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Abstract—Understanding  how  macronutrients (e.g.,
carbohydrates, protein, fat) affect blood glucose is of broad
interest in health and dietary research. The general effects are
well known, e.g., adding protein and fat to a carbohydrate-based
meal tend to reduce blood glucose. However, there are large
individual differences in food metabolism, to where the same
meal can lead to different glucose responses across individuals.
To address this problem, we present a technique that can be
used to simultaneously (1) model macronutrients’ effects on
glucose levels over time and (2) capture inter-individual
differences in macronutrient metabolism. The technique
performs a linear decomposition of glucose responses,
alternating between estimating the macronutrients’ effect over
time and capturing an individual’s sensitivity to
macronutrients. On an experimental dataset containing glucose
responses to a variety of mixed meals, the technique is able to
extract basis functions for the macronutrients that are
consistent with their hypothesized effects on PPGRs, and also
characterize how macronutrients affect individuals differently.

[. INTRODUCTION

Consuming a meal generally leads to an increase in blood
glucose, followed by a recovery to the original level. This
characteristic response is known as the postprandial glucose
response (PPGR). The main determinants of PPGRs are
carbohydrates, but other macronutrients can also influence
PPGRs. For example, adding protein, fat, or fiber to a meal
generally yields smaller spikes and lengthier responses [1, 2].
Understanding the specific role that various macronutrients
play in PPGRs is of great interest for health applications [3,
4]. As an example, metabolic models can be used to develop
personalized nutrition programs [5], and may also be used to
monitor diet automatically with the use of continuous glucose
monitors (CGMs)! [6, 7]. However, developing these models
is challenging since there exist large inter-individual
differences in food metabolism: two individuals consuming
the same meal can have very different PPGRs [5].

To address this issue, this article presents an approach that
can be used to jointly (1) learn how each macronutrient
contributes to the glucose response and (2) capture individual
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differences in sensitivity to macronutrients. The model
assumes that each macronutrient adds a basis function to the

' A CGM is a wearable sensor consisting of a small electrode
inserted in the skin that measures glucose in the interstitial fluid, and
a transmitter that sends the measurements to an external device.

PPGR, and that individual differences can be modeled as a
scaling term for these basis functions. Then, the approach
uses an optimization technique based on alternating least
squares, where basis functions and individual differences are
estimated iteratively until the model converges. We evaluate
the approach on an experimental dataset where participants
consumed a variety of predesigned meals with known
amounts of carbohydrates, protein and fat, while their glucose
responses to those meals was measured with a CGM.

II. RELATED WORK

Given that adding protein and fat to a meal can alter the
PPGR [1, 2], we recently conducted a study to test the
hypothesis that the shape of the PPGR could be used to predict
the meal macronutrients’ amounts. In the study, 15 subjects
consumed nine different mixed meals over the course of 2-3
weeks while wearing a CGM. Each meal had a known but
varying amount of carbohydrates, protein and fat. Then, we
built machine-learning models to predict the amount of
macronutrients in a meal from features extracted from the
shape of the corresponding PPGR [6, 7]. Using a leave-one-
subject-out cross-validation procedure, e.g., using data from
14 subjects for training and the remaining subject for testing,
we were able to predict the amount of macronutrients with a
normalized root mean squared error of 22% for carbohydrates,
50% for protein and 40% for fat. This is a promising result
given the large inter-individual differences in food
metabolism and the fact that the models were not customized
for each participant.

To this end, recent studies have examined how to model
individual differences in food metabolism. In a seminal study,
Zeevi et al. [5] tracked the glucose levels of 800 subjects for
one week while they kept detailed records of their diet and
wore a CGM. A main finding was that there exists high inter-
individual variability in the glucose response to identical
meals. To address this issue, the authors developed a machine-
learning model that could predict the glucose response to a
meal for individual subjects by using a variety of “phenotype”
variables, such as anthropometric features, blood panels and
gut microbiota. To validate the model, the investigators used
an independent group of 100 subjects, for whom they
developed personalized diet. On this new cohort, the model
was able to predict which meals would led to lower
postprandial glucose responses. More recently, Tily et al. [8]
used CGMs to monitor over 500 adults for 2 weeks, while they
consumed a variety of standardized meals with different
proportions of carbohydrates, proteins, fats and fiber. Then,
the authors built a multi-level mixed effects regression model
that predicted postprandial glucose from the composition of
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Figure 1. Effect of meal macronutrients on PPGRs

the meals and “phenotype” variables such as anthropometric
features, gut microbiome and lifestyle variables.

