(7))
L
| .
o3
—
((v]
c
:fU
SE
Qo
L C
Fo

Inside and out: Surface thermodynamics
from positive to negative curvature

Cite as: J. Chem. Phys. 157, 054702 (2022); https://doi.org/10.1063/5.0099295

Submitted: 16 May 2022 - Accepted: 06 July 2022 - Accepted Manuscript Online: 08 July 2022 -
Published Online: 03 August 2022

Seth C. Martin, Hendrik Hansen-Goos, Roland Roth, et al.

COLLECTIONS

Paper published as part of the special topic on Fluids Meet Solids

()

View Online Export Citation CrossMark

RN
N

ARTICLES YOU MAY BE INTERESTED IN

Equation of state for confined fluids
The Journal of Chemical Physics 156, 244504 (2022); https://doi.org/10.1063/5.0096875

Computational materials discovery
The Journal of Chemical Physics 156, 210401 (2022); https://doi.org/10.1063/5.0096008

Liquid-liquid criticality in the WAIL water model
The Journal of Chemical Physics 157, 024502 (2022); https://doi.org/10.1063/5.0099520

Lock-in Amplifiers
up to 600 MHz -

N\ A/ Zurich > [V
N\ Inst RRl Vatch Bgull & ¢ & ¢ seeerr.
J. Chem. Phys. 157, 054702 (2022); https://doi.org/10.1063/5.0099295 157, 054702

© 2022 Author(s).


https://images.scitation.org/redirect.spark?MID=176720&plid=1857434&setID=378408&channelID=0&CID=683627&banID=520741325&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=56129c2c6549691b74cdb6aedd7be016bc03f88d&location=
https://doi.org/10.1063/5.0099295
https://doi.org/10.1063/5.0099295
https://aip.scitation.org/author/Martin%2C+Seth+C
https://aip.scitation.org/author/Hansen-Goos%2C+Hendrik
https://orcid.org/0000-0001-6271-7646
https://aip.scitation.org/author/Roth%2C+Roland
/topic/special-collections/fms2022?SeriesKey=jcp
https://doi.org/10.1063/5.0099295
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0099295
http://crossmark.crossref.org/dialog/?doi=10.1063%2F5.0099295&domain=aip.scitation.org&date_stamp=2022-08-03
https://aip.scitation.org/doi/10.1063/5.0096875
https://doi.org/10.1063/5.0096875
https://aip.scitation.org/doi/10.1063/5.0096008
https://doi.org/10.1063/5.0096008
https://aip.scitation.org/doi/10.1063/5.0099520
https://doi.org/10.1063/5.0099520

The Journal

of Chemical Physics ARTICLE

scitation.org/journalljcp

Inside and out: Surface thermodynamics
from positive to negative curvature

Cite as: J. Chem. Phys. 157, 054702 (2022); doi: 10.1063/5.0099295
Submitted: 16 May 2022 - Accepted: 6 July 2022 -
Published Online: 3 August 2022

@ o @

Seth C. Martin,’ Hendrik Hansen-Goos,” Roland Roth,” and Brian B. Laird*?

AFFILIATIONS

I Department of Chemistry, University of St. Mary, Leavenworth, Kansas 66048, USA
?|nstitute for Theoretical Physics, University of Tbingen, 72076 Tubingen, Germany
*Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, USA

Note: This paper is part of the JCP Special Topic on Fluids Meets Solids.
2 Author to whom correspondence should be addressed: blaird@ku.edu

ABSTRACT

To explore the curvature dependence of solid-fluid interfacial thermodynamics, we calculate, using Grand Canonical Monte Carlo simulation,
the surface free energy for a 2d hard-disk fluid confined in a circular hard container of radius R as a function of the bulk packing fraction %
and wall curvature C = —1/R. (The curvature is negative because the surface is concave.) Combining this with our previous data [Martin et al.,
J. Phys. Chem. B 124, 7938-7947 (2020)] for the positive curvature case (a hard-disk fluid at a circular wall, C = +1/R), we obtain a complete
picture of surface thermodynamics in this system over the full range of positive and negative wall curvatures. Our results show that y is linear
in C with a slope that is the same for both positive and negative wall curvatures, with deviations seen only at high negative curvatures (strong
confinement) and high density. This observation indicates that the surface thermodynamics of this system is consistent with the predictions
of so-called morphometric thermodynamics at both positive and negative curvatures. In addition, we show that classical density functional
theory and a generalized scaled particle theory can be constructed that give excellent agreement with the simulation data over most of the
range of curvatures and densities. For extremely high curvatures, where only one or two disks can occupy the container at maximum packing,
it is possible to calculate y exactly. In this limit, the simulations and density functional theory calculations are in remarkable agreement with
the exact results.
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I. INTRODUCTION

