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Abstract
This paper studies loss functions for finite sets. For a given finite set S, we give 
sum-of-square type loss functions of minimum degree. When S is the vertex set of 
a standard simplex, we show such loss functions have no spurious minimizers (i.e., 
every local minimizer is a global one). Up to transformations, we give similar loss 
functions without spurious minimizers for general finite sets. When S is approxi-
mately given by a sample set T, we show how to get loss functions by solving a 
quadratic optimization problem. Numerical experiments and applications are given 
to show the efficiency of these loss functions.

Keywords  Loss function · Finite set · Polynomial · Spurious minimizer · 
Optimization

Mathematics Subject Classification  90C23 · 65K05 · 90C30

1  Introduction

This paper studies loss functions for finite sets. The questions of concerns are: for 
a finite set, how do we construct a convenient loss function for it? When does the 
loss function have no spurious optimizers, i.e., every local optimizer is also a global 
one? We discuss these topics in this paper. Let n, k be positive integers. Suppose S 
is a set of k distinct points in the n-dimensional real Euclidean space ℝn . A func-
tion f in x ∶= (x1,… , xn) is said to be a loss function for S if the global minimizers 
of f are precisely the points in S. For convenience, we often select f such that f is 
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nonnegative in ℝn and the minimum value is zero. Mathematically, this is equivalent 
to that

When S = {u1,… , uk} , a straightforward choice for the loss function is 
f = ‖x − u1‖2 ⋯ ‖x − uk‖2 , where ‖ ⋅ ‖ is the standard Euclidean norm. This loss 
function is a polynomial of degree 2k in the variable x. It requires to use all points of 
S. In applications, the cardinality k may be big. Moreover, the set S often has noises 
and it may be given by a large number of samplings around the points in S. For this 
reason, the above choice of loss function may not be convenient in computational 
practice.

A frequently used loss function is the class of sum-of-squares (SOS) polynomi-
als. That is, the loss function f is in the form

where each pi is a polynomial in x. Then f is a loss function for S if and only if 
each pi ≡ 0 on S. For convenience of computation, we prefer that f and each pi have 
degrees as low as possible. A more preferable function is that every local minimizer 
of f is a global minimizer (i.e., a zero of f). That is, we wish that the loss function 
f has no spurious minimizer.1 Optimization without spurious minimizers is studied 
in [22, 26]. Polynomial loss functions have good mathematical properties and are 
convenient computationally (see [1, 9, 12]). In particular, polynomial optimization 
problems (especially nonconvex ones) can be efficiently solved by Moment-SOS 
relaxations. We refer to Fan et al. [8], Lasserre [18–20], Laurent [23, 24], Nie [28, 
29] for recent work on polynomial optimization.

In applications, the set S may not be given explicitly. It is often approximately 
given by a sample set

where each vi is a sample for a point in S and the sample size N ≫ k . For such a 
case, we can choose a family F  of loss functions, which is parameterized to repre-
sent the set S. Since S is approximated by T, we choose a loss function f ∈ F  such 
that the average value of f on T is minimum. Mathematically, this is equivalent to 
solving the optimization

The optimization (1.2) requires that we choose parameters for f such that the average 
loss on T is minimum. The set S can be determined by parameters for f in the family 
F .

(1.1)f (x) = 0 if and only if x ∈ S.

f = p2
1
+⋯ + p2

m
,

T = {v1,… , vN},

(1.2)min
f∈F

1

N

N∑
i=1

f (vi).

1  A local minimizer that is not a global minimizer is called a spurious minimizer.
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Loss functions are useful in data science optimization. There are broad applica-
tions of loss functions [2, 4, 5, 10, 17, 31, 32, 35, 38]. Selection of loss functions 
needs to consider application purposes and data structures. There are various types 
of loss functions for different applications. We refer to the survey [37] for loss func-
tions in machine learning. Polynomial loss functions are used in optimal control [13, 
14]. Linear loss functions are used for network blocking games [21]. Loss functions 
obtained via statistical averaging are given in [3]. For inverted beta loss functions, 
their properties and applications are given in [25]. Some properties of Erlang loss 
functions are given in [15]. Properties of correntropic loss functions are given in 
[36].

1.1 � Contributions

The paper studies loss functions for finite sets. We focus on the SOS type loss 
functions with minimum degrees. Let S be a given finite set in ℝn . We character-
ize loss functions that satisfy (1.1). When S is approximately given by a set T of 
larger cardinality, we look for loss functions by solving the optimization (1.2). Let 
x∶=(x1,… , xn) . We consider the loss function f such that f = p2

1
+⋯ + p2

m
 , where 

every pi is a polynomial in x. The f is a loss function for S if and only if S precisely 
consists of common real zeros of polynomials p1,… , pm . Mathematically, this is 
equivalent to that

For the polynomial pi to have minimum degrees, we consider generating polynomi-
als for the S, which are introduced for symmetric tensor decomposition [30, 31]. Let 
Φ be the set of all generating polynomials for S. It is interesting to note that Φ has 
the minimum degree, such that (1.3) holds. In particular, when S is given by vertices 
of a standard simplex, the resulting loss function f does not have spurious minimiz-
ers. Up to transformations, we can get loss functions without spurious minimizers, 
for general finite sets. In computational practice, we choose such loss functions of 
degree four.

When the set S is approximately given by a set T of larger size, we propose to 
solve the optimization (1.2) to get the loss function. Equivalently, we determine 
parameters for f from a family F  of loss functions of S. Each f ∈ F  is determined 
by a set of parameters, and vice versa. By solving (1.2), we not only get a loss func-
tion, but also get a set S∗ of k points that are approximations for the points in S. Once 
S∗ is determined, up to transformations, we can use S∗ to get loss functions that have 
no spurious minimizers.

In summary, our major results are:

•	 For a given finite set S, we give an SOS type loss function of minimum degree, 
such that S is precisely the set of global minimizers.

•	 When S consists of the vertices of a standard simplex, we show that the selected 
loss function has no spurious minimizers. For more general finite sets, we give 
these loss functions by applying transformations.

(1.3)S = {v ∈ ℝ
n ∶ p1(v) = ⋯ = pm(v) = 0}.
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•	 When the set S is approximately given by a sample set T, we solve the optimiza-
tion (1.2) to get loss functions of similar properties, i.e., they are in SOS type and 
have minimum degrees.

The paper is organized as follows. In Sect. 2, we briefly review some backgrounds for 
polynomial ideals. In Sect. 3, we show how to get SOS type loss functions for finite 
sets, with desired properties. In Sect. 4, when the set S consists of vertices of a standard 
simplex, we show that the constructed loss functions have no spurious minimizers. For 
more general S, we show how to get similar loss functions by applying transformations. 
In Sect. 5, we show how to get loss functions when the set S is approximately given by 
a sample set T. Some numerical experiments are given in Sect. 6.

2 � Preliminaries

2.1 � Notation

The symbol ℝ (resp., ℂ , ℕ ) denotes the set of real (resp., complex, nonnegative inte-
ger) numbers respectively. The symbol ℕn (resp., ℝn , ℂn ) stands for the set of n-dimen-
sional vectors with entries in ℕ (resp., ℝ , ℂ ) respectively. For an integer k > 0 , 
[k] ∶= {1,… , k} . We use � to denote the vector of all zeros and e to denote the vector 
of all ones. The symbol ei stands for the unit vector such that the ith entry is one and all 
other entries are zeros. For a vector v, the ‖v‖ denotes its Euclidean norm. For a vec-
tor u ∈ ℝ

n and � ≥ 0 , B(u, �)∶={x ∈ ℝ
n ∶ ‖x − u‖ ≤ �} denotes the closed ball cen-

tered at u with radius � . The symbol In denotes the n-by-n identity matrix. The super-
script T (resp., � ) denotes the operation of matrix transpose (resp., Hermitian). A square 
matrix A is said to be positive semidefinite (resp., positive definite) if xTAx ≥ 0 (resp., 
xTAx > 0 ) for all nonzero vectors x. For two square matrices X, Y of the same dimen-
sion, their commutator is

That is, X commutes with Y if and only if [X, Y] = 0 . For a function f which is con-
tinuously differentiable in x = (x1,… , xn) , the ∇f  denotes its gradient in x and ∇2f  
denotes its Hessian.

