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REVERSE SHORTEST PATH PROBLEM FOR UNIT-DISK GRAPHS∗

Haitao Wang† and Yiming Zhao‡

Abstract. Given a set P of n points in the plane, the unit-disk graph Gr(P ) with respect
to a parameter r is an undirected graph whose vertex set is P such that an edge connects
two points p, q ∈ P if the Euclidean distance between p and q is at most r (the weight of
the edge is 1 in the unweighted case and is the distance between p and q in the weighted
case). Given a value λ > 0 and two points s and t of P , we consider the following reverse
shortest path problem: computing the smallest r such that the shortest path length between
s and t in Gr(P ) is at most λ. In this paper, we present an algorithm of O(bλc · n log n)
time and another algorithm of O(n5/4 log7/4 n) time for the unweighted case, as well as an
O(n5/4 log5/2 n) time algorithm for the weighted case.

1 Introduction

Given a set P of n points in the plane and a parameter r, the unit-disk graph Gr(P ) is an
undirected graph whose vertex set is P such that an edge connects two points p, q ∈ P if
the (Euclidean) distance between p and q is at most r. The weight of each edge of Gr(P )
is defined to be one in the unweighted case and is defined to be the distance between the
two vertices of the edge in the weighted case. Alternatively, Gr(P ) can be viewed as the
intersection graph of the set of congruent disks centered at the points of P with radii equal
to r/2, i.e., two vertices are connected if their disks intersect. The length of a path in Gr(P )
is the sum of the weights of the edges of the path.

Computing shortest paths in unit-disk graphs with different distance metrics and
different weights assigning methods has been extensively studied, e.g., [7–9, 20, 21, 28, 32].
Although a unit-disk graph may have Ω(n2) edges, geometric properties allow to solve the
single-source-shortest-path problem (SSSP) in sub-quadratic time. Roditty and Segal [28]
first proposed an algorithm of O(n4/3+ε) time for unit-disk graphs for both unweighted and
weighted cases, for any ε > 0. Cabello and Jejčič [7] gave an algorithm of O(n log n) time for
the unweighted case. Using a dynamic data structure for bichromatic closest pairs [1], they
also solved the weighted case in O(n1+ε) time [7]. Chan and Skrepetos [8] gave an O(n) time
algorithm for the unweighted case, assuming that all points of P are presorted. Kaplan et
al. [21] and Liu [25] developed new randomized results for the dynamic bichromatic closest
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pair problem; in particular, applying the result of Liu [25] to the algorithm of [7] leads to
an O(n log9+o(1) n) expected time randomized algorithm for the weighted case. Recently,
Wang and Xue [32] proposed a new algorithm that solves the weighted case in O(n log2 n)
time. Some approximation algorithms for the problem have also been developed [9, 20,32].

The L1 version of the SSSP problem has also been studied, where the distance of
two points in the plane is measured under the L1 metric when defining Gr(P ). Note that in
the L1 version a “disk” is a diamond. The SSSP algorithms of [7, 8] for the L2 unweighted
version can be easily adapted to the L1 unweighted version. Wang and Zhao [33] recently
solved the L1 weighted case in O(n log n) time. It is known that Ω(n log n) is a lower bound
for the SSSP problem in both L1 and L2 versions [7,33]. Hence, the SSSP problem in the L1

weighted/unweighted case as well as in the L2 unweighted case has been solved optimally.

In this paper, we consider the following reverse shortest path (RSP) problem. In
addition to P , given a value λ > 0 and two points s, t ∈ P , the problem is to compute the
smallest value r such that the distance between s and t in Gr(P ) is at most λ. There are
four cases for the RSP problem depending on whether L1 or L2 metric is considered and
whether the unit-disk graphs are weighted or not. Throughout the paper, we let r∗ denote
the optimal value r for any case. The goal is therefore to compute r∗.

Observe that r∗ must be equal to the distance of two points in P in any case (i.e., L1,
L2, weighted, unweighted). In light of this observation, Cabello and Jejčič [7] mentioned a
straightforward solution that can compute r∗ in O(n4/3 log3 n) time for both the unweighted
and the weighted cases in the L2 metric, by using the distance selection algorithm of Katz
and Sharir [22] to perform binary search on all interpoint distances of P . In this paper, we
give two algorithms for the L2 unweighted case and their time complexities are O(bλc·n log n)
and O(n5/4 log7/4 n), respectively; we also give an algorithm of O(n5/4 log5/2 n) time for the
L2 weighted case.

The L1 distance selection problem in the plane can be solved in O(n log2 n) time [29].
Therefore, one can perform a binary search in the set of all pairwise L1 distances among n
points of P using the algorithm in [29] as well as the corresponding decision algorithm (i.e.,
the L1 SSSP algorithm) to solve the L1 RSP problem for both the unweighted and weighted
cases in O(n log3 n) time. Note that the time complexity is dominated by the L1 distance
selection algorithm. We focus on the L2 RSP problem in this paper.

Since the original reporting of our results,1 some exciting progress has been made by
Katz and Sharir [23], who proposed randomized algorithms of O(n6/5+ε) expected time for
the L2 RSP problem for both the unweighted and weighted cases, for any arbitrarily small
ε > 0. Note that all our results are deterministic.

Note that reverse/inverse shortest path problems have been studied in the literature
under various problem settings. Roughly speaking, the problems are to modify the graph
(e.g., modify some edge weights) so that certain desired constraints related to shortest paths

1Our algorithms for the L2 unweighted case were included in [34]; our results for the L2 weighted case
have been presented in the 29th Fall Workshop on Computational Geometry (FWCG 2021) and has also
been accepted in [36]. Note that the second algorithm for the L2 unweighted case runs in O(n5/4 log2 n)
time in [34]; in this full version, we slightly improve the time to O(n5/4 log7/4 n) by changing the threshold
for defining large cells from n3/4 to (n/ log n)3/4 in Section 4.
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in the graph can be satisfied, e.g., [6, 37]. Our reverse shortest path problem in unit-disk
graphs may find applications in scenarios like the following. Consider Gr(P ) as an L2 unit-
disk intersection graph representing a wireless sensor network in which each disk represents a
sensor and two sensors can communicate with each other (e.g., directly transmit a message)
if there is an edge connecting them in Gr(P ). The disk radius is proportional to the energy
of the sensor. For two specific sensors s and t, suppose we want to know the minimum
energy for all sensors so that s and t can transmit messages to each other within λ steps
for a given value λ. It is easy to see that this is equivalent to our L2 RSP problem in the
unweighted case. If the latency of transmitting a message between two neighboring sensors
is proportional to their Euclidean distance and we want to know the minimum energy for
all sensors so that the total latency of transmitting messages between s and t is no more
than a target value λ, then the problem becomes the weighted case.

In addition to the shortest path problem, many other problems of unit-disk graphs
have also been studied, i.e. clique [10], independent set [26], distance oracle [9, 20], diame-
ter [8, 9, 20], etc. Comparing to general graphs, many problems can be solved efficiently in
unit-disk graphs by exploiting their underlying geometric structures, although there are still
problems that are NP-hard for unit-disk graphs and other geometric intersection graphs,
e.g., [4, 10].

1.1 Our approach

We present RSP algorithms for unit-disk graphs in the L2 metric.

As the length of any path in Gr(P ) is an integer in the unweighted case, the length
of a path of Gr(P ) is at most λ if and only if the length of the path is at most bλc; therefore,
we can replace λ in the unweighted problem by bλc. In the following, we simply assume that
λ is an integer in the unweighted case. Recall that our goal is to compute r∗, which must be
equal to the distance of two points in P in both the unweighted and weighted cases. Given
a value r, the decision problem is to decide whether r ≥ r∗. It is not difficult to see that
r ≥ r∗ if and only if the distance of s and t in Gr(P ) is at most λ. Therefore, the decision
problem can be solved efficiently by using the shortest path algorithm for the corresponding
case [7, 8]. More specifically, with O(n log n)-time preprocessing (to sort the points of P ),
given any r, whether r ≥ r∗ can be decided in O(n) time for the unweighted unit-disk graphs
by the algorithm of Chan and Skrepetos [8]. For the weighted case, the decision problem
can be solved in O(n log2 n) time by Wang and Xue’s shortest path algorithm [32].

Since r∗ must be equal to the distance of two points of P , we can find r∗ by doing
binary search on the set of pairwise distances of all points of P . Given any 1 ≤ k ≤

(
n
2

)
, the

distance selection algorithm of Katz and Sharir [22] can compute the k-th smallest distance
among all pairs of points of P in O(n4/3 log2 n) time. Using this algorithm, the binary search
can find r∗ in O(n4/3 log3 n) time for both the unweighted and weighted cases. This is the
algorithm mentioned in [7].

Our RSP algorithms are based on parametric search [11, 27], by parameterizing the
decision algorithm of Chan and Skrepetos [8] (which we refer to as the CS algorithm) in the
unweighted case, and parameterizing the decision algorithm of Wang and Xue [32] (which we
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refer to as the WX algorithm) in the weighted case. Below is an overview on our algorithms.

The unweighted case. The CS algorithm first builds a grid in the plane and then runs the
breadth-first-search (BFS) algorithm with the help of the grid; in the i-th step of the BFS,
the algorithm finds the set of points of P whose distances from s in Gr(P ) are equal to i.
Although we do not know r∗, we run the CS algorithm on a parameter r in an interval (r1, r2]
such that each step of the algorithm behaves the same as the CS algorithm running on r∗.
The algorithm terminates after t is reached, which will happen within λ steps. In each step,
we use the CS algorithm to compare r∗ with certain critical values, and the interval (r1, r2]
will be shrunk based on the results of these comparisons. Once the algorithm terminates, r∗

is equal to r2 of the current interval (r1, r2]. With the linear-time decision algorithm (i.e.,
the CS algorithm [8]), each step runs in O(n log n) time. The total time of the algorithm is
O(λ · n log n).

The above algorithm is only interesting when λ is relatively small. In the worst
case, however, λ can be Θ(n), which would make the running time become O(n2 log n).
Next, by combining the strategies of the parametric search and the L2 distance selection
algorithm [22], we derive a better algorithm. The main idea is to partition the cells of the
grid in the CS algorithm into two types: large cells, which contain at least (n/ log n)3/4

points of P each, and small cells otherwise. For small cells, we process them using the
above binary search algorithm with the L2 distance selection algorithm [22]; for large cells,
we process them using the above parametric search techniques. This works out due to the
following observation. On the one hand, the number of large cells is relatively small (at most
O(n1/4 log3/4 n)) and thus the number of steps using the parametric search is also small. On
the other hand, each small cell contains relatively few points of P (at most O((n/ log n)3/4))
and thus the total time we spend on the L2 distance selection algorithm is not big. The
threshold value (n/ log n)3/4 is carefully chosen so that the total time for processing the
two types of cells is minimized. In addition, instead of applying the L2 distance selection
algorithm [22] directly, we find that it suffices to use only a subroutine of that algorithm,
which not only simplifies the algorithm but also reduces the total time by a logarithmic
factor. All these efforts lead to an O(n5/4 log7/4 n) time algorithm to compute r∗.

The weighted case. Our algorithm for the L2 weighted case also follows the parametric
search scheme, by parameterizing the WX algorithm [32] instead. Like the unweighted case,
we run the decision algorithm (i.e., the WX algorithm) with a parameter r ∈ (r1, r2] by
simulating the decision algorithm on the unknown r∗. At each step of the algorithm, we call
the decision algorithm on certain critical values r to compare r and r∗, and the algorithm
will proceed accordingly based on the result of the comparison. The interval (r1, r2] will also
be shrunk after these comparisons but is guaranteed to contain r∗ throughout the algorithm.
The algorithm terminates once the point t is reached, at which moment we can prove that r∗

is equal to r2 of the current interval (r1, r2]. The parametric search algorithm runs in Ω(n2)
time because t may be reached after Θ(n) steps. To further reduce the time, similarly to the
L2 unweighted case, we combine the strategies of the parametric search and the L2 distance
selection techniques [22]. The cells of the grid built in the algorithm are partitioned into
large and small cells, but with a different threshold of n3/4 log3/2 n. With this approach, the
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C

Figure 1: The grey cells are all neighbor cells of C.

runtime of the algorithm can be bounded by O(n5/4 log5/2 n).

Outline. The rest of the paper is organized as follows. Section 2 defines notation and
reviews the CS algorithm. Our first algorithm for the unweighted case is presented in
Section 3 while the second one is described in Section 4. Section 5 solves the weighted
RSP problem. Section 6 concludes with remarks showing that our techniques can be readily
extended to solve a more general “single-source” version of the RSP problem.

