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Abstract. We consider the problem of dynamically maintaining the
convex hull of a set S of points in the plane under the following spe-
cial sequence of insertions and deletions (called window-sliding updates):
insert a point to the right of all points of S and delete the leftmost point
of S. We propose an O(|S|)-space data structure that can handle each
update in O(1) amortized time, such that all standard binary-search-
based queries on the convex hull of S can be answered in O(log |S|)
time, and the convex hull itself can be output in time linear in its size.
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1 Introduction

As a fundamental structure in computational geometry, the convex hull CH(S)
of a set S of points in the plane has been well studied in the literature. Several
O(n log n) time algorithms are known for computing CH(S), e.g., see [5,26],
where n = |S|, and the time matches the Ω(n log n) lower bound. Output-
sensitive O(n log h) time algorithms have also been given [9,21], where h is the
number of vertices of CH(S). If the points of S are already sorted, e.g., by x-
coordinate, then CH(S) can be computed in O(n) time by Graham’s scan [14].

Due to a wide range of applications, the problem of dynamically maintain-
ing CH(S), where points can be inserted and/or deleted from S, has also been
extensively studied. Overmars and van Leeuwen [24] proposed an O(n)-space
data structure that can support each insertion and deletion in O(log2 n) worst-
case time; Preparata and Vitter [27] gave a simpler method with the same per-
formance. If only insertions are involved, then the approach of Preparata [25]
can support each insertion in O(log n) worst-case time. For deletions only, Her-
shberger and Suri’s method [18] can support each update in O(log n) amortized
time. If both insertions and deletions are allowed, a breakthrough was given by
Chan [10], who developed a data structure of linear space that can support each
update in O(log1+ε n) amortized time, for an arbitrarily small ε > 0. Subse-
quently, Brodal and Jacob [7], and independently Kaplan et al. [20] reduced the
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update time to O(log n log log n). Finally, Brodal and Jacob [6] achieved O(log n)
amortized time performance for each update, with O(n) space.

Under certain special situations, better and simpler results are also known. If
the insertions and deletions are given offline, the data structure of Hershberger
and Suri [19] can support O(log n) amortized time update. Schwarzkopf [28]
and Mulmuley [23] presented algorithms to support each update in O(log n)
expected time if the sequence of updates is random in a certain sense. In addition,
Friedman et al. [13] considered the problem of maintaining the convex hull of a
simple path P such that vertices are allowed to be inserted and deleted from P
at both ends of P , and they gave a linear space data structure that can support
each update in O(log |P |) amortized time (more precisely, O(1) amortized time
for each deletion and O(log |P |) amortized time for each insertion). There are
also other special dynamic settings for convex hulls, e.g., [12,17].

In most applications, the reason to maintaining CH(S) is to perform queries
on it efficiently. As discussed in Chan [11], there are usually two types of queries,
depending on whether the query is decomposable [4], i.e., if S is partitioned into
two subsets, then the answer to the query for S can be obtained in constant
time from the answers of the query for the two subsets. For example, the follow-
ing queries are decomposable: find the most extreme vertex of CH(S) along a
query direction; decide whether a query line intersects CH(S); find the two com-
mon tangents to CH(S) from a query point outside CH(S), while the following
queries are not decomposable: find the intersection of CH(S) with a vertical
query line or more generally an arbitrary query line. It seems that the decom-
posable queries are easier to deal with. Indeed, most of the above mentioned data
structures can handle the decomposable queries in O(log n) time each. However,
this is not the case for the non-decomposable queries. For example, none of the
data structures of [6,7,10,13,20] can support O(log n)-time non-decomposable
queries. More specifically, Chan’s data structure [10] can be modified to support
each non-decomposable query in O(log3/2 n) time but the amortized update time
also increases to O(log3/2 n). Later Chan [11] gave a randomized algorithm that
can support each non-decomposable query in expected O(log1+ε n) time, for an
arbitrarily small ε > 0, and the amortized update time is also O(log1+ε n).