III. METHODS

Figure 1 depicts the characteristic PPGRs to a meal.
Depending on the meal’s contents, blood glucose rises 15-30
minutes after the meal, reaches a peak within the first 1-2
hours, and returns to baseline within 3-4 hours [9]. The figure
also illustrates the effect of adding protein (P) and fat (F) to a
meal with carbohydrates (C), which lead to lower peaks and
delayed return to baseline.

Let us denote by x,,,s(t) the post-prandial glucose level of
subject s attime t = [1,2, ..., T] after consuming meal m, and
by zps; the amount of the i-th macronutrient in the meal,
where i € {C,P,F}. To model the PPGR, we assume that
each macronutrient adds a characteristic basis function to the
glucose response:

Xms @®) = Qo @®+ Zms,c " Ac ®+ Zms,p " Ap ®) (1)

+ Zymsr * Ar @®
where a.(t), ap(t) and az(t) are the basis function of each
macronutrient, and a,(t) is an intercept term. More complex
functions may be used (see discussion section), but for ease of
interpretation we assume that the macronutrient effects are
additive and linear. The hypothesized basis functions are
illustrated in Figure 2. The marginal effect of carbohydrates
is an immediate increase in blood glucose, followed by a slow
decay. In contrast, the marginal effect of protein and fat is an
immediate decrease in glucose, and a subsequent increase.
When used in eq. (1), these basis functions would lead to the
prototypical PPGRs depicted in Figure 1.

A. Least squares solution (average model)

Consider a dataset X containing the PPGRs of S subjects
after consuming M different meals (for a total of S-M
response curves), each meal with its corresponding
macronutrient stored in Z. Then, eq. (1) can be expressed in
compact form as:

X=AZ 2)
where X € RT*S™M (i.e., each column represents a PPGR), Z €
RA*SM (je., each column represents the macronutrients in the
meal, plus a constant term for the intercept), and A € RT**
(i.e., each column represents a basis function, plus the
intercept.) Since Z is known and X is measured, the matrix of

2

— Carbs a.(t)
— Protein ap(t)
— Fatagp(t)

Marginal effect on blood glucose

Time after meal

Figure 2. Hypothesized basis functions of the three macronutrients
(adapted from Tily et al. [8])

basis function A can be obtained using the pseudo-inverse
solution as:

A=XxZT(zz")? 3)

B. Accounting for individual differences

Unfortunately, the linear model in eq. (2) does not account
for individual differences in food metabolism. For example, a
given patient may be more sensitive to protein (or fat) being
added to a carbohydrate-based meal than other participants.
As a result, the “average” model in eq. (2) will not be able to
model PPGRs accurately.

To address this issue, we define a set of sensitivity
variables {@¢, asp, &sp } for each participant s, which capture
the extent to which each macronutrient’s basis function a; (t)
contributes to the overall glucose response, leading to:

xms(t) = Qg (t) + Zms,c " Asc aC(t)
+Zms,p * Asp " Ap ®+ Zms,F " Asp " Ap ®

“

or, in compact form,

X =AaZ %)
This equation now presents two sets of dependent
variables, the basis function matrix A and the sensitivity
matrix a. To solve for both, we use an algorithm based on
alternating least squares (ALS) [10]. ALS is a matrix
factorization technique commonly used in collaborative
filtering [11] to decompose a user-item rating matrix R into
the product of two lower dimensional matrices R = UP, one
representing users (U) and the other representing items (P).
ALS is a two-step iterative optimization process, in which it
first fixes P and solves for U, then fixes U and solves for P.
Alternating between these two steps is shown to reduce the
reconstruction error until convergence to a (local) minimum.

