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Abstract. This paper studies generalized Nash equilibrium problems that are given by rational
functions. The optimization problems are not assumed to be convex. Rational expressions for
Lagrange multipliers and feasible extensions of KKT points are introduced to compute a generalized
Nash equilibrium (GNE). We give a hierarchy of rational optimization problems to solve rational
generalized Nash equilibrium problems. The existence and computation of feasible extensions are
studied. The Moment-SOS relaxations are applied to solve the rational optimization problems. Under
some general assumptions, we show that the proposed hierarchy can compute a GNE if it exists or
detect its nonexistence. Numerical experiments are given to show the efficiency of the proposed
method.
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1. Introduction. The generalized Nash equilibrium problem (GNEP) is a kind
of game to find strategies for a group of players such that each player's objective
cannot be further optimized for given strategies of other players. Suppose there are
N players and the ith player's strategy is the real vector xi \in Rni . We write that

xi := (xi,1, . . . , xi,ni
), x := (x1, . . . , xN ).

Let n := n1 + \cdot \cdot \cdot + nN . When the ith player's strategy xi is focused, we also write
that x= (xi, x - i), where

x - i := (x1, . . . , xi - 1, xi+1, . . . , xN ).

A strategy tuple u := (u1, . . . , uN ) is said to be a generalized Nash equilibrium (GNE)
if each ui is the optimizer for the ith player's optimization

Fi(u - i) :

\Biggl\{ 
min

xi\in Rni
fi(xi, u - i)

s.t. xi \in Xi(u - i).
(1.1)

In the above, the Xi(u - i) is the feasible set and fi(xi, u - i) is the ith player's ob-
jective. They are parameterized by u - i = (u1, . . . , ui - 1, ui+1, . . . , uN ). Each player's
optimization is parameterized by the strategies of other players. We denote by \scrS 
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1588 JIAWANG NIE, XINDONG TANG, AND SUHAN ZHONG

the set of all GNEs and denote by \scrS i(u - i) the set of minimizers for the optimization
Fi(u - i). The entire feasible strategy set is

X := \{ (x1, . . . , xN ) | xi \in Xi(x - i) , i= 1, . . . ,N\} .(1.2)

A strategy tuple x= (x1, . . . , xN ) is said to be feasible if each xi \in Xi(x - i).
This paper studies rational generalized Nash equilibrium problems (rGNEPs); i.e.,

all the objectives and constraining functions are rational functions in x. We assume
the ith player's feasible set is given as

Xi(x - i) =

\left\{     xi \in Rni

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
gi,j(xi, x - i) = 0(j \in \scrI (i)

0 ),

gi,j(xi, x - i)\geq 0 (j \in \scrI (i)
1 ),

gi,j(xi, x - i)> 0 (j \in \scrI (i)
2 )

\right\}     ,(1.3)

where \scrI (i)
0 ,\scrI (i)

1 ,\scrI (i)
2 are respectively the labeling sets (possibly empty) for equality,

weak inequality, and strict inequality constraints. For the rational function to be well
defined, we assume all denominators are positive in the feasible set. If this is not the
case, we can add strict inequality constraints for denominators. Rational functions
frequently appear in GNEPs. When defining functions are polynomials, the GNEPs
are studied in the recent work [40, 42, 43]. For convenience, rational functions are
also called rational polynomials throughout the paper.

A special case of GNEPs is the Nash equilibrium problem (NEP): each feasible
set Xi(x - i) is independent of x - i. When NEPs are defined by polynomials, a method
is given in [42] to solve them. For GNEPs given by convex polynomials, how to solve
them is studied in the recent work [43]. We refer the reader to [9, 12, 13, 15, 53] for
related work.

One may reformulate rGNEPs equivalently as polynomial GNEPs by introducing
new variables or changing the description of the feasible set. However, doing so
may lose some useful properties. For instance, the convexity may be lost if we use
polynomial reformulations. The following is such an example.

Example 1.1. Consider the 2-player rGNEP

min
x1\in R2

2(x1,1)
2+(x1,2)

2+x1,1x1,2\cdot eT x2

x1,1
min
x2\in R2

2(x2,1)
2+(x2,2)

2 - x2,1x2,2\cdot eT x1

x2,1

s.t. x1,1  - x2,1

x1,2
\geq 0, s.t. 1 - eT (x2  - x1)\geq 0,

x1,1 > 0, x1,2 > 0, x2,1  - 1\geq 0, x2,2  - 1\geq 0.

(1.4)

In the above, e = [1 1]T . In the domain (x1, x2) > 0, each player's optimization is
convex in its strategy variable. We can equivalently express this GNEP as polynomial
optimization

min
x1\in R3

x1,3[2(x1,1)
2+(x1,2)

2+x1,1x1,2\cdot \^eT x2] min
x2\in R3

x2,3[2(x2,1)
2+(x2,2)

2 - x2,1x2,2\cdot \^eT x1]

s.t. x1,1x1,2  - x2,1 \geq 0, s.t. 1 - \^eT (x2  - x1)\geq 0,
x1,1 > 0, x1,2 > 0, x2,1  - 1\geq 0, x2,2  - 1\geq 0,
x1,1x1,3 = 1, x2,1x2,3 = 1,

(1.5)

where \^e= [1 1 0]T . However, the two above optimization problems are not convex.

The GNEPs were originally introduced to model economic problems. They are
now widely used in various fields, such as transportation, telecommunications, and
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RATIONAL GENERALIZED NASH EQUILIBRIUM PROBLEMS 1589

machine learning. We refer the reader to [1, 5, 7, 25, 31, 46] for recent applications
of GNEPs. It is typically difficult to solve GNEPs. The major challenge is due to in-
teractions among different players' strategies on the objectives and feasible sets. The
set of GNEs may be nonconvex, even for convex NEPs (see [42]). Convex GNEPs can
be reformulated as variational inequality (VI) or quasi-variational inequality (QVI)
problems [11, 32, 45]. A semidefinite relaxation method for convex GNEPs of polyno-
mials is given in [43]. The penalty functions are used to solve GNEPs in [2, 14]. An
augmented Lagrangian method is given in [24]. The Nikaido--Isoda function-related
methods are given in [10, 52]. Newton-type methods are given in [12, 53]. An inte-
rior point method is given in [9]. Gauss--Seidel-type methods are studied in [16, 40].
Lemke's method is used to solve affine GNEPs [49]. An ADMM-type method for
solving GNEPs in Hilbert spaces is given in [4]. Moreover, quasi-NEs for nonconvex
GNEPs are studied in [8, 47]. We refer the reader to [13, 15, 17] for surveys on GNEPs.

Contributions. We study GNEPs that are given by rational functions. This
is motivated by earlier work on polynomial NEPs [42] and convex GNEPs [43]. In
various applications, people often face GNEPs given by rational functions. Even for
polynomial GNEPs, the Lagrange multiplier expressions are usually given by rational
functions instead of polynomial ones. This was observed in [43]. Mathematically,
rGNEPs can be equivalently formulated as polynomial GNEPs by introducing new
variables. However, such a reformulation usually destroys some nice properties (e.g.,
convexity may be lost; see Example 1.1). Moreover, solving the reformulated poly-
nomial GNEPs is usually more computationally expensive. This can be observed in
numerical experiments.

For convex GNEPs, each feasible KKT point is a GNE. For nonconvex GNEPs,
a KKT point is typically not a GNE (see Example 3.1). When we solve nonconvex
GNEPs, the earlier existing methods may not get a GNE or are not able to detect its
nonexistence. There exists relatively little work for solving nonconvex GNEPs. In this
paper, we propose a new approach for solving rGNEPs. The optimization problems
are not assumed to be convex. Our new approach is based on a hierarchy of rational
optimization problems. Our major contributions are the following:

\bullet First, we introduce rational expressions for Lagrange multipliers of each
player's optimization. These expressions can be used to give new constraints
for GNEs.

\bullet Second, we introduce the new concept of feasible extensions for some KKT
points. More specifically, for a KKT point that is not a GNE, we extend it to
the image of a rational function, such that the image is feasible on the KKT
set. The feasible extension can be used to preclude KKT points that are not
GNEs. For nonconvex rGNEPs, the usage of rational feasible extensions is
important for computing a GNE (if it exists) or for detecting its nonexistence.

\bullet Third, the Moment-SOS relaxations are used to solve rational optimization
problems that are obtained from using Lagrange multiplier expressions and
feasible extensions of some KKT points. Unlike polynomial optimization, a
rational optimization problem may have strict inequalities. We study the
properties of Moment-SOS relaxations for solving them.

The paper is organized as follows. Some preliminaries for moment and polynomial
optimization are given in section 2. A hierarchy of rational optimization problems for
solving the GNEP is proposed in section 3. Feasible extensions of KKT points are
studied in section 4. We show how to solve rational optimization problems in section 5.
Some numerical experiments are given in section 6. Some conclusions and discussions
are given in section 7.
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1590 JIAWANG NIE, XINDONG TANG, AND SUHAN ZHONG

2. Preliminaries. This following notation is used throughout the paper. The
symbol N denotes the set of nonnegative integers. The symbol R denotes the set of
real numbers. For a positive integer k, denote the set [k] := \{ 1, . . . , k\} . For a real
number t, \lceil t\rceil denotes the smallest integer not smaller than t. We use ei to denote
the vector such that the ith entry is 1 and all others are zeros, and we use e to denote
the vector of all ones. For a vector u in the Euclidean space, its Euclidean norm is
denoted as \| u\| . By writing A \succeq 0 (resp., A \succ 0), we mean that the matrix A is
symmetric positive semidefinite (resp., positive definite). Let R[x] denote the ring
of real polynomials in x and R[x]d denote the set of polynomials with degrees not
bigger than d. For the ith player's strategy vector xi, the notations R[xi] and R[xi]d
are defined similarly. For a polynomial p \in R[x], we write p = 0 to mean that p is
the identically zero polynomial, and p \not = 0 means that p is not identically zero. The
total degree of p is denoted by deg(p), and its partial degree on xi is denoted by
degxi

(p). For a function f(x), the notation \nabla xi
f := ( \partial f

\partial xi,j
)j\in [ni] denotes its gradient

with respect to xi. For a set X, we use cl(X) to denote its closure in the Euclidean
topology. A property is said to hold generically if it holds for all points in the space
of input data except a set of Lebesgue measure zero.

Let z = (z1, . . . , zl) stand for the vector x or xi. For a power \alpha := (\alpha 1, . . . , \alpha l)\in Nl,
we denote that z\alpha := z\alpha 1

1 \cdot \cdot \cdot z\alpha l

l and | \alpha | := \alpha 1+ \cdot \cdot \cdot +\alpha l. For a degree d> 0, we denote
the power set Nl

d := \{ \alpha \in Nl : | \alpha | \leq d\} . We use [z]d to denote the vector of all
monomials in z whose degrees are at most d, ordered in the graded alphabetical
ordering, i.e., [z]d := [1, z1, . . . , zl, z

2
1 , . . . , z

d
l ]

T .

2.1. Ideals and quadratic modules. For a polynomial p \in R[x] and subsets
I, J \subseteq R[x], define the product and Minkowski sum

p \cdot I := \{ pq : q \in I\} , I + J := \{ a+ b : a\in I, b\in J\} .
The subset I is an ideal if p \cdot I \subseteq I for all p\in R[x] and I + I \subseteq I. The ideal generated
by a polynomial tuple h= (h1, . . . , hm1

) is Ideal[h] := h1 \cdot R[x] + \cdot \cdot \cdot + hm1
\cdot R[x]. For

a degree d, the dth truncation of Ideal[h] is

Ideal[h]d := h1 \cdot R[x]d - deg(h1) + \cdot \cdot \cdot + hm1 \cdot R[x]d - deg(hm1
).

A polynomial \sigma \in R[x] is said to be a sum-of-squares (SOS) if \sigma = p21 + \cdot \cdot \cdot + p2k
for some pi \in R[x]. We use \Sigma [x] to denote the set of all SOS polynomials in x and
denote the truncation \Sigma [x]d := \Sigma [x] \cap R[x]d. The quadratic module of a polynomial
tuple g = (g1, . . . , gm2) is Qmod[g] := \Sigma [x] + g1 \cdot \Sigma [x] + \cdot \cdot \cdot + gm2 \cdot \Sigma [x]. Similarly, the
degree-d truncation of Qmod[g] is

Qmod[g]d := \Sigma [x]d + g1 \cdot \Sigma [x]d - deg(g1) + \cdot \cdot \cdot + gm2
\cdot \Sigma [x]d - deg(gm2

).

The polynomial tuples h, g determine the basic closed semi-algebraic set

T := \{ x\in Rn : hi(x) = 0(i\in [m1]), gj(x)\geq 0 (j \in [m2])\} .(2.1)

Clearly, every polynomial in Ideal[h] + Qmod[g] is nonnegative on the set T . We
denote by P(T ) the set of polynomials nonnegative on T and denote the truncation
Pd(T ) :=P(T )\cap R[x]d. Clearly, Ideal[h]+Qmod[g]\subseteq P(T ). The sets P(T ), Pd(T )
are convex cones, and Pd(T ) is the dual cone of the moment cone

Rd(T ) :=

\Biggl\{ 
M\sum 
i=1

\lambda i[ui]d : ui \in T,\lambda i \geq 0,M \in N

\Biggr\} 
.

When T is compact, the cone Rd(T ) is closed and it equals the dual cone of Pd(T ).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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RATIONAL GENERALIZED NASH EQUILIBRIUM PROBLEMS 1591

The set Ideal[h]+Qmod[g] is said to be archimedean if there exists p\in Ideal[h]+
Qmod[g] such that the inequality p(x)\geq 0 defines a compact set. If Ideal[h]+Qmod[g]
is archimedean, then T is compact. Conversely, if T is compact, say T is contained in
the ball \| x\| 2 \leq R, then Ideal[h]+Qmod[g,R - \| z\| 2] is archimedean. When Ideal[h]+
Qmod[g] is archimedean, if a polynomial p > 0 on T , then p \in Ideal[h] + Qmod[g].
This conclusion is referenced as Putinar's Positivstellensatz [48].

