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Abstract. A real symmetric tensor is completely positive (CP) if it is a sum
of symmetric tensor powers of nonnegative vectors. We propose a dehomog-

enization approach for studying CP tensors. This gives new Moment-SOS

relaxations for CP tensors. Detection for CP tensors and the linear conic
optimization with CP tensor cones can be solved more efficiently by the deho-

mogenization approach.

1. Introduction. Let Rn be the space of all real n-dimensional vectors. For an
integer d > 0, a tensor A of order d over the vector space Rn is represented by an
array labelled such that

A = (Ai1...id), 1 ≤ i1, . . . , id ≤ n.
The tensor A is symmetric if all entries Ai1...id are invariant for all permutations of
the label (i1, . . . , id). Let Sd(Rn) denote the space of all symmetric tensors of order
d over Rn. For a vector v ∈ Rn, v⊗d denotes the rank-1 tensor such that

(v⊗d)i1,...,id = vi1 · · · vid
for all labels i1, . . . , id. Every symmetric tensor is a sum of rank-1 symmetric tensors
[4]. We refer to [17, 21] for introductions to tensors.

Denote by Rn+ the nonnegative orthant, i.e., the set of vectors whose entries are

all nonnegative. A symmetric tensor A ∈ Sd(Rn) is said to be completely positive
(CP) if there exist v1, . . . , vr ∈ Rn+ such that

A = (v1)⊗d + · · ·+ (vr)
⊗d. (1)
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The equation (1) is called a CP-decomposition, when it exists. The smallest r in
(1) is the CP-rank of A, for which we denote rankcp(A). When (1) does not exist,
we just let rankcp(A) = +∞. The cone of all CP tensors in Sd(Rn) is denoted by

CP⊗dn . Generally, it is hard to check whether a tensor is completely positive or not.
The question is NP-hard even for the matrix case (see [6]).

Completely positive tensors are closely related to copositive (COP) tensors. Each
B ∈ Sd(Rn) is uniquely determined by the degree-d homogeneous polynomial

B(x) :=
∑

1≤i1,...,id≤n

Bi1...idxi1 · · ·xid (2)

in the variable x := (x1, . . . , xn). If B(x) ≥ 0 for every x ∈ Rn, then B is said to be
nonnegative or positive semidefinite. If B(x) ≥ 0 for every x ∈ Rn+, then B is said
to be copositive. Moreover, if B(x) > 0 for all 0 6= x ∈ Rn+, then B is said to be

strictly copositive. Denote by COP⊗dn the cone of all copositive tensors in Sd(Rn).

Memberships for the cone COP⊗dn can be detected by tight relaxations [29, 31].
For two tensors A,B ∈ Sd(Rn), their Hilbert-Schmidt inner product is

〈A,B〉 :=
∑

1≤i1,...,id≤n

Ai1...idBi1...id . (3)

This induces the Hilbert-Schmidt norm

‖A‖ :=
√
〈A,A〉. (4)

If A has the CP decomposition as in (1), then

〈A,B〉 = B(v1) + · · ·+ B(vr).

Therefore, if in addition B is copositive, then 〈A,B〉 ≥ 0. This fact implies the dual
relationship (the superscript ∗ denotes the dual cone):(

COP⊗dn
)∗

= CP⊗dn ,
(
CP⊗dn

)∗
= COP⊗dn .

Completely positive tensors are extensions of completely positive matrices [1,
40]. They have wide applications in exploratory multi-way data analysis and blind
source separation [3], computer vision and statistics [35], multi-hypergraphs [38],
matrix and tensor completions [40, 41]. We refer to [11, 22, 34] for recent work on
completely positive tensors.

Copositive and CP tensors are important in optimization. The detection of
copositive tensor cones is a basic optimization problem. We refer to [31, 33] for
recent work. For CP tensor cones, the memberships are studied in [11, 34]. The
CP tensors can be used to construct many interesting problems. Recent work for
CP matrix approximation problem is given in [10, 36]. Copositive tensors and
CP tensors also have various applications. They are used to formulate interesting
models in game theory [5] and dynamic systems [23]. Surveys about copositive and
CP optimization can be found in [2, 7].

In this paper, we introduce the dehomogenization approach for studying com-
pletely positive tensors. This can save computational expenses quite a lot. In
Section 2, we review some basics for tensor and optimization. In Section 3, we
use the dehomogenization to construct semidefinite relaxations for CP tensor cones
and apply them to check memberships. In Section 4, we show how to use the de-
homogenization to solve linear conic optimization with CP cones. The numerical
experiments are given in Section 5.
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2. Preliminaries.

Notation. Let R (resp.,R+, N) denote the set of real (resp., nonnegative real, non-
negative integer) numbers. The Rn (resp., Rn+, Nn) denotes the set of n-dimensional
vectors with entries in R (resp., R+, N). For t ∈ R, dte is the smallest integer that
is not smaller than t. For an integer n > 0, let [n] := {1, . . . , n}. For x ∈ Rn, ‖x‖
denotes its Euclidean norm, the δx denotes the unit mass Dirac measure supported
at x. The e := (1, . . . , 1) is the vector of all ones (its length should be clear in the
context), and ei is the vector of all zeros except its ith entry equal to 1. For a vector
space V , denote by V ∗ the dual space of V , which is the set of all linear functionals
acting on V . For a set K ⊆ V , its dual cone is

K∗ := {` ∈ V ∗ : `(u) ≥ 0 ∀u ∈ K}.
A matrix A ∈ Rn×n is said to be positive semidefinite (psd) if xTAx ≥ 0 for every
x ∈ Rn. The inequality A � 0 means that A is psd. The superscript T denotes the
transpose of a vector or matrix.

Let x = (x1, . . . , xn). The R[x] denotes the ring of polynomials in x with real
coefficients. The symbol R[x]hom stands for the set of homogeneous polynomials
in R[x]. A homogeneous polynomial is also called a form. For a degree d > 0,
R[x]d denotes the subset of polynomials in R[x] with degrees up to d, while R[x]homd

stands for the subset of homogeneous polynomials in R[x] with degrees equal to d.
For a power α := (α1, . . . , αn) ∈ Nn, denote the monomial

xα := xα1
1 · · ·xαn

n .

Define |α| := α1 + · · ·+ αn. For a degree d, denote the power sets

Nnd = {α ∈ Nn : |α| ≤ d}, Nnd = {α ∈ Nn : |α| = d}. (5)

The vector of all monomials with degrees up to d is denoted as

[x]d :=
[
1 x1 . . . xn (x1)2 x1x2 . . . (xn)d

]T
.

The subvector of [x]d with monomials of degree equal to d is denoted as

[x]homd := (xα)α∈Nn
d
. (6)

2.1. Copositive forms and CP moments. Let RNn
d denote the space of all real

vectors that are labeled by α ∈ Nnd . Each vector in RNn
d is called a truncated multi-

sequences (tms). Similarly, real vectors labeled by α ∈ Nnd are called homogeneous

truncated multi-sequence (htms). The set of all such htms is denoted as RNn
d . A

homogeneous truncated multi-sequence y ∈ RNn
d is said to be completely positive

(CP) if y = [u1]homd + · · · + [ur]
hom
d for some nonnegative vectors u1, . . . , ur ∈ Rn+.

The set of all CP htms in RNn
d is denoted as CPn,d. It is a closed convex cone and

can be equivalently written as

CPn,d =
{ r∑
i=1

λi[ui]
hom
d : λi ≥ 0, ui ∈ ∆, r ∈ N

}
, (7)

where ∆ is the simplex

∆ := {x ∈ Rn : eTx = 1, x ≥ 0}.
A homogeneous polynomial f is said to be copositive if f(x) ≥ 0 for every x ∈ Rn+.

