst

ptr

Fig. 5 Illustrating the geodesic triangle �(s, t, r) and the definition of the function f (a) for a ∈ A = γs

appropriate data structures to represent the three pseudo-convex chains A, B, and C
so that the algorithm can terminate in O(log n) rounds. We only discuss A since the
other two cases can be handled similarly. When the algorithm picks the first vertex of
A to test, we will use the vertex s′. After the test, the algorithm will proceed on A on
one side of s′, say, on π(s′, pst ). We apply the binary search scheme of Lemma 4.1 on
π(s′, pst ), which will test O(log n) vertices. Further, whenever a vertex a ∈ π(s′, pst )
is tested, the binary search scheme of Lemma 4.1 can keep track of d(s, a). Therefore,
by applying the tentative prune-and-search technique in [17, Theorem 3.9], we can
compute the geodesic center c in O(log n) time.

The following lemma summarizes our result on the triple-point geodesic center
query problem.

Lemma 4.3 With O(n) time preprocessing, the geodesic center of any three query
points in P can be computed in O(log n) time.

4.2 Proving Lemma 3.1

With Lemma 4.3, we are ready to present our algorithm for Lemma 3.1. Consider any
three sites s, t, r as specified in the statement of Lemma 3.1. Our goal is to compute
the point α(s, t, r), which is equidistant from the three sites. Recall that we have
two points β(s, t) and β(t, r) available to us, which are critical to the success of our
approach.

The first step of our algorithm is to apply the algorithm for Lemma 4.3 to compute
the geodesic center c of the three sites. We check whether c is equidistant to the three
sites, in O(log n) time. If yes, α(s, t, r) = c and we are done. In the following we
assume otherwise.

Our algorithmmaynot computeα(s, t, r) even if it exists, butwill guarantee to do so
if α(s, t, r) is a Voronoi vertex of FVD(S). This is sufficient for constructing FVD(S)

correctly. Hence, in what follows we assume that α(s, t, r) is a Voronoi vertex. This
implies that there are two Voronoi edges connecting α(s, t, r)with β(s, t) and β(t, r),
respectively. Recall that c∗ is the geodesic center of S. The following observation was
discovered by Aronov et al. [3].

Observation 4.4 If a point p moves from β(s, t) (resp., β(t, r)) to α(s, t, r) along the
Voronoi edge, both d(c∗, p) and d(t, p) are monotonically decreasing.
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To simplify the notation, unless otherwise stated, we use α to refer to α(s, t, r). We
define the three junction vertices s′, t ′, and r ′ in the same way as before, which are
the three apexes of the geodesic convex hull �(s, t, r). Without loss of generality,
we assume that s′, t ′, and r ′ are counterclockwise around the boundary of �(s, t, r)
(e.g., see Fig. 4). We define ps , pt , and pr as the anchors of α in π(s, α), π(t, α), and
π(r , α), respectively. Define pst , psr , and ptr as the middle points of π(s, t), π(s, r),
and π(t, r), respectively. The following observation, obtained from the results of
Aronov [2], will occasionally be used later.

Observation 4.5 Suppose x and y are two points of P such that their bisector B(x, y)
does not contain any vertex of P. Then, for any point z ∈ P, the shortest path π(x, z)
(resp., π(y, z)) either does not intersect B(x, y) or intersects it at a single point.

Proof All arguments here are from Aronov [2]. B(x, y) divides P into two subpoly-
gons; one of them, denoted by Px , contains x and the other, denoted by Py , contains y.
We assume that neither Px nor Py contains B(x, y). All points in Px are closer to x
than to y and all points in Py are closer to y than to x . Let z be any point in P . If
z ∈ Px , then π(x, z) is in Px . If z ∈ B(x, y), then π(x, z) \ {z} is in Px due to the
general position assumption. If z ∈ Py , then π(x, z) intersects B(x, y) at a single
point. Similar results hold for π(y, z). �	

Recall that α(s, t, r) is not c. Hence, c must be equidistant to two sites and the
geodesic distance from them to c is strictly larger than that from the third site to c.
Depending on what the two sites are, there are three cases d(c, s) = d(c, r) > d(c, t),
d(c, t) = d(c, r) > d(c, s), and d(c, t) = d(c, s) > d(c, r). The following lemma
shows that the latter two cases cannot happen.

Lemma 4.6 If α(s, t, r) is a Voronoi vertex of FVD(S), then neither d(c, t) =
d(c, r) > d(c, s) nor d(c, t) = d(c, s) > d(c, r) can happen.

Proof Note that the two cases are symmetric and thus we only discuss the case
d(c, t) = d(c, r) > d(c, s). Assume to the contrary that d(c, t) = d(c, r) > d(c, s)
happens. Then, c is the middle point of π(t, r). Consider the farthest Voronoi diagram
FVD(s, t, r)with respect to the three sites s, t, r only (without considering other sites
of S). Then, α is a vertex of the diagram, i.e., the three Voronoi edges bounding the
three cells of s, t , and r meet at α (e.g., see Fig. 6). Since d(c, t) = d(c, r) > d(c, s),
c is on the Voronoi edge E(t, r) bounding the cells of t and r . By the definition of
β(t, r), it is also on E(t, r). Hence, all three points α, c, and β(t, r) are on E(t, r).
Let E ′(t, r) be the portion of E(t, r) between α and β(t, r). Since both β(t, r) and α

are vertices of FVD(S), E ′(t, r) must be an edge of FVD(S) bounding the two cells
of t and r . By Observation 4.4, if we move a point p on E ′(t, r) from β(t, r) to α,
d(t, p) is monotonically decreasing.

Since c is the middle point of π(t, r), if we move a point p on the bisector B(t, r)
from one end to the other, d(t, p) will first strictly decreases until p = c and then
strictly increases. Note that E ′(t, r) ⊆ E(t, r) ⊆ B(t, r). Note also that E ′(t, r) has
α and β(t, r) as its two endpoints. Depending on whether E ′(t, r) contains c, there
are two cases.
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r tc
(t, r )

E (t, r )

α

β

Fig. 6 Illustrating the proof ofLemma4.6. The three solid curves are the threeVoronoi edges of FVD(s, t, r).
The dotted curve is the shortest path π(r , t). The curve between α and β(t, r) is E ′(t, r)

• If E ′(t, r) does not contain c, then c, β(t, r), and α appear in E(t, r) in this order
since α is a vertex of FVD(s, t, r) and thus is an endpoint of E(t, r). Hence, c,
β(t, r), and α appear in B(t, r) in this order. Therefore, if we move a point p
on E ′(t, r) from β(t, r) to α, d(t, p) must be strictly increasing. But this contra-
dicts the fact that if we move a point p on E ′(t, r) from β(t, r) to α, d(t, p) is
monotonically decreasing.