2 Preliminaries

Throughout the paper, we will use “points of P ” and “vertices of the graph Gr(P )” inter-
changeably. For any parameter r, let dr(p, q) denote the distance of two vertices p and q in
Gr(P ). It is easy to see that dr(p, q) ≤ dr′(p, q) if r ≥ r′.

For any two points p and q in the plane, let ‖p− q‖ denote their Euclidean distance.
For any subset P ′ of P and any region R in the plane, we use P ′(R) or P ′ ∩ R to refer to
the subset of points P ′ contained in R. For any point p, let x(p) and y(p) denote its x- and
y-coordinates, respectively.

We next review the CS algorithm [8], which will help understand our RSP algorithms
given later. Suppose we have a sorted list of P by x-coordinate and another sorted list of
P by y-coordinate. Given a parameter r and a source point s ∈ P , the CS algorithm can
compute in O(n) time the distances from s to all other points of P in Gr(P ).

The first step is to compute a grid Ψr(P ) of square cells whose side lengths are r/
√

2.
The grid technique was widely used in algorithms for unit-disk graphs [8, 32, 35]. A cell C ′

of Ψr(P ) is a neighbor of another cell C if the minimum distance between a point of C and
a point of C ′ is at most r. Note that the number of neighbors of each cell of Ψr(P ) is O(1)
(e.g., see Fig. 1) and the distance between any two points in each cell is at most r.

Next, starting from the point s, the algorithm runs BFS in Gr(P ) with the help of
the grid Ψr(P ). Define Si as the subset of points of P whose distances in Gr(P ) from s
are equal to i. Initially, S0 = {s}. Given Si−1, the i-th step of the BFS is to compute Si
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by using Si−1 and the grid Ψr(P ), as follows. If a point p is not in
⋃i−1
j=0 Sj , we say that

p has not been discovered yet. For each cell C that contains at least one point of Si−1, we
need to find points that are not discovered yet and at distances at most r from the points
of Si−1 ∩ C (i.e., the points of Si−1 in C); clearly, these points are either in C or in the
neighbor cells of C. For points of P (C), since every two points of C are within distance r
from each other, we add all points of P (C) that have not been discovered to Si. For each
neighbor cell C ′ of C, we need to solve the following subproblem: find the points of P (C ′)
that are not discovered yet and within distance at most r from the points of Si−1∩C. Since
C ′ and C are separated by either a vertical line or a horizontal line, we essentially have the
following subproblem.

Subproblem 1. Given a set of nr red points below a horizontal line ` and a set of nb blue
points above `, both sorted by x-coordinate, determine for each blue point whether there is a
red point at distance at most r from it.

The subproblem can be solved in O(nr + nb) time as follows. For each red point p,
the circle of radius r centered at p has at most one arc above ` (we say that this arc is defined
by p). Let Γ be the set of these arcs defined by all red points. Since all arcs of Γ have the
same radius and all red points are below `, every two arcs intersect at most once and the
arcs above ` are x-monotone. Further, as all red points are sorted already by x-coordinate,
the upper envelope of Γ, denoted by U , can be computed in O(nr) time by an algorithm
similar in spirit to Graham’s scan. Then, it suffices to determine whether each blue point is
below U , which can be done in O(nr + nb) time by a linear scan. More specifically, we can
first sort the vertices of U and all blue points. After that, for each blue point p, we know
the arc of U that spans p (i.e., x(p) is between the x-coordinates of the two endpoints of
the arc), and thus we only need to check whether p is below the arc. In summary, solving
the subproblem involves three subroutines: (1) compute U ; (2) sort all vertices of U with all
blue points; (3) for each blue point p, determine whether it is below the arc of U that spans
p.

The above computes the set Si. Note that if Si = ∅, then we can stop the algorithm
because all points of P that can be reached from s in Gr(P ) have been computed. For the
running time, notice that points of P in each cell of the grid Ψr(P ) can be involved in at
most two steps of the BFS. Further, since each grid cell has O(1) neighbors, the total time
of the BFS algorithm is O(n).

In order to achieve O(n) time for the overall algorithm, the grid Ψr(P ) must be
implicitly constructed. The CS algorithm [8] does not provide any details about that. There
are various ways to do so. Below we present our method, which will facilitate our algorithm
in the next section.

The grid Ψr(P ) we are going to build is a rectangle that is partitioned into square
cells of side lengths r/

√
2 by O(n) horizontal and vertical lines. These partition lines will

be explicitly computed. Let P ′ be the subset of points of P located in Ψr(P ). P ′ has the
following property: for each p ∈ P \ P ′, p cannot be reached from s in Gr(P ), i.e., the
distances from s to the points of P \ P ′ in Gr(P ) are infinite. Let C denote the set of cells
of Ψr(P ) that contain at least one point of P . For each cell C ∈ C, let N(C) denote the
set of neighbors of C in C. The information computed in the following lemma suffices for

http://jocg.org/


JoCG 14(1), 14–47, 2023 20

Journal of Computational Geometry jocg.org

p1 = s
p2

p3

p4
pi

pi+1

≤ r
≤ r

≤ r

......

> r

......
pm

P ′
1

Q

P1 = {p1, p2, ..., pm}

Figure 2: P1 = {p1 = s, p2, ..., pm} includes all points of P to the right of s sorted from left
to right. i is the smallest index such that x(pi+1)− x(pi) > r. We have P ′1 = {p1, p2, ..., pi}.
Points of {pi+1, pi+2, ..., pm} are added to the set Q since they can not be reached from s in
Gr(P ).

implementing the above BFS algorithm in linear time.

Lemma 1. Suppose we have a sorted list of P by x-coordinate and another sorted list of
P by y-coordinate. Both P ′ and C, along with all vertical and horizontal partition lines of
Ψr(P ), can be computed in O(n) time. Further, with O(n) time preprocessing, the following
can be achieved:

1. Given any point p ∈ P ′, the cell of C that contains p can be obtained in O(1) time.

2. Given any cell C ∈ C, the neighbor set N(C) can be obtained in O(|N(C)|) time.

3. Given any cell C ∈ C, the subset P (C) of P can be obtained in O(|P (C)|) time.

Proof. Let P1 be the subset of P to the right of s including s. Let s = p1, p2, . . . , pm be
the list of P1 sorted from left to right, with m = |P1|. As the points of P are given in
sorted order, we can obtain the above sorted list in O(n) time. During the algorithm, we
will compute a subset Q ⊆ P . Initially, we set Q = ∅. After the algorithm finishes, we will
have P ′ = P \Q.

We find the smallest index i ∈ [1,m− 1] such that x(pi+1)− x(pi) > r (let i = m if
such index does not exist). It is easy to see for any point pj with j ∈ [i+1,m], there is no path
from s to pj in Gr(P ). We add all points pi+1, pi+2, . . . , pm to Q and let P ′1 = {p1, . . . , pi}.
Hence, P ′1 has the following property: x(pj+1) − x(pj) ≤ r for any two adjacent points pj
and pj+1 (see Fig. 2). Next, we compute the vertical partition lines of Ψr(P ) to the right
of s. We first put a vertical line through s. Then, we keep adding a vertical line to the
right with horizontal distance r/

√
2 from the previous vertical line until the current vertical

line is to the right of pi. Due to the above property of P ′1, the number of vertical lines thus
produced is at most 2m.

The above computes a set of vertical partition lines to the right of s by considering
the points of P1 from left to right. Let P2 = P \P1; we also add s to P2. Symmetrically, we
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compute a set of vertical partition lines to the left of s by considering the points of P2 from
right to left (also starting from s). Analogously, the algorithm will compute a subset P ′2 of
P2 and more points may be added to Q. Let Lv be the set of all these vertical lines produced
above for both P1 and P2. Lv is the set of vertical partition lines of our grid Ψr(P ). Clearly,
|Lv| = O(n).

Similarly, by considering the points of P in the list sorted by y-coordinate, we can
compute a set Lh of horizontal partition lines of Ψr(P ), with |Lh| = O(n). Also, more points
may be added to Q in the process.

Let Ψr(P ) be the rectangle bounded by the rightmost and leftmost vertical lines of
Lv as well as the topmost and bottommost horizontal lines of Lh, along with the square cells
inside and partitioned by the lines of Lv ∪ Lh. Let P ′ = P \Q. By our definition of Q, for
each p ∈ Q, p cannot be reached from s in Gr(P ), and P ′ is exactly the subset of points of
P located inside Ψr(P ).

For each cell C of Ψr(P ), we define its grid-coordinate as (i, j) if C is in the i-th row
and j-th column of Ψr(P ); we say that i is the row-coordinate and j is the column-coordinate.
For each cell, we consider its grid-coordinate as its “ID”.

By scanning the points of P ′ and the vertical lines of Lv from left to right and then
scanning P ′ and the horizontal lines of Lh from top to bottom, we can compute in O(n) time
for each point of P ′ the (grid-coordinate of the) cell of Ψr(P ) that contains it (to resolve
the boundary case, if a point p is on a vertical edge shared by two cells, then we assume p
is contained in the right cell only, and if p is on a horizontal edge shared by two cells, then
we assume p is contained in the top cell only). After that, given any point p ∈ P ′, the cell
of Ψr(P ) that contains p can be obtained in O(1) time.

To compute the set C, we do the following. Initialize C = ∅. Then, for each point
p ∈ P ′, we add the cell that contains p into C. Note that C may be a multi-set. To remove
the duplicates, we first sort all cells of C by their grid-coordinates in lexicographical order
(i.e., compare row-coordinates first and then column-coordinates). This sorting can be done
in O(n) time by radix sort [12], because both the row-coordinate and the column-coordinate
of each cell are in the range [1, O(n)]. Now we can remove duplicates by simply scanning the
sorted list of all cells, and the resulting set is C. Also, during the scanning process, we can
obtain for each cell C of C the subset P (C) of points of P contained in C (each occurrence
of C in the sorted list corresponds to a point of P that is contained in C). All these can be
done in O(n) time. After that, given each cell C of C, we can output P (C) in O(|P (C)|)
time.

It remains to compute the neighbor set N(C) for each cell C ∈ C. This can be
done in O(n) time by scanning the above sorted list of C (after the duplicates are removed).
Indeed, notice that scanning the sorted list is equivalent to scanning the non-empty cells of
Ψr(P ) row by row and from left to right in each row. Recall that the cells of N(C) are in
at most five rows of the grid (e.g., see Fig. 1): the row containing C, two rows above it,
and two rows below it; each such row contains at most fives cells of N(C). Based on this
observation, we scan the cells in the sorted list of C. For each cell C under consideration
during the scan, suppose its grid-coordinate is (i, j). During the scan, we maintain a cell
(i′, j′) ∈ C in each row i′ for i′ ∈ {i− 2, i− 1, i, i+ 1, i+ 2} such that j′ is closest to j, i.e.,
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|j′− j| is minimized (e.g., for i′ = i, we have j′ = j). Using these cells, we can find N(C) in
O(1) time (indeed, for each row i′ ∈ {i−2, i−1, i, i+1, i+2}, the cells of N(C) contained in
row i′ are within five cells of (i′, j′) in the sorted list of C). The scan can be implemented in
O(n) time. After that, N(C) for all cells C ∈ C are computed. This proves the lemma.

To make the description concise, in the following, whenever we say “compute the
grid Ψr(P )” we mean “compute the grid information of Lemma 1”; similarly, by “using the
grid Ψr(P )”, we mean “using the grid information computed by Lemma 1”.

3 The unweighted case – the first algorithm

In this section, we present our O(λ·n log n) time algorithm for the unweighted RSP problem.
Given λ and s, t ∈ P , our goal is to compute r∗, the optimal radius of the disks.

As discussed in Section 1.1, our algorithm uses parametric search [11, 27]. But
different than the traditional parametric search where parallel algorithms are used, our
decision algorithm (i.e., the CS algorithm for the shortest path problem [8]) is inherently
sequential. We will run the CS algorithm with a parameter r in an interval (r1, r2] by
simulating the algorithm on the unknown r∗; at each step of the algorithm, the decision
algorithm will be invoked on certain critical values r to compare r and r∗, and the algorithm
will proceed accordingly based on the results of the comparisons. The interval (r1, r2] always
contains r∗ and will keep shrinking during the algorithm (note that “shrinking” includes the
case that the interval does not change). Initially, we set r1 = 0 and r2 =∞. Clearly, (r1, r2]
contains r∗.

