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Abstract. This paper studies generalized Nash equilibrium problems that are given by rational
functions. The optimization problems are not assumed to be convex. Rational expressions for
Lagrange multipliers and feasible extensions of KKT points are introduced to compute a generalized
Nash equilibrium (GNE). We give a hierarchy of rational optimization problems to solve rational
generalized Nash equilibrium problems. The existence and computation of feasible extensions are
studied. The Moment-SOS relaxations are applied to solve the rational optimization problems. Under
some general assumptions, we show that the proposed hierarchy can compute a GNE if it exists or
detect its nonexistence. Numerical experiments are given to show the efficiency of the proposed
method.
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1. Introduction. The generalized Nash equilibrium problem (GNEP) is a kind
of game to find strategies for a group of players such that each player’s objective
cannot be further optimized for given strategies of other players. Suppose there are
N players and the ¢th player’s strategy is the real vector x; € R™. We write that

= (T, Tin,), Z:=(T1,...,ZN).

Let n:=n; 4+ -+ ny. When the ith player’s strategy x; is focused, we also write
that x = (z;,2_;), where

Tg = (L1, ey Tim1,Tit 1,y TN)-

A strategy tuple u:= (uq,...,un) is said to be a generalized Nash equilibrium (GNE)
if each u; is the optimizer for the ith player’s optimization

min  fi(z;,u_;)
(1.1) Fi(u_;):{ mi€R™
s.t. x; € XZ(U,Z)

In the above, the X;(u_;) is the feasible set and f;(z;,u—;) is the ith player’s ob-
jective. They are parameterized by u_; = (u1,...,%;—1,U;t1,-..,uy). Each player’s
optimization is parameterized by the strategies of other players. We denote by S
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the set of all GNEs and denote by S;(u—;) the set of minimizers for the optimization
Fi(u—;). The entire feasible strategy set is

(1.2) X ={(z1,...,zn) |x; € Xi(x—) ,i=1,...,N}.

A strategy tuple = (x1,...,2y) is said to be feasible if each x; € X;(z_;).

This paper studies rational generalized Nash equilibrium problems (rtGNEPs); i.e.,
all the objectives and constraining functions are rational functions in z. We assume
the ith player’s feasible set is given as

(1.3) Xi(z_;) = (z; eR™ gi,j(x T_ ) >0(j 613)), )
Gij(wi, @ )>O(.j612(1))

where Iél),ll(z),lél) are respectively the labeling sets (possibly empty) for equality,
weak inequality, and strict inequality constraints. For the rational function to be well
defined, we assume all denominators are positive in the feasible set. If this is not the
case, we can add strict inequality constraints for denominators. Rational functions
frequently appear in GNEPs. When defining functions are polynomials, the GNEPs
are studied in the recent work [40, 42, 43]. For convenience, rational functions are
also called rational polynomials throughout the paper.

A special case of GNEPs is the Nash equilibrium problem (NEP): each feasible
set X;(z_;) is independent of z_;. When NEPs are defined by polynomials, a method
is given in [42] to solve them. For GNEPs given by convex polynomials, how to solve
them is studied in the recent work [43]. We refer the reader to [9, 12, 13, 15, 53] for
related work.

One may reformulate rGNEPs equivalently as polynomial GNEPs by introducing
new variables or changing the description of the feasible set. However, doing so
may lose some useful properties. For instance, the convexity may be lost if we use
polynomial reformulations. The following is such an example.

Ezxample 1.1. Consider the 2-player rtGNEP

min 2(11,1)2+($1,2)2+$1,1$1,2‘6T$2 min 2(12,1)2+(r2,2)2—9€2,1$2,2-6T961
x1€R2 1,1 zzeRQ 2,1
(1.4) st w1 — ifi >0, st. 1—el(xg—x1)>0,
21,1 >0, 212 >0, 221 —120, 292 —-1>0.

In the above, e = [1 1]T. In the domain (x1,72) > 0, each player’s optimization is
convex in its strategy variable. We can equivalently express this GNEP as polynomial
optimization

(1.5)
min = z1302(z1,1)%+(z1,2)2 tor 121,267 22] | MIN 22 3[2(22,1)% +(22,2)% —22,172,2-6T21]
z1ER3 9 ER3
st.  x1T12 — w21 >0, st. 1—eéT(xg—x1) >0,
T11 >0, $1’2>0, :L‘271—120, 1‘2,2—1207
T1,171,3 =1, T2,1T23 =1,

where é = [1 1 0]7. However, the two above optimization problems are not convex.

The GNEPs were originally introduced to model economic problems. They are
now widely used in various fields, such as transportation, telecommunications, and
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machine learning. We refer the reader to [1, 5, 7, 25, 31, 46] for recent applications
of GNEPs. It is typically difficult to solve GNEPs. The major challenge is due to in-
teractions among different players’ strategies on the objectives and feasible sets. The
set of GNEs may be nonconvex, even for convex NEPs (see [42]). Convex GNEPs can
be reformulated as variational inequality (VI) or quasi-variational inequality (QVI)
problems [11, 32, 45]. A semidefinite relaxation method for convex GNEPs of polyno-
mials is given in [43]. The penalty functions are used to solve GNEPs in [2, 14]. An
augmented Lagrangian method is given in [24]. The Nikaido-Isoda function-related
methods are given in [10, 52]. Newton-type methods are given in [12, 53]. An inte-
rior point method is given in [9]. Gauss—Seidel-type methods are studied in [16, 40].
Lemke’s method is used to solve affine GNEPs [49]. An ADMM-type method for
solving GNEPs in Hilbert spaces is given in [4]. Moreover, quasi-NEs for nonconvex
GNEPs are studied in [8, 47]. We refer the reader to [13, 15, 17] for surveys on GNEPs.

Contributions. We study GNEPs that are given by rational functions. This
is motivated by earlier work on polynomial NEPs [42] and convex GNEPs [43]. In
various applications, people often face GNEPs given by rational functions. Even for
polynomial GNEPs, the Lagrange multiplier expressions are usually given by rational
functions instead of polynomial ones. This was observed in [43]. Mathematically,
rGNEPs can be equivalently formulated as polynomial GNEPs by introducing new
variables. However, such a reformulation usually destroys some nice properties (e.g.,
convexity may be lost; see Example 1.1). Moreover, solving the reformulated poly-
nomial GNEPs is usually more computationally expensive. This can be observed in
numerical experiments.

For convex GNEPs, each feasible KKT point is a GNE. For nonconvex GNEPs,
a KKT point is typically not a GNE (see Example 3.1). When we solve nonconvex
GNEPs, the earlier existing methods may not get a GNE or are not able to detect its
nonexistence. There exists relatively little work for solving nonconvex GNEPs. In this
paper, we propose a new approach for solving rGNEPs. The optimization problems
are not assumed to be convex. Our new approach is based on a hierarchy of rational
optimization problems. Our major contributions are the following;:

e First, we introduce rational expressions for Lagrange multipliers of each
player’s optimization. These expressions can be used to give new constraints
for GNEs.

e Second, we introduce the new concept of feasible extensions for some KKT
points. More specifically, for a KKT point that is not a GNE, we extend it to
the image of a rational function, such that the image is feasible on the KKT
set. The feasible extension can be used to preclude KKT points that are not
GNEs. For nonconvex rGNEPs, the usage of rational feasible extensions is
important for computing a GNE (if it exists) or for detecting its nonexistence.

e Third, the Moment-SOS relaxations are used to solve rational optimization
problems that are obtained from using Lagrange multiplier expressions and
feasible extensions of some KKT points. Unlike polynomial optimization, a
rational optimization problem may have strict inequalities. We study the
properties of Moment-SOS relaxations for solving them.

The paper is organized as follows. Some preliminaries for moment and polynomial
optimization are given in section 2. A hierarchy of rational optimization problems for
solving the GNEP is proposed in section 3. Feasible extensions of KKT points are
studied in section 4. We show how to solve rational optimization problems in section 5.
Some numerical experiments are given in section 6. Some conclusions and discussions
are given in section 7.
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2. Preliminaries. This following notation is used throughout the paper. The
symbol N denotes the set of nonnegative integers. The symbol R denotes the set of
real numbers. For a positive integer k, denote the set [k] := {1,...,k}. For a real
number ¢, [t] denotes the smallest integer not smaller than t. We use e; to denote
the vector such that the ith entry is 1 and all others are zeros, and we use e to denote
the vector of all ones. For a vector u in the Euclidean space, its Euclidean norm is
denoted as |lul|. By writing A > 0 (resp., A > 0), we mean that the matrix A is
symmetric positive semidefinite (resp., positive definite). Let R[z] denote the ring
of real polynomials in = and R[z|; denote the set of polynomials with degrees not
bigger than d. For the ith player’s strategy vector x;, the notations R[z;] and R[z;]4
are defined similarly. For a polynomial p € R[z], we write p = 0 to mean that p is
the identically zero polynomial, and p # 0 means that p is not identically zero. The
total degree of p is denoted by deg(p), and its partial degree on x; is denoted by
deg,.(p). For a function f(x), the notation V,, f := (%)je[ni] denotes its gradient
with respect to z;. For a set X, we use cl(X) to denote its closure in the Euclidean
topology. A property is said to hold generically if it holds for all points in the space
of input data except a set of Lebesgue measure zero.

Let z = (z1,...,2) stand for the vector x or z;. For a power a := (ay,...,a;) € N},
we denote that z® := 2" --- 2" and |a|:= a1+ -+ ;. For a degree d > 0, we denote
the power set N, := {a € N' : |a| < d}. We use [z]4 to denote the vector of all
monomials in z whose degrees are at most d, ordered in the graded alphabetical
ordering, i.e., [2]a:=[1, 21, ..., 21, 22, ..., 28] T.

2.1. Ideals and quadratic modules. For a polynomial p € R[z] and subsets
I,J CR[z], define the product and Minkowski sum

p-I:={pq:qel}, I+J:={a+b:aclbeJ}.

The subset I is an ideal if p-I C I for all p € R[z] and I+ I CI. The ideal generated
by a polynomial tuple h = (h1,...,hy,) is Ideal[h] :== hy - R[z] + - - + hy, - R[z]. For
a degree d, the dth truncation of Ideal[h] is

Ideal[h]q := h1 - R[z]g—deg(h,) + = + hmy - R[Z]g—deg(n

’NLl).

A polynomial ¢ € R[z] is said to be a sum-of-squares (SOS) if 0 = p? +--- + p?
for some p; € R[z]. We use X[z] to denote the set of all SOS polynomials in = and
denote the truncation X[z]y := X[z] N R[z]4. The quadratic module of a polynomial
tuple g = (g1, -, 9m,) is Qmod[g] :=X[z] + g1 - Z[z] 4+ - - + gm, - 2[x]. Similarly, the
degree-d truncation of Qmod][g] is

QmOd[g]d = E[x]d + g1 Z[m]dfdeg(gl) + -+ Ims ° Z[‘r}dfdeg(gm,l_,)-
The polynomial tuples h,g determine the basic closed semi-algebraic set

(2.1) T :={zeR":hi(z)=0(i € [mi]),g;j(x) >0(j € [m2])}.

Clearly, every polynomial in Ideal[h] + Qmod[g] is nonnegative on the set T. We
denote by Z(T') the set of polynomials nonnegative on 7' and denote the truncation
P4(T) = P(T)NR[x]4. Clearly, Ideal[h]+Qmod[g] C Z(T). The sets L2(T), Pa(T)
are convex cones, and (T is the dual cone of the moment cone

M
%d(T) = {Z )\Z[ui]d u; €T, >0,M € N} .

i=1

When T is compact, the cone %Z4(T) is closed and it equals the dual cone of Z2y(T).
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The set Ideal[h] + Qmod[g] is said to be archimedean if there exists p € Ideal[h] +
Qmod]g] such that the inequality p(x) > 0 defines a compact set. If Ideal[h]+Qmod|[g]
is archimedean, then T is compact. Conversely, if T" is compact, say T is contained in
the ball ||z < R, then Ideal[h] + Qmod[g, R — ||2]|?] is archimedean. When Ideal[h] +
Qmod[g] is archimedean, if a polynomial p > 0 on T, then p € Ideal[h] + Qmod[g].
This conclusion is referenced as Putinar’s Positivstellensatz [48].

2.2. Localizing and moment matrices. For an integer k£ > 0, a real vector
Y = (Ya)aeny, is said to be a truncated multi-sequence (tms) of degree 2k. For a
polynomial f = ZaeNgk fazx®, define the operation

(22) <f7y> = Z faYa-

aeNy,

The operation (f,y) is bilinear in f and y. For a polynomial g € R[z]2: (t <k) and a
degree s < k — [deg(q)/2], the kth order localizing matriz of g for y is the symmetric
matrix Lgk) [y] such that (the vec(a) denotes the coefficient vector of a)

(2.3) (qa®,y) = vec(a)” (L [y])vec(a)

for all a € Rlz]s. When ¢ =1 (the constant one polynomial), the localizing matrix
Lgk) [y] becomes the kth order moment matric Myly] := Lgk) [y].