The cone of copositive forms in R[x]homd is denoted as

COPn,d := {f ∈ R[x]homd : f(x) ≥ 0 (x ∈ Rn+)}. (8)
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The CP moment cone and COP polynomial cone are dual to each other:

(CPn,d)∗ = COPn,d, (COPn,d)∗ = CPn,d. (9)

2.2. Polynomial optimization. Let n̄ = n− 1 and x̄ := (x1, . . . , xn−1). A poly-
nomial p ∈ R[x̄] is said to be a sum-of-squares (SOS) if

p = p2
1 + · · ·+ p2

m for some p1, . . . , pm ∈ R[x̄].

The cone of SOS polynomials in x̄ is denoted as Σ[x̄]. For a degree d, denote the
truncation

Σ[x̄]d := Σ[x̄] ∩ R[x̄]d.

For a polynomial tuple g = (g1, . . . , gm), denote the ideal Ideal [g] := g1 ·R[x̄]+ · · ·+
gm ·R[x̄] and the quadratic module QM [g] := Σ[x] + g1 ·Σ[x] + · · ·+ gm ·Σ[x]. For
a positive integer k, the degree-2k truncation of Ideal [g] is denoted as

Ideal [g]2k := g1 · R[x̄]2k−deg(g1) + · · ·+ gm · R[x̄]2k−deg(gm).

Similarly, denote the degree-2k truncation of QM [g] as

QM [g]2k := Σ[x̄]2k + g1 · Σ[x̄]2k−deg(g1) + · · ·+ gm · Σ[x̄]2k−deg(gm).

Consider the simplicial set

∆ = {x̄ ∈ Rn−1
+ : x1 + · · ·+ xn−1 ≤ 1, ‖x̄‖2 ≤ 1}.

In the above, we add a redundant ball constraint 1 − ‖x̄‖2 ≥ 0 to get tighter
relaxations. Denote by Pd(∆) the cone of polynomials in R[x̄]d that are nonnegative
on ∆. Denote the moment cone

Rd(∆) :=
{ r∑
i=1

λi[vi]d : vi ∈ ∆, λi ≥ 0, r ∈ N
}
. (10)

The moment cone Rd(∆) is closed convex and

(Pd(∆))∗ = Rd(∆).

Denote the quadratic module for ∆:

QM [∆] := Σ[x̄] + x1 · Σ[x̄] + · · ·+ xn−1 · Σ[x̄]+
(1− eT x̄)Σ[x̄] + (1− ‖x̄‖2)Σ[x̄].

Given an even degree 2k > 0, denote the truncation

QM [∆]2k := Σ[x̄]2k + x1 · Σ[x̄]2k−2 + · · ·+ xn−1 · Σ[x̄]2k−2+
(1− eT x̄)Σ[x̄]2k−2 + (1− ‖x̄‖2)Σ[x̄]2k−2.

The set QM [∆] is archimedean, since it contains the polynomial 1− ‖x̄‖2 and ∆ is
contained in the unit ball. If a polynomial p > 0 on ∆, then p ∈ QM [∆]. Such a
conclusion is often referenced as Putinar’s Positivstellensatz [32].

The dual cones of quadratic modules can be described by localizing matrices. A
tms z ∈ RNn̄

2k acts on the polynomial space R[x̄]2k as a linear functional such that

〈
∑
α∈Nn̄

2k

pαx̄
α, z〉 :=

∑
α∈Nn̄

2k

pαzα.

For a polynomial q ∈ R[x̄]2k, the kth order localizing matrix of q and z is the

symmetric matrix L
(k)
q [z] such that (the vec(a) denotes the coefficient vector of a)

〈qa2, y〉 = vec(a)T
(
L(k)
q [z]

)
vec(a) (11)
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for all a ∈ R[x] with deg(qa2) ≤ 2k. When q = 1 (the constant one polynomial),

the localizing matrix L
(k)
q [z] becomes the kth order moment matrix:

Mk[z] := L
(k)
1 [z].

For instance, when n = 3 and k = 2, we have n̄ = 2 and

M2[z] =


z00 z10 z01 z20 z11 z02

z10 z20 z11 z30 z21 z12

z01 z11 z02 z21 z12 z03

z20 z30 z21 z40 z31 z22

z11 z21 z12 z31 z22 z13

z02 z12 z03 z22 z13 z04

 ,

L(2)
x1

[z] =

 z10 z20 z11

z20 z30 z21

z11 z21 z12

 , L(2)
x2

[z] =

 z01 z11 z02

z11 z21 z12

z02 z12 z03

 ,
L

(2)

1−eT x̄[z] =

 z00 − z10 − z01 z10 − z20 − z11 z01 − z11 − z02

z10 − z20 − z11 z20 − z30 − z21 z11 − z21 − z12

z01 − z11 − z02 z11 − z21 − z12 z02 − z12 − z03

 ,
L

(2)
1−‖x̄‖2 [z] =

 z00 − z20 − z02 z10 − z30 − z12 z01 − z21 − z03

z10 − z30 − z12 z20 − z40 − z22 z11 − z31 − z13

z01 − z21 − z03 z11 − z31 − z13 z02 − z22 − z04

 .
For an even degree 2k, define the cone

S [∆]2k :=

z ∈ RNn̄
2k

∣∣∣∣∣∣∣
Mk[z] � 0, L

(k)

1−eT x̄[z] � 0,

L
(k)
xi [z] � 0, i = 1, . . . , n− 1,

L
(k)
1−‖x̄‖2 [z] � 0

 . (12)

It can be verified that (see [28])

(QM [∆]2k)∗ = S [∆]2k. (13)

We refer to [15, 18, 19, 20] for more detailed introductions to polynomial and mo-
ment optimization. Moment-SOS relaxations are quite useful for solving matrix and
tensor optimization problems. We refer to [8, 9, 16, 24, 30, 31] for the related work.

3. Relaxations and memberships. In this section, we use the dehomogenization
approach to construct semidefinite relaxations for completely positive tensor cones.
They can be used to check memberships.

Recall the power set Nnd as in (5). For each symmetric tensor A ∈ Sd(Rn), there

exists a unique homogeneous truncated multi-sequence (htms) y = (yα) ∈ RNn
d such

that
yα = Ai1,...,id

for every xα = xi1 · · ·xid with α ∈ Nnd . This induces the linear map φ : Sd(Rn) →
RNn

d such that

φ
( k∑
i=1

λi(ui)
⊗d
)

=
k∑
i=1

λi[ui]
hom
d , (14)

for all u1, . . . , uk ∈ Rn. The map φ gives an isomorphism between the symmetric

tensor space Sd(Rn) and the htms space RNn
d . It holds that

φ(CP⊗dn ) = CPn,d, φ−1(CPn,d) = CP⊗dn .
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The dual relationship (9) implies that

(COP⊗dn )∗ = CP⊗dn , (CP⊗dn )∗ = COP⊗dn .

3.1. Dehomogenization for CP moments. Let x = (x1, . . . , xn). Recall that a

htms y ∈ RNn
d is completely positive if

y = λ1[u1]homd + · · ·+ λr[ur]
hom
d

for scalars λ1, . . . , λr ≥ 0 and points u1, . . . , ur ∈ ∆, where

∆ = {x ∈ Rn : x ≥ 0, x1 + · · ·+ xn = 1}.
Note the xn = 1− (x1 + · · ·+ xn−1). Denote

x̄ := (x1, . . . , xn̄), n̄ = n− 1. (15)

This gives the simplicial set

∆ := {x̄ ∈ Rn̄ : x̄ ≥ 0, 1− eT x̄ ≥ 0}. (16)

Here, e is the vector of all ones. Clearly, we have x ∈ ∆ if and only if x̄ ∈ ∆. Define
the dehomogenization map $ : R[x]homd → R[x̄]d such that

$(f) := f(x̄, 1− eT x̄). (17)

The map $ is linear and it gives an isomorphism from R[x]homd to R[x̄]d. In partic-
ular, the inverse of $ is given such that

$−1
( ∑
α∈Nn̄

d

fαx̄
α
)

=
∑
α∈Nn̄

d

fαx̄
α(eTx)d−|α|.