Another operation on CH(S) is to output it explicitly, ideally in O(h) time.
To achieve this, one usually has to maintain CH(S) explicitly in the data struc-
ture, e.g., in [18,24]. Unfortunately, most other data structures are not able to
do so, e.g., [6,7,10,13,19,20,27], although they can output CH(S) in a slightly
slower O(h log n) time. In particular, Bus and Buzer [8] considered this opera-
tion for maintaining the convex hull of a simple path P such that vertices are
allowed to be inserted and deleted from P at both ends of P , i.e., in the same
problem setting as in [13]. Based on a modification of the algorithm in [22], they
achieved O(1) amortized update time such that CH(S) can be output explicitly
in O(h) time [8]. However, no other queries on CH(S) were considered in [8].

Our Results. We consider a special sequence of insertions and deletions: the
point inserted by an insertion must be to the right of all points of the current
set S, and a deletion always happens to the leftmost point of the current set S.
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Equivalently, we may consider the points of S contained in a window bounded
by two vertical lines that are moving rightwards (but the window width is not
fixed), so we call them the window-sliding updates.

To solve the problem, one can apply any previous data structure for arbi-
trary point updates. For example, the method in [6] can handle each update in
O(log n) amortized time and answer each decomposable query in O(log n) time.
Alternatively, if we connect all points of S from left to right by line segments,
then we can obtain a simple path whose ends are the leftmost and rightmost
points of S, respectively. Therefore, the data structure of Friedman et al. [13]
can be applied to handle each update in O(log n) amortized time and support
each decomposable query in O(log n) time. In addition, although the data struc-
ture in [18] is particularly for deletions only, Hershberger and Suri [18] indicated
that their method also works for the window-sliding updates, in which case each
update (insertion and deletion) takes O(log n) amortized time. Further, as the
data structure [18] explicitly stores the edges of CH(S) in a balanced binary
search tree, it can support both decomposable and non-decomposable queries
each in O(log n) time as well as output CH(S) in O(h) time.

In this paper, we provide a new data structure for the window-sliding updates.
Our data structure uses O(n) space and can handle each update in O(1) amor-
tized time. All decomposable and non-decomposable queries on CH(S) men-
tioned above can be answered in O(log n) time each. Further, after each update,
the convex hull CH(S) can be output explicitly in O(h) time. Specifically, the
following theorem summarizes our result.

Theorem 1. We can dynamically maintain the convex hull CH(S) of a set S
of points in the plane to support each window-sliding update (i.e., either insert
a point to the right of all points of S or delete the leftmost point of S) in O(1)
amortized time, such that the following operations on CH(S) can be performed.
Let n = |S| and h be the number of vertices of CH(S) right before each operation.

1. The convex hull CH(S) can be explicitly output in O(h) time.
2. Given two vertical lines, the vertices of CH(S) between the vertical lines can

be output in order along the boundary of CH(S) in O(k + log n) time, where
k is the number of vertices of CH(S) between the two vertical lines.

3. Each of the following queries can be answered in O(log n) time.
(a) Given a query direction, find the most extreme point of S along the direc-

tion.
(b) Given a query line, decide whether the line intersects CH(S).
(c) Given a query point outside CH(S), find the two tangents from the point

to CH(S).
(d) Given a query line, find its intersection with CH(S), or equivalently, find

the edges of CH(S) intersecting the line.
(e) Given a query point, decide whether the point is in CH(S).
(f) Given a convex polygon (represented in any data structure that supports

binary search), decide whether it intersects CH(S), and if not, find their
common tangents (both outer and inner).
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Comparing to all previous work, albeit on a very special sequence of updates,
our result is particularly interesting due to the O(1) amortized update time as
well as its simplicity.

Applications. Although the updates in our problem are quite special, the prob-
lem still finds applications. For example, Becker et al. [2] considered the problem
of finding two rectangles of minimum total area to enclose a set of n rectangles
in the plane. They gave an algorithm of O(n log n) time and O(n log log n) space.
Their algorithm has a subproblem of processing a dynamic set of points to answer
queries of Type 3a of Theorem 1 with respect to window-sliding updates (see
Section 3.2 [2]). The subproblem is solved using subpath convex hull query data
structure in [15], which costs O(n log log n) space. Using Theorem 1, we can
reduce the space of the algorithm to O(n) while the runtime is still O(n log n).
Note that Wang [29] recently improved the space of the result of [15] to O(n),
which also leads to an O(n) space solution for the algorithm of [2]. However, the
approach of Wang [29] is much more complicated.