Localizing and moment matrices can be used to approximate the moment cone
Z4(T) by semidefinite programming relaxations. They are useful for solving poly-
nomial, matrix, and tensor optimization [22, 37, 38, 39]. We refer the reader to
[26, 28, 30] for a general introduction to polynomial optimization and moment
problems.

2.3. Lagrange multiplier expressions. The Karush—-Kuhn—Tucker (KKT) con-
ditions are useful for solving GNEPs and NEPs. We review optimality conditions for
nonlinear optimization (see [3]). Frequently used constraint qualifications are the
linear independence constraint qualification (LICQ) and the Mangasarian-Fromovitz
constraint qualification (MFCQ). For strict inequality constraints, their associated
Lagrange multipliers are zeros, and hence the KKT conditions only concern weak
inequality constraints. For convenience of description, we write that I(()Z) U Il(l) =
{1,...,m;} and g; = (¢i,1,--.,Gi,m;). Under certain constraint qualifications, if z; €
Xi(z_;) is a minimizer of F;(x_;), then there exists a Lagrange multiplier vector
)\i = ()\7;’1, ey )\z,ml) such that

Vo fi(@) = 3 Ay Vagi (@) =0,
(2.4) f( ) 321 2 ,97]-( )

In the above, A\; L g;(z) means that \; is perpendicular to g;(z). The system (2.4)
gives the first order KKT conditions for F;(x_;). Such (z;, ;) is called a critical pair.
Under the constraint qualifications, every GNE satisfies (2.4).

Consider the ith player’s optimization problem F;(z_;). If there exists a rational
vector function 7;(z) such that A; = 7;(z) for every critical pair (x;,A;) of F;(z_;),
then 7;(z) is called a rational Lagrange multiplier expression (LME) for \;. As in
(2.4), each critical pair (x;,\;) of the optimization F;(z_;) satisfies

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.
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Vx-gu(l") vz'gi2(x) vx'gim'(x)
Y Y A g Vi, fi(x
(2.5) 0 gia(x) - 0 =
Ai £ T
Gi() fi(z)

If there exist a matrix polynomial T;(z) and a nonzero scalar polynomial ¢;(x) such
that

then (2.5) implies that g;(z)\; T( ) f (x). This gives the following rational LME:
) =

(2.6) 7i(x) = Ti(x) f ( )/4i()-

At a point u, if ¢;(u) =0, then T;(u) f;(u) =

The rational expression (2.6) almost always exists. This can be shown as follows.
Let H;(z) := G;(z)TG;(x); then H;(x) is a matrix of rational functions and H;(x) =0
on X. If the determinant det H;(z) is not identically zero (this is the general case),
then we have

adj H;(x) - H;(z) = det Hi(z) - L,

where adj H;(z) denotes the adjugate matrix of H;(z). Let d;(x) be the denominator
of det H;(x); then T;(z)G;(x) = ¢;(x) - I,,, for the selection

(2.7) Ti(x) = di(x) - adj Hy(z) - Gi(2)",  qi(x) = d;(x) - det Hy(x).

The above choices of T;(x) and g;(x) may not be computationally efficient. However,
there often exist different options for T;(z) and ¢;(x) to make (2.6) hold. For compu-
tational efficiency, we prefer that T;(z) and g;(x) have low degrees. It is worth noting
that once their degrees are given, the equation T;(x)G;(x) = ¢;(z) - I, is linear in
the coefficients of T;(x) and g;(x). So we can obtain T;(x),g;(x) by solving linear
equations. The following is such an example.

Example 2.1. Let = (z1,72),71 € R, 29 € R, and go(x) = (1 — 21 — 29, 22). We
look for Tx(x), g2(x) such that To(x)G2(x) = g2(z) - Iz, where

-1 1
Go(z)=| 1—x21—220 O
0 X9

We consider g2(x) and Ta(z) having degree 1, i.e.,

To(x) = (as,j +bi jr1 +¢i jT2)1<i<2,1<5<3,
q2(x) = ap + box1 + coxa.

The equality T5(2)Ga(x) = q2(x) - I gives the equations

a1,1 = b1,1 = b1,2 =C2= bz,z =C22= b1,3 =C,3= b2,3 =C23= 0,

ag =ag,;1 = a1, =0a22=—by1=—cy1=—bo,
a1,3=—C1,1,Co=—C1,1 —0a1,2,023=Co —C2,1-
We can choose ag =1 and ¢;,; = —1 to obtain
—X9 1 1
Th(x) = r)=1—1x;.
2() l—21—a9 1 1|’ qQ() 1

We refer the reader to [36, 43] for more details about LMEs.
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3. A hierarchy of optimization problems. In this section, we propose a new
approach for solving rGNEPs. It requires solving a hierarchy of rational optimization
problems. They are obtained from LMEs and feasible extensions of KKT points that
are not GNEs. Under some general assumptions, we prove that this hierarchy either
returns a GNE or detects its nonexistence.

As shown in subsection 2.3, one can express Lagrange multipliers as rational func-
tions on the KKT set. Recall the set X as in (1.2). For the ith player’s optimization
F;(x_;), we suppose that there is a tuple 7; = (Tivj)jezéq‘,)uzy) of rational functions in
x, with denominators positive on X, such that

(3.1) /\i,j = Ti7j(l‘), j GIéi) UIl(i),
for each critical pair (z;,);) of F;(x_;). When G;(x) has full column rank on X,
there exist LMEs satisfying (3.1) by [43, Proposition 3.6]. Note that the Lagrange
multipliers are zero for strict inequality constraints. So, the KKT set is
Vo fi= 2 7ij(2)Ve,9i4() (i € [N]),
(3.2) K:={zxeX jez§Pur ‘
7i3(2)gii(x) =0, 7i;5(x) 2 0 (i € [N], j € Z}")
Not every point u = (u1,...,uy) € K is a GNE. How do we preclude non-GNEs

in K? We consider the case that u is not a GNE. Then there exist i € [N] and a point
v; € X;(u_;) such that

(3-3) fitvi,u_g) — fi(uj,u_y) <O0.

However, if z := (x1,...,zy) is a GNE and v; is also feasible for F;(z_;), i.e., v; €
X;(z_;), then z must satisfy the inequality

(3.4) fitvi,x—i) = fi(wi,x—i) 2 0.

That is, every GNE x satisfies the constraint (3.4) if v; € X;(z_;). This is used to
solve NEPs in [42]. However, unlike NEPs, the feasible set of X;(x_;) depends on x_;.
As a result, a point v; € X;(u_;) may not be feasible for F;(x_;); i.e., it is possible
that v; & X;(z_;) for a GNE z. For such a case, the inequality (3.4) may not hold for
any GNEs. In other words, it is possible that for every GNE z* = (z},2*,), it may
happen that v; & X;(x* ;) and

filvi, ™)) < filaf, 2" ,)= min  fi(x;, 27 ,).

The following is such an example.
Ezxample 3.1. Consider the 2-player GNEP
min (1171 71‘172)1'27112,2 71‘{(171 min 3($271 *1?171)24’2(‘%272 7%172)2
$16R2 $2€R2
s.t. 1—eTx20, x>0, s.t. 2—eTx20, xo > 0.
It has only two GNEs z* = (27, z3):
x] =x5=(0.5,0) and z7=2x5=/(0,0.5).

Consider the point u = (u1,uz2) € K, with u; =us =(0,0). The u; is not a minimizer
of F1(uz), so u is not a GNE. The optimizers of F;(uz) are v; = (1,0) and (0,1). One
can check that for either GNE z*, it holds that

v € X1(z3),  fi(vn,23) — fi(a],23) = —0.75 <0.
The inequality (3.4) does not hold for any GNE.

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.



Downloaded 08/06/23 to 172.88.75.167 by Jiawang Nie (njw@math.ucsd.edu). Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

1594 JIAWANG NIE, XINDONG TANG, AND SUHAN ZHONG

The above example shows that the constraint (3.4) may not hold for any GNE.
However, if there is a function p; in x such that

(3.5) v; = pi(u), pi(x) € Xi(x—;) forall zeKk,
then the inequality
(3.6) filpi(x),2—i) — fi(zi,z—i) > 0

separates GNEs and non-GNEs. This is because f;(z;,z_;) < fi(pi(z),x_;) for every
GNE z, since p;(z) € X;(x_;). This motivates us to make the following assumption.

Assumption 3.2. For a given triple (u,4,v;), with u € IC, i € [N] and v; € S;(u—;),
there exists a rational vector-valued function p; in x := (z1,...,zy) such that (3.5)
holds.

The function p; satisfying (3.5) is called a feasible extension of v; at the point wu.
Feasible extensions are useful for solving bilevel optimization [41]. In section 4, we
will discuss the existence and computation of such p;.

3.1. An algorithm for solving GNEPs. Based on LMEs and feasible exten-
sions, we propose the following algorithm for solving GNEPs.

Algorithm 3.3. For the given GNEP of (1.1), do the following:
Step 0 Find the Lagrange multiplier expressions as in (3.1). Let % := K and k:=0.
Choose a generic positive definite matrix © of length n + 1.
Step 1 Solve the following optimization (note [z]; = [1 xT]T):

{ min  [z]{ O[],

(3.7) st. vzeYX.

If (3.7) is infeasible, output that either (1.1) has no GNEs or there is no GNE

in the set K. Otherwise, solve it for a minimizer w := (uq,...,un) if it exists.
Step 2 For each i =1,..., N, solve the following optimization:
(3.8) di:=min  fi(wsu_s) — fi(us,u_y)
’ s.t. x; € Xi(u,i)

for a minimizer v;. Denote the label set
(3.9 N :={ie[N]:é; <0}

If =0, then u is a GNE and stop; otherwise, go to Step 3.
Step 3 For every above triple (u,4,v;) with ¢ € N, find a rational feasible extension
p; satisfying (3.5). Then update the set Z as

(3.10) U:=U%N{zeR": f;(pi(x),x_;) — fi(zi,x_;) > 0Vie N'}.

Then, let k:=k + 1 and go to Step 1.

In Step 0, we can let © := RTR for a generically generated square matrix R.
Then, the objective [x]{ ©[x]; is generic, coercive, and strictly convex, and so the
optimization problem (3.7) has a unique minimizer if it is feasible. This gives compu-
tational convenience for solving rational optimization with Moment-SOS relaxations
(see Theorem 5.3). Note that Algorithm 3.3 is applicable for all choices of © (e.g.,
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© =1I,11). But a generically selected positive definite © is usually preferable in com-
putational practice. The optimization problem (3.7) may have constraints given by
rational polynomials, or it may have strict inequality constraints. The optimization
(3.8) may have both rational objective and rational constraints. They can be solved
by Moment-SOS relaxations. The optimization problem (3.8) has a nonempty feasible
set, since u; € X;(u—;). In applications, people usually assume (3.8) has a minimizer.
For instance, this is the case if its feasible set is compact or if its objective is coercive.
We discuss how to solve the appearing rational optimization problems in section 5.

If a GNE is a KKT point, i.e., it belongs to the set I as in (3.2), then it belongs
to the set % in every loop. In other words, the update of % in Algorithm 3.3 does
not preclude any GNEs. The set % stays nonempty if there is a GNE lying in £.

In Algorithm 3.3, we need LMEs and feasible extensions. As shown in subsection
2.3, LMEs almost always exist. For standard constraints like box, simplex, or balls,
explicit LMEs are given in (6.2)—(6.5). When denominators of LMEs vanish at some
points, Algorithm 3.3 is still applicable, because denominators can be cancelled by
multiplying their least common multiples. We refer the reader to Example 6.2 for
such cases. The existence of a feasible extension is ensured if K is a finite set (see
Theorem 4.2). There exist explicit expressions for many common constraints; see
subsection 4.1. In summary, Algorithm 3.3 can be used for solving many rGNEPs.

3.2. Convergence analysis. We now study the convergence of Algorithm 3.3.

First, an interesting case is the convex rGNEP. A GNEP is said to be convex
if every player’s optimization problem is convex: for each fixed z_;, the objective
fi(x;,x—;) is convex in x;, the inequality constraining functions in (1.3) are concave in
x;, and all equality constraining functions are linear in ;. Interestingly, the concavity
of constraining functions can be weakened to the convexity of feasible sets under
certain assumptions. As in [27J7 for given x_;, the feasible set X;(z_;) is said to be
nondegenerate if for every j € IOZ)UIY), the gradient V,, g; ;(x) # 0 for all z; € X;(z_;)
such that g; j(z) =0. The set X;(x_;) is said to satisfy Slater’s condition if it contains
a point that makes all inequalities strictly hold.

THEOREM 3.4. Assume the Lagrange multipliers are expressed as in (3.1) with
denominators positive on X. Suppose that each objective f; is convezr in x;, each g; ;
is linear in x; for j € I(gl), and each strategy set X;(x_;) is convexr and nondegenerate
and satisfies Slater’s condition. Then, Algorithm 3.3 terminates at the initial loop
k=0, and it either returns a GNE or detects nonezistence of GNFEs.

