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ABSTRACT
Augmented reality (AR) headsets are being utilized in different
task-based domains (e.g., healthcare, education) for both adults and
children. However, prior work has mainly examined the applicabil-
ity of AR headsets instead of how to design the visual information
being displayed. It is essential to study how visual information
should be presented in AR headsets to maximize task performance
for both adults and children. Therefore, we conducted two studies
(adults vs. children) analyzing distinct design combinations of criti-
cal and secondary textual information during a procedural assembly
task. We found that while the design of information did not affect
adults’ task performance, the location of information had a direct
effect on children’s task performance. Our work contributes new
understanding on how to design textual information in AR headsets
to aid in adults’ and children’s task performance. In addition, we
identify specific differences on how to design textual information
between adults and children.
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1 INTRODUCTION
Augmented reality (AR) systems supplement the real world through
combining virtual objects with the natural environment, therefore
keeping users situated in reality and simultaneously allowing inter-
action with virtual objects [48]. Compared to more traditional AR
platforms (e.g., tablets, smartphones), AR headsets are increasing
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in popularity due to providing more mobility, hands-free capabili-
ties, and user immersion [64, 81]. These qualities are important in
contexts in which another external device (e.g., tablet) could be cum-
bersome. Task completion is a common application for AR headsets,
such as in maintenance [30, 92], healthcare [52, 66], and education
[9, 34, 35, 42]. However, prior research studies have mainly con-
centrated on examining the applicability of using AR headsets in
various environments and not on investigating how to design the
information in the display. For example, Liu et al. [51] explored if
an AR headset could aid anesthesiologists in monitoring patient
information. When using AR, the anesthesiologists spent less time
looking at the anesthesia workstation and more time monitoring
the patient; however, the authors did not examine the design of
information. While prior work has shown that AR headsets can be
beneficial (e.g., fewer errors [10], faster completion time [31]), it
is crucial to study how visual information should be presented to
maximize task performance.

Much like adults, children are increasingly being presented with
AR headsets. Juan et al. [43] developed an AR headset game for chil-
dren (ages 7 to 12) focused on learning about endangered animals.
Woodward et al. [85] created a conceptual model of children’s (ages
7 to 12) understanding of AR headsets and found differences in
expectations compared to adults, such as which interaction modali-
ties to use. Also, prior work has shown differences in interaction
behaviors and expectations between children and adults for other
technological devices (e.g., touchscreens [4, 32, 86–88], voice input
systems [44, 53, 54]). Therefore, it is important to understand how
to design for both adults and children. Children are still developing
cognitive abilities, such as memory and executive control, which
can affect task performance [56, 68, 83, 90]. Children might require
information to be designed differently to aid their developing cog-
nitive abilities.

We conducted two studies, one with adults and one with children
(ages 9 to 12), analyzing different presentation styles and locations
of textual information in an AR headset during a procedural assem-
bly task. Visual information, in the context of awareness, can be
split into two categories: central or critical information (e.g., warn-
ings) and peripheral or secondary information (e.g., nonessential
information) [16]. Critical information is essential to comprehend
when completing a task, while secondary information may be bene-
ficial but not necessary. Current AR headset task-based applications
include both types of information. For instance, in Liu et al.’s [51]
AR headset application, anesthesiologists could see both critical
information (e.g., patient alarms) and secondary information (e.g.,
the current time). Thus, we analyzed combinations of both critical
and secondary information. For the procedural task, we chose food
assembly because it represents a real-world assembly task and is
easily understandable and engaging for both adults and children.
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Food assembly is a popular theme in video games (e.g., Overcooked
[95], Nickelodeon Cooking Contest [97]), and cooking curriculums
are being implemented for children in grades 3-8 (i.e., the grade
level range of children in our study) [18, 39, 58]. During the study,
participants completed different food orders listed in an AR headset
using fake felt food while monitoring additional secondary infor-
mation in the headset.

Overall, we did not find a main effect of the design of informa-
tion on adults’ task performance (e.g., recall of information, error
rate); however, adults had a lower cognitive workload when the
locations of the critical and secondary information were consistent.
For children, we found that the location of critical information
in the AR headset field-of-view had a significant effect on their
information recall accuracy and error rate. For instance, children
had significantly higher information recall accuracy when the crit-
ical information was in the bottom-center of the headset display.
Our work contributes new understanding on how to design textual
information in AR headsets to aid in adults’ and children’s proce-
dural task performance, which has implications in contexts such as
education and healthcare.

2 RELATED WORK
We focus our related work on three categories: (1) designing infor-
mation in AR headsets for aiding task performance, (2) examining
the presentation of textual information in AR headsets, and (3)
using AR headsets with children.

2.1 Design of Information in AR Headsets for
Task Performance

Prior work has started to explore using AR headsets for aiding
in tasks due to its hands-free capabilities, and ability to provide
real-time information over a user’s environment without decreas-
ing a user’s awareness of their surroundings [6]. Several studies
have started to explore the effect of AR headset design factors on
task performance [5, 45, 46]. During a maintenance assembly task,
Ariansyah et al. [5] compared using an AR headset to traditional
paper-based instructions. In the AR headset, the participants could
see textual instructions, and either 3D animation or video instruc-
tions. The authors found the participants had fewer errors when
using the AR headsets. Also, for the AR headset, the authors found
that displaying 3D animation instructions lowered task comple-
tion times compared to videos. The authors did not examine the
design of textual information. Kim et al. [45] investigated different
AR headset interface designs during a warehouse job simulation
(i.e., finding order parts). The designs included text versus graphic-
based designs, as well as always-on versus on-demand information.
The authors found that graphic-based and always-on information
reduced completion times and errors. However, prior work recom-
mends that text should not always be removed [37].