Becker et al. [1] extended their work above and studied the problem of enclos-
ing a set of simple polygons using two rectangles of minimum total area. They
gave an algorithm of O(nα(n) log n) time and O(n log log n) space, where n is
the total number of vertices of all polygons and α(n) is the inverse Ackermann
function. The algorithm has a similar subproblem as above (see Section 4.2 [1]).
Similarly, our result can reduce the space of their algorithm to O(n) while the
runtime is still O(nα(n) log n).

Outline. After introducing notation in Sect. 2, we will prove Theorem 1 grad-
ually as follows. First, in Sect. 3, we give a data structure for a special problem
setting. Then we extend our techniques to the general problem in Sect. 4. The
data structures in Sect. 3 and 4 can only perform the first operation in Theo-
rem 1 (i.e., output CH(S)), we will enhance the data structure in Sect. 5 so that
other operations can be handled. Due to the space limit, all lemma proofs are
omitted but can be found in the full paper.

2 Preliminaries

Let U(S) denote the upper hull of CH(S). We will focus on maintaining U(S),
and the lower hull can be treated likewise. The data structure for both hulls
together will achieve Theorem 1.

For any two points p and q in the plane, we say that p is to the left of q if the
x-coordinate of p is smaller than or equal to that of q. Similarly, we can define
“to the right of”, “above”, and “below”. We add “strictly” in front of them to
indicate that the tie case does not happen. For example, p is strictly below q if
the y-coordinate of p is smaller than that of q.

For a line segment s and a point p, we say that p is vertically below s if the
vertical line through p intersects s at a point above p (p ∈ s is possible). For
any two line segments s1 and s2, we say that s1 is vertically below s2 if both
endpoints of s1 are vertically below s2.
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Suppose L is a sequence of points and p and q are two points of L. We follow
the convention that a subsequence of L between p and q includes both p and q,
but a subsequence of L strictly between p and q does not include either one.

For ease of exposition, we make a general position assumption that no two
points of S have the same x-coordinate and no three points are collinear.

3 A Special Problem Setting with a Partition Line

In this section we consider a special problem setting. Specifically, let L =
{p1, p2, . . . , pn} (resp., R = {q1, q2, . . . , qn}) be a set of n points sorted by
increasing x-coordinate, such that all points of L are strictly to the left of
a known vertical line � and all points of R are strictly to the right of �. We
want to maintain the upper convex hull U(S) of a consecutive subsequence S of
L ∪ R = {p1, . . . , pn, q1, . . . , qn}, i.e., S = {pi, pi+1, . . . , pn, q1, q2, . . . , qj}, with
S = L initially, such that a deletion will delete the leftmost point of S and an
insertion will insert the point of R right after the last point of S. Further, dele-
tions only happen to points of L, i.e., once pn is deleted from S, no deletion will
happen. Therefore, there are a total of n insertions and n deletions.

Our result is a data structure that supports each update in O(1) amortized
time, and after each update we can output U(S) in O(|U(S)|) time. The data
structure can be built in O(n) time on S = L initially. Note that L is given
offline because S = L initially, but points of R are given online. We will extend
the techniques to the general problem setting in Sect. 4, and the data structure
will be enhanced in Sect. 5 so that other operations on CH(S) can be handled.

3.1 Initialization

Initially, we construct the data structure on L, as follows. We run Graham’s scan
to process points of L leftwards from pn to p1. Each vertex pi ∈ L is associated
with a stack Q(pi), which is empty initially. Each vertex pi also has two pointers
l(pi) and r(pi), pointing to its left and right neighbors respectively if pi is a
vertex of the current upper hull. Suppose we are processing a point pi. Then,
the upper hull of pi+1, pi+2, . . . , pn has already been maintained by a doubly
linked list with pi+1 as the head. To process pi, we run Graham’s scan to find a
vertex pj of the current upper hull such that pipj is an edge of the new upper
hull. Then, we push pi into the stack Q(pj), and set l(pj) = pi and r(pi) = pj .
The algorithm is done after p1 is processed.

