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Highlights
State-of-the-art brain imaging studies
have recently produced a variety of
sometimes contradictory conclusions
about the neural systems that support
human semantic memory.

Multivariate techniques deployed in this
work adopt implicit or explicit assump-
tions that limit the types of signal they
can detect, and thus the types of hy-
potheses they can test.
A key goal for cognitive neuroscience is to understand the neurocognitive sys-
tems that support semantic memory. Recent multivariate analyses of neuroimag-
ing data have contributed greatly to this effort, but the rapid development of these
novel approaches has made it difficult to track the diversity of findings and to un-
derstand how andwhy they sometimes lead to contradictory conclusions.We ad-
dress this challenge by reviewing cognitive theories of semantic representation
and their neural instantiation.We then consider contemporary approaches to neu-
ral decoding and assess which types of representation each can possibly detect.
The analysis suggests why the results are heterogeneous and identifies crucial
links between cognitive theory, data collection, and analysis that can help to bet-
ter connect neuroimaging to mechanistic theories of semantic cognition.
We lay out the space of possible cogni-
tive and neural representations and
then critically review contemporary
methods to determine which analyses
can test which hypotheses.

The results account for the heterogeneity
of recent findings and identify an impor-
tant empirical and methodological gap
that makes it difficult to connect the im-
aging literature to neurocomputational
models of semantic processing.

1Medical Research Council (MRC)
Cognition and Brain Sciences Unit,
Chaucer Road, Cambridge CB2 7EF, UK
2Department of Psychology, Louisiana
State University, Baton Rouge,
LA 70803, USA
3Department of Psychology, University
of Wisconsin–Madison, 1202 West
Johnson Street, Madison, WI 53706, USA

*Correspondence:
saskia.frisby@mrc-cbu.cam.ac.uk
(S.L. Frisby) and ttrogers@wisc.edu
(T.T. Rogers).
The neurocognitive quest for semantic representations
Cognitive science has long sought to understand the mechanisms underlying human semantic
memory – the storehouse of knowledge that supports our ability to comprehend and produce
language, recognize and classify objects, and understand everyday events. Recently, cross-
fertilization of cognition, neuroscience, and machine learning has generated a plethora of new
analysis methods to aid the discovery of neural systems that encode semantic information [1–5].
Although this renaissance has produced a remarkable array of new findings, the evolution of
different approaches across research groups makes it difficult to track them all, understand their
respective strengths and limitations, and compare results across studies. Consequently, the liter-
ature contains sometimes startlingly different conclusions about the nature, structure, and organi-
zation of semantic representations in the mind and brain, and the field has little recourse for
understanding why the differences arise or how they might be reconciled.

We address this challenge by reviewing hypotheses about how semantic information may be
encoded computationally and neurally, then critically evaluating the types of representational
structure that contemporary multivariate methods can possibly discover in functional neuroimag-
ing data. Crucially, each method encapsulates assumptions about how neural systems encode
mental structure that then constrain the types of neural coding it can, and cannot, detect. Hypoth-
esis, data collection, and analysis are therefore linked in ways that sometimes go unremarked and
may explain the heterogeneity of findings in the literature. Through exposition of these points, we
present an overview of the current empirical landscape with the aim of both organizing current
thinking about semantic representations in mind and brain, and of providing a more general
field guide to contemporary multivariate methods for brain imaging.

What might semantic representations be like computationally?
Semantic representations serve at least two crucial cognitive functions. First, they express con-
ceptual similarity structure – knowledge that items can be similar in kind even if they are distinct
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Glossary
Category: (of a representation)
composed of discrete, independent
units that each correspond to a concept
(such as boat, vehicle, or yacht).
Conjoint: (of a representation)
consisting of units that express different
semantic information depending on the
states of other units.
Consistent: (of a representation)
associated with the same direction of
change in activation across individuals –
for example, homologous voxels in
different individuals become more active
when representing cat.
Contiguous: (of a representation)
composed of units residing in the same
brain region.
Decoding: predicting the stimulus
(or sometimes the properties of the
stimulus, or of the task) experienced by a
participant using patterns of activity
across multiple neural units.
Dispersed: (of a representation)
composed of units residing in different
brain regions.
Electrocorticography (ECoG): a
method of measuring brain activity via
intracranial electrodes placed on the
cortical surface.
Electroencephalography (EEG): a
method of measuring brain activity via
electrodes placed on the scalp.
Encoding model: a model that
predicts the activity of a single neural unit
using multiple independently
interpretable features of the stimulus.
Multiple encoding models are used to
predict activity across multiple neural
units.
Feature-based: (of a representation)
composed of multiple independently
interpretable features (such as is red or
can fly).
Functional magnetic resonance
imaging (fMRI): a method of
measuring brain activity by detecting
changes in blood flow.
Grounded: (of a representation)
requiring the generation of modality-
specific surface representations to
produce retrieval/inference.
Heterogeneous: (of a representation)
consisting of units that adopt different
activation states when representing a
concept.
Homogeneous: (of a representation)
consisting of units that all adopt the
same activation state when representing
a concept.
Inconsistent: (of a representation)
associated with different directions of
in appearance (e.g., hummingbird and ostrich), verbal labels (e.g., dog and wolf), or the action
plans that engage them (e.g., glue and tape). Children as young as 9 months of age detect
such relationships and use them to guide reaches even when they contravene perceptual similar-
ity [6–8]. Adults can reliably judge relatedness in kind and sort items into conceptual groups on
this basis [9–11], and both children and adults use conceptual similarity as a primary basis for
generalizing names and other properties [12–14]. Second, semantic representations support
knowledge retrieval or inference – attributing to an item or event properties that are not directly
observed or stated. For instance, when observing a picture of a parrot in a textbook, the student
may infer that the item can fly even though the image is static; reading about a trip to the restau-
rant, she may infer that the diner had to pay even if this is not mentioned; observing the new
neighbor’s pet, a toddler may call it 'doggie' even if it is an unfamiliar breed, and so on. Semantic
representations thus can be defined as the cognitive and neural states that express conceptual
structure and support semantic retrieval/inference. Hypotheses about the cognitive mechanisms
that support these functions reside within a fairly constrained space of possibilities (Figure 1).

Considering conceptual structure, most approaches adopt one of three positions. The first pro-
poses that semantic memory contains many discrete and independent category (see Glossary)
representations, each corresponding roughly to a basic-level natural language concept such as
tree or boat [15,16] (Figure 1, top) and possibly to more general (plant, vehicle) or specific (elm,
yacht) classes [17,18]. On this view, verbal comprehension involves discerning the category to
which a word refers [19] whereas comprehension of visual and other sensory inputs involves cor-
rectly classifying a perceived item [4,18,20,21]. Category-based theories explain conceptual struc-
ture by proposing that conceptually similar items activate the same category representation – for
instance, parrots, hummingbirds, and robins are viewed as being conceptually related because
they all activate the mental category bird.

The second view proposes that semantic representations are composed of local features, each
independently indicating the presence/absence of a property such as is red, can fly, or has eyes
(Figure 1, middle row). Each perceived item or word activates associated features, indicating
properties that are likely to be true of the item [22–26]. Conceptual similarity structure arises
from property overlap: hummingbirds and ostriches are understood to be similar in kind because
they possess many common properties (wings, feathers, etc.), but are also known to be non-
identical because they possess individuating properties as well [27,28].

Category-based approaches are often distinguished from feature-based views because of the
special role that category representations play in determining conceptual similarity and
supporting inference. For instance, prototype theories [29], 'entry-level' [18,30] and spreading-
activation views [31], rational approaches [15], and some neurally inspired models of object cat-
egorization [32] all propose that access to semantic information depends upon first matching a
stimulus (image, word, sound, etc.) to a semantic category. Successful categorization then pro-
vides direct access to semantic information or initiates a 'search' of the semantic system, allowing
retrieval of other properties. On such views, semantic categories constitute more than merely an
additional feature that is attributed to a perceived item.