Previous research has found some negative effects of AR head-
sets, such as slower completion times [10, 82] and higher cognitive
workload [19], when compared to traditional methods (e.g., pa-
per instructions). While AR headsets can help task performance
through reducing searching, visualizing, and remembering [40], the
negative effects show that simply applying AR may not result in
task improvement. There is a need to examine different information

designs in AR headsets for improving users’ task performance. In
addition, previous studies have only examined adults, no prior work
to our knowledge has investigated how to design information in
AR headsets for aiding children during tasks.

2.2 Presentation of Textual Information in AR
Headsets

Previous studies have started to examine the presentation of textual
information in AR headsets. Rzayev et al. [72] examined how text
should be displayed for reading in an AR headset while the user
is walking and sitting. The authors compared three text positions
(top-right, center, and bottom-center) and two presentation types,
line-by-line scrolling and Rapid Serial Visual Presentation (RSVP).
RSVP presents text word-by-word in a fixed location. In general,
presenting the text in the top-right increased cognitive workload
and reduced text comprehension; there was no significant differ-
ence between the center and bottom-center locations. RSVP had
higher comprehension during sitting, while line-by-line scrolling
had higher comprehension during walking. Prior work has exam-
ined how text design affects readability in AR headsets and recom-
mended using white text with a blue background [20, 24]. However,
prior work has also recommended transparent backgrounds [2].
Albarelli et al. [2] conducted a study, in which participants stocked
items in a test grocery store while product information was shown
in an AR headset. The participants preferred the information in the
center with no background due to readability and being able to eas-
ily switch between the information and environment. While these
studies have begun to examine textual design in AR headsets, they
do not examine how both critical and secondary textual information
can affect task performance, and do not consider children.

2.3 Using AR Headsets with Children
Althoughmost previous studies have focused on traditional AR plat-
forms with children, such as tablets and smartphones [22, 34, 69],
AR headsets are beginning to increase in popularity. For example,
AR headsets are being used as educational tools for children (e.g.,
games [3, 43], virtual field trips [78]), to help children relax dur-
ing medical procedures [15], and as aids for children with autism
[26, 73]. Juan et al. [43] created an AR headset game focused on
learning about endangered animals. For the game, children (ages 7
to 12) interacted with tangible cubes to discover facts about endan-
gered animals. For using AR headsets to aid in children’s disabilities,
Jones et al. [42] investigated using monocular AR headsets to help
facilitate sign language in learning environments. Prior work has
also started to examine different interaction methods in AR head-
sets with children [61, 62]. Munsinger et al. [62] examined three
selection methods (voice, gesture, controller) during a hidden object
game in an AR headset with children (ages 10 to 13). The authors
found higher input errors with voice compared to gesture, and a
slower time with voice compared to the controller. Previous re-
search has also explored children’s expectations with AR headsets.
Woodward et al. [85] conducted participatory design sessions with
a group of children (ages 7 to 12) on using AR headsets for tasks.
The authors found that children expect highly intelligent systems,
and that children have several different expectations than adults.
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For instance, the children did not consider using interactive gesture
commands, although this is common in existing AR headsets [94].

While these studies start to examine children’s expectations
and interaction behaviors in AR, the current literature identifies no
prior studies that have directly examined how children’s interaction
behaviors differ from adults in AR headsets. In addition, these
prior studies did not examine the design of information, rather just
application and interaction methods. It is important to examine how
to design information in AR headsets for children, and to analyze
how children may require different designs to meet their specific
expectations, conceptual models, and needs.

3 EXPERIMENT 1: ADULTS
For our adult study, we analyzed a combination of different loca-
tions of critical information and presentation styles of secondary
information during a procedural food assembly task. The critical
information (e.g., food order) was shown in one of three locations:
top-center, center, and bottom-center. For the secondary informa-
tion (e.g., time), we displayed the information either locked to the
display (Display) or situated in the environment (Environment).

3.1 Method and Design
Participants had to complete food orders listed in an AR headset
using fake felt food while monitoring additional secondary infor-
mation in the headset (Figure 1). While making the orders, the
participants had a recipe menu on a screen in front of them to see
what food items go in each order. We conducted the study in a room
with consistent lighting, and the study took approximately 45 to 60
minutes. Participants either received extra credit for a course they
were enrolled in or voluntarily participated without compensation.
Our protocol was approved by our Institutional Review Board.

The critical information included the food order in text (e.g.,
“turkey sub”), which was always present in the headset, as well as
an emergency warning that would appear briefly in the headset.
The emergency warning consisted of a red triangle that would
appear under the food order and represented that the food was
on fire. The secondary information included the number of plates
remaining, the time countdown, and a random word (Figure 1B
and 1C). The secondary information ranged in levels of importance
for the task, from necessary, to supplementary, and then irrelevant,
respectively. During the task, the participants hit physical buttons
when they finished completing the current food order, when the
emergency warning symbol appeared, and when the number of
plates ran out. For instance, the participant in Figure 1B is hitting
the physical button because the emergency warning appeared (i.e.,
red triangle).

At the start of the study, participants filled out a demographic
questionnaire, and then completed a practice session for 4 minutes
with the AR headset. The practice session was used for the par-
ticipants to get familiar with the task and the information being
displayed in the headset and was not used in any analysis. After the
practice, participants then began the main part of the study. In total,
there were four different study blocks (5 minutes each). The study
was a between-subjects study, in which each participant only saw
the critical information in one location and the secondary informa-
tion in one display style. Therefore, each participant had consistent

designs for each study block. Also, each participant was instructed
that the focus is not on how many food orders they complete, but
if the food orders are correct. In the second and fourth study block,
the information disappeared in the headset during the task and the
participants were asked to recall the last information presented in
the headset. We did not explain that we would randomly ask for the
information presented in the headset, which allowed us to examine
any differences in perceptibility. After the four study blocks, the
participants completed a weighted NASA TLX [27] to determine
their perceived cognitive workload.