Recall that the CS algorithm has two major steps: build the grid and then run BFS
with the help of the grid. Correspondingly, our algorithm also first builds a grid and then
runs BFS accordingly using the grid.

3.1 Building the grid

The first step is to build a grid Ψ(P ). Our goal is to shrink (r1, r2] so that it contains
r∗ and if r∗ 6= r2 (and thus r∗ ∈ (r1, r2)), then for any r ∈ (r1, r2), Ψr(P ) has the same
combinatorial structure as Ψr∗(P ), i.e., both grids have the same number of columns and
the same number of rows, and a point of P is in the cell of the i-th row and j-th column of
Ψr∗(P ) if and only if it is also in the cell of the i-th row and j-th column of Ψr(P ). To this
end, we have the following lemma.

Lemma 2. An interval (r1, r2] containing r∗ can be computed in O(n log n) time so that if
r∗ 6= r2, then for any r ∈ (r1, r2), the grid Ψr(P ) has the same combinatorial structure as
Ψr∗(P ).

Proof. Let P1 be the subset of P to the right of s including s. Let s = p1, p2, . . . , pm be
the list of P1 sorted from left to right, with m = |P1|. Recall from the proof of Lemma 1
that Ψr∗(P ) has at most 2m vertical partition lines to the right of s, and there is a vertical
partition line through s.

http://jocg.org/


JoCG 14(1), 14–47, 2023 23

Journal of Computational Geometry jocg.org

p1 = u
p2

p3

p4

p5

p6

p7

p8

t2√
2

t1√
2

Figure 3: The point p7 (the red point) is in
the 3rd column of Ψ1

r∗(P ) while it is in the
4th column of Ψ1

r(P ).

p1 = s

p

r∗√
2

r√
2

x(p)− x(p1)

Figure 4: The rightmost line is ` when r′ =
r∗. When r′ decreases from r∗ to r, ` will
move leftwards and cross p.

We first implicitly form a sorted matrix and then apply the sorted-matrix searching
techniques of Frederickson and Johnson [17–19] (specifically, see Theorem 2.1 in [17]) to
shrink (r1, r2]. Specifically, we define an m× 2m matrix M with

M [i, j] =
√

2 · x(pi)− x(p1)

j

for all 1 ≤ i ≤ m and 1 ≤ j ≤ 2m. It can be verified that M [i, j] ≥ M [i, j + 1] and
M [i + 1, j] ≥ M [i, j] hold. Thus, M is a sorted matrix. Using the sorted-matrix searching
techniques [17–19] with the CS algorithm as the decision algorithm, we can compute in
O(n log n) time the largest value r′1 of M with r′1 < r∗ and the smallest value r′2 of M with
r∗ ≤ r′2. By definition, (r′1, r

′
2] contains r∗ and (r′1, r

′
2) does not contain any value of M . We

update r1 = max{r′1, r1} and r2 = min{r′2, r2}. Thus, the new interval (r1, r2] shrinks but
still contains r∗. As (r1, r2) ⊆ (r′1, r

′
2), (r1, r2) does not contain any value of M .

According to our algorithm of Lemma 1, there is always a vertical partition line
through s in Ψr(P ) for any r. Let Ψ1

r(P ) and Ψ2
r(P ) refer to the half grids of Ψr(P ) to the

right and left of s, respectively; assume that both half grids contain the vertical partition
line through s. We claim that if r∗ 6= r2, then the following hold for any r ∈ (r1, r2): (1)
a point of P1 is in the j-th column of Ψ1

r∗(P ) if and only if it is also in the j-th column of
Ψ1
r(P); (2) the number of columns of Ψ1

r∗(P ) is equal to the number of columns of Ψ1
r(P ).

We prove the claim below.

Suppose r∗ 6= r2. Then, r∗ ∈ (r1, r2). Assume to the contrary that a point p of P1 is
in the j-th column of Ψ1

r∗(P ) for some j ∈ [1, 2m], but p is not in the j-th column of Ψ1
r(P ).

Then, p is either to the left or to the right of the j-th column of Ψ1
r(P ). Without loss of

generality, we assume that p is to the right of the j-th column of Ψ1
r(P ) (e.g., see Fig. 3).

This implies that r < r∗. Further, if we decrease a value r′ gradually from r∗ to r, then the
line ` will move monotonically leftwards and cross p at some moment, where ` is the (j+ 1)-
th vertical partition line of Ψ1

r′(P ) (i.e., ` is the vertical bounding line of the j-th column of
Ψ1
r′(P )); e.g., see Fig. 4. This further implies that r/

√
2 < (x(p) − x(p1))/j < r∗/

√
2, and

thus, r <
√

2 · (x(p)− x(p1))/j < r∗. On the other hand, since both r and r∗ are in (r1, r2),
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we obtain that
√

2 · (x(p)−x(p1))/j ∈ (r1, r2). Because the interval (r1, r2) does not contain
any values of M , we obtain a contradiction as

√
2 · (x(p)− x(p1))/j is a value of M .

Assume to the contrary that a point p of P1 is in the j-th column of Ψ1
r(P ) for some

j ∈ [1, 2m], but p is not in the j-th column of Ψ1
r∗(P ). Then, by a similar analysis as above,

we can obtain a contradiction as well. This proves the first part of the claim.

The second part of the claim can actually be derived by the first part. Indeed,
assume to the contrary that the number of columns of Ψ1

r∗(P ), denoted by mr∗ , is not equal
to the number of columns of Ψ1

r(P ), denoted by mr. Without loss of generality, we assume
mr∗ < mr. By the algorithm of Lemma 1, P1 has a point p in the last column of Ψ1

r(P ),
which is the mr-th column. In light of the first part of the claim, p is also in the mr-th
column of Ψ1

r∗(P ). But this contradicts with that Ψ1
r∗(P ) has only mr∗ < mr columns.

The claim is thus proved.

The above processes the subset P1 of P . Let P2 = P \ P1; we add s to P2 as well.
Next, we use the same algorithm as above to process the points of P2 and obtain a smaller
interval (r1, r2] containing r∗ such that if r∗ 6= r2, then the following hold for any r ∈ (r1, r2):
(1) a point of P2 is in the j-th column of Ψ2

r∗(P ) if and only if it is also in the j-th column
of Ψ2

r(P); (2) the number of columns of Ψ2
r∗(P ) is equal to the number of columns of Ψ2

r(P ).
Combining the previous claim for P1, we obtain that the interval (r1, r2] contains r∗ and if
r∗ 6= r2, then the following hold for any r ∈ (r1, r2): (1) a point of P is in the j-th column
of Ψr∗(P ) if and only if it is also in the j-th column of Ψr(P ); (2) the number of columns
of Ψr∗(P ) is equal to the number of columns of Ψr(P ).

The above processes the points of P horizontally. We then process them in a vertical
manner analogously and further shrink the interval (r1, r2] such that it still contains r∗ and
if r∗ 6= r2, then the following hold for any r ∈ (r1, r2): (1) a point of P is in the i-th row of
Ψr∗(P ) if and only if it is also in the i-th row of Ψr(P ); (2) the number of rows of Ψr∗(P )
is equal to the number of rows of Ψr(P ). As the interval (r1, r2] is shrunk after processing
P vertically, we obtain that if r∗ 6= r2, then Ψr(P ) has the same combinatorial structure as
Ψr∗(P ) for any r ∈ (r1, r2). This proves the lemma.

Let (r1, r2] be the interval computed by Lemma 2. We pick any value r in (r1, r2)
and compute the grid Ψr(P ), i.e., compute the grid information of Ψr(P ) by Lemma 1. By
Lemma 2, these information is the same as that of Ψr∗(P ) if r∗ 6= r2. Below we will use
Ψ(P ) to refer to the grid information computed above.

3.2 Running BFS

For a fixed parameter r, we use Si(r) to denote the set of points of P whose distances from
s is equal to i in Gr(P ), which is computed in the i-th step of the BFS algorithm if we
run the CS algorithm with respect to r. Initially, we have S0(r) = {s}. In the following,
using the interval (r1, r2] obtained in Lemma 2, we run the BFS algorithm as in the CS
algorithm with a parameter r ∈ (r1, r2), by simulating the algorithm for r∗. The algorithm
maintains an invariant that the i-th step computes a subset Si ⊆ P and shrinks (r1, r2] so
that it contains r∗ and if r∗ 6= r2 (and thus r∗ ∈ (r1, r2)), then Si = Si(r) = Si(r

∗) for any
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h p1

p2

p3

(a) The upper envelope is com-
prised of three arcs centered at
p1, p2 and p3.

h p3

p2
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(b) The moment when the three
arcs have a common intersection,
which is a vertex of the upper en-
velope.

h p3p2p1

(c) The middle arc centered at p2
disappears from the upper enve-
lope.

Figure 5: The change of the combinatorial structure of the upper envelope U(r) (the red
solid arcs) as r increases.

r ∈ (r1, r2). Initially, we set S0 = {s} and thus the invariant holds as S0(r) = {s} for any
r. As will be seen later, the algorithm stops within λ steps and each step takes O(n log n)
time.

Consider the i-th step. Assume that we have Si−1 and (r1, r2], and the invariant
holds, i.e., (r1, r2] contains r∗ and if r∗ 6= r2, then Si−1 = Si−1(r) = Si−1(r

∗) for any
r ∈ (r1, r2). Using the grid Ψ(P ), we obtain the grid cells containing the points of Si−1. For
each such cell C, for points of P in C, we have the following observation.

Lemma 3. Suppose r∗ 6= r2. Then, for each point p ∈ P (C) that has not been discovered
by the algorithm yet, i.e., p 6∈

⋃i−1
j=1 Sj, p is in Si(r) for all r ∈ (r1, r2).

Proof. Let q be a point of Si−1 in C. By our algorithm invariant, (r1, r2] contains r∗. Since
r∗ 6= r2, r∗ ∈ (r1, r2). Let r be any value of (r1, r2). In light of Lemma 2, both p and q are
in the same cell of Ψr(P ), and thus ‖p − q‖ ≤ r. By our algorithm invariant, Sj = Sj(r)
for all 0 ≤ j ≤ i− 1. Since p 6∈

⋃i−1
j=1 Sj , we have p 6∈

⋃i−1
j=1 Sj(r). Because q ∈ Si−1(r) and

‖p− q‖ ≤ r, we obtain that p ∈ Si(r).

Due to the preceding lemma, we add to Si the points of P (C) that have not been
discovered yet. Next, for each neighbor C ′ of C, we need to solve Subproblem 1; we use I to
denote the set of all instances of this subproblem in the i-th step of the BFS. Consider one
such instance. Recall that solving it for a fixed r involves three subroutines. First, compute
the upper envelope U of the arcs of Γ above ` of all red points. Second, sort all vertices of U
with all blue points. Third, for each blue point p, determine whether it is below the arc of
U that spans p. To solve our problem, we parameterize each subroutine with a parameter r
so that the behavior of the algorithm is consistent with that for r = r∗ if r∗ 6= r2.

3.2.1 Computing the upper envelope

We use Γ(r) to denote the set of arcs above ` defined by the red points with respect to the
radius r; similarly, define U(r) as the upper envelope of Γ(r).

http://jocg.org/


JoCG 14(1), 14–47, 2023 26

Journal of Computational Geometry jocg.org

The goal of the first subroutine is to shrink the interval (r1, r2] such that it contains r∗

and if r∗ 6= r2, then U(r∗) has the same combinatorial structure as U(r) for any r ∈ (r1, r2),
i.e., the set of red points that define the arcs on U(r) is exactly the set of red points that
define the arcs on U(r∗) with the same order. Note that the order of the arcs on U(r) is
consistent with the x-coordinate order of the red points defining these arcs [8].

To this end, we have the following observation. Consider U(r) for an arbitrary r. If r
changes, the combinatorial structure of U(r) does not change until one arc (e.g., defined by a
red point p2) disappears from U(r) (e.g., see Fig. 5). Let p1 and p3 be the red points defining
neighboring left and right arcs of the arc defined by p2 on U(r), respectively. Then, at the
moment when p2 disappears from U(r), the three arcs defined by p1, p2, and p3 intersect at
a common point q, which is equidistant to the three points. Further, since q is currently on
U(r), there is no red point that is closer to q than pi for i = 1, 2, 3, and the distance from q
to each pi, i = 1, 2, 3, is equal to the current value of r. Hence, q is a vertex of the Voronoi
diagram of the red points. This implies that as r changes, the combinatorial structure of
U(r) does not change until possibly when r is equal to the distance ‖q − p‖, where q is a
vertex of the Voronoi diagram of all red points and p is a nearest red point of q.