Nevertheless, under both approaches semantic representations can also be viewed as vectors in
a high-dimensional representation space. For categorical theories, dimensions encode member-
ship of distinct and mutually exclusive categories, and the representation of an item is a multino-
mial probability distribution indicating the probability that a stimulus belongs to each class. For
instance, observing an item with wings, feathers, and a beak would generate a high probability
density on the bird axis and a low density on axes corresponding to fish, car, boat, etc. because
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change in activation across
individuals – for example, homologous
voxels in multiple individuals behave
differently when representing cat, some
becoming more active and others
becoming less active.
Independent: (of a representation)
consisting of units that express the
presence or absence of the same
semantic information irrespective of the
states of other units.
Labeled data: a dataset specifying
both input and output values for fitting an
encoding or decoding model.
Magnetoencephalography (MEG): a
method of measuring brain activity by
measuring magnetic fields generated by
neural activity.
Multivariate pattern classification
(MVPC): the categorization of stimuli
based on the neural patterns they evoke
(a form of decoding).
Region of interest (ROI): a subset of
neural units, chosen in a hypothesis-
guided way, upon which an analysis is
conducted.
Regularization: a method of avoiding
overfitting by finding classifier weights
that jointly minimize classification error
and an additional loss which is a function
of the classifier weights.
Representational similarity analysis
(RSA): a method of investigating
representational structure by comparing
the similarity structure recorded to that
hypothesized.
Self-contained: (of a representation)
encapsulating semantic information
within itself such that mere activation of
the representation brings about retrieval/
inference.
Surface representation: a sensory
representation of a stimulus that is
modality-specific – for example, color
(specific to the visual modality) or a
paddling action (specific to the motor
modality).
Transcranial magnetic stimulation
(TMS): the use of magnetic fields to
temporarily and reversibly disrupt brain
function.
Vector space: (of a representation)
composed of a pattern across
representational units, the meanings of
which cannot be independently
interpreted.
the probability that the item is a bird is high and the probability of it belonging to other categories is
low. For feature-based theories, dimensions encode various directly interpretable properties, and
the representation of an item indicates, independently on each dimension, the binomial probabil-
ity that the item possesses the corresponding property. On this view, cardinal is a vector with high
values on dimensions such as is red and can fly, but low values on dimensions such as has scales
and can swim. Moreover, some such features may directly indicate the semantic category label of
an item (e.g., 'bird', 'fish'), although, in contrast to category-based theories, such labels have no
special function beyond that of other features. In both cases, conceptual structure reflects the
similarity of different points in the vector space.

The third proposal likewise views semantic representations as points in a high-dimensional vector
space, but without assigning any directly interpretable meaning to the corresponding dimensions
(Figure 1, bottom). Perception of a stimulus or word evokes an activation pattern across an en-
semble of representation units, corresponding to a point in the space where the proximity be-
tween points expresses conceptual similarity [33–35]. Unlike feature- and category-based
approaches, however, one cannot discern what information is encoded in the representation
by looking at the activation of each element taken independently. Instead, what matters is the
similarity of a given vector to those elicited by other items, taken across all units in the ensemble.
On this view, cardinal is a vector with high values on some dimensions and low values on others.
Examining each dimension reveals no information about the properties of the cardinal, but infor-
mation can be gleaned from the fact that cardinal is located very close to goldfinch, reasonably
close to ostrich, and far from canoe (Box 1).

Considering retrieval/inference, most approaches adopt one of two proposals, both compatible
with the perspectives on conceptual structure outlined above. First, semantic information may be
self-contained within the representation such that activation brings retrieval/inference along
with it (Figure 1; left column). For categorical models, the category representation might encapsu-
late knowledge of properties essential to or characteristic of category members, as in classical,
prototype, and rational models [36–38]. In feature-based models, because each element of the
representation vector corresponds to an explicit property, the system need only 'read off' the vec-
tor elements active above some threshold to attribute the corresponding properties to the
perceived/named item. Such a view is captured by semantic feature-based neural network
models [22–24], spreading-activation models [31,39,40], and distributional semantic models
that constrain representations to have interpretable dimensions (such as topic models and
non-negative sparse embeddings; Box 1) [41,42]. For vector space models, although the dimen-
sions of the representation space are not independently interpretable, retrieval/inference can still
be self-contained by proposing that these functions rely on similarity and/or direction within the
representation space [34]. For instance, the systemmay infer that the cardinal can fly and breathe
because the vectors for the words 'fly' and 'breathe' are both near to the vector for 'cardinal' and
are situated along a direction in the space that separates behavioral 'can' properties from other
property types (such as parts, names, colors, etc.). Such a perspective is captured by distribu-
tional semantic models that are not constrained to yield interpretable dimensions (e.g., latent se-
mantic analysis [33], holistic analog to language [43], word2vec [34], and language neural
networks [44]) (Box 1).

Self-contained approaches face a significant hurdle, however: retrieving the content of a represen-
tation requires a labeling scheme, without which it would be impossible to know which semantic
content 'goeswith' which representation vectors (sometimes called the symbol grounding problem
[45]). The second approach to retrieval/inference (Figure 1, right column) addresses this problem
by proposing that semantic content is grounded in perception, action, and language systems
260 Trends in Cognitive Sciences, March 2023, Vol. 27, No. 3
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Figure 1. Computational hypotheses about semantic representation. There are three ways in which conceptual structure could be encoded. First, information
may be encoded in discrete, independent category representations (top row). On this view, sensory inputs recruit discrete and independent category representations

(Figure legend continued at the bottom of the next page.)
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Box 1. Ways of estimating semantic structure

Category-based theories propose that distinct representations encode information about different semantic categories.
Some have argued that different brain regions are specialized to represent categories that are important for survival over
evolution, such as faces, tools, animals, foods, body parts, and shelter [73,90,107,108], but the general question of which
categories are stored in memory and why remains controversial [109,110].

Feature-based theories cast semantic representations as vectors that denote the properties of a given item, such as is red,
can fly, or has blood inside for the concept cardinal. Three methods have been used to construct such vectors.

(i) Semantic norming studies ask participants to list the properties that are true of a given concept. Properties generated
and/or verified bymany participants are compiled in a matrix with rows corresponding to the tested concepts and columns
corresponding to the various properties generated by the participants across all study concepts [28,111] (J. Tanaka and L.
Szechter, unpublished data).

(ii) Brain-inspired feature vectors identify semantic properties that, from univariate brain imaging, selectively engage differ-
ent cortical areas. Participants then rate the strength of association between a given concept and each such property. The
procedure produces many fewer features than norming studies, but still captures rich conceptual structure [26,52].

(iii) Non-negative sparse word embeddings (NNSE) estimate feature vectors from text corpora by exploiting the tendency
for words with similar meanings to occur in similar contexts. Standard techniques {e.g., latent semantic analysis (LSA)
[33,113,114] and word2vec [34]} generate embeddings with uninterpretable dimensions, but, when embeddings are
constrained to be both sparse (zeros onmost dimensions) and non-negative (only positive values on the rest), the resulting
elements are more interpretable and each word can be viewed as a semantic feature vector [115].

Vector spaces cast semantic representations as points in a high-dimensional space where pairwise distances capture
conceptual relatedness, but with uninterpretable dimensions. Two methods are used to compute such spaces.

(i) Unconstrained word embeddings adopt the same corpus-based approach as non-negative sparse embeddings
without sparsity or positivity constraints. The resulting spaces express comparable structure to NNSE using fewer dimen-
sions, but the dimensions are not typically independently interpretable.