3.1.1 Critical Information Design. The critical information con-
sisted of the food orders and the emergency warning (i.e., red tri-
angle). For food orders, there were 10 possible options: “beef sub”,
“breakfast”, “cheese pizza”, “ham pita”, “ham sandwich”, “pbj sand-
wich”, “meat pizza”, “turkey pita”, “turkey sub”, and “veggie pizza”.
Presentation of the food orders was originally randomized for each
study block and then the same order was used for every partici-
pant. The same food order never occurred twice in a row. Only one
food order would be shown at a time, and would be located at the
top-center, center, or bottom-center of the headset field-of-view.
The text height was 5 mm and white, which is aligned with Meta
AR design recommendations [59]. Also, we used Liberation Sans
font since it is recommended for readability [70]. The participant
was instructed to hit the green button labeled “food” when they
finished a food order, which would move on to the next order.

The emergency warning was a red triangle that would appear
briefly under the food order (Figure 1B) and represented that the
food was on fire. We chose a red triangle because people can more
easily detect color and shapes [29, 38] and triangles are utilized in
ISO 7010, an International Organization for Standardization techni-
cal standard for graphical symbols [93], to represent warnings. The
emergency warning would randomly appear and remain visible
in the headset for a time interval (6-9 seconds) before disappear-
ing. The participant was instructed to hit the red button labeled
“emergency” as soon as they noticed the emergency warning. If the
participant pressed the emergency button it would immediately
disappear. An emergency warning appeared two times in the first
block, four times in the second and third blocks, and then five times
in the fourth block (a total of 15 times). The specific times the warn-
ing appeared in the headset were generated randomly, and then
used for every participant.

3.1.2 Secondary Information Design. The secondary information
included the number of plates, the time countdown, and a random
word. The number of plates started at “5” and decreased by one each
time the participant completed a food order. The participant was
instructed to monitor the number, and to hit the blue button labeled
“plates” when it was “0” to increase it back to “5”. Nothing in the
task was dependent on the number of plates; therefore, when the
number became “0” nothing occurred and would remain at “0” until
the button was hit. The time countdown started at “5:00” minutes
and was presented in minutes and seconds. When it hit “0:00” the
information would disappear, and the study block would end. The
random word would randomly cycle between: “apple”, “banana”,
“lemon”, and “orange”. We used the random word as a proxy for
information that might not be directly related to the main task but
still necessary for maintaining awareness. The current word would
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Figure 1: Mockup of the food assembly task during AR headset study (A). Adult participants’ views during the study. The
secondary information is in the Display style and the critical information (i.e., food order, emergency warning) is in the center
location (B). The secondary information is in the Environment style and the critical information is in the top-center (C).

remain visible in the headset for a random time (20-40 seconds)
before switching to the next word.

The secondary information was either locked to the display
(Display) or situated in the environment (Environment). We placed
the secondary information on the left-hand side of the field-of-view
due to people exhibiting a leftward visual and spatial bias known
as pseudoneglect [11, 80]. Pseudoneglect leads to advantages in the
left visual field, such as faster motion processing, greater detection
accuracy, and higher contrast sensitivity [17, 57, 80], and has been
shown to extend to elements on computer screens [57]. For the
Display presentation style, the textual informationwas locked to the
left-hand side of the field-of-view and superimposed over the users’
environment. The font, height, and color of the textual information
was the same as the food orders. In the Environment presentation
style, the text appeared 500 mm away from the participant with a
height of 10 mm, which is consistent with design recommendations
[59]. The text was superimposed and fixed in the environment to
the left of the participant. If the participant looked down at the
table or turned their head to the right, they would not be able to see
the text since it was in a fixed location in the environment. Figure
1C shows when the participant is looking at the text. The font and
color were consistent with the Display style.

3.2 Equipment
The AR application was created using Unity [96] and run on a Meta
2 AR headset [13]. The headset features a 90-degree field-of-view
with a 2560 x 1440 resolution. We used a rectangular wooden box
(431.8 mm x 177.8 mm x 101.6 mm) as a base for the buttons, and
each button had a 50.8 mm diameter.

3.3 Participants
The participants included 60 adults [M = 23.08 years, SD = 4.49, N
= 59 (one participant did not report their age)]. Twenty-one partic-
ipants were female, and one participant identified as non-binary;
three participants were left-handed. Out of the 60 participants, 11 of
them self-reported having previous experience with an AR headset.
All the participants had normal or corrected-to-normal vision, and
we did not recruit participants who were color-blind or dyslexic.
None of the participants self-reported any negative physical effects
from using the AR headset during the study.

3.4 Data Analysis and Results
To analyze the location of critical information and presentation style
of secondary information, we calculated common task performance
metrics, including information recall, error rate, response time, and
perceived cognitive workload (e.g., [5, 31, 45]). More specifically,
we examined the participants’ accuracy of recalled information,
emergency warning response time and error rate, plates response
time, and perceived cognitive workload; Table 1 shows the results.
For eachmetric, unless noted, there was not a significant interaction
effect between secondary information presentation style and critical
information location, a Levene’s test found that the data met the
assumption of equal variances, and a Shapiro-Wilks test showed
that the data was normal. We used R [98] to calculate the statistics
and the conditions were balanced.

3.4.1 Information Recall. During the second and fourth study
block, the information in the AR headset disappeared during the
task and the participants were asked to recall the last presented
textual information (i.e., food order, number of plates, countdown
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Table 1: Results for adults’ task performance metrics (M [SD]) separated by secondary information presentation style and
critical information location. Significant main effect (*) and interaction effect (†).