• If E ′(t, r) contains c, then β(t, r), c, and α appear in E(t, r) in this order (e.g.,
see Fig. 6). Hence, β(t, r), c, and α appear in B(t, r) in this order. Therefore, if
we move a point p on E ′(t, r) from β(t, r) to α, d(t, p) will first strictly decrease
and then strictly increase, a contradiction again.

The lemma thus follows. �	
Note that Lemma 4.6 is obtained based on the assumption thatα(s, t, r) is a Voronoi

vertex of FVD(S). Therefore, if one of the two cases in Lemma 4.6 happens during
the algorithm, then we can simply return null.

In what follows, we assume that d(c, s) = d(c, r) > d(c, t). Thus, c must be
the middle point of π(s, r). Depending on the location of c, there are three cases:
c ∈ π(s′, r ′), c ∈ π(s, s′) \ {s′}, and c ∈ π(r ′, r) \ {r ′}. The latter two cases are
symmetric, so we will only discuss the first two cases.

4.2.1 The Case c ∈ �(s′, r′)

Let uv be the edge of π(s′, r ′) containing c such that d(s, u) < d(s, v). It is possible
that u is s or/and v is t . We first assume that both u and v are polygon vertices; we will
show later the other case (i.e., at least one of u and v is not a polygon vertex) can be
reduced to this case. Our algorithm relies on the following lemma (e.g., see Fig. 7).

Lemma 4.7 (i) α must be in the geodesic triangle �(s, r , β(s, t)).
(ii) The apexes of �(s, r , β(s, t)) are u′, v′, and β(s, t), where u′ (resp., v′) is the

junction vertex of and π(s, r) and π(s, β(s, t)) (resp., π(r , β(s, t))) (in Fig. 7,
u′ = u and v′ = v).

(iii) ps must be on the pseudo-convex chain π(u′, β(s, t)) ∪ π(u′, v′) and α ps is
tangent to the chain.

(iv) pr must be on the pseudo-convex chain π(v′, β(s, t)) ∪ π(v′, u′) and α pr is
tangent to the chain.
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Fig. 7 Illustrating Lemma 4.7. In this example, u′ = u and v′ = v

(v) pt must be on the pseudo-convex chain π(tuv, u) ∪ π(tuv, v) and α pt is tangent
to the chain, where tuv is the junction vertex of π(t, u) and π(t, v).

(vi) α pt intersects uv.

Proof As both u and v are polygon vertices, uv divides P into two sub-polygons; one
of them, denoted by P1, does not contain t and we use P2 to denote the other one. Oh
and Ahn [22] claimed without proof (in the proof of [22, Lemma 3.6]) that α is in P1.
We provide a brief proof below.

Assume to the contrary that α is not in P1. Then, α ∈ P2. Since B(s, r) intersects
π(s, r) only once at c ∈ uv ⊆ π(s, r), B(s, r) is partitioned into two portions by c,
one in P1 and the other in P2; let B2(s, r) denote the portion in P2, which has c as
one of its endpoint. As α is equidistant from s, t , and r , α is on B(s, t). Since α ∈ P2,
we obtain that α ∈ B2(s, r). As α is not c, which is the geodesic center of s, t , and r ,
α cannot be in the geodesic triangle �(s, t, r). Therefore, if we move on B2(s, r)
from c to its other endpoint, we will first enter �(s, t, r) and then encounter either
π(s′, t ′) or π(t ′, r ′) before we encounter α. Without loss of generality, we assume that
we encounter π(s′, t ′). We assume that s, t, r are ordered counterclockwise around
the boundary of their geodesic hull (e.g., see Fig. 7). Consider the farthest Voronoi
diagram FVD(s, t, r) of the three sites s, t, r only (without considering other sites
of S). Let C(p) be the cell of p ∈ {s, t, r} in the diagram. As d(c, s) = d(c, r) >

d(c, t), c belongs to the common boundary of C(s) and C(r), i.e., c is on an edge of
FVD(s, t, r). The point α divides B(s, r) into two portions, one of which contains c.
The above implies that the portion of B(s, r) containing c is an edge of FVD(s, t, r)
(e.g., see Fig. 8). That edge partitions �(s, t, r) into two sides; one side contains s′
and the other contains r ′. It is not difficult to see that the side containing s′ belongs
to C(r) while the other side belongs to C(s). Then, one can verify that the three cells
C(s), C(t), and C(r) in FVD(s, t, r) are ordered clockwise along the boundary of P
(e.g., see Fig. 8). According to Aronov [3], s, t , and r should also be ordered clockwise
around the boundary of their geodesic hull. But this contradicts the fact that s, t , and r
are ordered counterclockwise around the boundary of their geodesic hull.

The above proves that α is in P1. Oh and Ahn [22] showed that α pt intersects uv.
The main idea of the proof is that if this were not the case, then a vertex of P would
be on a bisector of two of the three sites s, t , and r , contradicting with the general
position assumption (see the proof of [22, Lemma 3.6] for the detailed analysis). This
leads to the lemma statement (vi), which further implies the lemma statement (v).
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Fig. 8 Illustrating FVD(s, t, r), whose edges are depicted by thick (red) solid curves. The (red) dotted
curves belong to bisectors but not on FVD(s, t, r). The point α is the only vertex of FVD(s, t, r) because
it is equidistant from all three sites. The cells C(s), C(t), and C(r) are ordered clockwise around α, while
s, t , and r are ordered counterclockwise around the boundary of their geodesic hull, a contradiction

To simplify the notation, let q = β(s, t). By definition, q is on the bisector B(s, t).
As α is equidistant from s, t , and r , α is also on B(s, t). Let pst be the middle point
of π(s, t). Hence, pst ∈ B(s, t).