(ii) Deep neural networks trained on natural language and/or large image datasets learn vector space representations for
photographs, words, or larger units of language. Deep image classifiers represent color photographs with activation
vectors across many serial processing layers [116,117]; sentence-processing networks represent words, phrases, or
whole passages of text as activation vectors over internal units {e.g., bidirectional encoder representations from trans-
formers (BERT) [44] and generative pretrained transformer 3 (GPT3) [118])}.
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that directly encode surface representations of the environment: shapes, colors, parts, move-
ments, affordances, words, and so on [46–48]. On this view, the activation of a categorical,
feature-based, or vector space representation does not in itself cause information retrieval/
inference. Instead, retrieval/inference arises when these structure-encoding representations
activate modality-specific representations that are identical or intimately related to those that di-
rectly mediate perception and action. Thus the categorical/featural/vector space representation
of canoe is meaningful only in virtue of its ability to generate mental images of what a canoe
looks like (including shape, color, parts, etc.), motor actions associated with canoes (e.g., pad-
dling), words used to describe canoes ('boat', 'light', 'floats'), and so on.
which either encapsulate semantic information within themselves [15,20,36,105,106] (top left) or connect and bind modality-specific surface representations encoding
characteristics of category members [49,50] (top right). Second, semantic information may be distributed across independent and interpretable semantic feature
representations, with featural overlap indicating conceptual similarity (middle). Features may independently and intrinsically encode the presence of stipulated semantic
features within a concept [22–24,75] (middle left) or gain meaning via connection to surface representations that directly encode such information [2,25,51,52] (middle
right). Third, semantic information may be encoded by a continuous distributed representation space that expresses conceptual similarities among items even though
its dimensions are not independently interpretable (bottom). Semantic information may be self-contained by the distances encoded in such a space [33,34,41,44]
(bottom left) or grounded via mappings from the space to modality-specific surface representations of specific properties [9,53,54] (bottom right). Black arrows
illustrate how information may flow through the network given the stimuli shown. Text on either side indicates well-known perspectives in the literature that characterize
each view. For feature-based and vector space representations, representational spaces are schematized on a blue background. Blue arrows point to the type of
representational similarity structure encoded by the corresponding layers – note that both self-contained and grounded approaches can encode the same
representational space. Abbreviations: GRAPES, grounding representations in action, perception, and emotion systems; NNSE, non-negative sparse embeddings.
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On a grounded category-based approach, a discrete category representation connects the sur-
face representations encoding characteristics of category members, and binds these together so
that they are understood as all inhering in the same concept. For example, bird connects surface
representations of the visual appearance of feathers, the motion of flight, the word 'bird', and so
on; the 'convergence zone' hypothesis provides an example of this view [49,50]. Under grounded
feature-based approaches, the featural dimensions that encode the semantic representation are
'labeled' by virtue of their direct/preferential connectivity to surface representations that directly
encode the corresponding content – for instance, a semantic dimension encoding the color of
an object may be directly connected to color-perception areas; a dimension encoding its associ-
ated action may be connected to motion-perception areas; and so on. Several proposals moti-
vated by functional imaging data align with this view, including the GRAPES (grounding
representations in action, perception, and emotion systems) framework [51] and the neurally in-
spired 'experiential features' view [26,52]. Finally, grounded vector-space models suggest that
the representational ensemble that encodes conceptual similarity structure connects reciprocally
to a variety of different surface representations such that the generation of an activity pattern
across the ensemble activates surface representations that encode the specific, embodied prop-
erties associated with the corresponding item – a view consistent with the hub-and-spokes
model of semantic representation. [9,53–55]

In sum, considering how semantic representations might serve their defining functions – expressing
conceptual structure and supporting semantic retrieval/inference – delineates a well-constrained
space of hypotheses in which cognitive theories of semantic representation can be situated. The
different views, and examples of theories aligning with each, are shown in Figure 1. Each cognitive
hypothesis has implications for how neural data are best collected and analyzed; for instance, adju-
dicating grounded versus self-contained theories may require participants to semantically process
stimuli in different modalities. The next section considers how these views constrain the search for
neural systems that encode semantic information.

How might semantic representations be organized in the brain?
Next, we consider how these different computational schemes might be implemented in neural
systems in ways that can be measured by functional brain imaging. All such technologies can
be viewed as summarizing the responses of many different neural populations to a cognitive
event. Different technologies such as functional magnetic resonance imaging (fMRI), elec-
troencephalography (EEG), magnetoencephalography (MEG), and electrocorticogra-
phy (ECoG) yield summary estimates at different spatial and temporal granularities (e.g.,
voxels, EEG sources, and electrodes). We will use the term 'unit' to refer to the summary estimate
provided by a given technology over its characteristic window of space and time. Therefore, re-
gardless of imaging modality, the neural response to a stimulus is characterized as a pattern of
activation across many units over a particular window of time. Discovering the neural underpin-
nings of semantic representations then requires close consideration of (i) how the representa-
tional elements proposed by a cognitive theory are encoded in unit activation patterns within
and across individuals, (ii) how the representational workmight be divided among units participat-
ing in a representation, and (iii) how signal-carrying units might be anatomically organized within
and across individuals.

Variation of the neural code
Within an individual, the neuro-semantic code – how changes in unit activity express semantic
information – can be either homogeneous or heterogeneous (Figure 2A). In a homogeneous
code, signal-carrying units all adopt the same activation when the represented information is
present – for instance, all voxels representing cat become more active when a cat is semantically
Trends in Cognitive Sciences, March 2023, Vol. 27, No. 3 263

CellPress logo


TrendsTrends inin CognitiveCognitive SciencesSciences

Figure 2. Hypotheses about the neuro-semantic code. (A) Within individuals a representation may adopt a homogeneous code (all involved units adopt the same
activation change – i.e., all become more active or all become less active) or a heterogeneous code (the units involved adopt different changes to activation – i.e., some
become more active than others, and/or some become more active and some less active). Across individuals the code may be consistent (the same magnitude and
direction of change in all individuals) or inconsistent (different magnitudes and/or directions of change in different individuals). Spatial smoothing and cross-subject
averaging can either help or hinder discovery depending on the code. (B) In the independent code shown, unit 1 activation indicates whether the item is animate, while
unit 2 independently encodes whether it can fly. In the first conjoint code, the two units express the same similarity relations among the four items, but considered
independently, neither unit clearly expresses either dimension. For instance, fish and plane both moderately activate unit 1, whereas bird and boat moderately activate
unit 2. In the second conjoint example, unit 2 activation is difficult to interpret considered independently, but discriminates birds from fish when unit 1 is active, and
fruits from vegetables when unit 1 is inactive. In both conjoint examples, understanding the neural code requires joint consideration of both units. (C) Anatomically, the
units in a representation may be localized to a contiguous region or dispersed across multiple distal areas, and the units may occupy either the same or different
locations across individuals. The two brains within each white box denote two different individuals. Abbreviation: Betw. individuals, between individuals.
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processed. In a heterogeneous code, different units express the same information differently –
some voxels representing catmay be greatly activated when a cat is present, some greatly sup-
pressed, and some only moderately active, etc. Approaches that average unit activations within
participants [e.g., via spatial smoothing or region of interest (ROI) averaging] favor the discov-
ery of homogeneous over heterogeneous codes.

Across individuals, the neural code may be consistent – a given piece of information is always
expressed with the same activity change in homologous units (e.g., cat always being signaled
by the same activation pattern across aligned voxels of different individuals) – or inconsistent
(cat being signaled by different activation patterns across aligned voxels of different individuals;
Figure 2A). Methods that aggregate or summarize unit activation across individuals – for instance,
fitting a single model to decode all participants, computing the mean blood oxygen level-depen-
dent (BOLD) response at each voxel before applying a decodingmodel, or averaging predictions
of encoding models across participants before passing the result to further analysis – favor the
discovery of consistent over inconsistent codes. Likewise, methods that align voxels across indi-
viduals on the basis of their having similar activation patterns across stimuli (e.g., hyper-alignment)
[56] implicitly assume a consistent code.