Metrics Secondary Information Presentation
Style

Critical Information Location

Display Environment Top-Center Center Bottom-Center
First Response
Recall Accuracy

31.7% [17.3%] 43.3% [26.2%] 32.5% [18.3%] 45.0% [25.1%] 35.0% [23.5%]

Habituated
Response Recall Accuracy

35.8% [19.3%] 42.5% [19.9%] 37.5% [22.2%] 42.5% [20.0%] 37.5% [17.2%]

Emergency
Response Time

2.8s [0.8] 2.4s [0.5] 2.7s [0.6] 2.7s [1.0] 2.4s [0.5]

Emergency
Error Rate

18.2% [16.6%] 14.2% [14.4%] 19.0% [13.7%] 17.0% [18.4%] 12.7% [14.2%]

Plates Response Time 6.6s [5.0] 5.0s [3.9] 6.0s [4.3] 5.9s [3.9] 5.4s [5.6]
Perceived
Cognitive Workload †

46.0 [12.8] 44.8 [13.3] 47.0 [13.8] 44.3 [12.0] 44.9 [13.6]

time, random word). We did not inform the participants that we
would ask them to recall the information before the start of the
study. Therefore, we split analysis into two sections: first response
recall (second study block) and habituated response recall (fourth
study block). First response recall captures the raw perceptibility of
the presentation styles, while habituated response recall coincides
with real-world settings in which the users are aware of the task.
We calculated the proportion of correct answers for each partici-
pant. A participant’s answer was correct if it exactly matched the
last information presented in the headset. A Shapiro-Wilks test
showed that the data was severely skewed for first response recall
(W = 0.87, p < 0.0001) and habituated response recall (W = 0.85, p <
0.0001).

When examining first response recall, a Levene’s test found that
the data for secondary information presentation style did not have
equal variances (p < 0.05). Therefore, we conducted a Kruskal-Wallis
test for secondary information presentation style and found no sig-
nificant effect on recall accuracy (H (1) = 0.17, n.s.). We applied an
Aligned Rank Transform [84] for the data on critical information
location. A one-way ANOVA found no significant effect of critical
information location on recall accuracy (F2,57 = 1.40, n.s.). When
the participants were unaware of having to recall the information
in the headset, there was no significant difference in recall accuracy
between the secondary information presentation styles, as well as
the critical information locations. For habituated response recall, a
two-way ANOVA found no significant effect of secondary infor-
mation presentation style (F1,54 = 2.66, n.s.) or critical information
location (F2,54 = 0.32, n.s.) on recall accuracy. Even when partici-
pants were aware that they would have to recall the information,
there was no significant difference in recall accuracy between the
presentation styles and locations (Table 1).

3.4.2 Emergency Warning Metrics. A Shapiro-Wilks test showed
that the emergency warning data for response time (W = 0.84, p <
0.0001) and error rate (W = 0.88, p < 0.0001) were severely skewed;
therefore, we applied the Aligned Rank Transform to both [84]. We
determined response time by calculating the time it took a partici-
pant to press the red button after the red triangle appeared in the

AR headset. When calculating response time, we did not include
any misses (i.e., not recognizing the triangle before it disappeared).
A two-way ANOVA found no significant effect of secondary infor-
mation presentation style (F1,54 = 3.85, n.s.) or critical information
location (F2,54 = 0.59, n.s.) on participants’ response time.

For emergency warning error rate, we calculated a participant’s
proportion of misses (i.e., when the participant did not notice the
triangle before it disappeared). Similar to response time, a two-
way ANOVA found no significant effect of secondary information
presentation style (F1,54 = 0.47, n.s.) or critical information location
(F2,54 = 1.02, n.s.) on participants’ emergency error rate. In general,
the presentation style of secondary information and location of
critical information did not significantly affect the response time
or error rate for the emergency warning.

3.4.3 Plates Response Time. During the study, the participants
monitored the number of plates and hit the blue button when the
number of plates was “0” to increase it back to “5”. We analyzed
the participants’ response time by calculating the time it took a
participant to press the button after the number turned “0”. We
did not include the times when the participant failed to notice that
the number of plates ran out and did not hit the button before
the end of the study block. Although participants were instructed
to wait until the number of plates equaled “0” before hitting the
button, one participant repeatedly hit the button when the number
of plates was “1” or “2”. Therefore, we had a total of 59 participants
for analysis. A Shapiro-Wilks test showed that the data for response
time was not normal (W = 0.87, p < 0.001); therefore, we applied
the Aligned Rank Transform [84]. A two-way ANOVA found no
significant effect of secondary information presentation style (F1,53
= 1.57, n.s.) or critical information location (F2,53 = 0.04, n.s.) on
participants’ response time (Table 1).

3.4.4 Perceived Cognitive Workload. Using the NASA TLX [27]
scores, we analyzed the participants’ cognitive workload. A two-
way ANOVA found no significant effect of secondary information
presentation style (F1,54 = 0.13, n.s.) or critical information location
(F2,54 = 0.26, n.s.) on cognitive workload. There was no significant
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Figure 2: Adult participants’ perceived cognitive workload
by secondary information presentation style and critical in-
formation location. Error bars represent 95% confidence in-
terval.

difference in cognitive workload between the two presentation
styles, and the three critical information locations. However, there
was a significant interaction effect between secondary information
presentation style and critical information location (F2,54 = 3.38,
p < 0.05), with a large effect (𝜂2 = 0.11) [65]. Figure 2 illustrates
the cognitive workload values by combinations of presentation
style and location, in which there is an inverse relationship. When
the secondary information was locked to the display, participants’
cognitive workload was lower when the critical information was
in the center but higher when it was in the top-center or bottom-
center. Also, when the secondary information was situated in the
environment, participants had a lower cognitive workload when
the critical information was in the top-center or bottom-center but
higher when it was in the center. Although there was no direct
significant effect of secondary information presentation style or
critical information location on participants’ cognitive workload,
there was a significant interaction between the two design factors
(Table 1).