2.2. Localizing and moment matrices. For an integer k \geq 0, a real vector
y = (y\alpha )\alpha \in Nn

2k
is said to be a truncated multi-sequence (tms) of degree 2k. For a

polynomial f =
\sum 

\alpha \in Nn
2k
f\alpha x

\alpha , define the operation

\langle f, y\rangle :=
\sum 

\alpha \in Nn
2k

f\alpha y\alpha .(2.2)

The operation \langle f, y\rangle is bilinear in f and y. For a polynomial q \in R[x]2t (t\leq k) and a
degree s\leq k - \lceil deg(q)/2\rceil , the kth order localizing matrix of q for y is the symmetric

matrix L
(k)
q [y] such that (the vec(a) denotes the coefficient vector of a)

\langle qa2, y\rangle = vec(a)T
\bigl( 
L(k)
q [y]

\bigr) 
vec(a)(2.3)

for all a \in R[x]s. When q = 1 (the constant one polynomial), the localizing matrix

L
(k)
q [y] becomes the kth order moment matrix Mk[y] :=L

(k)
1 [y].

Localizing and moment matrices can be used to approximate the moment cone
Rd(T ) by semidefinite programming relaxations. They are useful for solving poly-
nomial, matrix, and tensor optimization [22, 37, 38, 39]. We refer the reader to
[26, 28, 30] for a general introduction to polynomial optimization and moment
problems.

2.3. Lagrange multiplier expressions. The Karush--Kuhn--Tucker (KKT) con-
ditions are useful for solving GNEPs and NEPs. We review optimality conditions for
nonlinear optimization (see [3]). Frequently used constraint qualifications are the
linear independence constraint qualification (LICQ) and the Mangasarian--Fromovitz
constraint qualification (MFCQ). For strict inequality constraints, their associated
Lagrange multipliers are zeros, and hence the KKT conditions only concern weak
inequality constraints. For convenience of description, we write that \scrI (i)

0 \cup \scrI (i)
1 =

\{ 1, . . . ,mi\} and gi = (gi,1, . . . , gi,mi). Under certain constraint qualifications, if xi \in 
Xi(x - i) is a minimizer of Fi(x - i), then there exists a Lagrange multiplier vector
\lambda i := (\lambda i,1, . . . , \lambda i,mi

) such that\left\{   \nabla xi
fi(x) - 

mi\sum 
j=1

\lambda i,j\nabla xi
gi,j(x) = 0,

\lambda i \bot gi(x), \lambda i,j \geq 0 (j \in \scrI (i)
1 ).

(2.4)

In the above, \lambda i \bot gi(x) means that \lambda i is perpendicular to gi(x). The system (2.4)
gives the first order KKT conditions for Fi(x - i). Such (xi, \lambda i) is called a critical pair.
Under the constraint qualifications, every GNE satisfies (2.4).

Consider the ith player's optimization problem Fi(x - i). If there exists a rational
vector function \tau i(x) such that \lambda i = \tau i(x) for every critical pair (xi, \lambda i) of Fi(x - i),
then \tau i(x) is called a rational Lagrange multiplier expression (LME) for \lambda i. As in
(2.4), each critical pair (xi, \lambda i) of the optimization Fi(x - i) satisfies

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1592 JIAWANG NIE, XINDONG TANG, AND SUHAN ZHONG\left[       
\nabla xi

gi,1(x) \nabla xi
gi,2(x) \cdot \cdot \cdot \nabla xi

gi,mi
(x)

gi,1(x) 0 \cdot \cdot \cdot 0
0 gi,2(x) \cdot \cdot \cdot 0
...

...
. . .

...
0 0 \cdot \cdot \cdot gi,mi(x)

\right]       
\underbrace{}  \underbrace{}  

Gi(x)

\left[     
\lambda i,1

\lambda i,2

...
\lambda i,mi

\right]     
\underbrace{}  \underbrace{}  

\lambda i

=

\left[     
\nabla xi

fi(x)
0
...
0

\right]     
\underbrace{}  \underbrace{}  

\^fi(x)

.(2.5)

If there exist a matrix polynomial Ti(x) and a nonzero scalar polynomial qi(x) such
that

Ti(x)Gi(x) = qi(x)Imi
,

then (2.5) implies that qi(x)\lambda i = Ti(x) \^fi(x). This gives the following rational LME:

\tau i(x) = Ti(x) \^fi(x)/qi(x).(2.6)

At a point u, if qi(u) = 0, then Ti(u) \^fi(u) = 0.
The rational expression (2.6) almost always exists. This can be shown as follows.

Let Hi(x) :=Gi(x)
TGi(x); then Hi(x) is a matrix of rational functions and Hi(x)\succeq 0

on X. If the determinant detHi(x) is not identically zero (this is the general case),
then we have

adjHi(x) \cdot Hi(x) = detHi(x) \cdot Imi
,

where adjHi(x) denotes the adjugate matrix of Hi(x). Let di(x) be the denominator
of detHi(x); then Ti(x)Gi(x) = qi(x) \cdot Imi

for the selection

Ti(x) = di(x) \cdot adjHi(x) \cdot Gi(x)
T , qi(x) = di(x) \cdot detHi(x).(2.7)

The above choices of Ti(x) and qi(x) may not be computationally efficient. However,
there often exist different options for Ti(x) and qi(x) to make (2.6) hold. For compu-
tational efficiency, we prefer that Ti(x) and qi(x) have low degrees. It is worth noting
that once their degrees are given, the equation Ti(x)Gi(x) = qi(x) \cdot Imi

is linear in
the coefficients of Ti(x) and qi(x). So we can obtain Ti(x), qi(x) by solving linear
equations. The following is such an example.

Example 2.1. Let x= (x1, x2), x1 \in R1, x2 \in R1, and g2(x) = (1 - x1  - x2, x2). We
look for T2(x), q2(x) such that T2(x)G2(x) = q2(x) \cdot I2, where

G2(x) =

\left[   - 1 1
1 - x1  - x2 0

0 x2

\right]  .

We consider q2(x) and T2(x) having degree 1, i.e.,

T2(x) = (ai,j + bi,jx1 + ci,jx2)1\leq i\leq 2,1\leq j\leq 3,
q2(x) = a0 + b0x1 + c0x2.

The equality T2(x)G2(x) = q2(x) \cdot I2 gives the equations

a1,1 = b1,1 = b1,2 = c1,2 = b2,2 = c2,2 = b1,3 = c1,3 = b2,3 = c2,3 = 0,
a0 = a2,1 = a1,2 = a2,2 = - b2,1 = - c2,1 = - b0,
a1,3 = - c1,1, c0 = - c1,1  - a1,2, a2,3 = c0  - c2,1.

We can choose a0 = 1 and c1,1 = - 1 to obtain

T2(x) =

\biggl[ 
 - x2 1 1

1 - x1  - x2 1 1

\biggr] 
, q2(x) = 1 - x1.

We refer the reader to [36, 43] for more details about LMEs.
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RATIONAL GENERALIZED NASH EQUILIBRIUM PROBLEMS 1593

3. A hierarchy of optimization problems. In this section, we propose a new
approach for solving rGNEPs. It requires solving a hierarchy of rational optimization
problems. They are obtained from LMEs and feasible extensions of KKT points that
are not GNEs. Under some general assumptions, we prove that this hierarchy either
returns a GNE or detects its nonexistence.

As shown in subsection 2.3, one can express Lagrange multipliers as rational func-
tions on the KKT set. Recall the set X as in (1.2). For the ith player's optimization
Fi(x - i), we suppose that there is a tuple \tau i = (\tau i,j)j\in \scrI (i)

0 \cup \scrI (i)
1

of rational functions in

x, with denominators positive on X, such that

\lambda i,j = \tau i,j(x), j \in \scrI (i)
0 \cup \scrI (i)

1 ,(3.1)

for each critical pair (xi, \lambda i) of Fi(x - i). When Gi(x) has full column rank on X,
there exist LMEs satisfying (3.1) by [43, Proposition 3.6]. Note that the Lagrange
multipliers are zero for strict inequality constraints. So, the KKT set is

\scrK :=

\left\{   x\in X

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\nabla xifi =

\sum 
j\in \scrI (i)

0 \cup \scrI (i)
1

\tau i,j(x)\nabla xigi,j(x) (i\in [N ]),

\tau i,j(x)gi,j(x) = 0, \tau i,j(x)\geq 0 (i\in [N ], j \in \scrI (i)
1 )

\right\}   .(3.2)

Not every point u = (u1, . . . , uN ) \in \scrK is a GNE. How do we preclude non-GNEs
in \scrK ? We consider the case that u is not a GNE. Then there exist i\in [N ] and a point
vi \in Xi(u - i) such that

fi(vi, u - i) - fi(ui, u - i) < 0.(3.3)

However, if x := (x1, . . . , xN ) is a GNE and vi is also feasible for Fi(x - i), i.e., vi \in 
Xi(x - i), then x must satisfy the inequality

fi(vi, x - i) - fi(xi, x - i)\geq 0.(3.4)

That is, every GNE x satisfies the constraint (3.4) if vi \in Xi(x - i). This is used to
solve NEPs in [42]. However, unlike NEPs, the feasible set of Xi(x - i) depends on x - i.
As a result, a point vi \in Xi(u - i) may not be feasible for Fi(x - i); i.e., it is possible
that vi \not \in Xi(x - i) for a GNE x. For such a case, the inequality (3.4) may not hold for
any GNEs. In other words, it is possible that for every GNE x\ast = (x\ast 

i , x
\ast 
 - i), it may

happen that vi \not \in Xi(x
\ast 
 - i) and

fi(vi, x
\ast 
 - i)< fi(x

\ast 
i , x

\ast 
 - i) = min

xi\in X(x\ast 
 - i)

fi(xi, x
\ast 
 - i).

The following is such an example.

Example 3.1. Consider the 2-player GNEP

min
x1\in R2

(x1,1  - x1,2)x2,1x2,2  - xT
1 x1 min

x2\in R2
3(x2,1  - x1,1)

2 + 2(x2,2  - x1,2)
2

s.t. 1 - eTx\geq 0, x1 \geq 0, s.t. 2 - eTx\geq 0, x2 \geq 0.

It has only two GNEs x\ast = (x\ast 
1, x

\ast 
2):

x\ast 
1 = x\ast 

2 = (0.5,0) and x\ast 
1 = x\ast 

2 = (0,0.5).

Consider the point u= (u1, u2) \in \scrK , with u1 = u2 = (0,0). The u1 is not a minimizer
of F1(u2), so u is not a GNE. The optimizers of F1(u2) are v1 = (1,0) and (0,1). One
can check that for either GNE x\ast , it holds that

v1 \not \in X1(x
\ast 
2), f1(v1, x

\ast 
2) - f1(x

\ast 
1, x

\ast 
2) = - 0.75< 0.

The inequality (3.4) does not hold for any GNE.
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1594 JIAWANG NIE, XINDONG TANG, AND SUHAN ZHONG

The above example shows that the constraint (3.4) may not hold for any GNE.
However, if there is a function pi in x such that

vi = pi(u), pi(x)\in Xi(x - i) for all x\in \scrK ,(3.5)

then the inequality

fi(pi(x), x - i) - fi(xi, x - i) \geq 0(3.6)

separates GNEs and non-GNEs. This is because fi(xi, x - i)\leq fi(pi(x), x - i) for every
GNE x, since pi(x)\in Xi(x - i). This motivates us to make the following assumption.

Assumption 3.2. For a given triple (u, i, vi), with u\in \scrK , i\in [N ] and vi \in \scrS i(u - i),
there exists a rational vector-valued function pi in x := (x1, . . . , xN ) such that (3.5)
holds.

The function pi satisfying (3.5) is called a feasible extension of vi at the point u.
Feasible extensions are useful for solving bilevel optimization [41]. In section 4, we
will discuss the existence and computation of such pi.

3.1. An algorithm for solving GNEPs. Based on LMEs and feasible exten-
sions, we propose the following algorithm for solving GNEPs.

Algorithm 3.3. For the given GNEP of (1.1), do the following:
Step 0 Find the Lagrange multiplier expressions as in (3.1). Let U :=\scrK and k := 0.

Choose a generic positive definite matrix \Theta of length n+ 1.

Step 1 Solve the following optimization (note [x]1 =
\bigl[ 
1 xT

\bigr] T
):\biggl\{ 

min [x]T1 \Theta [x]1
s.t. x\in U .

(3.7)

If (3.7) is infeasible, output that either (1.1) has no GNEs or there is no GNE
in the set \scrK . Otherwise, solve it for a minimizer u := (u1, . . . , uN ) if it exists.

Step 2 For each i= 1, . . . ,N , solve the following optimization:\biggl\{ 
\delta i :=min fi(xi, u - i) - fi(ui, u - i)

s.t. xi \in Xi(u - i)
(3.8)

for a minimizer vi. Denote the label set

\scrN := \{ i\in [N ] : \delta i < 0\} .(3.9)

If \scrN = \emptyset , then u is a GNE and stop; otherwise, go to Step 3.
Step 3 For every above triple (u, i, vi) with i \in \scrN , find a rational feasible extension

pi satisfying (3.5). Then update the set U as

U :=U \cap 
\bigl\{ 
x\in Rn : fi(pi(x), x - i) - fi(xi, x - i)\geq 0 \forall i\in \scrN 

\bigr\} 
.(3.10)

Then, let k := k+ 1 and go to Step 1.

In Step 0, we can let \Theta := RTR for a generically generated square matrix R.
Then, the objective [x]T1 \Theta [x]1 is generic, coercive, and strictly convex, and so the
optimization problem (3.7) has a unique minimizer if it is feasible. This gives compu-
tational convenience for solving rational optimization with Moment-SOS relaxations
(see Theorem 5.3). Note that Algorithm 3.3 is applicable for all choices of \Theta (e.g.,
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RATIONAL GENERALIZED NASH EQUILIBRIUM PROBLEMS 1595

\Theta = In+1). But a generically selected positive definite \Theta is usually preferable in com-
putational practice. The optimization problem (3.7) may have constraints given by
rational polynomials, or it may have strict inequality constraints. The optimization
(3.8) may have both rational objective and rational constraints. They can be solved
by Moment-SOS relaxations. The optimization problem (3.8) has a nonempty feasible
set, since ui \in Xi(u - i). In applications, people usually assume (3.8) has a minimizer.
For instance, this is the case if its feasible set is compact or if its objective is coercive.
We discuss how to solve the appearing rational optimization problems in section 5.