On first glance, a nanoparticle solvated by a fluid and the
same fluid confined in a nanopore would seem to be very dif-
ferent physical systems; however, they both can be described as
a fluid at a curved surface—a convex surface in the case of
the nanoparticle and concave one for the nanopore. This raises
the question as to whether these two situations can be under-
stood within a unified thermodynamic description. The central
quantity governing the thermodynamics of surfaces is the surface
(or interfacial) free energy, y, which plays a significant role in y= D L yo(1-28/R+---), (1)
a number of phenomena of scientific and technological import, 1+26/R
including wetting, dendritic growth and morphology, nucleation,

Gibbs;* however, besides recognition of the fact that the local cur-
vature of the interface plays a role in determining the work required
to deform the interface, Gibbs restricted further study to planar
interfaces.

In the years since Gibbs, significant effort has been focused on
the development of quantitative descriptions of the curvature depen-
dence of y. Perhaps the best known of these comes from the work of
Tolman® for a fluid at a spherical surface of radius R, in which

and nanoparticle stability.' ~ Although most experimental and
computational studies of solid-liquid interfaces focus on planar
interfaces, the role of curvature (or shape) on interface thermo-
dynamics has long been of interest since the pioneering work of

where y, is the surface free energy of a planar interface and § is the
so-called Tolman length. A number of approaches have been since
put forward to generalize the ideas of Tolman to more complex sur-
faces. For a 3d surface, Helfrich postulated that y can be expanded in
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a power series in the average mean (H) and average Gaussian (K)
curvatures of the surface,’

yiH'K, 2)
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where the sum is usually truncated at low order. For a spherical wall
of radius R, where H = 1/Rand K = 1/ R?, this would give

¥ =00 + y10/R+ (yor +y20) /R + -+ . 3)

For a 2d surface, the Helfrich expression would be a Taylor series
expansion for y in powers of the average curvature of the surface C,
which for a circular wall (disk) would be equal to 1/R.

A more recent development is the so-called Morphometric
Thermodynamics (MT),”” based on a theorem from integral geom-
etry due to Hadwiger'’ that states that a valuation defined on a
convex set S in d dimensions can be completely described as a linear
combination of d + 1 geometric measures (volume, surface area and
d — 1 measures of curvature) as long as the valuation is continuous,
motion invariant, and additive. In MT, the valuation is the solvation
free energy, Q, of a nanoparticle with a surface (represented by a
convex set S) embedded in a fluid medium.®

For a 3d system, the MT solvation free energy of the nanoparti-
cle is then given by

Q(MT) =pV + pA + y1H + 2K, 4)

where V, A, H, and K are the surface volume, area, integrated mean
curvature, and integrated Gaussian curvature, respectively. Defining
the surface free energy yasy = (QQ — pV)/A gives

ySd(MT) =yo + 1 H + pK, (5)

where H;s and K are the average mean and Gaussian curvatures of
S, respectively. For a spherical wall particle of radius R (C = 1/R),
the MT expression is

Ysph = Yo + y1/R+ 2 /R (6)

Here, y, is equal to —24, where § is the Tolman coefficient. For the 2d
}}ard—disk fluid at a circular wall system, there is only one curvature,
C, giving

Y (MT) = yo +y1C = yo + y1 /R )

For a 3d fluid of hard spheres of diameter o at a spherical hard
wall, molecular-dynamics (MD) simulations' "2 have shown that
the MT description [Eq. (6)] works extremely well at low to inter-
mediate packing fractions with deviations (beyond quadratic in 1/R)
outside of the statistical error appearing only at high packing frac-
tions (1 = 70°p/6 > 0.42) approaching the melting density. These
simulation results are in agreement with previous calculations using
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classical Density Functional Theory (¢cDFT)"” on the same system,'*
which showed no deviations from MT below # = 0.42, with no solu-
tions to the cDFT equations above this value. Similar agreement was
seen in ¢cDFT calculations for the hard-sphere fluid at a variety of
polyhedral walls.” For the same fluid at a cylindrical hard wall (3d),
deviations from MT at low packing fractions were observed in the
simulations, but they required very high-precision calculations to
resolve.'” In the case of a 2d fluid of hard disks with diameter o
at a circular hard wall of radius R, previous Monte Carlo simula-
tions by the authors showed that the MT expression [Eq. (7)] with

C = 1/R is also very accurate over a wide range of fluid packing frac-
tions and wall curvatures.'” (Note that, in what follows, we assume,
without loss of generality, that all lengths are measured in units of
o and all energies are in units of kzT, where kg is the Boltzmann
constant.)