Proof. Under the given assumptions, a feasible point is a minimizer of the opti-
mization F;(z_;) if and only if it is a KKT point. This is shown in [27]. Equivalently,
a point is a GNE if and only if it belongs to the set /C. If there is a GNE, Algorithm 3.3
can get one in Step 2 for the initial loop k£ =0, and then it terminates. If there is no
GNE, the KKT point set K is empty, then Algorithm 3.3 terminates in Step 1 for the
initial loop. ]

We remark that if there exist a matrix function T;(z) and a scalar function g;(z)
such that

and ¢;(z) >0 on X (see (2.5) for G;(z)), then X,;(x_;) must be nondegenerate. This
can be implied by [43, Proposition 3.6]. Moreover, when each g; ; is linear in x; for
JjE I(()Z) and every g;; is concave in z; for j € 11(2)7 the X;(z_;) is nondegenerate
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when it satisfies Slater’s condition [27]. When the nondegeneracy condition fails, a
GNE may not be a KKT point, even under the convexity assumption and Slater’s
condition. The following is such an example.

Ezxample 3.5. Consider the GNEP

min = 2z11 + 12 min  ||z; + 22|
(3.11) o1 €R2 2€R?
s.t. (E{CBQ Z 0, 21,1%1,2 2 0, s.t. 21 — 1 Z 0, 2.2 — 1 Z 0.

In the above, all player’s objectives and feasible sets are convex, and Slater’s condition
holds. The feasible set X (z2) is degenerate. The KKT system for this GNEP is

e+er =xoAi 1+ (1,162 + T12€1) A1 2,
2(x1 4+ m2) =e€1- a1 +e2- a2,
M2tz =0, A2 21 1712=0,
A2,1 - (1?2,1 -1)=0, A22 - (932,2 -1)=0,
212> 0, z11212>0, 321 >1, 220 >1,
A1,120, A1220, Ado1 >0, X220 >0.

(3.12)

One may check that (3.12) has no solutions, i.e., this convex GNEP does not have
any KKT point. However, the first player’s feasible set is degenerate at z1 = (0,0),
which corresponds to the unique GNE

*

at = (x1,23), x1=(0,0), 25 = (1,1).

Since the feasible set is degenerate, there do not exist LMEs in the form of (2.6) that
have denominators positive on X. However, if we choose

—z11712 O T1,2 1,2

Ty(z) = A7 : :

1( ) ZC{Z‘Q 0 —I2,1 —T2,1

1 0 00

alx) = ($1,2)2$2,27

QQ(CU) = 1u

then T;(x)G;(x) = ¢;i(x)I,, for each i =1,2, and (2.6) gives the LMEs
Ny o T d0f1 _ afzy 0N
1,1 12=7—5 —

)

- b) b)
21,2%2,2 0711 (x1,2)%T2,2 011

Aol = = .

2,1 ) 2 D2
The denominator ¢; has zeros on X. Interestingly, Algorithm 3.3 still finds the GNE
in the initial loop (see Example 6.3(iv)).

Second, we prove that Algorithm 3.3 terminates within finitely many loops under
a finiteness assumption on KKT points. Recall that S denotes the set of all GNEs.
When the complement K\ S is a finite set, Algorithm 3.3 must terminate within
finitely many loops.

THEOREM 3.6. Assume the Lagrange multipliers are expressed as in (3.1). Sup-
pose Assumption 3.2 holds for every triple (u,i,v;) produced by Algorithm 3.3. If the
complement set K\ S is finite, then Algorithm 3.3 must terminate within finitely many
loops, and it either returns a GNE or detects its nonezxistence.
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Proof. When K\ 8 =0, the algorithm terminates in the initial loop &k =0. When
K\ S # 0 and some u € K\ S is the minimizer of (3.7), the set ' # 0. For each i € N,
there exists v; € S;(u—;) such that

0, = fz'(’Ui,U_i) — fi(ui,u_,') <0.
By Assumption 3.2, the set % is updated with the newly added constraints (for i € )

filpi(x),2—) — fi(zi,z—i) > 0.

The point u does not belong to % for all future loops. The cardinality of the set %
decreases at least by one after each loop. Note that % C K. Therefore, if £\ S is a
finite set, then Algorithm 3.3 must terminate within finitely many loops.

Next, suppose Algorithm 3.3 terminates with a minimizer u in Step 2. Then,
8; > 0 for all 4, so every w; is a minimizer of F;(u_;); i.e., u is a GNE. 0

In Theorem 3.6, the set K\ S being finite is a genericity assumption. For GNEPs
given by generic polynomials, there are finitely many KKT points. This is shown
in the recent work [44]. For GNEPs given by generic rational functions, this can be
shown by an argument similar to that in [44, Theorem 3.1]. Moreover, we remark
that the cardinality |K \ S| is only an upper bound for the number of loops taken by
Algorithm 3.3. This bound is certainly not sharp, because the inequality constraint
(3.6) may preclude several (or even all) KKT points that are not GNEs. In our
numerical experiments, Algorithm 3.3 often terminates within a few loops.

For some special problems, the KKT point set may be infinite. When the comple-
ment set K\ S is infinite, Algorithm 3.3 may not be guaranteed to terminate within
finitely many loops. However, we can prove its asymptotic convergence under certain

assumptions. For each i=1,..., N, we define the ith player’s value function
3.14 i\ L —5) ‘= inf i\ XLy, T—7 ).
( ) vi(z—i) zie)l({-l(x,i) fi(zi, z ;)

The function v;(x_;) is continuous under certain conditions, e.g., under the restricted
inf-compactness (RIC) condition (see [18, Definition 3.13]). A sequence of functions
{¢")(2)} is said to be uniformly continuous at a point x* if for each e > 0, there
exists 7 > 0 such that ||¢*) (z) — ¢¥) (2*)|| < € for all k and for all z with ||z —z*| < 7.
The following is the asymptotic convergence result.

THEOREM 3.7. For the GNEP (1.1), suppose Lagrange multipliers can be ex-
pressed as in (3.1) and Assumption 3.2 holds for every triple (u,i,v;) produced by
Algorithm 3.3. In the kth loop, let u® | vz(k) be the minimizers of (3.7), (3.8), respec-
tively, and let pz(-k) be the feasible extension in Step 3. Suppose u* := (uj,...,ul) is
an accumulation point of the sequence {u(k)}z‘;l. If for eachi=1,...,N,

(i) the strict inequality g; ;(u*) >0 holds for all j GIS), and

(i) the value function v;(x_;) is continuous at u* ;, and
(iii) the sequence of feasible extensions {pz(-k)},;“;l is uniformly continuous at u*,

then u* is a GNE for (1.1).

Proof. Up to the selection of a subsequence, we assume that u*) — u* as k — oo,
without loss of generality. The condition (i) implies that v* € X and v} € X;(u* ;) for
every i. We need to show that each ;] is a minimizer for the optimization F;(u* ;).
By the definition of v; as in (3.14), this is equivalent to showing that

(3.15) vi(u*;) = fi(u*) >0, i=1,...,N.

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.



Downloaded 08/06/23 to 172.88.75.167 by Jiawang Nie (njw@math.ucsd.edu). Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

1598 JIAWANG NIE, XINDONG TANG, AND SUHAN ZHONG

For convenience of notation, let pgk) (z) = z; for each ¢ € N in the kth loop. Since u(®)

is feasible for (3.7) in all previous loops, we have that

fi(pgk/)(u(k)),u(_ki)) — fi(w®)y>0 forall k' <k.
As k — oo, the above implies that

L0 ()07 ) — i) >0 forall K.

Then, for every i and for every k € N,

vi(u” ) = filu")

k k * * *
(3.16) = (vi(u=) = Hip (w),ur ) + (F(p" (), u,) = fi(u*))
k
> v’ -> < < ().

Note that v;(u (k)) fi(pl(k) (u(k)),u(_ki)) for all k and for all ¢ € N in the kth loop.

Indeed, this is clear by construction when i € N. For i ¢ N, we know ugk)

minimizer for F;(u (k)) Let p(k)( ) = x;, then

vi(u®)) = £ u*)) = fi(p® (@W®),u®)).

the convergence u(®) — u* implies that

is a

Under the continuity assumption of v; at u*

—q

Vi (uil

)= khm l/l(u(k)) = lim fi(pz(-k)(u(k)),u(fi)).
—00 k—o00

Because {pZ )}k 1 is uniformly continuous at u*, for every fixed € > 0, there exists
7> 0 such that for all k£ big enough, we have

lur —u®f <7, [p @) = p (@) < e.
Since f; is rational and the denominator is positive on X, we have
fi(pz(-k)(u )sut;) — fz( ( ), (k))—>0 as k— oo.

In view of inequality (3.16), we can conclude that v;(u*,;) — f;(u*) > 0. This shows
that v* is a GNE. O

When there are strict inequality constraints (i.e., I2(i) # (), the RIC condition is
more subtle to check, but it is still applicable. Please note that the strict inequality
gi.j(zi,z_;) > 0 is equivalent to

gij (i, x_;) - (Zi,j)2 =1

for a new variable z; ;. Similarly, rational functions can be equivalently reformulated
as polynomials by introducing new variables. Therefore, the value function v;(z_;) can
be equivalently expressed as the optimal value of a polynomial optimization problem
in a higher dimensional space with weak inequalities only. If the RIC holds for the
new formulation, then one can show the continuity of v;(x_;). There exist some
conveniently checkable conditions for RIC (see, e.g., [6, section 6.5.1]). For instance,
this is the case if the feasible set is compact or the objective satisfies some growth
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conditions. However, checking RIC directly for the rational optimization with strict
inequality constraints is typically difficult. This issue is outside the scope of this paper.

Feasible extensions are sometimes given by polynomials. For such cases, a suf-
ficient condition for condition (iii) of Theorem 3.7 to hold is that the degrees and
coefficients of {pgk)}z"zl are uniformly bounded. As shown in subsection 4.1, when
F;(z_;) has box, simplex, or ball constraints, feasible extensions have explicit expres-
sions, and the corresponding polynomial function sequence {pgk)}f’:l has uniformly
bounded degrees and coefficients. For rational feasible extensions, condition (iii) is
harder to check, since it needs to be checked case by case.

We would like to remark that Theorems 3.4 and 3.6 only give sufficient conditions
for Algorithm 3.3 to terminate within finitely many loops. But these conditions
are not necessary. In other words, Algorithm 3.3 may still have finite convergence
even if [\ S| = oco. This is because the positive definite matrix © is generically
selected (so the optimization (3.7) has a unique minimizer) and feasible extensions
may preclude several (or even all) KKT points that are not GNEs. We refer the
reader to Example 6.1(i)—(ii) for such cases. When Algorithm 3.3 does not terminate
within finitely many loops, Theorem 3.7 proves the asymptotic convergence under
certain assumptions. We would like to remark that Algorithm 3.3 does not need to
check whether these assumptions are satisfied or not, because it is self-verifying. By
solving the optimization (3.8) for each player, we get a candidate GNE and then
verify whether it is a true GNE or not. This does not require checking any other
assumptions.

4. Feasible extensions of KKT points. In this section, we discuss the exis-
tence and computation of feasible extensions p; required as in Assumption 3.2. They
are important for solving GNEPs.

4.1. Some common cases. The feasible extensions in Assumption 3.2 can be
explicitly given for some common cases of optimization problems. Suppose the triple
(u,i,v;) is given.

Box constraints. Suppose the feasible set of F;(z_;) is
a(x_;) <Alx_;)z; <blz_;),

where a,b € Rlx_;]"™, A € Rlz_;]™*™. Suppose A(x_;) has full row rank for all
x € X and there is a matrix polynomial By(z_;) such that

B(l‘_l) = [A(:L’_l)T Bo(iﬂ_l)] S R[l‘_i]nixni
is nonsingular for all z € X. Let p:= (p1, ..., ftm,;) be the vector such that
(bj(u—i) - aj(u—i)) Sy =bj(uq) — (B(u—i)T'Ui)j'

For the case a;(u—;) =bj(u—;), we just let p; =0. Since v; € X;(u_;), it is clear that
each p; €10,1]. Then we choose p; as

(4.1) pi=B(z_;) " pi,
where p; = (Pi1,---,Din,;) is defined by

P i(x) = pia; (i) + (L= py)bj(z—i), 1<j<m;,
B (B(z_i)"x);, mi+1<j<n,.
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One can check that p;(u) =v; and p;(z) € X;(z_;) for all z e L C X
We would like to make some remarks about the existence of B(x_;), which is
nonsingular for all z € X. When A(x_;) = A is independent of z_;, such a constant

matrix B always exists. When A(x_;) depends on x_;, we may still have such a
B(.’E,Z)

Ezample 4.1. Consider the 2-player GNEP with z1 € R', 2o = (221,722) € R%
Suppose Xi(xg) = {x1: (21)? < |lz2||*} and X2(z1) is given by the inequalities

0< [xl 1—|—x1} {xm] <3-—ux.
—— [T22
A(z1)

The A(z1) has full row rank for all z € X. We can construct

B(xl)_{ Ty xl—l}

14z 1
such that det(B(x1)) = (21)? — ((#1)?> — 1) = 1. Therefore, the matrix B(z) is
nonsingular for all z; € R

Simplex constraints. Suppose the feasible set X;(x_;) is given as
dz_i) 2 <b(x_y), cjl@—i)wi; >aj(x_;), j € [ni-

In the above, b € Rlz_;], a = (a1,...,an,), c=(c1,...,¢n,) and d are vectors of poly-
nomials in z_;. Assume c(x_;),d(x_;) >0 for all = (x;,2_;) € X. For convenience,
use ©® to denote the entrywise product, i.e.,

(' @a)(z_y) = [e; Hz_i)ar(z—s) ... cp (m—i)an, (2_;)
Let p:=(u1,-..,n;) be a vector such that
(b—d"c ' @a)(u_y)) - pj =vi; — (c; a;)(u_s).