If a GNE is a KKT point, i.e., it belongs to the set \scrK as in (3.2), then it belongs
to the set U in every loop. In other words, the update of U in Algorithm 3.3 does
not preclude any GNEs. The set U stays nonempty if there is a GNE lying in \scrK .

In Algorithm 3.3, we need LMEs and feasible extensions. As shown in subsection
2.3, LMEs almost always exist. For standard constraints like box, simplex, or balls,
explicit LMEs are given in (6.2)--(6.5). When denominators of LMEs vanish at some
points, Algorithm 3.3 is still applicable, because denominators can be cancelled by
multiplying their least common multiples. We refer the reader to Example 6.2 for
such cases. The existence of a feasible extension is ensured if \scrK is a finite set (see
Theorem 4.2). There exist explicit expressions for many common constraints; see
subsection 4.1. In summary, Algorithm 3.3 can be used for solving many rGNEPs.

3.2. Convergence analysis. We now study the convergence of Algorithm 3.3.
First, an interesting case is the convex rGNEP. A GNEP is said to be convex

if every player's optimization problem is convex: for each fixed x - i, the objective
fi(xi, x - i) is convex in xi, the inequality constraining functions in (1.3) are concave in
xi, and all equality constraining functions are linear in xi. Interestingly, the concavity
of constraining functions can be weakened to the convexity of feasible sets under
certain assumptions. As in [27], for given x - i, the feasible set Xi(x - i) is said to be

nondegenerate if for every j \in \scrI (i)
0 \cup \scrI (i)

1 , the gradient\nabla xi
gi,j(x) \not = 0 for all xi \in Xi(x - i)

such that gi,j(x) = 0. The set Xi(x - i) is said to satisfy Slater's condition if it contains
a point that makes all inequalities strictly hold.

Theorem 3.4. Assume the Lagrange multipliers are expressed as in (3.1) with
denominators positive on X. Suppose that each objective fi is convex in xi, each gi,j
is linear in xi for j \in \scrI (i)

0 , and each strategy set Xi(x - i) is convex and nondegenerate
and satisfies Slater's condition. Then, Algorithm 3.3 terminates at the initial loop
k= 0, and it either returns a GNE or detects nonexistence of GNEs.

Proof. Under the given assumptions, a feasible point is a minimizer of the opti-
mization Fi(x - i) if and only if it is a KKT point. This is shown in [27]. Equivalently,
a point is a GNE if and only if it belongs to the set \scrK . If there is a GNE, Algorithm 3.3
can get one in Step 2 for the initial loop k= 0, and then it terminates. If there is no
GNE, the KKT point set \scrK is empty, then Algorithm 3.3 terminates in Step 1 for the
initial loop.

We remark that if there exist a matrix function Ti(x) and a scalar function qi(x)
such that

Ti(x)Gi(x) = qi(x)Imi

and qi(x)> 0 on X (see (2.5) for Gi(x)), then Xi(x - i) must be nondegenerate. This
can be implied by [43, Proposition 3.6]. Moreover, when each gi,j is linear in xi for

j \in \scrI (i)
0 and every gi,j is concave in xi for j \in \scrI (i)

1 , the Xi(x - i) is nondegenerate
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1596 JIAWANG NIE, XINDONG TANG, AND SUHAN ZHONG

when it satisfies Slater's condition [27]. When the nondegeneracy condition fails, a
GNE may not be a KKT point, even under the convexity assumption and Slater's
condition. The following is such an example.

Example 3.5. Consider the GNEP

min
x1\in R2

2x1,1 + x1,2 min
x2\in R2

\| x1 + x2\| 2

s.t. xT
1 x2 \geq 0, x1,1x1,2 \geq 0, s.t. x2,1  - 1\geq 0, x2,2  - 1\geq 0.

(3.11)

In the above, all player's objectives and feasible sets are convex, and Slater's condition
holds. The feasible set X1(x2) is degenerate. The KKT system for this GNEP is\left\{               

e+ e1 = x2\lambda 1,1 + (x1,1e2 + x1,2e1)\lambda 1,2,
2(x1 + x2) = e1 \cdot \lambda 2,1 + e2 \cdot \lambda 2,2,
\lambda 1,1 \cdot xT

1 x2 = 0, \lambda 1,2 \cdot x1,1x1,2 = 0,
\lambda 2,1 \cdot (x2,1  - 1) = 0, \lambda 2,2 \cdot (x2,2  - 1) = 0,
xT
1 x2 \geq 0, x1,1x1,2 \geq 0, x2,1 \geq 1, x2,2 \geq 1,
\lambda 1,1 \geq 0, \lambda 1,2 \geq 0, \lambda 2,1 \geq 0, \lambda 2,2 \geq 0.

(3.12)

One may check that (3.12) has no solutions, i.e., this convex GNEP does not have
any KKT point. However, the first player's feasible set is degenerate at x1 = (0,0),
which corresponds to the unique GNE

x\ast = (x\ast 
1, x

\ast 
2), x\ast 

1 = (0,0), x\ast 
2 = (1,1).

Since the feasible set is degenerate, there do not exist LMEs in the form of (2.6) that
have denominators positive on X. However, if we choose\left\{               

T1(x) =

\biggl[ 
 - x1,1x1,2 0 x1,2 x1,2

xT
1 x2 0  - x2,1  - x2,1

\biggr] 
,

T2(x) =

\biggl[ 
1 0 0 0
0 1 0 0

\biggr] 
,

q1(x) = (x1,2)
2x2,2,

q2(x) = 1,

(3.13)

then Ti(x)Gi(x) = qi(x)Imi for each i= 1,2, and (2.6) gives the LMEs

\lambda 1,1 =
 - x1,1

x1,2x2,2

\partial f1
\partial x1,1

, \lambda 1,2 =
xT
1 x2

(x1,2)2x2,2

\partial f1
\partial x1,1

,

\lambda 2,1 =
\partial f2
\partial x2,1

, \lambda 2,2 =
\partial f2
\partial x2,2

.

The denominator q1 has zeros on X. Interestingly, Algorithm 3.3 still finds the GNE
in the initial loop (see Example 6.3(iv)).

Second, we prove that Algorithm 3.3 terminates within finitely many loops under
a finiteness assumption on KKT points. Recall that \scrS denotes the set of all GNEs.
When the complement \scrK \setminus \scrS is a finite set, Algorithm 3.3 must terminate within
finitely many loops.

Theorem 3.6. Assume the Lagrange multipliers are expressed as in (3.1). Sup-
pose Assumption 3.2 holds for every triple (u, i, vi) produced by Algorithm 3.3. If the
complement set \scrK \setminus \scrS is finite, then Algorithm 3.3 must terminate within finitely many
loops, and it either returns a GNE or detects its nonexistence.
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Proof. When \scrK \setminus \scrS = \emptyset , the algorithm terminates in the initial loop k= 0. When
\scrK \setminus \scrS \not = \emptyset and some u\in \scrK \setminus \scrS is the minimizer of (3.7), the set \scrN \not = \emptyset . For each i\in \scrN ,
there exists vi \in \scrS i(u - i) such that

\delta i = fi(vi, u - i) - fi(ui, u - i)< 0.

By Assumption 3.2, the set U is updated with the newly added constraints (for i\in \scrN )

fi(pi(x), x - i) - fi(xi, x - i) \geq 0.

The point u does not belong to U for all future loops. The cardinality of the set U
decreases at least by one after each loop. Note that U \subseteq \scrK . Therefore, if \scrK \setminus \scrS is a
finite set, then Algorithm 3.3 must terminate within finitely many loops.

Next, suppose Algorithm 3.3 terminates with a minimizer u in Step 2. Then,
\delta i \geq 0 for all i, so every ui is a minimizer of Fi(u - i); i.e., u is a GNE.

In Theorem 3.6, the set \scrK \setminus \scrS being finite is a genericity assumption. For GNEPs
given by generic polynomials, there are finitely many KKT points. This is shown
in the recent work [44]. For GNEPs given by generic rational functions, this can be
shown by an argument similar to that in [44, Theorem 3.1]. Moreover, we remark
that the cardinality | \scrK \setminus \scrS | is only an upper bound for the number of loops taken by
Algorithm 3.3. This bound is certainly not sharp, because the inequality constraint
(3.6) may preclude several (or even all) KKT points that are not GNEs. In our
numerical experiments, Algorithm 3.3 often terminates within a few loops.

For some special problems, the KKT point set may be infinite. When the comple-
ment set \scrK \setminus \scrS is infinite, Algorithm 3.3 may not be guaranteed to terminate within
finitely many loops. However, we can prove its asymptotic convergence under certain
assumptions. For each i= 1, . . . ,N , we define the ith player's value function

\nu i(x - i) := inf
xi\in Xi(x - i)

fi(xi, x - i).(3.14)

The function \nu i(x - i) is continuous under certain conditions, e.g., under the restricted
inf-compactness (RIC) condition (see [18, Definition 3.13]). A sequence of functions
\{ \phi (k)(x)\} is said to be uniformly continuous at a point x\ast if for each \epsilon > 0, there
exists \tau > 0 such that \| \phi (k)(x) - \phi (k)(x\ast )\| < \epsilon for all k and for all x with \| x - x\ast \| < \tau .
The following is the asymptotic convergence result.

Theorem 3.7. For the GNEP (1.1), suppose Lagrange multipliers can be ex-
pressed as in (3.1) and Assumption 3.2 holds for every triple (u, i, vi) produced by

Algorithm 3.3. In the kth loop, let u(k), v
(k)
i be the minimizers of (3.7), (3.8), respec-

tively, and let p
(k)
i be the feasible extension in Step 3. Suppose u\ast := (u\ast 

1, . . . , u
\ast 
N ) is

an accumulation point of the sequence \{ u(k)\} \infty k=1. If for each i= 1, . . . ,N ,
(i) the strict inequality gi,j(u

\ast )> 0 holds for all j \in \scrI (i)
2 , and

(ii) the value function \nu i(x - i) is continuous at u\ast 
 - i, and

(iii) the sequence of feasible extensions \{ p(k)i \} \infty k=1 is uniformly continuous at u\ast ,
then u\ast is a GNE for (1.1).

Proof. Up to the selection of a subsequence, we assume that u(k) \rightarrow u\ast as k\rightarrow \infty ,
without loss of generality. The condition (i) implies that u\ast \in X and u\ast 

i \in Xi(u
\ast 
 - i) for

every i. We need to show that each u\ast 
i is a minimizer for the optimization Fi(u

\ast 
 - i).

By the definition of \nu i as in (3.14), this is equivalent to showing that

\nu i(u
\ast 
 - i) - fi(u

\ast )\geq 0, i= 1, . . . ,N.(3.15)
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For convenience of notation, let p
(k)
i (x) = xi for each i \not \in \scrN in the kth loop. Since u(k)

is feasible for (3.7) in all previous loops, we have that

fi(p
(k\prime )
i (u(k)), u

(k)
 - i ) - fi(u

(k))\geq 0 for all k\prime \leq k.

As k\rightarrow \infty , the above implies that

fi(p
(k\prime )
i (u\ast ), u\ast 

 - i) - fi(u
\ast )\geq 0 for all k\prime .

Then, for every i and for every k \in N,

\nu i(u
\ast 
 - i) - fi(u

\ast )

=
\bigl( 
\nu i(u

\ast 
 - i) - fi(p

(k)
i (u\ast ), u\ast 

 - i)
\bigr) 
+

\bigl( 
fi(p

(k)
i (u\ast ), u\ast 

 - i) - fi(u
\ast )
\bigr) 

\geq \nu i(u
\ast 
 - i) - fi(p

(k)
i (u\ast ), u\ast 

 - i).

(3.16)

Note that \nu i(u
(k)
 - i ) = fi(p

(k)
i (u(k)), u

(k)
 - i ) for all k and for all i \in \scrN in the kth loop.

Indeed, this is clear by construction when i \in \scrN . For i /\in \scrN , we know u
(k)
i is a

minimizer for Fi(u
(k)
 - i ). Let p

(k)
i (x) = xi, then

\nu i(u
(k)
 - i ) = fi(u

(k)
i , u

(k)
 - i ) = fi(p

(k)
i (u(k)), u

(k)
 - i ).

Under the continuity assumption of \nu i at u
\ast 
 - i, the convergence u(k) \rightarrow u\ast implies that

\nu i(u
\ast 
 - i) = lim

k\rightarrow \infty 
\nu i(u

(k)
 - i ) = lim

k\rightarrow \infty 
fi(p

(k)
i (u(k)), u

(k)
 - i ).

Because \{ p(k)i \} \infty k=1 is uniformly continuous at u\ast , for every fixed \epsilon > 0, there exists
\tau > 0 such that for all k big enough, we have

\| u\ast  - u(k)\| < \tau , \| p(k)i (u\ast ) - p
(k)
i (u(k))\| < \epsilon .

Since fi is rational and the denominator is positive on X, we have

fi(p
(k)
i (u\ast ), u\ast 

 - i) - fi(p
(k)
i (u(k)), u

(k)
 - i )\rightarrow 0 as k\rightarrow \infty .

In view of inequality (3.16), we can conclude that \nu i(u
\ast 
 - i) - fi(u

\ast ) \geq 0. This shows
that u\ast is a GNE.

When there are strict inequality constraints (i.e., \scrI (i)
2 \not = \emptyset ), the RIC condition is

more subtle to check, but it is still applicable. Please note that the strict inequality
gi,j(xi, x - i)> 0 is equivalent to

gi,j(xi, x - i) \cdot (zi,j)2 = 1

for a new variable zi,j . Similarly, rational functions can be equivalently reformulated
as polynomials by introducing new variables. Therefore, the value function \nu i(x - i) can
be equivalently expressed as the optimal value of a polynomial optimization problem
in a higher dimensional space with weak inequalities only. If the RIC holds for the
new formulation, then one can show the continuity of \nu i(x - i). There exist some
conveniently checkable conditions for RIC (see, e.g., [6, section 6.5.1]). For instance,
this is the case if the feasible set is compact or the objective satisfies some growth
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RATIONAL GENERALIZED NASH EQUILIBRIUM PROBLEMS 1599

conditions. However, checking RIC directly for the rational optimization with strict
inequality constraints is typically difficult. This issue is outside the scope of this paper.