A central question is whether the MT formalism can be
extended to fluids confined inside a container with curved
boundary—for example, within a spherical (3d) or circular (2d) con-
tainer. Relative to the solvated particle case, where the fluid is outside
the curved boundary, this corresponds to a wall curvature that is
negative. (Note that, Hadwiger’s theorem does not apply for such
concave systems, as it is limited to compact convex sets.) For exam-
ple, a hard-disk fluid (2d) contained within a circle of radius R,
the average curvature C = —1/R. In the limit that R — oo (zero cur-
vature), both the solvated particle and the confined system have
the same limit, namely the fluid in contact with a flat wall and
we expect that the surface free energy will be continuous in the
zero curvature limit. Sitta et al.'® have examined this problem using
a hard-rectangle fluid both at a circular wall and in confinement
within a circular container, showing continuity in the slope of y vs
C through the transition (C = 0) between the confined and the open
systems, although only a very limited range of curvatures near zero
was studied.

Here, we extend our earlier work to a hard-disk fluid confined
within a hard circular container of radius R. The MT equations
above will be identical, except the surface free energy is defined
slightly differently as ys = (Qs + pVs)/As. The motivation for exam-
ining this in this 2d system is that the MT expression for y is
simpler (linear in 1/R) and relatively large-size systems can be
simulated with modest computational cost. This system has been
studied in the past to examine the density variation of the fluid
as a function of confining radius,'” but this is, to our knowledge,
the first systematic study of the thermodynamics of hard disks
in circular confinement (negative curvature) over a wide range of
confining radii. Combined with our previous study for the hard-
disk fluid at a circular wall (positive curvature), this study allows
us to examine the effects of curvature on the surface thermody-
namics in a unified way for both bounding wall and confinement
geometries.

Il. METHODS
A. Gibbs-Cahn integration

In our previous work on the hard-sphere and hard-disk fluids
at curved convex walls, we calculated the surface free energy using
the Gibbs—Cahn integration method, in which we use the adsorption
relation
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IO\_. _V-N/p
(aip)—vex— A > (8)

where p, is the single particle density of the bulk fluid and vey is
the excess volume, defined as the difference (per unit area) between
the volume (V') of a region completely encompassing the interface
and the volume of the bulk fluid containing the same number of
particles (N) as the interfacial region. The value of y at a partic-
ular pressure (or density) is then found by determining vex as a
function of pressure (or density) and integrating Eq. (8). For the
hard-sphere system, this is simplified because one can assume that
y(P=0)=0.

Because of the confinement, the pressure of a hard-disk fluid
encapsulated within a hard circle of radius R will differ from that of
a bulk fluid with the same chemical potential as a consequence of
the Young-Laplace equation and the small system size, where the
curvature dependence of the surface free energy can be significant.'®
Because of this, the Gibbs-Cahn method must be modified. Con-
sider a fluid inside a container in equilibrium with a bulk fluid at
chemical potential y, we can define the surface free energy of the
interface by

yA:Q*Qb:Q‘prV, (9)
where Q and Q; = —p, V are the grand potential of the fluid inside
the container and that of a bulk fluid with the same volume, chemical
potential, and temperature, respectively. Q is related to the internal
energy U of the fluid by the Legendre transform

Q=U-TS-puN, (10)
with differential

dQ = dU - TdS - SdT - udN — Ndu, (11)

The differential for U for this system (including the surface work
term) is given by

dU = TdS — pdV + udN + ydA, (12)
where p is the pressure inside the pore, which is not the same as
the pressure of the bulk fluid at the same ¢ and T. From Eq. (9), we

have

d(yA) = dQ + p,dV + Vdp,,. (13)
Substituting Eqgs. (11) and (12) into Eq. (13) yields
Ady = -8dT - pdV — Ndu + p,dV + Vdp,,. (14)

The differentials in Eq. (14) are not all independent, but they are
related to one another through the Gibbs-Duhem equation for the
bulk fluid,

