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ABSTRACT

Radio astronomy is vulnerable to interference from a variety of anthropogenic sources. Among the

many strategies for mitigation of this interference is coherent time-domain canceling (CTC), which

ideally allows one to “look through” interference, as opposed to avoiding the interference or deleting

the afflicted data. However, CTC is difficult to implement, not well understood, and at present this
strategy is not in regular use at any major radio telescope. This paper presents a review of CTC

including a new comprehensive study of the capabilities and limitations of CTC using metrics relevant

to radio astronomy, including fraction of interference power removed and increase in noise. This work is

motivated by the emergence of a new generation of communications systems which pose a significantly

increased threat to radio astronomy and which may overwhelm mitigation methods now in place.

Keywords: instrumentation : detectors – methods : analytical

1. INTRODUCTION

Interference of anthropogenic origin is an old but

growing problem for radio astronomy. While certain fre-

quency bands are in some sense set aside for exclusively

passive uses, less than 2.1% of the spectrum below 3 GHz

is protected in this manner (National Research Council
2010). In fact, most of the spectrum that is neces-

sary and commonly used for radio astronomy is in fre-

quency bands in which radio astronomy receives lit-

tle or no regulatory protection. Astronomy in bands
not explicitly protected for radio astronomy is possi-

ble only because large swaths of the time-frequency

plane remain fallow, and because astronomers have be-

come expert at editing data in order to remove interfer-

ence from sparsely-used regions of the time-frequency
plane. An overview of these techniques appears in

ITU Radiocommunication Bureau (2013a).

By far, the most commonly-used category of interfer-

ence mitigation techniques consists of detecting time-
frequency pixels that are corrupted by interference, and

then eliminating those pixels from subsequent process-

ing, typically after the observation. In this paper, we re-

fer to this as incoherent time-frequency editing (ITFE).

Corresponding author: S.W. Ellingson

ellingson@vt.edu

ITFE is effective because modern instruments typi-

cally reduce Nyquist-rate time-domain signals to time-

frequency “dynamic spectrum” representations having

resolutions ranging from microseconds to seconds in the

time domain, and kHz to MHz in the frequency do-
main. This is necessary in order to accommodate the

limited bandwidth and capacity of modern data storage

systems. This intermediate form of the data is useful for

identification of interference and provides a convenient
opportunity to excise the affected time-frequency pix-

els prior to a subsequent reduction to science products

such as averaged spectrum for spectroscopy, and dedis-

persed and averaged pulse profiles for pulsar processing.

ITFE algorithms have been refined and fine-tuned over
time, culminating in sophisticated and highly-effective

software such as “flagdata” in the interferometer data

analysis software CASA,1 “rfifind” in the pulsar analysis

software PRESTO,2 and “AOFlagger” (Offringa et al.
2012).

This state of affairs may not be sustainable. Strong so-

cietal, economic, and political pressures exist to increase

the utilization of spectrum, including in remote areas

where radio telescopes tend to be located. A particu-
larly ominous development in this regard is the dramatic

1 https://ascl.net/1107.013
2 https://ascl.net/1107.017
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Figure 1. Coherent time-domain canceling (CTC), feed-
forward architecture. The purpose of the “delay” block is
to accommodate the latency of the “estimate interference
waveform” block.

increase in the use of satellites to deliver world-wide con-

tinuous broadband communications. Whereas previous

generations of systems consisted of a few satellites in

geosynchronous orbit (e.g., INMARSAT), or tens of
satellites in low-earth orbit (LEO; e.g., Iridium), emerg-

ing and planned systems consist of tens of thousands

of satellites in LEO, transmitting in L-band and X-band

(European Conference of Postal and Telecommunications Administrations (CEPT)
2019; Kodheli et al. 2020; United Nations Office of Outer Space Affairs and the International Astronomical Union

2021). Soon there will be no location on Earth which

is not within view of many such satellites simultane-

ously. Interference from terrestrial communications is

also expected to worsen with the deployment of new
generations of wireless communications systems and

navigation and positioning systems using radio frequen-

cies. Compounding the problem is the fact that future

generations of radio telescopes will consist of 100s of an-
tennas deployed over areas 100s of km in extent, and will

therefore will be geographically commingled with inter-

ference sources that previously could be avoided simply

by siting in remote locations. Therefore, it is uncertain

whether ITFE will continue to be sufficient; at some
point the amount of data that must be excised renders

the remainder unsuitable for scientific interpretation;

and even if this is not the case, the still-formidable

amount of manual effort required to process data using
ITFE may become intractable.

One possible solution lies in spatial processing. Tele-

scopes with array feeds, or telescopes which are them-

selves arrays, have in principle the ability to form pat-

tern nulls in the directions from which interference ar-
rives. While this strategy has been well-studied, it is

not in regular use in any major radio telescope. Rea-

sons include (1) high system cost/complexity and (2)

undesirable dynamic modification of main lobe gain and
overall pattern characteristics which are difficult to know

or correct in subsequent processing.

An alternative strategy, and the topic of this paper,

is coherent time-domain canceling (CTC), illustrated in

Figure 1. (The particular form shown in this figure is the
“feedforward” architecture. An alternative “feedback”

architecture is shown in Figure 8 (Section 6)). In Fig-

ure 1, the signal x(t) from the instrument is the sum of

the astronomical signal of interest (SOI) s(t), interfering

signal z(t), and noise n(t). The signal x(t) is compared
to a “reference signal” d(t) which represents the best

available information about z(t). The reference signal

may be obtained either from an external input, such as

a separate antenna pointed at the source of the interfer-

ence; or internally synthesized; e.g., based on a priori

information about z(t). The result of the comparison

is used to create the interference estimate ẑ(t), which is

subsequently subtracted from x(t), yielding the output

y(t) = s(t) + [z(t)− ẑ(t)] + n(t). Ideally, this operation
completely removes the interference (i.e., z(t)−ẑ(t) = 0)

while preserving s(t) and (importantly in radio astron-

omy) n(t) with negligible distortion. Thus, CTC poten-

tially allows an instrument to “look through” interfer-

ence and, unlike spatial processing, is applicable also to
single-feed instruments and instruments employing fixed

analog beamforming, such as certain kinds of focal plane

arrays and radio cameras. Note that the “look through”

capability is not merely deleting interference, but (un-
like ITFE) is potentially restoring the use of the afflicted

spectrum for astronomy.

Despite these compelling features, and like spatial

processing, no major radio telescope regularly employs

CTC. The reasons are somewhat similar: Increased sys-
tem cost/complexity, and the potential for increased

noise and signal distortion that may be difficult to know

or correct in subsequent processing.

The purpose of this paper is to provide a review
of CTC for radio astronomy, provide new information

about capabilities and limitations, and provide a new

starting point for those interested in revisiting this tech-

nology. This paper is organized as follows. Section 2

addresses the important preliminary question of how ef-
fective CTC needs to be in order to achieve the desired

“look through” capability; and also the distinction be-

tween CTC for radio astronomy and CTC for commu-

nications, radar, and other active radio frequency appli-
cations. Section 3 presents the theory of optimal CTC

design, and what constitutes “optimal” in this applica-

tion. In Section 4 we provide a new and comprehen-

sive analysis of the performance of optimal canceling

including an example using real-world data. Section 5
presents a canceler with reduced complexity, but simi-

lar performance. Whereas Sections 3 through 5 address

the “feedforward” architecture depicted in Figure 1, Sec-

tion 6 addresses the alternative “feedback” architecture,
which exhibits similar performance in certain conditions,

but which may be less well-suited to radio astronomy.

Section 7 addresses practical considerations that apply
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Figure 2. System model for analysis of the performance
of CTC for radio astronomy.

to the implementation of CTC in radio astronomy. Sec-

tion 8 presents a brief review of past work on CTC for ra-

dio astronomy. We have made the unconventional choice
of presenting this review at the end so that past work

can be understood in the context of the theory and con-

cepts presented in this paper.

2. HOW MUCH CANCELING IS REQUIRED?

A fundamental difference between CTC and ITFE

is that CTC cannot completely remove interference.
Whereas ITFE removes 100% of the interference that is

detected, CTC is limited by estimation error even if the

interference is reliably detected. This raises the ques-

tion of how much canceling is required, which in turn

raises the question of how much interference is detri-
mental. The answers depend on the application: See

National Research Council (2010) for a general overview

and ITU Radiocommunication Bureau (2003, 2015) for

levels that have traditionally been considered detrimen-
tal to radio astronomy. What follows is a generic anal-

ysis that provides context for the performance levels re-

ported later in this paper.

Consider the system model shown in Figure 2. Here,

INRx is the interference-to-noise ratio (INR) at the in-
put of the canceler, INRy is the INR at the output of

the canceler, and INRpost is the INR following whatever

averaging is subsequently applied. For simplicity and

with no loss of generality, let us assume INRx, INRy,
and INRpost are each evaluated for the same bandwidth

B. To quantify the amount of canceling, let us define

“interference rejection ratio” (IRR) to be the ratio of

the time-average power of interference in the input to

time-average power of interference at the output. (This
definition is formalized in Section 3. For the purposes

of this section, the definition as stated suffices.) Note

IRR = 1 for no canceling and IRR→ ∞ with improving

performance.
Averaging increases the SOI signal-to-noise ratio as

well as INRpost in proportion to
√
B∆t, where ∆t is the

averaging time. Normally ∆t is selected to make the

SOI signal-to-noise ratio≫ 1, whereas INRpost is ideally

≪ 1 so as to have negligible effect on the observation.