3.5 Discussion
In general, we did not find any significant differences in task per-
formance between the two presentation styles of secondary infor-
mation (Display vs. Environment) or the locations of critical infor-
mation in the AR headset field-of-view. Therefore, in the context
of displaying visual information in AR headsets for aiding adults’
procedural task performance, secondary information can be either
locked to the display or situated in the environment, and critical in-
formation can be located at the top-center, center, or bottom-center
of the field-of-view.

Our finding on the secondary information presentation styles is
consistent with prior work [89], in which there was no significant
difference in users’ information recall between having information
locked to an AR headset display or situated in the environment
during a simple math task. The results from our study show that the
findings translate from a math task to a real-world task of assembly.
Designers can utilize either the Display or Environment styles for
secondary information in terms of aiding users’ task performance.

For critical information, we did not find any significant differ-
ence in participants’ task performance between the top-center,
center, and bottom-center locations. Our findings are consistent
with prior studies that found that center area locations result in
faster response times, higher text comprehension, and lower cogni-
tive workload. Rzayev et al. [72] found higher text comprehension
and lower cognitive workload for textual information in the cen-
ter and bottom-center locations of an AR headset, compared to
the top-right. Prior work in virtual reality also found that virtual
content placed at eye-level or below (i.e., center, below-center) can
result in faster context switching times, compared to top-left and
bottom-right locations [36]. In examining center locations, Rzayev
et al. [71] found that notifications placed in the direct center of the
AR headset field-of-view were perceived as urgent and intrusive.
Therefore, we recommend that designers place critical information
in the center area of the AR headset display (top, middle, or bottom)
for improving procedural task performance, and utilize the middle
center location for urgent messages.

Overall, the critical and secondary information designs did not
affect adults’ task performance; however, we did find a significant
interaction effect between the two design factors for perceived cog-
nitive workload. When the secondary information was displayed in
the Environment style, which was in the periphery, the participants
had a lower cognitive workload when the critical information was
also in the periphery (i.e., top-center and bottom-center). Also, in
vice-versa, when the secondary information was locked to the dis-
play and more centralized, the participants had a lower cognitive
workload when the critical information was also more centralized
in the center location. Prior work recommends listing and organiz-
ing related elements together on a computer interface [12, 14]. In
visual short-term memory, spatial configuration forms the basis of
relational encoding; people immediately perceive information in
relation to other information [41]. In addition, presenting objects at
different positions helps people’s working memory to distinguish
between the objects more clearly [67]. For our study, when exam-
ining the conditions that had a lower cognitive workload, the infor-
mation was consistently located to aid with spatial configuration
and still in distinct locations to help people distinguish between
the information. Therefore, we recommend that designers keep
the secondary information display style and critical information
location consistent, either in the periphery or centralized.

4 EXPERIMENT 2: CHILDREN
Since children’s interaction behaviors can differ from adults, we
replicated our previous study with children (ages 9 to 12). Although
the children completed the same task, we made several design
changes to how the information was presented based on children’s
conceptual models of AR headsets [85]. The critical information
locationwas kept the same, but the secondary information remained
locked to the display on the left- or right-hand side of the field-
of-view. We describe the design changes and how they connect to
children’s conceptual models of AR headsets below.

4.1 Method and Design
Same as the adult study, the children had to complete food orders
listed in the AR headset using fake felt food while monitoring
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Figure 3: A child’s view during the AR headset task study. The secondary information is located on the right-hand side of the
headset field-of-view, and the critical information is in the center location (left). Another child’s view during the AR headset
task study, with the critical information in the bottom-center location (right).

secondary information in the headset. The children saw the same
recipe menu and type of critical and secondary information as the
adults. The food orders (e.g., “ham pita”) are in the recommended
Lexile Framework for Reading [60] range for children in the third
grade [74] (i.e., the youngest grade level of the children in our
study). We conducted the study in a room with consistent lighting,
and the study took approximately 45 to 60 minutes. The children
earned a small prize for participating (e.g., stickers), as well as $20
cash. Our protocol was approved by our Institutional Review Board,
and we collected both parental consent and child assent.

At the start of the study, the researcher asked the children de-
mographic questions (e.g., age, grade level), and then the children
completed a practice session for 3 minutes with the AR headset to
get familiar with the task; the practice was not used for analysis.
After the practice, the children began the main part of the study. In
total, there were four different study blocks, and each study block
was 4 minutes instead of 5 minutes. The task was shortened to keep
the children engaged and to prevent the children from becoming
tired from wearing the headset. Like the adult study, the study
was a between-subjects study, in which each child only saw the
critical information in one location and the secondary information
on one side of the field-of-view. In the second and fourth study
block, the information disappeared in the headset during the task
and the researcher asked the children to recall the last information
presented in the headset. We did not explain that we would ran-
domly ask for the information presented in the headset. After the
four study blocks, the children completed an adapted NASA TLX
to determine their perceived cognitive workload. Prior work has
adapted the NASA TLX to children (ages 6 to 11), which includes
child-appropriate wording and a simplified task [49, 50].