Let 𝔽 = ℝ or ℂ . Denote by � [x]∶=� [x1,… , xn] the ring of polynomials in 
x∶=(x1,… , xn) with coefficients in �  . For every d ∈ ℕ , � [x]d denotes the sub-
space of � [x] which contains all polynomials of degree at most d. For every 
� = (�1,… , �n) ∈ ℕ

n , denote the monomial x�∶=x
�1
1
⋯ x

�n
n . Its total degree is 

|�|∶=�1 +⋯ + �n.
A subset I ⊆ � [x] is an ideal of � [x] if p ⋅ q ∈ I for all p ∈ I , q ∈ � [x] , and 

p1 + p2 ∈ I for all p1, p2 ∈ I . For an ideal I, its radical is the set

The set 
√
I is also an ideal and I ⊆

√
I . The ideal I is said to be radical if I =

√
I . 

Each ideal I determines the variety in � n as

[X, Y] ∶=XY − YX.

√
I∶={f ∈ 𝔽 [x] ∶ f k ∈ I for some k ∈ ℕ}.
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For a polynomial tuple p∶=(p1,… , pm) , we similarly denote that

The tuple p generates the ideal

Clearly, V
�
(Ideal(p)) = V

�
(p).

For a set S ⊆ ℂ
n , its vanishing ideal is

If S = V
ℂ
(p) for some polynomial tuple p in x, then Ideal(p) ⊆ I(S) but the equality 

may not hold. For every I ⊆ ℂ[x] , we have I(V
ℂ
(I)) =

√
I . This is Hilbert’s Nullstel-

lensatz [7].
For a given ideal I ⊆ ℂ[x] , it determines an equivalence relation ∼ on ℂ[x] such 

that p ∼ q if p − q ∈ I , or equivalently, p ≡ q mod I . Then every p ∈ ℂ[x] corre-
sponds to an equivalence class with the module of I, i.e.,

The set of all equivalent classes is the quotient ring

3 � A class of loss functions

In this section, we give a general framework of constructing loss functions for finite 
sets. For convenience, we assume the finite sets are real. Suppose S ⊆ ℝ

n is a finite 
set of cardinality k, say,

A function f is a loss function for S if and only if the global minimizers of f are 
precisely the points of S. In computational practice, we often consider the sum-of-
squares loss functions

where each pi is a polynomial in x. Denote the tuple

V
�
(I)∶={x ∈ �

n ∶ p(x) = 0 (p ∈ I)}.

V
�
(p) ∶= {x ∈ �

n ∶ p(x) = 0}.

Ideal(p)∶=p1 ⋅ � [x] +⋯ + pm ⋅ � [x].

I(S)∶={q ∈ ℂ[x] ∶ q(u) = 0 (u ∈ S)}.

[p] = {q ∈ ℂ[x] ∶ q ≡ p mod I}.

ℂ[x]∕I∶={[p] ∶ p ∈ ℂ[x]}.

S = {u1,… , uk}.

(3.1)f = p2
1
+⋯ + p2

m
,

p = (p1,… , pm).



426	 J. Nie, S. Zhong 

1 3

Without loss of generality, one can assume that the minimum value of f is zero, up 
to shifting of a constant. Note that f (x) = 0 if and only if p(x) = 0 . Therefore, f is a 
loss function for S if and only if

The above observation gives the following lemma.

Lemma 3.1  Let S, f be as above. Then f is a loss function for S if and only if S is the 
real zero set of p, i.e., S = V

ℝ
(p).

The existence of p such that S = V
ℝ
(p) is obvious. For instance, one can choose 

pi to be a product like

for all possible j1,… , jk ∈ {1,… , n} . However, for such a choice of p, each pi has 
degree k and f has degree 2k. The degree is high if the cardinality k is big, and there 
are nk such products. This is not practical in applications. In particular, if the set S 
is approximately given by a sample set of large size, then the resulting p is not con-
venient for usage. In applications, people prefer loss functions of low degrees.

In the following, we show how to choose a computationally efficient loss func-
tion for S. Let �0 be the set of first k vectors in the nonnegative power set ℕn , in the 
graded lexicographic ordering, i.e.,

Then, we consider the set

For convenience of notation, denote the monomial vectors

Since S is a finite set of cardinality k, we wish to select �0 so that the set of equiv-
alent classes of monomials in {x� ∶ � ∈ �0} is a basis for the quotient space 
ℝ[x]∕I(S) , where I(S) is the vanishing ideal of S. This requires that x� ( � ∈ �1 ) is a 
linear combination of monomials x� (� ∈ �0) , modulo I(S). Equivalently, there exist 
scalars G(�, �) such that

for each � ∈ �1 . Let G∶=(G(�, �)) ∈ ℝ
𝔹0×𝔹1 be the matrix of all such scalars G(�, �) . 

The polynomial �[G, �] has coefficients that are linear in entries of G. For conveni-
ence, denote that

(3.2)S = {x ∈ ℝ
n ∶ p1(x) = ⋯ = pm(x) = 0}.

(xj1 − (u1)j1 ) ⋅ (xj2 − (u2)j2 )⋯ (xjk − (uk)jk ),

(3.3)
�0∶=

{
�, e1, … , en, 2e1, e1 + e2,… ,
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

first k of them

}
.

(3.4)�1∶=
(
(e1 + �0) ∪⋯ ∪ (en + �0)

)
⧵ �0.

[x]
�0
∶=

(
x�
)
�∈�0

, [x]
�1
∶=

(
x�
)
�∈�1

.

(3.5)�[G, �](x)∶=x� −
∑
�∈�0

G(�, �)x� ≡ 0 mod I(S)
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The X0 is a square matrix, which is nonsingular if the points in S are in generic posi-
tions. For �[G] to vanish on S, the Eq. (3.5) implies that

If X0 is nonsingular, then the matrix G is given as

We look for conditions on G such that �[G] has k common zeros in ℂn . For each 
i = 1,… , n , define the multiplication matrix Mxi

(G) such that

The rows and columns of Mxi
(G) are labelled by monomial powers �, � ∈ �0 . The 

following proposition characterizes when �[G] has k common zeros.

Proposition 3.2  [30, Proposition 2.4] Let �0, �1 be as in (3.3)–(3.4). Then, the poly-
nomial tuple �[G] has k common complex zeros (counting multiplicities) if and only 
if the multiplication matrices Mx1

(G),… ,Mxn
(G) commute, i.e.,

In particular, �[G] has k distinct complex zeros if and only if Mx1
(G),… ,Mxn

(G) are 
simultaneously diagonalizable.

The polynomial tuple �[G] generates the vanishing ideal I(S) of S and p = �[G] 
has minimum degrees for (3.2) to hold.