Therefore the amount of canceling required to effectively

mitigate an interferer, assuming the noise is unaffected

by the canceler, is

IRR ≫ INRx ·
√
B∆t , (1)

and this is necessary even if INRx ≪ 1. It will be useful

later in this paper to have this condition in the form of

a specific numerical threshold that can be compared to

results. For this purpose we define

IRRreq = 10 · INRx ·
√
B∆t (2)

where the constant 10 is arbitrary but reasonable in light

of the preceding discussion.

To clearly see the implications, consider an observa-

tion with
√
B∆t = 100; for example, B = 10 kHz and

∆t = 1 s. First, a strong interferer appears, having

INRx = 103. Without CTC, INRpost = 105 after averag-

ing; thus IRRreq = 106 (60 dB). As will be demonstrated

in Section 4, this is on the high end of plausible values
of IRR and requires that INRd, the interference-to-noise

ratio in the reference channel d(t), be very high. This

level of performance also requires that no implementa-

tion issues (addressed in Section 7) significantly degrade

IRR. It should also be noted that this is a regime which
has been well-explored in the literature on communica-

tions, radar, and other active radio frequency systems

(see e.g. Ghose (1996)).

However an even more challenging scenario emerges
when averaging converts weak interference into strong

interference. Continuing the example: An interferer

having INRx = 10−1 emerges with INRpost = 10 with-

out CTC, and so becomes detrimental despite being very

weak. Here, IRRreq = 102 (20 dB). Although this IRR is
relatively modest, it must be achieved for a much lower

INRx, and perhaps also with a much lower INRd. As

we shall see later in this paper, low INRd also increases

the risk that significant additional noise is injected into
the output. Thus, ironically, this weak interference may

be more difficult to mitigate than the strong interfer-

ence considered in the previous paragraph. This is a

regime which has not been well-explored in the com-

munications, radar, and navigation literature because
INRpost is typically not much greater than INRy in these

applications, and furthermore there is typically no ad-

vantage in driving INRy or INRpost below 1 in these

applications. For these reasons, CTC techniques which
are effective for communications, navigation, and radar

are not necessarily suitable for radio astronomy.

3. OPTIMAL TIME-DOMAIN CANCELING
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3.1. Derivation & Implementation

We now describe the optimal implementation of the

“estimate interference waveform” block in Figure 1,

which somehow computes the estimate ẑ(t) using x(t)

and d(t). A broad class of relevant applications is ad-
dressed by assuming d(t) has the form

d(t) = f(τ) ∗ s(t) + g(τ) ∗ z(t) + u(t) (3)

where f(τ) and g(τ) are impulse responses describing

the difference between how s(t) and z(t), respectively,

appear in the reference channel relative to the system
input, u(t) is the noise in the reference channel, and “∗”
denotes convolution. This suggests implementation of

the “estimate interference waveform” block as a filter

having impulse response h(τ); i.e.,

ẑ(t) = h(τ) ∗ d(t) (4)

To determine h(τ), we first note

ẑ(t) = h(τ)∗f(τ)∗s(t)+h(τ)∗g(τ)∗z(t)+h(τ)∗u(t) (5)

so ideally h(τ)∗ f(τ) = 0, h(τ)∗ g(τ) = 1, and the time-

average power associated with the third term (noise) is

minimized.
A general solution meeting these criteria is not possi-

ble because f(τ) and g(τ) are not precisely known a pri-

ori. To make progress, we assume that the time-average

power associated with the first term is much less than
the time average power associated with the second term;

i.e.,

〈

|h(τ) ∗ f(τ) ∗ s(t)|2
〉

≪
〈

|h(τ) ∗ g(τ) ∗ z(t)|2
〉

(6)

where the angle brackets denote mean over time. This

condition is not hard to meet since the magnitude of

f(τ) ∗ s(t) can be made sufficiently small compared to

that of g(τ) ∗ z(t) in a properly-designed canceling sys-
tem. For example, if d(t) is obtained using a separate

antenna or beam, that antenna or beam would be de-

signed to have low gain in the direction of the SOI and

relatively high gain in the direction of the interference.
For the parametric estimation and subtraction (PES)

strategy described in Sec. 8, d(t) is generated internally

and so for these methods f(τ) ∗ s(t) is effectively zero.

Assuming Equation 6 applies, it is possible to design

h(τ) to minimize the mean square error (MSE) defined
as follows:

MSE =< |x(t− tp)− h(τ) ∗ d(t)|2 > (7)

where tp is the delay indicated in Figure 1, and is now

seen to be the “pipeline delay” associated with filtering.

Although minimizing MSE is not necessarily equivalent

to forcing h(τ) ∗ g(τ) = 1, minimizing MSE does maxi-

mize the interference-to-noise ratio in ẑ(t), and is in this

sense optimal.
At this point it is convenient to switch to discrete

time notation. Let d[k] be M consecutive samples of

d(t) organized as an M × 1 vector as follows:

d[k] = [d((k −M + 1)TS) d((k −M + 2)TS) ... d(kTS)]
T

(8)

where TS is the sample period and k is an integer. Also,
we define w∗ (“∗” denoting the conjugate) to be the

M × 1 vector representing h(τ).3 Equation 7 may now

be written in discrete complex baseband form as follows:

MSE =< |x(kTS − tp)−wHd[k]|2 > (9)

where “H” denotes the conjugate transpose and “< · >”

now operates over k.

It is well known (see e.g. Haykin (2001)) that the filter
w which minimizes MSE is the solution to

Rw = r (10)

where R is the M ×M covariance matrix

R =< d[k] dH [k] > (11)

and r is the M × 1 reference correlation vector

r =< x∗(kTS) d[k] > (12)

Finally, the filter output is

ẑ(kTS) = wHd[k] (13)

This method is commonly known as “minimum MSE”

(MMSE), and we refer to this specific implementation

as “feedforward MMSE.”
There are three important things to know about feed-

forward MMSE in this application. First: To the ex-

tent that the inequality in Equation 6 is not satisfied,

w will be biased and the canceling of z(t) will be de-
graded. Second: The same problem will result in the

term h(τ) ∗ f(τ) ∗ s(t) being non-zero in ẑ(t), which will

distort the SOI in the output of the canceler. Third: The

term h(τ) ∗ u(t) will be injected into the output of the

canceler, which will decrease INRy and color the noise in
y(t), so it is important that INRd be as large as possible.

The second and third items are aspects of what we refer

to as “toxicity,” and are particularly important consid-

erations for radio astronomy. This is because achieving

3 The use of w∗ as opposed to w is arbitrary, but is customary
and simplifies notation later.
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the necessary IRR may be for naught if the SOI s(t) or

the primary channel noise n(t) are distorted in a man-

ner that impedes scientific interpretation. The toxicity

issue is addressed further in Section 7.3.
To implement MMSE one must choose (1) the number

of samples L used for “training;” i.e., used to compute

R and r; and (2) the filter length in samples, M . The

training length L determines the accuracy to which w

is computed, which normally improves with increasing
L. Thus, IRR normally increases with L. However L

should be small enough that the change in the impulse

response g(τ) is negligible relative to the time LTS over

which the canceler attempts to determine w.
The filter length M also entails a tradeoff. The filter

must be long enough to equalize the frequency response

corresponding to g(τ) with sufficient accuracy. However,

increasing M increases the effective duration of h(τ),

which limits the ability of the filter to adapt to changing
conditions. Thus, M should be small enough that the

change in g(τ) is negligible relative to the time MTS

required for the filter to produce an output. Making

M larger than is required to equalize the interference
component of the reference signal may decrease IRR and

is not recommended; see e.g. Table 1.

Finally, note that L should be ≫ M to ensure that R

is numerically well-conditioned (i.e., not nearly singular)

and to ensure a low-variance estimate of r.

3.2. Theoretical Performance

A complete rigorous derivation of the theoretical per-

formance of the feedforward MMSE canceler is, to the

best of our knowledge, not available. In Section A.1 we

derive expressions for performance for the special case

of M = 1. These are Equations A29–A31 and A34–
A36. These expressions are validated by comparison to

the simulation results in Section 4 (Figures 3, 4, and

5 and associated text), where the agreement is found

to be excellent. Derivation of expressions for IRR for
M > 1 is much more difficult and has not been com-

pleted. However Section A.2 presents empirical expres-

sions for M > 1 (Equations A37–A42) which are again

shown to be in excellent agreement with the simulation

results.
This paper considers two similar but distinct defini-

tions of IRR. “IRR1” is defined as the ratio of time-

average power of the interference in the input to time-

average power of the interference in the output; i.e.,

IRR1 =

〈

|z(t)|2
〉

〈|z(t)− h(τ) ∗ g(τ) ∗ z(t)|2〉 (14)

This is arguably the “natural” definition of IRR. How-

ever this definition does not account for noise injected by

the canceler into the output that could be interpreted

as new interference. Furthermore, this metric may be

difficult to measure experimentally. Therefore we define

an alternative metric “IRR2” to be the ratio of time-
average power of the interference in the input to time-

average power of the difference between z(t) and the

interference estimate ẑ(t) in the output; i.e.,

IRR2 =

〈

|z(t)|2
〉

〈|z(t)− ẑ(t)|2〉 (15)

As noted in Appendix A and demonstrated in the re-

sults presented in the following sections, IRR1 and IRR2

are usually equal when INRd is large, but are signifi-

cantly different otherwise. Our impression is that IRR2

is probably most appropriate where the spectrum of the

output is less important than the total power of the out-

put; e.g., continuum and most pulsar observations. On
the other hand, IRR1 is perhaps more appropriate if the

spectrum is the primary concern – in particular, in spec-

troscopy – since IRR1 does not conflate canceler noise

injection with interference suppression.