Independent and conjoint codes
Categorical and feature-based approaches both suggest that each unit independently encodes a
piece of semantic information: its activity expresses the presence or absence of that information
(such as category membership or a semantic feature) regardless of the states of other units. For
the example shown in the left panel of Figure 2B, unit 1 encodes whether the stimulus is living or
non-living independently of unit 2, whereas unit 2 encodes whether the stimulus can fly indepen-
dently of unit 1. For any stimulus, it is possible to determine whether the item is alive solely by
inspecting the state of unit 1, without needing to consider the activation of other units.

By contrast, vector space hypotheses suggest that units conjointly encode a representational
space, and that semantic information is expressed in the activity pattern considered across mul-
tiple units such that single-unit activation may not be interpretable without consideration of other
units in the ensemble. Figure 2B shows two examples. In the middle panel, one cannot determine
whether a stimulus is living or whether it can fly solely by inspecting the activation of unit 1
(because fish and plane elicit equal activation) or unit 2 (because boat and cardinal elicit equal
activation). Considering the joint activation of both units clearly separates living and non-living
things along one diagonal, and flying from non-flying things along the other. In the right panel,
unit 1 clearly encodes whether a stimulus is a plant or animal, but the behavior of unit 2 consid-
ered independently might appear to be arbitrary (activating for banana and cardinal, but not for
carrot or fish). Joint consideration of both units makes the interpretation of unit 2 clear: if unit 1
is active, it differentiates birds from fish; if inactive, it differentiates fruit from vegetables.

Variation of anatomical location
Within an individual, units representing a given semantic element may be anatomically contiguous
(situated within the same brain region) or dispersed (residing in multiple separate regions;
Figure 2C). Methods that analyze different areas separately (e.g., analysis of different ROIs) favor
the discovery of contiguous over dispersed representations. Finally, irrespective of whether units
are contiguous or dispersedwithin an individual, signal-carrying unitsmay be anatomically localized
in the same or different areas across individuals. Averaging data across anatomically aligned brains
(e.g., in searchlight analyses) favors the discovery of similarly over differently localized representa-
tions, whereas techniques that align on the basis of similar responses to stimuli rather than anatom-
ical location (e.g., hyper-alignment) relax the localization assumption.
Trends in Cognitive Sciences, March 2023, Vol. 27, No. 3 265
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Together these factors delineate 24 different possibilities for the organization of the neuro-
semantic code within and across individuals (Table 1). These are not mutually exclusive – different
aspects of a representation, or representations in different conceptual domains, may be orga-
nized according to different principles. Understanding which principles best explain which as-
pects of representation thus requires methods capable of finding each variety of signal.

Assumptions implicit in analytic approaches
We next consider how different analytic approaches in functional brain imaging might favor the
evaluation of some hypotheses over others. Such studies aim to find the units whose measured
responses to stimuli encode the representational elements specified by the cognitive theory.
Table 1. Twenty-four hypotheses about the nature and anatomical organization of the neuro-semantic codea

Code Within subject Across subjects Single
voxel

Spatial
blurring

ROI/SL Average before
model fitting

Average after model
fitting

Type Codeb Location Code Location n = 46 n = 40 n = 63 n = 45 n = 64

Independent Homo Contiguous Consistent Same 100 100 100 100 100

Independent Homo Contiguous Consistent Different 100 100 100 100 10

Independent Homo Contiguous Inconsistent Same 100 100 100 62 62

Independent Homo Contiguous Inconsistent Different 100 100 100 62 9

Independent Homo Dispersed Consistent Same 100 100 42 42 42

Independent Homo Dispersed Consistent Different 100 100 42 42 9

Independent Homo Dispersed Inconsistent Same 100 100 42 23 23

Independent Homo Dispersed Inconsistent Different 100 100 42 23 8

Independent Hetero Contiguous Consistent Same 100 60 60 60 60

Independent Hetero Contiguous Consistent Different 100 60 60 60 9

Independent Hetero Contiguous Inconsistent Same 100 60 60 36 36

Independent Hetero Contiguous Inconsistent Different 100 60 60 36 8

Independent Hetero Dispersed Consistent Same 100 60 30 30 30

Independent Hetero Dispersed Consistent Different 100 60 30 30 8

Independent Hetero Dispersed Inconsistent Same 100 60 30 17 17

Independent Hetero Dispersed Inconsistent Different 100 60 30 17 7

Conjoint Hetero Contiguous Consistent Same 46 23 23 23 23

Conjoint Hetero Contiguous Consistent Different 46 23 23 23 2

Conjoint Hetero Contiguous Inconsistent Same 46 23 23 15 15

Conjoint Hetero Contiguous Inconsistent Different 46 23 23 15 2

Conjoint Hetero Dispersed Consistent Same 46 23 3 3 3

Conjoint Hetero Dispersed Consistent Different 46 23 3 3 1

Conjoint Hetero Dispersed Inconsistent Same 46 23 3 3 3

Conjoint Hetero Dispersed Inconsistent Different 46 23 3 3 1

aEach row indicates one hypothesis and the first five columns show corresponding combinations of key factors discussed in the text (code type, within-subject homo-
geneity and localization, and between-subject consistency and localization). The remaining columns summarize a review of 100 papers using multivariate methods to un-
cover neuro-semantic representations. Each column represents a common analysis step that entails an implicit assumption about the neural code, including independent
analysis of single voxels (assuming an independent code), spatial blurring of BOLD (assuming a homogeneous code), independent consideration of different areas via ROI
or searchlight (assuming contiguous localization within area), averaging the neural signal across subjects before model fitting (assuming a consistent code), and averaging
of model fit data across subjects (assuming similar localization). The n indicates how many papers adopted the corresponding step. Emphasis shows hypotheses where
the associated step will benefit (bold font) or hinder (italic) discovery. The numbers indicate how many reports are capable of detecting each possible neural code consid-
ering the analysis decisions taken at each step from left to right. The final column indicates the number of reports that adopt choices capable of finding each possible code.
bAbbreviations: Hetero, heterogeneous; Homo, homogeneous.
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Because all imaging methods yield thousands of noisy measurements for each stimulus in each
participant, statistical models that seek informative units must be constrained in some way. Mul-
tivariate methods vary in their approach to this problem and thus in their ability to detect different
types of representations. We consider three broad approaches and their variants (Figure 3) with
an eye to highlighting their respective strengths and limitations. Box 2 additionally considers cru-
cial but commonly overlooked issues for collecting the data that feed these different approaches.

Multivariate pattern classification (MVPC) fits models (Gaussian naive Bayes, support vector
machines, logistic/multinomial regression, etc.) to categorize stimuli from the neural activity they
evoke [57,58]. During a training phase, the model receives labeled data consisting of the neural
responses across units to each of many stimuli (e.g., various images of objects) and, for each
item, a label indicating the stimulus category. Training involves fitting classifier weights to output
the correct label for each item in the training set. The trained model is then evaluated by assessing
whether it outputs the correct category label when given neural responses for test stimuli that are
not present in the training set. Where a fitted model reliably classifies held-out items, input units
are interpreted as encoding information about the target categories. The approach is transpar-
ently consistent with category-based semantic representations but will also yield positive results
for both feature-based and vector space representations provided that the target categories are
separable in the corresponding neural activation patterns (i.e., it is possible to fit a flat hyperplane
that reliably divides the target categories in the high-dimensional representation space). Because
the output of a classifier depends on activation patterns across multiple units, MVPC can detect
both independent and conjoint codes. Classifiers assign unique weights to each unit, and the ap-
proach can therefore detect both homogeneous and heterogeneous codes. Because separate
classifiers are typically fitted for each participant, the method can potentially find inconsistent
and variably localized representations as well.

A key challenge for MVPC concerns over-fitting. With more predictors (neural measurements)
than datapoints (stimuli), model fitting is underdetermined without additional constraint – even
with random data, an infinite set of coefficients will perfectly predict the category membership
of training items [35]. MVPC variants differ in the constraints they impose to handle this issue;
this has important implications for signal discovery (Figure 3A).