Feasible extensions are sometimes given by polynomials. For such cases, a suf-
ficient condition for condition (iii) of Theorem 3.7 to hold is that the degrees and

coefficients of \{ p(k)i \} \infty k=1 are uniformly bounded. As shown in subsection 4.1, when
Fi(x - i) has box, simplex, or ball constraints, feasible extensions have explicit expres-

sions, and the corresponding polynomial function sequence \{ p(k)i \} \infty k=1 has uniformly
bounded degrees and coefficients. For rational feasible extensions, condition (iii) is
harder to check, since it needs to be checked case by case.

We would like to remark that Theorems 3.4 and 3.6 only give sufficient conditions
for Algorithm 3.3 to terminate within finitely many loops. But these conditions
are not necessary. In other words, Algorithm 3.3 may still have finite convergence
even if | \scrK \setminus \scrS | = \infty . This is because the positive definite matrix \Theta is generically
selected (so the optimization (3.7) has a unique minimizer) and feasible extensions
may preclude several (or even all) KKT points that are not GNEs. We refer the
reader to Example 6.1(i)--(ii) for such cases. When Algorithm 3.3 does not terminate
within finitely many loops, Theorem 3.7 proves the asymptotic convergence under
certain assumptions. We would like to remark that Algorithm 3.3 does not need to
check whether these assumptions are satisfied or not, because it is self-verifying. By
solving the optimization (3.8) for each player, we get a candidate GNE and then
verify whether it is a true GNE or not. This does not require checking any other
assumptions.

4. Feasible extensions of KKT points. In this section, we discuss the exis-
tence and computation of feasible extensions pi required as in Assumption 3.2. They
are important for solving GNEPs.

4.1. Some common cases. The feasible extensions in Assumption 3.2 can be
explicitly given for some common cases of optimization problems. Suppose the triple
(u, i, vi) is given.

Box constraints. Suppose the feasible set of Fi(x - i) is

a(x - i)\leq A(x - i)xi \leq b(x - i),

where a, b \in R[x - i]
mi , A \in R[x - i]

mi\times ni . Suppose A(x - i) has full row rank for all
x\in X and there is a matrix polynomial B0(x - i) such that

B(x - i) :=
\bigl[ 
A(x - i)

T B0(x - i)
\bigr] 
\in R[x - i]

ni\times ni

is nonsingular for all x\in X. Let \mu := (\mu 1, . . . , \mu mi) be the vector such that\bigl( 
bj(u - i) - aj(u - i)

\bigr) 
\cdot \mu j = bj(u - i) - (B(u - i)

T vi)j .

For the case aj(u - i) = bj(u - i), we just let \mu j = 0. Since vi \in Xi(u - i), it is clear that
each \mu j \in [0,1]. Then we choose pi as

pi =B(x - i)
 - T \^pi,(4.1)

where \^pi = (\^pi,1, . . . , \^pi,ni
) is defined by

\^pi,j(x) :=

\biggl\{ 
\mu jaj(x - i) + (1 - \mu j)bj(x - i), 1\leq j \leq mi,
(B(x - i)

Tx)j , mi + 1\leq j \leq ni.
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1600 JIAWANG NIE, XINDONG TANG, AND SUHAN ZHONG

One can check that pi(u) = vi and pi(x)\in Xi(x - i) for all x\in \scrK \subseteq X.
We would like to make some remarks about the existence of B(x - i), which is

nonsingular for all x \in X. When A(x - i) = A is independent of x - i, such a constant
matrix B always exists. When A(x - i) depends on x - i, we may still have such a
B(x - i).

Example 4.1. Consider the 2-player GNEP with x1 \in R1, x2 = (x2,1, x2,2) \in R2.
Suppose X1(x2) = \{ x1 : (x1)

2 \leq \| x2\| 2\} and X2(x1) is given by the inequalities

0\leq 
\bigl[ 
x1 1 + x1

\bigr] \underbrace{}  \underbrace{}  
A(x1)

\biggl[ 
x2,1

x2,2

\biggr] 
\leq 3 - x1.

The A(x1) has full row rank for all x\in X. We can construct

B(x1) =

\biggl[ 
x1 x1  - 1

1 + x1 x1

\biggr] 
such that det(B(x1)) = (x1)

2  - ((x1)
2  - 1) = 1. Therefore, the matrix B(x1) is

nonsingular for all x1 \in R1.

Simplex constraints. Suppose the feasible set Xi(x - i) is given as

d(x - i)
Txi \leq b(x - i), cj(x - i)xi,j \geq aj(x - i), j \in [ni].

In the above, b \in R[x - i], a= (a1, . . . , ani), c= (c1, . . . , cni) and d are vectors of poly-
nomials in x - i. Assume c(x - i), d(x - i)> 0 for all x= (xi, x - i) \in X. For convenience,
use \odot to denote the entrywise product, i.e.,

(c - 1 \odot a)(x - i) :=
\bigl[ 
c - 1
1 (x - i)a1(x - i) . . . c - 1

ni
(x - i)ani(x - i)

\bigr] T
.

Let \mu := (\mu 1, . . . , \mu ni) be a vector such that\bigl( 
(b - dT c - 1 \odot a)(u - i)

\bigr) 
\cdot \mu j = vi,j  - (c - 1

j aj)(u - i).

For the case that b(u - i) = (dT c - 1 \odot a)(u - i), just choose \mu j = 0. For vi \in Xi(u - i),
each \mu j \in [0,1]. Then, we choose pi := (pi,1, . . . , pi,ni

) such that

pi,j(x) = \mu j \cdot 
\bigl( 
(b - dT c - 1 \odot a)(x - i)

\bigr) 
+ (c - 1

j aj)(x - i).(4.2)

One can check that pi(u) = vi and pi(x)\in Xi(x - i) for all x\in \scrK \subseteq X.

Ball constraints . Suppose Xi(x - i) is given as
ni\sum 
j=1

\bigl( 
aj(x - i)xi,j  - cj(x - i)

\bigr) 2 \leq (R(x - i))
2,

where R \in R[x - i], and a= (a1, . . . , ani
), c= (c1, . . . , cni

) are vectors of rational func-
tions in x - i. Assume aj(x - i) \not = 0 on X. Let \mu be such that

\| a(u - i)\odot vi  - c(u - i)\| = \mu | R(u - i)| , 0\leq \mu \leq 1.

Then, choose scalars (s1, . . . , sni
) such that

\| a(u - i)\odot vi  - c(u - i)\| \cdot sj = aj(u - i)vi,j  - cj(u - i).

For the case \| a(u - i) \odot vi  - c(u - i)\| = 0, just let sj = 1/
\surd 
ni. Then we can choose

pi := (pi,1, . . . , pi,ni
) as

pi,j(x) :=
\bigl( 
cj(x - i) + sj \cdot \mu \cdot R(x - i)

\bigr) 
/aj(x - i).(4.3)

One can verify that pi(u) = vi and pi(x)\in Xi(x - i) for all x\in \scrK \subseteq X.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

08
/0

6/
23

 to
 1

72
.8

8.
75

.1
67

 b
y 

Ji
aw

an
g 

N
ie

 (n
jw

@
m

at
h.

uc
sd

.e
du

). 
R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



RATIONAL GENERALIZED NASH EQUILIBRIUM PROBLEMS 1601

4.2. The existence of feasible extensions. The existence of rational feasible
extensions in Assumption 3.2 can be shown under some assumptions. We consider the
general case that the KKT set \scrK as in (3.2) is finite. A polynomial feasible extension
pi exists when \scrK is finite.

Theorem 4.2. Assume \scrK is a finite set. Then, for every triple (u, i, vi) with
u \in \scrK , i \in [N ], and vi \in Xi(u - i), there must exist a feasible extension pi satisfying
Assumption 3.2. Moreover, such a pi can be chosen as a polynomial vector function.

Proof. Since the set \scrK is finite, by polynomial interpolation, there must exist a
real polynomial vector function pi such that

pi(u) = vi, pi(z) = zi for all z := (z1, . . . , zN )\in \scrK \setminus \{ u\} .(4.4)

Note that \scrK \subseteq X. For every x= (x1, . . . , xN )\in \scrK \setminus \{ u\} , we have pi(x) = xi \in Xi(x - i).
The polynomial function pi satisfies Assumption 3.2.

When the set \scrK is known, we can get a polynomial feasible extension pi as in
Theorem 4.2 by polynomial interpolation. The following is such an example.

Example 4.3. Consider Example 3.1. There are four KKT points:

u
(1)
1 = u

(1)
2 = (0,0), u

(2)
1 = u

(2)
2 =

\Bigl( \surd 
17 - 3
4 , 5 - 

\surd 
17

4

\Bigr) 
,

u
(3)
1 = u

(3)
2 =

\bigl( 
1
2 ,0

\bigr) 
, u

(4)
1 = u

(4)
2 =

\bigl( 
0, 12

\bigr) 
.

The u(1) = (u
(1)
1 , u

(1)
2 ) and u(2) = (u

(2)
1 , u

(2)
2 ) are not GNEs. For u(1), there are

two minimizers for F1(u
(1)
2 ), which are (1,0) and (0,1). We can construct the feasible

extension p1 of (1,0) at u
(1) using polynomial interpolation. Consider a linear function

p1 such that

p1 = (a0 + a1x1,1 + a2x1,2 + a3x2,1 + a4x2,2, b0 + b1x1,1 + b2x1,2 + b3x2,1 + b4x2,2).

Equation (4.4) requires that

p1(u
(1)
1 , u

(1)
2 ) = (1,0), p1(u

(k)
1 , u

(k)
2 ) = u

(k)
1 , k= 2,3,4.

This gives a linear system about coefficients of p1:

a0 = 1, b0 = 0,
a0 +

1
2a1 +

1
2a3 =

1
2 , b0 +

1
2b1 +

1
2b3 = 0,

a0 +
1
2a2 +

1
2a4 = 0, b0 +

1
2b2 +

1
2b4 =

1
2 ,

a0 +
\surd 
17 - 3
4 a1 +

5 - 
\surd 
17

4 a2 +
\surd 
17 - 3
4 a3 +

5 - 
\surd 
17

4 a4 =
\surd 
17 - 3
4 ,

b0 +
\surd 
17 - 3
4 b1 +

5 - 
\surd 
17

4 b2 +
\surd 
17 - 3
4 b3 +

5 - 
\surd 
17

4 b4 =
5 - 

\surd 
17

4 .

The above linear system is consistent, and we get the feasible extension

p1(x1, x2) = (1 - x1,1  - x1,2  - x2,2, x2,2).

Similarly, we can also get the feasible extension of (0, 1) at u(1), which is

(x1,1, 1 - x2,1  - x2,2  - x1,1).

At the point u(2), the minimizer of F1(u
(2)
2 ) is

\bigl( 
0, 12

\bigr) 
. We apply polynomial interpo-

lation again. The linear system in coefficients of p1 is consistent for deg(p1) = 2. The
following is a feasible extension:\Bigl( 

x2,1(x2,1  - 
\surd 
17 - 3
4 )(x2,1 +

3+
\surd 
17

2(5 - 
\surd 
17)

), 1
2  - (x2,2  - 1

2 )(x2,2  - 5 - 
\surd 
17

4 )(x2,2 +
4

5 - 
\surd 
17
)
\Bigr) 
.
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1602 JIAWANG NIE, XINDONG TANG, AND SUHAN ZHONG

When the set \scrK is not finite, Assumption 3.2 may still hold for some GNEPs.
For instance, consider that there are no equality constraints, i.e., \scrI (i)

0 = \emptyset . Suppose
\scrK is compact and there exists a continuous map \rho : Rn \rightarrow Rni such that \rho (u) = vi
and gi,j(\rho (x), x - i) > 0 for all x \in \scrK and for all j \in \scrI (i)

1 \cup \scrI (i)
2 . For every \epsilon > 0, one

can approximate \rho by a polynomial pi such that \| pi  - \rho \| < \epsilon on \scrK . Therefore, for \epsilon 
sufficiently small, gi,j(pi(x), x - i) > 0 on x \in \scrK . Such a polynomial function pi is a
feasible extension of vi at u.

4.3. Computation of feasible extensions. We discuss how to compute the
rational feasible extension pi satisfying Assumption 3.2. For the set \scrK as in (3.2), let
E0 denote the set of its equality constraining polynomials, and let E1 denote the set
of its (both weak and strict) inequality ones. Consider the set

\scrK 1 :=

\biggl\{ 
x\in Rn

\bigm| \bigm| \bigm| \bigm| g(x) = 0(g \in E0),
g(x)\geq 0 (g \in E1)

\biggr\} 
.

The set \scrK may not be closed, but \scrK 1 is, and the closure of \scrK is contained in \scrK 1. For a
polynomial p(x), if p(x)\in Xi(x - i) for all x\in \scrK 1, then we also have p(x)\in Xi(x - i) for
all \scrK . Therefore, it is sufficient to get pi satisfying Assumption 3.2 with \scrK replaced
by \scrK 1.

Suppose the triple (u, i, vi) is given. First, choose a priori degree l, and choose a
denominator h that is positive on \scrK (e.g., one may choose h= 1). Then, we consider
the following feasibility problem in (q,\mu ):\left\{         

q := (q1, . . . , qni)\in (R[x]2l)ni , \mu := (\mu j)j\in \scrI (i)
1 \cup \scrI (i)

2
,

q(u) = h(u)vi, h \cdot gi,j(q,x - i) = 0(j \in \scrI (i)
0 ),

\mu j \geq 0 (j \in \scrI (i)
1 ), \mu j > 0 (j \in \scrI (i)

2 ),
h \cdot gi,j(q,x - i) - \mu j \in Ideal[E0]2l +Qmod[E1]2l.

(4.5)

When all constraining polynomials gi,j are linear in xi, the system (4.5) is convex
in (q,\mu ), and it ensures that pi := q/h is a rational feasible extension satisfying
Assumption 3.2. For such a case, a feasible pair (q,\mu ) for (4.5) can be obtained by
solving a linear conic optimization problem.