We claim that α must be on B(s, t) between pst and q (e.g., see Fig. 9). Indeed,
notice that pst is the point on B(s, t) closest to t and if wemove a point p from one end
of B(s, t) to the other end, d(t, p) will first monotonically decrease until pst and then
monotonically increase. By Observation 4.4, if we move a point p along B(s, t) from
q to α, d(t, p) will monotonically decrease. As such, α must be on B(s, t) between
pst and q.

We next argue that q ∈ P1. Depending on whether B(s, t) intersects uv, there
are two cases. If B(s, t) does not intersect uv, then as α ∈ B(s, t) and α ∈ P1,
B(s, t) is in P1. Since q ∈ B(s, t), q ∈ P1 holds. If B(s, t) intersects uv, then since
uv ⊆ π(s, r), by Observation 4.5, B(s, t) intersects uv at a single point, denoted
by qst (e.g., see Fig. 9). To prove q ∈ P1, since α ∈ P1 and α is on B(s, t) between
q and pst , it suffices to show that pst ∈ P2. Indeed, since B(s, t) intersects uv at qst
and uv ⊆ π(s, r), by Observation 4.5, B(s, t) does not intersect any other point of
π(s, r). Hence, B(s, t) does not intersect π(s, s′) \ {s′}, which is a subpath of π(s, r)
and does not contain any point of uv. This implies that pst cannot be on π(s, s′) \ {s′}
and thus is on π(s′, t). Note that s′ is in P2. Since both s′ and t are in P2, π(s′, t) is
in P2. As such, pst ∈ P2.

The above proves that q ∈ P1 (recall q = β(s, t)) and α is on B(s, t) between q
and pst . In the following, we proceed to prove that α ∈ �(s, r , q).

As α is on B(s, t) between q and pst , α must be in the geodesic triangle �(s, t, q).
Since q ∈ B(s, t), due to the general position assumption, the incident edges of q
in π(q, s) and π(q, t) cannot be coincident [3]. This means that q is the junction
vertex of π(q, s) and π(q, t), and thus q is an apex of �(s, t, q). Since t ∈ P2 and
q ∈ P1, π(q, t) must cross uv at a point p; e.g., see Fig. 7. Since both α and q are
in P1, α is also in the geodesic triangle �(s, p, q) and q is an apex of �(s, p, q).
Further, since p ∈ uv ⊆ π(s, r), �(s, p, q) is a subset of �(s, r , q) and q is also an
apex of �(s, r , q). As such, we obtain that α ∈ �(s, r , q). This proves the lemma
statement (i).
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Fig. 9 Illustrating the relative positions of β(s, t), α, and pst

The above also proves that q is an apex of �(s, r , q). By definition, u′ and v′
are the other two apexes of �(s, r , q). This proves the lemma statement (ii). Since
α ∈ �(s, r , q), the lemma statements (iii) and (iv) obviously hold. �	

In light of Lemma 4.7, we can apply the tentative prune-and-search technique [17]
on the three pseudo-convex chains specified in the lemma in a similar way as before
to compute α in O(log n) time.

We summarize our algorithm for this case. First, we compute the edge uv, which
can be done in O(log n) time using the GH data structure by Lemma 4.1. Second, we
compute the junction vertex tuv of π(t, u) and π(t, v) in O(log n) time by the GH
data structure [13]. Third, we apply the tentative prune-and-search technique on the
three pseudo-convex chains as specified in Lemma 4.7, along with the binary search
scheme in Lemma 4.1 on the chains, to compute α in O(log n) time.

Recall that the above algorithm is based on the assumption that α is a Voronoi vertex
of FVD(S). However, when we invoke the procedure during the geodesic sweeping
algorithm we do not know whether the assumption is true. Therefore, as a final step,
we add a validation procedure as follows. Suppose α is the point returned by the
algorithm. First, we check whether d(s, α) = d(t, α) = d(r , α). If not, we return null.
Otherwise, we further check whether d(c∗, α) ≤ min {d(c∗, β(s, t)), d(c∗, β(t, r))}.
This is because the Voronoi vertex α is only useful if it is inside the current sweeping
circle C , whose geodesic distance to c∗ is at most min {d(c∗, β(s, t)), d(c∗, β(t, r))}
(because neither β(s, t) nor β(t, r) is in the interior of C). Hence, if d(c∗, α) ≤
min {d(c∗, β(s, t)), d(c∗, β(t, r))}, then we return α; otherwise, we return null. This
validation step takes O(log n) time by the GH data structure.

At least one of u and v is not a polygon vertex. The above discusses the case
where both u and v are polygon vertices. In the following, we consider the other case
where at least one of them is not a polygon vertex, i.e., u = s or/and v = r (because
all vertices of π(s, r) except s and r are polygon vertices). In fact, this case is missed
from the algorithm of Oh and Ahn [22] (see the proof of [22, Lemma 3.6]). It turns
out that Lemma 4.7 still holds for this case and thus we can apply exactly the same
algorithm as above. We prove the lemma below by reducing this case to the previous
case where u and v are polygon vertices.

Lemma 4.8 Lemma 4.7 still holds when u = s or/and v = r .
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Fig. 10 Illustrating the proof of Lemma 4.8

Proof Without loss of generality, we assume that v is not a polygon vertex and thus
v = r = r ′. We extend uv in the direction from u to v until ∂P at a point v′ (e.g., see
Fig. 10). If u is also not a polygon vertex, then u = s = s′ and we extend uv in the
direction from v to u until ∂P at a point u′. If u is a polygon vertex, we let u′ = u.

Let P ′ be the polygon by merging P with the two segments vv′ and uu′. So P ′ is a
(weakly) simple polygon with u and v as two vertices. We claim that B(s, t), B(s, r),
and B(t, r) are still the bisectors of s, t , and r in P ′. Before proving the claim, we
proceed to prove the lemma with help of the claim. Due to the claim, since u and v are
now both polygon vertices of P ′, we can apply literally the same argument as in the
previous case. Indeed, the argument only relies on the properties of the three bisectors,
e.g., α is their common intersection. Now that the three bisectors do not change from
P to P ′, the same argument still works. Thus, the lemma follows.