For the case that b(u_;) = (dTc™! @ a)(u—;), just choose p; = 0. For v; € X;(u_;),
each p; € [0,1]. Then, we choose p; := (p; 1,...,Pin;) such that

(4.2) pij(@)=p;- (b—d ¢ ©a) (@) + (¢ 'ay)(z—y).
One can check that p;(u) =v; and p;(z) € X;(x_;) for all z€e L C X.

Ball constraints. Suppose X;(x_;) is given as

I

nq

> (aj(@—i)wi, — ¢j(z_4))° < (R(z_y))?,

Jj=1

where R € Rlz_;], and a = (a1,...,an,), ¢ = (c1,...,Cpn,;) are vectors of rational func-
tions in x_;. Assume a;(z_;)#0 on X. Let p be such that

laui) ©v; — cu_o)| = plR(u_o)l, 0<p<l.
Then, choose scalars (s1,...,Sy,) such that
lla(u—i) ©vi = c(ui)| - 5; = aj(u—i)vi ; — ¢;(u—s).

For the case ||a(u—;) ® v; — c(u—;)|| = 0, just let s; = 1/,/n;. Then we can choose
Di = (pi,lv oo 7pi,'ni) as

(4.3) pi (@)= (cj(x—i) + 55 - p- R(z—i)) /aj(z—).
One can verify that p;(u) =v; and p;(x) € X;(z—;) for all z e L C X
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4.2. The existence of feasible extensions. The existence of rational feasible
extensions in Assumption 3.2 can be shown under some assumptions. We consider the
general case that the KKT set K as in (3.2) is finite. A polynomial feasible extension
p; exists when [ is finite.

THEOREM 4.2. Assume K is a finite set. Then, for every triple (u,i,v;) with
u €K, i € [N], and v; € X;(u—;), there must exist a feasible extension p; satisfying
Assumption 3.2. Moreover, such a p; can be chosen as a polynomial vector function.

Proof. Since the set K is finite, by polynomial interpolation, there must exist a
real polynomial vector function p; such that

(4.4) pi(u)=wv;, pi(z)=2; forall z:=(z1,...,2n5) €\ {u}.
Note that K C X. For every © = (z1,...,2x) € K\ {u}, we have p;(x) =x; € X;(x_;).
The polynomial function p; satisfies Assumption 3.2. ]

When the set K is known, we can get a polynomial feasible extension p; as in
Theorem 4.2 by polynomial interpolation. The following is such an example.
Ezample 4.3. Consider Example 3.1. There are four KKT points:
1 1 2 2 3 5_
o) =ul) = (0,0, uf? =uf? = (V= 54T,
3 3 4 4
u:(l)—ué) (270), u( ):ué):(O l).

72

The u® = (Y uf”) and u® = (u? u{?) are not GNEs. For u, there are
two minimizers for Fl(uél)), which are (17 0) and (0,1). We can construct the feasible
extension p; of (1,0) at 1M using polynomial interpolation. Consider a linear function
p1 such that

p1 = (ao +a121,1 + @212 + a3T21 + as22, bo + b1x1,1 + bawy 2 + 03221 + bax22).
Equation (4.4) requires that
pl(ugl),uél)) (1,0), pl(ugk) uék)) = ugk), k=2,3,4.

This gives a linear system about coefficients of py:

aozl,bQ:O
ao+la1+%a3:%,bo+§b1+12b3—
ao + 3a2 + 3a4 =0, by + 5bs + 5b4 = 3,

a0+r3a+5ra+‘ﬁ3a+5r Ws
b+\ﬁ3b+5rb+\ﬁ3b+5fb 5W

The above linear system is consistent, and we get the feasible extension
Pz, 22) =1 —211 —T12—T22, T22).
Similarly, we can also get the feasible extension of (0,1) at u(!), which is
(11, l—x21—2290—211).
At the point «(?), the minimizer of Fl(ug)) is ( , 2) We apply polynomial interpo-

lation again. The linear system in coefficients of p; is consistent for deg(p;) =2. The
following is a feasible extension:

(w20 (w20 = Y=2) (w1 + 205), & = (@22 = 522 — 5T (w22 + 5=2) ).
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When the set K is not finite, Assumption 3.2 may still hold for some GNEPs.
For instance, consider that there are no equality constraints, i.e., Ig’) = (). Suppose
K is compact and there exists a continuous map p : R™ — R™ such that p(u) = v;
and g¢; ;(p(x),x_;) > 0 for all z € K and for all j € Il(z) UIS). For every € > 0, one
can approximate p by a polynomial p; such that ||p; — p|| < € on K. Therefore, for ¢
sufficiently small, g; ;(p;(x),z—;) > 0 on z € K. Such a polynomial function p; is a
feasible extension of v; at u.

4.3. Computation of feasible extensions. We discuss how to compute the
rational feasible extension p; satisfying Assumption 3.2. For the set K as in (3.2), let
FEy denote the set of its equality constraining polynomials, and let F; denote the set
of its (both weak and strict) inequality ones. Consider the set

g(z)=0(g € Ey), }

Ky = {xGR" 9(2) > 0(g € Er)

The set K may not be closed, but Xy is, and the closure of K is contained in ;. For a
polynomial p(z), if p(x) € X;(xz_;) for all x € K1, then we also have p(x) € X;(z_;) for
all IC. Therefore, it is sufficient to get p; satisfying Assumption 3.2 with K replaced
by ’Cl .

Suppose the triple (u,i,v;) is given. First, choose a priori degree I, and choose a
denominator h that is positive on K (e.g., one may choose h=1). Then, we consider
the following feasibility problem in (g, u):

¢:=(qrs- - an.) € R]2)™s = (115) g0 2005

(45) a(w) = k(i b-gi,(0:2-1) =0(j €T
1 >0 €”), ;>0 L),
h-gi;(qg,x—;) — pj € Ideal[Eyly + Qmod[Eh ).

When all constraining polynomials g; ; are linear in x;, the system (4.5) is convex
in (¢,p), and it ensures that p; := ¢/h is a rational feasible extension satisfying
Assumption 3.2. For such a case, a feasible pair (q,u) for (4.5) can be obtained by
solving a linear conic optimization problem.

Ezample 4.4. Consider the following 2-player GNEP:

(ma1+x2,2—2211)(x1,1)°+2312 w21~ (22,2)°

min min

z1 ER2 T2,1 zocR2  T22FTiitTi2
s.t. 21’1,1$2,1 — T1,272,2 Z 0, s.t. 2132,1$2,2 —1 Z O,
(4.6) T21T22 — T1,122,1 > 0, 1—x922>0,
271,222 —12>0, 2—1m912>0,
2—x1 2722 >0, T2,1 > 0.

Consider the triple (u,1,v1) for v = (uy,uz) with
up = (0.5,05), up=(0.5,1), vy =(1,0.5).

For | = 2 and h = z9 1222, a feasible ¢ given by (4.5) is (z22,221)/2. Let p1 =
(x2,2,22,1). Then, we have each h - g1 j(p1,22) € Ideal[Ep)o; + Qmod[E4 o

2x2,172,2

h . g1,1(p17$2) = 025 + 0.25(2%11%2’2 — ].)7
h- gl)g(pl,.’lﬁg) = (3?2’1,%2’2 — 0.5)2 + 0.25(2%2’11‘2’2 — 1),
h-g13(p1,72) =0, h-g14(p1,72)=0.75+0.75(2x2 1722 — 1).
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For the triple (u,7,v;), when some constraining polynomials g; ; are nonlinear in
x;, the system (4.5) may not be convex in (g,u). For such cases, it is not clear how
to obtain feasible extensions in a computationally efficient way. The existence of such
a p; is guaranteed when K is a finite set. This is shown in Theorem 4.2. When K is
fully known, we can get the p; by polynomial interpolation. For other cases, it is not
clear to us how to compute such a p; efficiently.

5. Rational optimization problems. This section discusses how to solve the
rational optimization problems appearing in Algorithm 3.3.

5.1. Rational polynomial optimization. A general rational polynomial op-
timization problem is

: ._ ai(z)
(5.1) {Imn A@) =0
st. reEK,

where a1, a2 € Rlz] and K C R" is a semialgebraic set. We assume the denominator
as(z) > 0 on K; otherwise, one can minimize A(x) over two subsets K N{x : az(x) > 0}
and K N{z: —az(z) > 0} separately. Moment-SOS relaxations can be applied to solve
(5.1). We refer the reader to [21, 23, 33] for related work. Please note that Lagrange
multipliers are zeros for strict inequality constraints. So the KKT system does not
need to consider strict inequality constraints. However, the strict inequalities are still
used in the Moment-SOS relaxations, because they are relaxed to weak inequality
constraints.

The rational optimization problems in Algorithm 3.3 may have strict inequalities.
So we consider the case that K is given as

p(z) =0(pe ¥o),
(5.2) K=qzeR"| q(z)>0(ge¥y), »,
q(z) >0(q € V)

where Uy, ¥y, and ¥y are finite sets of constraining polynomials in z. Since as(x) >0
on K, we have A(z) >~ on K if and only if a;(z) —yaz(xz) >0 on K, or equivalently
a1 — yas € P4(K) for the degree

d:=max{deg(a,),deg(az)}.

The rational optimization problem (5.1) is then equivalent to

~*:=max 7y
(5.3) { st. ar(z) —yaz(x) € Py(K).

Denote the weak inequality set

(5.4) Ky:{xeR”

p(x) =0(p € ¥y), }
q(x)>0(qgeT,UTy) [

Note that K is closed and cl(K) C K;. We consider the moment optimization

problem

(5.5) {min (a1, w)

s.t. {ag,w)=1,we %y(K1).
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It is a moment reformulation for the optimization

a*:=min A(x)
(5.6) { st. xe Kj.

Note that (5.6) is a relaxation of (5.1). It is worthy to observe that if a minimizer of
(5.6) lies in the set K, then it is also a minimizer of (5.1).
We apply Moment-SOS relaxations to solve (5.5). Let

(5.7) do :=max {[d/2], [deg(g)/2] (g€ Yo U W1 UWy)}.

For an integer k > dy, the kth order SOS relaxation for (5.3) is

(5.8) 7 immax
' st. ai(x) —vyaz(x) € Ideal[¥p)ag + Qmod[¥ U Usay.

The dual optimization of (5.8) is the kth order moment relaxation

a®) ;= min (a1,y)
s.t. Lz(,k) [y] =0(pe¥y),
L) =0(g e ¥ UTs),
{ag,y) =1, My[y] = 0, y € RNz«

(5.9)

Since (5.9) is a relaxation of (5.5), if (5.9) is infeasible, then (5.1) is also infeasible.
The following is the Moment-SOS algorithm for solving (5.1). It can be conve-
niently implemented with the software GloptiPoly 3 [21].

Algorithm 5.1. For the rational optimization problem (5.1), let k:=dj.
Step 1 Solve the kth order moment relaxation (5.9). If it is infeasible, then (5.1) has
no feasible points and stop. Otherwise, solve it for the optimal value a(*) and
a minimizer y* if they exist. Let t:=dy and go to Step 2.
Step 2 Check whether or not there is an order ¢ € [dy, k] such that

(5.10) r:=rank M;[y*] = rank M;_4, [y"].

Step 3 If (5.10) fails, let k := k + 1 and go to Step 1; if (5.10) holds, find points
Z1,...,2r € K7 and scalars pq,. .., u, >0 such that

(5.11) Yot = palz1)oe + -+ pr[2r] 2t

Step 4 Output each z; € K with a2(z;) >0 as a minimizer of (5.1).

In Step 2, the rank condition (5.10) is called flat truncation. It is sufficient and
almost necessary for checking convergence of the Moment-SOS hierarchy (see [34]).
Once (5.10) is met, the moment relaxation (5.9) is tight for solving (5.5), and the
decomposition (5.11) can be computed by the Schur decomposition [20]. This is also
implemented in the software GloptiPoly 3 [21]. When Ideal[¥(]+ Qmod[¥; U Ws] is
archimedean, one can show that a(®) — a* as k — oo (see [35]). The following is the
justification for the conclusion in Step 4.

THEOREM 5.2. Assume as >0 on Kq. Suppose y* is a minimizer of (5.9) and it
satisfies (5.10) for some order t € [do,k]. Then, each z; in (5.11), such that az(z;) >0
and z; € K, is a minimizer of (5.1).
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Proof. Under the rank condition (5.10), the decomposition (5.11) holds for some
points z1,...,2, € K (see [20, 34]). The constraint (as,y*) =1 implies that

1={ag,y") =pmaz(z1) + -+ + praz(zy).

Since ag > 0 on K71, we know all az(z;) > 0. Let Jy :={j : as(z;) >0} and Jy :={j:
as(z;) = 0}; then

(a1,y%) = Z pjaz(zj)A(z;) + Z piar(z;).