4. HOW MUCH CANCELING IS POSSIBLE?

In this section we quantify the performance of feedfor-

ward MMSE CTC using a combination of simulations,

derived expressions, empirical expressions, and an ex-

ample using real-world data.

4.1. Experiment Design

In each simulation, the interference consists of a sin-
gle signal which is either a sinusoid or zero-mean white

Gaussian noise. The sinusoidal interference waveform

is representative of interference which is narrowband in

the sense that the bandwidth of z(t) cannot be spec-

trally resolved. When the interference is noise, it fills
the Nyquist bandwidth, and can be viewed as the limit-

ing case where the bandwidth of z(t) exceeds the band-

width of the observation. When the interference is si-

nusoidal, the frequency is varied from trial to trial ac-
cording to a uniform random distribution from −π/2 to

+π/2 radians/sample. The primary-to-reference chan-

nel response for the SOI, f(τ), is zero; i.e., there is

no astronomy ingress into the reference channel. The

primary-to-reference channel response for the interfer-
ence, g(τ), is a constant with magnitude determined by

the specified INRd and with phase varied from trial to

trial according to a uniform random distribution from

−π to +π radians. The primary and reference channel
noise waveforms (n(t) and u(t), respectively) are uncor-

related zero-mean white Gaussian noise, and n(t) and

u(t) are uncorrelated with z(t) in scenarios where z(t)

is a noise waveform.
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Figure 3. IRR1 for high INRd (here, INRd = +70 dB),
M = 1. Markers are simulation results. Lines are theoretical
results (L · INRx). Results are the same for sinusoidal and
noise interference waveforms, and IRR2 is indistinguishable
from IRR1 for either waveform.

In any given trial, IRR1 and IRR2 are computed over

106 samples. Statistics of IRR1 and IRR2 are computed
over 100 trials. Care is required in computing these

statistics. The mean of these quantities over trials is

not an appropriate statistic, because IRR can be inter-

mittently very high for a sinusoid having constant mag-

nitude, phase, and frequency over the duration of the
experiment.4 We solve this problem by reporting the

mean over the trial values of the numerator of Equa-

tions 14 and 15 divided by the mean over trial values of

the denoniminator of Equations 14 and 15.5 We refer
to the statistics of IRR computed in this specific way as

IRR1 and IRR2, respectively.

We also calculate noise ingress ratio (NIR), defined as

the ratio of the time average power of n(t)− h(τ) ∗ u(t),
(the total noise in the output) to the time-average power
of n(t), again computed over 106 samples and averaged

over 100 trials. The minimum and ideal value of NIR

is 1 (0 dB), and a greater value indicates an increase in

the effective system temperature.

4.2. High INRd – Narrowband Interferer

4 This is especially important to know for hardware testing using
synthesized interference signals.

5 This problem can also be avoided using median statistics, but
the results will be slightly different, most notably in the high-
INRd regime. In this regime, the median over trials of IRR1

is
√

2 · IRR1, and similarly the median over trials of IRR2 is
√

2 · IRR2.

interferer IRR1 IRR2

sinusoid L · INRx L · INRx/M

noise L · INRx/M L · INRx/M

Table 1. Performance in the high INRd regime and L ≫ M ,
summarized from results of simulations. M = 1 sinusoidal
interferer results are verified by theory (Equations A30 and
A35). M > 1 sinusoidal interferer results agree with the
empirical equations A38 and A41.

We begin with the special case of sinusoidal inter-
ference and high INRd. Figure 3 shows the results

for M = 1, INRd = +70 dB, varying INRx and L.

We find that the simulations are in excellent agreement

with the analysis in Appendix A (Section A.1); that is:

IRR1 = IRR2 = L·INRx. Note that IRR is proportional
to both L and INRx, even for L · INRx < 1.

Results forM ≥ 1 are shown in the first row of Table 1.

While it is not surprising that IRR1 is independent of

M , the finding that IRR2 is inversely proportional to M
is counter-intuitive.6 Clearly it is not safe to make M

larger than necessary.

Using the definition from Section 2, IRR is judged

to be sufficient if it is greater than IRRreq. Using the

worst case from Table 1, L·INRx/M & 10·INRx ·
√
B∆t.

Solving for L, we find

L & 10
√
B∆t ·M (16)

For example: Using the value of
√
B∆t = 100 from

Section 2, we find L & 1000M is required for confidence

that the interferer will be reduced to a negligible level in
the output, and this does not depend on INRx. Thus,

one can plausibly achieve sufficient levels of canceling

using feedforward MMSE when INRd is high.

Now we consider NIR. For NIR we have only simu-

lation results, but the findings are unambiguous. NIR
does not depend on INRx in this case. NIR does de-

pend on the extent to which L > M , but this can easily

be accommodated. For example: For L = 1000 and

M = 8, NIR is merely 0.03 dB. NIR is decreased by
increasing L or decreasing M , and is too small to be

reliably measured when L ≥ 100 and M ≤ 4. Examples

of high NIR due to inappropriate choices of L and M

are NIR = 0.3 dB and 5 dB for M = 8 and L = 100

and 10, respectively. Summarizing: The aspect of tox-
icity measured by NIR is best managed by minimizing

M and making L ≫ M , and can be made negligible for

reasonable values of M and L.

4.3. High INRd – Wideband Interferer

6 This phenomenon is also apparent by comparing Figures 4 and
5.
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Figure 4. IRR1 as a function of INRd. Sinusoidal inter-
ferer, L = 1000. Markers: Simulation. Solid lines: Theo-
retical equation for M = 1 (Equation A34). Dashed lines:
Empirical equation for M = 8 (Equation A40).

The second row of Table 1 summarizes IRR for noise

interference and high INRd. It is not surprising that IRR

is proportional to L · INRx, as in the case of sinusoidal
interference (Section 4.2). However, in this case we find

that both IRR1 and IRR2 are inversely proportional to

M . The reason for this peculiar dependence on M is

unclear and we continue to investigate.
In contrast to the sinusoidal interferer scenario, NIR

in the wideband interferer scenario is always too small

to measure reliably (here, < 0.01 dB), independent ofM

and L. The reason for the surprisingly good NIR perfor-

mance in this case is that the canceler’s “estimate inter-
ference waveform” block converges to approximately flat

magnitude response when the interference is spectrally-

white noise, but is constrained only at one frequency –

i.e., not necessarily flat and intermittently large – when
the interference is sinusoidal. The latter facilitates in-

creased injection of reference channel noise into the can-

celer output.

4.4. Reduced INRd – Narrowband Interferer

Next, we consider the effect of reducing INRd. Fig-

ures 4 and 5 show IRR1 and IRR2, respectively, for

the sinusoidal interferer, varying INRd, INRx and M .
Considering first M = 1, note that the agreement

between simulation and theory is excellent for both IRR

metrics. As expected, the overall behavior depends on

INRd relative to INRxL. The high INRd regime is dis-
cussed in Section 4.2. For the low INRd regime, the

results are summarized in the first row of Table 2. Note

that in this regime, IRR depends only on INRd and M ,

but not on INRx, and not on L as long as L ≫ M . The
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Figure 5. IRR2 as a function of INRd. Sinusoidal inter-
ferer, L = 1000. Markers: Simulation. Solid lines: Theo-
retical equation for M = 1 (Equation A29). Dashed lines:
Empirical equation for M = 8 (Equation A37).

interferer IRR1 IRR2

sinusoid (M · INRd + 1)2 M · INRd + 1

noise (INRd + 1)2 INRd + 1

Table 2. Performance in the low INRd regime and L ≫ M ,
summarized from results of simulations. M = 1 sinusoidal
interferer results are verified by theory (Equations A31 and
A36). M > 1 sinusoidal interferer results agree with the
empirical equations A39 and A42.

reason for the difference in dependence on INRd between

IRR1 and IRR2 is simply that the latter considers noise

injected by the canceler to be interference, whereas the
former does not. It is interesting to note that increas-

ing M in the low-INRd regime is beneficial, whereas this

was found to be detrimental in the high-INRd regime.

The fact that IRR improves with increasing M in the

low-INRd regime indicates that the estimation filter is
exhibiting spectral selectivity in this case.

Repeating the procedure in Section 4.2, we judge

the canceling is sufficient if (M · INRd + 1)
n
& IRRreq,

where n = 2 for IRR1 and n = 1 for IRR2. Solving for
INRd, we find

INRd & 101/n INR1/n
x (B∆t)

1/2n
M−1 (17)

Let us consider the implications for IRR1 (n = 2). Using

the value of
√
B∆t = 100 from Section 2, INRx=10 dB,

and M = 1, we find INRd & 20 dB is required to have

high confidence that the interferer will be reduced to

a negligible level in the output. While this seems en-

couraging at first glance, consider what is required for
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Figure 6. NIR as function of INRd. Sinusoidal interferer,
L = 1000. Markers: Simulation. Lines connect markers.
The M = 1 curves also apply to the noise interferer, regard-
less of the actual value of M .

a weak interferer: For INRx = −10 dB, INRd & 10 dB

is required. While this value of INRd is much lower, it
must be achieved for an interferer which is much weaker.

Specifically, the required ratio INRd/INRx has increased

from 10 dB to 20 dB. This does not bode well for CTC

implementations in which the reference signal d(t) is ob-
tained from an auxilliary antenna.