Theorem  3.3  Assume S is a finite set such that X0 is nonsingular. Let G be as in 
(3.7). Then, the ideal Ideal(�[G]) equals the vanishing ideal of S, i.e.,

In particular, if a polynomial h vanishes on S identically, then there are polynomials 
p� ( � ∈ �1 ) such that

(3.6)

�[G] =
(
�[G, �]

)
�∈�1

,

X0 =
[
[u1]�0

⋯ [uk]�0

]
,

X1 =
[
[u1]�1

⋯ [uk]�1

]
.

X1 − GTX0 = 0.

(3.7)G = X−T
0

XT
1
.

(3.8)[Mxi
(G)]�,� =

⎧
⎪⎨⎪⎩

1 if xi ⋅ x
� ∈ �0, � = � + ei,

0 if xi ⋅ x
� ∈ �0, � ≠ � + ei,

G(�, � + ei) if xi ⋅ x
� ∈ �1.

(3.9)[Mxi
(G),Mxj

(G)] = 0 (1 ≤ i < j ≤ n).

(3.10)Ideal(�[G]) = {h ∈ ℝ[x] ∶ h ≡ 0 on S}.

(3.11)h =
∑
�∈�1

q��[G, �]), deg(q�) + |�| ≤ deg(h).
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Proof  Since X0 is nonsingular, the set S has k distinct points. Since G is given as 
in (3.7), the polynomial equation �[G](x) = 0 has k distinct solutions. By Proposi-
tion 3.2, the multiplication matrices Mx1

(G),… ,Mxn
(G) are simultaneously diago-

nalizable. Note that the ideal Ideal(�[G]) is zero-dimensional, because the quotient 
space ℂ[x]∕Ideal(�[G]) has the dimension k. The ideal Ideal(�[G]) must be radical. 
This can be implied by Corollary 2.7 of [33]. So (3.10) holds.

Suppose h is a polynomial such that h ≡ 0 on S. Then the above shows that 
h ∈ Ideal(�[G]) . So there exist polynomials q� ( � ∈ �1 ) such that

The multiplication matrices Mx1
(G),… ,Mxn

(G) commute. One can check that the 
set of polynomials in the tuple �[G] is a Gröbner basis for Ideal(�[G]) , with respect 
to the graded lexicographical ordering. This can also be implied by the proof of 
Lemma  2.8 in [30]. Therefore, we can further select polynomials q� ∈ ℝ[x] with 
degree bounds as in (3.11). 	�  ◻

The condition that X0 is nonsingular holds when the points of S are in generic 
positions. The Eq. (3.11) shows that the polynomial tuple �[G] is a minimum-degree 
generating set for the vanishing ideal I(S). The following are some examples.

Example 3.4 

	 (i)	 Consider the set S in ℝ3 such that 

 The matrix G as in (3.7) and �[G] are 

h =
∑
�∈�1

q��[G, �].

S =

⎧
⎪⎨⎪⎩

⎡⎢⎢⎣

2

1

3

⎤⎥⎥⎦
,

⎡⎢⎢⎣

−1

−2

4

⎤⎥⎥⎦

⎫
⎪⎬⎪⎭
,

�0 =

⎧
⎪⎨⎪⎩

⎡
⎢⎢⎣

0

0

0

⎤⎥⎥⎦
,

⎡⎢⎢⎣

1

0

0

⎤⎥⎥⎦

⎫
⎪⎬⎪⎭
, �1 =

⎧
⎪⎨⎪⎩

⎡
⎢⎢⎣

0

1

0

⎤⎥⎥⎦
,

⎡⎢⎢⎣

0

0

1

⎤⎥⎥⎦
,

⎡⎢⎢⎣

2

0

0

⎤⎥⎥⎦
,

⎡⎢⎢⎣

1

1

0

⎤⎥⎥⎦
,

⎡⎢⎢⎣

1

0

1

⎤⎥⎥⎦

⎫
⎪⎬⎪⎭
.

G =

�
−1

11

3
2 2 −

2

3

1 −
1

3
1 0

10

3

�
, �[G] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

x2 − x1 + 1

x1

3
+ x3 −

11

3

x2
1
− x1 − 2

x1x2 − 2

x1x3 −
10x1

3
+

2

3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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	 (ii)	 Consider the set S in ℝ2 such that 

 The matrix G as in (3.7) and �[G] are 

	 (iii)	 Consider the set S in ℝ2 such that 

 The matrix G in (3.7) and the polynomial vector �[G] are 

For given S, the polynomial tuple �[G] with G as in (3.7), gives the loss function 
f = ‖�[G]‖2 whose global minimizers are precisely the points in S. However, the 
loss function f may have spurious minimizers.

Example 3.5  Consider the S =
{[

5

−2

]
,

[
4

3

]}
 in ℝ2 . The loss function f = ‖�[G]‖2 

is

Its total gradient ∇f  is

S =

{[
2

−1

]
,

[
−1

3

]
,

[
−2

−2

]}
,

�0 =

{[
0

0

]
,

[
1

0

]
,

[
0

1

]}
, �1 =

{[
2

0

]
,

[
1

1

]
,

[
0

2

]}
.

G =
1

19

⎡
⎢⎢⎣

58 − 14 82

3 − 23 − 20

−12 − 22 23

⎤
⎥⎥⎦
, �[G] =

⎡
⎢⎢⎢⎢⎢⎢⎣

x2
1
+

12x2

19
−

3x1

19
−

58

19

x1x2 +
22x2

19
+

23x1

19
+

14

19

x2
2
−

23x2

19
+

20x1

19
−

82

19

⎤⎥⎥⎥⎥⎥⎥⎦

.

S =

{[
3

−1

]
,

[
−1

2

]
,

[
2

1

]
,

[
−2

−1

]}
,

�0 =

{[
0

0

]
,

[
1

0

]
,

[
0

1

]
,

[
2

0

]}
, �1 =

{[
1

1

]
,

[
0

2

]
,

[
3

0

]
,

[
2

1

]}
.

G =

⎡⎢⎢⎢⎢⎣

20 − 5 − 36 22
7

2
−

3

2
− 2

9

2

−7 3 12 − 5

−
9

2

3

2
9 −

11

2

⎤⎥⎥⎥⎥⎦
, �[G] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1x2 +
9x2

1

2
+ 7x2 −

7x1

2
− 20

x2
2
−

3x2
1

2
− 3x2 +

3x1

2
+ 5

x3
1
− 9x2

1
− 12x2 + 2x1 + 36

x2
1
x2 +

11x2
1

2
+ 5x2 −

9x1

2
− 22

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

f (x) = (x2 + 5x1 − 23)2 + (x2
1
− 9x1 + 20)2 + (x1x2 + 22x1 − 100)2.
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and its Hessian ∇2f  is

By checking the optimality conditions ∇f (x) = 0, ∇2f (x) ⪰ 0 , we get a local mini-
mizer (−2.2588,−49.7911) , which is not a global one.

4 � Simplicial loss functions

In this section, we study loss functions when S is the vertex set of a standard sim-
plex. For such a case, we show that the loss function f = ‖�[G]‖2 has no spurious 
minimizers, i.e., every local minimizer of f is also a global minimizer. Moreover, 
when S is not the vertex set of a standard simplex, we apply a transformation and get 
similar loss functions.

4.1 � Simplicial loss functions

For a vector a∶=(a1,… , an) , with each scalar ai ≠ 0 , consider the standard simplex 
vertex set

For the special case that a = (1,… , 1) , we denote

When the dimension n is clear in the context, we just write Δ = Δn for convenience. 
In this subsection, we consider the special case that S = Δn(a) . Then the monomial 
power sets �0 , �1 are respectively

For the matrix G ∈ ℝ
𝔹0×𝔹1 given as in (3.7), we have that

The resulting loss function for the set Δn(a) is

[
4x3

1
− 54x2

1
+ 2x1x

2
2
+ 88x1x2 + 1260x1 − 190x2 − 4990

2x2 − 190x1 + 2x2
1
x2 + 44x2

1
− 46

]

[
12x2

1
− 108x1 + 2x2

2
+ 88x2 + 1260 88x1 + 4x1x2 − 190

88x1 + 4x1x2 − 190 2x2
1
+ 2

]
.