0= Vbdpb - Nbdy - S;,dT, (15)
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where the subscript b indicates the value of the variable in the
bulk fluid reservoir. The two simultaneous equations [Egs. (14)
and (15)] can be solved using Cramer’s rule by choosing one of the
extensive variables X = N, V, or S, giving

dy = -[$/X]dT - [N/X]du + [V/X]dp, - [Ap/1]dV,  (16)

where Ap = p — p, and [Z/X] is defined as

1
Z|X]=2ex = ———, 17
[2/X] = zex = X, (17)
with z.x defined as the interfacial excess of quantity Z. The choice
of X (S, N, or V) eliminates the differential of the intensive variable
conjugate to X. In this work, we choose X = N, eliminating the du
term. We also keep T and V constant, yielding

(2) o -2 Y] s
8pb VT A Nh A Pb

where p, = N /V and p, = N;,/V, are the average densities of the
fluid in the pore and bulk reservoir, respectively.

Equation (18) can be integrated over p, to determine the sur-
face free energy as a function of the bulk fluid pressure, or given
an equation of state, the packing fraction #, = 7p,/4 of the bulk
fluid,

Po b , 0 ,
= [ o= [t 2) a9
b/T

Here, the dependence of the bulk pressure on packing fraction can be
determined to sufficient accuracy from the equation of state (EOS)
of Kolafa and Rottner."”

B. Grand canonical Monte Carlo simulations

To determine vey [and, thus, y through Eq. (19)] for the hard-
disk fluid confined within a hard circular wall of radius R, we
perform a series of Grand Canonical Monte Carlo (GCMC) sim-
ulations (constant g, V, and T) using a modified version of the
HOOMD-blue simulation software.”””" The software was modified
to allow the grand canonical integration scheme to be paired with
external potentials. The GCMC simulations require as input the
chemical potential (or fugacity) of the bulk fluid, from which the
bulk packing fraction can be obtained either through simulation of
the bulk fluid or through the application of a high accuracy EOS.
To perform simulations of the confined fluid with the same bulk
packing fraction as our previous work on positive curvature walls,
we apply the Kolafa and Rottner EOS to determine the fugacity by
numerical integration
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where the compression factor Z = 3P/p.

The excess volume for the hard-disk fluid/hard circular wall
system was calculated directly from average density in the pore using
Eq. (18) using GCMC for a range of R from 19/20 = 0.95 to 30 (cor-
responding to curvatures ranging from —20/19 to —1/30) and bulk
packing fractions ranging from 0 to 0.6049. The specific packing
fractions were chosen to coincide with those studied for our earlier
simulations on the hard-disk fluid/hard circular convex wall sys-
tem'” for ease of comparison. (For reference, our highest densities
are below the first-order fluid/hexatic phase transition for the hard-
disk fluid at about 7 = 0.7.”27?") Data for R = o0 (planar wall) are
taken from Ref. 25. The number of GCMC cycles for each simu-
lation was chosen to give similar levels of statistical precision and
ranged from 50 x 10° for the smallest cavities at low density to
1.2 x 10° for the largest cavities at high density. The surface free
energy y as a function of # was then obtained through numerical
integration of Eq. (19) using the Kolafa—Rottner EOS for the pres-
sure. Simpson’s rule was applied for the numerical integration for all
of the even numbered bins in #. For the odd numbered bins (27 + 1),
the trapezoid rule was applied to the final bin. For all y data points,
the estimated numerical integration error was smaller than the
statistical error.

C. Theoretical methods

The simulation results are useful for the validation of theo-
retical approaches to surface thermodynamics. In this work, we
examine two approaches. The first uses a formulation of clas-
sical Density Functional Theory (cDFT)' for 2d hard particles
by Roth, Mecke, and Oettel (RMO).”® Within cDFT, the grand
potential functional Q[p(r)] is a functional of the single particle
density p(r) with two important properties: (i) The equilibrium
density profile p,(r) minimizes the functional; and (ii) at its min-
imum, the functional reduces to the grand potential of system
Q= Q[p,(r)]. By minimizing the functional via the variational
principle

8Q(p]
(1) | ry=po(r)

=0, (21)

one obtains the equilibrium structure and thermodynamics at the
same time. Hence, one can directly calculate the surface free energy
y and the excess volume v.. The shape of the cavity enters the cal-
culation via the external potential and can be arbitrary. This method
makes no assumptions as to the functional form of the curvature
dependence of vex and p, and, therefore, it can predict potential
deviations from the MT form.