In the following, we prove the above claim. It is sufficient to show the following four
properties:

(a) vv′ \ {v} ∪ uu′ \ {u} does not intersect any of the three bisectors B(s, t), B(t, r),
and B(s, r);

(b) vv′ \ {v}∪uu′ \ {u} does not intersect π(s, p) for any point p ∈ B(s, t)∪ B(s, r);
(c) vv′ \ {v}∪uu′ \ {u} does not intersect π(t, p) for any point p ∈ B(s, t)∪ B(t, r);
(d) vv′ \ {v}∪uu′ \ {u} does not intersect π(r , p) for any point p ∈ B(s, r)∪ B(t, r).

Below we will prove the above four properties only for vv′ \ {v}, as the proof for
uu′ \ {u} is similar. We prove these properties in order.

Property (a). First of all, since v′ is an extension of uv, it holds that π(s, v′) =
π(s, v) ∪ vv′. Recall that d(s, c) = d(c, r) > d(t, c) and c ∈ uv. Assume to the
contrary that vv′ intersects B(s, t), say, at a point z. Then, d(s, z) = d(s, c) + |cz|.
On the other hand, by triangle inequality, d(t, z) ≤ d(t, c) + |cz|. Hence, we obtain
d(s, z) = d(s, c) + |cz| > d(t, c) + |cz| ≥ d(t, z). However, since z ∈ B(s, t),
d(s, z) = d(t, z), and thus contradiction occurs. This proves that vv′ does not intersect
B(s, t). Because π(s, v′) contains rv′, d(s, p) > d(r , p) for any point p ∈ vv′.
Therefore, vv′ \ {v} cannot intersect B(s, r).

Next we prove the case for B(t, r). Let a be the anchor of r in π(t, r). Since
d(t, c) < d(r , c) = |cr |, the angle ∠(a, r , c) must be smaller than π/2, and thus
the angle ∠(v′, r , a) is larger than π/2. Notice that r is the junction vertex of π(r , t)
and π(r , p) = rp for any p ∈ vv′ \ {v}. Since the angle ∠(p, r , a) = ∠(v′, r , a) is
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Fig. 11 Illustrating the pseudo-triangle �(s, t, p)

larger than π/2, it must hold that d(t, p) > d(r , p) (see [25, Cor. 2]). This implies
that p cannot be on B(t, r). Thus, vv′ \ {v} does not intersect B(t, r). This proves
property (a).

Property (b). Let p be any point in B(s, t) ∪ B(s, r). Assume to the contrary that
π(s, p) contains a point p′ ∈ vv′ \ v. Then, since π(s, p′) contains π(s, r), π(s, p)
contains π(s, r) and thus contains r .

If p ∈ B(s, r), then we immediately obtain contradiction as π(s, p) cannot con-
tain r . Now consider the case p ∈ B(s, t). Since d(s, c) > d(t, c), there must
be a point p′′ ∈ π(s, c) such that d(s, p′′) = d(t, p′′), i.e., p′′ ∈ B(s, t). Since
π(s, p′′) ⊆ π(s, c) and c 
= r , π(s, p′′) does not contain r . If p = p′′, we obtain
that π(s, p) does not contain r , which incurs a contradiction. Hence, p 
= p′′. Thus,
π(s, p) intersects B(s, t) at two different points p and p′′. But this is not possible due
to Observation 4.5. This proves property (b).

Property (c). For (c), let p be any point in B(s, t)∪B(t, r). Assume to the contrary
that π(t, p) contains a point p′ ∈ vv′ \ {v}. We first discuss the case p ∈ B(s, t).
Consider the geodesic triangle �(s, t, p); e.g., see Fig. 11. Since p ∈ B(s, t), p must
be an apex of �(s, t, p). Let a be the junction vertex of π(s, p) and π(s, t) and
let b the junction vertex of π(t, s) and π(t, p). Hence, a and b are two apexes of
�(s, t, p). By a similar argument as Observation 4.2, the middle point pst of π(s, t)
must be on π(a, b), i.e., the side of �(s, t, p) opposite to p. Hence, the portion of
B(s, t) between p and pst , denoted by B, separates �(s, t, p) into two parts. As
π(t, p) = π(t, b) ∪ π(b, p), p′ is either in π(t, b) or in π(b, p).

• If p′ is in π(t, b), then p′ is in π(s, t) as π(t, b) is a subpath of π(s, t). Therefore,
π(s, p′) is a subpath of π(s, t). Recall that π(s, r) ⊆ π(s, p′). We thus obtain that
π(s, r) is a subpath of π(s, t). Since c ∈ π(s, r), we obtain that s, c, r , and t are
all on π(s, t) in this order. Hence, d(c, r) ≤ d(c, t), which incurs a contradiction
as d(c, r) > d(c, t).

• If p′ is inπ(b, p), thenπ(s, p′)must intersect B, say, at a point z (e.g., see Fig. 11).
By Lemma 4.9, it holds that d(s, z) ≥ d(z, p′), and thus d(s, z) ≥ d(s, p′)/2.
Since r ∈ π(s, p′), we have d(s, z) ≥ d(s, r)/2 = d(s, c). This implies that
c ∈ π(s, z). Because z ∈ B(s, t), we have d(s, c) ≤ d(t, c). But this contradicts
fact d(s, c) > d(t, c).

The above obtains contradiction for the case p ∈ B(s, t).
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We next discuss the case p ∈ B(t, r). The bisector B(t, r) divides P into two
subpolygons; let Pt be the one containing t and let Pr denote the one containing r .
We assume that neither Ps nor Pr contains B(t, r). As p ∈ B(t, r), the entire path
π(t, p) is in Pt ∪ B(s, t). Since p′ ∈ vv′ \ {v′}, by a similar argument using the angle
at r as that for property (a), we can show that d(t, p′) > d(r , p′). This implies that p′
is in Pr . Therefore, p′ cannot be in π(s, p), a contradiction. This proves property (c).

Property (d). For (d), assume to the contrary that π(r , p) contains a point p′ ∈
vv′ \ {v}. We first discuss the case p ∈ B(t, r). Let a be the anchor of r in π(t, r).
Recall that we have shown before that the angle∠(a, r , v′) is larger thanπ/2. Consider
the geodesic triangle �(t, r , p).

• If r is not an apex of �(t, r , p), then ra ∈ π(r , t) ∩ π(r , p). Since p′ ∈ π(r , p)
and p′ /∈ ra, we obtain that π(r , p′) contains a. However, since∠(a, r , v′) > π/2
and p′ ∈ rv′, π(r , p′) = rp′ does not contain a, a contradiction.