Because INRd is not necessarily high (as it was in Sec-

tion 4.2), the potential for NIR to be significant is much

greater. Figure 6 shows the situation for the sinusoidal

interferer. Note that NIR can be devestatingly large for
INRd < 40 dB or so. Also note that the NIR catastrophe

can be forestalled somewhat by increasing M .

4.5. Reduced INRd – Wideband Interferer

IRR for the noise interferer in the low INRd regime

is summarized in the second row of Table 2. The single

difference is that IRR does not depend on M , which is
expected since the estimation filter is unable to exhibit

spectral selectivity in this case.

As noted in Figure 6, the NIR performance for the

noise interferer is the same as that for the sinusoidal

interferer, except NIR does not depend on M . Again
this attributable to the inability of the estimation filter

to exhibit spectral selectivity in this case.

Before moving on, recall that the impulse response

g(τ) for results in Section 4 is a complex valued constant
and therefore represents a flat frequency response. To

the extent that g(τ) represents a non-flat response and

the resulting variation is significant over the spectrum

of z(t), M must necessarily be increased.

4.6. Real-World Example

In Appendix B we provide an example of the use of

M = 1 feedforward MMSE to cancel a bona fide in-

terference signal in a scenario representative of a typ-

ical radio astronomical observation. The interferer is
an analog frequency modulation broadcast signal with

bandwidth that dynamically varies from near zero to

nearly the full bandwidth of the channel. The results

are consistent with the results of the preceding sections,

which confirms that the performance of M = 1 feedfor-
ward MMSE is not sensitive to the details of the inter-

ference waveform. Further, this example demonstrates

good performance even in a case where g(τ) is demon-

strably non-stationary.

5. REDUCED-COMPLEXITY FEEDFORWARD

CANCELER

In the MMSE approach of Sections 3 and 4, the filter

w is the solution to Rw = r (Equation 10). A sim-

plified approach may be necessary or desirable. As we
shall see in Section 5.2, simplifying the canceler does not

necessarily result in a significant performance reduction.

5.1. Description

First, note that the covariance matrix R depends only

on the reference signal d(t) and not at all on the input
x(t). So, we replace R with a matrix that describes in

some sense the time-average power of d(t), but which

facilitates a simple solution for w. Such a matrix is

‖R‖2I, where I is the identity matrix and ‖R‖2 is the
induced 2-norm (largest singular value) of R. A variety

of computationally-efficient algorithms exist for accurate

estimation of the largest singular value of a covariance

matrix directly from samples (i.e., d(kTS) for a set of

values of k). Subspace tracking (see e.g., DeGroat et al.
(2010) and in particular Yang (1995)) is well-suited to

this task. The solution of Rw = r with this simplifica-

tion is:

w = r/‖R‖2 (18)

Note that this approach will entail some important

disadvantages with respect to MMSE. First: Perfor-

mance will be degraded if M is greater than 1 and the

signal subspace of R has rank greater than 1; i.e., has

more than one significant singular value. Thus, degra-
dation is expected if the interference has significant frac-

tional bandwidth. A full-bandwidth noise interferer rep-

resents the worst case in this respect, since in that sce-

nario of the rank of the signal subspace of R is M . Sec-
ond: To the extent that d(t) contains signals other than

the intended interference component and noise, these

will not be mitigated by the resulting filter and will pass

through to the canceler output. In contrast, MMSE will,
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interferer IRR1 = IRR2

sinusoid, any M L · INRx

noise, M = 1 L · INRx

noise, M > 1 < L · INRx (see e.g. Fig. 7)

Table 3. IRR of the reduced complexity feedforward MMSE
method in the high INRd regime and L ≫ M , summarized
from simulations. (Compare to Table 1.)
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Figure 7. IRR1 for INRd = +70 dB, M = 8, noise interfer-
ence waveform. IRR2 is identical. Solid lines with markers:

Reduced-complexity method; Dashed lines: MMSE.

to the extent that the degrees of freedom provided by

M allow, attempt to mitigate these signals.

5.2. Performance

The experiments reported in Section 4 were repeated

using Equation 18 (in lieu of MMSE) to generate w.
The results for the high INRd regime are summarized in

Table 3. Comparison to the results of the MMSE im-

plementation (Table 1) reveals the following differences.

First, and as expected, performance is degraded for the
noise interferer when M > 1. An example is shown

in Figure 7 (M = 8), which shows that IRR saturates

at some threshold value of INRx which decreases with

increasing M .

Second, IRR1 = IRR2 in all cases considered. Specifi-
cally, IRR2 no longer depends on M . This is significant:

If IRR2 is the metric that best describes performance in

a particular application, and the interference is narrow-

band, and M > 1, then the reduced complexity method
actually outperforms MMSE. It is important to keep

in mind, however, that g(τ) models a zero-length im-

pulse response channel in these experiments; should the

true impulse response have significant length such that

Figure 8. Feedback variant of the feedforward CTC can-
celer shown in Figure 1.

M > 1 is required for equalization, then this advantage
of the reduced complexity method will be diminished.

In the low INRd regime, the IRR performance of

the reduced complexity method is the same as that of

MMSE.

NIR performance is also somewhat different for the re-
duced complexity method relative to MMSE. In the high

INRd regime, NIR is always negligible. This is true even

for sinusoidal interference in the M > 1 case; whereas

for MMSE, NIR can become significant with increasing
M . In the low INRd regime, the NIR performance of

the reduced complexity method is the same as that of

MMSE.

Summarizing: The reduced-complexity method is

probably an acceptable alternative to MMSE unless one
of the following is true: (1) The interference has sig-

nificant fractional bandwidth and M must be greater

than 1; or (2) The reference channel d(t) contains signif-

icant signals other than a single well-correlated version
of z(t), since these signals will not be mitigated in the

reduced-complexity canceler as they are in the MMSE-

based canceler, and therefore will be injected into the

output at a significantly greater level. Item (2) is of

particular concern for implementations in which d(t) is
obtained using a reference antenna.

6. FEEDBACK ARCHITECTURE

The CTC architecture shown in Figure 1 is “feedfor-

ward” because the interference input to the “estimate

interference waveform” block is from the input of the

canceler. The alternative is “feedback” architecture,

shown in Figure 8, in which the interference input is
from the output of the canceler. Although this architec-

ture is not the primary topic of this paper, we address

it here because it appears in several seminal papers on

CTC in radio astronomy, notably Barnbaum & Bradley
(1998) and Kesteven et al. (2005), and is also explored

in Poulsen (2003), an interesting experiment at the

Green Bank Telescope; so a comparison is warranted.
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Before considering canceling performance, we identify

two distinct and important characteristics of feedback

architecture. First: The fact that w depends on the out-

put means that w must be continuously updated during
training. This is in contrast to feedforward architecture,

where w is determined at the end of a training period

of length LTS, and held constant until the end of the

next training period. This may be either an advantage

or disadvantage depending on the nature of the interfer-
ence.

Second: Whereas the output of feedforward CTC is

determined entirely by inputs (namely, x(t) and d(t)),

the output of feedback CTC depends also on past out-
put. In signal processing terms, feedforward CTC has

finite impulse response (FIR), whereas feedback CTC

has infinite impulse response (IIR).

In this section we address specifically the least mean

squares (LMS) algorithm (see e.g., Haykin (2001)),
as it is relatively easy to study and is specifically

the method used in Barnbaum & Bradley (1998) and

Poulsen (2003). LMS is identical to feedforward MMSE

with the exception that the filter is updated iteratively
according to

w((k + 1)TS) = w(kTS) + 2µy(kTS)d(kTS) (19)

The parameter µ controls the tradeoff between rapid

convergence and agile tracking (requiring large µ) and

low “jitter” following convergence (requiring small µ).

It is a well-known rule-of-thumb that µ should be less
than the reciprocal of the largest eigenvalue of R; i.e.,

µ < 1/(INRd + 1) (Widrow et al. 1976). In practice,

the optimal value of µ is typically not apparent with-

out experimentation and tuning, and may of course also

vary with circumstances. This is a disadvantage of LMS
relative to feedforward architecture.

In the ideal (but unlikely) case that the jitter associ-

ated with µ is negligible, the IRR achieved by LMS after

convergence is the same as that of feedforward MMSE.
The effect of jitter is to degrade performance in the high

INRd regime. We have provided a derivation for M = 1

(analogous to the derivation provided forM = 1 feedfor-

ward MMSE) in Section A.3. In the high-INRd regime,

IRR1 = IRR2 =
1

µ

INRx

INRd
(20)

At first glance, the finding that IRR is inversely propor-

tional to INRd is counter-intuitive. The explanation for

this is that the principal impairment in the high-INRd

regime is jitter, which is the net effect of the change in

w over the updates, and the magnitude of this change

for any single update increases with increasing INRd as

is apparent from Equation 19.

Comparing Equation 20 to the corresponding feed-

forward MMSE result (INRxL), we see that the IRR

achieved by LMS compared to feedforward MMSE de-

pends on 1/µINRd relative to the number of training
samples L used in feedforward MMSE. For example: At

INRd = +70 dB, LMS with µ ≤ 10−9 would outperform

feedforward MMSE with L = 100. On the other hand,

decreasing µ comes at the expense of increasing conver-

gence time for LMS, whereas increasing L comes at no
analogous penalty for feedback MMSE, assuming g(τ)

is stationary in both cases.