VISDA JEJ2

Note that Zjeh pjas(z;) =1 and each [zj]a, € Zox(K1). For all nonnegative scalars
vj >0, j € J1UJa, such that 3, ; vjas(z;) =1, the tms
2(v) == wvilzt)on 4 -+ vp 2ok

is a feasible point for the moment relaxation (5.9). Therefore, the optimality of y*
implies that A(z;) = a®) for all j € J;. Since a*) < a* and each zj € Ky, we have
A(zj) > a*. Hence, A(z;) =a* for all j € J;. Note that (5.5) is a relaxation of (5.6). So
each z; (j € Ji) is a minimizer of (5.6). Therefore, every z; € K satisfying as(2;) >0
is a minimizer of (5.1). ad

In the decomposition (5.11), it is possible that no z; belongs to the set K. This
is because the feasible set K may not be closed, due to strict inequality constraints.
For such a case, the optimal value of (5.1) may not be achievable. If we obtain a
minimizer y* of (5.9) such that rankM}[y*] is maximum and (5.10) is satisfied, then
we can get all minimizers of (5.6). Moreover, if (5.6) has infinitely many minimizers,
the rank condition (5.10) cannot be satisfied easily. We refer the reader to [30, 34]
for this fact. When primal-dual interior point methods are used to solve (5.9), a
minimizer y* with rank M} [y*] maximum is often returned. Therefore, if (5.6) has
finitely many minimizers and primal-dual interior point methods are used, then some
points z; (5.11) must belong to the set K. This means that we can typically find all
minimizers of (5.1) and (5.6), even if there are strict inequality constraints. However,
if the optimal value of (5.1) is not achievable, then no z; in (5.11) belongs to K. We
refer the reader to [21, 23, 33] for the work on solving rational optimization problems.

5.2. The optimization for all players. The rational optimization problem in
Step 2 of Algorithm 3.3 is

(5.12) { I;th i(z)@; =] ©[a)x

where O is a generic positive definite matrix. The feasible set % can be expressed as
in the form (5.2), with polynomial equalities and weak/strict inequalities, for some
polynomial sets Uy, Uy, ¥y. That is, (5.12) can be expressed in the form of (5.1), with
denominators being 1. Denote the corresponding set

(5.13) U ={zeR"p(x)=0(pe ¥y), g(x) >0(ge ¥y UTy)}.

Since © is positive definite, the objective 6 is coercive and strictly convex. When O is
also generic, the function # has a unique minimizer u* on the set %4 if it is nonempty.
Suppose y* is a minimizer of the kth order moment relaxation of (5.12). Then, in
Algorithm 5.1, the rank condition (5.10) is reduced to

rank My [y*] =1
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for some order ¢ € [dy, k] and the decomposition (5.11) is equivalent to y*|a; = f11[21]ot
for some 2, € % . Algorithm 5.1 can be applied to solve (5.12). The following are
some special properties of Moment-SOS relaxations for (5.12).

THEOREM 5.3. Assume © is a generic positive definite matrix.
(i) If the set 24 is empty and Ideal[¥o] + Qmod[¥ U Ws] is archimedean, then
the moment relazation for (5.12) must be infeasible when the order k is big

enough.
(ii) Suppose % # 0 and Ideal]¥o] + Qmod[¥y U Wy is archimedean. Let u®) :=
(ygf), e ,yéi)), where y*) is the minimizer of the kth order moment relazation

of (5.12). Then, u'®) converges to the unique minimizer of 0 on % .
(iii) Suppose the real zero set of Wy is finite. If % # 0, then we must have
rank M, [y*] =1 for some t € [do, k], when k is sufficiently large.

Proof. (i) When %, = (), the constant —1 can be viewed as a positive poly-
nomial on %;. Since Ideal[¥g] + Qmod[¥; U U5 is archimedean, we have —1 €
Ideal[Wglax + Qmod[¥; U Wslyy, for k big enough, by Putinar’s Positivstellensatz. For
such k, the corresponding SOS relaxation (5.8) is unbounded from above, and hence
the corresponding moment relaxation must be infeasible.

(ii) When % # (), the objective 6 has a unique minimizer u* on %;. The conver-
gence of u*) is implied by [34, Theorem 3.3] (see also [50]).

(iii) When the real zero set of ¥y is finite and %4 # 0, the conclusion can be
implied by [29, Proposition 4.6] (see also [30]). |

5.3. Checking generalized Nash equilibria. Once we get a minimizer u of
(5.12), we need to check whether it is a GNE or not. For each i =1,..., N, we need
to solve the rational optimization problem

dir=min  fi(xs,u_s) — fi(wi,u_s)
(514) { st. x; € Xi(u,i),

where f;, X;(u_;) are given in (1.1). Assume the KKT conditions hold and the La-
grange multiplies can be expressed as in (3.1), then (5.14) is equivalent to

min  fi(zg,u_q) — fi(us,u_;)

st. Vo filziu) = > 7ij(@iu—i)Vaegij(wiu_i),
(5.15) jeruzy? ,
T (@i i) g (i u_g) = 0, 7o (2, u_g) > 0(j € Zy),
x; € Xl(’LL,Z)

We can equivalently express the feasible set of (5.15) in the form

p(z;) =0(pe ¥;p),
(5.16) Yi(u_i) =< z; €R™ | q(x;) >0(q€ V1),
q(z;) >0(ge W)

for three sets W, o, ¥, 1,¥; 2 of polynomials in z;. In computational practice, we
need to assume (5.15) is solvable, i.e., the solution set of (5.15) is nonempty. As in
subsection 5.1, we can apply a similar version of Algorithm 5.1 to solve the rational
optimization problem (5.15). Conclusions simlar to those in Theorem 5.3 hold for the
corresponding Moment-SOS relaxations. A difference is that all rational functions for
(5.14) are only in the variable z; instead of . It may have several different minimizers,
so the rank in (5.10) may be bigger than one. Generally, the optimization (5.15) is
easier to solve than (5.12).
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6. Numerical experiments. This section gives numerical experiments for Al-
gorithm 3.3 to solve rGNEPs. The rational optimization problems are solved by
Moment-SOS relaxations, which are implemented with the software GloptiPoly 3
[21]. The semidefinite programs for the Moment-SOS relaxations are solved by Se-
DuMi [51]. The computation is implemented in MATLAB R2018a, in a Laptop with
CPU 8th Generation Intel Core i5-8250U and RAM 16 GB. For cleanness of presenta-
tion, only four decimal digits are displayed for computational results. The accuracy
for a point u to be a GNE is measured by the quantity

(6.1) 4 := min{dy,...,0n},

where §; is the optimal value of (3.8). The point u is a GNE if and only if § = 0.
Due to numerical issues, u can be viewed as a GNE if ¢ is nearly zero (e.g., § >
—1075). For cleanness of presentation, we do not list the constraining functions 9ij
explicitly. Instead, they are ordered row by row, from top to bottom; in each row,
they are ordered from left to right. If there is an inequality like a(x) < b(x), then the
corresponding constraining function is b(x) — a(z).

To implement Algorithm 3.3, we need rational LMEs. This is reviewed in subsec-
tion 2.3. More details can be found in [36]. For some standard constraints (e.g., box,
simplex, or balls), we can have LMEs explicitly given as follows.

(i) Consider the box constraints a(z_;) < z; < b(z_;), where a = (ay,...,an,),
b=(b1,...,bn;). The LME is, for j=1,...,n,,

(6.2) Ni2j—1= 73 bi(—i)—xij; . Of; Nioj = aj(@_i)—xi;  Ofi

i@_i)—aj(@_;)  Omi;’ bj(w—i)—a;(z—i) Ows;"
(ii) Consider the simplex constraints u(x_;) > e’z;, z; > I(x_;), where [ is a

vector function in z_;. The LME is A; = (i 1, A;), with

PPN o SN
(6.3) Nig = — Bt @) Veidi R f Mg e

w(z_;)—eTl(z_;)

(iii) Consider the ball-type constraint r(z_;) < |lz; — ¢||*> < R(z_;), where ¢ =
(c1,...,¢n,) is a constant vector. The LME is

(6.4)
A\ <R(zi)£«iil(mi,lcl)'($iC)TV$if1 T(Ii)aij_:il<zi,lcl)'(1iC)vaifi>
i = - :

2@i1—e1)(B(z_i)—r(_1)) ’ 2(zi1—c1)(R(z—i)—r(z—s))
For the special case that r(z_;) =0, the LME is reduced to
(6.5) Ai=(c—z)"Vy, fi/(2R(z_;)).

6.1. Some fractional quadratic GNEPs. First, we consider rGNEPs with
fractional quadratic objectives and standard constraints (e.g., box, simplex, or balls).
These GNEPs often appear in various applications. We give details for applying
Algorithm 3.3 in such problems.

Ezample 6.1. (i) Consider the 2-player rGNEP

min —(z1,1)%—w2,1211 min 3x2,1T2,2—2x2 2
z1 €R2 T1,2%2,2+1 zo€R2 x1,2x2 2+1

(6.6) st. (z21)?—aTx21>0,| st. 05<z9; <1,
0<xo0 <.
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The LME for the first player is in the form of (6.5), and the LMEs for the second

T
player are given as in (6.2). Precisely, we have \; = _;(%f)lzfl and
0 f2 df2 T1,1 — T22 Of2 T2 Of2
X = ((@2-2 . (1-2 ™ : -} .
? <( x2’1)5$2,1 ( 332’1)31’2,1 r1,1 0z 11 0T22

By applying Algorithm 3.3, we get

k=0 | vl =ul” = (0.6667,0.0000),
61 =—-3.6732-10"7, & =—0.3333,
o8 = (0.5000,0.6667), p(2)=(0.5,211).

ulY = (0.4930,-0.0835), S = (0.5000,0.4930),
51 =—4.3101-107, 6, =-8.9324-10°.
A GNE is returned in 4.22 seconds.

e
I
—

In the above, u(®) = (ugk),ugk)), vgk) denote the minimizers of (3.7)—(3.8) in the kth
loop. The péo) (z) is the feasible extension of ’U;O) at u(®), which is given as in (4.1).
Interestingly, (6.6) has infinitely many non-GNE KKT points, because one can check
that (t,0,¢,0) € K\ S for every t € [2,1]. However, Algorithm 3.3 still had finite
convergence, as verified in computational practice. It implies that the upper bound
|\ S| given in Theorem 4.2 is not sharp. In addition, we would like to remark that
finite convergence is guaranteed by the use of feasible extension po(z) = (0.5,211).

Since
fa(w1,p2(x)) — f2(,0,¢,0) = —0.5t <0 Vt€[2/3, 1],

then the whole set {(t,0,t,0):t € [2,1]} can be precluded by (3.6).
(ii) For the GNEP (6.6), if the first player’s objective function is changed to

2
—(z11)" +x21211
T1,20%2,2 +1

)

then Algorithm 3.3 produces the following computational results:

k=04l =(0.3333, —0.3049), " = (0.6667, 0.0000),
51 =—1.0000, 3y =—0.1856,

o{? = (=0.6667, 0.0000), PV ()= (—221, 0),
o8 = (05000, 0.3333), P () = (0.5, z11).

k=1 | Nonexistence of GNEs is detected in 5.56 seconds.

Similar to (i), there are infinitely many non-GNE KKT points, which are («, 8, 2c,0)
with

a€ll/3,1/2], Be[-V3a, V3al.

However, Algorithm 3.3 successfully detected the nonexistence of GNEs at the loop
k=1.

Example 6.2. Consider the rGNEP with jointly simplex constraints

. 2T Aiz+zT a1+cq . 2T Asz+zT as+co
(67) mlnel]%{lq 2T Bix+aTby+dy 121161]%}@ 2T Bax+aTby+ds
s.t. xr1 € Al(.ﬁz), s.t. T € Ag(l‘l).
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TABLE 1
Numerical results for Example 6.2.

k (u”), uf?) o

0 (0.0000, 0.5000), ( 0000, 0.0000) —0.1429
1 (0.0000,0.0000), (0.0000, 0.0354) —0.4425

2 (0.0000, 0.4831), (0.5169,0.0000) —0.2476

3 (0.2910,0.1089), (0.6001,0.0000) —0.0583

4 (0.0000, 0.2742), (0.7258,0.0000) —1.14-1077

In the above, for each i =1,2, A;, B; e R"*", a;,b; e R", ¢;,d; € R, and

Aij(z_;) = {xz eR™:1—eTz>0, 21 2>0,...,Tin, > O}.

For both players, we use LMEs as given in (6.3), of which denominators have zeros
in the feasible set X = {x € R : 1 — e”z > 0}. Precisely, they vanish when e’z_; =
1,4 =1,2. Moreover, the set of complex KKT points for (6.7) has a positive dimension
(see [44]) for all A;, B;,ai,b;,¢;, and d;. Indeed, for all ¢ € [0,1], the pair of x; =
(0,¢,0,...,0) and zo = (1 —¢,0,...,0) is a complex KKT point, because the active
constraint gradients e, ez, es,...,e, span the entire space.