• If r is an apex of �(t, r , p), then since p ∈ B(t, r), the angle ∠(a, r , b) must
be smaller than π/2, where b is the anchor of r in π(p, r). As p′ ∈ π(r , p)
and π(r , p′) = rp′, we obtain that p′ ∈ rb and thus ∠(a, r , b) = ∠(a, r , p′).
Hence,∠(a, r , p′) is smaller than π/2. However,∠(a, r , p′) = ∠(a, r , v′), which
is larger than π/2. Thus we obtain a contradiction.

We then discuss the case p ∈ B(s, r). Note that u is the anchor of r in π(s, r). Hence,
the angle ∠(u, r , v′) is equal to π , which is larger than π/2. Consequently, we can
follow the same analysis as above to obtain contradiction. This proves property (d).
The lemma thus follows. �	

We finally prove the following technical lemma, which is needed in the proof of
Lemma 4.8. The lemma, which establishes a very basic property of shortest paths in
simple polygons, may be interesting in its own right.

Lemma 4.9 Let s and t be any two points in P such that B(s, t) does not contain
any vertex of P. Suppose p is a point in B(s, t) and p′ is a point in π(t, p). Then,
π(s, p′) intersects B(s, t) at a single point z and d(s, z) ≥ d(z, p′) (in particular,
d(s, z) > d(z, p′) if p′ 
= t); e.g., see Fig. 11.

Proof We first consider a special case where p is the middle point pst of π(s, t).
Note that pst ∈ B(s, t). In this case, z = pst and π(s, t) = π(s, z) ∪ π(z, t).
Hence, π(s, p′) = π(s, z) ∪ π(z, p′) and d(s, z) = d(z, t) ≥ d(z, p′) (and d(s, z) =
d(s, t) > d(z, p′) if p′ 
= t).

In the following we assume p 
= pst . Consider the geodesic triangle �(s, t, p).
Since p ∈ B(s, t), p is an apex of �(s, t, p). Let a be the junction vertex of π(s, t)
and π(s, p) and b be the junction vertex of π(t, s) and π(t, p) (e.g., see Fig. 11).
Hence, a, b, p are the three apexes of �(s, t, p). In the following discussion we will
use �(a, b, p) instead. By a similar argument as Observation 4.2, pst is in π(a, b).

The bisector B(s, t) partitions P into two connected subpolygons Ps and Pt such
that Ps contains s and Pt contains t [2]. We assume that neither Ps nor Pt contains
B(s, t). Since p ∈ B(s, t), π(s, p) \ {p} ⊆ Ps and π(t, p) \ {p} ⊆ Pt [2]. This
implies that π(s, p′) intersects B(s, t) at a single point z because s ∈ Ps and p′ /∈ Ps .
Since p′ ∈ π(t, p), p′ is either in π(t, b) or in π(b, p) \ {b}. In the former case,
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Fig. 12 Illustrating the proof of Lemma 4.9 for the case q ∈ π(pst , b) \ {pst }

π(s, b) ⊆ π(s, p′) ⊆ π(s, t) and thus z = pst . Hence, d(s, z) = d(s, t)/2. On
the other hand, π(z, p′) ⊆ π(z, t) and thus d(z, p′) ≤ d(z, t) = d(s, t)/2 (and
d(z, p′) < d(z, t) if p′ 
= t). Therefore, we obtain that d(s, z) ≥ d(z, p′) (and
d(s, z) > d(z, p′) if p′ 
= t).

It remains to discuss the case p′ ∈ π(b, p) \ {b}. In this case, p′ is a point on the
boundary of �(a, b, p). Let q be the anchor of p′ in π(s, p′). Because p′ is on the
boundary of �(a, b, p), π(s, a) ⊆ π(s, p′) and q is on the boundary of �(a, b, p).
Since p′ is in π(b, p), which is the opposite side of the apex a, q cannot be on π(b, p)
and thus must be on π(a, p) ∪ π(a, b). Note that π(a, b) = π(a, pst ) ∪ π(pst , b).

Our goal is to prove d(s, z) > d(z, p′). Assume to the contrary that d(s, z) ≤
d(z, p′). In the following we will obtain d(s, p) > d(t, p), which incurs a con-
tradiction as p ∈ B(s, t). Depending on whether q is in π(a, p) ∪ π(a, pst ) or in
π(pst , b) \ {pst }, there are two cases. We first show that the latter case can be reduced
to the former case.

If q ∈ π(pst , b) \ {pst }, then z = pst ; e.g., see Fig. 12. Hence, d(z, b) ≤ d(t, z) =
d(s, z) ≤ d(z, p′). If we move a point x on π(b, p) from b to p, then d(s, x) is strictly
convex (see the proof of [25, Lemma 1]), and more precisely, d(s, x) first strictly
decreases until a point x∗ and then strictly increases. We claim that x∗ ∈ π(b, p′).
Indeed, assume to the contrary that x∗ ∈ π(p′, p). Then, we can obtain d(s, p′) <

d(s, b). Because bothπ(s, p′) andπ(s, b) contain z, we derive that d(z, p′) < d(z, b),
which contradicts d(z, p′) ≥ d(z, b). Due to the above claim, as we move x from
p′ to p along π(p′, p), π(s, x) will strictly increase. We stop moving x when xx ′
contains pst (e.g., see Fig. 12), where x ′ is the anchor of x in π(s, x). Note that such
a moment must exist as π(s, p) does not contain pst . As pst ∈ π(s, p′), z is still pst .
Since d(s, x) > d(s, p′) and both π(s, x) and π(s, p′) contain z, we can obtain
that d(z, p′) < d(z, x). As d(s, z) ≤ d(z, p′), we deduce that d(s, z) ≤ d(z, x).
Now we obtain an instance of the first case (i.e., q ∈ π(a, p) ∪ π(a, pst )) because
x ′ ∈ π(a, pst ), i.e., we can consider x as a new point p′ and obtain contradiction by
using the analysis given below for the first case.