The stacks essentially maintain the left neighbors of the vertices of the histor-
ical upper hulls so that when some points are deleted in future, we can traverse
leftwards from any vertex on the current upper hull after those deletions. More
specifically, if pi is a vertex on the current upper hull, then the vertex at the
top of Q(pi) is the left neighbor of pi on the upper hull. In addition, notice that
once the right neighbor pointer r(pi) is set during processing pi, it will never
be changed. Hence, in future if pi becomes a vertex of the current upper hull
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after some deletions, r(pi) is the right neighbor of pi on the current upper hull.
Therefore, we do not need another stack to keep the right neighbor of pi.

The above builds our data structure for U(S) initially when S = L. In what
follows, we discuss the general situation when S contains both points of L and
R. Let S1 = S ∩ L and S2 = S ∩ R. The data structure described above is used
for maintaining U(S1). For S2, we only use a doubly linked list to store its upper
hull U(S2), and the stacks are not needed. In addition, we explicitly maintain
the common tangent t1t2 of the two upper hulls U(S1) and U(S2), where t1 and
t2 are the tangent points on U(S1) and U(S2), respectively. We also maintain
the leftmost and rightmost points of S. This completes the description of our
data structure for S.

Using the data structure we can output U(S) in O(|U(S)|) time as follows.
Starting from the leftmost vertex of S1, we follow the right neighbor pointers
until we reach t1, and then we output t1t2. Finally, we traverse U(S2) from t2
rightwards until the rightmost vertex. In the following, we discuss how to handle
insertions and deletions.

�

t1
t2q

qjt′1

S1

S2

Fig. 1. Illustrating the insertion of qj .

�

t1
t2

S1

S2
t′1

t′2
p

Fig. 2. Illustrating the deletion of pi where pi = t1. t′
1t

′
2 are the new tangent of U(S1)

and U(S2) after pi is deleted.

3.2 Insertions

Suppose a point qj ∈ R is inserted into S. If j = 1, then this is the first insertion.
We set t2 = q1 and find t1 on U(S1) by traversing it leftwards from pn (i.e.,
by Graham’s scan). This takes O(n) time but happens only once in the entire
algorithm (for processing all 2n insertions and deletions), so the amortized cost
for the insertion of q1 is O(1). In the following we consider the general case j > 1.
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We first update U(S2) by Graham’s scan. This procedure takes O(n) time in
total for all n insertions, and thus O(1) amortized time per insertion. Let q be
the vertex such that qqj is the edge of the new hull U(S2) (e.g., see Fig. 1). If
q is strictly to the right of t2, or if q = t2 and t1t2 and t2qj make a right turn
at t2, then t1t2 is still the common tangent and we are done with the insertion.
Otherwise, we update t2 = qj and find the new t1 by traversing U(S1) leftwards
from the current t1, and we call it the insertion-type tangent searching procedure,
which takes O(1 + k) time, with k equal to the number of vertices on U(S1)
strictly between the original t1 and the new t1 (and we say that those vertices
are involved in the procedure). The following lemma implies the amortized cost
of the procedure is O(1).

Lemma 1. Each point p ∈ L ∪ R can be involved in the insertion-type tangent
searching procedure at most once in the entire algorithm.

3.3 Deletions

Suppose a point pi ∈ L is deleted from S1. If i = n, then this is the last deletion.
In this case, we only need to maintain U(S2) for insertions only in future, which
can be done by Graham’s scan. In the following, we assume that i < n.