For instance, let n;y =ny =2 and

3 2 -1 3 -1 2 0 0
2 0 -2 0 2 —2 3 1
A=) 5 0 -2 |’ Az = 0 3 —4 2|
3 0 -2 2] 01 2 2|
[ 4 0 2 —27 [ 3 1 —1 3]
0 2 0 -1 1 2 -1 2
B = o 0 3 1| B= 1 1 20|
| -2 -1 -1 2 3 2 0 4|
1 -1 0 1
1 |05 po | 1 B 0
ap = -1 9 az = 1 ) 1— - _05 )
0 -1 0 1

C1 :3, 622—2, dl :3.5, d2=3.

By a symbolic computation, one can check that the pair of z; = (0,t) and xo =
(1—1¢,0)is a KKT point for all ¢ € [0, 5], where 8~ 0.4831 is the unique real zero of
B3+ %62 + Z—g =0. Apply Algorithm 3.3 to the GNEP (6.7). The computational
results are displayed in Table 1. In the kth loop, the u*) = (u} (k) (k)) denotes the
minimizer of (3.7), and §*) is the accuracy for u(*) computed as in (6.1). Each
feasible extension is selected in form of (4.2). We got a GNE at the loop k =4 with
§=—1.14-10"7. It took around 16.81 seconds.

6.2. Some explicit examples. In the following, we present some explicit exam-
ples of rGNEPs. For cleanness of presentation, we only report computational results
at the last loop for Algorithm 3.3.

Ezample 6.3. (i) Consider the GNEP in (1.4). The LME for the first player is
A= (‘Ul*”lTV””lfl, 0, 0).

233271
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For the second player, the LME is given by (6.3). Each LME has a positive denomi-
nator on X. Algorithm 3.3 terminated at the initial loop & =0. The computed GNE
is u = (u,ug), with

(6.8) uy = (1.3561,0.7374), sy = (1.0000,1.0468), &=—3.44-10"%.

It took around 8.36 seconds.
Consider its equivalent polynomials reformulation (1.5). For the first player, the

LME is
0 0
A1 = <x1’2 fl 707 07 1,3 f1 )
22,1 0212 T 03

For the second player, the LME is

_ ([ Of2 2 _0f 1-wo1 9fa 1-x2
)\2’1 T\ Oz2,1 (IQ’S) Oxa 3 ) x1,1+x1,2—1 Ox22 x1,1+w1,2—1"

_ ( _0f 2 _O0fa _ Of _ 9fa
A2 =gy — (223) 555 ) H A2 Aes=g0 + A1, dea=a223- 505

Each LME has a positive denominator on X. Algorithm 3.3 also terminated at the
initial loop k =0. The computed GNE is & = (i1, U2) with

dn = (1.3561,0.7374,0.7374), 1z = (1.0000, 1.0468,1.0000), &= —2.70-10"5.

The result is consistent with that in (6.8). But the computation took around 264.42
seconds. It is much more efficient to solve the original rational GNEP.
(ii) For the GNEP in (1.4), if objective functions are changed to

GRS S bk PLIE I RV NG L L G
Z1,1 2,1

then there is no GNE. This was detected by Algorithm 3.3 at the initial loop k£ = 0.

It took about 5.47 seconds.

Like in (i), we also consider the equivalent polynomial GNEP with the updated
objective. By applying Algorithm 3.3, we detected the nonexistence of GNEs at the
initial loop k=0. It took around 19.61 seconds.

(iii) Consider the GNEP in Example 3.1. We use the LMEs as in (6.3) and the feasible
extension as in (4.2). By Algorithm 3.3, we got the GNE u = (uy,u2) at the loop
k=1 with

)

uy = (0.0000,0.5000), uy = (0.0000,0.5000), &=—4.47-1075.

It took around 3.28 seconds.

(iv) Consider the GNEP in Example 3.5. We use the LMEs as in (3.13). Since, for
each 14, the feasible set X;(z_;) is independent to x_;, we apply the trivial feasible
extension p;(x) = x;. By Algorithm 3.3, we got the GNE u = (u1,uz) in the initial
loop with

uy = (0.0000,0.0000), uy = (1.0000,1.0000), §=—5.45-10"7.

It took around 2.03 seconds.
(v) Consider the GNEP in Example 4.4. For the first player’s optimization, we have
the following rational LMEs:
_ T2 2—T1,1 . Of1 _ T12®p2—-2x11%21  Ofi
/\171 T z2202x21—71,2) Oz11’ AL = z21222(222,1—21,2) Ox11’

__2—miax22 [ Of1 T2,2—T1,1 df1 _ 12z 0@9,0
)\173 - 3w2,2 8Z1,2 + 2$2,1—ZD1,2 8901,1 ) )\174 - 2—1172LE2Y2 ,3°
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For the second player’s optimization, we have the following rational LMEs:

1-2z51222  Of>

1—z3 2 dfa
)\2 1 22‘:211—1 81‘272 )

’ = 2.7)2)1—1 8.%2127

Aos =21 — w21 22), Mou=3 ((2 —Z21) - aiii +(1- 43:2,2)/\2,1) .

8I2,1

A2 =

We apply the feasible extension as in Example 4.4. Algorithm 3.3 terminated at the
loop k=1. We got the GNE u = (u1,us) with

uy = (1.0000,0.5000), ug = (0.5000,1.0000), &§=—1.82-10"%.
It took around 22.73 seconds.
Ezample 6.4. Consider the 2-player GNEP with the optimization
miﬂg}g i (z14+22) + 211 —T12 — T13

r1€
st. 1+ (eTw9)? — 11210713 >0,

. T 3 . )2
min ele+ 35 (@)

st (eTzy)? —afxy >0.

For the first player’s optimization, we have the LME and the feasible extension
B 2TV f1 1+ (eTzq)? -v
3+ 3(eT2)?’ 1+ (eTug)2 7))
For the second player, we have the LME as in (6.5) and the feasible extension as in

(4.3). Algorithm 3.3 terminated at the loop k£ = 0. We got the GNE u = (u1,u2)
with

A= pi(z) = (111717111,2,

uy = (0.3090,0.8090,0.8090), s = (—1.6180, —0.6180, —0.6180),

and the accuracy parameter § = —2.77-1078. It took around 5.16 seconds.

Ezample 6.5. (i) Consider the 3-player GNEP
min |z — 3(x2 +a3)]?
F1(.T2,.’173) : z1ER? 2
s.t. 1,1T1,2 — xgxg —1= O, T1,1 Z O, x1,2 Z O,
min 22 (z1 +23) + (22,1) — 3(22,2)2
F2($17I3)5 z2€R? 2 9
st (212)° = [lw1 - 22* =0,
: T
min  x3 (x1 +x2 + 23 —€)
F3(£L’17.’172) : z3ER? 3
s.t. xlTosl —eTxs> 0, 231 —0.1>0, 232 —0.1>0.

The LMEs for Fy(z2,23) and Fa(x1,23) are

T
3 Vi, f1 =0h _
/\1,1 2+2z 1 a3 /\1,2 T Oz $1,2>\1,17
T
of _ T%2 Ve f2
/\1,3 T Oz .%‘171/\1,1, A2 2(z1,2)% °

We use the LME as in (6.3) for Fs(x1,22). The first two players have the feasible
extension

u xr
o (z) = 2112 (v2.1,02,2).

9

14+ a2lx
pi(z) = (Ul,la 33)

U1,271,1

For the third player, the feasible extension is given in (4.2). Algorithm 3.3 terminated
at the initial loop k =0. We got the GNE u = (u1, us,uz) with

up = (1.1401,1.0461), wug=(—0.1743,—-0.9009), wus=(0.1000,0.4274),
and 6 = —6.19-1078. It took around 10.58 seconds.
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(ii) Tt is interesting to note that if the third player’s objective is changed to
3 (w1 + 22 =€) + (w31)° — (232)°,

then there is no GNE. This was detected by Algorithm 3.3 at the loop k£ =1. It took
around 19.16 seconds.

We remark that Algorithm 3.3 can be generalized to compute more (or even all)
GNEs. This can be done with the approach in [42]. Suppose a GNE u is already
known. Select a small scalar { > 0, and solve the maximization problem
(6.10) { p:=max [z]TO[z];

’ st. ze, )T Oz <[u]TOu); +¢.

If p > [u]TO[u];, then let ¢ :=(/2 and solve (6.10) again. Repeat this until ¢ is small
enough to make p = [u]TO[u];. When u is an isolated KKT point and © is generically
positive definite, such a ¢ always exists. This can be proved similarly to that in [42].
Once such ¢ is found, we add the new inequality [z]7 ©[z]; > [u]T©O[u]; + ¢ to (3.7).
Then, Algorithm 3.3 can be applied to get a new GNE if it exists. It is worth noting
that if the optimization (3.7) is infeasible with the newly added constraints, then
there are no other GNEs. By repeating this process, we can get all GNEs if there are
finitely many ones. We refer the reader to [42] for more details. The following is such
an example.

Ezxample 6.6. Consider the 2-player GNEP

: z22(21,1)°Fw21(w1,2) 421121 2
min T 7
£, ER? (z1,1)%+ 20 ER2 (w2,1)%+

st. (1—elmy)? <2 <1, st. (1—elx)? <|ag]® < 1.
We use the LMEs as in (6.4). For both i =1,2, the feasible extension is

Vi Vi eTx—i
pi(x) v; .

el il efu_;

min 712 (x2,1) 4211 (72,2) 422,172 2

Following the above process, we got two GNEs u = (u1,us) with

uy = (0.9250,—0.3799), uy = (0.9250,—0.3799), §=—9.06-10"5;
uy = (—0.2700,0.9629), uy = (—0.2700,0.9629), &=—2.67-10"".

It took around 29.80 seconds to get both of them. Since each rational LME has a
positive denominator on X, we obtained all GNEs for this problem.

6.3. Some examples in applications. We give some examples arising from
applications. The first one is an NEP with rational objectives.

Ezample 6.7. Consider the NEP for the electricity market problem [7, 14]. Sup-
pose there are N generating companies. For each ¢ € [N], the ith company possesses
n; generating units, where the jth generating unit has x; ; power generation. As-
sume each z;; > 0 and is bounded by the maximum capacity F;; > 0. Denote
wi=(9i1,...,%in,;), Where each ¢; ; is the cost of the generating unit x; ;:

@i () = ai ;- (i) —bij - (wij)* + cijTi -

The electricity price is given by ¢(x) := ﬁ. The aim of each company is to
maximize its profits. The ith player’s optimization problem is

Fieyy, { i i) o) T,
A s.t. 1‘7;7]‘20, Ei7j—$i7j20(j6[ni]).
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TABLE 2
Numerical results of Example 6.8.

N u=(up,...,un) o time

10 u; = 0.2250 (i =1,...,10) —1.05-107° | 11.16

11 u; = 0.2066 (i =1,...,11) —4.75-1077 | 24.36

01883 (i=1,...,9) N

12 ul,{ L (i =10,...,12) —-1.93-10 45.38
Wl (01647 (i=1,...,7) I

13| u= { L; (i=8,..., 13) —4.83-10 70.81
L Joas2 (i=1,2,3) B .

14 | u; = { L; (i=4,....14) 1.02-10 97.00

The objectives are rational functions in strategies. The LME in (6.2) is applicable
with box constraints. Since this is an NEP, we can apply the trivial feasible extension
pi(xz) =x; for each i € [N]. We choose the following parameters:

N =3, n =1, no =2, ns =3, A=05, B =20,
ail = 07, a2,1 = 075, a2 = 065, as1 = 066, as 2 = 07, as s = 08,
b1 =08, byy =075 byy=0.65, bs1=0.66, bso=0.95 bgs=0.5,
C1,1= 2, C21 = 1.25, C22 = 1, C3.1= 2.25, C3.2= 3, C3,3= 3,
Ei1=2  FEo1=25, Eyp=15 E3; =12 F35=18 FE33=16.

Algorithm 3.3 terminated at the loop k =0. We got the GNE u = (u1, us,us), where
up =1.1432,  wuy =(1.0549,1.1771), wus=(0.8917,0.6439,0.0000),

and § = —1.70 - 10~8. Tt took about 7.98 seconds.

Ezample 6.8. Consider the GNEP for internet switching [12, 25]. Assume there
are N users, and the maximum capacity of the buffer is B. Let z; denote the amount
of ith user’s “packets” in the buffer, which has a positive lower bound L;. Suppose
the buffer is managed with the “drop-tail” policy: if the buffer is full, further packets

will be lost and resent. Suppose 7= is the transmission rate of the ith user, ez g
el'x B

the congestion level of the buffer, and 1 — e% measures the decrease in the utility of

the 7th user as the congestion level increases. The ¢th user’s optimization problem is

{ min  fi(x) = -4 (1 - )

(6.11) zi€R!

st. x;—L; >0, B—eTa>0.

We apply the LME as in (6.3) and solve the GNEP for N =10, ..., 14, with parameters
B=2.5and L; =0.09+40.017 for each i € [N]. Algorithm 3.3 terminated at the initial
loop k£ = 0 for each case. The numerical results are shown in Table 2. In the table,
u = (u1,...,uy) and § denote, respectively, the GNE and the accuracy parameter,
and “time” is the CPU time in seconds.