In the following we consider the case where q ∈ π(a, p) ∪ π(a, pst ); e.g., see
Fig. 13. In this case, qp′ intersects B(s, t) at z and thus d(z, p′) = zp′. There are
two subcases depending on whether q ∈ π(a, p) or q ∈ π(a, pst ). For each case,
we will construct a geodesic triangle �(a′, b′, p) (which may not be in P) with the
following properties: (1) a′, b′, and p are its three apexes; (2) the length of the side
of �(a′, b′, p) connecting a′ and p, denoted by l(a′, p), is at most d(s, p); (3) the
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Fig. 13 Illustrating the proof of Lemma 4.9: (a) q ∈ π(a, p); (b) q ∈ π(a, pst )
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Fig. 14 Illustrating the definitions of a′, b′, w, and z′ in the proof of Lemma 4.9

length of the side of �(a′, b′, p) connecting b′ and p, denoted by l(b′, p), is equal
to d(b, p); (4) the angle at b′ formed by its two incident edges of �(a′, b′, p) is at
least π/2. These properties together lead to d(s, p) > d(t, p). Indeed, due to property
(4), it holds that l(b′, p) < l(a′, p) (see [25, Cor. 2]). Combining with properties (2)
and (3), we have d(t, p) = l(b′, p) < l(a′, p) ≤ d(s, p). This incurs a contradiction
since d(t, p) = d(s, p).

The first subcase q ∈ π(a, p). We begin with the subcase q ∈ π(a, p); e.g.,
see Fig. 13 (a). We extend p′q along the direction from p′ to q until a point a′ such
that |qa′| = d(s, q); note that qa′ may not be in P . Refer to Fig. 14. Note that
π(p, q)∪qa′ is still a convex chain and its length l(a′, p) is equal to |qa′|+d(q, p) =
d(s, q)+d(q, p) = d(s, p). Let p′′ be the vertex ofπ(p′, p) incident to p′.We extend
p′′ p′ along the direction from p′′ to p′ until a point b′ such that |p′b′| = d(t, p′).
Note that π(p, p′) ∪ p′b′ is still a convex chain and its length l(b′, p) is equal to
|p′b′| + d(p′, p) = d(t, p′) + d(p′, p) = d(t, p). In the following we show that the
angle ∠(p′, b′, a′) is at least π/2; this will prove all four properties described above
for the geodesic triangle �(a′, b′, p).

We claim that |zb′| ≤ d(z, t). Before proving the claim, we first show
∠(p′, b′, a′) ≥ π/2 by using the claim. Indeed, notice that |za′| = |zq| + |qa′| =
|zq| + d(s, q) = d(s, z). As z ∈ B(s, t), d(s, z) = d(t, z). Hence, |za′| ≥ |zb′|.
Recall that d(s, z) ≤ d(z, p′) = |zp′|. Therefore, we have |zp′| ≥ |za′| ≥ |zb′|. If we
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Fig. 15 Illustrating the definitions of a′, b′, and q ′ in the proof of Lemma 4.9

draw a circle centered at z with radius equal to |za′|, then a′ is on the circle, b′ is inside
or on the circle, and p′ is outside or on the circle. Since a′ p′ contains a diameter of
the circle, we obtain that ∠(p′, b′, a′) ≥ π/2.

We proceed to prove the claim |zb′| ≤ d(z, t). Notice that p′b′ must intersect
π(z, b). Indeed, unless p′b′ contains b (in which case it is vacuously true that p′b′
intersects π(z, b)), as p′b′ is tangent to π(b, p) at p′, if we move on p′b′ from p′
towards b′, we will enter the interior of �(a, b, p) and let w be the first point on
the boundary of �(a, b, p) we meet during the above movement after p′ (i.e., we
will go outside �(a, b, p) after w; e.g., see Fig. 14). Then, p′w separates z and b on
its two sides, and thus p′w must intersect π(z, b), say, at a point z′. We next prove
|z′b′| ≤ d(z′, t). Indeed, d(t, p′) = |p′b′| = |p′z′| + |z′b′|. On the other hand, by
triangle inequality, d(t, p′) ≤ |p′z′| + d(z′, t). Hence, we obtain |z′b′| ≤ d(z′, t).
Consequently, by triangle inequality, |zb′| ≤ d(z, z′) + |z′b′| ≤ d(z, z′) + d(z′, t) =
d(z, t). This proves the claim. The above proves the first subcase q ∈ π(a, p).

The second subcase q ∈ π(a, pst ). We next discuss the subcase q ∈ π(a, pst );
e.g., see Fig. 13 (b). The analysis is somewhat similar. First of all, we define b′ in the
same way as above; by the same argument, we have: (1) π(p, p′) ∪ p′b′ is a convex
chain and its length is equal to d(p, b); (2) |zb′| ≤ d(z, t).

The point a′ is now defined in a slightly different way. Refer to Fig. 15. We extend
p′q from p′ to q until a point a′ that satisfies the following two conditions: (1) |qa′| ≥
d(s, q); (2) p′a′ intersects π(a, p), say, at a point q ′ (this is possible as p′q is tangent
to π(a, pst ) at q). Note that a′ = q ′ if and only if |qq ′| ≥ d(s, q). Also note that
|qa′| = d(s, q) if a′ 
= q ′. Next we prove the four properties of the geodesic triangle
�(a′, b′, p).

First of all, notice that |a′z| = |a′q| + |qz| ≥ d(s, q) + |qz| = d(s, z). Recall that
|zb′| ≤ d(t, z) = d(s, z) and d(s, z) ≤ |zp′|. By a similar argument as before for the
first subcase, the angle ∠(a′, b′, p′) is at least π/2. By the definitions of a′ and q ′,
π(p, q ′) ∪ q ′a′ is a convex chain and we will show below that its length l(a′, p) is at
most d(s, p), which will prove all four properties of �(a′, b′, p).