The adjoint map $T gives an isomorphism from (R[x̄]d)
∗ to (R[x]homd )∗, and the

inverse adjoint map $−T gives an isomorphism from RNn
d to RNn̄

d . For each y =

(yα) ∈ RNn
d and for each f ∈ R[x]homd , it holds that

〈f, y〉 = 〈$−1($(f)), y〉 = 〈$(f), $−T (y)〉. (18)

Note that a form f ∈ R[x]homd is copositive if and only if $(f) ∈Pd(∆).
The dehomogenization map $ can be used to characterize the CP moment cone

CPn,d. Recall the truncated moment cone Rd(∆) as in (10).

Lemma 3.1. A htms y ∈ RNn
d has the decomposition

y = λ1[u1]homd + · · ·+ λr[ur]
hom
d (19)

for some λi ∈ R, ui ∈ ∆ if and only if

$−T (y) = λ1[v1]d + · · ·+ λr[vr]d, (20)

where each vi is the subvector of first n−1 entries of ui. Therefore, a htms y ∈ CPn,d
if and only if $−T (y) ∈ Rd(∆).

Proof. Suppose (19) holds. Let w = λ1[v1]d+ · · ·+λr[vr]d, where vi is the subvector
of first n− 1 entries of ui. For every f ∈ R[x]homd and each ui ∈ ∆,

〈f, [ui]homd 〉 = f(ui) = $(f)(vi) = 〈$(f), [vi]d〉. (21)

Given the decomposition (19), we have

〈f, y〉 =

r∑
i=1

λi〈f, [ui]homd 〉 =
r∑
i=1

λi〈$(f), [vi]d〉 = 〈$(f), w〉.

This is true for all f ∈ R[x]homd , so $−T (y) = w, in view of (18).
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Conversely, suppose (20) holds for vi ∈ ∆. Let ui = (vi, 1 − eT vi) for each i.
Then, for every f ∈ R[x]homd , we have $(f)(vi) = f(ui) in view of the definition of
the map $. As in (21), we get

〈$(f), $−T (y)〉 = 〈f, λ1[u1]homd + · · ·+ λr[ur]
hom
d 〉,

for all f ∈ R[x]homd . The equation (18) implies the decomposition (19).
Note that y ∈ CPn,d is equivalent to

y = λ1[u1]homd + · · ·+ λr[ur]
hom
d

for some u1, . . . ur ∈ ∆ and λ1, . . . , λr ∈ R+. By the first part, y ∈ CPn,d is

equivalent to $−T (y) ∈ Rd(∆).

3.2. A relaxation hierarchy. Lemma 3.1 implies the equivalence

y ∈ CPn,d ⇐⇒ $−T (y) ∈ Rd(∆). (22)

Therefore, approximations for the truncated moment cone Rd(∆) can be used to
approximate CPn,d. The simplicial set ∆ can be equivalently described as

∆ = {x ∈ Rn̄ : x1 ≥ 0, . . . , xn̄ ≥ 0, 1− eT x̄ ≥ 0, 1− ‖x̄‖2 ≥ 0}. (23)

The ball constraint 1 − ‖x̄‖2 ≥ 0 is redundant, but it can help to get tighter
relaxations. For an order k ≥ 1, recall the moment cone S [∆]2k defined as in (12).
Note that R2k(∆) ⊆ S [∆]2k for every k. For each k ≥ d0 := dd/2e, define the
projection

F [∆]k :=

{
y ∈ RNn̄

d

∣∣∣ ∃ z ∈ S [∆]2k,
yα = zα (α ∈ Nn̄d )

}
. (24)

It is worthy to note the nesting containment:

F [∆]d0
⊇ F [∆]d0+1 ⊇ · · · ⊇ Rd(∆).

This motivates the following approximation for CPn,d:

H[∆]k := {y ∈ RNn
d : $−T (y) ∈ F [∆]k}. (25)

The approximation property of H[∆]k is given as follows.

Theorem 3.2. Let H[∆]k be as above. Then, we have⋂
k≥d0

H[∆]k = CPn,d,
⋂
k≥d0

φ−1
(
H[∆]k

)
= CP⊗dn . (26)

Proof. Let H[∆] be the intersection of all H[∆]k. Since CPn,d ⊆ H[∆]k for all

k ≥ d0, so CPn,d ⊆ H[∆]. We next prove the reverse containment also holds.

Suppose otherwise there exists y ∈ H[∆] such that y 6∈ CPn,d. Then, there must
exist a form f ∈ COPn,d such that

〈f, y〉 = 〈$(f), $−T (y)〉 < 0.

The existence of the above f is implied by the duality between copositive and CP
tensor cones. The form $(f) is nonnegative over ∆. For ε > 0 sufficiently small,
we have

〈$(f) + ε,$−T (y)〉 < 0, $(f) + ε > 0 on ∆.

Because QM [∆] is archimedean, the $(f) + ε ∈ QM [∆]2k for some k, by Putinar’s
Positivstellensatz. Since QM [∆]2k is dual to S [∆]2k and $−T (y) ∈ F [∆]k, we get
the contradiction

〈$(f) + ε,$−T (y)〉 ≥ 0.
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Therefore, the first equality in (26) holds. The second equality in (26) follows from
the definition of the linear map φ as in (14).

3.3. Checking memberships. We discuss how to detect memberships for the CP
cones. For a given tms y ∈ RN̄n

d , checking the membership y ∈ CPn,d is equivalent

to checking $−T (y) ∈ Rd(∆), by Lemma 3.1. We refer to [26] for how to solve
truncated moment problems.

The adjoint inverse map z = $−T (y) can be shown as follows. For each power
α ∈ Nn̄d , it holds that

$−1(x̄α) = x̄α(eTx)d−|α|.

For y ∈ RNn
d , the map z = $−T (y) is given as

zα = 〈x̄α, $−T (y)〉 = 〈$−1(x̄α), y〉 = 〈x̄α(eTx)d−|α|, y〉 (27)

for every α ∈ Nn̄d . The following is an exposition example.

Example 3.3. For the case n = 3, d = 3 and

y = (y300, y210, y201, y120, y111, y102, y030, y021, y012, y003),
y300 = 3, y210 = 3, y201 = 1, y120 = 2, y111 = −1,
y102 = 0, y030 = 2, y021 = 2, y012 = 3, y003 = 3.

The tms z = $−T (y) is given such that

z00 = y300 + 3y210 + 3y201 + 3y120 + 6y111 + 3y102 + y030 + 3y021

+3y012 + y003 = 35,
z10 = y300 + 2y210 + 2y021 + y120 + 2y111 + y102 = 11,
z01 = y210 + 2y120 + 2y111 + y030 + 2y021 + y012 = 14,
z20 = y300 + y210 + y201 = 7,
z11 = y210 + y120 + y111 = 4,
z02 = y120 + y030 + y021 = 6,
z30 = y300 = 3, z21 = y210 = 3,
z12 = y120 = 2, z03 = y030 = 2.

The following is an algorithm for checking memberships for the cones CPn,d and

CP⊗dn .