In our case, we use a similar procedure to solve for A and
«a iteratively. The algorithm starts with an initial value for & =
1, i.e., it assumes that all subjects have the same macronutrient
sensitivity. Then, it solves for A through the least squares
solution in eq. (3) using data from all the subjects in the
dataset, 1.e., the model assumes that the basis function of each
macronutrient is common to all subjects. Given the new
estimate for A, the algorithm computes the sensitivity
variables a for each subject s separately. This leads to a new
set of estimates a, which the algorithm uses to recalculate A
using eq. (3), and the process repeats until A and & converge.

2989

Authorized licensed use limited to: Texas A M University. Downloaded on August 24,2023 at 20:38:41 UTC from IEEE Xplore. Restrictions apply.



70 (a) e (b) amp © (c)
a —_ —_ c —C2P2F1
60 —cp2k2 50 —cp2p2 50 —C2P2F2
50 —C3P2F2 40 —C2P3F2 40 —C2P2F3
3 40
3 30 30
oo
£ 30 20 20
= 20
@ 10 10
g1 0 0
o] 0
-10 -10 -10
-20 -20 -20
-30 -30 -30

n o
~ 0
o<

75

150

© 225
300

75
150
& 225
2 300
375
450

—

imi

im

El
B
-

(min)

Figure 3. Average glucose response (across 15 subjects) at increasing
levels of (a) carbs, (b) protein and (c) fat, while keeping the other two
macronutrients at fixed levels

In our experience, convergence occurs rapidly, typically
within the first 5 iterations.

C. Experimental dataset

To test the proposed model, we used a dataset in which 15
healthy subjects consumed 9 mixed meals on 9 different study
days. The order of the meals was randomized for each
participant. Subjects were asked to fast for at least 8 hours
prior to the meal intake on each study day, so the first blood
glucose reading was their fasting glucose level. After taking a
baseline blood sample the morning of a study visit, each
subject consumed a predefined meal. Subjects remained in a
sedentary state and were not allowed to consume any other
food for the next 8 hours. Each meal had a known but varying
amount of carbohydrates (low: 52 g, medium: 95 g, high: 180
g), protein (low: 15 g, medium: 30 g, high: 60 g), and fat (low:
13 g, medium: 26 g, high: 52 g), which we denote as CxPxFx,
where x represents the amount of each macronutrient (1: low;
2: medium; 3: high). To measure PPGRs, participants wore a
CGM (Abbott Freestyle Libre Pro), which recorded glucose
every 15 minutes. The study was approved by the Texas A&M
Institutional Review Board (IRB #2017-0886).

We perform our analysis using the first 32 PPGR readings
(8 hours) from the time the meal was consumed. To account
for individual differences in fasting glucose, we subtracted the
baseline glucose of each PPGR prior to performing the
decomposition.

IV. RESULTS

To illustrate the characteristic effect of carbohydrates,
Figure 3(a) shows the average PPGR across subjects for meals
with low (C1), medium (C2) and high (C3) carbohydrates,
when the other two macronutrients are at a medium level (P2,
F2). As carbohydrates increase, the PPGR reaches a higher
peak and becomes prolonged. In contrast, increasing protein
and fat —see Figure 3(b-c) has a mixed effect: it makes PPGRs
more sustained but at the same time reduces the PPGR peak.
These results provide support to our overall strategy, as they
show that meal macronutrients have a characteristic effect on
postprandial glucose, as depicted in Figure 1.

In a second step, we analyze the convergence properties of
the algorithm. Figure 4 shows the evolution of the sensitivity
parameter a over iterations. The sensitivity parameter for
carbohydrates converges rapidly, within 1-2 iterations,
whereas those for protein and fat sometimes require 5 or more
iterations. Of interest, the final values reflect a wide range of
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Figure 4. Convergence of the sensitivity variables & as a function of the
number of iterations. (a) carbohydrates (CHO), (b) protein, (c) fat.

sensitivities towards macronutrients. As an example, the
sensitivity parameters for carbohydrates range from 0.1 to
2.24, indicating that for those two subjects there is a 20-fold
difference in the impact that increasing carbohydrates has on
postprandial glucose. The range of sensitivities is even larger
for protein and fat, where for some subjects the sensitivity
parameter becomes negative. This indicates that, for these
subjects, the basis function of the corresponding
macronutrient on PPGRs should be reversed. Altogether,
these results reflect the large difference in carbohydrate,
protein and fat metabolism that exist in our subject pool,
which would make models based on averages rather limited.