Based on the above observation, our algorithm works as follows. We build the
Voronoi diagram for all red points, which takes O(nr log nr) time [16,31]. For each vertex v
of the diagram, we add ‖v− p‖ to the set Q (initially Q = ∅), where p is a nearest red point
of v (p is available from the diagram). Note that |Q| = O(nr), and we refer to each value of
Q as a critical value. Next, we sort Q, and then do binary search on Q using the decision
algorithm to find the smallest value r′2 of Q with r′2 ≥ r∗ as well as the largest value r′1 of Q
smaller than r∗, which can be done in O(n log nr) time (note that nr ≤ n). By definition,
(r′1, r

′
2] contains r∗ and (r′1, r

′
2) does not contain any value of Q. According to the above

observation, if r∗ 6= r′2, then the combinatorial structure of U(r∗) is the same as that of U(r)
for any r ∈ (r′1, r

′
2).

We analyze the running time of this subroutine for all instances of I. Clearly, the
total time for all instances is bounded by O(|I| ·n log n), which is O(n2 log n) as |I| = O(n).
We can reduce the time to O(n log n) by considering the critical values of all instances of
I all together. Specifically, let Q now be the set of critical values of all instances of I.
Then, |Q| = O(n). We sort Q and do binary search on Q to find r′1 and r′2 as defined above
with respect to the new Q. Now, for each instance of I, if r∗ 6= r′2, then the combinatorial
structure of U(r∗) is the same as that of U(r) for any r ∈ (r′1, r

′
2). The total time for all

instances of I is now bounded by O(n log n). Finally, we update r1 = max{r1, r′1} and
r2 = min{r2, r′2}. As r∗ ∈ (r′1, r

′
2], the new interval (r1, r2] still contains r∗. Further, as

(r1, r2) ⊆ (r′1, r
′
2), for each instance of I, if r∗ 6= r2, then the combinatorial structure of

U(r∗) is the same as that of U(r) for any r ∈ (r1, r2).

3.2.2 Sorting the upper envelope vertices and blue points

The goal of the second subroutine is to shrink the interval (r1, r2] such that it contains
r∗ and if r∗ 6= r2, then the sorted list of all vertices of U(r∗) and all blue points by their
x-coordinates is the same as the sorted list of all vertices of U(r) and all blue points for any
r ∈ (r1, r2).
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Figure 6: Illustrating a vertex v of the up-
per envelope, which is defined by two red
points p1 and p2. The red solid segment is
the bisector of p1 and p2.

`
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q

v

Figure 7: Illustrating the scenario where
x(q) = x(v), where v is on the bisector (the
red solid segment) of p1 and p2.

Recall that after the first subroutine, the interval (r1, r2] contains r∗, and if r∗ 6= r2,
then the combinatorial structure of U(r∗) is the same as that of U(r) for any r ∈ (r1, r2).

To sort all vertices of U(r∗) and all blue points, we apply Cole’s parametric search [11]
with AKS sorting network [2], using the CS algorithm as the decision algorithm; the running
time is bounded by O(n log n) as the number of vertices of U(r∗) is O(nr) and the number
of blue points is O(nb) (and nr+nb = O(n)). To see why this works, it suffices to argue that
the “root” of each comparison involved in the sorting can be obtained in O(1) time (more
specifically, the root refers to the value of r ∈ (r1, r2) at which the two operands involved in
the comparison are equal). Indeed, the comparisons can be divided into three types based
on their operands: (1) a comparison between the x-coordinates of two blue points; (2) a
comparison between the x-coordinates of two vertices of U(r∗); (3) a comparison between
the x-coordinates of a blue point and a vertex of U(r∗). For the first type, as blue points
are fixed, independent of the parameter r, it is trivial to handle. For the second type, as the
combinatorial structure of U(r) does not change for all r ∈ (r1, r2), each such comparison
can be resolved by taking any value of r ∈ (r1, r2) and then comparing the two vertices under
r. The third type is a little more involved. Consider the comparison of the x-coordinates of
a blue point q and a vertex v of U(r∗). Note that v is the intersection of arcs of two circles
of radius r and centered at two red points, say p1 and p2, respectively. Observe that v is on
the bisector of p1 and p2 (e.g., see Fig. 6). Furthermore, when r changes, v moves on the
bisector of p1 and p2, while the position of the blue point q does not change. Hence, the
root of the comparison, i.e., the value r (if exists) in (r1, r2) such that x(q) = x(v) can be
obtained in constant time by elementary geometry (e.g., see Fig. 7). Note that if such r does
not exist in (r1, r2), then either x(q) < x(v) holds for all r ∈ (r1, r2) or x(q) > x(v) holds for
all r ∈ (r1, r2), which can be easily determined. As such, with Cole’s parametric search [11]
and the linear time decision algorithm (i.e., the CS algorithm), we can obtain a sorted list
of the upper envelope vertices and the blue points by their x-coordinates; the algorithm
shrinks the interval (r1, r2] so that the new interval (r1, r2] contains r∗ and if r∗ 6= r2, then
the above sorted list is fixed for all r ∈ (r1, r2).

Since the running time of the above sorting algorithm is O(n log n), as before for
the first subroutine, the sorting for all problem instances of I takes O(n2 log n) time. To
reduce the time, as before, we sort all elements in all instances of I altogether, which takes
O(n log n) time in total. Specifically, in each problem instance, we need to sort a set of blue
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points and vertices of upper envelopes of a set of red points. We put all blue points and
the upper envelopes of all red points of all problem instances of I in one coordinate system
and apply the sorting algorithm as above. One difference is that we now have a new type
of comparisons: compare the x-coordinate of a vertex v1 of the upper envelope from one
problem instance with the x-coordinate of a vertex v2 of the upper envelope from another
problem instance. In this case, when r changes, both v1 and v2 moves on the bisectors of
their defining red points. But we can still find in constant time a root r (if exists) in (r1, r2)
for the comparison by elementary geometry. As such, we can complete the sorting for all
problem instances of I in O(n log n) time in total, for the total number of all blue points and
red points in all problem instances of I is O(n). Again, the interval (r1, r2] will be shrunk.
This finishes the second subroutine.

3.2.3 Deciding whether each blue point is below the upper envelope

We now have an interval (r1, r2] containing r∗ such that if r∗ 6= r2, then each blue point q
is spanned by an arc αq(r) of U(r) defined by the same red point for all r ∈ (r1, r2) (note
that the arc αq(r) moves as r changes, for r is the radius of the arc). Each blue point q is
below the upper envelope U(r) if and only if q is below the arc αq(r). The goal of the third
subroutine is to shrink the interval (r1, r2] so that the new interval (r1, r2] still contains r∗

and if r∗ 6= r2, then for each blue point q, the relative position of q with respect to αq(r)
(i.e., whether q is above or below αq(r)) is fixed for all r ∈ (r1, r2). To this end, we proceed
as follows.

As r changes in (r1, r2), αq(r) changes while q does not. For each blue point q, we
compute in constant time a critical value r (if exists) in (r1, r2) such that q is on αq, and we
add r to the set Q (Q = ∅ initially). Note that if such value r does not exist in (r1, r2), then
either q is above αq(r) for all r ∈ (r1, r2) or q is below αq(r) for all r ∈ (r1, r2), which can be
easily determined. The size of Q is at most nb. Then, we sort Q, and do binary search on Q
with our decision algorithm to find the smallest value r′2 of Q with r′2 ≥ r∗ and the largest
value r′1 of Q with r′1 < r∗. We then update r1 = max{r1, r′1} and r2 = min{r2, r′2}. The
new interval (r1, r2] still contains r∗ and (r1, r2) does not contain any value of Q. Hence, if
r∗ 6= r2, then for each blue point q, the relative position of q with respect to αq(r) is fixed
for all r ∈ (r1, r2). As such, the new interval (r1, r2] satisfies the goal of the third subroutine
as mentioned above.

Finally, we pick an arbitrary r ∈ (r1, r2), and for each blue point q, if q is below the
arc αq(r), then we add q to the set Si.

The running time of the above algorithm is O(n log nb). Thus the total time of the
third subroutine is O(n2 log n) for all problem instances of I. To reduce the time, we again
consider the subroutine of all instances of I altogether. More specifically, we put all critical
values r in all problem instances of I in Q. Thus, the size of Q is O(n). We then run the
same algorithm as above using the new set Q. The total time is bounded by O(n log n).
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3.2.4 Terminating the algorithm

This finishes the i-th step of the BFS, which computes a set Si along with an interval (r1, r2].
According to the above discussion, (r1, r2] contains r∗ and if r∗ 6= r2 (and thus r∗ ∈ (r1, r2)),
then Si = Si(r

∗) = Si(r) for all r ∈ (r1, r2).

If the point t is in Si and i ≤ λ, then we stop the algorithm. In this case, we have
the following lemma.

Lemma 4. If t ∈ Si and i ≤ λ, then r∗ = r2.

Proof. Assume to the contrary that r∗ 6= r2. Then, since r∗ ∈ (r1, r2], we have r∗ ∈ (r1, r2).
Let r′ = (r1 + r∗)/2. Clearly, r′ ∈ (r1, r2) and r′ < r∗. As r′ ∈ (r1, r2), Si = Si(r

′) by
our algorithm invariant. Since t ∈ Si(r′), we obtain that dr′(s, t) = i ≤ λ. This leads to a
contradiction as r′ < r∗ and r∗ is the minimum value r with dr(s, t) ≤ λ.

If t 6∈ Si and i = λ, then we also stop the algorithm. In this case, we have the
following lemma.

Lemma 5. If t 6∈ Si and i = λ, then r∗ = r2.

Proof. Assume to the contrary that r∗ 6= r2. Then, r∗ ∈ (r1, r2), for r∗ ∈ (r1, r2]. By our
algorithm invariant, Sj = Sj(r) for all r ∈ (r1, r2) and for all j ≤ i. Hence, Sj = Sj(r

∗) for
all j ≤ i. As t 6∈ Si, according to our algorithm, t 6∈

⋃i
j=0 Sj . Therefore, t 6∈

⋃i
j=0 Sj(r

∗),
implying that dr∗(s, t) > i = λ. However, by the definition of r∗, dr∗(s, t) ≤ λ holds. We
thus obtain contradiction.

Since initially i = 0 and S0 = {s}, the above implies that the BFS algorithm will
stop in at most λ steps. As each step takes O(n log n) time, the value r∗ can be computed
in O(λ · n log n) time.

Theorem 1. The reverse shortest path problem for L2 unweighted unit-disk graphs can be
solved in O(bλc · n log n) time.

4 The unweighted case – the second algorithm

In this section, we present our second algorithm for the L2 unweighted RSP problem. As
discussed in Section 1.1, the main idea is to combine the strategies of the first unweighted
RSP algorithm in Section 3 and the naive binary search algorithm using the distance selection
algorithm [22].

First of all, we still build in O(n log n) time the grid Ψ(P ) as in Section 3.1, and
thus the information of Lemma 2 is available for the grid. More specifically, we obtain an
interval (r1, r2] such that if r∗ 6= r2, then the combinatorial data structure of Ψr(P ) is fixed
for all r ∈ (r1, r2), implying that C, P ′, N(C) and P (C) for each C ∈ C are fixed for all
r ∈ (r1, r2). Next, we will run the BFS algorithm, but in a different way than before.
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We partition the cells of C into large cells and small cells: a cell C is a large cell if
|P (C)| ≥ (n/ log n)3/4 and is a small cell otherwise. Thus the number of large cells is at
most n1/4 log3/4 n. For all pairs of cells (C,C ′) with C ∈ C and C ′ ∈ N(C), we call (C,C ′)
a small-cell pair if both C and C ′ are small cells and a large-cell pair otherwise (i.e., at least
one cell is a large cell). As |N(C)| = O(1) for each cell C and the number of large cells is
at most n1/4 log3/4 n, the total number of large-cell pairs is O(n1/4 log3/4 n).

Recall that each step of the BFS algorithm of our first algorithm in Section 3.2 boils
down to solving instances of Subproblem 1, and each such instance involves a cell pair (C,C ′)
with C ∈ C and C ′ ∈ N(C). If (C,C ′) is a large-cell pair, we will run the same algorithm as
in Section 3.2. Otherwise, we will use the original CS algorithm to solve it, which takes only
linear time. For this, with the help of the L2 distance selection algorithm [22], we preprocess
all these small-cell pairs before starting the BFS algorithm by the following lemma.