4.1.1 Applying Children’s Conceptual Model. We made several de-
sign changes based on children’s conceptual model of AR headsets
[85] to match the children’s expectations, increase usability, and
improve task performance. Prior work has found that in children’s
conceptual model, information (e.g., mini-maps, text) is always
present and locked to the AR headset display [85]; therefore, we
kept the secondary information in the Display presentation style to
meet their expectations. Although the secondary information was
always locked to the display, we either placed it on the left- or right-
hand side of the headset field-of-view (Figure 3). Children expect

elements to be on the right-hand side of the headset field-of-view
[85]. In our previous study with adults, we placed the information
on the left-hand side due to people exhibiting a leftward visual
bias, known as pseudoneglect [11, 80]. While pseudoneglect is an
established bias with adults, there are mixed results with children
[23, 28, 76]. Hausmann et al. [28] found that during a line bisection
task on paper, children (ages 10 to 12) showed a leftward bias when
using their left hand and a rightward bias when using their right
hand, compared to only a leftward bias for adults. Sireteanu et al.
[76] examined visual bias during a line length judgement task on a
computer screen with adults, dyslexic children, and non-dyslexic
children (ages 8 to 12). The authors found that dyslexic children
had a rightward bias and non-dyslexic children showed a leftward
bias, but not to the extent as adults. These studies show mixed
results regarding visual bias with children. Therefore, we wanted
to examine both the left- and right-hand side of the headset display
for secondary information with children, especially since children
expect elements to be on the right side [85]. We kept the critical
information the same as in the adult study (i.e., top-center, center,
bottom-center).

4.2 Equipment
The AR application was created using Unity [96] and run on the
same Meta 2 AR headset as the adult study. However, due to chil-
dren’s smaller head circumference, we added a foam piece to the
back of the headset. The foam piece was 25.4 mm thick to allow for
a minimum head circumference of 482.6 mm on the tightest setting;
nine-year-old children have an average head circumference of 520
mm [63]. The rectangular wooden button box was the same as in
the adult study.

4.3 Participants
The participants included 24 children [M = 10.54 years, SD = 0.93],
16 males and 8 females. Two of the children were left-handed. The
children’s grade levels ranged from 3rd to 7th, with a majority being
in 4th (n = 10) and 5th grade (n = 7). We did not recruit children
who were color-blind or dyslexic due to the visual information
in the headset, and all the children had normal or corrected-to-
normal vision. Out of the 24 children, 19 had experience with VR
headsets, but only 1 had experience with AR headsets. None of the
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Table 2: Results for children’s task performance metrics (M [SD]) by secondary information and critical information locations.
Emergency error rate values were calculated after one outlier was removed. Significant main effect (*) and interaction effect (†).

Metrics Secondary Information Location Critical Information Location
Left-Side Right-Side Top-Center Center Bottom-Center

First Response
Recall Accuracy

35.4% [22.5%] 45.8% [25.7%] 40.6% [32.6%] 37.5% [18.9%] 43.8% [22.2%]

Habituated Response
Recall Accuracy *

41.7% [19.5%] 43.8% [26.4%] 37.5% [26.7%] 31.1% [17.7%] 59.4% [12.9%]

Emergency
Response Time

2.9s [0.8] 2.7s [0.8] 3.2s [0.9] 2.4s [0.6] 2.8s [0.8]

Emergency
Error Rate *

25.6% [17.7%] 22.2% [24.2%] 30.8% [19.8%] 8.6% [6.3%] 27.5% [24.8%]

Plates Response Time 19.3s [34.7] 12.2s [14.5] 9.4s [12.4] 11.6s [13.5] 27.1s [42.7]
Perceived
Cognitive Workload

42.6 [16.3] 37.6 [15.0] 41.4 [17.7] 40.0 [9.9] 39.1 [19.5]

children self-reported any negative physical effects from using the
AR headset.

4.4 Data Analysis and Results
We analyzed the information using the same metrics as in the adult
study. Table 2 shows the results, broken up by location. There were
no significant interaction effects between secondary information
and critical information locations. Also, unless mentioned, a Lev-
ene’s test found that the data met the assumption of equal variances
and a Shapiro-Wilks test showed that the data was normal. We used
R [98] to calculate the statistics and the conditions were balanced.

4.4.1 Information Recall. Similar to our adult study, during the
second and fourth study block we asked the children to recall the
last presented information. A Shapiro-Wilks test showed that the
data was not normal for first response recall (W = 0.89, p < 0.05)
and habituated response recall (W = 0.86, p < 0.01); therefore, we
applied the Aligned Rank Transform [84].

Regarding first response recall, a two-way ANOVA found no sig-
nificant effect of secondary information location (F1,18 = 0.48, n.s.)
or critical information location (F2,18 = 0.16, n.s.). When the chil-
dren were not aware they would be asked to recall the information,
the location of the secondary information and critical information
did not affect information recall. For habituated response recall, a
two-way ANOVA did not find a significant effect of secondary infor-
mation location (F1,18 = 0.068, n.s.). However, there was a significant
effect of critical information location (F2,18 = 4.97, p < 0.05), with
a large effect (𝜂2 = 0.36) [65]. A Bonferroni post-hoc comparison
showed that the children had a significantly higher habituated recall
accuracy when the critical information was located at the bottom-
center [M = 59.4%, SD = 12.9%] when compared to the center [M =

31.1%, SD = 17.7%] (Figure 4 left); there was no significant difference
between the bottom-center and top-center locations [M = 37.5%,
SD = 26.7%]. We examined each information type separately (i.e.,
food order, number of plates, countdown time, random word), and
did not find any significant effects on habituated recall accuracy.
Therefore, the bottom-center location led to a higher recall accuracy
in general, not only for specific information types.

4.4.2 Emergency Warning Metrics. A Shapiro-Wilks test showed
that the emergency warning data for error rate (W = 0.86, p < 0.01)
was not normal, so we applied the Aligned Rank Transform [84].
The data for emergency warning response time was normal.