Algorithm 3.4. For the given A ∈ Sd(Rn), let d0 := dd/2e, d1 := d(d+ 1)/2e and
y = φ(A). Do the following:

Step 0: Set k = d1 and generate a generic polynomial R ∈ Σ[x̄]2d1 .
Step 1: Solve the semidefinite optimization

min 〈R, z〉
s.t. zα = 〈x̄α(eTx)d−|α|, y〉 for α ∈ Nn̄d ,

z ∈ S [∆]2k.
(28)

If (28) is infeasible, output that y 6∈ CPn,d and A is not CP and stop; other-
wise, solve it for a minimizer z∗ and let t := d0.
Step 2: Check whether or not the rank condition

rankMt[z
∗] = rankMt−1[z∗] (29)

holds. If it does not hold, go to Step 3; if it holds, go to Step 4.
Step 3: If t < k, update t := t + 1 and go to Step 2. Otherwise, update
k := k + 1 and go to Step 1.
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Step 4: Let r := rankMt[z
∗]. Compute the r-atomic measure µ = λ1δv1 +

· · ·+ λrδvr for the truncation z∗|2t. Output the CP tensor decomposition

A = λ1

[( v1

1− eT v1

)]⊗d
+ · · ·+ λr

[( vr
1− eT vr

)]⊗d
. (30)

In Step 0, the SOS polynomial R can be chosen as R = [x̄]Td1
RT1 R1[x̄]d1

for some
generic matrix R1. In Step 2, the rank condition (29) is called the flat truncation,
which is a sufficient and nearly necessary condition for checking the convergence of
moment relaxations; see [25]. Once the flat truncation condition is satisfied, the
r-atomic measure can be obtained by using Schur decompositions [13]. In Step 4,
the CP decomposition (30) is equivalent to

y = λ1

[( v1

1− eT v1

)]hom
d

+ · · ·+ λr

[( vr
1− eT vr

)]hom
d

.

Algorithm 3.4 can be implemented with the software GloptiPoly 3 [14] and SeDuMi

[37]. The asymptotic convergence of Algorithm 3.4 is shown as follows.

Theorem 3.5. Let R in (28) be a generic SOS polynomial and let y = φ(A). If A
is not CP, then the semidefinite relaxation (28) must be infeasible when k is large
enough. If A is CP, then (28) has a minimizer for each k ≥ d1. Denote by z∗,k the
minimizer of (28) for the relaxation order k. Then, there exists t ≥ d1 such that the
truncation sequence {z∗,k|2t}∞k=d1

is bounded and all its accumulation points satisfy
(29).

Proof. When A is not CP, we know y 6∈ H[∆]k for all k large enough, by Theorem
3.2. This means that $−T (y) 6∈ S [∆]k, so (28) is infeasible for k large enough.
When A is CP, we have y ∈ H[∆]k for all k, so (28) is feasible for all k ≥ d1.
Moreover, since R is a generic SOS polynomial, the objective of (28) is coercive
in its feasible set and it must have a minimizer z∗,k. The convergence conclusion
follows from [26, Theorem 5.3].

Under some additional assumptions, Algorithm 3.4 has finite convergence. Con-
sider the following moment optimization problem

min 〈R, z〉
s.t. zα = 〈x̄α(eTx)d−|α|, y〉 for each α ∈ Nn̄d ,

z ∈ Rd1
(∆).

(31)

The cone Rd1(∆) is closed and its dual cone is Pd1(∆). The dual optimization
problem of (31) is 

max 〈ρ,$−T (y)〉
s.t. R− ρ ∈Pd1

(∆),
ρ ∈ R[x̄]d.

(32)

Theorem 3.6. Let R in (28) be a generic SOS polynomial and let y = φ(A).
Suppose A is CP. If (32) has a minimizer ρ∗ such that R−ρ∗ ∈ QM [∆], then Algo-
rithm 3.4 must terminate within finitely many steps and output a CP decomposition
for A.

Proof. First notice the following representation

1− ‖x̄‖2 = (1− eT x̄)(1 + ‖x̄‖2) +
n̄∑
i=1

xi
[
(1− xi)2 +

∑
j 6=i

x2
j

]
.
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This implies that
QM [∆] = QM [x1, . . . , xn̄, 1− eT x̄].

By the given assumption, we have R− ρ∗ ∈ QM [x1, . . . , xn̄, 1− eT x̄]. Suppose A is
CP, we know $−T (y) admits a representing measure supported in ∆. Consider the
following polynomial optimization problem{

min
x̄∈Rn̄

R− ρ∗

s.t. x1 ≥ 0, . . . , xn̄ ≥ 0, 1− eT x̄ ≥ 0.
(33)

By enumerating all possibilities of active constraints, one can check that for generic
R ∈ Σ[x̄]2d1

, the (33) only has finitely many complex critical points. Then, the
finite convergence of Algorithm 3.4 follows from [26, Theorem 5.5].

In Theorem 3.6, the condition R−ρ∗ ∈ QM [∆] is almost necessary and sufficient
for the finite convergence to occur. Indeed, if a polynomial f is nonnegative on
∆, then f ∈ QM [∆] under some general assumptions (see [27]). The assumption
R − ρ∗ ∈ QM [∆] is usually satisfied. The finite convergence is always observed in
our numerical experiments.

Table 1. Comparison of some dimensions

(n, k)
(
n+2k

2k

) (
n−1+2k

2k

) (
n+k
k

) (
n−1+k

k

)
(2, 2) 15 5 6 3
(2, 3) 28 7 10 4
(2, 4) 45 9 15 5
(3, 2) 35 15 10 6
(3, 3) 84 28 20 10
(3, 4) 165 45 35 15
(4, 2) 70 35 15 10
(4, 3) 210 84 35 20
(4, 4) 495 165 70 35
(5, 2) 126 70 21 15
(5, 3) 462 210 56 35
(5, 4) 1287 495 126 70

3.4. A comparison with the traditional approach. To check whether or not
y ∈ CPn,d, people can solve moment relaxations directly on y. This requires to
solve a hierarchy of semidefinite relaxations as follows:

min 〈R, z〉
s.t. y = z|Nn

d
, L

(k)

1−eT x[z] = 0,

z ∈ S [x, 1− ‖x‖2]k,

(34)

where R is a generic SOS polynomial in R[x]2d1
. A similar algorithm can be obtained

by solving (34). We refer to [11, 26] for related work. In the following, we compare
the sizes of the relaxations (28) and (34). For the relaxation (34), the dimension

of the tms z ∈ RNn
2k is

(
n+2k

2k

)
, and the biggest length of the matrix constraint (the

moment matrix Mk[z] has the biggest length) is
(
n+k
k

)
, that is,

dimension of z =

(
n+ 2k

2k

)
, length of Mk[z] =

(
n+ k

k

)
.
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In comparison, for the relaxation (28), the corresponding sizes are

dimension of z =

(
n− 1 + 2k

2k

)
, length of Mk[z] =

(
n− 1 + k

k

)
.

For some typical values of n, k, their values are compared in Table 1. In computa-
tional practice, the relaxation (28) is more efficient to solve than (34). In Section 5,
we compare performance of the dehomogenization approach (28) and the traditional
approach (34) for detecting CP tensors in Table 2.

4. Linear conic optimization with CP tensors. A general linear conic opti-
mization problem with CP tensors is

min cTw

s.t. A0 +
∑̀
i=1

wiAi ∈ CP⊗dn ,

f0 +
∑̀
i=1

wifi ∈ K.

(35)

In the above, the decision vector is w := (w1, . . . , w`), the A0,A1, . . . ,A` are given
symmetric tensors in Sd(Rn), K is the Cartesian product of some linear, second-
order and semidefinite cones, and f0, . . . , f` are given vectors in the space of K.
This contains a broad class of linear conic optimization with CP tensors and various
constraints. Its dual optimization problem is

max −〈A0,X〉 − fT0 η
s.t. 〈Ai,X〉+ fTi η = ci, i = 1, . . . , `,

X ∈ COP⊗dn , η ∈ K∗.
(36)

For each i = 0, 1, . . . , `, let

ai = φ(Ai),
where φ is the linear map given as in (14). For convenience, denote the linear
functions

a(w) := a0 +
∑̀
i=1

wiai, f(w) := f0 +
∑̀
i=1

wifi. (37)

Then the tensor A(w) is CP if and only if a(w) belongs to the CP moment cone
CPn,d. Therefore, the CP tensor optimization (35) is equivalent to

min cTw

s.t. a0 +
∑̀
i=1

wiai ∈ CPn,d,

f0 +
∑̀
i=1

wifi ∈ K.

(38)

Observe that

〈Ai,X〉 = 〈ai, φ−T (X )〉.
Let p = φ−T (X ), then the dual optimization (36) is equivalent to max −〈a0, p〉 − fT0 η

s.t. 〈ai, p〉+ fTi η = ci, i = 1, . . . , `,
p ∈ COPn,d, η ∈ K∗.