Lemma 6. An interval (r′1, r
′
2] containing r∗ can be computed in O(n5/4 log7/4 n) time with

the following property: if r∗ 6= r′2, then for any r ∈ (r′1, r
′
2), for any small-cell pair (C,C ′)

with C ∈ C and C ′ ∈ N(C), an edge connects a point p ∈ P (C) and a point p′ ∈ P (C ′) in
Gr(P ) if and only if an edge connects p and p′ in Gr∗(P ).

Proof. Let Π denote the set of all small-cell pairs (C,C ′) with C ∈ C and C ′ ∈ N(C). We
use (Ci, C

′
i) to denote the i-th pair of Π; let Pi denote the set of points of P in the two

cells Ci and C ′i, and let ni = |Pi|. Let m = |Π|. Note that m = O(n). By the definition of
small cells, we have ni ≤ 2 · (n/ log n)3/4. Since |N(C)| = O(1) for each cell C, it holds that∑m

i=1 ni = O(n). For each Pi, let Di denote the set of distances of all pairs of points of Pi.
Hence, |Di| = ni(ni − 1)/2. Define D =

⋃m
i=1Di.

Let r′2 be the smallest value of D with r′2 ≥ r∗ and let r′1 be the largest value of D
smaller than r∗. By definition, (r′1, r

′
2] contains r∗ and the open interval (r′1, r

′
2) does not

contain any value of D and thus any value of Di for each i. Therefore, for any two points
p and p′ of Pi, either ‖p − p′‖ < r holds for all r ∈ (r′1, r

′
2) or ‖p − p′‖ > r holds for all

r ∈ (r′1, r
′
2). Thus, (r′1, r

′
2] satisfies the lemma statement. In the following, we only describe

the algorithm for finding r′2 since the algorithm for finding r′1 is similar.

For convenience, for any r, we say that r is feasible if r ≥ r∗ and infeasible otherwise.
Note that if r is a feasible value, then r′ is also feasible for any r′ > r; symmetrically, if r
is infeasible, then r′ is also infeasible for any r′ < r. Recall that given any r, we can decide
whether r ≥ r∗ in linear time using the decision algorithm (i.e., the CS algorithm).

For each Pi, we wish to do binary search on all distances of Di. However, doing
this on each Pi individually would be time-consuming. Instead, we do binary search for
all Pi’s all together in a “batched” way. Specifically, for each Pi, we use the L2 distance
selection algorithm [22] to compute the median distance of Di, denoted by di, which takes
O(n

4/3
i log2 ni) time. Then, we sort all these medians di’s, for all i = 1, 2, . . . ,m, and do

binary search on the sorted list using the decision algorithm. In O(n log n) time, we can
determine whether each di is feasible. Among all these medians, we keep the smallest feasible
value, denoted by d1. This finishes the first round of the algorithm.

In the second round, for each di, if it is feasible, then any value of Di larger than
di is also feasible; in this case, we compute the (|Di|/4)-th smallest value of Di, denoted by
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d′i. If di is infeasible, then any value of Di smaller than di is also infeasible; in this case, we
compute the (3|Di|/4)-th smallest value of Di, denoted by d′i. Next, we determine whether
the values d′i are feasible for all 1 ≤ i ≤ m in the same way as above (i.e., doing binary
search using the decision algorithm); we keep the smallest feasible value, denoted by d2.

We then continue the next round in a similar way as above. After O(log n) rounds,
the values of all sets Di are processed and we obtain a set of O(log n) feasible values d1, d2,
. . . ; among all these values, the smallest one is r′2.

For the time analysis, the algorithm has O(log n) rounds and each round takes
O(n log n +

∑m
i=1 n

4/3
i log2 ni) time. Since ni ≤ 2 · (n/ log n)3/4 for each 1 ≤ i ≤ m,

and
∑m

i=1 ni = O(n), the sum
∑m

i=1 n
4/3
i achieves maximum when each ni is equal to 2 ·

(n/ log n)3/4 (and thusm = O(n1/4 log3/4 n)). Hence,
∑m

i=1 n
4/3
i = O(n5/4/ log1/4 n). There-

fore, each round of the algorithm takes O(n5/4 log7/4 n) time, which is dominated by the L2

distance selection algorithm [22]. The total time of the algorithm is thus O(n5/4 log11/4 n).

In what follows, we reduce the runtime of the algorithm by a logarithmic factor. The
new algorithm still has O(log n) rounds. The difference is that instead of applying the L2

distance selection algorithm [22] directly, we only use a subroutine of that algorithm. This
also simplifies the overall algorithm. To avoid the lengthy background discussion, we use
concepts from [22] without further explanation (refer to the initial version of the algorithm
in Section 4 [22] for the details).

Each round of our algorithm produces an interval Ij = (aj , bj ] which contains r∗.
Initially, we set I0 = (0,∞]; we also add ∞ to D. Given an interval Ij−1 = (aj−1, bj−1] that
contains r∗ with bj−1 ∈ D, the j-th round of the algorithm produces an interval Ij = (aj , bj ]
that also contains r∗ with bj ∈ D such that Ij ⊆ Ij−1 and the number of values of D
contained in Ij is only a constant fraction of the number of values of D contained in Ij−1.
Thus, after O(log n) rounds, we are left with a sufficiently small number of distances of D,
from which it is trivial to find r′2.

The j-th round of the algorithm works as follows. For each set Pi, we compute a
compact representation of all pairs of points of Pi whose distances lie in Ii−1, which can be
done in O(n

4/3
i log ni) time [22]. Such a compact representation is a collection of O(n

4/3
i )

complete bipartite graphs {Qk ×Wk}k, where both
∑

k |Qk| and
∑

k |Wk| are bounded by
O(n

4/3
i log ni). For each k, the distance between any point in Qk and any point of Wk is

in Ii−1. Next, we replace each complete bipartite graph Qk ×Wk by a set Ek of expander
graphs whose total number of edges is O(|Qk| + |Wk|). Then the total number of edges of
all sets of expander graphs {Ek}k is

∑
k O(|Qk| + |Wk|) = O(n

4/3
i log ni). Each edge of an

expander graph is associated with a distance of two points corresponding to the two nodes of
the graph it connects. Let Li denote the set of distances of all edges in all expander graphs
of {Ek}k; the size of Li is O(n

4/3
i log ni). Let L denote the union of all such Li’s. Then,

|L| =
∑m

i=1 n
4/3
i log ni, which is bounded by O(n5/4 log3/4 n) as discussed above. By doing

binary search with the decision algorithm on L, we can compute the smallest feasible value
bj and the largest infeasible value aj of L. Hence, (aj , bj ] contains r∗ and (aj , bj) does not
contain any value of L. Note that when doing binary search on L, we do not need to sort it
first; instead we use the linear time selection algorithm [5]. As such, finding aj and bj can
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be done in O(n5/4 log3/4 n) time, which is also the total time of this round. Let Ij = (aj , bj ].
The analysis of [22] shows that the total number of values of D in Ij is a constant fraction
of the total number of values of D in Ij−1.

As the algorithm has O(log n) rounds and each round runs in O(n5/4 log3/4 n) time,
the overall time of the algorithm is O(n5/4 log7/4 n).

With the interval (r′1, r
′
2] computed by the above lemma, we update r1 = max{r1, r′1}

and r2 = min{r2, r′2}. By definition, r∗ ∈ (r1, r2] ⊆ (r′1, r
′
2]. Hence, the interval (r1, r2] also

has the same property as (r′1, r
′
2] in Lemma 6.

Next, we run the BFS algorithm as in Section 3.2. To solve each instance of Sub-
problem 1, if one of the two involved cells is a large cell (we refer to this case as the large-cell
instance), then we use the same algorithm as before, i.e., parametric search; otherwise (i.e.,
both involved cells are small cells; we refer to this case as small-cell instance), due to the
preprocessing of Lemma 6, we can solve the subproblem directly using the original CS al-
gorithm by picking an arbitrary value r ∈ (r1, r2). In this way, the time for solving all
small-cell instances in the entire BFS algorithm is O(n). For each large-cell instance, it can
be solved in O(n log n) time as discussed in Section 3.2. As the number of large cells of C is
at most n1/4 log3/4 n and |N(C)| = O(1) for each cell C ∈ C, the total number of large-cell
instances of Subproblem 1 is at most O(n1/4 log3/4 n). Hence, the total time for solving
the large-cell instances in the entire BFS algorithm is O(n5/4 log7/4 n). The proof of the
following lemma presents the details of the new BFS algorithm sketched above.

Lemma 7. The BFS algorithm, which computes r∗, can be implemented in O(n5/4 log7/4 n)
time.

Proof. We define Si and Si(r) in the same way as in Section 3.2. Initially, we set S0 = {s}.
Before the i-step starts, we have an interval (r1, r2]. Again, the algorithm maintains an
invariant that the i-th step shrinks (r1, r2] so that it contains r∗ and if r∗ 6= r2, then
Si = Si(r

∗) = Si(r) for any r ∈ (r1, r2). Initially, the invariant trivially holds for S0.

Consider the i-th step. Assume that the invariant holds for Si−1, i.e., we have an
interval (r1, r2] containing r∗ such that if r∗ 6= r2, then Si−1 = Si−1(r) = Si−1(r

∗) for any
r ∈ (r1, r2), and Si−1 is available to us. Using the grid information of Ψ(P ), we obtain the
grid cells containing the points of Si−1. For each such cell C, as before in Section 3.2, we
add to Si the points of P ∩ C that have not been discovered yet. Then, for each neighbor
C ′ of C, we need to solve Subproblem 1; we use I to denote the set of instances of this
subproblem in this step.

Consider two cells C and C ′ involved in an instance of I. If one of them is a
large cell, then we run the same parametric search algorithm as in Section 3.2, i.e., the
three subroutines. As before, the time of the algorithm is bounded by O(n log n) and the
algorithm shrinks the interval (r1, r2] so that the algorithm invariant is maintained. Recall
that in Section 3.2 we solve all problem instances in each step of the BFS algorithm all
together. Here instead it suffices to solve each problem instance individually. As the number
of large cells is at most O(n1/4 log3/4 n), the total number of large-cell instances in the entire
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BFS algorithm is O(n1/4 log3/4 n). Hence, the total time for solving the large-cell instances
of Subproblem 1 in the entire BFS is O(n5/4 log7/4 n).

We now consider the small-cell instance where both C and C ′ are small cells. Note
that in each instance of Subproblem 1, all red points are in one cell, say, C, and all blue
points are in the other cell C ′. Let PR be the set of red points in C and PB be the set of blue
points in C ′. According to Lemma 6, if r∗ 6= r2 (and thus r∗ ∈ (r1, r2)), then for any point
p ∈ PR and any point p′ ∈ PB, either ‖p− p′‖ < r holds for all r ∈ (r1, r2) or ‖p− p′‖ > r
holds for all r ∈ (r1, r2), implying that ‖p − p′‖ > r∗ if and only if ‖p − p′‖ > r for any
r ∈ (r1, r2). Therefore, we can solve the subproblem in the following way. We first take any
r ∈ (r1, r2). Then we run the CS algorithm to solve the subproblem with r as the radius,
which takes O(nr + nb) time. Note that the interval (r1, r2] will not be changed in this
case. Due to the preprocessing in Lemma 6, the algorithm invariant still holds (i.e., (r1, r2]
contains r∗ and if r∗ 6= r2, then Si = Si(r

∗) = Si(r) for any r ∈ (r1, r2)). The total time for
solving the small-cell instances in the entire BFS is O(n) because as in the CS algorithm
each cell will be involved in at most O(1) instances of the subproblem in the entire BFS
algorithm.

After the i-th step, as before, we obtain the set Si and an interval (r1, r2] containing
r∗ such that if r∗ 6= r2, then Si = Si(r

∗) = Si(r) for any r ∈ (r1, r2). If t ∈ Si and i ≤ λ,
then we can stop the algorithm; by Lemma 4, we have r∗ = r2. If t 6∈ Si and i = λ, we also
stop the algorithm; by Lemma 5, we have r∗ = r2.

In summary, the overall time of the BFS algorithm is O(n5/4 log7/4 n).

Combining with the algorithm of Lemma 6, the overall time of the algorithm for
computing r∗ is O(n5/4 log7/4 n). We thus obtain the following theorem.

Theorem 2. The reverse shortest path problem for L2 unweighted unit-disk graphs can be
solved in O(n5/4 log7/4 n) time.