Example 4.4. Consider the following 2-player GNEP:

min
x1\in R2

(x2,1+x2,2 - 2x1,1)(x1,1)
2+2x1,2

x2,1
min
x2\in R2

x2,1 - (x2,2)
2

x2,2+x1,1+x1,2

s.t. 2x1,1x2,1  - x1,2x2,2 \geq 0, s.t. 2x2,1x2,2  - 1\geq 0,
x2,1x2,2  - x1,1x2,1 \geq 0, 1 - x2,2 \geq 0,
2x1,2x2,2  - 1\geq 0, 2 - x2,1 \geq 0,
2 - x1,2x2,2 \geq 0, x2,1 \geq 0.

(4.6)

Consider the triple (u, 1, v1) for u= (u1, u2) with

u1 = (0.5,0.5), u2 = (0.5,1), v1 = (1,0.5).

For l = 2 and h = x2,1x2,2, a feasible q given by (4.5) is (x2,2, x2,1)/2. Let p1 =
1

2x2,1x2,2
(x2,2, x2,1). Then, we have each h \cdot g1,j(p1, x2)\in Ideal[E0]2l +Qmod[E1]2l:

h \cdot g1,1(p1, x2) = 0.25 + 0.25(2x2,1x2,2  - 1),
h \cdot g1,2(p1, x2) = (x2,1x2,2  - 0.5)2 + 0.25(2x2,1x2,2  - 1),
h \cdot g1,3(p1, x2) = 0, h \cdot g1,4(p1, x2) = 0.75 + 0.75(2x2,1x2,2  - 1).
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For the triple (u, i, vi), when some constraining polynomials gi,j are nonlinear in
xi, the system (4.5) may not be convex in (q,\mu ). For such cases, it is not clear how
to obtain feasible extensions in a computationally efficient way. The existence of such
a pi is guaranteed when \scrK is a finite set. This is shown in Theorem 4.2. When \scrK is
fully known, we can get the pi by polynomial interpolation. For other cases, it is not
clear to us how to compute such a pi efficiently.

5. Rational optimization problems. This section discusses how to solve the
rational optimization problems appearing in Algorithm 3.3.

5.1. Rational polynomial optimization. A general rational polynomial op-
timization problem is \Biggl\{ 

min A(x) := a1(x)
a2(x)

s.t. x\in K,
(5.1)

where a1, a2 \in R[x] and K \subseteq Rn is a semialgebraic set. We assume the denominator
a2(x)> 0 on K; otherwise, one can minimize A(x) over two subsets K\cap \{ x : a2(x)> 0\} 
and K\cap \{ x : - a2(x)> 0\} separately. Moment-SOS relaxations can be applied to solve
(5.1). We refer the reader to [21, 23, 33] for related work. Please note that Lagrange
multipliers are zeros for strict inequality constraints. So the KKT system does not
need to consider strict inequality constraints. However, the strict inequalities are still
used in the Moment-SOS relaxations, because they are relaxed to weak inequality
constraints.

The rational optimization problems in Algorithm 3.3 may have strict inequalities.
So we consider the case that K is given as

K =

\left\{   x\in Rn

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
p(x) = 0(p\in \Psi 0),
q(x)\geq 0 (q \in \Psi 1),
q(x)> 0 (q \in \Psi 2)

\right\}   ,(5.2)

where \Psi 0, \Psi 1, and \Psi 2 are finite sets of constraining polynomials in x. Since a2(x)> 0
on K, we have A(x)\geq \gamma on K if and only if a1(x) - \gamma a2(x)\geq 0 on K, or equivalently
a1  - \gamma a2 \in Pd(K) for the degree

d :=max\{ deg(a1),deg(a2)\} .

The rational optimization problem (5.1) is then equivalent to\Biggl\{ 
\gamma \ast :=max \gamma 

s.t. a1(x) - \gamma a2(x)\in Pd(K).
(5.3)

Denote the weak inequality set

K1 :=

\biggl\{ 
x\in Rn

\bigm| \bigm| \bigm| \bigm| p(x) = 0(p\in \Psi 0),
q(x)\geq 0 (q \in \Psi 1 \cup \Psi 2)

\biggr\} 
.(5.4)

Note that K1 is closed and cl(K) \subseteq K1. We consider the moment optimization
problem \Biggl\{ 

min \langle a1,w\rangle 
s.t. \langle a2,w\rangle = 1, w \in Rd(K1).

(5.5)
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It is a moment reformulation for the optimization\biggl\{ 
a\ast :=min A(x)

s.t. x\in K1.
(5.6)

Note that (5.6) is a relaxation of (5.1). It is worthy to observe that if a minimizer of
(5.6) lies in the set K, then it is also a minimizer of (5.1).

We apply Moment-SOS relaxations to solve (5.5). Let

d0 :=max
\bigl\{ 
\lceil d/2\rceil , \lceil deg(g)/2\rceil (g \in \Psi 0 \cup \Psi 1 \cup \Psi 2)

\bigr\} 
.(5.7)

For an integer k\geq d0, the kth order SOS relaxation for (5.3) is\Biggl\{ 
\gamma (k) :=max \gamma 

s.t. a1(x) - \gamma a2(x)\in Ideal[\Psi 0]2k +Qmod[\Psi 1 \cup \Psi 2]2k.
(5.8)

The dual optimization of (5.8) is the kth order moment relaxation\left\{       
a(k) :=min \langle a1, y\rangle 

s.t. L
(k)
p [y] = 0 (p\in \Psi 0),

L
(k)
q [y]\succeq 0 (q \in \Psi 1 \cup \Psi 2),

\langle a2, y\rangle = 1, Mk[y]\succeq 0, y \in RNn
2k .

(5.9)

Since (5.9) is a relaxation of (5.5), if (5.9) is infeasible, then (5.1) is also infeasible.
The following is the Moment-SOS algorithm for solving (5.1). It can be conve-

niently implemented with the software GloptiPoly 3 [21].

Algorithm 5.1. For the rational optimization problem (5.1), let k := d0.
Step 1 Solve the kth order moment relaxation (5.9). If it is infeasible, then (5.1) has

no feasible points and stop. Otherwise, solve it for the optimal value a(k) and
a minimizer y\ast if they exist. Let t := d0 and go to Step 2.

Step 2 Check whether or not there is an order t\in [d0, k] such that

r := rankMt[y
\ast ] = rankMt - d0

[y\ast ].(5.10)

Step 3 If (5.10) fails, let k := k + 1 and go to Step 1; if (5.10) holds, find points
z1, . . . , zr \in K1 and scalars \mu 1, . . . , \mu r > 0 such that

y\ast | 2t = \mu 1[z1]2t + \cdot \cdot \cdot + \mu r[zr]2t.(5.11)

Step 4 Output each zi \in K with a2(zi)> 0 as a minimizer of (5.1).

In Step 2, the rank condition (5.10) is called flat truncation. It is sufficient and
almost necessary for checking convergence of the Moment-SOS hierarchy (see [34]).
Once (5.10) is met, the moment relaxation (5.9) is tight for solving (5.5), and the
decomposition (5.11) can be computed by the Schur decomposition [20]. This is also
implemented in the software GloptiPoly 3 [21]. When Ideal[\Psi 0]+Qmod[\Psi 1\cup \Psi 2] is
archimedean, one can show that a(k) \rightarrow a\ast as k \rightarrow \infty (see [35]). The following is the
justification for the conclusion in Step 4.

Theorem 5.2. Assume a2 \geq 0 on K1. Suppose y\ast is a minimizer of (5.9) and it
satisfies (5.10) for some order t\in [d0, k]. Then, each zi in (5.11), such that a2(zi)> 0
and zi \in K, is a minimizer of (5.1).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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RATIONAL GENERALIZED NASH EQUILIBRIUM PROBLEMS 1605

Proof. Under the rank condition (5.10), the decomposition (5.11) holds for some
points z1, . . . , zr \in K1 (see [20, 34]). The constraint \langle a2, y\ast \rangle = 1 implies that

1 = \langle a2, y\ast \rangle = \mu 1a2(z1) + \cdot \cdot \cdot + \mu ra2(zr).

Since a2 \geq 0 on K1, we know all a2(zj) \geq 0. Let J1 := \{ j : a2(zj) > 0\} and J2 := \{ j :
a2(zj) = 0\} ; then

\langle a1, y\ast \rangle =
\sum 
j\in J1

\mu ja2(zj)A(zj) +
\sum 
j\in J2

\mu ja1(zj).

Note that
\sum 

j\in J1
\mu ja2(zj) = 1 and each [zj ]2k \in R2k(K1). For all nonnegative scalars

\nu j \geq 0, j \in J1 \cup J2, such that
\sum 

j\in J1
\nu ja2(zj) = 1, the tms

z(\nu ) := \nu 1[z1]2k + \cdot \cdot \cdot + \nu r[zr]2k

is a feasible point for the moment relaxation (5.9). Therefore, the optimality of y\ast 

implies that A(zj) = a(k) for all j \in J1. Since a(k) \leq a\ast and each zj \in K1, we have
A(zj)\geq a\ast . Hence, A(zj) = a\ast for all j \in J1. Note that (5.5) is a relaxation of (5.6). So
each zj (j \in J1) is a minimizer of (5.6). Therefore, every zi \in K satisfying a2(zi)> 0
is a minimizer of (5.1).

In the decomposition (5.11), it is possible that no zi belongs to the set K. This
is because the feasible set K may not be closed, due to strict inequality constraints.
For such a case, the optimal value of (5.1) may not be achievable. If we obtain a
minimizer y\ast of (5.9) such that rankMk[y

\ast ] is maximum and (5.10) is satisfied, then
we can get all minimizers of (5.6). Moreover, if (5.6) has infinitely many minimizers,
the rank condition (5.10) cannot be satisfied easily. We refer the reader to [30, 34]
for this fact. When primal-dual interior point methods are used to solve (5.9), a
minimizer y\ast with rankMk[y

\ast ] maximum is often returned. Therefore, if (5.6) has
finitely many minimizers and primal-dual interior point methods are used, then some
points zi (5.11) must belong to the set K. This means that we can typically find all
minimizers of (5.1) and (5.6), even if there are strict inequality constraints. However,
if the optimal value of (5.1) is not achievable, then no zi in (5.11) belongs to K. We
refer the reader to [21, 23, 33] for the work on solving rational optimization problems.

5.2. The optimization for all players. The rational optimization problem in
Step 2 of Algorithm 3.3 is \biggl\{ 

min \theta (x) := [x]T1 \Theta [x]1
s.t. x\in U ,

(5.12)

where \Theta is a generic positive definite matrix. The feasible set U can be expressed as
in the form (5.2), with polynomial equalities and weak/strict inequalities, for some
polynomial sets \Psi 0,\Psi 1,\Psi 2. That is, (5.12) can be expressed in the form of (5.1), with
denominators being 1. Denote the corresponding set

U1 = \{ x\in Rn| p(x) = 0(p\in \Psi 0), q(x)\geq 0 (q \in \Psi 1 \cup \Psi 2)\} .(5.13)

Since \Theta is positive definite, the objective \theta is coercive and strictly convex. When \Theta is
also generic, the function \theta has a unique minimizer u\ast on the set U1 if it is nonempty.
Suppose y\ast is a minimizer of the kth order moment relaxation of (5.12). Then, in
Algorithm 5.1, the rank condition (5.10) is reduced to

rankMt[y
\ast ] = 1
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1606 JIAWANG NIE, XINDONG TANG, AND SUHAN ZHONG

for some order t\in [d0, k] and the decomposition (5.11) is equivalent to y\ast | 2t = \mu 1[z1]2t
for some z1 \in U1. Algorithm 5.1 can be applied to solve (5.12). The following are
some special properties of Moment-SOS relaxations for (5.12).

Theorem 5.3. Assume \Theta is a generic positive definite matrix.
(i) If the set U1 is empty and Ideal[\Psi 0] +Qmod[\Psi 1 \cup \Psi 2] is archimedean, then

the moment relaxation for (5.12) must be infeasible when the order k is big
enough.

(ii) Suppose U1 \not = \emptyset and Ideal[\Psi 0] +Qmod[\Psi 1 \cup \Psi 2] is archimedean. Let u(k) :=

(y
(k)
e1 , . . . , y

(k)
en ), where y(k) is the minimizer of the kth order moment relaxation

of (5.12). Then, u(k) converges to the unique minimizer of \theta on U1.
(iii) Suppose the real zero set of \Psi 0 is finite. If U1 \not = \emptyset , then we must have

rankMt[y
\ast ] = 1 for some t\in [d0, k], when k is sufficiently large.

Proof. (i) When U1 = \emptyset , the constant  - 1 can be viewed as a positive poly-
nomial on U1. Since Ideal[\Psi 0] + Qmod[\Psi 1 \cup \Psi 2] is archimedean, we have  - 1 \in 
Ideal[\Psi 0]2k +Qmod[\Psi 1 \cup \Psi 2]2k for k big enough, by Putinar's Positivstellensatz. For
such k, the corresponding SOS relaxation (5.8) is unbounded from above, and hence
the corresponding moment relaxation must be infeasible.

(ii) When U1 \not = \emptyset , the objective \theta has a unique minimizer u\ast on U1. The conver-
gence of u(k) is implied by [34, Theorem 3.3] (see also [50]).

(iii) When the real zero set of \Psi 0 is finite and U1 \not = \emptyset , the conclusion can be
implied by [29, Proposition 4.6] (see also [30]).

5.3. Checking generalized Nash equilibria. Once we get a minimizer u of
(5.12), we need to check whether it is a GNE or not. For each i= 1, . . . ,N , we need
to solve the rational optimization problem\biggl\{ 

\delta i :=min fi(xi, u - i) - fi(ui, u - i)
s.t. xi \in Xi(u - i),

(5.14)

where fi,Xi(u - i) are given in (1.1). Assume the KKT conditions hold and the La-
grange multiplies can be expressed as in (3.1), then (5.14) is equivalent to\left\{           

min fi(xi, u - i) - fi(ui, u - i)
s.t. \nabla xifi(xi, u - i) =

\sum 
j\in \scrI (i)

0 \cup \scrI (i)
1

\tau i,j(xi, u - i)\nabla xigi,j(xi, u - i),

\tau i,j(xi, u - i)gi,j(xi, u - i) = 0, \tau i,j(xi, u - i)\geq 0 (j \in \scrI (i)
1 ),

xi \in Xi(u - i).