(39)
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Recall the dehomogenization linear map $ is given as in (17). By Lemma 3.1, we
have a(w) ∈ CPn,d if and only if $−T (a(w)) ∈ Rd(∆). For each i = 0, 1, . . . , `, let

âi = $−T (ai).

Therefore, the optimization (38) is equivalent to
min cTw

s.t. â0 +
∑̀
i=1

wiâi ∈ Rd(∆),

f0 +
∑̀
i=1

wifi ∈ K.

(40)

For convenience, we denote that

â(w) := â0 +
∑̀
i=1

wiâi. (41)

Observe that

〈ai, p〉 = 〈$−T (ai), $(p)〉.
Let p̂ = $(p). The dual optimization (39) is equivalent to

max −〈â0, p̂〉 − fT0 η
s.t. 〈âi, p̂〉+ fTi η = ci, i = 1, . . . , `,

p̂ ∈Pd(∆), η ∈ K∗.
(42)

The Moment-SOS hierarchy can be used to solve them. The kth order moment
relaxation for (40) is 

min cTw

s.t. â0 +
∑̀
i=1

wiâi = z|d,

L
(k)
gi [z] � 0, i = 1, . . . , n+ 1,

f0 +
∑̀
i=1

wifi ∈ K,

Mk[z] � 0, z ∈ RNn−1
2k .

(43)

In the above, (g1, . . . , gn, gn+1) = (x1, . . . , xn−1, 1−eT x̄, 1−‖x̄‖2). Its dual problem
is the kth order SOS relaxation

max −〈â0, p̂〉 − fT0 η
s.t. 〈âi, p̂〉+ fTi η = ci, i = 1, . . . , `,

p̂ ∈ QM [∆]2k, η ∈ K∗.
(44)

The following is the Moment-SOS algorithm for solving the linear conic opti-
mization (35).

Algorithm 4.1. Let d0 := dd/2e and k := d0. Do the following:

Step 1: Solve the kth order Moment-SOS relaxation pair (43)-(44). If (43) is
infeasible, stop and output that (35) is infeasible. If (44) is unbounded from
above, stop and output that (36) is unbounded above. Otherwise, compute
the optimizers (w(k), z(k)), (p̂(k), η(k)) for (43)-(44) respectively.
Step 2: For t ∈ [d0, k], check if the rank truncation

rankMt[z
(k)] = rankMt−1[z(k)] (45)
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holds or not. If it does, then w(k) is a minimizer of (35). Moreover, if

cTw(k) + 〈â0, p̂
(k)〉+ fT0 η

(k) = 0,

then (p̂(k), η(k)) is a maximizer of (42), or equivalently,

(φT ($−1(p̂(k))), η(k))

is a maximizer of (36). Otherwise, let k := k + 1 and go to Step 1.

Algorithm 4.1 can be implemented with the software GloptiPoly 3 [14] and
SeDuMi [37]. The (43) is a relaxation of (40), which is equivalent to the CP tensor
optimization (35). If (43) is infeasible, then (40) is also infeasible. Suppose w∗ is
the minimizer of (40). If the rank condition (45) is met, then â(w(k)) ∈ Rd(∆) and
it is feasible for (40). For such a case, (43) is a tight relaxation of (40) and w(k) is a
minimizer of (40). Moreover, if in addition the maximizer (p̂(k), η(k)) of (44) satisfies
the equation cTw(k) + 〈â0, p̂

(k)〉 + fT0 η
(k) = 0, then (p̂(k), η(k)) is the maximizer of

(42). The asymptotic convergence of Algorithm 4.1 is shown as follows.

Theorem 4.2. Assume the vectors â0, . . . , â` are linearly independent. Suppose
(40) is feasible and (42) has a feasible p̂ that is positive on ∆. Let (w(k), z(k)) be
a minimizer for the moment relaxation (43) with the relaxation order k. Then,
the sequence {w(k)}∞k=d0

is bounded and each accumulation point of {w(k)}∞k=d0
is a

minimizer for (40).

Proof. Suppose (p̂1, η1) is a feasible pair of (42) such that p̂1 > ε0 on ∆, for some
ε0 > 0. First, we show that {z(k)|d}∞k=d0

is a bounded sequence. For each k, we
have

0 ≤ 〈p̂1 − ε0, z(k)〉+ f(w(k))T η1 = 〈p̂1, z
(k)〉+ f(w(k))T η1 − ε0〈1, z(k)〉,

where f(w) is given as in (37). The first equality constraint in (43) implies that

〈p̂1, z
(k)〉 = 〈p̂1, â0〉+

l∑
i=1

(w(k))i〈p̂1, âi〉.

Also observe that

f(w(k))T η1 = fT0 η1 +

l∑
i=1

(w(k))if
T
i η1 = fT0 η1 +

l∑
i=1

(w(k))i(ci − 〈p̂1, âi〉).

Therefore, we get that

0 ≤ cTw(k) + 〈p̂1, â0〉+ fT0 η1 − ε0〈1, z(k)〉,

ε0〈1, z(k)〉 ≤ cTw(k) + 〈p̂1, â0〉+ fT0 η1.

Let w∗ be a feasible point of (40), then cTw(k) ≤ cTw∗, since (43) is a relaxation of
(40). Hence,

(z(k))0 ≤
cTw∗ + 〈p̂1, â0〉+ fT0 η1

ε0
.

This implies the sequence {(z(k))0}∞k=d0
is bounded. Moreover, the localizing matrix

inequality

L
(k)
1−‖x̄‖2 [z(k)] � 0

implies that

〈(1− ‖x̄‖2)x̄2α, z(k)〉 ≥ 0
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for every square x̄2α with |α| = 0, 1, . . . , k − 1. This shows that the diagonals
of Mk[z(k)] are bounded by a constant multiple of (z(k))0. This shows that the
sequence {z(k)|d}∞k=d0

is bounded. Note z(k) satisfies the linear equality constraint

â0 +
∑̀
i=1

w
(k)
i âi = z(k)|d.

Since â0, . . . , â` are linearly independent, we also have that {w(k)}∞k=d0
is a bounded

sequence.
Let z∞ be an accumulation point of {z(k)|d}. This also gives an accumulation

point w∞ of {w(k)}. One can show that (w∞, z∞) is a minimizer of (40). The proof
is the same as for the one in [28, Theorem 4.3]. We refer to [28] for more details.

Under some conditions, Algorithm 4.1 terminates within finitely many loops. We
need the following assumption.

Assumption 4.3. The optimization (42) has a maximizer pair (p̂∗, η∗) such that
p̂∗ ∈ QM [x̄, 1− eT x̄, 1− ‖x̄‖2] and the optimization problem{

min
x̄∈Rn̄

p̂∗(x̄)

s.t. x1 ≥ 0, . . . , xn̄ ≥ 0, 1− eT x̄ ≥ 0.
(46)

has finitely many critical points on which the objective value equals 0.

The following theorem shows the finite termination of Algorithm 4.1.

Theorem 4.4. Let w∗ and (p̂∗, η∗) be optimizers for (40) and (42) respectively.
Suppose (40) and (42) have the same optimal value. If Assumption 4.3 holds, then
Algorithm 4.1 terminates within finitely many steps and returns optimizers for (40)
and (42).

Proof. By the zero duality gap assumption,

0 = cTw∗ + 〈â0, p̂
∗〉+ fT0 η

∗ = 〈â(w∗), p̂∗〉+ f(w∗)T η∗,

where â(w) is given as in (41) and f(w) is as in (37). In the above, the second
equality is from the equality constraints in (42). This implies that

〈â(w∗), p̂∗〉 = f(w∗)T η∗ = 0.