5 The weighted case

We follow the notation introduced in Section 1 and Section 2, e.g., P , Gr(P ), dr(s, t),
and r∗, but now defined for weighted unit-disk graphs. Our goal is to compute r∗. As
discussed in Section 1.1, our algorithm utilizes parametric search by parameterizing the WX
algorithm [32]. We begin with a review of the WX algorithm.

5.1 A review of the WX algorithm

Given P , r, and a source point s ∈ P , the WX algorithm can compute shortest paths
from s to all points of P in the weighted unit-disk graph Gr(P ), and the algorithm runs in
O(n log2 n) time.

For any point p in the plane, let
⊙

p denote the disk centered at p with radius r.

The first step is to implicitly build a grid Ψr(P ) of square cells whose side lengths
are r/

√
2. For simplicity of discussion, we assume that every point of P lies in the interior
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p

Figure 8: The red cell that contains the point p is �p and the square area bounded by blue
segments is the patch �p. All adjacent vertices of p in Gr(P ) must lie in the grey region.

of a cell of Ψr(P ). A patch of Ψr(P ) refers to a square area consisting of 5 × 5 cells. For
a point p ∈ P , we use �p to denote the cell of Ψr(P ) containing p and use �p to denote
the patch whose central cell is �p (e.g., see Fig. 8). We refer to cells of �p \ �p as the
neighboring cells of �p. As the side length of each cell of Ψr(P ) is r/

√
2, any two points of

P in a single cell of Ψr(P ) must be connected by an edge in Gr(P ). Moreover, if an edge
connects two points p and q in Gr(P ), then q must lie in �p and vice versa. For any subset
Q ⊆ P and a cell � (resp.,a patch �) of Ψr(P ), define Q� = Q ∩ � (resp., Q� = Q ∩ �).
The step of implicitly building the grid actually computes the subset P� for each cell � of
Ψr(P ) that contains at least one point of P as well as associate pointers to each point p ∈ P
so that given any p ∈ P , the list of points of P�p (resp., P�p) can be accessed immediately.
Building Ψr(P ) implicitly as above can be done in O(n log n) time, e.g., by the algorithm
of Lemma 1.

The WX algorithm follows the basic idea of Dijkstra’s algorithm and computes an
array dist[·] for each point p ∈ P , where dist[p] will be equal to dr(s, p) when the algorithm
terminates. Different from Dijkstra’s shortest path algorithm, which picks a single vertex
in each iteration to update the shortest path information of other adjacent vertices, the
WX algorithm aims to update in each iteration the shortest path information for all points
within one single cell of Ψr(P ) and pass on the shortest path information to vertices lying
in the neighboring cells.

A key subroutine used in the WX algorithm is Update(U , V ), which updates the
shortest path information for a subset V ⊆ P of points by using the shortest path information
of another subset U ⊆ P of points. Specifically, the subroutine finds, for each v ∈ V ,
qv = arg minu∈U∩

⊙
v
{dist[u]+‖u−v‖} and update dist[v] = min{dist[v], dist[qv]+‖qv−v‖}.

With the subroutine Update(U , V ) in hand, the WX algorithm works as follows
(refer to Algorithm 1 for the pseudocode).

Initially, we set dist[s] = 0, dist[p] = ∞ for all other points p ∈ P \ {s}, and
Q = P . Then we enter the main (while) loop. In each iteration, we find a point z with
minimum dist-value from Q, and then execute two update subroutines Update(Q�z , Q�z)
and Update(Q�z , Q�z). Next, points of Q�z are removed from Q, because it can be shown
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Algorithm 1: The WX Algorithm [32]
1 Function WX(P , s):
2 for each p ∈ P do
3 dist[p] =∞
4 end
5 dist[s] = 0
6 Q = P
7 while Q 6= ∅ do
8 z = arg minp∈Q{dist[p]}
9 Update(Q�z , Q�z) // first update

10 Update(Q�z , Q�z) // second update
11 Q = Q \Q�z

12 end
13 return dist[·]
14 end

that dist[p] for all points p ∈ Q�z have been correctly computed [32]. The algorithm stops
once Q becomes ∅.

The efficiency of the algorithm hinges on the implementation of the two update
subroutines. We give some details below, which are needed in our RSP algorithm as well.

5.1.1 The first update

For the first update Update(Q�z , Q�z), the crucial step is finding a point qv ∈ Q�z ∩
⊙

v

for each point v ∈ Q�z such that dist[qv] + ‖qv − v‖ is minimized. If we assign dist[q] as
a weight to each point q ∈ Q�z , then the problem is equivalent to finding the additively-
weighted nearest neighbor qv from Q�z ∩

⊙
v for each v ∈ Q�z . To this end, Wang and

Xue [32] proved a key observation that any point q ∈ Q�z that minimizes dist[q] + ‖q − v‖
must lie in

⊙
v. This implies that for each point v ∈ Q�z , its additively-weighted nearest

neighbor in Q�z is also its additively-weighted nearest neighbor in Q�z ∩
⊙

v. As such, qv
for all v ∈ Q�z can be found by first building an additively-weighted Voronoi Diagram on
points of Q�z [16] and then performing point locations for all v ∈ Q�z [13, 24, 30]. In this
way, since

∑
zi
|P�zi

| = O(n), where zi refers to the point z in the i-th iteration of the main
loop, the first updates for all iterations of the main loop can be done in O(n log n) time in
total [32].

5.1.2 The second update

The second update Update(Q�z , Q�z) is more challenging because the above key obser-
vation no longer holds. Since Q�z has O(1) cells of Ψr(P ), it suffices to perform Up-
date(Q�z , Q�) for all cells � ∈ �z.

If � is �z, then Q�z = Q�. Since the distance between any two points in �z is
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ℓ

⊙
u1 ⊙

u2

⊙
u3

v1

v2

v3v4

Figure 9: Blue arcs are unit-disks centered at points U = {u1, u2, u3} which are sorted by
their dist[·] values. We have V1 = {v3, v4}, V2 = {v1}, and V3 = {v2} in this example. Note
that point v3 is in unit-disk

⊙
u1

and
⊙

u3
at the same time, but v3 is in subset V1 ⊆ V by

the definition of Vi’s, 1 ≤ i ≤ |U |.

at most r, we can easily implement Update(Q�z , Q�) in O(|Q�z | log |Q�z |) time, by first
building a additively-weighted Voronoi diagram on points of Q�z (each point q ∈ Q�z is
assigned a weight equal to dist[q]), and then using it to find the additively-weighted nearest
neighbor qv for each point v ∈ Q�z .

If � is not �z, a useful property is that � and �z are separated by an axis-parallel
line. The WX algorithm implements Update(Q�z , Q�) with the following three steps (see
Fig. 9 for an example). Let U = Q�z and V = Q�.

1. Sort points of U as {u1, u2, ..., u|U |} such that dist[u1] ≤ dist[u2] ≤ ... ≤ dist[u|U |].

2. Compute |U | disjoint subsets {V1, V2, ..., V|U |} with Vi = {v ∈ V | v ∈
⊙

ui
and v /∈⊙

uj
for all 1 ≤ j < i}. Equivalently, for each point v ∈ V , v is in Viv , where iv is the

smallest index i (if exists) such that
⊙

ui
contains v.

3. Initialize U ′ = ∅. Proceed with |U | iterations for i = |U |, |U | − 1, ..., 1 sequen-
tially and do the following in each iteration for i: (1) Add ui to U ′; (2) for each
point v ∈ Vi, compute qv = arg minu∈U ′{dist[u] + ‖u − v‖}; (3) update dist[v] =
min{dist[v], dist[qv] + ‖qv − v‖}.

By the definition of Vi, U ∩
⊙

v ⊆ U ′ = {u|U |, u|U |−1, ..., ui} for each v ∈ Vi in the
iteration for i of Step 3. Wang and Xue [32] proved that qv found for each v ∈ Vi in Step 3
must lie in

⊙
v. They gave a method to implement Step 2 in O(k log k) time by making use

of the property that U and V are separated by an axis-parallel line, where k = |U | + |V |.
Step 3 can be considered as an offline insertion-only additively-weighted nearest neighbor
searching problem and the WX algorithm solves the problem in O(k log2 k) time using the
standard logarithmic method [3], with k = |U |+ |V |.

As such, the second updates for all iterations in the WX algorithm takes O(n log2 n)
time in total [32], which dominates the entire algorithm (other parts of the algorithm together
takes O(n log n) time).
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5.2 The RSP algorithm

We now tackle the RSP problem, i.e., given λ and s, t ∈ P , compute r∗. We will “parame-
terize” the WX algorithm reviewed above.

Recall that the decision problem is to decide whether r∗ ≤ r for a given r. Notice that
r∗ ≤ r holds if and only if dr(s, t) ≤ λ. The decision problem can be solved in O(n log2 n)
time by running the WX algorithm on r. In the following, we refer to the WX algorithm
as the decision algorithm. We say that r is a feasible value if r∗ ≤ r and an infeasible value
otherwise.

As discussed in Section 1.1, to find r∗, we run the decision algorithm with a parameter
r in an interval (r1, r2] by simulating the algorithm on the unknown r∗. The interval always
contains r∗ but will be shrunk during course of the algorithm (for simplicity, when we say
(r1, r2] is shrunk, this also include the case that (r1, r2] does not change). Initially, we set
r1 = 0 and r2 =∞.

The first step is to build a grid for P . The goal is to shrink (r1, r2] so that it contains
r∗ and if r∗ 6= r2 (and thus r∗ ∈ (r1, r2)), for any r ∈ (r1, r2), the grid Ψr(P ) has the same
combinatorial structure as Ψr∗(P ) in the following sense: (1) Both grids have the same
number of rows and columns; (2) for any point p ∈ P , p lies in the i-th row and j-th column
of Ψr(P ) if and only if p lies in the i-th row and j-th column of Ψr∗(P ). This can be done by
applying the algorithm in Lemma 2 but replacing the CS algorithm with the WX algorithm
as the decision algorithm. The runtime becomes O(n log3 n) because the WX algorithm runs
in O(n log2 n) time.

Let (r1, r2] denote the interval after building the grid. We pick any r ∈ (r1, r2)
and compute the grid information of Ψr(P ), which has the same combinatorial structure as
Ψr∗(P ) if r∗ 6= r2. Below, we will simply use Ψ(P ) to refer to the grid information computed
above, meaning that it does not change with respect to r ∈ (r1, r2).

We use distr[·], Q(r), z(r) respectively to refer to dist[·], Q, z in the WX algorithm
running on a parameter r. We start with setting distr[s] = 0, distr[p] =∞ for all p ∈ P \{s},
and Q(r) = P .

Next we enter the main loop. As long as Q(r) 6= ∅, in each iteration, we will find
a point z(r) with the minimum distr-value from Q(r) and update distr-values for points in
Q(r)�z(r)

∪ Q(r)�z(r)
. Points in Q(r)�z(r)

are then removed from Q(r). Each iteration will
shrink (r1, r2] such that the following algorithm invariant is maintained: (r1, r2] contains r∗

and if r∗ 6= r2, the following holds for all r ∈ (r1, r2): z(r) = z(r∗), Q(r) = Q(r∗), and
distr[p] = distr∗ [p] for all p ∈ P .

Consider an iteration of the main loop. We assume that the invariant holds before
the iteration on the interval (r1, r2], which is true before the first iteration. In the following,
we describe our algorithm for the iteration and we will show that the invariant holds after
the iteration. We assume that r∗ 6= r2. According to our invariant, for any r ∈ (r1, r2), we
have z(r) = z(r∗), Q(r) = Q(r∗), and distr[p] = distr∗ [p] for all p ∈ P .

We first find a point z(r) ∈ Q(r) with the minimum distr-value. Since the invariant
holds before the iteration, we have z(r) = arg minp∈Q(r) distr[p] = arg minp∈Q(r∗) distr∗ [p] =

http://jocg.org/


JoCG 14(1), 14–47, 2023 38

Journal of Computational Geometry jocg.org

z(r∗).2 Hence, no “parameterization” is needed in this step, i.e., all involved values in the
computation of this step are independent of r.

Next, we perform the first update Update(Q(r)�z(r)
, Q(r)�z(r)

). This step also
does not need parameterization. Indeed, for each point p ∈ Q(r)�z(r)

, we assign distr[p]
to p as a weight, and then construct the additively-weighted Voronoi diagram on Q(r)�z(r)

.
For each point v ∈ Q(r)�z(r)

, we use the diagram to find its additively-weighted nearest
neighbor qv(r) ∈ Q(r)�z(r)

and update distr[v] = min{distr[v], distr[qv(r)] + ‖qv(r) − v‖}.
Since z(r) = z(r∗), and Q(r) = Q(r∗), we have Q(r)�z(r)

= Q(r∗)�z(r∗) and Q(r)�z(r)
=

Q(r∗)�z(r∗) . Further, since distr[p] = distr∗ [p] for all p ∈ P , for each point v ∈ Q(r)�z(r)
,

qv(r) = qv(r
∗) and each updated distr[v] in our algorithm is equal to the corresponding

updated distr∗ [v] in the same iteration of the WX algorithm running on r∗. As such, the
invariant still holds after the first update.