Here, we employ a fine 2d Cartesian grid, which allows us
to make use of efficient convolutions with the help of fast Fourier
transforms (FFT)*’ on central processing units (CPUs) and graphics
processing units (GPUs)*® for the computation of weighted densi-
ties. This also makes it possible to treat the circular cavity and the
planar geometry on equal footing. Clearly, the Cartesian coordinates
introduce small numerical artifacts in the case of circular cavities. In

ARTICLE scitation.org/journalljcp

order to minimize artifacts, we employ a square grid of 2048 x 2048
points, and we have verified that the Gibbs adsorption theorem is
satisfied.”® For the circular cavities, considered here, it would be pos-
sible to make use of the polar symmetry of the problem and reduce
the cDFT problem to an effective 1d one, however, at the cost of
losing the possibility to employ standard FFT methods for convolu-
tions. In the effective 1d case, one ends up with a Hankel transform,
which can be evaluated using FFT methods when a logarithmic grid
is employed.””"

The generalized scaled particle theory (gSPT) method used
here is similar to that used in our previous paper on the hard-disk
fluid at a planar wall,”> modified to apply to a curved confining
wall. While strictly speaking, this approach applies directly to a
hard-disk fluid outside a hard circular wall (R > 0), we will be
comparing it to both the positive and negative R cases. As in the
previous paper, the theory begins with the original scaled parti-
cle theory (SPT) expression for the excess free energy density @,
which reads

Ogpr = = 1n(1—f)+i (22)
SPT 0 )+ -5

where &, = no”p/4 = 1, &, = mop, and £, = p. Here, the scaled particle
variable £, is equivalent to the packing fraction . This free energy is
then generalized as follows:

2

&
® =4 In(1-&)f (&) + mg(&), (23)

where f and g are functions of the dimensionless variable &,.
The functions f and g can be specified by requiring agreement
with a imposed equation of state via the compressibility factor

ORLS @
p
which amounts to requiring that

&Z(n) =6 -0+ 8252 + 67(1351 + 8250.

P AT (25)

This can be then combined with the usual scaled particle relation

6201 = 00

5 (26)

One can readily solve Egs. (25) and (26) for the functions f and
g, leading to

—f(Ez)ln(l—fz):Agz%med” (27)
and
Eig—i(?z) = (1-&)Z(&%). (28)
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To extend this to curved confining walls, we use a binary mix-
ture approach; the excess chemical potential of a single hard disk of
radius R added to the system can be obtained as

_ o0
Uex = 652

15J0) 1610)
R+~ 2nR+ ——, 29
i +afl T +a£0 (29)

from which the interfacial free energy for the interface with
curvature 1/R is obtained as

00 90 1

e 30
Y 651 - 850 27R ( )

Using the functions f and g, this results in
yo = 2n8(n) _ n(L=mf(n) (31)

Ca(l-7) 27R

Compressibility factors for the hard-disk fluid include the result
from scaled particle theory

1

ZspT = 75> (32)
(1-n)?
which corresponds to f(7) = g(n) = 1 and, hence,
2 In(1 -
YSPTO = = ? i (ZnRﬂ)' (33)
The more accurate Solana EOS®' reads
1 1,12 _ L”‘*
Zsol = > 10 (34)
(1-1n)?
and leads to
ol 14 sl
75010: }1+ 4}1 51’] + yl (’7)) (35)

n(1-n) R

with

4114 +2113 + 172 -7 47

Sol _ _E= _

At very large densities, the SMC2 EOS”' with Zsmca = Zsol

50 0007 . . .
- (1—'1})73 is even more accurate. The resulting functions f and g,

and hence y, can be calculated analytically, but the expressions are
lengthy.

I1l. RESULTS AND DISCUSSION

The results for the excess volume v, and the surface free energy
y for the confined system as functions of 7 are plotted in Fig. 1 over
the full range of R. To better show the dependence on curvature, we
combine the data from the current calculations with those from our
previous work for the fluid outside a circular wall'® to show in Fig. 2
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FIG. 1. The excess volume (Top Panel) and surface free energy (Bottom Panel)
from GCMC simulation for the hard-disk fluid confined in a hard circular container
as functions of packing fraction # for a range of container radii R. Error bars denote
the 95% confidence interval.

the excess surface volume vex a function of the curvature G over the
full range of positive and negative curvatures for selected packing
fractions. (Data for all packing fractions and wall curvatures stud-
ied can be found in the supplementary material—for clarity, not all
packing fractions studied are included in the plots.) Morphometric
thermodynamics predicts that vey is linear in the curvature. This is
seenin F'ig. 2 to hold except for high negative curvature at the highest
packing fractions.