Note that pi must be the leftmost vertex of the current hull U(S1). Let
p = r(pi) (i.e., p is the right neighbor of pi on U(S1)). According to our data
structure, pi is at the top of the stack Q(p). We pop pi out of Q(p). If pi �= t1,
then pi is strictly to the left of t1 and t1t2 is still the common tangent of the new
S1 and S2, and thus we are done with the deletion. Otherwise, we find the new
tangent by simultaneously traversing on U(S1) leftwards from p and traversing
on U(S2) leftwards from t2 (e.g., see Fig. 2). Specifically, we first check whether
pt2 is tangent to U(S1) at p. If not, then we move p leftwards on the new U(S1)
until pt2 is tangent to U(S1) at p. Then, we check whether pt2 is tangent to
U(S2) at t2. If not, then we move t2 leftwards on U(S2) until pt2 is tangent to
U(S2) at t2. If the new pt2 is not tangent to U(S1) at p, then we move p leftwards
again. We repeat the procedure until the updated pt2 is tangent to U(S1) at p
and also tangent to U(S2) at t2. Note that both p and t2 are monotonically
moving leftwards on U(S1) and U(S2), respectively. Note also that traversing
leftwards on U(S1) is achieved by using the stacks associated with the vertices
while traversing on U(S2) is done by using the doubly-linked list that stores
U(S2). We call the above the deletion-type tangent searching procedure, which
takes O(1 + k1 + k2) time, where k1 is the number of points on U(S1) strictly
between p and the new tangent point t1, i.e., the final position of p after the
algorithm finishes (we say that these points are involved in the procedure), and
k2 is the number of points on U(S2) strictly between the original t2 and the new
t2 (we say that these points are involved in the procedure). The following lemma
implies that the amortized cost of the procedure is O(1).

Lemma 2. Every point in L ∪ R can be involved in the deletion-type tangent
searching procedure at most once in the entire algorithm.
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As a summary, in the special problem setting, we can perform each insertion
and deletion in O(1) amortized time, and after each update, the upper hull U(S)
can be output in |U(S)| time.

4 The General Problem Setting

In this section, we extend our algorithm in Sect. 3 to the general problem setting
without the restriction on the existence of the partition line �. Specifically, we
want to maintain the upper hull U(S) under window-sliding updates, with S = ∅
initially. We will show that each update can be handled in O(1) amortized time
and after each update U(S) can be output in O(|U(S)|) time. We will enhance
the data structure in Sect. 5 so that it can handle other operations on CH(S).

During the course of processing updates, we maintain a vertical line � that
will move rightwards. At any moment, � plays the same role as in the problem
setting in Sect. 3. In addition, � always contains a point of S. Let S1 be the
subset of S to the left of � (including the point on �), and S2 = S\S1. For S1, we
use the same data structure as before to maintain U(S1), i.e., a doubly linked
list for vertices of U(S1) and a stack associated with each point of S1, and we
call it the list-stack data structure. For S2, as before, we only use a doubly linked
list to store the vertices of U(S2). Note that S2 = ∅ is possible. If S2 �= ∅, we
also maintain the common tangent t1t2 of U(S1) and U(S2), with t1 ∈ U(S1)
and t2 ∈ U(S2). We can output the upper hull U(S) in O(|U(S)|) time as before.

For each i ≥ 1, let pi denote the i-th inserted point. Let U denote the
universal set of all points pi that will be inserted. Note that points of U are
given online and we only use U for the reference purpose in our discussion (our
algorithm has no information about U beforehand). We assume that S initially
consists of two points p1 and p2. We let � pass through p1. According to the
above definitions, we have S1 = {p1}, S2 = {p2}, t1 = p1, and t2 = p2. We
assume that during the course of processing updates S always has at least two
points, since otherwise we could restart the algorithm from this initial stage.
Next, we discuss how to process updates.

Deletions. Suppose a point pi is deleted. If pi is not the only point of S1, then
we do the same processing as before in Sect. 3. We briefly discuss it here. If
pi �= t1, then we pop pi out of the stack Q(p) of p, where p = r(pi). In this case,
we do not need to update t1t2. Otherwise, we also need to update t1t2, by the
deletion-type tangent searching procedure as before. Lemma 2 is still applicable
here (replacing L ∪ R with U), so the procedure takes O(1) amortized time.

If pi is the only point in S1, then we do the following. We move � to the
rightmost point of S2, and thus, the new set S1 consists of all points in the old
set S2 while the new S2 becomes ∅. Next, we build the list-stack data structure
for S1 by running Graham’s scan leftwards from its rightmost point, which takes
|S1| time. We call it the left-hull construction procedure. The following lemma
implies that the amortized cost of the procedure is O(1).