To prove l(a′, p) ≤ d(s, p), as l(a′, p) = |a′q ′|+d(q ′, p) andd(s, p) = d(s, q ′)+
d(q ′, p), it is sufficient to prove |a′q ′| ≤ d(s, q ′). If a′ = q ′, this is obviously
true. We thus assume a′ 
= q ′. Then, |qq ′| < |qa′| = d(s, q). Hence, d(s, p′) =
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Fig. 16 Illustrating an example where α exists when c ∈ π(s, s′) \ {s′}. The apexes of the geodesic triangle
�(s, r , t) are s′, r ′ = r , and t ′ = t . |s′t | < |s′r |. c is the middle point of π(s, r) = ss′ ∪ s′r . However,
one can verify (e.g., by a ruler) that q is equidistant to s, r , and t , and thus α = q exists
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Fig. 17 Illustrating Lemma 4.10. In this example, v′ = v

d(s, q) + |qp′| = |qa′| + |qp′| = |a′ p′| = |a′q ′| + |q ′ p′|. On the other hand, by
triangle inequality, d(s, p′) ≤ d(s, q ′)+|q ′ p′|. Therefore,we obtain |a′q ′| ≤ d(s, q ′).
The above proves the second subcase q ∈ π(a, pst ). The lemma thus follows. �	

4.2.2 The Case c ∈ �(s, s′) \ {s′}

We now consider the case c ∈ π(s, s′) \ {s′}. For this case, Oh and Ahn [22] (see the
proof of [22, Lemma 3.6]) claimed that α does not exist. However, this is not correct;
see Fig. 16 for a counterexample.

Let v be the vertex incident to s′ in π(s′, r ′). To make the notation consistent with
the previous subcase, we let u = s′. We have the following lemma (e.g., see Fig. 17),
which is literally the same as Lemma 4.7 (the proof is also somewhat similar although
there are some different arguments).

Lemma 4.10 (i) α must be in the geodesic triangle �(s, r , β(s, t)).
(ii) The apexes of �(s, r , β(s, t)) are u′, v′, and β(s, t), where u′ (resp., v′) is the

junction vertex of and π(s, r) and π(s, β(s, t)) (resp., π(r , β(s, t))) (in Fig. 17,
v′ = v).

(iii) ps must be on the pseudo-convex chainπ(u′, β(s, t))∪π(u′, v′) andα ps is tangent
to the chain.

(iv) pr must be on the pseudo-convex chainπ(v′, β(s, t))∪π(v′, u′) andα pr is tangent
to the chain.
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Fig. 18 Illustrating FVD(s, t, r), whose edges are depicted by thick (red) solid curves. The black solid
segments are part of the boundary of P . The (red) dotted curves belong to bisectors but not on FVD(s, t, r).
The red curve connecting a and b is B(s, r); the portion between c and a (resp., b) is B1(s, r) (resp.,
B2(s, r)). The point α is the only vertex of FVD(s, t, r) because it is equidistant from all three sites. The
cells C(s), C(t), and C(r) are ordered clockwise around α, while s, t , and r are ordered counterclockwise
around the boundary of their geodesic hull, a contradiction

(v) pt must be on the pseudo-convex chain π(tuv, u) ∪ π(tuv, v) and α pt is tangent
to the chain, where tuv is the junction vertex of π(t, u) and π(t, v).

(vi) α pt intersects uv.

Proof As c ∈ π(s, s′) \ {s′} and u = s′, u cannot be s and thus must be a polygon
vertex. But v can be either a polygon vertex or the site r . We assume that v is a polygon
vertex since the other case can be reduced to this case by the same technique as in the
proof of Lemma 4.8.

As both u and v are polygon vertices, uv divides P into two sub-polygons; one of
them, denoted by P1, does not contain t and we use P2 to denote the other one. Let
P ′ be the one of P1 and P2 that contains s. We will argue later that P ′ must be P1.

We first show that the bisector B(s, t) is in P ′. Recall that pst is the middle point of
B(s, t). Since c ∈ π(s, s′) \ {s′} and d(s, c) = d(r , c) > d(c, t), d(s, t) = d(s, c) +
d(t, c) < d(s, c) + d(c, r) = d(s, r). Hence d(s, pst ) = d(s, t)/2 < d(s, r)/2 =
d(s, c). Thus, pst ∈ π(s, c) \ {c}. Note that π(s, c) is in P ′ since π(s, c) ⊆ π(s, u)

and π(s, u) ∈ P ′ (the latter holds because both s and u are in P ′). Therefore, pst ∈ P ′.
Further, as pst ∈ π(s, c) ⊆ π(s, u) \ {u}, pst /∈ uv. Since pst ∈ π(s, r), B(s, t) does
not intersect π(s, r) other than pst by Observation 4.5. As uv ⊆ π(s, r), we obtain
that B(s, t) does not intersect uv. Because pst is in B(s, t) ∩ P ′ and B(s, t) does not
intersect uv, B(s, t) must be in P ′.

Since c ∈ π(s, s′) \ {s′} and c ∈ B(s, r), B(s, r) is also in P ′ by following the
analysis similar to the above. As α is equidistant from s, t , and r , α is on both B(s, t)
and B(s, r). Therefore, α is in P ′.

We next argue that P ′ must be P1. We assume that s, t, r are ordered counter-
clockwise around the boundary of their geodesic hull (e.g., see Fig. 17). Assume to
the contrary that P ′ is P2 (e.g., see Fig. 18). The point c divides B(s, r) into two
portions, one going above π(s, r) and the other going below π(s, r) (we intuitively
assume that π(s, r) from s to r goes “horizontally” from left to right); let B1(s, r)
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(resp., B2(s, r)) be the first (resp., second) portion (e.g., see Fig. 18, where the red
curve between c and a is B1(s, r) and the red curve between c and b is B2(s, r)).
Since P ′ is P2, the two polygon edges of P incident to u must be from the “above”
of π(s, r). Hence, for any point p ∈ B1(s, r), both shortest paths π(r , p) and π(t, p)
must contain u. Thus, d(r , p) = d(r , u) + d(u, p) and d(t, p) = d(t, u) + d(u, p).
Since d(r , c) > d(t, c) and both π(r , c) and π(t, c) contain u, d(r , u) > d(t, u)