Returning to feedback architecture in general, it

should be noted that the impact of w jitter is not merely
a reduction in IRR in the high INRd regime. The jitter

exists regardless of INRd, and is potentially toxic for ra-

dio astronomy. Feedforward architecture, on the other

hand, is not subject to w-jitter, since in that architec-

ture w is obtained from a block of L samples and can be
held utterly constant for as long as the scenario remains

stationary.7

Finally, it should be noted that LMS is a “rank 1”

algorithm in the same sense as the reduced complex-
ity feedforward MMSE canceler of Section 5, and will

have the associated limitations. While one might con-

sider a MMSE implemention of the feedback architec-

ture to address wideband interference, this has an ex-

traordinarly greater computational burden relative to
feedforward MMSE. This is because feedforward archi-

tecture requires correlation (Equations 11 and 12) only

while training is in progress, and requires a solution to

Equation 10 only when a new value of w is needed.
In contrast, the analogous implementation of feedback

architecture estimates interference in the output, and

therefore requires a new solution of Equation 10 for ev-

ery sample processed.

7. PRACTICAL CONSIDERATIONS

In this section we address some particular issues that

emerge in practical implementations of CTC.

7.1. Non-Stationarity Between the Primary and

Reference Channels

MMSE-based CTC is potentially sensitive to the vari-

ations in the impulse response g(τ), defined in Equa-

tion 3, which describes the channel response applied to

the interference signal in the reference channel relative

7 It is perhaps more accurate to say that feedforward architecture
is vulnerable to w-jitter, but over time scales of LTS as opposed
to TS .
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to the channel response applied to the interference signal

in the primary channel.8

The derivation of MMSE-based CTC as well as the re-

sults presented in Sections 4–6 presume g(τ) to be per-
fectly stationary; i.e., independent of t. In feedforward

CTC this means w is assumed to be valid between up-

dates, and in feedback CTC this means w is assumed to

be able to follow changes with negligible latency. This

raises the question of the effect of non-stationarity on
IRR.

In Appendix C we derive expressions for IRR for

M = 1 feedforward MMSE, generalized from those in

Section A.1. The non-stationarity is described as g(τ, t),
which simplifies to g(t) (i.e., a constant with respect to

τ) for M = 1. It is found that the effect of time-varying

g(t) on IRR is negligible if

ǫ2 ≪ ( IRR|ǫ=0
)
−1

(21)

where ǫ2 is the mean-squared variation of g(t), and
IRR|ǫ=0

is the associated IRR for stationary conditions.

Thus, the impact of non-stationarity is greatest when

IRR is high, decreases with decreasing IRR, and is negli-

gible when Equation 21 is satisfied. For example, mean-
square variation of 0.4 dB in the magnitude of g(t) is

significant if the IRR in stationary conditions would oth-

erwise have been +40 dB, but is negligible if the IRR in

stationary conditions is +20 dB.

Experiments using bona fide interference signals, such
as those reported in Section 8 and Appendix B, provide

evidence that non-stationarity exists but is not necessar-

ily a show-stopper, especially if care is taken to use an

appropriately short update rate. Nevertheless, potential
adopters would be well-advised to carefully consider this

issue in the design of CTC algorithms.

7.2. Intermittent Signals

While MMSE-based CTC is robust to the details of

the interference waveform, there is a distinct and impor-
tant type of waveform non-stationarity which can poten-

tially cause problems: This is intermittency; i.e., signals

which are not continuously present. One form of inter-

mittency is burst modulation; examples being ground-

based aviation radar and the Iridium user downlink.

8 Since the interference waveform z(t) appears in both the pri-
mary and reference channels, MMSE is not affected by the non-
stationarity of z(t) itself; e.g., by changes in carrier magnitude,
carrier phase, and so on. It is also not affected by the non-
stationarity of the propagation channels through which the inter-
ference waveform is received, as long as g(τ) remains constant.
The problem emerges when g(τ) changes with time, and is a
problem only because the process of filter synthesis in MMSE
presumes this to be constant.

Other forms of intermittency include temporarily-strong

reflections from aircraft and interference from sources

which transmit according some indiscernible schedule.

CTC is certainly applicable in each of these cases; the
problem is ensuring that the interference is present in

the samples used to calculate the estimation filter.

Furthermore, it is preferable that the canceler operate

only when the interference is present, and do nothing

when the interferer is absent. This is an important con-
sideration since a canceler operating in the absence of

an interferer is prone to introduce spurious signals (more

on this in Section 7.3). Thus, one encounters a problem

in interference detection. Reliable interference detection
is typically very difficult in the radio astronomy applica-

tion since it is necessary to detect very weak interference

as soon as it appears. In the case of burst modulations,

individual bursts may not be present long enough to be

reliably detected; see e.g. Ellingson & Hampson (2003)
for an example where the performance of detection, and

not the performance of CTC per se, limits overall IRR

performance.

7.3. Toxicity

All forms of CTC entail adding the signal ẑ(t) to the
signal x(t) from the telescope. Ideally ẑ(t) = z(t), the

interference component in x(t). In practice, ẑ(t) is the

sum of (1) A waveform which is not quite equal to z(t),

(2) Spectrally-colored versions of signals that also ap-
peared in d(t) (noise and the astronomical SOI in par-

ticular), and (3) Internally-generated spurious content

associated the operation of the canceler. The presence

of these other signals in ẑ(t) have a potentially delete-

rious effect on the processing and scientific interpreta-
tion of the data. This is what we refer to as “toxicity”.

Three aspects of the toxicity problem already addressed

include reference signal noise injection (quantified as

NIR), w-jitter, and spurious operation due to false de-
tection (addressed in Section 7.2). Additional aspects

of the toxicity problem include leakage of s(t) + n(t)

into the reference signal path, which is a problem par-

ticularly with auxiliary antennas; and spurious spectral

content associated with block-wise updating of w (see
e.g. Ellingson (2020)).

7.4. Inadequate Reference Signal-to-Noise Ratio

A recurring theme in this paper has been the impor-

tance of a high-quality reference signal d(t) with the

highest possible INRd. This poses a challenge in radio
astronomy applications, since (as pointed out in Sec-

tion 2) even interference which is much weaker than

noise is potentially damaging. The solution employed in

early studies of CTC for radio astronomy (see Section 8)
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was to acquire the reference signal through a separate

high-gain antenna (variously referred to as a “reference”

or “auxilliary” antenna) directed at the source of the

interference. This is certainly effective, but entails con-
siderable additional complexity since the antenna must

be pointed, and if the source is moving, the antenna

must track accordingly. This is not only awkward to

implement, but requires a priori or at least real-time

knowledge of the presence and direction of sources. It
should be noted that some existing and emerging ra-

dio telescope arrays employ architectures which provide

multiple narrow steerable beams within the wider beam

of a single element of the array. In principle these beams
could be used in lieu of CTC auxiliary antennas, but

only for interference which arrives from within the ele-

ment pattern.

Another strategy for increasing INRd is narrowband

filtering with adaptive tuning. This scheme exploits the
fact that interferers of interest often occupy only a small

fraction of the bandwidth being processed. Thus, apply-

ing a relatively narrow filter at the center frequency of

the interferer prior to the “estimate interference wave-
form” block in Figures 1 and 8 can dramatically increase

INRd, and has the additional benefit of excluding signals

unrelated to the interference. Specifically, this technique

excludes spectrally-disjoint portions of the astronomical

SOI from the “estimate interference waveform” block,
which provides further mitigation against toxicity. Note

that essentially this scheme is employed in the example

presented in Appendix B.

Yet another tool for improving INRd and mitigating
toxicity is parametric estimation and subtraction (PES),

addressed in Section 8.

7.5. Nyquist-Rate Implementation

A barrier to adoption of CTC has been hardware im-

plementation. Unlike ITFE, CTC requires access to a

Nyquist-rate data stream. This presents a potential
challenge in modern radio telescope implementations.

Due to limitations in technology, storage cost, and logis-

tics, existing instruments are typically limited to record-

ing only the averaged spectrum. Therefore a practical

operational CTC system must operate in real time, in
the sense that any latency associated with CTC must

be less than the time during which Nyquist-rate data is

available. This in turn requires large amounts of high

bandwidth memory and computing resources with low-
latency access to this data. Thus, CTC is difficult to

implement as an “add on” to existing instruments, and

may require co-design and low-level integration with in-

strument electronics.

7.6. Separability

For the reasons cited in previous sections, it is not cer-

tain that CTC can be a fully “hands off, always on” ca-

pability for radio astronomy, and that astronomers will

want the ability to enable, disable, or “tune” CTC as
needed. Of course this is complicated by the issue noted

in Section 7.5: CTC, unlike ITFE, must normally occur

in real-time as the observation is running. Unless in-

terference is certain to ruin an observation, astronomers

might understandably prefer to keep CTC turned off,
rather than to take the chance that data that might be

salvageable using ITFE is instead ruined by CTC toxi-

city.

A possible remedy is separability, which might consist
of any of the following techniques: (1) Record two ver-

sions of the observation: one with CTC, and the other

without. (2) Record only the CTC-processed observa-

tion, but also ẑ(t) so that it is possible to know precisely

how CTC affected the data, and thereby retain some
ability to perform remedial post-observation processing.

This is feasible since the bandwidth of the interference is

normally much less than the bandwidth of the observa-

tion. (3) Record only the observation without CTC, but
also ẑ(t). This retains the option to perform enhanced

post-observation interference mitigation, although prob-

ably not truly coherent time-domain canceling. (4) If the

observation can be recorded at the Nyquist rate, then

full separability is possible simply by also recording ẑ(t).
(5) Record the observation at the Nyquist rate and also

record d(t) (as opposed to ẑ(t)), allowing full CTC to

be implemented as a post-processing operation.

Options (4) and (5) have the benefit that CTC can be
optimized after the observation, in the same manner as

present-day ITFE processing.