Lemma 3. Every point of U is involved in the left-hull construction procedure
at most once in the entire algorithm.
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Insertions. Suppose a point pj is inserted. We first update U(S2) using Gra-
ham’s scan, and we call it the right-hull updating procedure. After that, pj

becomes the rightmost vertex of the new U(S2). The procedure takes O(1 + k)
time, where k is the number of vertices got removed from the old U(S2) (we
say that these points are involved in the procedure). By the standard Graham’s
scan, the amortized cost of the procedure is O(1). Note that although the line
� may move rightwards, we can still use the same analysis as the standard Gra-
ham’s scan. Indeed, according to our algorithm for processing deletions discussed
above, once � moves rightwards, all points in S2 will be in the new set S1 and
thus will never be involved in the right-hull updating procedure again in future.

After U(S2) is updated as above, we check whether the upper tangent t1t2
needs to be updated, and if yes (in particular, if S2 = ∅ before the insertion), we
run an insertion-type tangent searching procedure to find the new tangent in the
same way as before in Sect. 3. Lemma 1 still applies (replacing L ∪ R with U),
and thus the procedure takes O(1) amortized time. This finishes the processing
of the insertion, whose amortized cost is O(1).

As a summary, in the general problem setting, we can perform each insertion
and deletion in O(1) amortized time, and after each update, the upper hull U(S)
can be output in |U(S)| time.

5 Convex Hull Queries

In this section, we enhance the data structure described in Sect. 4 to support
logarithmic time convex hull queries as stated in Theorem 1. This is done by
incorporating an interval tree into our data structure. Below, we first describe the
interval tree in Sect. 5.1. We incorporate the interval tree into our data structure
in Sect. 5.2. The data structure can support O(log |U |) time queries, where U is
the universe of all points that will be inserted, under the assumption that the
size |U | is known initially when S = ∅. We finally lift the assumption in Sect. 5.3
and also reduce the query time to O(log n), with n = |S|.

5.1 The Interval Tree

We borrow an idea from Guibas et al. [15] and use interval trees. We build
a complete binary search tree T whose leaves from left to right correspond to
the indices from 1 to |U |. So the height of T is O(log |U |). For each leaf, if it
corresponds to index i, then we assign i as the index of the leaf. For each internal
node v, if i is the index of the rightmost leaf in its left subtree, then we assign
i + 1/2 as the index of v, although it is not an integer. In this way, the sorted
order of the indices of all nodes of T follows the symmetric order of the nodes.
For a line segment pipj connecting two points pi and pj of U , we say that the
segment spans a node v, if the index of v is in the range [i, j]. Comparing to the
interval tree in [15], which is defined with respect to the actual x-coordinates of
the points, our tree is more abstract because it is defined on indices only.
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Consider the set S maintained by our algorithm, which is a subset of U .
We can store its upper hull U(S) in T as follows [15]. For each edge of U(S)
connecting two vertices pi and pj , we store pipj at the lowest common ancestor
of leaves i and j in T (i.e., the highest node spanned by pipj ; e.g., see Fig. 3). By
also storing the lower hull of S in T as above, all queries on CH(S) as specified
in Theorem 1(3) can be answered in O(log |U |) time, by following a path from
the root to a leaf [15] (the main idea is that the hull edge spanning a node v
is stored either at v or at one of its ancestors, and only at most two ancestor
edges closest to v need to be remembered during the search in T ). In fact, our
problem is slightly more complex because we need to store not only the edges
of U(S) but also some historical hull edges. In the following, we incorporate this
interval tree T into our data structure.

Fig. 3. Illustrating an upper hull and an interval tree that stores all hull edges: the
(blue) dashed lines with arrows show where edges are stored. (Color figure online)

5.2 The Enhanced Data Structure

Unless otherwise stated, we follow the same notation as that in Sect. 4.
In addition to the data structure for storing S1 and S2 described in Sect. 4,

we initially build the interval tree T . Then, we preprocess T in O(|U |) time so
that given any two nodes of the tree, their lowest common ancestor can be found
in O(1) time [3,16]. The amortized cost of this preprocessing is O(1), for there
will be |U | insertions. In addition, we associate each node v of T with a stack,
which is ∅ initially. For any two points pi and pj of U , we use lca(pi, pj) to
refer to the lowest common ancestor of the two leaves of T corresponding to the
indices of the two points, respectively.