(4.1)Δn(a) ∶= {�, a1e1,… , anen}.

(4.2)Δn∶={�, e1,… , en}.

�0 = {�, e1,… , en},

�1 = {2e1, e1 + e2, … , 2en}.

(4.3)
𝜑[G, 2ei] = x2

i
− aixi (i ∈ [n]),

𝜑[G, ei + ej] = xixj (i < j).
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In particular, the above loss function for Δn is

A nice property is that the simplicial loss function as in (4.4) has no spurious 
minimizers.

Theorem 4.1  Fix nonzero scalars a1,… , an , the function f in (4.4) has no spurious 
minimizers, i.e., every local minimizer of f is also a global minimizer.

Proof  Suppose z = (z1,… , zn) is a local minimizer of f. Then z satisfies the optimal-
ity conditions

This implies that for i = 1,… , n,

Denote �i(z)∶=a2i − 8(zTz − z2
i
) . The real solutions for (4.6) are zi = 0 and

If each zi = 0 , then z = � is a global minimizer. Suppose some zi is nonzero, then it 
satisfies �i(z) ≥ 0 and 2z2

i
− 3aizi + (zTz − z2

i
+ a2

i
) = 0 . So (4.7) can be reformulated 

as

Plug (4.8) into the above inequality. Since 
√
𝛿i(z) ≤ �ai� < �3ai� (note ai ≠ 0),

(4.4)f (x) =

n∑
i=1

x2
i
(xi − ai)

2 +
∑

1≤i<j≤n

x2
i
x2
j
.

(4.5)F(x) ∶=

n∑
i=1

x2
i
(xi − 1)2 +

∑
1≤i<j≤n

x2
i
x2
j
.

∇f (z) = 0, ∇2f (z) ⪰ 0.

(4.6)
�f

�xi
(z) = 2zi

(
2z2

i
− 3aizi + (zTz − z2

i
+ a2

i
)
)
= 0,

(4.7)
�2f

�x2
i

(z) = 12z2
i
− 12aizi + 2(zTz − z2

i
+ a2

i
) ≥ 0.

(4.8)zi =
3ai ±

√
�i(z)

4
if �i(z) ≥ 0.

�2f

�x2
i

(z) = 8z2
i
− 6aizi = 2zi(4zi − 3ai) ≥ 0.

zi =

⎧⎪⎨⎪⎩

3ai−
√
𝛿i(z)

4
if ai < 0,

3ai+
√
𝛿i(z)

4
if ai > 0.
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It is clear that |zi| ≥ |3ai∕4| . If zi is the only nonzero entry of z, then 
√
�i(z) = �ai� 

and z = aiei , which is a global minimizer. Suppose z has another nonzero entry zj . 
By a similar argument, we can get �j(z) ≥ 0 and |zj| ≥ |3aj∕4| . Note that 
2a2

i
− 9a2

j
≥ 0 since

Similarly, 2a2
j
− 9a2

i
≥ 0 , so

The above holds if and only if aj = 0 , which contradicts that all a1,… , an are 
nonzero. Therefore, every local minimizer of f is a global minimizer, i.e., f has no 
spurious minimizers. 	�  ◻

4.2 � Transformation for general sets

When S is not a simplicial vertex set, we can still use the function F in (4.5) to get 
new loss functions, up to a transformation. These new functions have no spurious 
minimizers. They are called transformed simplicial loss functions. Consider that S 
is given as

We discuss the transformation for two different cases.

4.3 � Case I: k ≤ n + 1

Consider the vertex set of a standard simplex set in ℝk−1

The loss function as in (4.5) for Δk−1 is

in the variable z = (z1,… , zk−1) . Consider the linear map

The representing matrix for the linear map � is

a2
i
− 8 ⋅

|||
3aj

4

|||
2

≥ a2
i
− 8z2

j
≥ �i(z) ≥ 0.

2a2
j
− 9a2

i
≥ 2a2

j
− 9 ⋅

9

2
a2
j
= −

77

2
a2
j
≥ 0.

(4.9)S = {u1,… , uk}.

Δk−1 = {�, e1,… , ek−1}.

(4.10)Fk−1(z) ∶=

k−1∑
i=1

z2
i
(zi − 1)2 +

∑
1≤i<j≤k−1

z2
i
z2
j
,

(4.11)� ∶ ℝ
k−1

→ ℝ
n, �(ei) = ui − uk, i = 1,… , k − 1.
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When u1,… , uk are in generic positions, the matrix U has full column rank. Let

be the Pseudo inverse of U. For x = (x1,… , xn) , consider the loss function

Recall that Null(U†) denotes the null space of the matrix U†.

Theorem  4.2  Suppose k ≤ n + 1 and rank U = k − 1 . Then, the function f as in 
(4.13) is a loss function for the set

Moreover, f has no spurious minimizers.

Proof  The function f as in (4.13) is nonnegative everywhere. Note that f (x) = 0 if 
and only if U†(x − uk) ∈ Δk−1 . It holds that

 For x ∈ ℝ
n , we have U†(x − uk) ∈ Δk−1 if and only if x ∈ S + Null(U†) . This shows 

that f is a loss function for S + Null(U†) in ℝn.
The gradient and Hessian of f can be written as

Note that U† has full row rank. If u is a local minimizer of f, then ∇xf (u) = 0 , 
∇2

x
f (u) ⪰ 0 . Let z = U†(u − uk) , then the above implies that

As in the proof of Theorem 4.1, one can show that z ∈ Δk−1 . This implies that z is a 
global minimizer of Fk−1 and hence u is a global minimizer of f. So f has no spurious 
minimizers. 	�  ◻

4.4 � Case II: k > n + 1

Let � ∶ ℝ
n
→ ℝ

k−1 be the monomial function such that

where �0 is the power set in (3.3). For the set S as in (4.9), denote

(4.12)U =
[
u1 − uk ⋯ uk−1 − uk

]
.

U† ∶= (UTU)−1UT

(4.13)f (x) = Fk−1

(
U†(x − uk)

)
.

S + Null(U†) ∶= {x + y ∶ x ∈ S,U†y = 0}.

Δk−1 = {U†(x − uk) ∶ x ∈ S}.

∇xf (x) = (U†)T∇zFk−1(z), ∇2
x
f (x) = (U†)T∇2

z
Fk−1(z)U

†.

∇zFk−1(z) = 0, ∇2
z
Fk−1(z) ⪰ 0.

(4.14)[x]
�0

=

[
1

�(x)

]
,
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Define the linear map L such that

The representing matrix for the linear map L is

When u1,… , un are in generic positions, the matrix L is nonsingular. For such a 
case, define the function

in the z = (z1,… , zk−1) , where Fk−1 is the simplicial loss function as in (4.10). The 
above f̂  is called a transformed simplicial loss function for Ŝ . The following theo-
rem follows from Theorem 4.2.

Theorem  4.3  Suppose k > n + 1 and L is nonsingular. Then, the function f̂  as in 
(4.17) is a loss function for Ŝ and it has no spurious minimizers.

For x = (x1,… , xn) , define the function

Corollary 4.4  Suppose k > n + 1 and L in (4.16) is nonsingular, then the function f in 
(4.18) is a loss function for S.