holds. Therefore, d(r , p) > d(t, p). This implies that no point on B1(s, r) is equidis-
tant from r and t , and thus B1(s, r) does not contain α. As α ∈ B(s, r), we have
α ∈ B2(s, r). Consider the farthest Voronoi diagram FVD(s, t, r) of the three sites
s, t, r only (without considering other sites of S). Let C(p) be the cell of p ∈ {s, t, r}
in the diagram. As d(c, s) = d(c, r) > d(c, t), c belongs to the common bound-
ary of C(s) and C(r), i.e., c is on an edge of FVD(s, t, r). The point α divides
B(s, r) into two portions, one of which contains c. The above implies that the por-
tion of B(s, r) containing c is an edge of FVD(s, t, r) (e.g., see Fig. 18). Recall that
pst ∈ π(s, c) \ {c}. Since π(s, c) ⊂ π(s, r) and c is the middle point of π(s, r), we
obtain that d(s, pst ) = d(t, pst ) < d(r , pst ), implying that pst ∈ C(r). The point
α partitions B(s, t) into two portions, one of which contains pst ; since pst ∈ C(r),
the portion of B(s, t) containing pst is not an edge of F(s, t, r). Then, one can verify
that the three cells C(s), C(t), and C(r) in FVD(s, t, r) are ordered clockwise along
the boundary of P (e.g., see Fig. 18). According to Aronov [3], s, t , and r should also
be ordered clockwise around the boundary of their geodesic hull. But this contradicts
the fact that s, t , and r are ordered counterclockwise around the boundary of their
geodesic hull. The above proves that P ′ is P1. Since B(s, t) ∈ P ′ and α ∈ B(s, t),
we obtain that α ∈ P1.

We next argue that α must be in the geodesic triangle�(s, r , β(s, t)). The argument
is similar to the proof of Lemma 4.7, so we briefly discuss it. To simplify the notation,
let q = β(s, t). Since q ∈ B(s, t) and B(s, t) ∈ P1, q is in P1. By the same analysis
as in the proof of Lemma 4.7, α is on B(s, t) between pst and q (e.g., see Fig. 17),
and thus α is in the geodesic triangle �(s, t, q) and q is an apex of �(s, t, q). Since
t ∈ P2 and q ∈ P1, π(q, t) must cross uv at a point p, and thus α is also in �(s, p, q)

and q is an apex of �(s, p, q). Further, since p ∈ uv ⊆ π(s, r), α is in �(s, r , q) and
q is an apex of �(s, r , q). This proves the lemma statements (i) and (ii). The lemma
statements (iii) and (iv) also immediately follow.

Finally, we argue that α pt intersects uv. Assume to the contrary that this is not
true. Since α ∈ P1 and t ∈ P2, π(α, t) must cross uv at a point z. As α pt does not
intersect uv, pt must be a polygon vertex in π(α, z), which is subpath of π(α, t). As
z ∈ uv ⊆ π(s, r), π(α, z)must be “between” π(α, s) and π(α, r). Since no two paths
of π(α, s), π(α, z), and π(α, r) cross each other and P is a simple polygon, pt must
be in either π(α, s) and π(α, r). As pt ∈ π(α, t) and α is equidistant from s, t , and r ,
pt is on the bisector between t and one of s and r . This contradicts our general position
assumption since pt is a vertex of P . The above proves that α pt intersects uv, i.e., the
lemma statement (vi), which also leads to the lemma statement (v). �	

Due to the preceding lemma, our algorithmworks as follows. First, we compute the
vertices u′, v′, and tuv , which can be done in O(log n) time by the GH data structure.
Then we apply the tentative prune-and-search technique [17] on the three pseudo-
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convex chains specified in the lemma in a similar way as before to compute α in
O(log n) time. Finally, we validate α in O(log n) time in a similar way as before. The
overall time of the algorithm is O(log n). Lemma 3.1 is thus proved.

A summary of the algorithm for Lemma 3.1.Given three sites s, t, r as specified
in Lemma 3.1, the goal is to compute α(s, t, r). We start with applying Lemma 4.3
to compute the geodesic center c of the three sites. We check whether c is equidistant
to the three sites in O(log n) time. If yes, α(s, t, r) = c and we are done. Otherwise,
we proceed to check whether one of the two cases in Lemma 4.6 happens. If yes, then
α(s, t, r) is not a Voronoi vertex of FVD(S) and we simply return null. Otherwise,
using the GH data structure, we determine in O(log n) time which of the following
three cases holds: c ∈ π(s′, r ′), c ∈ π(s, s′) \ {s′}, and c ∈ π(r ′, r) \ {r ′}. In the first
case c ∈ π(s′, r ′), we apply the algorithm for Lemma 4.7 to compute α(s, t, r). In the
second case c ∈ π(s, s′) \ {s′}, we apply the algorithm for Lemma 4.10 to compute
α(s, t, r). The third case is symmetric to the second case, so the algorithm is similar.
In any case, α(s, t, r) can be computed in O(log n) time.

Remark. As discussed above, there are two mistakes in the algorithm of Oh and
Ahn [22, Lemma 3.6]: (1) In the subcase c ∈ π(s′, r ′), the case where not both u and
v are polygon vertices is missed; (2) in the subcase c /∈ π(s′, r ′), they erroneously
claimed that α does not exist. Both mistakes can be corrected with our new results.
Indeed, in both cases we have proved that α pt intersects uv (more specifically, it is
proved in Lemma 4.7 for the first case and proved in Lemma 4.10 for the second case).
With this critical property, their algorithm of [22, Lemma 3.6] (which was originally
designed for the case where c ∈ π(s′, r ′) and both u and v are polygon vertices) can
be applied to compute α in O(log2n) time. In this way, [22, Lemma 3.6] is remedied
and thus all other results of [22] that rely on Lemma 3.6 are not affected.

5 Conclusions

In this paper, we presented a deterministic algorithm for computing the geodesic
farthest-point Voronoi diagram for a set S of m points in a simple polygon P of n
vertices. Our algorithm runs in O(n + m logm) time, matching the �(n + m logm)

lower bound. The space complexity of our algorithm is O(n+m). Thus, our algorithm
is optimal in both time and space.

As mentioned in Sect. 1, if all points of S are on the boundary of P , Barba [9]
gave a randomized algorithm that solves the problem in O(n +m) expected time. An
interesting question is whether the algorithm can be derandomized, e.g., using some
techniques and geometric observations derived in this paper. Also, for the problem in
polygons with holes (i.e., P has holes), as discussed in Sect. 1, Bae and Chwa [6] gave
an algorithm of O(nm log2(n + m) logm) time, and they also proved that �(nm) is
the combinatorial complexity of the diagram in the worst case, implying that �(nm)

is a lower bound for computing the diagram. Hence, there is still some gap between
the upper and lower bounds. It would be interesting to see whether our techniques can
be helpful to further improve the algorithm of [6].
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