During the left-hull construction procedure for computing the list-stack data
structure for S1, we make the following changes. Whenever a vertex pi is pro-
cessed and an edge (pi, pj) is added as an edge to the current upper hull, in
addition to setting l(pj) = pi, r(pi) = pj , and pushing pi into the stack Q(pj)
as before, we also push the edge (pi, pj) into the stack associated with the node
lca(pi, pj) of T . Thanks to the O(1)-time query performance of the lowest com-
mon ancestor query data structure [3,16], this change only adds constant time to
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each step in the original algorithm, and thus does not affect the time complexity
asymptotically.

We make similar changes in the right-hull updating procedure for computing
U(S2). Specifically, assume that we are inserting a point pj . We run Graham’s
scan on the vertices of U(S2) from right to left. Suppose that we are scanning an
edge pp′ of U(S2) and we find that it needs to be removed from the current upper
hull. Then, we also pop pp′ out of the stack associated with the node lca(p, p′)
of T . After the Graham’s scan is done, let pk be the vertex that connects to pj

in the new hull (i.e., pkpj is the new edge). Then, we push pkpj into the stack
associated with the node lca(pk, pj) of T . Again, these changes do not change
the time complexity of the algorithm asymptotically.

In addition, we store the common tangent t1t2 at the top of the stack asso-
ciated with the node lca(t1, t2) of T .

Deletions and Insertions. Consider the deletion of a point pi. As before,
depending on whether pi is the only point of S1, there are two cases.

1. If pi is not the only point in S1, then we do the same processing as before
with the following changes. First, we pop the common tangent t1t2 out of the
stack associated with the node lca(t1, t2) of T . Second, when we pop pi out
of the stack Q(p) with p = r(pi), we also pop the edge pip out of the stack
at the node lca(pi, p) in T . Third, we push the new tangent (t1, t2) into the
stack of the new lca(t1, t2) of T . Note that the push and the pop operations
of the common tangent t1t2 are always needed following the above order even
if it does not change (otherwise, assume that we do not perform the pop
operation in the first step, then in the second step when we attempt to pop
pip out of the stack at the node lca(pi, p), pip may not be at the top of the
stack because t1t2 may be at the top of the same stack).

2. If pi is the only point in S1, then according to our algorithm, we need to run
the left-hull construction procedure on the points {pi+1, pi+2, . . . , pj}, where
pj is the rightmost point of S2. Here we make the following changes. First,
for each edge pkpk′ of U(S2), we pop pkpk′ out of the stack associated with
the node lca(pk, pk′) of T . Then, we run the left-hull construction procedure
with the changes discussed above.

Consider the insertion of a point pj . We first pop the tangent t1t2 out of
the stack at the node lca(t1, t2). Then, we run the right-hull updating procedure
with the changes discussed above. Finally, we push the new tangent t1t2 (which
may be the same as the original one) into the stack at the node lca(t1, t2).

As discussed above, due to the O(1) query time of the lowest common ances-
tor data structure, the amortized time of each insertion/deletion is still O(1).

Queries. Next we discuss how to answer convex hull queries using the interval
tree T . One difference between our interval tree T and that used in [15] is that
there are stacks associated with the nodes of T , which may store edges not on
U(S). Therefore, we cannot directly use the query algorithm in [15]. Rather, we
need to make sure that non-hull edges in the stacks will not give us trouble. To
this end, we first prove the following lemma (which further leads to Corollary 1).
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Lemma 4. Suppose a stack associated with a node of T contains more than one
edge, and let e1 and e2 be any two edges in the stack such that e1 is above e2 in
the stack (i.e., e1 is stored closer to the top of the stack than e2 is). Then, e2 is
vertically below e1.

Corollary 1. The stack at any node of T can store at most one edge of U(S),
and if it stores such an edge, then the edge must be at the top of the stack.

Lemma 5 provides a foundation that guarantees the convex hull queries on
CH(S) can be answered in O(log |U |) time each. It resembles Lemma 4.1 in [15],
but its proof relies on Lemma 4 to handle the non-hull edges in stacks.

Lemma 5. We can walk in O(log |U |) time from the root to any leaf in T , at
each node knowing which edge of U(S) spans the current node, or if none, to
which side U(S) lies.