Proof  The function f as in (4.18) is nonnegative everywhere. By Theorem 4.3, we 
know f (x) = 0 if and only if 𝜔(x) ∈ Ŝ . Since � is a one-to-one map, the f is a loss 
function for S. 	�  ◻

The transformed simplicial loss functions in (4.13) and (4.17) have no spuri-
ous minimizers. The following are some examples of transformed simplicial loss 
functions.

Example 4.5 

	 (i)	 Consider the set S in ℝ3 such that 

 The matrix U as in (4.12) and its Pseudo inverse are 

(4.15)Ŝ ∶=
{
𝜔(u1),… ,𝜔(uk)

}
⊆ ℝ

k−1.

L ∶ ℝ
k−1

→ ℝ
k−1, L(ei) = �(ui) − �(uk), i = 1,… , k − 1.

(4.16)L =
[
�(u1) ⋯ �(uk−1)

]
−
[
�(uk) ⋯ �(uk)

]
.

(4.17)f̂ (z) ∶=Fk−1

(
L−1(z − 𝜔(uk)

)
,

(4.18)f (x) = Fk−1

(
L−1(�(x) − �(uk)

)
.

S =

�⎡⎢⎢⎣

4

−2

1

⎤⎥⎥⎦
,

⎡⎢⎢⎣

−1

3

−5

⎤⎥⎥⎦

�
.
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 Since k = 2 , the simplicial loss function for Δk−1 is F1 = z2(z − 1)2 in the 
univariate variable z. Then, the transformed simplicial loss function as in 
(4.13) is 

	 (ii)	 Consider the set S in ℝ2 such that 

 Since k = 4 > n + 1 , the set Ŝ in (4.15) is 

 The matrix L as in (4.16) and its inverse are 

 Since k = 4 , the simplicial loss function for Δk−1 is 

 in the variable z = (z1, z2, z3) . Then, the transformed simplicial loss function 
as in (4.17) is f̂ (z) = F3(L

−1(z − 𝜔(u4)) , with 

5 � Finite sets with noises

In this section, we study loss functions for finite sets that are given with noises. In 
many applications, the finite set S, with the cardinality k, is often approximately 
given by another finite set T, with the cardinality N ≫ k . For instance, each point of 

U =

⎡
⎢⎢⎣

5

−5

6

⎤
⎥⎥⎦
, U† =

1

86

⎡
⎢⎢⎣

5

−5

6

⎤
⎥⎥⎦

T

.

f (x) =

(
5x1

86
−

5x2

86
+

3x3

43
+

25

43

)2

⋅

(
5x1

86
−

5x2

86
+

3x3

43
−

18

43

)2

.

S =
{[

2

3

]
,

[
−1

−2

]
,

[
1

−3

]
,

[
−2

2

]}
.

Ŝ =

⎧⎪⎨⎪⎩

⎡
⎢⎢⎣

2

3

4

⎤⎥⎥⎦
,

⎡⎢⎢⎣

−1

−2

1

⎤⎥⎥⎦
,

⎡⎢⎢⎣

1

−3

1

⎤⎥⎥⎦
,

⎡⎢⎢⎣

−2

2

4

⎤⎥⎥⎦

⎫⎪⎬⎪⎭
.

L =

⎡⎢⎢⎣

4 1 3

1 − 4 − 5

0 − 3 − 3

⎤⎥⎥⎦
, L−1 =

1

18

⎡⎢⎢⎣

3 6 − 7

−3 12 − 23

3 − 12 17

⎤⎥⎥⎦
.

F3(z) = z2
1
(z1 − 1)2 + z2

1
z2
2
+ z2

2
(z2 − 1)2 + z2

2
z2
3
+ z2

3
(z3 − 1)2.

L−1(z − �(u4)) =
1

18

⎡⎢⎢⎣

3z1 + 6z2 − 7z3 + 22

−3z1 + 12z2 − 23z3 + 62

3z1 − 12z2 + 17z3 − 38

⎤⎥⎥⎦
.
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S is often approximated by a number of samplings, and T consists of all such sam-
plings. The cardinality N is the total number of samplings. We look for good loss 
functions for such approximately given sets. This kind of questions have important 
applications in clustering and classification.

5.1 � Best approximation sets

Suppose S is approximately given by a sampling set T, say,

Each point of S is sampled by a certain number of points in T. We discuss how to 
recover the k points of S from sampling points in T.

A finite set can be represented as the optimizer set of a loss function. For conveni-
ence, we consider loss functions whose minimum values are zeros. Let F  be a family 
of loss functions such that each f ∈ F  has k common zeros. The loss function family 
F  is parameterized by some parameters. For such given F  , we look for the best loss 
function in F  such that its average value on T is the smallest. This leads to the follow-
ing definition.

Definition 5.1  Let F  be a family of loss functions such that each f ∈ F  is nonnega-
tive and it has k common zeros. A set S∗ = {u∗

1
,… , u∗

k
} is called the best F -approxi-

mation set for T as in (5.1) if S∗ is the zero set of f ∗ , where f ∗ is the minimizer of the 
optimization

For a given set S, if the matrix G is as in (3.7), then S is the common zero set of 
the polynomial tuple �[G] , given as in (3.5). In fact, Ideal(�[G]) is the vanishing ideal 
I(S) and �[G] gives the minimum-degree generating set for I(S). The relation between 
S and �[G] is characterized by Theorem 3.3. As shown in Proposition 3.2, �[G] has k 
common zeros (counting multiplicities and all complex ones) if and only if the multi-
plication matrices Mx1

(G),… ,Mxn
(G) commute with each other. Moreover, �[G] has k 

distinct zeros if and only if Mx1
(G),… ,Mxn

(G) are simultaneously diagonalizable. So, 
one can use the matrix G and the polynomial tuple �[G] to represent the finite set S. As 
in Sect. 3, we consider the family of the following loss functions

parameterized by G. We look for the matrix G such that the average of the values of 
fG on T is minimum and �[G] has k common zeros.

In view of the above, we consider the following matrix optimization problem

(5.1)T = {v1,… , vN}.

(5.2)

⎧⎪⎨⎪⎩
min �(f )∶=

1

N

N∑
i=1

f (vi)

s.t. f ∈ F.

(5.3)fG ∶= ‖�[G]‖2,
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The value �[G](vi) is linear in the matrix G. The feasible set of (5.4) is given by a set 
of quadratic equations. The optimization (5.4) is the specialization of (5.2) such that 
F  is the family of loss function fG , with �[G] having k common zeros.

5.2 � Approximation analysis

Suppose G∗ is the minimizer of (5.4). Let S0 denote the common zero set of �[G∗] . 
We can use S0 to approximate the points in S. In some applications, the set S con-
tains only real points and people like to get a real set approximation for S.

First, we study the approximation quality of the optimization (5.4). For each � ∈ �1 , 
the sub-Hessian of the objective �(G) with respect to the � th column G(∶, �) is the 
matrix

In the above, the superscript � denotes the Hermitian transpose.

Theorem 5.2  Let T be as in (5.1) and let S = {u1,… , uk} be such that the matrix X0 
as in (3.6) is nonsingular. Assume there exists 𝛿 > 0 such that H ⪰ 2�Ik . Suppose 
the set T is such that

for some 𝜖 > 0 . Then, as � → 0 , the optimizer G∗ of (5.4) converges to Ĝ∶=X−T
0

XT
1
 , 

and the common zero set S0 of �[G∗] converges to S.