Let µ∗ be a representing measure for â(w∗), which is supported in the set ∆. Then,
the polynomial p̂∗ vanishes identically on the support supp(µ∗). Each point of
supp(µ∗) is a minimizer of (46), whose minimum value is 0. Also note that

QM [x̄, 1− eT x̄, 1− ‖x̄‖2] = QM [x̄, 1− eT x̄].

The kth order SOS relaxation for (46) is{
γk := max γ

s.t. p̂∗ − γ ∈ QM [x̄, 1− eT x̄]2k.
(47)

The Assumption 4.3 implies that the hierarchy of (47) has finite convergence, i.e.,
γk = 0 for all k ≥ N1, for some order N1. The relaxation (47) achieves its optimal
value for all k high enough, by Assumption 4.3. The dual optimization problem of
(47) is the moment relaxation

min
z

〈p̂∗, z〉

s.t. L
(k)
gi [z] � 0, i = 1, . . . , n,

z0 = 1,Mk[z] � 0, z ∈ RNn̄
2k .

(48)
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In the above, (g1, . . . , gn) = (x1, . . . , xn−1, 1 − eT x̄). By Assumption 4.3, the op-
timization problem (46) has only finitely many critical points with the objective
value 0. So the Assumption 2.1 in [25] for the problem (46) is met.

Suppose z(k) is optimal for (43). If (z(k))0 = 0, then z(k) = 0, because of the

constraints Mk[z(k)] � 0 and each L
(k)
gi [z(k)] � 0 (see Lemma 5.7] of [20]). This

means that z(k) is identically zero and (45) must hold. If (z(k))0 > 0, then we can
scale z(k) such that (w(k))0 = 1. Furthermore, the scaled z(k) is a minimizer of
(48). By Theorem 2.2 of [25], the terminating criterion (45) must hold when k is
sufficiently large.

5. Numerical experiments. This section gives numerical experiments for using
the dehomogenization method, especially for Algorithms 3.4 and 4.1. The numer-
ical examples are solved with MATLAB software GloptiPoly3 [14] and SeDuMi [37].
The computation is implemented in MATLAB R2018a, in a Laptop with CPU 8th
Generation Intel Core i5-8250U and RAM 16 GB.

5.1. CP tensors. First, we show how to use the dehomogenization method to
check memberships of CP tensors. Given a symmetric tensor A ∈ Sd(Rn), we first
compute the htms y = φ(A) and then use Algorithm 3.4 to test whether or not

y ∈ CPn,d. It is worth noting that y ∈ CPn,d is equivalent to that A ∈ CP⊗dn . If
λ1[u1]homd +· · ·+λr[ur]homd is a computed CP decomposition for y, the decomposition
accuracy is measured as the Euclidean norm

‖λ1[u1]homd + · · ·+ λr[ur]
hom
d − y‖.

We begin with some explicit examples.

Example 5.1. Consider the symmetric matrices

A =


6 4 1 2 2
4 5 0 1 3
1 0 3 1 2
2 1 1 1 1
2 3 2 1 5

 , B =


2 1 0 0 0
1 2 1 0 0
0 1 2 2 2
0 0 2 3 3
0 0 2 3 4

 , C =


1 1 2 3 4
1 1 3 2 3
2 3 3 3 3
3 2 3 1 4
4 3 3 4 5

 .
Denote yA = φ(A), yB = φ(B), yC = φ(C). It is easy to compute that

$−T (yA) = (54, 15, 13, 7, 6, 6, 4, 1, 2, 5, 0, 1, 3, 1, 1),
$−T (yB) = (31, 3, 4, 7, 8, 2, 1, 0, 0, 2, 1, 0, 2, 2, 3),
$−T (yC) = (67, 11, 10, 14, 13, 1, 1, 2, 3, 1, 3, 2, 3, 3, 1).

For matrix A, Algorithm 3.4 terminates at relaxation k = 3 within 1.03 seconds.
The A is CP with the output decomposition A =

∑6
i=1 λi(ui)

⊗2 (accuracy is 1.3879·
10−6),

u1 = (0, 0.3883, 0, 0, 0.6117)), λ1 = 8.4610;
u2 = (0, 0, 0.5070, 0, 0.4930), λ2 = 3.1782;
u3 = (0.4701, 0, 0, 0.3270, 0.2029), λ3 = 2.4437;
u4 = (0, 0, 0.5398, 0.2150, 0.2452), λ4 = 4.5418;
u5 = (0.3405, 0, 0.2927, 0.1610, 0.2058), λ5 = 10.0351;
u6 = (0.4118, 0.3834, 0, 0.1029, 0.1019), λ6 = 25.3401.

For matrix B, Algorithm 3.4 terminates at relaxation k = 2 within 0.52 second. The
B is CP with the output decomposition A =

∑4
i=1 λi(ui)

⊗2 (accuracy is 1.9780 ·
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10−6),

u1 = (0, 0, 0, 0, 1), λ1 = 1;
u2 = 1

8 (2, 0, 0, 3, 3), λ2 = 64
3 ;

u3 = 1
3 (2, 1, 0, 0, 0), λ3 = 9

2 ;
u4 = 1

5 (0, 3, 0, 2, 0), λ4 = 25
6 .

For matrix C, Algorithm 3.4 terminates at relaxation k = 2 within 0.11 second.
Since the moment relaxation is infeasible, C is not CP.

Then we apply Algorithm 3.4 to tensors with larger dimensions and higher orders.

Example 5.2. (i) Consider the symmetric tensor

A = 3

0
1
0

⊗6

+

−1
3
1

⊗6

+ 3

1
2
2

⊗6

+ 2

2
3
2

⊗6

.

By applying Algorithm 3.4, we detect that A is not CP at the relaxation order
k = 4. It took 0.22 second.

(ii) Consider the symmetric tensor

A =
1

100

(
7


0
1
1
0


⊗4

+ 5


0
2
1
0


⊗4

+ 6


0
0
2
2


⊗4

+ 7


1
2
1
1


⊗4

+ 6


1
2
0
0


⊗4 )

.

By applying Algorithm 3.4, we detect that A is CP at the relaxation order k = 3.
It took 0.49 second. The output CP decomposition is A =

∑5
i=1 λi(ui)

⊗4 (accuracy
is 4.1353 · 10−6),

u1 = 1
2 (0, 0, 1, 1), λ1 = 15.36;

u2 = 1
2 (0, 1, 1, 0), λ2 = 1.12;

u3 = 1
5 (1, 2, 1, 1), λ3 = 43.75;

u4 = 1
3 (0, 2, 1, 0), λ4 = 4.05;

u5 = 1
3 (1, 2, 0, 0), λ5 = 4.86.

Example 5.3. (i) Consider the symmetric tensor A ∈ S3(R5) such that

φ(A) = (4, 2, 3, 1, 4, 2, 2, 0, 2, 3, 0, 3, 1, 1, 4, 5, 4, 3,
3, 4, 2, 3, 3, 1, 3, 6, 2, 4, 2, 1, 4, 6, 4, 4, 7).

By applying Algorithm 3.4, we detect that A is CP at the relaxation order k = 3. It
took 2.22 seconds. The output CP decomposition is A =

∑7
i=1 λi(ui)

⊗3 (accuracy
is 4.9617 · 10−6) with

u1 = 1
3 (1, 0, 1, 0, 1), λ1 = 27;

u2 = 1
2 (0, 0, 0, 1, 1), λ2 = 16;

u3 = 1
3 (1, 0, 0, 1, 1), λ3 = 27;

u4 = 1
4 (1, 1, 1, 0, 1), λ4 = 128;

u5 = 1
4 (0, 1, 1, 1, 1), λ5 = 64;

u6 = (0, 0.2165, 0.5669, 0.2165, 0), λ6 = 10.3974;
u7 = (0, 0.4198, 0.1604, 0.4198, 0), λ7 = 25.6026.
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(ii) Consider the symmetric tensor A ∈ S6(R4) such that

φ(A) = (3, 3, 4, 3, 3, 4, 3, 6, 4, 5, 3, 4, 3, 6, 4, 5, 10, 6, 6, 9, 3, 4, 3, 6, 4,
5, 10, 6, 6, 9, 18, 10, 8, 10, 17, 3, 4, 3, 6, 4, 5, 10, 6, 6, 9, 18, 10,

8, 10, 17, 34, 18, 12, 12, 18, 33, 9, 8, 6, 16, 5, 8, 38, 7, 7, 12, 100,
11, 9, 11, 20, 278, 19, 13, 13, 19, 36, 797, 36, 22, 18, 22, 36, 69).