One method is to reduce the number of neural features provided as the input to the model by ap-
plying an explicit anatomical constraint. For instance, ROI-based approaches look only at the
units contained in a predefined ROI – discovery therefore requires that the representation is ana-
tomically contiguous and localized similarly across individuals, and also that a sufficient amount of
the representation falls within the preselected region to drive classifier accuracy above chance.
ROI selection also crucially determines how neural evidence can relate to the space of cognitive
hypotheses. For instance, ROIs falling outside modality-specific areas cannot offer evidence rel-
evant to testing grounded theories of representation, whereas those falling solely within a given
modality-specific region cannot evaluate self-contained hypotheses.

Relatedly, searchlight approaches fit a separate classifier at each spatial location in each partici-
pant (e.g., each voxel, source, or electrode), including as predictors all units within a prespecified
anatomical radius ('searchlight') [58,59]. Thus, different brain regions are analyzed separately.
Typically cross-participant univariate statistics at each location assess where in the brain the clas-
sifier hold-out accuracy is reliably better than chance; this approach therefore requires that the
representation is localized similarly across individuals. If this criterion is met, the searchlight can
reveal anatomically dispersed codes, but only if each searchlight independently contains suffi-
cient information to drive classifier accuracy above chance. If accurate classification depends
Trends in Cognitive Sciences, March 2023, Vol. 27, No. 3 267
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Figure 3. Approaches to neural decoding. (A) Different solutions to the over-fitting problem faced by multivariate pattern classification (MVPC) and representational
similarity analysis (RSA) approaches. Region of interest (ROI) approaches look only at a prespecified area in each participant and evaluate whether the mean model fit (i.e.,
hold-out error or correlation) across participants differs reliably from chance. Searchlight methods independently evaluate model fit at many 'searchlights' throughout the
brain in each participant, then find areas where searchlights produce above-chance fits reliably across participants. Regularization fits a single model in each participant
using all neural features, but constrains the model to minimize prediction error jointly with an additional cost that prevents over-fitting (discussed in the main text). Non-
zero coefficients in the decoding model of a subject indicate neural units that carry signal; these can be distributed across the brain and can be different for each
participant. Group maps indicate areas where non-zero coefficients accumulate more than expected by chance across individuals. (B) Multivariate pattern classification
fits a model to predict a stimulus category label from the neural pattern it evokes across selected neural units. Mean hold-out accuracy across participants indicates
whether the selected units carry category information and classifier weights can indicate whether category membership is signaled by increased or decreased neural
activation. (C) RSA computes similarity in the neural responses generated across selected units by various stimuli, and then correlates this with a target semantic
similarity matrix. Mean correlation across subjects indicates whether the selected neural units encode semantic structure. (D) Generative approaches use regression to

(Figure legend continued at the bottom of the next page.)
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Box 2. Implications for data acquisition

Hypotheses about the cognitive and neural systems supporting semantic cognition have crucial implications, not only for
how neural data are analyzed, but also for how data are collected.

Stimulus selection

Each modality of stimulus has advantages and disadvantages. Words are easily presented in the scanner, allow all con-
cept types to be probed, and have a perceptual/orthographic structure that is unconfounded with semantic structure.
However, decoding is less successful with words than with picture stimuli generally [82] and written words generate a
strongly asymmetric (left hemisphere) distribution of activation that contrasts with the bilateral pattern found for pictures
and spoken words [119].

Task selection

Tasks used to elicit semantic activation vary across studies in ways that are known to strongly impact the engagement of
underlying neural systems, including their overall difficulty [120], the specificity with which an item must be identified for
good performance [121], reliance on strongly versus weakly encoded information [122], aspects of knowledge the task
foregrounds [25,123], and the degree to which the task can be performed via alternative, non-semantic processing routes
[124].

Temporal and spatial resolution

Neuroimaging methods vary in spatial and temporal resolution, limitations that may or may not affect discovery depending
on the nature of the underlying code. For instance, the lag in BOLDmeans that successive stimuli blend into one another in
fast event-related designs, which can hinder discovery if the neural code is heterogeneous. Slow event-related methods
avoid temporal blending [125] but cannot be used for richer tasks such as connected speech or movie-viewing. EEG
and MEG offer higher temporal resolution and thus avoid stimulus-to-stimulus blending, but at the cost of spatial blending
that can compromise discovery if the neural code is heterogeneous or anatomically dispersed. ECoG offers temporal and
spatial precision, but only a minority of regions are ever probed because the sensors are placed for clinical need and only in
patients who need neurosurgical intervention.

Image acquisition

The possibility that semantic representations are anatomically dispersed must be tested with whole-brain imaging, thus
posing a challenge for fMRI acquisition where the signal-to-noise ratio varies substantially across the brain [126].
Standard sequences yield especially poor signal in orbitofrontal and ventral anterior temporal regions that are thought to
be crucial for semantic cognition [127]. Strategies for improving the signal, including distortion-corrected spin-echo
[127,128] and multi-echo protocols [129,130], have been available for several years but have only rarely been applied in
semantic studies [131]. Indeed, many studies have restricted the field of view to exclude ventral anterior temporal lobe
(ATL) completely [132].
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on joint consideration of units that fall in separate searchlights, the code will be missed. In this
sense, the searchlight may fail to find dispersed, conjoint codes [5,60].

Note that, in principle, classifier accuracy for searchlights and ROIs could be analyzed separately
in each individual, relaxing the assumption of similar localization across participants. We are not
aware of such an approach being applied to semantic decoding and we therefore focus on the
more usual method of using cross-subject univariate statistics to create group-level information
maps for these approaches.

A second approach chooses classifier inputs based on a summary univariate statistic that is com-
puted independently for each unit (such as an F-statistic that contrasts unit activation for different
category members [3], or a correlation-basedmetric that assesses the stability of the response of
a voxel across stimuli [61]). This avoids the anatomical assumptions of ROI and searchlight
fit models that predict the response of each neural unit to various stimuli. After fitting, the regression weights can be inspected to determine the information that each unit
encodes, and novel brain responses can be 'decoded' by finding the semantic vector most likely to have generated the observed neural pattern and then comparing this to
known semantic vectors. Abbreviations: acc., accuracy; Neg., negative; NSM, neural similarity matrix; Pos., positive; RSM, representational similarity matrix; S1–S3, brains
from three different subjects; stim., stimulus.
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approaches but lacks a principled rationale for setting a cut-off threshold and may fail to discover
conjoint representations because each included unit must independently survive the preselection
criterion.

A third strategy employs model regularization: all units in the cortex provide input to the classifier,
which avoids over-fitting by jointly minimizing classification error and an additional loss that is itself a
function of the classifier weights [5]. Common losses include the sum of the squared coefficients
(L2-norm, also known as ‘ridge’ regression [62]), the sum of their absolute values {L1-norm, also
known as ‘LASSO’ (least absolute shrinkage and selection operator) [63]}, or a weighted average
of these (also known as 'elastic net' [64]). The approach makes no assumption about the anatom-
ical location of signal-carrying units within or across participants, can detect conjoint representa-
tions (because it does not require independent preselection of classifier units), and offers a
principled way to guide parameterization via nested cross-validation of prediction error [5].

Crucially, however, different regularizers impose different constraints on model fitting, leading to
wildly different solutions [5]. Regularization with the L1 norm zeros out asmany predictors as pos-
sible while still maximizing predictive accuracy, and typically 'selects' (i.e., places non-zero coef-
ficients on) a very small proportion of units. By contrast, the L2 norm spreads similar weights
across correlated units and places non-zero weights on all units. The choice of regularizer thus
implements an assumption about the likely nature of the true signal: that signal-carrying units
are sparse and uncorrelated (L1) or that they are dense and highly redundant (L2). An alternative
approach designs loss functions that explicitly incorporate prior knowledge about the likely neural
and cognitive structure. For instance, the sparse overlapping sets (SOS) LASSO penalty encour-
ages patterns of 'structured sparsity' where selected units reside in roughly similar locations
across participants, promoting loose anatomical clustering that still permits some variation in sig-
nal location across participants [65,66].