(5.15)

We can equivalently express the feasible set of (5.15) in the form

Yi(u - i) =

\left\{   xi \in Rni

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
p(xi) = 0(p\in \Psi i,0),
q(xi)\geq 0 (q \in \Psi i,1),
q(xi)> 0 (q \in \Psi i,2)

\right\}   (5.16)

for three sets \Psi i,0,\Psi i,1,\Psi i,2 of polynomials in xi. In computational practice, we
need to assume (5.15) is solvable, i.e., the solution set of (5.15) is nonempty. As in
subsection 5.1, we can apply a similar version of Algorithm 5.1 to solve the rational
optimization problem (5.15). Conclusions simlar to those in Theorem 5.3 hold for the
corresponding Moment-SOS relaxations. A difference is that all rational functions for
(5.14) are only in the variable xi instead of x. It may have several different minimizers,
so the rank in (5.10) may be bigger than one. Generally, the optimization (5.15) is
easier to solve than (5.12).
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RATIONAL GENERALIZED NASH EQUILIBRIUM PROBLEMS 1607

6. Numerical experiments. This section gives numerical experiments for Al-
gorithm 3.3 to solve rGNEPs. The rational optimization problems are solved by
Moment-SOS relaxations, which are implemented with the software GloptiPoly 3

[21]. The semidefinite programs for the Moment-SOS relaxations are solved by Se-
DuMi [51]. The computation is implemented in MATLAB R2018a, in a Laptop with
CPU 8th Generation Intel Core i5-8250U and RAM 16GB. For cleanness of presenta-
tion, only four decimal digits are displayed for computational results. The accuracy
for a point u to be a GNE is measured by the quantity

\delta := min\{ \delta 1, . . . , \delta N\} ,(6.1)

where \delta i is the optimal value of (3.8). The point u is a GNE if and only if \delta = 0.
Due to numerical issues, u can be viewed as a GNE if \delta is nearly zero (e.g., \delta \geq 
 - 10 - 6). For cleanness of presentation, we do not list the constraining functions gi,j
explicitly. Instead, they are ordered row by row, from top to bottom; in each row,
they are ordered from left to right. If there is an inequality like a(x)\leq b(x), then the
corresponding constraining function is b(x) - a(x).

To implement Algorithm 3.3, we need rational LMEs. This is reviewed in subsec-
tion 2.3. More details can be found in [36]. For some standard constraints (e.g., box,
simplex, or balls), we can have LMEs explicitly given as follows.

(i) Consider the box constraints a(x - i) \leq xi \leq b(x - i), where a = (a1, . . . , ani
),

b= (b1, . . . , bni
). The LME is, for j = 1, . . . , ni,

\lambda i,2j - 1 =
bj(x - i) - xi,j

bj(x - i) - aj(x - i)
\cdot \partial fi
\partial xi,j

, \lambda i,2j =
aj(x - i) - xi,j

bj(x - i) - aj(x - i)
\cdot \partial fi
\partial xi,j

.(6.2)

(ii) Consider the simplex constraints u(x - i) \geq eTxi, xi \geq l(x - i), where l is a
vector function in x - i. The LME is \lambda i = (\lambda i,1, \^\lambda i), with

\lambda i,1 = - (xi - l(x - i))
T\nabla xi

fi
u(x - i) - eT l(x - i)

, \^\lambda i =\nabla xi
fi + \lambda i,1 \cdot e.(6.3)

(iii) Consider the ball-type constraint r(x - i) \leq \| xi  - c\| 2 \leq R(x - i), where c =
(c1, . . . , cni

) is a constant vector. The LME is

\lambda i =

\Biggl( 
R(x - i)

\partial fi
\partial xi,1

 - (xi,1 - c1)\cdot (xi - c)T\nabla xi
fi

2(xi,1 - c1)(R(x - i) - r(x - i))
,

r(x - i)
\partial fi

\partial xi,1
 - (xi,1 - c1)\cdot (xi - c)T\nabla xi

fi

2(xi,1 - c1)(R(x - i) - r(x - i))

\Biggr) 
.

(6.4)

For the special case that r(x - i) = 0, the LME is reduced to

\lambda i = (c - xi)
T\nabla xi

fi/
\bigl( 
2R(x - i)

\bigr) 
.(6.5)

6.1. Some fractional quadratic GNEPs. First, we consider rGNEPs with
fractional quadratic objectives and standard constraints (e.g., box, simplex, or balls).
These GNEPs often appear in various applications. We give details for applying
Algorithm 3.3 in such problems.

Example 6.1. (i) Consider the 2-player rGNEP

min
x1\in R2

 - (x1,1)
2 - x2,1x1,1

x1,2x2,2+1 min
x2\in R2

3x2,1x2,2 - 2x2,2

x1,2x2,2+1

s.t. (x2,1)
2  - xT

1 x1 \geq 0, s.t. 0.5\leq x2,1 \leq 1,
0\leq x2,2 \leq x1,1.

(6.6)
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1608 JIAWANG NIE, XINDONG TANG, AND SUHAN ZHONG

The LME for the first player is in the form of (6.5), and the LMEs for the second

player are given as in (6.2). Precisely, we have \lambda 1 =
 - xT

1 \nabla x1f1
2(x2,1)2

and

\lambda 2 =

\biggl( 
(2 - 2x2,1)

\partial f2
\partial x2,1

, (1 - 2x2,1)
\partial f2
\partial x2,1

,
x1,1  - x2,2

x1,1

\partial f2
\partial x2,2

,  - x2,2

x1,1

\partial f2
\partial x2,2

\biggr) 
.

By applying Algorithm 3.3, we get

k= 0 u
(0)
1 = u

(0)
2 = (0.6667,0.0000),

\delta 1 = - 3.6732 \cdot 10 - 7, \delta 2 = - 0.3333,

v
(0)
2 = (0.5000,0.6667), p

(0)
2 (x) = (0.5, x1,1).

k= 1 u
(1)
1 = (0.4930, - 0.0835), u

(1)
2 = (0.5000,0.4930),

\delta 1 = - 4.3101 \cdot 10 - 7, \delta 2 = - 8.9324 \cdot 10 - 9.
A GNE is returned in 4.22 seconds.

In the above, u(k) = (u
(k)
1 , u

(k)
2 ), v

(k)
i denote the minimizers of (3.7)--(3.8) in the kth

loop. The p
(0)
2 (x) is the feasible extension of v

(0)
2 at u(0), which is given as in (4.1).

Interestingly, (6.6) has infinitely many non-GNE KKT points, because one can check
that (t,0, t,0) \in \scrK \setminus \scrS for every t \in [ 23 ,1]. However, Algorithm 3.3 still had finite
convergence, as verified in computational practice. It implies that the upper bound
| \scrK \setminus \scrS | given in Theorem 4.2 is not sharp. In addition, we would like to remark that
finite convergence is guaranteed by the use of feasible extension p2(x) = (0.5, x1,1).
Since

f2(x1, p2(x)) - f2(t,0, t,0) = - 0.5t < 0 \forall t\in [2/3, 1],

then the whole set \{ (t,0, t,0) : t\in [ 23 ,1]\} can be precluded by (3.6).
(ii) For the GNEP (6.6), if the first player's objective function is changed to

 - (x1,1)
2 + x2,1x1,1

x1,2x2,2 + 1
,

then Algorithm 3.3 produces the following computational results:

k= 0 u
(0)
1 = (0.3333,  - 0.3049), u

(0)
2 = (0.6667, 0.0000),

\delta 1 = - 1.0000, \delta 2 = - 0.1856,

v
(0)
1 = ( - 0.6667, 0.0000), p

(0)
1 (x) = ( - x2,1, 0),

v
(0)
2 = (0.5000, 0.3333), p

(0)
2 (x) = (0.5, x1,1).

k= 1 Nonexistence of GNEs is detected in 5.56 seconds.

Similar to (i), there are infinitely many non-GNE KKT points, which are (\alpha ,\beta ,2\alpha ,0)
with

\alpha \in [1/3, 1/2], \beta \in [ - 
\surd 
3\alpha ,

\surd 
3\alpha ].

However, Algorithm 3.3 successfully detected the nonexistence of GNEs at the loop
k= 1.

Example 6.2. Consider the rGNEP with jointly simplex constraints

min
x1\in Rn1

xTA1x+xT a1+c1
xTB1x+xT b1+d1

min
x2\in Rn2

xTA2x+xT a2+c2
xTB2x+xT b2+d2

s.t. x1 \in \Delta 1(x2), s.t. x2 \in \Delta 2(x1).
(6.7)
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RATIONAL GENERALIZED NASH EQUILIBRIUM PROBLEMS 1609

Table 1
Numerical results for Example 6.2.

k (u
(k)
1 , u

(k)
2 ) δ(k)

0 (0.0000, 0.5000), (0.0000, 0.0000) −0.1429
1 (0.0000, 0.0000), (0.0000, 0.0354) −0.4425
2 (0.0000, 0.4831), (0.5169, 0.0000) −0.2476
3 (0.2910, 0.1089), (0.6001, 0.0000) −0.0583
4 (0.0000, 0.2742), (0.7258, 0.0000) −1.14 · 10−7

In the above, for each i= 1,2, Ai,Bi \in Rn\times n, ai, bi \in Rn, ci, di \in R, and

\Delta i(x - i) :=
\bigl\{ 
xi \in Rni : 1 - eTx\geq 0, xi,1 \geq 0, . . . , xi,ni \geq 0

\bigr\} 
.

For both players, we use LMEs as given in (6.3), of which denominators have zeros
in the feasible set X = \{ x \in Rn

+ : 1 - eTx\geq 0\} . Precisely, they vanish when eTx - i =
1, i= 1,2. Moreover, the set of complex KKT points for (6.7) has a positive dimension
(see [44]) for all Ai,Bi, ai, bi, ci, and di. Indeed, for all t \in [0,1], the pair of x1 =
(0, t,0, . . . ,0) and x2 = (1  - t,0, . . . ,0) is a complex KKT point, because the active
constraint gradients e, e2, e3, . . . , en span the entire space.

For instance, let n1 = n2 = 2 and

A1 =

\left[    
3 2  - 1 3
2 0  - 2 0

 - 1  - 2 0  - 2
3 0  - 2 2

\right]    , A2 =

\left[    
 - 1 2 0 0
2  - 2 3 1
0 3  - 4 2
0 1 2 2

\right]    ,

B1 =

\left[    
4 0 2  - 2
0 2 0  - 1
2 0 3  - 1

 - 2  - 1  - 1 2

\right]    , B2 =

\left[    
3 1  - 1 3
1 2  - 1 2

 - 1  - 1 2 0
3 2 0 4

\right]    ,

a1 =

\left[    
1
1

 - 1
0

\right]    , a2 =

\left[    
 - 1
0.5
1

 - 1

\right]    , b1 =

\left[    
0

 - 1
1
0

\right]    , b2 =

\left[    
1
0

 - 0.5
1

\right]    ,

c1 = 3, c2 = - 2, d1 = 3.5, d2 = 3.

By a symbolic computation, one can check that the pair of x1 = (0, t) and x2 =
(1 - t,0) is a KKT point for all t \in [0, \beta ], where \beta \approx 0.4831 is the unique real zero of
\beta 3+ 1

3\beta 
2+ 97

48\beta  - 7
6 = 0. Apply Algorithm 3.3 to the GNEP (6.7). The computational

results are displayed in Table 1. In the kth loop, the u(k) = (u
(k)
1 , u

(k)
2 ) denotes the

minimizer of (3.7), and \delta (k) is the accuracy for u(k) computed as in (6.1). Each
feasible extension is selected in form of (4.2). We got a GNE at the loop k = 4 with
\delta = - 1.14 \cdot 10 - 7. It took around 16.81 seconds.

6.2. Some explicit examples. In the following, we present some explicit exam-
ples of rGNEPs. For cleanness of presentation, we only report computational results
at the last loop for Algorithm 3.3.

Example 6.3. (i) Consider the GNEP in (1.4). The LME for the first player is

\lambda 1 =

\biggl( 
x1,2x

T
1 \nabla x1f1

2x2,1
, 0, 0

\biggr) 
.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

08
/0

6/
23

 to
 1

72
.8

8.
75

.1
67

 b
y 

Ji
aw

an
g 

N
ie

 (n
jw

@
m

at
h.

uc
sd

.e
du

). 
R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



1610 JIAWANG NIE, XINDONG TANG, AND SUHAN ZHONG

For the second player, the LME is given by (6.3). Each LME has a positive denomi-
nator on X. Algorithm 3.3 terminated at the initial loop k= 0. The computed GNE
is u= (u1, u2), with

u1 = (1.3561,0.7374), u2 = (1.0000,1.0468), \delta = - 3.44 \cdot 10 - 8.(6.8)

It took around 8.36 seconds.
Consider its equivalent polynomials reformulation (1.5). For the first player, the

LME is

\lambda 1 =

\biggl( 
x1,2

x2,1

\partial f1
\partial x1,2

, 0, 0, x1,3 \cdot 
\partial f1
\partial x1,3

\biggr) 
.

For the second player, the LME is

\lambda 2,1 =
\Bigl( 

\partial f2
\partial x2,1

 - (x2,3)
2 \partial f2
\partial x2,3

\Bigr) 
1 - x2,1

x1,1+x1,2 - 1 + \partial f2
\partial x2,2

1 - x2,2

x1,1+x1,2 - 1 ,

\lambda 2,2 =
\Bigl( 

\partial f2
\partial x2,1

 - (x2,3)
2 \partial f2
\partial x2,3

\Bigr) 
+ \lambda 2,1, \lambda 2,3 =

\partial f2
\partial x2,2

+ \lambda 2,1, \lambda 2,4 = x2,3 \cdot \partial f2
\partial x2,3

.

Each LME has a positive denominator on X. Algorithm 3.3 also terminated at the
initial loop k= 0. The computed GNE is \^u= (\^u1, \^u2) with

\^u1 = (1.3561,0.7374,0.7374), \^u2 = (1.0000,1.0468,1.0000), \delta = - 2.70 \cdot 10 - 8.