Implementing the second update Update(Q(r)�z(r)
, Q(r)�z(r)

) is more challenging
and parameterization is necessary. It suffices to implement Update(Q(r)�z(r)

, Q(r)�) for
all cells � ∈ �z(r).

If � is �z(r), then Q(r)�z(r)
= Q(r)�. In this case, again no parameterization

is needed. Since the distance between any two points in �z(r) is at most r, we can easily
implement Update(Q(r)�z(r)

, Q(r)�) in O(|Q(r)�z(r)| log |Q(r)�z(r)|) time, by first building
a additively-weighted Voronoi diagram on points of Q(r)�z(r)

(each point p ∈ Q(r)�z(r)
is

assigned a weight equal to distr[p]), and then using it to find the additively-weighted nearest
neighbor qv(r) for each point v ∈ Q(r)�z . By an analysis similar to the above first update,
the invariant still holds.

We now consider the case where� is not�z(r). In this case, � and�z(r) are separated
by an axis-parallel line `. Without loss of generality, we assume that ` is horizontal and �z(r)

is below `. Since z(r) = z(r∗) and Q(r) = Q(r∗) for all r ∈ (r1, r2), we let U = Q(r)�z(r)

and V = Q(r)�, meaning that both U and V are independent of r ∈ (r1, r2). Recall that
there are three steps in the second update of the decision algorithm. Our algorithm needs to
simulate all three steps. As will be seen later, only the second step needs parameterization.

The first step is to sort points in U by their distr-values. Since distr[p] = distr∗ [p]
for all p ∈ P , the sorted list {u1, u2, ..., u|U |} of U obtained in our algorithm is the same as
the sorted list obtained in the decision algorithm running on r∗.

For any r, we use
⊙

p(r) to denote the disk centered at a point p with radius r.

The second step is to compute |U | disjoint subsets {V1(r), V2(r), ..., V|U |(r)} of V such
that Vi(r) = {v | iv(r) = i, v ∈ V }, where iv(r) is the smallest index such that

⊙
uiv(r)

(r)

contains point v. This step needs parameterization. We will shrink the interval (r1, r2] so
that it still contains r∗ and if r∗ 6= r2, then for any r ∈ (r1, r2), Vi(r) = Vi(r

∗) holds for all
1 ≤ i ≤ |U | (it suffices to ensure iv(r) = iv(r

∗) for all v ∈ V ). Our algorithm relies on the
following observation, which is based on the definition of iv(r).

Observation 1. For any point v ∈ V , if
⊙

uj
(r) contains v with 1 ≤ j ≤ |U |, then iv(r) ≤ j.

2When picking z(r), we break ties following the same way as the WX algorithm. This guarantees
z(r) = z(r∗) even if ties happen.
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For a subset P ′ ⊆ P , let Fr(P ′) denote the union of the disks centered at points of
P ′ with radius r. We first solve a subproblem in the following lemma.

Lemma 8. Suppose (r1, r2] contains r∗ such that if r∗ 6= r2, then for all r ∈ (r1, r2),
distr[p] = distr∗ [p] for all points p ∈ P . For a subset U ′ ⊆ U and a subset V ′ ⊆ V , in
O(n log2 n · log(|U ′| + |V ′|)) time we can shrink (r1, r2] so that it still contains r∗ and if
r∗ 6= r2, then for all r ∈ (r1, r2), for any v ∈ V ′, v is contained in Fr(U ′) if and only if v is
contained in Fr∗(U ′).

Proof. Recall that all points of U are below ` and all points of V are above `. For any r,
the problem to determine whether v is contained in Fr(U ′) for each v ∈ V ′ is an instance
of Subproblem 1 (i.e., consider the points of U ′ as red points and the points of V ′ as blue
points). Recall that solving Subproblem 1 for a fixed r involves three subroutines and we
also give a parameterized algorithm for solving it on the unknown r∗ in Section 3.2 for the
unweighted case. Here, to achieve the lemma, we can essentially apply the same algorithm
as in Section 3.2 but instead use the WX algorithm as the decision algorithm. We sketch it
below.

Let Ur(U ′) denote the upper envelope of the portions of the disks
⊙

u(r) above ` for
all u ∈ U ′. A point v ∈ V ′ is in Fr(U ′) if and only if v is below Ur(U ′). The algorithm has
three subroutines. The first subroutine is to shrink (r1, r2] so that it still contains r∗ and if
r∗ 6= r2, then for all r ∈ (r1, r2), Ur(U ′) has the same combinatorial structure as Ur∗(U ′).
This can be done by applying the algorithm of Section 3.2.1 but using the WX algorithm as
the decision algorithm. The second subroutine is to shrink (r1, r2] such that it still contains
r∗ and if r∗ 6= r2, then for all r ∈ (r1, r2), the sorted list of the vertices of Ur(U ′) and all
points of V ′ is the same as the sorted list of the vertices of Ur∗(U ′) and all points of V ′. This
can be done by applying the algorithm of Section 3.2.2 but using the WX algorithm as the
decision algorithm. The third subroutine is to shrink (r1, r2] so that (r1, r2] contains r∗ and
if r∗ 6= r2, then for any r ∈ (r1, r2), for any v ∈ V ′, v is below the arc spanning it in Ur(U ′)
if and only if v is below the arc spanning it in Ur∗(U ′). This can be done by applying the
algorithm of Section 3.2.3 but using the WX algorithm as the decision algorithm. Following
the analysis of Sections 3.2.1, 3.2.2, and 3.2.3, the total time of the algorithm is bounded
by O(n log2 n · log(|U ′|+ |V ′|)) because the decision algorithm runs in O(n log2 n) time (and
both |U ′| and |V ′| are no more than n).

Recall that we have an interval (r1, r2]. Our goal is to shrink it so that it still contains
r∗ and if r∗ 6= r2, then for any r ∈ (r1, r2), Vi(r) = Vi(r

∗) holds for all 1 ≤ i ≤ |U |. Based
on Observation 1 and using Lemma 8, we have the following lemma.

Lemma 9. We can shrink the interval (r1, r2] in O(n log4 n) time so that it still contains
r∗ and if r∗ 6= r2, then for any r ∈ (r1, r2), Vi(r) = Vi(r

∗) holds for all 1 ≤ i ≤ |U |.

Proof. To have Vi(r) = Vi(r
∗) for all 1 ≤ i ≤ |U |, it suffices to ensure iv(r) = iv(r

∗) for all
points v ∈ V . Let M = |U | and N = |V |. Note that M ≤ n and N ≤ n.

As defined in the proof of Lemma 8, for any subset U ′ ⊆ U and any r, we use Ur(U ′)
to denote the upper envelope of the portions of

⊙
u(r) above ` for all u ∈ U ′.
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Figure 10: Illustrating U1 and V1, where U1 = {u1, u2, u3} and V1 = {v4, v5, v7}. The solid
arcs are on Ur∗(U1).

In light of Observation 1, we use the divide and conquer approach. Recall that
U = {u1, u2, . . . , uM}. Consider the following subproblem on (U, V ): shrink (r1, r2] so that
it still contains r∗ and if r∗ 6= r2, then for any r ∈ (r1, r2), the following holds, for any
v ∈ V , v is below Ur(U1) if and only if v is below Ur∗(U1), where U1 is the first half of U ,
i.e., U1 = {u1, u2, ..., ubM

2
c}. The subproblem can be solved in O(n log3 n) time by applying

Lemma 8. Next, we pick any r ∈ (r1, r2) and compute Ur(U1) and find the subset V1 of
the points of V that are below Ur(U1) (e.g., see Fig. 10). By Observation 1, for each point
v ∈ V , iv(r) ≤ bM2 c if v ∈ V1 and iv(r) > bM2 c otherwise. By the above property of (r1, r2],
for each point v ∈ V , we also have iv(r∗) ≤ bM2 c if v ∈ V1 and iv(r∗) > bM2 c otherwise.

We have determined whether iv(r∗) ≤ bM2 c for each point v ∈ V after the first call
of Lemma 8 as discussed above. To shrink the range of iv(r∗) for each v ∈ V further, we
construct two subproblems for sets V1 and V \ V1 with their corresponding subsets of U .
More specifically, we solve two subproblems recursively: one on (U1, V1) and the other on
(U \ U1, V \ V1). Both subproblems use (r1, r2] as their “input intervals” and solving each
subproblem will produce a new shrunk “output interval” (r1, r2]. Consider a subproblem on
(U ′, V ′) with U ′ ⊆ U and V ′ ⊆ V . If |U ′| = 1, then we solve this problem “directly” (i.e.,
this is the base case) as follows. Assume that r∗ 6= r2 and let r be any value in (r1, r2). Let
uj be the only point of U ′. There are two cases depending on the index j of point uj ∈ U ′.
If j < M = |U | (i.e., uj is not the last point of the sorted list of points in set U), according
to our algorithm and based on Observation 1, iv(r) = iv(r

∗) = j holds for all points v ∈ V ′.
If j = M , however, for each point v ∈ V ′, it is possible that v is not contained in

⊙
u(r∗)

for any point u ∈ U , in which case v is not below Ur∗(U) and thus is not below Ur∗(U ′). On
the other hand, if v is below Ur∗(U ′), then iv(r∗) = M . To solve the case of j = M , we can
simply apply Lemma 8 on U ′ and V ′, after which we obtain an interval (r1, r2]. Then, we
pick any r ∈ (r1, r2) and for any v ∈ V ′ with v contained in

⊙
uM

(r), iv(r) = iv(r
∗) = M

holds if r∗ 6= r2.

The above divide-and-conquer algorithm can be viewed as a binary tree structure T
in which each node represents a subproblem. The input of the subproblem for each node
is derived from the result of solving the subproblem represented by its parent node. We
shrink each iv(r∗) for v ∈ V to a specific value in the end (i.e., subproblems corresponding
to leaves of this binary tree T ). Clearly, the height of T is O(logM) and T has Θ(M)
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nodes. If we solve each subproblem individually by Lemma 8 as described above, then the
algorithm would take Ω(Mn) time because there are Ω(M) subproblems and solving each
subproblem by Lemma 8 takes Ω(n) time, which would result in an Ω(n2) time algorithm
in the worst case. To reduce the runtime, instead, we solve subproblems at the same level
of T simultaneously (or “in parallel”) by applying the algorithm of Lemma 8, as follows.

Consider all subproblems in the same level of T ; let S denote the set of all these
subproblems. There is an input interval (r1, r2] for all subproblems of S, which is true
initially at the root for (U, V ). After solving all subproblems in this level, our algorithm
will produce a single shrunk interval (r1, r2], which will be used as the input interval for all
subproblems in the next level of T .

Recall that the algorithm of Lemma 8 has three subroutines (which follow the al-
gorithm in Section 3.2), each of which involves computing a set of critical values and then
performing binary search on them using the decision algorithm to shrink the interval (r1, r2].
To solve all subproblems of S simultaneously using the algorithm of Lemma 8, our idea is
that in each of the three subroutines, we perform binary search on the critical values of all
subproblems of S (this again follows the same way as in Section 3.2, where critical values
of all instances of I are considered all together), i.e., we solve all these subproblems “in
parallel”. In this way, solving all subproblems of S together only needs to call the decision
algorithm O(log n) times. The details are given below.

For the first subroutine, the goal is to determine the combinatorial structure of the
upper envelope. The critical values in all three subroutines are defined as in Section 3.2.
For each subproblem on (U ′, V ′), we compute the Voronoi diagram for U ′ and then find
the critical values. Notice that the subsets U ′ (resp., V ′) for all subproblems of S form a
partition of U (resp., V ), and thus the total time for building the diagram and computing
the critical values for all subproblems of S takes O((M + N) log(M + N)) time in total.
Also, the total number of critical values is O(N). Performing the binary search on these
critical values as before can be done in O(n log2 n · logN) time, after which we obtain a
shrunk interval (r1, r2]. This finishes the first subroutine for all subproblems of S, which
takes O(n log3 n) time (since M ≤ n and N ≤ n).