These differences can yield radically different views of the neuro-semantic code when applied to
the same data. In Figure 4A, neural representations of face stimuli appear to be increasingly
widely distributed and heterogeneous as analytic methods progressively relax tacit assumptions
about the independence, heterogeneity, and localization of the neural code. Standard univariate
contrast (assuming a consistently localized, independent, and homogeneous code) replicates the
classic finding of a right-lateralized posterior fusiform area that is more active for faces. Search-
light (assuming a similarly localized and contiguous but potentially conjoint and heterogeneous
code) suggests a bilateral representation localized to posterior ventral temporal cortex. Whole-
brain MVPC regularized with the L1 norm (assuming a sparse code that can be dispersed, het-
erogeneous, and differently localized) shows a bilateral face-to-nonface gradient in posterior ven-
tral temporal cortex and a face-selective region in right lateral occipital cortex. Regularization with
the SOS LASSO (allowing dispersed, heterogeneous, and differently localized codes, but preferring
solutions with roughly similar anatomical distributions) suggests a much more broadly distributed
code encompassing anterior temporal, parietal, and prefrontal regions in both hemispheres [5].

Representational similarity analysis (RSA) searches for sets of units whose responses ex-
press semantic similarities among stimuli [58,59,67]. The analysis first computes a target repre-
sentational similarity matrix (RSM; sometimes defined in terms of dissimilarity where it is called
a target representational dissimilarity matrix) that expresses semantic relatedness for all pairs of
stimuli (Box 1). It then estimates a neural similarity matrix (NSM; sometimes called a neural repre-
sentational dissimilarity matrix) that encodes pairwise similarities in stimulus-evoked neural activity
across a set of units. The correlation between RSM andNSM indicates whether the selected units
encode the target structure (Figure 3C).
270 Trends in Cognitive Sciences, March 2023, Vol. 27, No. 3

CellPress logo


TrendsTrends inin CognitiveCognitive SciencesSciences

Figure 4. Example results from various decoding methods applied to fMRI data. (A) Four different multivariate pattern classification (MVPC) approaches applied
to the same dataset. Participants made pleasantness judgments in response to images of faces, places, or objects, and each analysis sought voxel sets that differentiate
face from non-face stimuli. Approaches that assume consistently localized signals (univariate and searchlight) suggest that representations are localized to posterior ventro-
temporal cortex, whole-brain decoding with sparse regularization suggests a somewhat more distributed representation, whereas decoding with structured sparsity
suggests a widely distributed representation [5]. (B) Searchlight representational similarity analysis (RSA) decoding of semantic structure from pictures, words, or both.

(Figure legend continued at the bottom of the next page.)
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Similarly to MVPC, RSA can detect categorical, feature-based, and vector space representations
provided that the NSM and semantic RSM correlate positively. Because neural similarities are
computed across multiple units, the technique can detect conjoint or independent codes and
heterogeneous or homogeneous codes. A central challenge concerns how neural units are se-
lected and evaluated for significance. Most studies employ either a prespecified ROI or a search-
light technique. The correlation between RSM and NSM is computed for each ROI or searchlight
individually in each participant and, if these are reliably positive across individuals, the ROI/search-
light is interpreted as encoding semantic structure. As with MVPC, informationmaps could be an-
alyzed separately in each individual, but RSA as typically practiced requires that (i) representations
are localized similarity across individuals, (i) information is not conjointly encoded across different
searchlights or ROIs, and (iii) individual searchlights contain sufficient information to drive correla-
tions with the target matrix reliably above chance.

RSA views even small correlations as meaningful provided that they are reliably positive across
participants. Because semantic structure covaries with many confounding factors, the results
can be difficult to interpret. For instance, early studies using visual stimuli suggested that posterior
temporo-occipital areas encode semantic structure [68], but a recent comparative analysis found
that these areas more strongly encode high-order visual structure and semantic structure was
better encoded in more anterior ventro-temporal regions (Figure 4B, top) [69]. Studies that do
not control for visual similarity suggest that semantic structure for both words and pictures is
encoded within a left perisylvian network [70], but when stimuli orthogonally vary semantic and
visual similarity, semantic structure for words appears to be localized to the medial-ventral ante-
rior temporal lobe [71] (Figure 4B, bottom). Thus, very different patterns are obtained depending
upon the target RSMs, the selection of stimuli, and the input modality (Box 2).

Finally, encoder/decoder (also known as generative) approaches use regression to fit a separate
encoding model for each unit, predicting its response to a stimulus from the semantic features of
the item [72–74]. Successful prediction indicates that the corresponding unit independently en-
codes semantic information. A whole-brain response can be estimated by passing a stimulus fea-
ture vector forward through each encoder, yielding a predicted activation at every unit [72].
Alternatively, the whole-brain response generated by a new, unknown item can be decoded by
inverting the encoding models to find the semantic vector most likely to have generated the ob-
served neural response, and then interpreting the resulting vector [1,74] (Figure 3D). Because
separate models are fitted for each voxel and participant, generative approaches make no as-
sumption about code homogeneity, cross-participant consistency, or anatomical organization
within or across individuals. However, they do face two non-trivial challenges.

First, generative approaches can fail to predict the independent activity of a unit that forms part of
a conjoint code. To see this, consider the second conjoint example in Figure 2B right, where two
units both contribute to a semantic representation. If unit 1 is active, unit 2 differentiates fish from
Results vary remarkably depending on several factors, including the representational similarity matrices (RSMs) considered (semantic similarity alone [68] produces different
results from comparing semantic versus visual similarity; top two images [69]) and experimental control of stimulus properties (semantic structure for words appears to be
encoded in perisylvian regions when visual structure is uncontrolled [70], but in ventral anterior temporal lobe (ATL) when controlled [71]). (C) Generative approaches for
decoding semantic representations of narrative speech/sentences. When predictor vectors have semantically interpretable dimensions, and encoder weights are used
to interpret the meaning of a voxel’s activation, the results seem to show a mosaic of localized semantic features across cortex within each subject, but callouts show
areas where the proposed semantic content is at odds with traditional understanding of function (top; images generated from online visualization tool at https://
gallantlab.org/huth2016/). Approaches that invert encoding models to decode whole-brain states (bottom) can recover sentence meanings with good accuracy, but
the nature of the underlying code is difficult to discern because the approach selects thousands of voxels widely distributed across cortex in each participant (right),
with approximately equal proportions residing in various pre-defined brain networks [1] (left). In both cases verbal semantic representations appear to be widely distributed
across cortex and highly variable across individuals. For references see [1,5,68–71,75]. Abbreviations: ant, anterior; LOC, lateral occipital complex; Pic, picture; post, pos-
terior; pref, preference; PR, perirhinal cortex; Prop., proportion; reg., regularization; TP, temporal pole.
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birds; if inactive, unit 2 instead differentiates fruits from vegetables. The 'meaning' of unit 2 is clear
when unit 1 is taken into consideration, but might appear arbitrary when considered indepen-
dently. An encoder model might struggle to predict the independent behavior of unit 2 from se-
mantic features such as can move, has feathers, is sweet, etc., and thus might suggest that it
is not involved in semantic representation.

The second challenge concerns interpretation. One strategy fits the encoders using semantic
vectors whose elements are each individually interpretable (such as a semantic feature vector;
Box 1), and then inspects the encoder weights for each unit to understand what content it en-
codes [2,75,76]. For instance, if the activation of a voxel is reliably predicted by semantic features
such as can move, can grow, and has eyes, these features will receive non-zero weights in the
regression model for that voxel, which might then be interpreted as encoding animacy. The
goal is to understand each unit as independently encoding a subset of semantic features, thereby
yielding an interpretable semantic feature map of cortex that is consistent with feature-based
cognitive models. Because there are many potential semantic features, however, the encoder
fit must be regularized using techniques such as those described earlier for MVPC (commonly
L2 norm, e.g., [16], although other approaches are also popular, e.g., [77]). As we have seen, dif-
ferent regularizers can produce dramatically different configurations of weights, and the interpre-
tation of encoder weights therefore hinges crucially upon the choice of the regularizer. Perhaps for
this reason, approaches adopting this strategy have yielded puzzling findings – suggesting a
mosaic-like organization of local semantic features across many cortical areas that is difficult to
reconcile with the wealth of cognitive and clinical neuroscience information about the functions
of these regions [75] (Figure 4C, top).