The result is consistent with that in (6.8). But the computation took around 264.42
seconds. It is much more efficient to solve the original rational GNEP.
(ii) For the GNEP in (1.4), if objective functions are changed to

f1(x) =
(x1,2)

2 + x1,1x1,2(e
Tx2)

x1,1
, f2(x) =

(x2,2)
2  - x2,1x2,2(e

Tx1)

x2,1
,(6.9)

then there is no GNE. This was detected by Algorithm 3.3 at the initial loop k = 0.
It took about 5.47 seconds.

Like in (i), we also consider the equivalent polynomial GNEP with the updated
objective. By applying Algorithm 3.3, we detected the nonexistence of GNEs at the
initial loop k= 0. It took around 19.61 seconds.
(iii) Consider the GNEP in Example 3.1. We use the LMEs as in (6.3) and the feasible
extension as in (4.2). By Algorithm 3.3, we got the GNE u = (u1, u2) at the loop
k= 1 with

u1 = (0.0000,0.5000), u2 = (0.0000,0.5000), \delta = - 4.47 \cdot 10 - 8.

It took around 3.28 seconds.
(iv) Consider the GNEP in Example 3.5. We use the LMEs as in (3.13). Since, for
each i, the feasible set Xi(x - i) is independent to x - i, we apply the trivial feasible
extension pi(x) = xi. By Algorithm 3.3, we got the GNE u = (u1, u2) in the initial
loop with

u1 = (0.0000,0.0000), u2 = (1.0000,1.0000), \delta = - 5.45 \cdot 10 - 9.

It took around 2.03 seconds.
(v) Consider the GNEP in Example 4.4. For the first player's optimization, we have
the following rational LMEs:

\lambda 1,1 =
x2,2 - x1,1

x2,2(2x2,1 - x1,2)
\cdot \partial f1
\partial x1,1

, \lambda 1,2 =
x1,2x2,2 - 2x1,1x2,1

x2,1x2,2(2x2,1 - x1,2)
\cdot \partial f1
\partial x1,1

,

\lambda 1,3 =
2 - x1,2x2,2

3x2,2

\Bigl( 
\partial f1
\partial x1,2

+
x2,2 - x1,1

2x2,1 - x1,2
\cdot \partial f1
\partial x1,1

\Bigr) 
, \lambda 1,4 =

1 - 2x1,2x2,2

2 - x1,2x2,2
\lambda 1,3.
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RATIONAL GENERALIZED NASH EQUILIBRIUM PROBLEMS 1611

For the second player's optimization, we have the following rational LMEs:

\lambda 2,1 =
1 - x2,2

2x2,1 - 1 \cdot \partial f2
\partial x2,2

, \lambda 2,2 =
1 - 2x2,1x2,2

2x2,1 - 1 \cdot \partial f2
\partial x2,2

,

\lambda 2,3 =
1
2 (\lambda 2,1  - x2,1

\partial f2
\partial x2,1

), \lambda 2,4 =
1
2

\Bigl( 
(2 - x2,1) \cdot \partial f2

\partial x2,1
+ (1 - 4x2,2)\lambda 2,1

\Bigr) 
.

We apply the feasible extension as in Example 4.4. Algorithm 3.3 terminated at the
loop k= 1. We got the GNE u= (u1, u2) with

u1 = (1.0000,0.5000), u2 = (0.5000,1.0000), \delta = - 1.82 \cdot 10 - 8.

It took around 22.73 seconds.

Example 6.4. Consider the 2-player GNEP with the optimization

min
x1\in R3

xT
1 (x1 + x2) + x1,1  - x1,2  - x1,3 min

x2\in R3
eTx2 +

\sum 3
j=1 x1,j(x2,j)

2

s.t. 1 + (eTx2)
2  - x1,1x1,2x1,3 \geq 0, s.t. (eTx1)

2  - xT
2 x2 \geq 0.

For the first player's optimization, we have the LME and the feasible extension

\lambda 1 = - xT
1 \nabla x1

f1
3 + 3(eTx2)2

, p1(x) =

\biggl( 
v1,1, v1,2,

1 + (eTx2)
2

1 + (eTu2)2
\cdot v1,3

\biggr) 
.

For the second player, we have the LME as in (6.5) and the feasible extension as in
(4.3). Algorithm 3.3 terminated at the loop k = 0. We got the GNE u = (u1, u2)
with

u1 = (0.3090,0.8090,0.8090), u2 = ( - 1.6180, - 0.6180, - 0.6180),

and the accuracy parameter \delta = - 2.77 \cdot 10 - 8. It took around 5.16 seconds.

Example 6.5. (i) Consider the 3-player GNEP

F1(x2, x3) :

\Biggl\{ 
min
x1\in R2

\| x1  - 1
2 (x2 + x3)\| 2

s.t. x1,1x1,2  - xT
3 x3  - 1 = 0, x1,1 \geq 0, x1,2 \geq 0,

F2(x1, x3) :

\Biggl\{ 
min
x2\in R2

xT
2 (x1 + x3) + (x2,1)

3  - 3(x2,2)
2

s.t. (x1,2)
2  - \| x1,1 \cdot x2\| 2 = 0,

F3(x1, x2) :

\Biggl\{ 
min
x3\in R2

xT
3 (x1 + x2 + x3  - e)

s.t. xT
1 x1  - eTx3 \geq 0, x3,1  - 0.1\geq 0, x3,2  - 0.1\geq 0.

The LMEs for F1(x2, x3) and F2(x1, x3) are

\lambda 1,1 =
xT
1 \nabla x1

f1
2+2xT

3 x3
, \lambda 1,2 =

\partial f1
\partial x1,1

 - x1,2\lambda 1,1,

\lambda 1,3 =
\partial f1
\partial x1,2

 - x1,1\lambda 1,1, \lambda 2 =
 - xT

2 \nabla x2
f2

2(x1,2)2
.

We use the LME as in (6.3) for F3(x1, x2). The first two players have the feasible
extension

p1(x) =

\biggl( 
v1,1,

1 + xT
3 x3

v1,1

\biggr) 
, p2(x) =

u1,1x1,2

u1,2x1,1
\cdot (v2,1, v2,2).

For the third player, the feasible extension is given in (4.2). Algorithm 3.3 terminated
at the initial loop k= 0. We got the GNE u= (u1, u2, u3) with

u1 = (1.1401,1.0461), u2 = ( - 0.1743, - 0.9009), u3 = (0.1000,0.4274),

and \delta = - 6.19 \cdot 10 - 8. It took around 10.58 seconds.
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1612 JIAWANG NIE, XINDONG TANG, AND SUHAN ZHONG

(ii) It is interesting to note that if the third player's objective is changed to

xT
3 (x1 + x2  - e) + (x3,1)

2  - (x3,2)
2,

then there is no GNE. This was detected by Algorithm 3.3 at the loop k= 1. It took
around 19.16 seconds.

We remark that Algorithm 3.3 can be generalized to compute more (or even all)
GNEs. This can be done with the approach in [42]. Suppose a GNE u is already
known. Select a small scalar \zeta > 0, and solve the maximization problem\biggl\{ 

\rho :=max [x]T1 \Theta [x]1
s.t. x\in U , [x]T1 \Theta [x]1 \leq [u]T1 \Theta [u]1 + \zeta .

(6.10)

If \rho > [u]T1 \Theta [u]1, then let \zeta := \zeta /2 and solve (6.10) again. Repeat this until \zeta is small
enough to make \rho = [u]T1 \Theta [u]1. When u is an isolated KKT point and \Theta is generically
positive definite, such a \zeta always exists. This can be proved similarly to that in [42].
Once such \zeta is found, we add the new inequality [x]T1 \Theta [x]1 \geq [u]T1 \Theta [u]1 + \zeta to (3.7).
Then, Algorithm 3.3 can be applied to get a new GNE if it exists. It is worth noting
that if the optimization (3.7) is infeasible with the newly added constraints, then
there are no other GNEs. By repeating this process, we can get all GNEs if there are
finitely many ones. We refer the reader to [42] for more details. The following is such
an example.

Example 6.6. Consider the 2-player GNEP

min
x1\in R2

x2,2(x1,1)
2+x2,1(x1,2)

2+x1,1x1,2

(x1,1)2+1 min
x2\in R2

x1,2(x2,1)
2+x1,1(x2,2)

2+x2,1x2,2

(x2,1)2+1

s.t. (1 - eTx2)
2 \leq \| x1\| 2 \leq 1, s.t. (1 - eTx1)

2 \leq \| x2\| 2 \leq 1.

We use the LMEs as in (6.4). For both i= 1,2, the feasible extension is

pi(x) =
vi
\| vi\| 

 - 
\biggl( 

vi
\| vi\| 

 - vi

\biggr) 
eTx - i

eTu - i
.

Following the above process, we got two GNEs u= (u1, u2) with

u1 = (0.9250, - 0.3799), u2 = (0.9250, - 0.3799), \delta = - 9.06 \cdot 10 - 8;

u1 = ( - 0.2700,0.9629), u2 = ( - 0.2700,0.9629), \delta = - 2.67 \cdot 10 - 7.

It took around 29.80 seconds to get both of them. Since each rational LME has a
positive denominator on X, we obtained all GNEs for this problem.

6.3. Some examples in applications. We give some examples arising from
applications. The first one is an NEP with rational objectives.

Example 6.7. Consider the NEP for the electricity market problem [7, 14]. Sup-
pose there are N generating companies. For each i \in [N ], the ith company possesses
ni generating units, where the jth generating unit has xi,j power generation. As-
sume each xi,j \geq 0 and is bounded by the maximum capacity Ei,j \geq 0. Denote
\varphi i = (\varphi i,1, . . . ,\varphi i,ni

), where each \varphi i,j is the cost of the generating unit xi,j :

\varphi i,j(x) := ai,j \cdot (xi,j)
3  - bi,j \cdot (xi,j)

2 + ci,jxi,j .

The electricity price is given by \phi (x) := B
A+eT x

. The aim of each company is to
maximize its profits. The ith player's optimization problem is

Fi(x - i) :

\biggl\{ 
min eT\varphi i(x) - \phi (x) \cdot eTxi

s.t. xi,j \geq 0, Ei,j  - xi,j \geq 0 (j \in [ni]).
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RATIONAL GENERALIZED NASH EQUILIBRIUM PROBLEMS 1613

Table 2
Numerical results of Example 6.8.

N u = (u1, . . . , uN ) δ time

10 ui = 0.2250 (i = 1, . . . , 10) −1.05 · 10−9 11.16
11 ui = 0.2066 (i = 1, . . . , 11) −4.75 · 10−9 24.36

12 ui =
0.1883 (i = 1, . . . , 9)
Li (i = 10, . . . , 12)

−1.93 · 10−8 45.38

13 ui =
0.1647 (i = 1, . . . , 7)
Li (i = 8, . . . , 13)

−4.83 · 10−8 70.81

14 ui =
0.1282 (i = 1, 2, 3)
Li (i = 4, . . . , 14)

−1.02 · 10−7 97.00

The objectives are rational functions in strategies. The LME in (6.2) is applicable
with box constraints. Since this is an NEP, we can apply the trivial feasible extension
pi(x) = xi for each i\in [N ]. We choose the following parameters:

N = 3, n1 = 1, n2 = 2, n3 = 3, A= 0.5, B = 20,
a1,1 = 0.7, a2,1 = 0.75, a2,2 = 0.65, a3,1 = 0.66, a3,2 = 0.7, a3,3 = 0.8,
b1,1 = 0.8, b2,1 = 0.75, b2,2 = 0.65, b3,1 = 0.66, b3,2 = 0.95, b3,3 = 0.5,
c1,1 = 2, c2,1 = 1.25, c2,2 = 1, c3,1 = 2.25, c3,2 = 3, c3,3 = 3,
E1,1 = 2, E2,1 = 2.5, E2,2 = 1.5, E3,1 = 1.2, E3,2 = 1.8, E3,3 = 1.6.

Algorithm 3.3 terminated at the loop k= 0. We got the GNE u= (u1, u2, u3), where

u1 = 1.1432, u2 = (1.0549,1.1771), u3 = (0.8917,0.6439,0.0000),

and \delta = - 1.70 \cdot 10 - 8. It took about 7.98 seconds.

Example 6.8. Consider the GNEP for internet switching [12, 25]. Assume there
are N users, and the maximum capacity of the buffer is B. Let xi denote the amount
of ith user's ``packets"" in the buffer, which has a positive lower bound Li. Suppose
the buffer is managed with the ``drop-tail"" policy : if the buffer is full, further packets
will be lost and resent. Suppose xi

eT x
is the transmission rate of the ith user, eT x

B is

the congestion level of the buffer, and 1 - eT x
B measures the decrease in the utility of

the ith user as the congestion level increases. The ith user's optimization problem is\Biggl\{ 
min
xi\in R1

fi(x) = - xi

eT x
(1 - eT x

B )

s.t. xi  - Li \geq 0, B  - eTx\geq 0.
(6.11)

We apply the LME as in (6.3) and solve the GNEP for N = 10, . . . ,14, with parameters
B = 2.5 and Li = 0.09+0.01i for each i\in [N ]. Algorithm 3.3 terminated at the initial
loop k = 0 for each case. The numerical results are shown in Table 2. In the table,
u = (u1, . . . , uN ) and \delta denote, respectively, the GNE and the accuracy parameter,
and ``time"" is the CPU time in seconds.

6.4. Comparison with other methods. We compare our method (i.e., Al-
gorithm 3.3) with some existing methods for solving GNEPs, such as the interior
point method (IPM) based on the KKT system [9], the quasi-variational inequality
method (QVI) in [19], the augmented-Lagrangian method (ALM) in [24], and the
Gauss--Seidel method (GSM) in [40]. For Example 6.6, we only compare for finding
one GNE. For Example 6.8, we compare for N = 10.
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1614 JIAWANG NIE, XINDONG TANG, AND SUHAN ZHONG

For a computed tuple u := (u1, . . . , uN ), we use the quantity

\kappa :=max

\Biggl\{ 
max

i\in [N ],j\in \scrI (i)
1 \cup \scrI (i)

2

\{  - gi,j(u)\} , max
i\in [N ],j\in \scrI (i)

0

\{ | gi,j(u)| \} 
\Biggr\} 

to measure the feasibility violation. Note that u is feasible if and only if \kappa \leq 0 and
gi,j(u) > 0 for every j \in \scrI (i)

2 . For these methods, we use the following stopping
criterion: for each generated iterate u, if its feasibility violation \kappa < 10 - 6, then we
compute the accuracy parameter \delta for verifying GNEs. If \delta >  - 10 - 6, then we stop
the iteration.