In particular, when S, T ⊆ ℝ
n , if 𝜖 > 0 is sufficiently small, the common zero set 

S0 contains k distinct real points.

Proof  First, we show the convergence G∗
→ Ĝ as � → 0 . Since the set 

B̂∶= ∪k
i=1

B(ui, 1) is compact, the polynomial function 𝜑[Ĝ](x) is Lipschitz continu-
ous on B̂ . There exists R > 0 such that for all i ∈ [k] and for all x ∈ B(ui, �),

Since T ⊆ S + B(0, 𝜖) , each vj ∈ T  belongs to some B(uij , �) for ij ∈ {1,… , k} . So 
the above inequality implies that (note that each 𝜑[Ĝ](uij ) = 0)

(5.4)

⎧
⎪⎨⎪⎩

min 𝜗(G)∶=
1

N

N∑
j=1

fG(vj)

s.t. [Mxi
(G),Mxj

(G)] = 0 (1 ≤ i < j ≤ n).

H ∶=
2

N

N∑
j=1

[vj]�0
([vj]�0

)�.

(5.5)T ⊆ S + B(0, 𝜖), T ∩ B(ui, 𝜖) ≠ � (i = 1,… , k),

‖𝜑[Ĝ](x) − 𝜑[Ĝ](ui)‖ ≤ R‖x − ui‖ ≤ R𝜖.
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Since G∗ is the minimizer of (5.4), we have

Moreover, it holds that

In the above, the first inequality follows from that ‖a + b‖2 ≥ (‖a‖ − ‖b‖)2 and the 
second inequality follows from the Cauchy-Schwartz inequality. Then, we have

By the formula of �[G](x) and using Cauchy-Schwartz inequality again, we get

Since 
∑N

j=1
‖(G∗ − Ĝ)T [vj]�0

‖2 ≤ �∑N

j=1
‖(G∗ − Ĝ)T [vj]�0

‖�2 , we have

By the assumption H ⪰ 2�Ik , the above implies

Therefore, as � → 0 , we have G∗ converges to Ĝ.
In the following, we assume that S, T ⊆ ℝ

n . Since X0 is nonsingular, S has k dis-
tinct real points. Recall the multiplication matrices Mxi

(G∗),Mxi
(Ĝ) given as in (3.8). 

Since G∗
→ Ĝ , the common zero set of �[G∗] converges to that of 𝜑[Ĝ] . The zero set 

𝜗(Ĝ) =
1

N

N�
j=1

‖𝜑[Ĝ](vj)‖2

=
1

N

N�
j=1

‖𝜑[Ĝ](vj) − 𝜑[Ĝ](uij )‖2 ≤ (R𝜖)2.

(5.6)0 ≤ 𝜗(G∗) ≤ 𝜗(Ĝ) ≤ (R𝜖)2.

𝜗(G∗) =
1

N

N�
j=1

‖𝜑[G∗](vj) − 𝜑[Ĝ](vj) + 𝜑[Ĝ](vj)‖2,

≥
1

N

N�
j=1

�
‖𝜑[G∗](vj) − 𝜑[Ĝ](vj)‖ − ‖𝜑[Ĝ](vj)‖

�2

≥
1

N2

� N�
j=1

‖𝜑[G∗](vj) − 𝜑[Ĝ](vj)‖ −
N�
j=1

‖𝜑[Ĝ](vj)‖
�2

.

N�
j=1

‖𝜑[G∗](vj) − 𝜑[Ĝ](vj)‖ ≤ N
√
𝜗(G∗) +

N�
j=1

‖𝜑[Ĝ](vj)‖

N�
j=1

‖(G∗ − Ĝ)T [vj]�0
‖ ≤ N

�√
𝜗(G∗) +

�
𝜗(Ĝ)

�
.

1

N

N�
j=1

‖(G∗ − Ĝ)T [vj]�0
‖2 ≤ N

�√
𝜗(G∗) +

�
𝜗(Ĝ)

�2

.

‖G∗ − Ĝ‖ ≤

�
N

𝛿

�√
𝜗(G∗) +

�
𝜗(Ĝ)

�
.
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of 𝜑[Ĝ] is S, which consists of k distinct real points. Hence, �[G∗] also has k distinct 
common zeros when 𝜖 > 0 is sufficiently small. Then it remains for us to show that 
all common zeros of �[G∗] are real. For a vector � = (�1,… , �n) , define the matrices

Their characteristic polynomials are

Fix a generic real value for � so that M2 has k distinct real eigenvalues. This is 
because 𝜑[Ĝ](x) has real distinct solutions and by the Stickelberger’s Theorem (see 
(5.8) as in [23, 33]). Note that both p1(�) , p2(�) have degree k and all coefficients 
are real. The p2(�) has k distinct real roots. They are ordered as

We can choose real scalars b0,… , bk such that

As � → 0 , the coefficients of p1 converge to those of p2 . So, when 𝜖 > 0 is small 
enough, p1(bj) has the same sign as p2(bj) does. Since each p2(bj−1)p2(bj) < 0 , we 
have

This implies that p1 has k distinct real roots. Equivalently, M1 has k distinct real 
eigenvalues for 𝜖 > 0 sufficiently small. By Proposition 3.2, the multiplication matri-
ces Mx1

(G∗),… ,Mxn
(G∗) are simultaneously diagonalizable. Also note that M1 is 

diagonalizable and there is a unique real eigenvector (up to scaling) for each real 
eigenvalue. This shows that Mx1

(G∗),… ,Mxn
(G∗) can be simultaneously diagonal-

ized by common real eigenvectors. All Mx1
(G∗),… ,Mxn

(G∗) have real entries, so 
they have only real eigenvalues. Therefore, by Stickelberger’s Theorem, �[G∗] has k 
distinct real common zeros if 𝜖 > 0 is sufficiently small. 	�  ◻

5.3 � Loss functions for noisy sets

When the set S is approximately given by the sampling set T, we can solve (5.4) for an 
optimizer matrix G∗ , to get loss functions. Let S0 be the common zero set of the poly-
nomial tuple �[G∗] . If T is far from S, S0 may have non-real points. If real points are 
wanted, we can choose the real part set

M1 =

n∑
i=1

𝜉iMxi
(G∗), M2 =

n∑
i=1

𝜉iMxi
(Ĝ).

p1(�)∶= det(M1 − �I), p2(�)∶= det(M2 − �I).

𝜆̂1 < 𝜆̂2 < ⋯ < 𝜆̂k.

b0 < 𝜆̂1 < b1 < ⋯ < bk−1 < 𝜆̂k < bk.

p1(bj−1)p1(bj) < 0, j = 1,… , k + 1.

(5.7)Sre ∶= { Re (u) ∶ u ∈ S0}.



440	 J. Nie, S. Zhong 

1 3

First, we show how to compute the common zero set S0 . By Stickelberger’s Theorem 
(see [23, 33]), the set S0 can be expressed as

To get S0 numerically, people often use Schur decompositions. Let

where �1,… , �n are generically chosen scalars. Then, compute the Schur decomposi-
tion for M1:

In the above, Q ∈ ℂ
k×k is a unitary matrix and P ∈ ℂ

k×k is upper triangular. Based 
on the Schur decomposition (5.10), the common zeros û1,… , ûk of �[G∗] can be 
given as

We refer to Corless et al. [6] for how to use Schur decompositions to compute com-
mon zeros of zero-dimensional polynomial systems. For general cases, the set S0 
contains k distinct points. It holds when S, T ⊆ ℝ

n and the points in T are close to S; 
see Theorem 5.2.

Based on the above discussions, we get the following algorithm for obtaining loss 
functions when S is approximately given by the sampling set T.