With the algorithm in Lemma 5 as a “template”, the convex hulls queries in
Theorem 1(3) can all be answered in O(log |U |) time each. For example, consider
the following query: Given a vertical line l, find the edge of U(S) that intersects
l. If l is strictly to the left of the leftmost point of S or strictly to the right of the
rightmost point of S, then the answer to the query is ∅. Otherwise, the query
algorithm starts from the root of T . For each node v, we apply the algorithm
in Lemma 5 to determine the edge e of U(S) that spans v (if there is no such a
spanning edge, then the algorithm in Lemma 5 can determine to which side of v
U(S) lies, and we proceed on the child of v on that side). If e intersects l, then
we report e. Otherwise, if l is to the left (resp., right) of e, then we proceed on
the left (resp., right) child of v. The time of the query algorithm is O(log |U |).
Other queries can be handled similarly (see [15] for some details).

We can still output U(S) in O(|U(S)|) time as before. Hence, the performance
of the first operation in Theorem 1 can be achieved. For the second operation in
Theorem 1, we consider the upper hull first. Let l1 and l2 be the two query lines.
Without loss of generality, we assume that both lines intersect U(S) and l1 is
to the left of l2. Using T , we first find in O(log |U |) time the edge pipj of U(S)
that intersects l1. Without loss of generality, we assume that pj is to the right
of pi. Then, following the right neighbor pointer r(pj) of pj , we can output the
vertices of U(S) to the left of l2 in O(1) time per vertex in a way similar to that
for outputting vertices of U(S). The lower hull can be treated likewise. Hence,
the second operation of Theorem 1 can be performed in O(k + log |U |) time.

5.3 A Further Improvement

We further improve our data structure to remove the assumption that |U | is
known initially and reduce the query time from O(log |U |) to O(log |S|). The idea
is to still use an interval tree T , but instead of building it initially, we periodically
rebuild it during processing updates so that the number of leaves of T is always
no more than 4|S|, and thus the height of T is O(log |S|), which guarantees the
O(log |S|) query time. As will be seen later, our algorithm maintains an invariant
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that whenever T is rebuilt, the number of its leaves is equal to 2|S|, where S is
the set when T is being rebuilt.

Initially when S = {p1, p2}, we build T with 4 leaves corresponding to indices
{1, 2, 3, 4}. Let T.max denote the index of the rightmost leaf of T . Initially
T.max = 4. Let |T | denote the number of leaves of T . During processing the
updates, we keep track of the size of |S| using a variable σ.

For each deletion, we decrease σ by one. If σ = |T |/4, we claim that at least σ
deletions have happened since the current tree T was built. Indeed, let m be the
size of S when T was just built. According to the algorithm invariant, |T | = 2m.
Now that σ = |T |/4, at least m − σ = |T |/4 points have been deleted from S
since T was built. The claim thus follows; let P denote the set of points in those
deletions specified in the claim. We rebuild a tree T of 2 ·σ leaves corresponding
to the indices i, i + 1, . . . , i + 2 · σ − 1, where i is the index of the leftmost point
of S, and set T.max = i + 2 · σ − 1. Note that rebuilding T also includes adding
the edges in the data structure for S to the stacks of the nodes of the new T ,
which can be done by running the left-hull construction procedure on S1 and
running the right-hull updating procedure on S2. The total time for building the
new tree is O(σ). We charge the O(σ) time to the deletions of P , whose size is
at least σ by the above claim. In this way, each deletion is charged at most once,
and thus the amortized cost for rebuilding T during all deletions is O(1).

Consider an insertion of a point pj (i.e., this is the j-th insertion). We first
increment σ by one. If j = T.max, then we rebuild a new tree T with 2 ·σ leaves
corresponding to the indices i, i + 1, . . . , i + 2 · σ − 1, where i is the index of the
leftmost point of S, and set T.max = i+2 ·σ −1. The time for building the new
tree is O(σ). We charge the time to the insertions of the points of the second half
of S (i.e., the rightmost σ/2 points of S; note that σ = |S|). Lemma 6 implies
that each insertion will be charged at most once in the entire algorithm and thus
the amortized cost for rebuilding T during all insertions is O(1).

Lemma 6. No point in the second half of S was charged before.
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