By applying Algorithm 3.4, we detect that A is CP at the relaxation order k = 3. It
took 1.48 seconds. The output CP decomposition is A =

∑7
i=1 λi(ui)

⊗6 (accuracy
is 9.1718 · 10−8) with

u1 = 1
4 (0, 1, 3, 0), λ1 = 4096;

u2 = 1
2 (0, 0, 1, 1), λ2 = 64;

u3 = 1
5 (1, 1, 2, 1), λ3 = 15625;

u4 = 1
3 (0, 1, 1, 1), λ4 = 729;

u5 = 1
3 (1, 1, 1, 0), λ5 = 729;

u6 = 1
4 (1, 1, 1, 2), λ6 = 15625;

u7 = (0, 1, 0, 0), λ7 = 2;
u8 = 1

2 (0, 1, 0, 1), λ8 = 128.

Example 5.4. Consider the symmetric tensor

A = 1
100

(
0
1
0
1


⊗10

+


1
1
2
1


⊗10

+


0
1
1
1


⊗10

+


1
2
1
0


⊗10

+


0
1
1
0


⊗10

+


1
1
0
1


⊗10

+


0
1
0
1


⊗10

+


2
1
0
2


⊗10

+


1
0
1
1


⊗10

+


1
1
1
2


⊗10 )

.

By applying Algorithm 3.4, we detect that A is CP at the relaxation order k = 6. It
took 3.77 seconds. The output CP decomposition is A =

∑9
i=1 λi(ui)

⊗10 (accuracy
is 1.0654 · 10−9),

u1 = 1
5 (2, 1, 0, 2), λ1 = 97656.2507;

u2 = 1
3 (1, 0, 1, 1), λ2 = 590.4877;

u3 = 1
3 (1, 1, 0, 1), λ3 = 590.4913;

u4 = 1
5 (1, 1, 1, 2), λ4 = 97656.25;

u5 = 1
2 (0, 1, 0, 1), λ5 = 20.4827;

u6 = 1
3 (0, 1, 1, 1), λ6 = 590.4894;

u7 = 1
5 (1, 1, 2, 1), λ7 = 97656.2485;

u8 = 1
4 (1, 2, 1, 0), λ8 = 10485.7611;

u9 = 1
2 (0, 1, 1, 0), λ9 = 10.2293.

In Table 2, we compare numerical performance of our dehomogenization ap-
proach, i.e., the relaxation (28), with the traditional approach, i.e., the relaxation
(34). In the table, the first column represents examples in this subsection, and
5.1(A), 5.1(B), 5.1(C) are the CP matrix problems in Example 5.1 given by matri-
ces A, B and C respectively. Time consumption in the table is measured in seconds.
The order represents the relaxation order for getting the accuracy. It is clear from
the table that the dehomogenization approach performs better than the traditional
one.
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With Dehomogenization No Dehomogenization
Relaxation (28) Relaxation (34)

Example time accuracy order time accuracy order
5.1(A) 1.03 1.38 · 10−6 3 2.77 1.71 · 10−6 3
5.1(B) 0.52 1.97 · 10−6 2 0.39 2.05 · 10−6 2
5.1(C) 0.11 not CP 2 0.14 not CP 2
5.2 (i) 0.22 not CP 4 0.58 not CP 4
5.2(ii) 0.49 4.13 · 10−6 3 1.05 1.54 · 10−6 3
5.3 (i) 2.22 4.96 · 10−6 3 2.44 5.51 · 10−6 3
5.3(ii) 1.48 9.17 · 10−8 3 2.14 2.10 · 10−5 4
5.4 3.77 1.06 · 10−9 6 36.69 5.54 · 10−6 6

Table 2. Comparison between relaxations (28) and (34)

5.2. CP tensor approximations. For a given tensor C, its best CP tensor ap-
proximation is an optimizer of {

min ‖X − C‖
s.t. X ∈ CP⊗dn ,

(49)

where ‖ · ‖ is the Hilbert-Schmidt norm given as in (4). The optimization (49) is
called the CP tensor approximation problem. For the special case that d = 2, it is
reduced to be a CP-matrix approximation problem (see the work [10, 36]).

The CP tensor approximation problem is equivalent to a linear conic optimization
problem with the CP tensor cone. For each α ∈ Nnd , denote by Eα ∈ Sd(Rn) the
basis symmetric tensor whose corresponding tms has zero entries except the αth
entry being 1. Then, the optimization (49) is equivalent to

min w0

s.t.
∑
α∈Nn

d

wαEα ∈ CP⊗dn ,∥∥C − ∑
α∈N̄n

d

wαEα
∥∥ ≤ w0,

w = (wα) ∈ RNn
d , w0 ∈ R,

(50)

which is in form of (35). The optimization (50) can be solved by Algorithm 4.1.
Suppose it has the optimizer (w∗0 , w

∗, z∗). Then the best CP-tensor approxima-
tion of C is

∑
α∈Nn

d
w∗αEα. The following is an example to show the efficiency of

Algorithm 4.1 for solving CP tensor approximations.

Example 5.5. Consider the symmetric matrix

C =


1.0 2.0 1.5 0.0 2.5
2.0 0.0 −1.0 2.0 −2.5
1.5 −1.0 −4.0 3.0 4.5
0.0 2.0 3.0 −2.0 1.0
2.5 −2.5 4.5 1.0 0.0

 .
We use Algorithm 4.1 to compute its best CP matrix approximation. The algorithm
terminates at k = 2 with 0.22 second. We solve for w∗0 = 9.6532 and

w∗ = (1.9059, 0.9854, 1.2192, 0.9893, 1.6969, 1.2901, 0.0000,
0.4209, 0.0000, 1.2889, 0.7060, 1.7939, 0.5240, 0.9826, 2.4969).
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The output best CP matrix approximation of C is
1.9059 0.9854 1.2192 0.9893 1.6969
0.9854 1.2901 0.0000 0.4209 0.0000
1.2192 0.0000 1.2889 0.7060 1.7939
0.9893 0.4209 0.7060 0.5240 0.9826
1.6969 0.0000 1.7939 0.9826 2.4969

 .
It can be decomposed as

19.4584


0.2434
0.0000
0.2574
0.1410
0.3582


⊗2

+ 5.6356


0.3654
0.4785
0.0000
0.1561
0.0000


⊗2

.

Example 5.6. Consider the symmetric tensor A ∈ S3(R4) such that

A:,:,1 =


3 3 1 −3
3 3 −1 −1
1 −1 3 5
−3 −1 5 3

 , A:,:,2 =


3 3 −1 −1
3 1 2 1
−1 2 0 0
−1 1 0 1

 ,

A:,:,3 =


1 −1 3 5
−1 2 0 0

3 0 2 −1
5 0 −1 3

 , A:,:,4 =


−3 −1 5 3
−1 1 0 1

5 0 −1 3
3 1 3 −1

 .
Here each A:,:,i denotes the subtensor of A with labels (i1, i2, i) for all 1 ≤ i1, i2 ≤ 4.
We use Algorithm 4.1 to compute the best CP tensor approximation of A. The
algorithm terminates at k = 3 with 0.51 second. We solve for w∗0 = 14.2682 and

w∗ = (4.1931, 2.6035, 1.5629, 1.3894, 2.3451, 0.0293,
0.0617, 2.0098, 1.7390, 1.6801, 3.0183, 0.6204, 0.4050,

0.4299, 0.1467, 0.3084, 2.9246, 2.1886, 2.1433, 2.1677).