Algorithm 1  For the given set T as in (5.1) and the cardinality k, do the following: 

Step 1	 Solve quadratic optimization (5.4) for the optimizer G∗.
Step 2	 Compute the common zero set S0 = {û1,… , ûk} of �[G∗] . Let S∗ be the set 

S0 or Sre be as in (5.7) if the real points are wanted.
Step 3	 Get a loss function for the set S∗ , by the method in Sect. 3 or Sect. 4.

In Step 1, the optimization (5.4) has a convex quadratic objective, but its con-
straints are given by quadratic equations, in the matrix variable G. So (5.4) is a quad-
ratically constrained quadratic program (QCQP). It can be solved as a polynomial 
optimization problem (e.g., by the software GloptiPoly 3 [11]). The classical 
nonlinear optimization methods, (e.g., Gauss-Newton, trust region, and Levenberg-
Marquardt type methods) can also be applied to solve (5.4). We refer to Kelley [16], 
More [27] and Yuan [39] for such references.

In Step 2, the common zero set S0 can be computed as in (5.11), by using the 
Schur decomposition (5.10) for the matrix M1 in (5.9), for generically chosen scalars 
�1,… , �n.

In Step 3, there are two options for obtaining loss functions for the set S∗ , given in 
Sects. 3 and 4 respectively. One is to choose f = ‖�[G]‖2 ; the other one is to apply 

(5.8)S0 =

{
(�1,… , �n)

|||||
∃q ∈ ℂ

k ⧵ {0} such that

Mxi
(G∗)q = �iq, i = 1,… , n

}
.

(5.9)M1 = �1Mx1
(G∗) +⋯ + �nMxn

(G∗),

(5.10)Q�M1Q = P, Q =
[
q1 ⋯ qk

]
.

(5.11)ûi∶=
(
q�
i
Mx1

(G∗)qi,… , q�
i
Mxn

(G∗)qi
)
, i = 1,… , k.
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a transformation first and then choose f similarly. After the transformation, there are 
no spurious optimizers for the loss function.

6 � Numerical experiments

In this section, we present numerical experiments for loss functions. The compu-
tation is implemented in MATLAB R2018a, in a Laptop with CPU 8th Generation 
IntelⓇ CoreTM i5-8250U and RAM 16 GB. The optimization problem (5.4) can be 
solved by the polynomial optimization software GloptiPoly  3 (with the SDP 
solver SeDuMi [34]), or it can be solved by classical nonlinear optimization solvers 
(e.g., the MATLAB function fmincon can be used for convenience).

First, we explore the numerical performance of Algorithm 1.

Example 6.1  Consider the set

Suppose T is a sampling set of S such that

We apply Algorithm 1 for cases Ni ∈ {50, 100} and � ∈ {0.05, 0.1, 0.5} . The sam-
ples are generated with MATLAB function randn. We summarize the computa-
tional results in Table 1 and Fig. 1. In Table 1, the symbol S∗ denotes the computed 
approximation set as in (5.7). We use the distance

to measure the approximation quality of S∗ to S. The loss function for S∗ is in form of 
f = ‖�[G]‖2 , whose maximum value on S is shown in the fourth column. In Fig. 1, 

S =

{[
1

1

]
,

[
3

2

]
,

[
1.5

2.5

]
,

[
2.5

3

]
,

[
2

1.5

]
,

[
3

1

]}
.

T ⊆ S + 𝜖[−1, 1]2, and

|T ∩ {ui + 𝜖[−1, 1]2}| = Ni (i = 1,… , 6).

‖S − S∗‖ ∶= max
v∈S∗

min
ui∈S

‖v − ui‖

Table 1   The numerical results of Example 6.1

Ni � ‖S − S∗‖ max

u∈S
f (u)

50 0.05 0.0064 1.27 × 10−4

0.1 0.0145 2.98 × 10−4

0.5 0.1821 0.0862
100 0.05 0.0055 8.06 × 10−5

0.1 0.0067 1.89 × 10−4

0.5 0.1080 0.0359
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the sampling points in T are plotted in dots, the points in S are plotted in diamonds 
and the points in S∗ are plotted in squares. The left column from top to bottom shows 
cases for Ni = 50 and � = 0.05, 0.1, 0.5 respectively. The right column shows cases 
for Ni = 100 accordingly.

Fig. 1   The performance of Algorithm 1 for Example 6.1. The left column is for Ni = 50 , and the right 
column is for Ni = 100 . The first row is for � = 0.05 , the second row is for � = 0.1 , and the third row is 
for � = 0.5
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We explore the performance of Algorithm 1 for sampling sets T that are not 
evenly distributed around S.

Example 6.2  Let S be the same set given as in Example 6.1. Suppose T is a sampling 
set of S such that for each i = 1,… , 6,

where a = (a1,… , a6) and b = (b1,… , b6) are given as

We apply Algorithm 1 for samples generated with the MATLAB function randn. 
The computational results are summarized as follows. The computed approximation 
set is

We have that

where f (x) = ‖�[G](x)‖2 is the loss function for S∗ . The visualization of Exam-
ple  6.2 is given in Fig.  2, where the points in S are plotted in diamonds and the 
points in S∗ are plotted in squares.

T ⊆ S + ai[−1, 1]
2, |T ∩ {ui + ai[−1, 1]

2}| = bi,

a = (0.4, 0.2, 0.6, 0.2, 0.32, 0.4),

b = (50, 25, 100, 30, 40, 70).

S∗ =

{[
0.8820

0.9557

]
,

[
3.0807

1.7892

]
,

[
1.1759

2.5383

]
,

[
2.3481

3.0050

]
,

[
1.9854

1.6354

]
,

[
3.0292

0.8541

]}
.

‖S − S∗‖ = 0.3264, max
u∈S

f (u) = 0.2147,

Fig. 2   The performance of Algorithm 1 for Example 6.2
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Then, we apply loss functions to study Gaussian mixture models. For a given 
sampling set T, we compute the finite set S∗ and its loss function by Algorithm 1. 
The loss function in Sect.  4 are used, so there are no spurious minimizers. For 
a point v ∈ T  , apply a nonlinear optimization method (we use MATLAB func-
tion fminunc) to minimize f with the starting point v. Once a minimizer u is 
returned, we cluster v to the group labeled by the point u ∈ S∗.

Example 6.3  We use Algorithm 1 and the transformed simplicial loss functions in 
Sect.  4 to learn Gaussian mixture models (GMMs). Each GMM has parameters 
(wi,�i,Σi) , i = 1,… , k , where each weight wi > 0 , the mean vector �i ∈ ℝ

n and 
the covariance matrix Σi ∈ S

n
++

 (the cone of real symmetric positive definite n-by-n 
matrices), such that w1 +⋯ + wk = 1 . We explore the performance of transformed 
simplicial loss functions for two cases

In particular, we compare the results for diagonal Gaussian mixture models (each 
Σi is diagonal) and non-diagonal Gaussian mixture models (each Σi is non-diago-
nal). For each instance, 1000 samples are generated. The weights w1,… ,wk are also 
computed from sampling: we first use the MATLAB command randi getting 1000 
integers from [k], and then counting each wi based on the occurrence probability of 
i ∈ [k] . We generate each covariance matrix as Σi = RTR , for some randomly gener-
ated square matrix R. The clustering accuracy rate counts the percentage of samples 
belonging to the correct cluster. We run 10 instances for each case and give the aver-
age CPU time (in seconds) consumed by the method and the accuracy rate for all 
instances. The computational results are reported in Table 2. Algorithm 1 together 
with transformed simplicial loss functions has good performance for both diagonal 
and non-diagonal Gaussian mixture models. The clustering accuracy rate is higher 
for non-diagonal Gaussian mixtures than that for diagonal ones. In particular, for 
(n, k) = (4, 5) , the clustering accuracy rate can be as high as 98.92%.