An alternative strategy eschews the effort to identify a 'meaning' for individual units and instead
decodes the full activation pattern evoked across cortical units by inverting the encoder models
to find the semantic vector that is most likely to have generated the whole-brain response. The
recovered vector is interpreted by comparing its similarity to vectors corresponding to known
words or sentences [1,74]. For instance, if the decoded vector is near to the known vectors for
grow,move, eat, eyes, legs, fur, it will be interpreted as encoding a meaning such as animal. Be-
cause no effort is made to interpret each dimension, this method is consistent with vector space
approaches, but can also detect category or feature-based representations. One recent study
showed remarkably good decoding of sentence-level meaning using this approach [1] – but
the implications of the study for understanding neural organization of semantics remain unclear
because the results identified thousands of voxels scattered across the cortex in each individual,
with approximately equal involvement of many different brain networks and no voxels selected in
more than half of the participants (Figure 4C, bottom).

It is worth noting that each general approach encompasses several variants – for instance, in the
particular classification model adopted by MVPC [58] and the specific similarity metric used by
RSA [78,79]. Although a full characterization of each is beyond the scope of this review, it
seems likely that such variation further contributes to the heterogeneity of the findings reported
in the literature.

Analytic implications of grounded versus self-contained theories
The issues described above arise regardless of whether neuro-semantic representations are
grounded or self-contained, but this important distinction in cognitive theories carries two addi-
tional implications for the design, analysis, and interpretation of multivariate imaging studies.
First, primary and secondary perceptual and motor cortices conform to localization assumptions
that are central to particular analytic choices – specifically, such areas are both contiguous and
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localized similarly across individuals. Grounded approaches suggest that such areas can encode
semantic information about stimuli, and studies designed specifically to assess whether semantic
structure arises within a given modality [80,81] therefore have good motivation to employ ROI or
searchlight-based feature selection. The anatomical organization of tertiary and association cor-
tices is less well understood and may be more likely to vary across individuals, therefore studies
seeking semantic structure outside the earlier modality-specific regions are better served by the
adoption of approaches that loosen localization, homogeneity, and consistency assumptions.
Assessment of self-contained hypotheses will depend crucially on such methods because they
propose that semantic representations encode information in a modality-independent manner.

Second, adjudication of grounded versus self-contained hypotheses requires studies that probe
semantic information through different stimulus modalities. Self-contained views hold that the
same system of semantic representation is engaged regardless of whether the stimulus is a
word, picture, image, sound, etc. Such a view cannot be disconfirmed by evidence that, for in-
stance, semantic information is decodable from visual areas when a visual stimulus appears be-
cause such a result might also arise if the structure of purely perceptual visual representations is
confounded with semantic structure (e.g., Figure 4B). Evaluating the proposal instead requires
searching for neural systems from which semantic information can be decoded across multiple
different stimulus modalities. Currently, the literature contains relatively few such studies, and
these have yielded mixed findings [70,82–84] (further details are given in the supplemental infor-
mation online).

Toward best practices
To understand how the preceding issues may have shaped current thinking about semantic rep-
resentation in mind and brain, we reviewed 100 papers applying multivariate techniques to the
discovery of neuro-semantic representations in fMRI data (supplemental information). For each,
we considered five analytic decisions, each reflecting a latent assumption about the neural
code, and we evaluated which of the 24 representational possibilities the study was capable of
detecting as each choice was made. The results are summarized in Table 1. All methods were
capable of detecting neural representations that adopt an independent, homogeneous, and an-
atomically contiguous code that, across individuals, is consistent and similarly localized – the type
of representation sought by univariate analysis. Fewer could detect other types of representa-
tional structure, and very few were capable of finding representations that are dispersed in the
brain, localized differently across participants, and/or encode semantic information conjointly
across units rather than independently. In this sense, methodological choices made during
data analysis determine which types of neural signal can and cannot be detected – the analytic
decisions effectively filter the empirical record.

A central question thus concerns how the field might best proceed given the complexity and het-
erogeneity of contemporary methods and the filtering that inevitably results. No analytic approach
is assumption-free, and we doubt that the universal adoption of any single method will resolve the
issues we have identified. Instead, we believe the field would be well served by adopting some
best practices in the way that studies are designed and results are communicated.

Articulating explicit hypotheses about the neural code
In laying out themotivation and design of a study, it is helpful for researchers to explicitly state their
working hypothesis about the nature and structure of the neuro-semantic code – what form the
cognitive representation is hypothesized to take, how its neural instantiation is reflected in the
measurements taken, and how it is expected to vary within and across individuals. The cognitive
and neural possibilities developed in this review provide a frame of reference for such statements,
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which are important because they allow the reader to understand why a given analysis method
was chosen and how the observed results relate to the working hypothesis.

Explicit consideration of alternative hypotheses
When designing/motivating an analysis and when drawing conclusions from the results, it is help-
ful for researchers to consider other possible ways that the target information might be encoded
in neural activity, beyond the working hypothesis. Before data collection, such habits can prompt
new design or analysis ideas that allow adjudication of a richer variety of hypotheses. When draw-
ing conclusions, explicit consideration of alternative possibilities and whether/how the current
data can possibly disconfirm them can help the community to better understand seemingly het-
erogeneous patterns of results.

Connection to neurocognitive computational models
One way to make working assumptions about representation explicit is to connect the experi-
mental design and analysis plan to a neuro-computational model of the behavior
[4,5,60,85–88]. Figure 5 shows three recent examples. This connection serves several purposes.
First, it provides a bridge between functional imaging results and explicit hypotheses about the
mechanisms supporting the behavior of interest, rendering the neural data a supporting part of
a broader set of ideas about how the systemworks. Second, suchmodels can offer new hypoth-
eses about the nature of the neural code that might not otherwise occur to the theorist. Third,
neurocomputational models can be used to better understand the strengths and weaknesses
of different analytic approaches: the theorist can probe model analogs of neural signals and eval-
uate whether a given technique is capable of discovering information of the type captured by the
model. Fourth, models allow exploration of alternative possibilities – the strengths and limitations
of a given approach can be illuminated by comparing and contrasting its results when applied to
models that embody different assumptions about the neural signal.

Simplified open data
Multivariate imaging studies pose unique challenges for the open data movement. The path from
raw data to published result is often complex, software- or system-dependent, contains default
parameterizations that may go unexplained, and involves many intermediate data products be-
tween rawmeasurements and summary results that can be exceedingly large and difficult to doc-
ument. Any single workflow can require extensive effort for outside scientists to fully understand
and, because new approaches arrive with daunting frequency, it is difficult to know which be-
spoke pathways are worth mastering. Nevertheless, each method we have described makes
use, at some level, of common data elements that are easy to understand and not too large to
document and share. These include (i) the matrix that encodes, for each subject, the estimated
response of each neural unit (voxel, electrode, source, etc.) to each stimulus, (ii) the coordinates
of the units in a standard reference frame [e.g., Montreal Neurological Institute (MNI) coordinates
of voxels, time and location information for ECoG, etc.], and (iii) meta-information about the stimuli
(e.g., category labels used for decoding, semantic feature vectors used in an encodingmodel, the
similarity matrix used for RSA, etc.). Sharing only these elements in standardized form would pro-
vide minimally sufficient information for scientists to apply a variety of different techniques to a
dataset, thus promoting better understanding of how results vary with the method of analysis.