For the above methods, the parameters are the same as in [9, 24, 40]. The
full penalization is used for the augmented-Lagrangian method, and a Levenberg--
Marquardt-type method (see [24, Algorithm 24]) is used to solve penalized subprob-
lems. For the Gauss--Seidel method, the normalization parameters are updated as
(4.3) in [40], and the Moment-SOS relaxations are used to solve each player's opti-
mization problems. For the QVI method, the Moment-SOS relaxations are used to
compute projections. We let 1000 be the maximum number of iterations for all the
above methods. For initial points, we use (0, 1,1,0) for Examples 6.1(i)--(ii), (1,1,1,1)
for Examples 6.3(i), (ii), (iv), (v), (

\surd 
2,
\surd 
2,1,1,1,1) for Example 6.5, (0,1,0,1) for

Example 6.6, 0.25 \cdot (1, \cdot \cdot \cdot ,1) for Example 6.8, and the zero vectors for other examples.
If the maximum number of iterations is reached but the stopping criterion is not met,
we still solve (3.8) to check whether the latest iterating point is a GNE or not. For the
QVI, the produced sequence is said to converge if the projection residue is sufficiently
small. For the ALM and IPM, the produced sequence is considered to converge if the
last iterate satisfies the KKT conditions up to a small round-off error (say, 10 - 6). The
numerical results are shown in Table 3. The ``u"" column lists the most recent update
by each method, ``time"" gives the total CPU time (in seconds), and the ``max\{ | \delta | , \kappa \} ""
measures the feasibility violation and the accuracy of being GNEs. For all methods
in the table, if the produced sequence is convergent, but the quantity max\{ | \delta | , \kappa \} is
not close to zero (e.g., \leq 10 - 6), then the method converges to a KKT point that is
not a GNE.

The comparisons are summarized as follows:
\bullet The ALM failed to get a GNE for Examples 6.3(i), (ii), (iv), 6.4, and 6.5(ii),

because the penalization subproblems could not be solved accurately. It
converged to non-GNE KKT points for Examples 6.1(ii), 6.2, 6.3(iii), 6.5(i)
and 6.7. It did not converge for Examples 6.1(i), 6.3(v), and 6.6 when the
maximum penalty parameter 1012 was reached.

\bullet The IPM failed to get a GNE for Examples 6.3(iv), 6.4, and 6.5(ii), be-
cause the step length was too small to efficiently decrease the violation of
KKT conditions. It converged to non-GNE KKT points for Examples 6.1(i)--
(ii), 6.3(iii), and 6.7. It did not converge for Examples 6.1(i)--(ii), 6.3(ii), (v),
and 6.7, because the Newton-type directions did not satisfy sufficient descent
conditions.

\bullet The QVI converged to non-GNE points for Examples 6.1(i) 6.2, and 6.5(i).
It did not converge for Examples 6.1(ii), 6.3(ii), (iv), 6.5(ii), and 6.6, since
the projection could not be computed successfully.

\bullet The GSM failed to find a GNE for Examples 6.1(ii), 6.3(ii), (iv), 6.4, 6.5(ii),
and 6.6, because some sub-optimization problems could not be solved success-
fully. It terminated at the maximum iteration number for Example 6.3(iii)
but did not meet the stopping criterion.
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RATIONAL GENERALIZED NASH EQUILIBRIUM PROBLEMS 1615

Table 3
Comparison with some existing methods.

ALM (0.5000,0.8660,1.0000,0.0000) 63.81 2.25
IPM not convergent
QVI not convergent
GSM not convergent
Alg. 3.3 nonexistence of GNEs detected 5.56

Example 6.2
ALM (0.0000,0.1931,0.2889,0.0000) 47.51 0.21
IPM (0.0000,0.1931,0.2889,0.0000) 17.00 0.21
QVI (0.0000,0.0000,0.0000,0.0354) 441.52 0.44
GSM (0.0000,0.0000,1.0000,0.0000) 0.59 8.08 · 10−8

Alg. 3.3 (0.0000,0.2742,0.7258,0.0000) 16.81 1.14 · 10−7

Example 6.3(i)
ALM not convergent
IPM (1.3561,0.7374,1.0000,1.0468) 2.39 1.93 · 10−7

QVI (1.3562,0.7375,1.0000,1.0469) 2753.26 1.34 · 10−4

GSM (1.3558,0.7376,1.0000,1.0466) 3.47 2.60 · 10−9

Alg. 3.3 (1.3561,0.7374,1.0000,1.0468) 8.36 3.44 · 10−8

Example 6.3(ii)
ALM not convergent
IPM not convergent
QVI not convergent
GSM not convergent
Algorithm 3.3 nonexistence of GNEs detected 5.47

Example 6.3 (iii)
ALM (0,0,0,0) 49.34 1.00
IPM (0.2808,0.2192,0.2808,0.2192) 12.98 0.16
QVI (0.0000,0.4999,0.0001,0.4999) 616.29 5.35 · 10−5

GSM (0.0000,0.4995,0.0000,0.4995) 110.79 8.58 · 10−4

Alg. 3.3 (0.0000,0.5000,0.0000,0.5000) 3.28 4.47 · 10−8

Example 6.3(iv)
ALM not convergent
IPM not convergent
QVI not convergent
GSM not convergent
Alg. 3.3 (0.0000,0.0000,1.0000,1.0000) 2.03 5.45 10−9

Algorithm u time max{|δ|, κ}
Example 6.1(i)

ALM not convergent
IPM not convergent
QVI (0.8911,-0.0000,0.8910,0.0000) 298.10 0.22
GSM (0.4930,-0.0835,0.5000,0.4930) 3.12 1.33 · 10−8

Alg. 3.3 (0.4930,-0.0835,0.5000,0.4930) 4.22 4.31 · 10−7

Example 6.1(ii)

Example 6.3(v)
ALM not convergent
IPM not convergent
QVI (1.0000,0.5000,0.5000,1.0000) 490.93 9.51 · 10−5

GSM (1.0000,0.5000,0.5000,1.0000) 1.80 2.31 · 10−10

Alg. 3.3 (1.0000,0.5000,0.5000,1.0000) 22.73 1.82 · 10−8

Example 6.4
ALM not convergent
IPM not convergent

QVI
(0.3094, 0.8090, 0.8090,

−1.6172,−0.6180,−0.6180)
21.46 5.63 · 10−7

GSM not convergent

Alg. 3.3
(0.3090, 0.8090, 0.8090,

−1.6180,−0.6180,−0.6180)
5.16 2.77 · 10−8
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Table 3
Continued.

Example 6.5(i)

ALM
(0.7774, 1.3629,−0.2227,

1.7389, 0.2226, 0.1000)
75.92 5.10

IPM
(1.1401, 1.0461,−0.1743,

−0.9009, 0.1000, 0.4274)
0.86 8.24 · 10−7

QVI
(0.7775, 1.3628,−0.2227,

1.7386, 0.2227, 0.1000)
192.73 5.10

GSM
(1.1403, 1.0463,−0.1743,

−0.9009, 0.1000, 0.4273)
6.28 1.88 · 10−8

Alg. 3.3
(1.1401, 1.0461,−0.1743

−0.9009, 0.1000, 0.4274)
10.58 6.19 · 10−8

Example 6.5(ii)
ALM not convergent
IPM not convergent
QVI not convergent
GSM not convergent
Alg. 3.3 nonexistence of GNEs detected 19.16

Example 6.6
ALM not convergent
IPM (0.2665, 0.3184, 0.2665, 0.3184) 11.22 0.27
QVI not convergent
GSM not convergent
Alg. 3.3 (0.9250,−0.3799, 0.9250,−0.3799) 2.78 9.06 · 10−8

Example 6.7

ALM
(1.1652, 1.0601, 1.1822,

0.9952, 0.0577, 0.2332)
94.36 0.10

IPM not convergent

QVI
(1.1432, 1.0549, 1.1770,

0.8916, 0.6440, 0.0001)
523.06 2.35 · 10−5

GSM
(1.1446, 1.0551, 1.1772,

0.8917, 0.6431, 0.0000)
4.22 9.16 · 10−7

Alg. 3.3
(1.1432, 1.0549, 1.1771,

0.8917, 0.6439, 0.0000)
7.98 1.70 · 10−8

Example 6.8

ALM
(0.2250, 0.2250, 0.2250, 0.2250,

0.2250, 0.2250, 0.2250
0.2250, 0.2250, 0.2250)

3.06 5.28 · 10−12

IPM
(0.2245, 0.2245, 0.2246, 0.2246,

0.2246, 0.2246, 0.2247
0.2251, 0.2260, 0.2275)

10.89 5.13 · 10−7

QVI
(0.2254, 0.2254, 0.2254, 0.2254,

0.2254, 0.2253, 0.2253
0.2253, 0.2252, 0.2251)

9.10 4.59 · 10−7

GSM
(0.2236, 0.2250, 0.2262, 0.2270,

0.2271, 0.2266, 0.2256
0.2245, 0.2236, 0.2232)

21.33 8.59 · 10−7

Alg. 3.3
(0.2250, 0.2250, 0.2250, 0.2250,

0.2250, 0.2250, 0.2250
0.2250, 0.2250, 0.2250)

11.16 1.05 · 10−9

6.5. About strict inequality constraints. For rGNEPs, rational LMEs are
used to get the KKT set. For strict inequality constraints, their Lagrange multipliers
are always zeros. In Algorithm 3.3, the set \scrK is as in (3.2), where the LMEs are
zeros for strict inequalities. For each rational optimization problem, its feasible set is
relaxed from (5.2) to (5.4), and then we solve it by Algorithm 5.1. Strict inequalities
give open sets. When there are finitely many KKT points (this is the generic case),
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there does not exist a sequence of feasible KKT points that converge to the boundary
given by strict inequality constraints. For some special cases, the KKT set may be
infinite and there possibly exists a sequence of feasible KKT points converging to the
boundary of strict inequality constraints. If this case happens, the limit may not be
a GNE. The following is such an example.

Example 6.9. Consider the following GNEP:

min
x1\in R1

x1x2 min
x2\in R1

 - (x2)
2

1 - (x1)2

s.t. x1 \geq 0, 1 - x1 \geq 0, s.t. x2 \geq 0, 1 - (x1)
2  - (x2)

2 > 0.
(6.12)

The second player has a strict inequality constraint. The Lagrange multiplier vectors
can be expressed as

\lambda 1 = (x2  - x1x2,  - x1x2), \lambda 2 =

\biggl(  - 2x2

1 - (x1)2
, 0

\biggr) 
.

The denominators of \lambda 2 and the second player's objective are positive in the feasible
set but not positive on the boundary of its closure. The KKT set \scrK is

\scrK =

\left\{       (x1, x2)

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
x1(x2  - x1x2) = 0,  - x1x2(1 - x1) = 0,
0\leq x1 \leq 1, x2  - x1x2 \geq 0,  - x1x2 \geq 0,

x2 \cdot  - 2x2

1 - (x1)2
= 0,

x2 \geq 0, (x1)
2 + (x2)

2 < 1,  - 2x2

1 - (x1)2
\geq 0.

\right\}       .

One can see that \scrK = \{ (x1, x2) : 0 \leq x1 < 1, x2 = 0\} . After the cancellation for the
denominator and relaxing (x1)

2 + (x2)
2 < 1 to the weak inequality (x1)

2 + (x2)
2 \leq 1,

the set \scrK is changed to

\scrK 1 =

\left\{       (x1, x2)

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
x1(x2  - x1x2) = 0,  - x1x2(1 - x1) = 0,
0\leq x1 \leq 1, x2  - x1x2 \geq 0,  - x1x2 \geq 0,

x2 \cdot ( - 2x2) = 0,
x2 \geq 0, (x1)

2 + (x2)
2 \leq 1,  - 2x2 \geq 0.

\right\}       .

Then one can check that \scrK 1 = \{ (x1, x2) : 0\leq x1 \leq 1, x2 = 0\} , i.e.,

\scrK 1 = [0,1]\times \{ 0\} and \scrK 1 \setminus \scrK = \{ (1,0)\} .

When we apply the algorithm to compute GNEs, we got the candidate \^x = (1,0),
which is not feasible for (6.12) but lies on the boundary. The second player's objective
is not well defined at \^x. The candidate \^x = (1,0) is not a GNE. Indeed, this GNEP
does not have any GNE.

7. Conclusions and discussions. This paper studies how to solve GNEPs
given by rational functions. LMEs and feasible extensions are introduced to compute
GNEs. We propose a hierarchy of rational optimization problems to solve GNEPs.
This is given in Algorithm 3.3. The Moment-SOS relaxations are used to solve the
appearing rational optimization problems. Under some general assumptions, we show
that Algorithm 3.3 can get a GNE if it exists or detect its nonexistence.

The feasible extension is a major technique used in this paper. Its purpose is to
preclude KKT points that are not GNEs. This technique was originally introduced for
solving bilevel optimization in the work [41]. However, their properties are quite dif-
ferent for GNEPs and bilevel optimization. For instance, a generic polynomial GNEP
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has finitely many KKT points, which is implied by the recent work [44, Theorem 3.1].
It guarantees the existence of feasible extensions for generic rGNEPs, which is shown
in Theorem 4.2. So, Algorithm 3.3 has finite convergence for general cases. However,
for general polynomial bilevel optimization, the KKT set (for the lower level opti-
mization) is usually not finite. There do not exist results on the existence of feasible
extensions. Moreover, the work [41] only considers polynomial extensions. In this pa-
per, we consider more general feasible extensions that are given by rational functions.
It greatly broadens the usage of feasible extensions for solving GNEPs. For instance,
we gave explicit rational feasible extensions in (4.3) for ball constraints parameterized
by the polynomial aj(x - i). For this kind of constraint, polynomial extensions as in
[41] usually do not exist.

There exists much interesting future work to do with feasible extensions. For
instance, are there sufficient conditions weaker than those in Theorem 4.2 for the
existence of feasible extensions? If they exist, how can we find them efficiently?
These questions are mostly open.
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