6.4. Comparison with other methods. We compare our method (i.e., Al-
gorithm 3.3) with some existing methods for solving GNEPs, such as the interior
point method (IPM) based on the KKT system [9], the quasi-variational inequality
method (QVI) in [19], the augmented-Lagrangian method (ALM) in [24], and the
Gauss—Seidel method (GSM) in [40]. For Example 6.6, we only compare for finding
one GNE. For Example 6.8, we compare for N = 10.
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For a computed tuple u:= (uq,...,uyn), we use the quantity

K= maX{ max  {—g;;(u)}, max {Igi,j(u)l}}
i€[N],jez{P Uz i€[N],jez?
to measure the feasibility violation. Note that u is feasible if and only if £ <0 and
gij(w) > 0 for every j € IQ(l). For these methods, we use the following stopping
criterion: for each generated iterate u, if its feasibility violation x < 107°, then we
compute the accuracy parameter § for verifying GNEs. If § > —1076, then we stop
the iteration.

For the above methods, the parameters are the same as in [9, 24, 40]. The
full penalization is used for the augmented-Lagrangian method, and a Levenberg—
Marquardt-type method (see [24, Algorithm 24]) is used to solve penalized subprob-
lems. For the Gauss—Seidel method, the normalization parameters are updated as
(4.3) in [40], and the Moment-SOS relaxations are used to solve each player’s opti-
mization problems. For the QVI method, the Moment-SOS relaxations are used to
compute projections. We let 1000 be the maximum number of iterations for all the
above methods. For initial points, we use (0, 1,1,0) for Examples 6.1(i)—(ii), (1,1,1,1)
for Examples 6.3(1), (ii), (iv), (v), (v/2,v2,1,1,1,1) for Example 6.5, (0,1,0,1) for
Example 6.6, 0.25-(1,---, 1) for Example 6.8, and the zero vectors for other examples.
If the maximum number of iterations is reached but the stopping criterion is not met,
we still solve (3.8) to check whether the latest iterating point is a GNE or not. For the
QVI, the produced sequence is said to converge if the projection residue is sufficiently
small. For the ALM and IPM, the produced sequence is considered to converge if the
last iterate satisfies the KKT conditions up to a small round-off error (say, 107%). The
numerical results are shown in Table 3. The “u” column lists the most recent update
by each method, “time” gives the total CPU time (in seconds), and the “max{|d|,x}”
measures the feasibility violation and the accuracy of being GNEs. For all methods
in the table, if the produced sequence is convergent, but the quantity max{|d|,x} is
not close to zero (e.g., < 107%), then the method converges to a KKT point that is
not a GNE.

The comparisons are summarized as follows:

e The ALM failed to get a GNE for Examples 6.3(i), (ii), (iv), 6.4, and 6.5(ii),
because the penalization subproblems could not be solved accurately. It
converged to non-GNE KKT points for Examples 6.1(ii), 6.2, 6.3(iii), 6.5(i)
and 6.7. It did not converge for Examples 6.1(i), 6.3(v), and 6.6 when the
maximum penalty parameter 10'? was reached.

e The IPM failed to get a GNE for Examples 6.3(iv), 6.4, and 6.5(ii), be-
cause the step length was too small to efficiently decrease the violation of
KKT conditions. It converged to non-GNE KKT points for Examples 6.1(i)—
(i), 6.3(iii), and 6.7. It did not converge for Examples 6.1(i)—(ii), 6.3(ii), (v),
and 6.7, because the Newton-type directions did not satisfy sufficient descent
conditions.

e The QVI converged to non-GNE points for Examples 6.1(i) 6.2, and 6.5(i).
It did not converge for Examples 6.1(ii), 6.3(ii), (iv), 6.5(ii), and 6.6, since
the projection could not be computed successfully.

e The GSM failed to find a GNE for Examples 6.1(ii), 6.3(ii), (iv), 6.4, 6.5(ii),
and 6.6, because some sub-optimization problems could not be solved success-
fully. It terminated at the maximum iteration number for Example 6.3(iii)
but did not meet the stopping criterion.
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TABLE 3
Comparison with some existing methods.

Algorithm [ u [ time [ max{]é[,x}

Example 6.1(i)
ALM not convergent
IPM not convergent
QVI (0.8911,-0.0000,0.8910,0.0000) 298.10 0.22
GSM (0.4930,-0.0835,0.5000,0.4930) 3.12 1.33-107%
Alg. 3.3 (0.4930,-0.0835,0.5000,0.4930) 4.22 4.31-1077

Example 6.1(ii)
ALM (0.5000,0.8660,1.0000,0.0000) ‘ 63.81 ‘ 2.25
IPM not convergent
QVI not convergent
GSM not convergent
Alg. 3.3 nonexistence of GNEs detected ‘ 5.56

Example 6.2

ALM (0.0000,0.1931,0.2889,0.0000) 47.51 0.21
IPM (0.0000,0.1931,0.2889,0.0000) 17.00 0.21
QVI (0.0000,0.0000,0.0000,0.0354) 441.52 0.44
GSM (0.0000,0.0000,1.0000,0.0000) 0.59 8.08-10°%
Alg. 3.3 (0.0000,0.2742,0.7258,0.0000) 16.81 1.14-1077

Example 6.3(i)
ALM not convergent
IPM (1.3561,0.7374,1.0000,1.0468) 2.39 1.93-1077
QVI (1.3562,0.7375,1.0000,1.0469) 2753.26 | 1.34-107%
GSM (1.3558,0.7376,1.0000,1.0466) 3.47 2.60-1077
Alg. 3.3 (1.3561,0.7374,1.0000,1.0468) 8.36 3.44-1078

Example 6.3(ii)
ALM not convergent
IPM not convergent
QVI not convergent
GSM not convergent
Algorithm 3.3 nonexistence of GNEs detected ‘ 5.47

Example 6.3 (iii)
ALM (0,0,0,0) 49.34 1.00
IPM (0.2808,0.2192,0.2808,0.2192) 12.98 0.16
QVI (0.0000,0.4999,0.0001,0.4999) 616.29 | 5.35-107°
GSM (0.0000,0.4995,0.0000,0.4995) 110.79 | 8.58-10~ 1
Alg. 3.3 (0.0000,0.5000,0.0000,0.5000) 3.28 4.47-1078

Example 6.3(iv)
ALM not convergent
IPM not convergent
QVI not convergent
GSM not convergent
Alg. 3.3 (0.0000,0.0000,1.0000,1.0000) [ 2.03 [ 545 107°

Example 6.3(v)
ALM not convergent
IPM not convergent
QVI (1.0000,0.5000,0.5000,1.0000) 490.93 | 9.51-107°
GSM (1.0000,0.5000,0.5000,1.0000) 1.80 2.31-10710
Alg. 3.3 (1.0000,0.5000,0.5000,1.0000) 22.73 1.82-107%

Example 6.4
ALM not convergent
IPM not convergent
0.3094, 0.8090, 0.8090, _
QVI ( —1.6172, —0.6180, —0.6180) 2146 | 563-107
GSM not convergent
0.3090, 0.8090, 0.8090, _

Alg. 3.3 ( —1.6180, —0.6180, —0.6180) 516 2.77-107°

1615
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TABLE 3
Continued.

Example 6.5(i)

/ (0.7774,1.3629, —0.2227,
ALM 1.7389,0.2226, 0.1000) 75.92 510
,, (1.1401, 1.0461, —0.1743, s
IPM —0.9009, 0.1000, 0.4274) 0-86 8.24-10
(0.7775,1.3628, —0.2227, .
QVI 1.7386,0.2227,0.1000) 192.73 5-10
’ (1.1403,1.0463, —0.1743, _8
GSM —0.9009, 0.1000, 0.4273) 6.28 | 1.88-10
(1.1401,1.0461, —0.1743 . _8
Alg. 3.3 ~0.9009,0.1000, 0.4274) 10.58 6.19-10
Example 6.5(ii)
ALM not convergent
IPM not convergent
QVI not convergent
GSM not convergent
Alg. 3.3 nonexistence of GNEs detected \ 19.16 \
Example 6.6
ALM not convergent
IPM (0.2665,0.3184,0.2665,0.3184) [ 11.22 [  0.27
QVI not convergent
GSM not convergent
Alg. 3.3 (0.9250,—0.3799,0.9250, —0.3799) | 2.78 [ 9.06-10~°
Example 6.7
AL (1.1652, 1.0601, 1.1822, 0136 0.10

0.9952,0.0577,0.2332)
IPM not convergent
(1.1432,1.0549, 1.1770,

10-5
QVI 0.8916,0.6440, 0.0001) 523.06 | 2.35-10
/ (1.1446,1.0551,1.1772, s
GSM 0.8917,0.6431,0.0000) 4.22 9-16-10
(1.1432,1.0549,1.1771, 108
Alg. 3.3 0.8917,0.6439, 0.0000) 798 1.70-10
Example 6.8
(0.2250, 0.2250, 0.2250, 0.2250,
ALM 0.2250, 0.2250, 0.2250 3.06 5.28 - 10712

0.2250, 0.2250, 0.2250)
(0.2245, 0.2245, 0.2246, 0.2246,
IPM 0.2246, 0.2246, 0.2247 10.89 | 5.13-10°7
0.2251,0.2260, 0.2275)
(0.2254, 0.2254, 0.2254, 0.2254,
QVI 0.2254, 0.2253,0.2253 910 | 4.59-1077
0.2253,0.2252, 0.2251)
(0.2236, 0.2250, 0.2262, 0.2270,
GSM 0.2271,0.2266, 0.2256 21.33 | 8591077
0.2245,0.2236, 0.2232)
(0.2250, 0.2250, 0.2250, 0.2250,
Alg. 3.3 0.2250,0.2250, 0.2250 11.16 | 1.05-107°
0.2250, 0.2250, 0.2250)

6.5. About strict inequality constraints. For rGNEPs, rational LMEs are
used to get the KKT set. For strict inequality constraints, their Lagrange multipliers
are always zeros. In Algorithm 3.3, the set K is as in (3.2), where the LMEs are
zeros for strict inequalities. For each rational optimization problem, its feasible set is
relaxed from (5.2) to (5.4), and then we solve it by Algorithm 5.1. Strict inequalities
give open sets. When there are finitely many KKT points (this is the generic case),
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there does not exist a sequence of feasible KKT points that converge to the boundary
given by strict inequality constraints. For some special cases, the KKT set may be
infinite and there possibly exists a sequence of feasible KK'T points converging to the
boundary of strict inequality constraints. If this case happens, the limit may not be
a GNE. The following is such an example.

Example 6.9. Consider the following GNEP:

min =2
zo€RL 17(x1)2

st x9>0,1—(21)? — (22)?>0.

min  x1x
(6.12) seRl 2
st. 120,1—x1 >0,

The second player has a strict inequality constraint. The Lagrange multiplier vectors
can be expressed as

72%2
A= — , - , A=—", 0].
1= (72 — 122 T1T2) 2 (1 el )
The denominators of Ao and the second player’s objective are positive in the feasible
set but not positive on the boundary of its closure. The KKT set K is

x1(xe — x122) =0, —z122(1 — 1) =0,

0<z <1,z —x122 >0, —7122 > 0,
K=q (z1,22) 2y =282 )
1—(z1)? ’

xo >0, (.%‘1)2 + ($2)2 <1, 1:(27;12)2 > 0.
One can see that K = {(x1,22) : 0 <27 < 1,29 = 0}. After the cancellation for the
denominator and relaxing (z1)? + (22)? <1 to the weak inequality (x1)? + (22)? <1,
the set IC is changed to

371(.’1?2 — $1.’L‘2> = 0, —.%‘13’32(1 — .1'1) = 0,
0<z <1,z —x122 20, —T172 > 0,
xrg (—2$2) = 0,

To > 0, (1‘1)2 + (1’2)2 < 1, 72302 > 0.

Ki=14 (z1,22)

Then one can check that K1 = {(z1,22):0<x; <1,20 =0}, i.e.,
K1=[0,1] x {0} and K;\K={(1,0)}.

When we apply the algorithm to compute GNEs, we got the candidate & = (1,0),
which is not feasible for (6.12) but lies on the boundary. The second player’s objective
is not well defined at #. The candidate & = (1,0) is not a GNE. Indeed, this GNEP
does not have any GNE.

7. Conclusions and discussions. This paper studies how to solve GNEPs
given by rational functions. LMEs and feasible extensions are introduced to compute
GNEs. We propose a hierarchy of rational optimization problems to solve GNEPs.
This is given in Algorithm 3.3. The Moment-SOS relaxations are used to solve the
appearing rational optimization problems. Under some general assumptions, we show
that Algorithm 3.3 can get a GNE if it exists or detect its nonexistence.