How effective is the proposed model in capturing
postprandial responses? Figure 5 shows the raw PPGR for
one of the meals in the study, the reconstruction from the least
squares solution in eq. (3), which assumes @ =1 for all
subjects, and the reconstruction of the proposed model in eq.
(5), which allows participants to have their own sensitivity
parameters. As shown, the latter model provides a closer
reconstruction of the raw PPGR, especially during the early
part of the transient. In fact, across meals and participants, the
proposed model reduces the reconstruction error by 27%,
from 17.7 mg/dl (for the least squares solution) to 12.9 mg/dl.

Next, we analyze the shape of the basis function for the
three macronutrients. Results are shown in Figure 6 for the
initial estimate and the one after the algorithm has converged.
As shown, these basis functions reflect two distinct behaviors.
First, the basis function for carbohydrates indicates that they
induce high glucose right after consumption of the meal, as we
observed earlier in Figure 3(a). Second, the basis functions
for protein and fat indicate that both provide a compensatory
effect for carbohydrates, reducing glucose levels during the
first part of the postprandial period. This effect is then
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Figure 5. Original PPGR, as modeled with least squares (¢ = 1) and
with the proposed algorithm.
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least squares, i.e., assuming @ = 1. (b) Final result after the algorithm has

converged.

reversed during the latter part of the postprandial period. This
combined effect reflects the fact that adding protein and fat to
carbohydrate-based meals results in lower and more sustained
postprandial glucose responses, as we saw in Figure 3(b-c).
Notice also how the shape of the basis functions is consistent
with the hypothesized marginal effect of macronutrients in
Figure 2.

In a final analysis, we provide an interpretation for the
sensitivity parameters. Assume a subject has high sensitivity
to fat, ar. This implies that the effect of adding fat to a meal
will be very significant for that subject. Thus, we expect that
the difference in PPGRs between a meal high in fat (e.g.,
C2P2F3) and one low in fat (e.g., C2P2F1), weighted by the
basis function for fat:

(6)

will be high for this subject. To verify this point, Figure 7
shows the relationship between the sensitivity parameter and
the measure Ax; for each of the three macronutrients. We find
a strong correlation between the two variables for
carbohydrates and fat, and a modest correlation for protein?.
Thus, the sensitivity parameters can be interpreted as being
related to the expected change in PPGRs when the
corresponding macronutrient is added to the meal or increased
in quantity.

Axp = (Xc2p2rs — Xcapar1) X ap(t)

V. DISCUSSION

We have presented an approach that can simultaneously
extract the temporal effect on postprandial glucose of adding
different macronutrient to a meal, and capture individual
differences in macronutrient sensitivity. When tested on an
experimental dataset of PPGRs from subjects consuming a
variety of foods, we find that the basis functions of the
macronutrients are consistent with their hypothesized
marginal effect on glucose, and that the sensitivity parameters
can be interpreted in terms of differences in PPGRs between
meals high and low in the corresponding macronutrients.

In this work, we have assumed that the macronutrients’
effects are linear and additive, but other relationships may be
explored, such as product terms and other nonlinearities. Of

2 This result is consistent with our earlier work [6, 7], which show
that predicting the amount of protein in a meal from the PPGR is
more challenging than predicting carbs or fat.
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Figure 7. Sensitivity parameters & vs. PPGR difference Ax; between meals
with high and low (a) carbs, (b) protein and (c) fat.

interest here, Rytz, et al. [12] have recently proposed a model
to estimate the glycemic index of mixed meals, where the
contributions of protein and fat appear in the denominator of
an expression. Thus, an alternative to our additive model in
eq. (7) would rearrange the terms as:

Ao (£) + Zms,cXscac(t)
st,P asP aP (t) + st,F asF aF (t)

Xins (8) = (N

so that the effect of non-glycemic macronutrients (protein and
fat) is divisive rather than subtractive, as in our model.

An additional direction for future work is to use the
distribution of sensitivity parameters in the dataset to generate
“synthetic patients” with different macronutrient sensitivities.
This may be used a data-augmentation procedure to build
models that predict macronutrients from PPGRs [6, 7].
Finally, the sensitivity parameters may also be used to develop
personalized diet recommendations that reduce high glucose
excursions after a meal [5].
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