A two-way ANOVA found no significant effect of secondary in-
formation location (F1,18 = 0.65, n.s.) or critical information location
(F2,18 = 1.65, n.s.) on children’s response time. For emergency warn-
ing error rate, initially, a two-way ANOVA found no significant
effect of secondary information location (F1,18 = 0.15, n.s.) or critical
information location (F2,18 = 1.92, n.s.). However, when examining
the error rate by critical information location, we found one outlier.
We calculated outliers as two standard deviations above or below
the mean. The child outlier experienced the critical information
in the center location and had difficulty understanding the task to
monitor for the emergency warning, resulting in a high error rate.
After removing the outlier, a two-way ANOVA found a significant
effect of critical information location on children’s error rate (F2,17
= 3.99, p < 0.05), with a large effect (𝜂2 = 0.32) [65]. A Bonferroni
post-hoc comparison showed that the children had a significantly
lower error rate when the critical information was located at the
center [M = 8.6%, SD = 6.3%] when compared to the top-center [M =

30.8%, SD = 19.8%] (Figure 4 right). There was no significant differ-
ence between the center and bottom-center locations (Table 2). The
children were able to notice the emergency triangle in the center
location more often, when compared to the top-center. Overall, the
location of secondary information and critical information did not
significantly affect the children’s response time for the emergency
warning triangle. However, the location of the critical information
did significantly affect the children’s error rate.

4.4.3 Plates Response Time. Similar to adults, we did not include
the times when the children failed to notice that the number of
plates was “0” and did not hit the button before the end of the study
block. Two children either did not reach “0” or failed to notice when
it became “0” before the end of the study blocks; therefore, we had
a total of 22 children for analysis. A Shapiro-Wilks test showed that
the response time for plates was not normal (W = 0.57, p < 0.0001);
therefore, we applied the Aligned Rank Transform [84]. A two-
way ANOVA found no significant effect of secondary information

34



Designing Textual Information in AR Headsets to Aid in Adults’ and Children’s Task Performance IDC ’23, June 19–23, 2023, Chicago, IL, USA

Figure 4: Habituated response recall accuracy rate by critical information location (left). Emergency warning error rate by
critical information location with one outlier removed (right). Error bars represent 95% confidence interval.

location (F1,16 = 0.95, n.s.) or critical information location (F2,16 =
0.32, n.s.) on children’s response time. The location of the critical
and secondary information did not affect the children monitoring
the number of plates (Table 2).

4.4.4 Perceived Cognitive Workload. We used an adapted NASA
TLX [49, 50] that was designed for children to calculate the chil-
dren’s perceived cognitive workload. A two-way ANOVA found no
significant effect of secondary information location (F1,18 = 0.52,
n.s.) or critical information location (F2,18 = 0.04, n.s.) on cognitive
workload. There was no significant difference in cognitive work-
load between the two secondary locations and the three critical
information locations (Table 2).

4.5 Discussion
Overall, we did not find any significant differences between having
the secondary information on the left-hand side or right-hand side
for children’s procedural task performance. For the location of
critical information (top-center, center, bottom-center), we found
significant differences for habituated response recall accuracy and
emergency error rate.

We examined having the secondary information on the left-
hand or right-hand side of the headset display because children
expect elements to be on the AR headset right-side [85] and prior
work has shown mixed results on pseudoneglect (i.e., left-ward
bias) with children [23, 28, 76]. In our study, we did not find any
significant effect of secondary information location on aiding task
performance. Therefore, since we did not find any effect of location
(left-side vs. right-side) on task performance, we recommend that
designers place secondary information on the right-hand side of
the AR headset display, to match the children’s expectations and
increase usability.

In addition, we found that when the critical information was
located at the bottom-center of the headset, compared to the cen-
ter location, the children’s habituated response recall accuracy was
higher. This is most likely due to the children constantly looking
down at the table to complete the food orders, which decreased
their eye movements when the critical information was in the
bottom-center (Figure 3 right). Prior work has shown that eye
movements can disrupt working memory [33, 79], which is a part
of short-term memory that is concerned with immediate perceptual

processing and information recall [7]. For instance, eye movement
desensitization and reprocessing (EDMR), has been used to help
treat posttraumatic stress disorder for both adults and children
[1, 33]. EDMR increases eye movements during the recall of trau-
matic memories, which reduces their vividness and emotionality
due to taxing the working memory. Children may benefit more
from EDMR treatment, due to having lower central executive spans
which is responsible for workingmemory processing [25]; therefore,
the children’s working memory is more affected by eye movements.
Also, children are still developing working memory [56], and the
ability for voluntary eye movements and stable eye fixations [55].

In result, when the critical information was in the center location
it likely increased the children’s eye movements and disrupted their
working memory. When the critical information was in the center
location, the children had to shift their eye movements up to see the
recipe menu and down to complete the food order. The children’s
higher recall accuracy most likely occurred for habituated response
recall, and not first response recall, since the children were aware of
being asked to recall the information, which would increase their
eye movements because they would be looking at the information
more often. We most likely did not see a significant difference in
habituated response recall accuracy between the top-center and
bottom-center locations, because the children already had to look
up for the recipe menu.

Although we found that the children’s habituated response re-
call accuracy was lower when the critical information was in the
center when compared to the bottom-center, we also saw that the
children’s emergency error rate was lower for the center when
compared to the top-center. While the center location disrupted
the children’s working memory due to increasing eye movements,
it also increased noticeability of the emergency warning triangle.
The children noticed the triangle more often when it was in the
center, when compared to the top-center. Having the red triangle
appear directly in the center of the headset field-of-view caught the
children’s attention. We recommend that designers place critical
information in the AR headset field-of-view in the direction the chil-
dren are expected to look during the majority of the task, in order
to reduce eye movements and increase working memory. However,
for urgent information that needs to be immediately perceptible,
we recommend that designers place the information in the center
of the field-of-view.