The feasible extension is a major technique used in this paper. Its purpose is to
preclude KKT points that are not GNEs. This technique was originally introduced for
solving bilevel optimization in the work [41]. However, their properties are quite dif-
ferent for GNEPs and bilevel optimization. For instance, a generic polynomial GNEP
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has finitely many KKT points, which is implied by the recent work [44, Theorem 3.1].
It guarantees the existence of feasible extensions for generic rGNEPs, which is shown
in Theorem 4.2. So, Algorithm 3.3 has finite convergence for general cases. However,
for general polynomial bilevel optimization, the KKT set (for the lower level opti-
mization) is usually not finite. There do not exist results on the existence of feasible
extensions. Moreover, the work [41] only considers polynomial extensions. In this pa-
per, we consider more general feasible extensions that are given by rational functions.
It greatly broadens the usage of feasible extensions for solving GNEPs. For instance,
we gave explicit rational feasible extensions in (4.3) for ball constraints parameterized
by the polynomial a;(x_;). For this kind of constraint, polynomial extensions as in
[41] usually do not exist.

There exists much interesting future work to do with feasible extensions. For
instance, are there sufficient conditions weaker than those in Theorem 4.2 for the
existence of feasible extensions? If they exist, how can we find them efficiently?
These questions are mostly open.

REFERENCES

[1] D. ARDAGNA, M. CIAVOTTA, AND M. PASSACANTANDO, Generalized Nash equilibria for the ser-
vice provisioning problem in multi-cloud systems, IEEE Trans. Serv. Comput., 10 (2017),
pp. 381-395.

[2] Q. BA AND J.-S. PANG, Ezact penalization of generalized Nash equilibrium problems, Oper.
Res., 70 (2022), pp. 1448-1464.

[3] D. BERTSEKAS, Nonlinear Programming, 3rd ed., Athena Scientific, Belmont, MA, 2016.

[4] E. BORGENs AND C. Kanzow, ADMM-type methods for generalized Nash equilib-
rium  problems in Hilbert Spaces, SIAM J. Optim., 31 (2021), pp. 377-403,
https://doi.org/10.1137/19M1284336.

[5] X. CHEN, Y. SHI, AND X. WANG, Equilibrium Oil Market Share Under the COVID-19 Pan-
demic, preprint, arXiv:2007.15265, 2020.

6] F. CLARKE, Optimization and Nonsmooth Analysis, SIAM, Philadelphia, 1990,
https://doi.org/10.1137/1.9781611971309.

[7] J. CoNTRERAS, M. KLUSCH, AND J. B. KRAWCZYK, Numerical solutions to Nash-Cournot
equilibria in coupled constraint electricity markets, IEEE Trans. Power Syst., 19 (2004),
pp. 195-206.

[8] Y. Cul AND J.-S. PANG, Modern Nonconver Nondifferentiable Optimization, STAM, Philadel-
phia, 2021, https://doi.org/10.1137/1.9781611976748.

[9] A. DREVES, F. FACCHINEI, C. KANZOW, AND S. SAGRATELLA, On the solution of the KKT
conditions of generalized Nash equilibrium problems, SIAM J. Optim., 21 (2011), pp. 1082~
1108, https://doi.org/10.1137/100817000.

[10] A. Dreves, C. Kanzow, AND O. STEIN, Nonsmooth optimization reformulations of
player conver generalized Nash equilibrium problems, J. Global Optim., 53 (2012),
pp. 587-614.

[11] F. FAccHINEI, A. FISCHER, AND V. PICCIALLI, On generalized Nash games and variational
inequalities, Oper. Res. Lett., 35 (2007), pp. 159-164.

[12] F. FAccHINEI, A. FISCHER, AND V. PicciALLl, Generalized Nash equilibrium problems and
Newton methods, Math. Program., 117 (2009), pp. 163-194.

[13] F. FAccHINEI AND C. KANZOW, Generalized Nash equilibrium problems, Ann. Oper. Res., 175
(2010), pp. 177-211.

[14] F. FAccHINEI AND C. KANzZOW, Penalty methods for the solution of generalized Nash equilibrium
problems, SIAM J. Optim., 20 (2010), pp. 2228-2253, https://doi.org/10.1137/090749499.

[15] F. FACCHINEI AND J.-S. PANG, Nash equilibria: The variational approach, in Convex Optimiza-
tion in Signal Processing and Communications, D. Palomar and Y. Eldar, eds., Cambridge
University Press, Cambridge, UK, 2010, pp. 443-493.

[16] F. FACCHINEI, V. PICCIALLI, AND M. SCIANDRONE, Decomposition algorithms for generalized
potential games, Comput. Optim. Appl., 50 (2011), pp. 237-262.

[17] A. Fi1sCHER, M. HERRICH, AND K. SCHONEFELD, Generalized Nash equilibrium problems—recent
advances and challenges, Pesqui. Oper., 34 (2014), pp. 521-558.

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.


https://doi.org/10.1137/19M1284336
https://arxiv.org/abs/2007.15265
https://doi.org/10.1137/1.9781611971309
https://doi.org/10.1137/1.9781611976748
https://doi.org/10.1137/100817000
https://doi.org/10.1137/090749499

Downloaded 08/06/23 to 172.88.75.167 by Jiawang Nie (njw@math.ucsd.edu). Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

(18]

(19]

20]

21]
(22]
(23]

[24]

[25]

(26]
27]
(28]

[29]

(30]

(31]

(32]

(33]
(34]
(35]
(36]
(37]
(38]
(39]
[40]
[41]

[42]
[43]

[44]

Q v a v

M.

M.

=

J.

RATIONAL GENERALIZED NASH EQUILIBRIUM PROBLEMS 1619

. Guo, G.-H. LIN, J. J. YE, AND J. ZHANG, Sensitivity analysis of the value function for para-

metric mathematical programs with equilibrium constraints, SIAM J. Optim., 24 (2014),
pp. 1206-1237, https://doi.org/10.1137/130929783.
HAN, H. ZHANG, G. QIAN, AND L. XU, An improved two-step method for solving generalized
Nash equilibrium problems, European J. Oper. Res., 216 (2012), pp. 613-623.
HENRION AND J. LASSERRE, Detecting Global Optimality and Extracting Solutions
in GloptiPoly, Positive Polynomials in Control, Springer, Berlin, Heidelberg, 2005,
pp. 293-310.
HENRION, J. LASSERRE, AND J. LOFBERG, Gloptipoly 3: Moments, optimization and semi-
definite programming, Optim. Methods Softw., 24 (2009), pp. 761-779.
HiLLAR AND J. NIE, An elementary and constructive solution to Hilbert’s 17th problem for
matrices, Proc. Amer. Math. Soc., 136 (2008), pp. 73-76.
JIBETEAN AND E. DE KLERK, Global optimization of rational functions: A semidefinite
programmang approach, Math. Program., 106 (2006), pp. 93-109.
Kanzow AND D. STECK, Augmented Lagrangian methods for the solution of gen-
eralized Nash equilibrium problems, SIAM J. Optim., 26 (2016), pp. 2034-2058,
https://doi.org/10.1137/16M1068256.

. KESSELMAN, S. LEONARDI, AND V. BONIFACI, Game-theoretic analysis of internet switching

with selfish users, in International Workshop on Internet and Network Economics, Springer,
Berlin, Heidelberg, 2005, pp. 236-245.

. LASSERRE, Global optimization with polynomials and the problem of moments, SIAM J.

Optim., 11 (2001), pp. 796-817, https://doi.org/10.1137/51052623400366802.

. LASSERRE, On representations of the feasible set in convex optimization, Optim. Lett., 4

(2010), pp. 1-5.

. LASSERRE, An Introduction to Polynomial and Semi-algebraic Optimization, Cambridge

Texts Appl. Math. 52, Cambridge University Press, Cambridge, UK, 2015.

. LASSERRE, M. LAURENT, AND P. ROSTALSKI, Semidefinite characterization and com-

putation of zero-dimensional real radical ideals, Found. Comput. Math., 8 (2008),
pp. 607-647.

LAURENT, Sums of squares, moment matrices and optimization over polynomsials, in Emerg-
ing Applications of Algebraic Geometry of IMA Volumes in Mathematics and its Applica-
tions, IMA Vol. Math. Appl. 149, Springer, New York, 2009, pp. 157—270.

Liu AND O. TuzgL, Coupled generative adversarial networks, Adv. Neural Inf. Process.
Syst., 29 (2016), pp. 469-477.

. NABETANI, P. TSENG, AND M. FUKUSHIMA, Parametrized variational inequality approaches

to generalized Nash equilibrium problems with shared constraints, Comput. Optim. Appl.,
48 (2011), pp. 423-452.

. Nig, J. DEMMEL, AND M. Gu, Global minimization of rational functions and the nearest

GCDs, J. Global Optim., 40 (2008), pp. 697-718.

. NIE, Certifying convergence of Lasserre’s hierarchy via flat truncation, Math. Program., 142

(2013), pp. 485-510.

. NIE, Linear optimization with cones of moments and nonnegative polynomials, Math. Pro-

gram., 153 (2015), pp. 247-274.

. NIE, Tight relaxations for polynomial optimization and Lagrange multiplier expressions,

Math. Program., 178 (2019), pp. 1-37.

. NIE, Polynomial matriz inequality and semidefinite representation, Math. Oper. Res., 36

(2011), pp. 398-415.

. NIE, Sum of squares methods for minimizing polynomial forms over spheres and hypersur-

faces, Front. Math. China, 7 (2012), pp. 321-346.

. NIE AND X. ZHANG, Real eigenvalues of nonsymmetric tensors, Comput. Optim. Appl., 70

(2018), pp. 1-32.

. Nig, X. TANG, AND L. Xu, The Gauss-Seidel method for generalized Nash equilibrium prob-

lems of polynomials, Comput. Optim. Appl., 78 (2021), pp. 529-557.

. Nig, L. WaAnG, J. J. YE, AND S. ZHONG, A Lagrange multiplier expression method

for bilevel polynomial optimization, SIAM J. Optim., 31 (2021), pp. 2368-2395,
https://doi.org/10.1137/20M1352375.

. NIE AND X. TANG, Nash equilibrium problems of polynomials, Math. Oper. Res., to appear.
. NIE aND X. TANG, Convex generalized Nash equilibrium problems and polynomial opti-

mization, Math. Program., 198 (2023), pp. 1485-1518, https://doi.org/10.1007/s10107-
021-01739-7.

NiE, K. RANESTAD, AND X. TANG, Algebraic Degrees of Generalized Nash Equilibrium Prob-
lems, preprint, arXiv:2208.00357, 2022.

[45] J.-S. PANG AND M. FUKUSHIMA, Quasi-variational inequalities, generalized Nash equilibria,

and multi-leader-follower games, Comput. Manag. Sci., 2 (2005), pp. 21-56.

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.


https://doi.org/10.1137/130929783
https://doi.org/10.1137/16M1068256
https://doi.org/10.1137/S1052623400366802
https://doi.org/10.1137/20M1352375
https://doi.org/10.1007/s10107-021-01739-7
https://doi.org/10.1007/s10107-021-01739-7
https://arxiv.org/abs/2208.00357

Downloaded 08/06/23 to 172.88.75.167 by Jiawang Nie (njw@math.ucsd.edu). Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

1620 JIAWANG NIE, XINDONG TANG, AND SUHAN ZHONG

[46] J.-S. PANG, G. ScUTARI, F. FACCHINEL, AND C. WANG, Distributed power allocation with rate
constraints in Gaussian parallel interference channels, IEEE Trans. Inform. Theory, 54
(2008), pp. 3471-3489.

[47] J.-S. PANG AND G. SCUTARI, Nonconver games with side constraints, SIAM J. Optim., 21
(2011), pp. 1491-1522, https://doi.org/10.1137/100811787.

[48] M. PUTINAR, Positive polynomials on compact semi-algebraic sets, Indiana Univ. Math. J., 42
(1993), pp. 969-984.

[49] D. ScHIRO, J.-S. PANG, AND U. SHANBHAG, On the solution of affine generalized Nash equilib-
rium problems with shared constraints by Lemke’s method, Math. Program., 142 (2013),
pp. 1-46.

[50] M. SCHWEIGHOFER, Optimization of polynomials on compact semialgebraic sets, SIAM J. Op-
tim., 15 (2005), pp. 805-825, https://doi.org/10.1137/S1052623403431779.

[61] J. STURM, Using seDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones,
Optim. Methods Softw., 11 (1999), pp. 625-653.

[52] A. voN HEUSINGER AND C. KaNzOw, Optimization reformulations of the generalized Nash
equilibrium problem using Nikaido-Isoda-type functions, Comput. Optim. Appl., 43 (2009),
pp- 353-377.

[53] A. voN HEUSINGER, C. KaNzow, AND M. FukusHIMA, Newton’s method for computing a nor-
malized equilibrium in the generalized Nash game through fized point formulation, Math.
Program., 132 (2012), pp. 99-123.

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.


https://doi.org/10.1137/100811787
https://doi.org/10.1137/S1052623403431779

	Introduction
	Contributions

	Preliminaries
	Ideals and quadratic modules
	Localizing and moment matrices
	Lagrange multiplier expressions

	A hierarchy of optimization problems
	An algorithm for solving GNEPs
	Convergence analysis

	Feasible extensions of KKT points
	Some common cases
	The existence of feasible extensions
	Computation of feasible extensions

	Rational optimization problems
	Rational polynomial optimization
	The optimization for all players
	Checking generalized Nash equilibria

	Numerical experiments
	Some fractional quadratic GNEPs
	Some explicit examples
	Some examples in applications
	Comparison with other methods
	About strict inequality constraints

	Conclusions and discussions
	References