At this point, it is useful to note that, in this work, we define
R to represent the actual radius of the circular wall. An alternative
definition that is frequently seen uses a radius R, defined by the
point of closest contact of the hard particle to the circular wall.*”
For the 2d system here, this gives R’ = R + 1/2, with the “~” sign for
the confined system and the “+” for solvated disk. The data from this
work can be converted to the alternate reference using the definition
of vex. If we denote the excess volume in the alternate reference as
Uiy, we have

;2 1 C
Vex = 2+C('Uex 5 8)- (37)

Because the grand potential Q is a well-defined property of the
system, independent of the definition of the radius, we obtain

Yo =0 = Po/2s (38)

Y1 =91 90/2+ps/8, (39)

where the symbol “/” denotes surface thermodynamic quantities
measured using the R’ radius definition. The first non-Hadwiger
coefficient Yy however, is invariant to the choice of radius
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FIG. 2. The excess volume, vex, as a function of curvature, C, for selected
packing fractions. Filled symbols represent results from the current simulations
and open symbols show results from our previous Monte Carlo simulations from
Ref. 15 and 25 . Solid lines represent the predictions from classical DFT.

definition. We have chosen the radius convention used here and
in our earlier work because it gives a value for y, that is positive
and is easier to extend to hard-disk fluid mixtures of different-sized
disks.

To see the deviations from MT at high # more clearly, Fig. 3
shows the excess volume vs curvature for the highest packing frac-
tions studied. At the very highest values of #, the slope of the vex vs
C curve changes sign for negative curvatures and vex exhibits a min-
imum at C = 0. These significant deviations from the MT ansatz at
high # are due to the presence of packing constraints in the confined
systems that lead to a density maximum far smaller than close pack-
ing in the bulk hard-disk fluid. In other words, at high densities the
ratio p, /p, in Eq. (18) changes from an increasing function of 77 to a
decreasing function of # due to a plateau in % , 8 maximum packing
in the pore is approached.

Figures 2 and 3 also show the predictions from c¢DFT in
comparison to the simulation data. The agreement at low to interme-
diate packing fractions is excellent. At the higher packing fractions
(Fig. 3), the Density Functional Theory (DFT) results for vyex show
some deviation from the simulation results for the positive cur-
vature systems; however, the agreement for negative curvatures is
remarkably good, with DFT successfully reproducing the nonlinear
deviations from the MT predictions.

The results for the surface free energy, y, as a function of cur-
vature for various packing fractions, are shown in Fig. 4, combined
with the data from our previous work for positive curvature.'® For
clarity, the same quantities for the highest packing fractions studied
are shown in Fig. 5. Moreover, the solid lines in Figs. 4 and 5 show
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FIG. 3. The excess volume, vex, as a function of curvature, C, at the four high-
est packing fractions studied. Symbols and solid lines are defined as in Fig. 2.
For reference, the insets show snapshots from concave and convex systems
with R = 3.

the results for y from cDFT, which agree extremely well with the sim-
ulation results, even up to high negative curvature and high packing
fractions. The better agreement between DFT and simulation for y
vs that for vex can be understood by noting that y is obtained by
integration from the excess volume, which decreases the relative dif-
ferences at high 7. The surface free energy follows the MT prediction
at low 7 to intermediate #; however, at the higher packing fractions
studies, there is significant deviation from linearity, especially at high
negative curvature, due to the effects of confinement. For R = -3
(ie. C=—1/3), the pore is six fluid particle diameters across and
can accommodate fewer than 32 particles at maximum packing. The
additivity condition of Hadwiger’s theorem implies that when cor-
relations in the fluid are on the same length scale as the wall, the
geometric foundation of MT no longer holds. However, Fig. 5 shows
that even for a highly confined fluid at a high density, where corre-
lations with the wall extended throughout the cavity, MT has strong
predictive power.