8. A BRIEF HISTORY OF CTC IN RADIO

ASTRONOMY

We now present a brief review of the history of CTC in

radio astronomy. We have chosen not to attempt a nu-
merical comparison between the findings of these studies

and findings presented in this paper. This is partially

due to the difficulty of extracting and presenting the rel-

evant data from each paper in a consistent way, but also

because experimental results are limited by practical fac-
tors in the implementation (typically well documented

in the papers) that have a large effect on the outcomes.

We strongly encourage readers to instead consult these

papers directly; our paper may aid the reader by pro-
viding context.

Seminal work on canceling for radio astronomy ap-

pears in Barnbaum & Bradley (1998). This work ad-

dresses interference from radio stations in the 88–
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108 MHz FM broadcast band. Their approach is feed-

back CTC using LMS with a reference signal obtained

from a directional antenna pointed toward the source of

the interference. They show theoretically that IRR1 ≈
(INRd + 1)2, which is consistent with the low-INRd

regime result obtained in this paper (Equation A51).

The authors present experimental results that are con-

sistent with their theoretical analysis.

Ellingson (2002) reports experiments using feedfor-
ward MMSE to mitigate interference from the L-band

satellite navigation system GLONASS in the main beam

of a 3 m dish using the orthogonal linear polarization

as a reference signal (thus, INRd=INRx; and preclud-
ing use for astronomy, since f(τ) is significant in this

configuration). Results indicated IRR>IRRreq. Also,

this work identifies the high-INRd relationship IRR =

L · INRd, obtained as a special case in this paper (Equa-

tions A30 and A35).
Poulsen (2003) reports experiments using LMS to mit-

igate GLONASS received through sidelobes of the Green

Bank Telescope using a reference signal obtained from a

separate 3.6-m reflector antenna tracking the interferer.
IRR>IRRreq is apparent despite challenges in setting

the LMS step gain µ and mitigating non-stationarity in

g(τ).

Kesteven et al. (2005) demonstrate that interference

from a digital TV station at 675 MHz can be sufficiently
suppressed to facilitate productive pulsar observations.

Their work also employs feedback architecture with an

auxiliary antenna, but they use a different method for

computing w that is similar to the reduced-complexity
method of Section 5. They include theoretical analysis

showing IRR2 ≈ INRd + 1, which again is consistent

with the low-INRd regime result obtained in this paper

(Equation A48).

The fact that Barnbaum & Bradley (1998) perform
analysis in terms of IRR1 and Kesteven et al. (2005)

perform analysis in terms of IRR2 explains why these

two similar techniques should yield such dramatically

different IRR performance: We now see that the issue
is simply that they used different performance metrics.

Also, we note that neither work identifies the fact that

their analysis is limited to the low INRd regime, and that

IRR in the high INRd regime is significantly different,

as explained in Section 6.
An important finding in these studies, and a recur-

ring theme in this paper, is the need for large INRd

in order to effectively suppress weak interference. An

approach that addresses this problem is parametric es-

timation and subtraction (PES). PES takes advantage

of the fact that essentially all communications, radar,

and navigation signals are comprised of modulated si-

nusoidal carriers which can be modeled as

z(t) = A(t) cos [ωct+ ω∆(t) · t+ θ(t)] (22)

where A(t), ω∆(t), and θ(t) are parameters that vary
slowly relative to the period of the carrier 2π/ωc. This

makes it possible to estimate these parameters; in fact,

the process of estimating these parameters is essen-

tially demodulation. Once waveform parameters are

estimated, it is possible to synthesize a noise-free in-
terference estimate using Equation 22, which may then

serve as ẑ(t) directly, or used as d(t) in a feedforward

canceler if correction for additional effects (e.g., g(τ)) is

required. PES is particularly effective against interfer-
ence from modern communications systems, where the

“finite alphabet” property of digital modulations greatly

aids in waveform parameter estimation.

When applicable, PES has three compelling advan-

tages: First, INRd is not directly limited by the received
strength of the interference. Second, there is no ingress

of astronomy into reference channel; i.e., f(τ) = 0,

thereby ameliorating a primary toxicity concern. Third,

an external reference signal (i.e., from an auxiliary an-
tenna) is not required. The principal disadvantage of

PES is that the technique is sensitive to the details of

the waveform, including the stationarity of the waveform

parameters, unlike techniques in which the reference sig-

nal is obtained from a reference antenna.
In Ellingson et al. (2001), a feedforward canceler us-

ing PES is used to mitigate interference from GLONASS

from Australia Telescope Compact Array observations

of a spectral line at 1612.15 MHz. Despite INRx ≪ 1,
IRR in the range 20 dB to 25 dB is achieved. Other

studies involving similar PES-type cancelers include

Roshi (2002) for analog (NTSC) broadcast television;

Ellingson & Hampson (2003), for L-band air surveil-

lance radar; Lee (2008), addressing a wide variety of
analog and digital interference waveforms; Nigra et al.

(2010) for the US Global Positioning System (GPS); and

Ellingson (2020) for VHF-band US weather radio.

9. CONCLUSIONS

The studies cited in the previous section reach es-

sentially the same top-level conclusion: CTC shows

promise, but work is incomplete and there are a variety
of problems remaining to be solved. These problems fall

in two broad categories: (1) Algorithm design (What is

the appropriate algorithm, and how to anticipate levels

of performance); and (2) Implementation issues remain-
ing to be understood, quantified, and solved. This pa-

per is an attempt to gain a comprehensive understand-

ing of the first category of problems, and has identified

some key elements in the second category of problems.
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We have identified feedforward MMSE, including the re-

duced complexity version of Section 5, as a good starting

point for development of an operational CTC capabil-

ity for radio astronomy, and we have demonstrated that
this strategy can plausibly meet the requirements for the

“look through” capability envisioned in Sections 1 and

2. Along the way we have defined the relevant and useful

performance metrics IRR1, IRR2, and NIR. Finally, we

have confirmed and quantified the importance of high

INRd for effective CTC, and identified several strategies

by which this can be achieved even in scenarios where

INRx is low.
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APPENDIX

A. INTERFERENCE REJECTION RATIO

In this appendix we present expressions for the interference rejection ratios IRR1 and IRR2, defined in Section 3.2.

In Section A.1, these expressions are derived for feedforward MMSE for the special case of a length-1 filter (M = 1)

and a single narrowband interferer. In Section A.2, empirical expressions are proposed for the M > 1 case. In
Section A.3, expressions are derived for LMS with M = 1 and a single narrowband interferer.

A.1. Feedforward MMSE, M = 1

For notational convenience let us define x[k] = x(kTS), z[k] = z(kTS), and so on. As in Section 3, we assume s(kTS)

is negligible in this analysis; i.e.,

x[k] = z[k] + n[k] (A1)

For convenience and without loss of generality, z[k] is assumed to have unit time-average power and n[k] is assumed

to be complex white Gaussian noise (WGN) with variance σ2
n = 1/INRx. We further assume g(τ) is a complex-valued

constant with phase θ such that

d[k] =
√

INRd ejθz[k] + u[k] (A2)

where j =
√
−1 and u[k] is unit power complex WGN. In feedforward MMSE, we have

ẑ[k] = wHd[k] (A3)

where w is the solution to

Rw = r (A4)

In the context of stochastic analysis, time averages are more appropriately expressed as expectations over k. Thus,

Equations 11 and 12 of Section 3 become

R = E{d[k]dH [k]} (A5)

r = E{x∗[k]d[k]} (A6)

respectively.

In the special case of M = 1 and asymptotically large L, we have:

R = E{d[k]d∗[k]} = INRd + 1 (A7)

r = E{x∗[k]d[k]} = E{(z∗[k] + n∗[k])(
√

INRd ejθz[k] + u[k])} =
√

INRd ejθ (A8)

which, being 1× 1, we shall henceforth refer to simply as “R” and “r”, respectively. Subsequently,

w =

√
INRd ejθ

INRd + 1
(A9)
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which, also being 1× 1, we henceforth refer to simply as “w”. Using these findings in Equation A3, we obtain:

ẑ[k]=w∗d[k] (A10)

=

√
INRd e−jθ

INRd + 1

(

√

INRd ejθz[k] + u[k]
)

(A11)

=
INRd

INRd + 1
z[k] +

√
INRd

INRd + 1
ũ[k] (A12)

where ũ[k] has been defined as u[k] ejθ for notational convenience.

Section 3.2 describes two possible definitions of interference rejection ratio; namely IRR1 (Equation 14) and IRR2

(Equation 15). Let us begin with IRR2. In this case we define:

IRR2 =
E{|z[k]|2}

E{z[k]− ẑ[k]|2} (A13)

The distinction between IRR2 and IRR2 is important: IRR2 is a measurable outcome from a single trial, whereas IRR2

is a statistic determined from all trials. The latter can be defined in multiple ways; we choose Equation A13 because it

facilitates the simple derivation below (alternative definitions lead to much more difficult analysis), and also because

Equation A13 is not significantly biased by the intermittent spuriously large values of IRR that are encountered in

experiments in which the interferer is a deterministic signal with slowly-varying waveform parameters.
Since we earlier specified z[k] to have unit time-average power, the numerator of Equation A13 is 1. In the denomi-

nator, we find:

E{|z[k]− ẑ[k]|2}=E

{

∣

∣

∣

∣

z[k]− INRd

INRd + 1
z[k] +

√
INRd

INRd + 1
ũ[k]

∣

∣

∣

∣

2
}

(A14)

=

(

1− INRd

INRd + 1

)2

+
INRd

(INRd + 1)2
(A15)

=
1

(INRd + 1)2
+

INRd

(INRd + 1)2
(A16)

=
1

INRd + 1
(A17)

Therefore

IRR2 = INRd + 1 (asymptotically large L) (A18)

As expected, IRR2=1 for INRd = 0, and IRR2 → ∞ for INRd → ∞. Note also that IRR2 under these assumptions

is independent of INRx, since any limitation due to finite INRx is made irrelevant by the unlimited observation time

(L).