Convergence with other forms of evidence
Functional imaging alone will not resolve the quest for neuro-semantic representations. A fuller
understanding will require relating multivariate imaging results to other diverse sources of evi-
dence in cognitive neuroscience, including (i) the rich neuropsychology literature documenting
patterns of verbal and nonverbal semantic impairment and their underlying neuropathology
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Figure 5. Recent examples of computational models informing neural decoding. (A) In recurrentmodels the activation patterns that encode semantic information change
over the course of stimulus processing. In simulated electrocorticography (ECoG, left), classifiers fit to different temporal windows (colored dots) decode well within the same and
neighboring time-windows, but poorly for more distal time-windows (colored lines). A similar pattern arises when the same approach is used to decode ECoG from human anterior
temporal cortex while participants name pictures, suggesting rapid nonlinear change in the neuro-semantic code [133]. (B) Deep convolutional neural networks (DCNNs) may
provide a useful framework for understanding visual object semantics [134,135]. A recent study assessed whether a trained DCNN could classify images when activations at a
given model layer were replaced by neural responses (measured by fMRI) of different visual areas [136]. Neural patterns from each area were successfully decoded, but only
when they were input to the deeper model layers (barplot) – suggesting that the richer semantic structure encoded in such layers is reflected throughout the ventral visual
stream. (C) Other work uses similar models to evaluate individual differences across parts of the vision-to-semantics system [137]. In the plot shown the authors trained several
models, measured similarity in the representational geometry acquired in each layer across models, and embedded these in two dimensions. The proximity of colored circles
indicates the similarity of the representational structure acquired by the corresponding layers. Lines connect layers in the same model. Shallower model layers (light colors)
always learned relatively similar structure, whereas deeper layers – those most likely to express abstract semantic structure – learned more variable structure, suggesting that
neural codes may differ more across individuals in the regions that are most likely to encode semantic structure. For references see [133,136,137]. Abbreviations: AUC, area
under the curve; dim, dimension; LOC, lateral occipital complex; MDS, multidimensional scaling; V1–V4, visual cortex areas 1–4.
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Box 3. The importance of converging evidence

The heterogeneity of imaging findings may be resolved by considering how conclusions from various studies relate to con-
verging evidence from other methods. Some examples are given below.

Neuropsychology

Several varieties of brain damage cause semantic impairment and distinct deficits are observed depending on the
neuropathology. Close consideration of these can illuminate brain imaging results. For instance, cross-modal semantic
impairment can arise both from bilateral damage to the anterior temporal lobes (ATLs) [93,138] and from left frontoparietal
or posterior-lateral temporal stroke [92,139], but whereas ATL damage erodes conceptual structure, frontoparietal/
posterior-lateral temporal damage instead disrupts the ability to shape semantic processing to the task context [54].
Thus, results implicating frontoparietal/posterior lateral temporal areas in semantics might best be interpreted by con-
sidering the demands on semantic control, whereas studies seeking conceptual structure in the brain should employ
methods that are capable of resolving ATL signal.

Neural disruption

If imaging results suggest that a brain region selectively represents/processes a particular type of semantic information,
transient disruption of the area via transcranial magnetic stimulation (TMS) should selectively affect retrieval of the tar-
get information. For instance, TMS applied to left or right ATL slows semantic judgments equally for animates and inani-
mates, but does not affect number judgments, supporting the view that bilateral ATLs encode semantic information
across domains [95]. Such studies will be especially important for testing the implications of multivariate imaging studies
indicative of highly unorthodox semantic functions for various cortical areas [75].

Neural connectivity

The neural response of a given area can reflect its broader connectivity, with implications for understanding its function. For
instance, medial posterior fusiform cortex responds more to artifact than animal names – a pattern observed both in
sighted and congenitally blind individuals [140,141]. One interpretation suggests that different brain areas natively special-
ize to represent distinct semantic categories [142]. However, the area of interest is functionally [98] and structurally [100]
connected to dorsal areas that aid in object-directed actions, suggesting that the seeming category effect may instead
arise from more effective interactions between this visual area and parts of the action system [98,143].

Neurocognitive development

Developmental trajectories can likewise aid the understanding of mature activation patterns. For instance, the right poste-
rior fusiform responds strongly to face images in most literate adults, perhaps suggesting an innately dedicated system for
face representation [144,145]. However, face perception engages the fusiform bilaterally in pre-literate children [146], and
the left hemifield/right hemisphere advantage for face recognition emerges late in development as a child learns to read
[147]. Such data suggest that the mature pattern reflects, not innate specialization for a visual category, but
experienced-based tuning of visual perception [101].
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Outstanding questions
Which cognitive hypotheses best
describe semantic representations?
The multivariate methods considered
in this review do not indicate whether
the underlying representation is
categorical, feature-based, or a vector
space, or is self-contained versus
grounded. MVPC can produce a posi-
tive result even if neural representations
are vector spaces rather than catego-
ries, and RSA can generate a positive
result even if neural representations are
categories and not vector spaces.
How then can brain imaging adjudicate
between these views?

When different brain areas all encode
semantic structure, what data can
determine whether they support the
same or different functions? Semantic
structure has been observed across
multiple brain areas, but disruption
caused by brain damage or transcranial
magnetic stimulation (TMS) can
produce qualitatively different patterns
of impairment – suggesting that these
regions serve different functions in se-
mantic cognition.

Can imaging data resolve which
aspects of a target representational
structure are, or are not, encoded
within a neural system? Many studies
report above-chance decoding that is
nevertheless relatively weak (e.g., RSA
correlations as small as r = 0.03, binary
classification accuracy of 0.55, etc.).
Such effectsmight arise because neural
data are noisy, because the neural sys-
tem encodes weak confounds with the
target structure, or because it encodes
only part of the target structure.

Can a combination of approaches
overcome the individual limitations of
each method? Each technique has
strengths and limitations; perhaps
the fullest picture of semantics in the
brain will arise from a combination
of approaches that will allow the
community to evaluate the full space of
representational possibilities outlined in
this review.
[89–94], (ii) methods for disrupting neural processing in healthy participants, which can provide cru-
cial evidence about causality [95–97], (iii) structural and functional brain connectivity [98–100], (iv)
patterns of behavior and functional activation arising over typical and atypical development
[101,102], and (v) results of behavioral studies arising in cognitive science [30,103,104]. Box 3 con-
siders how these sources of evidence can aid the interpretation of imaging data. Of course, not
every paper can comprehensively review a large and complex literature – but in drawing conclu-
sions it can be helpful for authors to explicitly consider where these cohere with results from
other methodologies, where they contradict such results, and where the relevant experiments
have not yet been conducted.

Concluding remarks
Our review illustrates that methodological choices in multivariate neuroimaging analysis selec-
tively filter data to promote discovery of some types of neuro-semantic codes over others.
These considerations compel a re-evaluation of the literature. Over three decades many neuroim-
aging studies have reported cortical areas that locally encode a particular type of semantic infor-
mation in a systematic way across individuals. The preponderance and replicability of such
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findings suggest that some elements of neuro-semantic representation must indeed be
independent, contiguous, and localized similarly across individuals. However, because this is
precisely the one form of neuro-semantic code that, among many possibilities, is most robust
to methodological choices, the ubiquity of such findings does not signify that these are the only,
or even the most important, elements of semantic representation. On the contrary,
neurocomputational models of healthy and disordered semantic cognition typically acquire in-
ternal representations that are conjoint rather than independent, are distributed across units
that may be anatomically dispersed, are heterogeneous in code, and are potentially localized
differently across individuals [5,60,85]. These latter forms of semantic representation are the
least likely to be revealed by most current analytical methods. The few studies capable of find-
ing such structure often reveal a more widely distributed, heterogeneous, and variable seman-
tic code than other studies suggest [1,5,75]. Thus there exists an important lacuna in the
empirical landscape that must be filled if we are to develop a mechanistic understanding of se-
mantic cognition in the brain. We hope that this article provides a first step toward an organizing
framework that can bring the current heterogeneity of findings under a common explanatory
umbrella (see Outstanding questions).
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