At high packing fractions, the DFT results show an unusual
maximum in between the highest two negative curvatures stud-
ied by the simulation: R = 0.95 and 1.077 35; C ~ 1.0526 and 0.9282,
respectively. These two curvatures correspond to system sizes in
which only one and two hard disks, respectively, can fit within the
circle at maximum packing. For these systems, the grand partition
function can be calculated exactly,” and, therefore, we have exact
results for y for the two largest negative curvatures,

y(1 disk) = ’%R - — In[nfR"? +1], (40)

2nR
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FIG. 4. Results for_ the surface free energy, y, of the hard-disk fluid at circular walls ) : ) .
as a function of C. Entries in the legend denote the approximate bulk packing FIG. 5. Resullts for y as a function of curvature, C, for the four highest packing
fraction #. Symbols and solid lines are defined as in Fig. 2. fractions studied. Symbols and solid lines are defined as in Fig. 2.

y(2 disks) = ‘D?R - ﬁ ln{fz[m/R(R— 1)(R'2 +1/2)

+ 2nR”(R? - 1) arccos(R"™"/2) /2 + mfR? + 1},
(41)

where f = e is the fugacity and R’ = R — 1/2. For these two high-
est negative curvatures, the simulation results agree with the exact
expressions above within the error bars (see the comparison table
included in the supplementary material). In addition, the agree-
ment with the DFT results, while not perfect, is quite good and
shows that the maximum predicted by the DFT is real and not an
artifact (Fig. 6).

To examine the deviations from MT, we have performed a
least-squares fit of the values of y at each packing fraction to a
quadratic in C = 1/R separately for positive (convex) and negative
(concave) curvatures. For C > 0, we use the entire range of curvatures
in the fit; however, because of the strong deviations at high curvature
for the concave systems, we use only those curvatures in the interval
[-1/3, 0] (five data points). The results for y, are presented in Fig. 7
along with the predictions from both SPT and gSPT [Egs. (33) and
(36), respectively]. The results for y, for the convex and concave sys-

tems agree within the statistical error of the calculation, so only the 0 PR T TR T  T S S T [N T S S T [N N S W'
data for the convex system are shown. The SPT expression underes- '-61,1 -1.05 -1 -0.95 -0.9
timates the value of y,, espe.cially at high pe}ckin.g fractions; however, Curvature
the agreement for gSPT with the simulations is excellent over the
entire range. The results for the linear and quadratic coefficients—y, FIG. 6. Comparison of simulation results (filled symbols), DFT results (open sym-
and y,, respectively—are shown in Fig. 8. Here, we see that the pre- bols) and the exact expressions [Egs. (40) and (41)] for y for the four highest
dictions of MT, i.e., y, =0 and y,(R<0) = y,(R > 0) hold up to packing fractions for curvatures corresponding to circular pores containing at most
. L2 1Y LN one or two disks.
packing fractions of about 0.45, showing a surprisingly large range of
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validity of MT even for moderate negative curvatures and moderate
packing fractions.

IV. SUMMARY

The work presented here presents the most comprehensive
study of the surface free energy y of curved surfaces through
the zero-total-curvature limit to the knowledge of the authors.
Using Monte Carlo simulation, classical Density Functional Theory
(cDFT), and a generalized scaled particle theory (gSPT), we find that
in the hard-disk fluid at circular hard walls, the predictions of mor-
phometric thermodynamics are highly accurate over a large range of
fluid conditions and wall sizes, extending from highly confined flu-
ids to solvated walls on the same size scale as the fluid particles. This
indicates that even under conditions where the concavity and addi-
tivity requirements of Hadwiger’s theorem are clearly violated, the
MT framework has the potential to provide strong predictive power
in assessing surface free energies. At high densities and high negative
curvatures, both the excess volume (vex) and y exhibit significant
deviations from the predictions of MT due to strong correlations
in these dense highly confined systems. The results for y calculated
using cDFT show excellent agreement with the simulation results
at all curvatures and packing fractions and both the simulation and
cDFT show agreement with the exact values of y for highly confined
systems that can contain at most one or two particles. In addition,
gSPT is successful at accurately predicting y for packing fractions
and curvatures where MT works well.

SUPPLEMENTARY MATERIAL

Included in the supplementary material is a table of the raw
data for the excess volume vex and the surface free energy y from the
GCMC simulations for all pore sizes R and packing fractions stud-
ied. In addition, for the two smallest pores containing a maximum of
one or two disks, respectively, a table is included that directly com-
pares the simulation and ¢cDFT values of the surface free energy y
with the results for y from the exact partition functions.
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