Now we wish to account for the fact that R and r must estimated from a limited number of samples; i.e., potentially
small L. To begin, note that the quality of the estimate of r depends on both INRd and INRx, whereas the quality of

the estimate of R depends only on INRd. With this in mind, let us assume that INRd is large enough that performance

is limited primarily by the quality of the estimate of r; i.e., that the quality of estimation of R has negligible effect in

comparison. The quantity r = E{x∗[k]d[k]} is estimated from L samples as follows:

r =
1

L

L
∑

k=1

x∗[k]d[k] (A19)

Substituting for x[k] and d[k] we find:

r=
1

L

L
∑

k=1

(z∗[k] + n∗[k])(
√

INRd ejθz[k] + u[k]) (A20)

=
1

L

L
∑

k=1

√

INRd ejθ|z[k]|2 + 1

L

L
∑

k=1

n∗[k]u[k] +
1

L

L
∑

k=1

√

INRd ejθz[k]n∗[k] +
1

L

L
∑

k=1

z∗[k]u[k] (A21)
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Since we previously set the variance of z[k] to one, the first term reduces to
√
INRd ejθ. The second term is negligible

since n[k] and u[k] are uncorrelated. The last two terms can be approximated as statistically-independent Gaussian

random variables with zero mean and variances INRd/(L · INRx) and 1/L, respectively. Therefore, the sum of the last

two terms can be approximated as a Gaussian random variable ṽ with zero mean and variance INRd/(L · INRx)+1/L.
Thus, we may interpret r as a random variable:

r =
√

INRd ejθ + ṽ (A22)

Subsequently, the revised expression for w as a random variable which accounts for limited number of samples L is

w =
r

R
=

√
INRd ejθ + ṽ

INRd + 1
(A23)

and the associated expression for the interference estimate is

ẑ[k] = w∗d[k] =

√
INRd e−jθ + ν̃

INRd + 1

(

√

INRd ejθz[k] + u[k]
)

(A24)

and the denominator of IRR2 becomes

E{|z[k]− ẑ[k]|2}=E

{

∣

∣

∣

∣

z[k]−
√
INRd e−jθ + ν̃

INRd + 1

(

√

INRd ejθz[k] + u[k]
)

∣

∣

∣

∣

2
}

(A25)

=E

{
∣

∣

∣

∣

z[k]

(

1− INRd

INRd + 1

)

−
√
INRd

INRd + 1
ejθz[k] ν̃ . . .

−
√
INRd

INRd + 1
e−jθu[k]− ν̃

INRd + 1
u[k]

∣

∣

∣

∣

2
}

(A26)

Neglecting terms corresponding to correlations between uncorrelated noise waveforms, we obtain

E{|z[k]− ẑ[k]|2} =

(

1− INRd

INRd + 1

)2

+

(

INRd

INRd + 1

)2
1

L · INRx
+

INRd

L(INRd + 1)2
+

INRd

(INRd + 1)2
(A27)

Thus we obtain

IRR2 =

[

(

1− INRd

INRd + 1

)2

+

(

INRd

INRd + 1

)2
1

L · INRx
+

INRd

L(INRd + 1)2
+

INRd

(INRd + 1)2

]

−1

(A28)

which simplifies to

IRR2 =
INRxL(INRd + 1)2

INRxL(INRd + 1) + INRd(INRd + INRx)
(A29)

This yields Equation A18 as expected when either L → ∞ or INRx → ∞. Of particular interest is the result in the

high- and low-INRd regimes. Note:
IRR2 → INRxL for INRd ≫ INRxL (A30)

IRR2 → INRd + 1 for INRd ≪ INRxL (A31)

Now we consider the alternative definition IRR1, which for M = 1 is

IRR1 =
E{|z[k]|2}

E{|z[k]− w ∗ g ∗ z[k]|2} (A32)

where g is the complex gain of the interference in the reference channel; i.e., d[k] = gz[k] + u[k]. From previous work

we see that we may represent this quantity as g =
√
INRd ejφ where φ is an independent random variable analogous

to θ. Assuming for the moment that z[k] is narrowband, z[k] may be factored from the expression yielding:

IRR1 =
1

E{|1− w ∗ g|2} (A33)
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Following the same analysis as before, we obtain:

IRR1 =
INRxL(INRd + 1)2

INRxL+ INRd(INRd + INRx)
(A34)

Like IRR2, this yields Equation A18 as expected when either L → ∞ or INRx → ∞, and also

IRR1 → INRxL for INRd ≫
√
INRxL (A35)

However,

IRR1 → (INRd + 1)2 for INRd ≪
√
INRxL (A36)

The dramatically larger value of IRR1 relative to IRR2 in the small INRd regime is due to the fact that IRR1 considers
only the change in the interference component of output signal, whereas IRR2 interprets noise injection by the canceler

as an additional increase in the interference in the output signal. Approximations made in the above derivation are

validated by the agreement with simulation results shown in Section 4.

A.2. Feedforward MMSE, M > 1

Derivations for expressions valid for M > 1 are not available. Instead we propose the following empirical expressions,

which are informed by the M = 1 analysis in the previous section. These expressions show excellent agreement with

the M > 1 simulation data (see e.g. Figures 4 and 5) and reduce as expected to the M = 1 expressions.

For IRR2:

IRR2 ≈ INRx(L/M)(M · INRd + 1)2

INRx(L/M)(M · INRd + 1) +M · INRd(M · INRd + INRx)
(A37)

IRR2 → INRxL/M for INRd ≫ INRxL (A38)

IRR2 → M · INRd + 1 for INRd ≪ INRxL/M
2 (A39)

For IRR1:

IRR1 ≈ INRxL(M · INRd + 1)2

INRxL+M2 · INRd(INRd + INRx)
(A40)

IRR1 → INRxL for INRd ≫ INRxL (A41)

IRR1 → (M · INRd + 1)2 for INRd ≪ INRxL and INRd ≪ L/M2 (A42)

A.3. LMS, M = 1

The difference between the theoretical IRR of M = 1 LMS and M = 1 feedforward MMSE is due to the jitter in w
due to the iterative update controlled by µ. For this analysis, we represent w as the random variable

√
INRd ejθ + e,

where e represents the noise in the update after convergence, and is well-modeled as WGN. Widrow et al. (1976) have

shown that once the algorithm has converged, the power σ2
e of this noise is µMSEmin where MSEmin is the minimum

mean square error associated with the ideal noise-free solution w = r/R. Furthermore,

MSEmin = E
{

|x[k]− w∗d[k]|2
}

=
1

INRd + 1
+

1

INRx
=

INRd + 1 + INRx

(INRd + 1)INRx
(A43)

In this case we have for the denominator of IRR2, in lieu of Equation A25,

E{|z[k]− ẑ[k]|2}=E

{

∣

∣

∣

∣

z[k]−
(√

INRd e−jθ

INRd + 1
+ e∗

)

(

√

INRd ejθz[k] + u[k]
)

∣

∣

∣

∣

2
}

=E

{

∣

∣

∣

∣

z[k]− INRd

INRd + 1
z[k]−

√
INRd e−jθ

INRd + 1
u[k]−

√

INRd ejθz[k]e∗ + e∗u[k]

∣

∣

∣

∣

2
}

=
1

INRd + 1
+ (INRd + 1)σ2

e (A44)
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where we have ignored the term representing the product of uncorrelated noise sources. Next we substitute σ2
e =

µMSEmin with MSEmin coming from Equation A43:

E{|z[k]− ẑ[k]|2}= 1

INRd + 1
+ (INRd + 1)µ

INRd + 1+ INRx

(INRd + 1)INRx

=
1

INRd + 1
+ µ

INRd + 1 + INRx

INRx
(A45)

Inserting Equation A45 into the definition of IRR2 we have:

IRR2 =

(

1

INRd + 1
+ µ

INRd + 1 + INRx

INRx

)

−1

(A46)

In the large- and small-INRd regimes, we find

IRR2 → 1

µ

INRx

INRd
for INRd ≫

√

INRx/µ (A47)

IRR2 → INRd + 1 for INRd ≪
√

INRx/µ (A48)

Now we consider the alternative definition IRR1. The analysis for M = 1 is the same as in Section A.1 up to

Equation A33. Following the same procedure, we find in the case of LMS:

IRR1 =

(

1

(INRd + 1)2
+ µINRd

INRd + 1 + INRx

(INRd + 1)INRx

)

−1

(A49)

In the large- and small-INRd regimes, we find

IRR1 → 1

µ

INRx

INRd
for INRd ≫ (INRx/µ)

1/3 (A50)

IRR1 → (INRd + 1)2 for INRd ≪ (INRx/µ)
1/3

(A51)

We have verified these expressions using simulations under the same conditions as our feedforward MMSE experi-

ments, and have found similarly excellent agreement.