35



IDC ’23, June 19–23, 2023, Chicago, IL, USA Julia Woodward and Jaime Ruiz

5 DESIGN RECOMMENDATIONS
The location of critical information had a significant effect on chil-
dren’s habituated response recall accuracy and emergency warning
error rate, while it did not affect adults’ task performance. Since
children’s working memory is still developing [56] there is more of
an effect of their eye movements disrupting their working memory
and recall [33, 79]. Adults’ working memory is more developed,
which enables them to process more information at once. Also, chil-
dren take longer to recognize words [8] and have more difficulty
tracking multiple visual elements at once compared to adults [21].
For secondary information, we did not see any significant effect on
task performance for children based on the left-hand or right-hand
side, while prior work has shown that adults are more prone to a
left-ward bias. Also, children expect virtual objects to be locked to
the right-hand side of the AR headset display [85]. For adults, we
did not find any significant differences in task performance between
the two presentation styles of secondary information (Display vs.
Environment). When analyzing critical and secondary information
combined, we found that adults had lower cognitive workload when
the location of the information was consistent (i.e., periphery or
centralized). We provide design recommendations on designing AR
headset content, in the context of procedural task performance, for
both adults and children:

• Critical Information: For adults, designers can place criti-
cal information in any center location of the AR headset
field-of-view (top, middle, or bottom); however, for children,
designers should make sure to place the critical information
in the direction the children are expected to look during the
majority of the task. Urgent information that needs to be im-
mediately perceived should be placed in the center location
of the field-of-view for children.

• Secondary Information: Designers should place secondary
information on the left-hand side of the AR headset field-of-
view for adults and can either lock it to the display (Display
style) or situate it in the environment (Environment style).
For children, designers should keep the secondary informa-
tion locked to the display on the right-hand side to match
children’s current expectations.

• Combined: For adults, when displaying both critical and
secondary information in the field-of-view, we recommend
that designers keep the secondary information presentation
style and critical information location consistent, either in
the periphery or centralized.

Our findings are beneficial for researchers and designers devel-
oping AR headset experiences for task-based activities in contexts
such as healthcare and maintenance. Also, our work provides a
foundation of knowledge for designing AR headset experiences
for children, such as for AR headset educational activities. Overall,
our work provides an understanding of how the design of textual
information in AR headsets can affect users’ task performance.

6 LIMITATIONS AND FUTURE WORK
There are some limitations to our work. We only examined the
design of visual information within the context of a stationary
procedural task (i.e., food assembly). Procedural tasks might not
encompass all possible task demands, and the task was mainly

stationary. Also, we only focused on textual information. Future
work should investigate different graphical representations of in-
formation, as well as other design factors. Furthermore, the visual
design of the textual information may have impacted our results.
For example, the text in our studies was white, which is aligned
with Meta AR design recommendations [59]. However, this could
have impacted readability when shown against the white table in
our studies. One thing to note is, while pseudoneglect has been
shown to occur in both right-handed and left-handed people, it is
not prominent in cultural groups that read right-to-left [77]. There-
fore, our results are specific to certain cultural groups. Another
limitation is that our recommendations are based on children’s cur-
rent expectations of AR headsets, which may change in the future.
Also, only 24 children participated in our study. The number may
seem small, but it is consistent with prior research with children
(e.g., [61, 75, 86, 91]). Although we had a mix of gender per condi-
tion, prior work has shown that for ages 3-12, females are better at
shifting visual attention [47]. Future work should further examine
how to design critical and secondary information in AR headsets
for children, such as the effect of gender and using eye tracking in
AR headsets to determine any disruption in working memory.

7 CONCLUSION
While AR headsets are being applied in a wide range of contexts, lit-
tle work has focused on how visual information should be designed.
It is essential to study how visual information should be presented
in AR headsets to maximize task performance for both adults and
children. Like adults, children are increasingly being presented
with AR headsets in different contexts. We aimed to understand
how to design textual information in AR headsets for aiding task
performance for both adults and children. We conducted two stud-
ies (adults vs. children) that focused on analyzing multiple design
factors, such as the presentation style of secondary information and
the location of critical information. While the design of information
did not affect adults’ task performance, the location of information
had a direct effect on children’s task performance (i.e., information
recall, error rate). We provide new understanding and design rec-
ommendations on how to design visual information in AR headsets
to aid in adults’ and children’s procedural task performance.
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SELECTION AND PARTICIPATION OF CHILDREN
Children (ages 9 to 12) were recruited from a local elementary

school and a local history museum, with appropriate permission
from the school and museum. For the school, parents and guardians
were approached during pick-up by researchers to describe the
study and distribute informational packets. The study was also
listed in the school weekly newsletter sent out to parents. For the
museum, families were approached at the front of the museum by
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researchers to describe the study and distribute informational pack-
ets. Parents who were interested reached out to the researchers by
email to schedule a time to bring their child to our institution. The
researcher conducting the study went over the parental informed
consent with the parents, and if they consented, the child was taken
to a separate area in the room and asked to assent to the research.
During the assent process, the researcher explained AR, the task,
and informed the child that they could take as many breaks as they
want, and they could stop at any time. If the child verbally assented,
the researcher started the study. During the study, the researcher
asked the child if they wanted to take a break between each of the
study blocks. Parents were allowed to stay in the room but were in a
separate area to not distract the children. All data was anonymized
and stored in secure locations only accessible to the researchers.
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