The second subroutine is to sort all points of V ′ in each subproblem on (U ′, V ′)
along with the vertices of the upper envelope Ur∗(U ′). We now put all involved points of all
subproblems of S in one coordinate system and sort them all together (in the same way as
in Section 3.2.2). Since the subsets V ′ (resp., U ′) of all subproblems of S form a partition
of V (resp., U), the total number of points in the subsets V ′ in all subproblems of S is N .
Also, the number of vertices of Ur∗(U ′) is proportional to |U ′|. Hence, the total number
of vertices of the upper envelopes Ur∗(U ′) in all subproblems of S is O(M). As such, the
total number of points we need to sort is O(M + N). We apply the same algorithm as
before to sort them, i.e., Cole’s parametric search [11] with AKS sorting network [2] and
our decision algorithm. Sorting all involved points can be done in O(n log2 n · log(M +N))
time, after which a shrunk interval (r1, r2] is obtained. This finishes the second subroutine
for all subproblems of S, which takes O(n log3 n) time.

For the third subroutine, we collect the critical values in each subproblem of S in
the same way as before. The total number of critical values for all subproblems is N . We
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perform binary search on these critical values in the same way as before, after which a shrunk
interval (r1, r2] is obtained. The total time is O(n log2 n · logN). This finishes the third
subroutine for all subproblems, which takes O(n log3 n) time. The final interval (r1, r2] will
be used as the input interval for all subproblems in the next level of T .

In summary, solving all subproblems in the same level of T can be done in O(n log3 n)
time. As T has O(logM) levels, the total time of the overall algorithm is O(n log4 n).

With Lemma 9, we obtain subsets {V1(r), V2(r), ..., V|U |(r)} and an interval (r1, r2]
containing r∗ such that if r∗ 6= r2, for any r ∈ (r1, r2), Vi(r) = Vi(r

∗) holds for all 1 ≤ i ≤ |U |.
Note that neither the array distr[·] nor Q(r) is modified during the algorithm of Lemma 9.
Hence, if r∗ 6= r2, for all r ∈ (r1, r2], we still have Q(r) = Q(r∗) and distr[p] = distr∗ [p] for
all points p ∈ P . Thus, our algorithm invariant still holds. This finishes the second step of
the second update.

The third step of the second update is to solve the offline insertion-only additively-
weighted nearest neighbor searching problem. This step does not need parameterization.
Similar to the first update, we pick any r ∈ (r1, r2) and apply the WX algorithm directly.
Indeed, the algorithm on r∗ only relies on the following information: U and its sorted list
by distr∗ [·] values and the subsets V1(r∗), . . . , V|U |(r∗). Recall that if r∗ 6= r2, then for all
r ∈ (r1, r2), distr[p] = distr∗ [p] for all p ∈ P , and Vi(r) = Vi(r

∗) for all 1 ≤ i ≤ |U |. As
such, if we pick any r ∈ (r1, r2) and apply the WX algorithm directly, distr[v] = distr∗ [v]
holds for all points v ∈ V after this step. Therefore, as in the WX algorithm, this step can
be done in O(k log2 k) time, where k = |U |+ |V |.

This finishes the second update of the algorithm. As discussed above, the algorithm
invariant holds for the interval (r1, r2].

The final step of the iteration is to remove points in Q(r)�z(r)
from Q(r). Since if

r∗ 6= r2, for all r ∈ (r1, r2), Q(r) = Q(r∗), z(r) = z(r∗), and Q(r)�z(r)
= Q(r∗)�z(r∗) , Q(r) =

Q(r∗) still holds after this point removal operation. Therefore, our algorithm invariant holds
after the iteration.

In summary, each iteration of our algorithm takes O(n log4 n) time. If the point
t is contained in �z(r) (i.e., t is reached) in the current iteration, then we terminate the
algorithm. The following lemma shows that we can simply return r2 as r∗.

Lemma 10. Suppose that t is contained in �z(r) in an iteration of our algorithm and (r1, r2]
is the interval after the iteration. Then r∗ = r2.

Proof. Assume to the contrary that r∗ 6= r2. Then we have r∗ ∈ (r1, r2) since r∗ ∈ (r1, r2].
Let r′ = (r1 + r∗)/2, and thus r′ ∈ (r1, r2) and r′ < r∗. By our algorithm invariant and
the correctness of the WX algorithm (distr[p] = dr(s, p) for all points p ∈ P�z(r)

after
the iteration), we have dr′(s, t) = distr′ [t] = distr∗ [t] = dr∗(s, t). By the definition of r∗,
dr∗(s, t) ≤ λ. Therefore, dr′(s, t) ≤ λ. But this contradicts with the definition of r∗ since
r∗ = arg minr{dr(s, t) ≤ λ}. The lemma thus holds.

The algorithm may take Ω(n2) time because t may be reached in Ω(n) iterations. A
further improvement is discussed in the next subsection.
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5.3 A further improvement

To further reduce the runtime of the algorithm, we borrow a technique from Section 4 to
partition the cells of the grid into large and small cells.

As before, we first compute the grid information Ψ(P ) and obtain an interval (r1, r2].
Let C denote the set of all non-empty cells of Ψ(P ) (i.e., cells that contain at least one point
of P ). For each cell C ∈ C, let N(C) denote the set of non-empty neighboring cells of C
in C and P (C) the set of points of P contained in cell C. We have |N(C)| = O(1) and
|C| = O(n). A cell C of C is a large cell if it contains at least n3/4 log3/2 n points of P ,
i.e., |P (C)| ≥ n3/4 log3/2 n, and a small cell otherwise. Clearly, C has at most n1/4/ log3/2 n
large cells. For all pairs of non-empty neighboring cells (C,C ′), with C ∈ C and C ′ ∈ N(C),
(C,C ′) is a small-cell pair if both C and C ′ are small cells, and a large-cell pair otherwise,
i.e., at least one cell is a large cell. Since N(C) = O(1) for each cell C ∈ C, there are
O(n1/4/ log3/2 n) large-cell pairs.

We follow the algorithmic framework in Section 4. Notice that in each iteration of the
main loop in our previous algorithm, only the second step of the second update parameterizes
the WX algorithm (i.e., the decision algorithm is called on certain critical values); in that
step, we need to process O(1) pairs of cells (C,C ′) with C ∈ C and C ′ ∈ N(C). No matter
how many points of P are contained in the two cells, we need O(n log4 n) time to perform
the parametric search due to Lemma 9. To reduce the time, we preprocess all small-cell
pairs so that the algorithm only needs to perform the parametric search for large-cell pairs.
Since there are only O(n1/4/ log3/2 n) large-cell pairs, the total time we spend on parametric
search can be reduced to O(n5/4 log5/2 n). For those small-cell pairs, the preprocessing
provides sufficient information to allow us to simply run the original WX algorithm without
parametric search. Specifically, before we enter the main loop of the algorithm (and after
the grid information Ψ(P ) is computed, along with an interval (r1, r2]), we preprocess all
small-cell pairs using the following lemma.

Lemma 11. In O(n5/4 log5/2 n) time we can shrink the interval (r1, r2] so that it still con-
tains r∗ and if r∗ 6= r2, then for any r ∈ (r1, r2), for any small-cell pair (C,C ′) with C ∈ C
and C ′ ∈ N(C), an edge connects a point p ∈ P (C) and a point p′ ∈ P (C ′) in Gr(P ) if and
only if an edge connects p and p′ in Gr∗(P ).

Proof. Lemma 6 essentially solves the same problem for the unweighted case. Here we follow
the same algorithm as in Lemma 6 but replace their decision algorithm by our decision
algorithm for the weighted case. The algorithm has O(log n) iterations, and following the
same analysis as in Lemma 6 and using the new threshold n3/4 log3/2 n for defining large
cells, one can show that each iteration takes O(n5/4 log3/2 n) time. More specifically, if we
use the same notation as in the proof of Lemma 6, then we have ni ≤ 2 · n3/4 log3/2 n, and
thus |L| =

∑m
i=1 n

4/3
i log ni is bounded by O(n5/4 log3/2 n). Therefore, the total running

time of the algorithm is O(n5/4 log5/2 n).

Let (r1, r2] denote the interval obtained after the preprocessing for all small-cell pairs
in Lemma 11. Lemma 11 essentially guarantees that if r∗ 6= r2, then for any r ∈ (r1, r2), the
adjacency relation of points in any small-cell pair in Gr(P ) is the same as that in Gr∗(P ).
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Note that if (r1, r2] is shrunk so that it still contains r∗, then the above property still holds
for the shrunk interval. Based on this property, combining with our previous algorithm, we
have the following theorem.

Theorem 3. The reverse shortest path problem for L2 weighted unit-disk graphs can be
solved in O(n5/4 log5/2 n) time.

Proof. The goal is to compute r∗. We first build a grid Ψ(P ) along with an interval (r1, r2]
in O(n log3 n) time. Then we classify all non-empty cells in Ψ(P ) to large cells and small
cells. Next, we use Lemma 11 to shrink the interval (r1, r2] in O(n5/4 log5/2 n) time.

We proceed to the main loop of the algorithm. In each iteration, we proceed in the
same way as before except that the second step of the second update Update(Q(r)�z(r)

,
Q(r)�z(r)

) is now executed as follows. Recall that it suffices to perform Update(Q(r)C ,
Q(r)C′) with C = �z(r) and C ′ ∈ N(C). If (C,C ′) is a large-cell pair, then we apply our
parametric search procedure in the same way as before. Since the number of large-cell pairs
is O(n1/4/ log3/2 n) and implementing the second step of Update(Q(r)C , Q(r)C′) with the
parametric search takes O(n log4 n) time by Lemma 9. Thus the total time we spend on all
large-cell pairs is O(n5/4 log5/2 n). If (C,C ′) is a small-cell pair, according to the property
of (r1, r2] in the statement of Lemma 11, we can simply pick any value r ∈ (r1, r2) and
then apply the WX algorithm directly. Following the time complexity of the WX algorithm,
the second step of Update(Q(r)C , Q(r)C′) of all small-cell pairs (C,C ′) together takes
O(n log n) time. The remaining parts of our algorithm together take the same running time
as the WX algorithm, which is O(n log2 n).

We thus conclude that the total time of our algorithm is bounded by O(n5/4 log5/2 n).

6 Concluding remarks

In this paper, we propose two algorithms for the RSP problem in unweighted unit-disk
graphs with time complexities of O(bλc ·n log n) and O(n5/4 log7/4 n), respectively. We also
give an algorithm for the RSP problem in weighted unit-disk graphs with a time complexity
of O(n5/4 log5/2 n). Interestingly, our second unweighted RSP algorithm and the weighted
RSP algorithm break the O(n4/3) time barrier for certain geometric problems [14,15].

Our RSP problem is defined with respect to a pair of points (s, t). Our techniques
can be extended to solve a more general “single-source” version of the problem: Given a
source point s ∈ P and a value λ, compute the smallest value r∗ such that the lengths of
shortest paths from s to all vertices of Gr(P ) are at most λ, i.e., maxt∈P dr∗(s, t) ≤ λ. The
decision problem (i.e., deciding whether r ≥ r∗ for any r) now becomes deciding whether
maxt∈P dr(s, t) ≤ λ. The algorithm of Chan and Skrepetos [8], the algorithm of Wang
and Xue [32], and the algorithm of Wang and Zhao [33] are actually for finding shortest
paths from s to all vertices of Gr(P ). Thus we can solve the decision problem by using the
algorithm of Chan and Skrepetos [8] for the unweighted case, and the algorithm of Wang and
Xue [32] for the weighted case. As such, to compute r∗, we can follow the same algorithm
scheme as before but instead use the above new decision algorithm. In addition, for the
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unweighted case, we make the following changes to the first algorithm (the second algorithm
is changed accordingly). After the i-th step of the BFS, which computes a set Si along with
an interval (r1, r2]. If all points of P have been discovered after this step and i ≤ bλc, then
we have r∗ = r2 and stop the algorithm; the proof is similar to Lemma 4. We also stop the
algorithm with r∗ = r2 if i = bλc and not all points of P have been discovered; the proof is
similar to Lemma 5. As before, the algorithm will stop in at most bλc steps. In this way, the
first algorithm can compute r∗ in O(bλc · n log n) time. Analogously, the second algorithm
can compute r∗ in O(n5/4 log7/4 n) time. For the weighted case, our original algorithm
terminates once t is reached but now we instead halt the algorithm once all points of P are
reached, which does not affect the running time asymptotically. As such, the “single-source”
version of the weighted RSP problem can be solved in O(n5/4 log5/2 n) time.
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