B. DEMONSTRATION USING REAL-WORLD DATA

In this appendix, we demonstrate feedforward MMSE CTC for the mitigation of interference from a terrestrial radio

broadcast signal. In this demonstration, we consider the weather radio service of the U.S. National Oceanic and

Atmospheric Administration (NOAA). This service is provided by broadcast stations transmitting in 25 kHz channels

with center frequencies 162.400 MHz through 162.550 MHz, as shown in Figure 9. Each signal is analog narrowband
frequency-modulated voice. Each signal is continuously present, and the instantaneous occupied bandwidth varies

dynamically between nearly zero (effectively, a sinusoid) to most of the channel on millisecond timescales. These

signals are representative of a great number of sources of terrestrial interference throughout the HF, VHF, and UHF

wavebands.

Data was collected from the vicinity of Blacksburg, Virginia, USA using half-wavelength dipoles horizontal to the
ground and separated by about 5 m (about 2.7 wavelengths). The signal from each dipole was converted to baseband

and sampled at 2.4 million samples per second (MSPS) with 8 bits for “I” and 8 bits for “Q” using a software defined

radio with coherent channels. One dipole was aligned in azimuth so as to maximize the 162.450 MHz signal, resulting

in the spectrum shown in Figure 9. This signal was filtered (as described below) and served as the reference channel.
The other dipole was aligned in azimuth so as to minimize the 162.450 MHz signal. This served as the primary channel

input, simulating the signal received through a far sidelobe of a radio telescope.9 The sensitivity of the receivers is

dominated by internal noise, so the noise in the primary and reference channels is uncorrelated.

9 The typical level for the far sidelobes of a large reflector is less
than 0 dBi; see e.g., ITU Radiocommunication Bureau (2013b).
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L = 31 ∆ L = 104 ∆ L = 1042

INRd/INRxL +4.45 dB −0.81 dB −10.82 dB

IRR2 (Eq. A29) +21.52 dB +24.68 dB +26.98 dB

IRR (Obs.), 11.52 s +17.32 dB −4.20 dB +22.01 dB −2.67 dB > +25.4 dB

IRR (Obs.), 5.76 s +17.76 dB −3.76 dB +23.13 dB −1.55 dB > +25.4 dB

IRR (Obs.), 2.88 s +17.91 dB −3.61 dB +23.24 dB −1.44 dB > +25.4 dB

IRR (Obs.), 1.44 s +18.44 dB −3.08 dB +24.62 dB −0.06 dB > +25.4 dB

Table 4. Summary of predicted and observed CTC performance. “∆” is the ratio of observed performance to the predicted
value from Equation A29.

Raw samples were recorded and all subsequent processing was done off-line. First, the 162.450 MHz channel was

extracted from the primary and reference channel inputs using a Hamming filter of length 2048 having total bandwidth

of 25 kHz. The signals were not downsampled. The resulting primary channel input is shown in the leftmost panel of
Figure 10; note that the orientation of the dipoles has resulted in the primary channel INR (INRx) being much weaker

than the reference channel INR (INRd), as would normally be the case in an operational CTC system.

In order to estimate INR, we estimated noise baselines for the primary and reference channels by log-linear fitting

to the noise in the unoccupied 162.3125–162.3875 MHz and 162.5625–162.6375 MHz regions of the spectrum. Using

the extrapolated noise baseline to estimate noise power N in the channel, interference power may then be estimated
as the difference between total power in the channel I +N and N . Using this method, we estimate INRx = +7.96 dB

and INRd = +27.32 dB within the 25 kHz channel of interest.

The primary channel is processed using M = 1 feedforward MMSE. A single training period is used, but the

length of the training period is varied. Training period lengths of 3× 103, 1× 104, and 1× 105 samples are considered,
corresponding to 1.25 ms, 4.17 ms, and 41.7 ms, respectively. Because the signals were not downsampled after filtering,

the corresponding values of L are smaller by the factor (25 kHz)/(2.4 MSPS); i.e., L = 31, 104, and 1042; respectively.

The estimation filter is calculated once and held constant for the entire duration of the experiment.

The resulting spectra are shown in Figure 10. Clearly CTC is highly effective in this scenario; we see in fact that

L = 1042 is sufficient to render the interference essentially undetectable. Also note that the noise is neither noticeably
increased or noticeably modified. Thus, NIR is too small to be reliably measured, which is consistent with the findings

of Section 4.

Now we consider IRR relative to predictions using the theory presented in Appendix A. IRR2 is the relevant metric

for this experiment since only the total power can be measured directly, and the interference power must be estimated
using the extrapolated noise baseline as described earlier. Table 4 summarizes the results. First, note that the three

values of L considered correspond to INRd which is high, moderate, and low relative to the INRxL criterion identified

in Section 4 and Appendix A. The second row of Table 4 shows IRR2 calculated using Equation A29, which is valid in

all three cases. The remaining rows show IRR calculated from total power measurements as described previously. This

works sufficiently well for L = 31 and L = 104, but the fails for L = 1042 as the difference between interference+noise
and noise alone is too small to reliably measure in the L = 1042 case.

In order to assess the effect of any non-stationarity of the difference channel (g(τ) in Equation 3), the experiment is

performed with varying dataset lengths ranging from 11.52 s (the entire dataset) down to 1.44 s (the first one-eighth of

the dataset), as indicated in the left column of Table 4. When the entire dataset is used, we see that the observed IRR
is a few dB less than the theoretical value. However, the observed IRR increases monotonically with decreasing dataset

length, suggesting that there is a significant time-varying difference between the propagation channel experienced by

the two dipoles over these time scales. Therefore, in this scenario, stationarity considerations require retraining on

periods less than a few seconds in order to approach the theoretical limit of Equation A29. This is quite reasonable

since even the L = 1042 case corresponds to only 41.7 ms of training.
Finally, we conducted an experiment to confirm the “look through” capability of CTC in this scenario, and to assess

toxicity. This experiment is summarized in Figure 11. The panel labeled “(b)” shows a simulated astrophysical spectral

feature that was generated by filtering uncorrelated noise. This spectral feature is added to the original signal, with

the result shown in the panel labeled “(a)+(b)”. The rightmost panel shows the result after CTC with L = 1042,
using the entire dataset. Note that the spectral feature is recovered with no apparent distortion.
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Figure 9. Reference channel (d(t)) spectrum prior to channelization. 11.5 s integration, 146.48 Hz spectral resolution,
Blackmann-Harris window. The red line is the extrapolated noise floor.

C. EFFECT OF NON-STATIONARITY BETWEEN THE PRIMARY AND REFERENCE CHANNELS

As noted in Section 7.1, the performance of MMSE-based CTC is degraded if the impulse response g(τ), as defined

in Equation 3, is not constant; i.e., non-stationary. In this case we have g(τ, t); i.e., the function g(τ) is itself a function

of time. When this form of non-stationarity becomes significant, performance will depend on the specific way in which
g(τ, t) is changing with t, and also on what fraction of the time between updates of the filter is used for training.

However it is possible to calculate the impact on IRR for M = 1 as we shall now show.

For this analysis we assume that the period between filter updates is equal to the L-sample training period. When

M = 1, g(τ, t) reduces in the data model to a time-varying complex-valued constant g0(t). Assuming the same
normalization of signals as in Section A.1, the mean square variation due to non-stationarity will be

ǫ2 = E
{

|g0(t)− g0|2
}

(C52)

where the expectation is taken over L samples, and g0 is the mean of g0(t) over these samples. Considering first IRR2,

Equation A27 becomes

E{|z[k]− ẑ[k]|2} =

(

1− INRd

INRd + 1

)2

+

(

INRd

INRd + 1

)2
1

L · INRx
+

INRd

L(INRd + 1)2
+

INRd

(INRd + 1)2
+ ǫ2 (C53)

Subsequently Equation A29 becomes:

IRR2 =
INRxL(INRd + 1)2

INRxL(INRd + 1) + INRd(INRd + INRx) + ǫ2INRxL(INRd + 1)2
(C54)
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Figure 10. Processing of the 162.450 MHz signal. “No Mit.” is the primary channel (x(t)), and the remaining panels
show the output (y(t)) after feedforward MMSE CTC with the indicated number of training samples (corrected to account for
oversampling as described in the text). All other parameters as in Figure 9.

Similarly, for IRR1, Equation A34 becomes

IRR1 =
INRxL(INRd + 1)2

INRxL+ INRd(INRd + INRx) + ǫ2INRxL(INRd + 1)2
(C55)

We have tested these expressions against simulations in which g0(t) varies linearly in magnitude with t, and have found
excellent agreement.

Finally, let us consider how bad the non-stationarity must be to have a significant effect on IRR. For IRR2, the effect

of the term containing ǫ in the denominator of Equation C54 is negligible if

ǫ2 ≪ INRxL(INRd + 1) + INRd(INRd + INRx)

INRxL(INRd + 1)2
(C56)

The right side of this inequality is simply 1/IRR2 evaluated for ǫ = 0. Therefore the effect of non-stationarity is

negligible if

ǫ2 ≪
(

IRR2

∣

∣

ǫ=0

)

−1
(C57)

The same result is obtained for IRR1, so we may say generally that the effect of non-stationarity is negligible if

ǫ2 ≪ ( IRR|ǫ=0
)
−1

(C58)
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Figure 11. Processing of the 162.450 MHz signal, now with a simulated spectral feature added to the primary channel. (a)
and (b) show the original signal and the simulated spectral feature, separately. “(a)+(b)” is the primary channel including the
simulated spectral feature. “L = 1042” is the output after feedforward MMSE CTC with L = 1042. All other parameters as in
Figure 9 and 10.

Summarizing, the impact of non-stationarity is greatest when IRR is high, decreases with decreasing IRR, and is

negligible when Inequality C58 is satisfied.
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