The output best CP tensor approximation of A is

46.9502


0.2917
0.0000
0.3629
0.3453


⊗3

+ 6.2675


0.0669
0.4393
0.1592
0.3346


⊗3

+ 3.1749


0.0000
0.5429
0.4571
0.0000


⊗3

+1.3208


0.3566
0.0000
0.6434
0.0000


⊗3

+ 19.5098


0.5337
0.4663
0.0000
0.0000


⊗3

.

5.3. CP tensor completions. Let I be a nonempty label set for symmetric ten-
sors such that if (i1, . . . , id) ∈ I then all its permutations are also in I. Suppose
C ∈ Sd(Rn) is a partially given symmetric tensor such that the entries Cα (α 6∈ I)
are given. We look for the unknown entries Cα (α ∈ I) such that C is a CP tensor.
Let C0 be the symmetric tensor such that its entries are zeros except (C0)α = Cα for
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α 6∈ I. Consider the optimization problem
min

∑
α∈I

wα

s.t. C0 +
∑
α∈I

wαEα ∈ CP⊗dn ,
(51)

where Eα denotes the basis symmetric tensor whose corresponding tms has all zero
entries except the αth entry being 1. The (51) is a linear conic optimization problem
with the CP tensor cone. It aims to find a CP completion of C such that the sum
of all unknown entries is minimum. This question can be solved by Algorithm 4.1.
If w∗ = (w∗α)α∈I is a minimizer of (51), then C0 +

∑
α∈I w

∗
αEα is a CP tensor

completion for C.

Example 5.7. [40, Example 4.2] Consider the partially given matrix

C =


∗ 4 1 2 2
4 ∗ 0 1 3
1 0 ∗ 1 2
2 1 1 ∗ 1
2 3 2 1 ∗

 ,
where the symbol ∗ denotes the unknown entries. The label set

I = {(1, 1), (2, 2), (3, 3), (4, 4), (5, 5)}.
We apply Algorithm 4.1 to compute the CP matrix completion of C. The algorithm
terminates at the initial loop k = 1 within 0.19 second. The optimal value and the
optimal solution of (51) are

Fmin = 18.0039, w∗ = (4.9100, 6.0209, 2.0774, 1.0595, 3.9360).

The output CP matrix completion is
4.9100 4 1 2 2
4 6.0209 0 1 3
1 0 2.0774 1 2
2 1 1 1.0595 1
2 3 2 1 3.9360


which can be decomposed as follows

9.9793


0.0000
0.0000
0.4046
0.1008
0.4946


⊗2

+ 9.3740


0.4902
0.0000
0.2176
0.2907
0.0015


⊗2

+ 32.6505


0.2853
0.4294
0.0000
0.0713
0.2140


⊗2

.

Example 5.8. Consider the partially given tensor A ∈ S3(R4)

A:,:,1 =


∗ 3 6 5
3 3 ∗ 3
6 ∗ 6 4
5 3 4 5

 , A:,:,2 =


3 3 ∗ 3
3 ∗ 5 5
∗ 5 5 4
3 5 4 5

 ,

A:,:,3 =


6 ∗ 6 4
∗ 5 5 4
6 5 ∗ 7
4 4 7 7

 , A:,:,4 =


5 3 4 5
3 5 4 5
4 4 7 7
5 5 7 ∗

 .
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In the above, the symbol ∗ denotes the unknown entries, and each A:,:,i denotes the
subtensor of A with labels (i1, i2, i) for all 1 ≤ i1, i2 ≤ 4. The label set of unknown
entries is

I = {(1, 1, 1), (1, 2, 3), (2, 2, 2), (3, 3, 3), (4, 4, 4)}.
We apply Algorithm 4.1 to compute the CP tensor completion of A. The algorithm
terminates at the loop k = 3 within 0.20 second. The optimal value and the optimal
solution of (51) are

Fmin = 40.7663, w∗ = (7.9006, 1.3225, 6.8038, 9.9248, 8.2023).

The output CP tensor completion can be expressed as

5.4917


0.0000
0.0000
0.4085
0.5915


⊗3

+ 59.8411


0.0000
0.3584
0.3664
0.2752


⊗3

+ 5.9400


0.0000
0.5492
0.4508
0.0000


⊗3

+

111.6693


0.2150
0.2213
0.2412
0.3225


⊗3

+ 59.1666


0.3573
0.0000
0.3653
0.2774


⊗3

+ 35.4546


0.3763
0.3692
0.0000
0.2545


⊗3

+

15.1997


0.5280
0.0000
0.4720
0.0000


⊗3

.

6. Conclusions and discussions. This paper proposes a dehomogenization ap-
proach for studying completely positive tensors. We give a hierarchy of Moment-
SOS relaxations for approximating CP tensor cones, based on the dehomogenization.
This helps us to get a Moment-SOS algorithm (i.e., Algorithm 3.4) for checking
memberships of CP tensor cones. Moreover, we also give an algorithm for solv-
ing linear conic optimization with CP tensor cones, using Moment-SOS relaxations
based on dehomogenization. The dehomogenization approach is more efficient than
the traditional one. Numerical experiments are given to show the efficiency of the
proposed approach.

We would like to remark that the dehomogenization approach can also be used
to check the memberships of copositive tensors and the related linear coinc opti-
mization problems. It is worthy to note that a linear conic optimization problem
with the copositive tensor cone is usually solved together with its dual, which is a
linear conic optimization problem with the CP tensor cone. This can be seen as in
(35)-(36). Therefore, the dehomogenization Algorithm 4.1 can also be used to solve
linear conic optimization problems with the copositive tensor cone.

For a symmetric tensor B ∈ Sd(Rn), let f = B(x) be as in (2). The tensor B is
copositive if and only if the form f is copositive. That is, f(x) ≥ 0 for all x ∈ ∆.
Recall the dehomogenization map $ as in (17). It holds that

B ∈ COP⊗dn ⇔ f ∈ COPn,d ⇔ $(f) ∈Pd(∆).

Therefore, approximations for the positive polynomial cone Pd(∆) can be used

to approximate copositive cones COP⊗dd and COPn,d. Consider the polynomial
optimization {

f0 = min $(f)(x̄)
s.t. g(x̄) ≥ 0.

(52)
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In the above, the g(x̄) := (x1, x2, . . . , xn̄, 1−eT x̄). It is clear that $(f) ∈Pd(∆) if
and only if the optimal value f0 ≥ 0. By [29], one can construct a tight hierarchy of
Moment-SOS relaxations for solving (52), using optimality conditions and Lagrange
multiplier expressions. Denote the polynomial tuples

λ =

[
∇($(f))− x̄T∇($(f)) · e,

−x̄T∇($(f))

]
, h =

λ1g1

...
λngn

 ,
where ∇ denotes the gradient with respect to x̄, and gi (resp., λi) denotes the ith
entry of the polynomial tuple g (resp., λ). The kth order tight relaxation for (52)
is {

fk = max γ
s.t. $(f)− γ ∈ QM [g, λ]2k + Ideal [h]2k.

(53)

A sufficient condition for B to be copositive is that fk ≥ 0 for some relaxation order
k. We refer to [29, 31] for more details about the construction of tight relaxations.
For instance, consider the Horn matrix (see [12])

H =


1 −1 1 1 −1
−1 1 −1 1 1

1 −1 1 −1 1
1 1 −1 1 −1
−1 1 1 −1 1

 ,
which is known to be copositive. It corresponds to the form

f(x) = xTx+ 2x1(x3 + x4 − x2 − x5) + 2x2(x4 + x5 − x3) + 2x3(x5 − x4)− 2x4x5.

After dehomogenization, we get

$(f) = 1− 4x1 − 4x4 + 4x2
1 + 4x1x3 + 8x1x4 − 4x2x3 + 4x2x4 + 4x2

4.

For the hierarchy of relaxations (53), when k = 2, we get f2 ≈ −1.4681 · 10−7.
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