I) ∶ n = 4, k ∈ {4, 5}, II) ∶ n = 5, k ∈ {3, 4}.

Table 2   The computational 
results for Example 6.3

n k Accuracy rate CPU time

Diagonal (%) Non-diagonal (%) Diagonal Non-diagonal

4 4 77.66 85.34 66.14 68.28
5 88.73 98.92 93.32 90.76

5 3 80.93 84.04 73.35 75.25
4 82.40 89.58 132.88 129.19
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7 � Conclusions

This paper studies loss functions for finite sets. We give a framework for loss 
functions. For a generic finite set S, we show that S can be equivalently given as 
the zero set of SOS polynomials with minimum degrees. When S is the vertex 
set of a standard simplex, we show that the given loss function has no spurious 
minimizers. For general finite sets, after a transformation, we can get similar loss 
functions that have no spurious minimizers. When S is approximately given by a 
sampling set T, we show how to get loss functions for S based on sampling points 
in T. This can be done by solving a quadratic optimization problem. Some exam-
ples are given to show the efficiency of the proposed loss functions.

Funding  The authors are partially supported by the NSF Grant DMS-2110780.

Data availability statement  We do not analyse or generate any datasets, because our work proceeds 
within a theoretical and mathematical approach.

Declarations 

Conflict of interest  They have no competing interests to declare that are relevant to the content of this 
article.

References

	 1.	 Babbush, R., Denchev, V., Ding, N., et al.: Construction of non-convex polynomial loss functions 
for training a binary classifier with quantum annealing. Preprint (2014). arXiv:​1406.​4203

	 2.	 Barron, J.T.: A general and adaptive robust loss function. In: Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (2019)

	 3.	 Beyhaghi, P., Alimo, R., Bewley, T.: A derivative-free optimization algorithm for the efficient mini-
mization of functions obtained via statistical averaging. Comput. Optim. Appl. 76(1), 1–31 (2020)

	 4.	 Cheng, D., Gong, Y., Zhou, S. et  al.: Person re-identification by multi-channel parts-based CNN 
with improved triplet loss function. In: Proceedings of the IEEE Conference on Computer Vision 
and Pattern Recognition (2016)

	 5.	 Christoffersen, P., Jacobs, K.: The importance of the loss function in option valuation. J. Financ. 
Econ. 72(2), 291–318 (2004)

	 6.	 Corless, R.M., Gianni, P.M., Trager, B.M.: A reordered Schur factorization method for zero-dimen-
sional polynomial systems with multiple roots. In: Proceedings of the International Symposium on 
Symbolic and Algebraic Computation, Maui, Hawaii, pp. 133–140 (1977)

	 7.	 Cox, D., Little, J., OShea, D.: Ideals, Varieties, and Algorithms: An Introduction to Computational 
Algebraic Geometry and Commutative Algebra. Springer (2013)

	 8.	 Fan, J., Nie, J., Zhou, A.: Tensor eigenvalue complementarity problems. Math. Program. 170(2), 
507–539 (2018)

	 9.	 Gonzalez, S., Miikkulainen, R.: Optimizing loss functions through multi-variate Taylor polynomial 
parameterization. In: Proceedings of the Genetic and Evolutionary Computation Conference (2021)

	10.	 Guo, B., Nie, J., Yang, Z.: Learning diagonal Gaussian mixture models and incomplete tensor 
decompositions. Vietnam J. Math. 50(2), 421–446 (2022)

	11.	 Henrion, D., Lasserre, J., Lofberg, J.: GloptiPoly 3: moments, optimization and semidefinite pro-
gramming. Optim. Methods Softw. 24, 761–779 (2009)

http://arxiv.org/abs/1406.4203


446	 J. Nie, S. Zhong 

1 3

	12.	 Huber, P.J.: Robust estimation of a location parameter. In: Kotz S., Johnson N.L. (eds.) Break-
throughs in Statistics. Springer Series in Statistics (Perspectives in Statistics). Springer, New York 
(1992).https://​doi.​org/​10.​1007/​978-1-​4612-​4380-9_​35

	13.	 Ichihara, H.: Optimal control for polynomial systems using matrix sum of squares relaxations. IEEE 
Trans. Autom. Control 54(5), 1048–1053 (2009)

	14.	 Ito, Y., Fujimoto, K.: On optimal control with polynomial cost functions for linear systems with 
time-invariant stochastic parameters. In: American Control Conference (ACC). IEEE (2021)

	15.	 Jagerman, D.L.: Some properties of the Erlang loss function. Bell Syst. Tech. J. 53(3), 525–551 
(1974)

	16.	 Kelley, C.T.: Iterative Methods for Linear and Nonlinear Equations, Frontiers in Applied Mathemat-
ics, vol. 16. SIAM, Philadelphia (1995)

	17.	 Ko, Y.H., Kim, K.J., Jun, C.H.: A new loss function-based method for multiresponse optimization. 
J. Qual. Technol. 37(1), 50–59 (2005)

	18.	 Lasserre, J.B.: Global optimization with polynomials and the problem of moments. SIAM J. Optim. 
11, 796–817 (2001)

	19.	 Lasserre, J.B.: An Introduction to Polynomial and Semi-Algebraic Optimization. Cambridge Uni-
versity Press (2015)

	20.	 Lasserre, J.B.: The moment-SOS hierarchy. In: Sirakov, B., Ney de Souza, P., Viana, M. (eds.) 
Proceedings of the International Congress of Mathematicians (ICM 2018), vol. 3, pp. 3761–3784. 
World Scientific (2019)

	21.	 Laszka, A., Szeszlér, D., Buttyán, L.: Linear loss function for the network blocking game: an effi-
cient model for measuring network robustness and link criticality. In: International Conference on 
Decision and Game Theory for Security. Springer, Berlin, Heidelberg (2012)

	22.	 Lasserre, J.B.: Homogeneous polynomials and spurious local minima on the unit sphere. Optim. 
Lett. (2021). https://​doi.​org/​10.​1007/​s11590-​021-​01811-3

	23.	 Laurent, M.: Sums of squares, moment matrices and optimization over polynomials. In: Emerging 
Applications of Algebraic Geometry of IMA Volumes in Mathematics and its Applications, vol. 
149, pp. 157–270. Springer (2009)

	24.	 Laurent, M.: Optimization over polynomials: selected topics. In: Jang, S.Y., Kim, Y.R., Lee, D.-W., 
Yie, I. (eds.) Proceedings of the International Congress of Mathematicians, pp. 843–869 (2014)

	25.	 Leung, B.P.K., Spiring, F.A.: The inverted beta loss function: properties and applications. IIE Trans. 
34(12), 1101–1109 (2002)

	26.	 Li, Z., Cai, J., Wei, K.: Toward the optimal construction of a loss function without spurious local 
minima for solving quadratic equations. IEEE Trans. Inf. Theory 66(5), 3242–3260 (2019)

	27.	 More, J.J.: The Levenberg–Marquardt algorithm: implementation and theory. In: Watson, G.A. (ed.) 
Lecture Notes in Mathematics 630: Numerical Analysis, pp. 105–116. Springer, Berlin (1978)

	28.	 Nie, J.: The hierarchy of local minimums in polynomial optimization. Math. Program. 151(2), 555–
583 (2015)

	29.	 Nie, J., Yang, Z., Zhou, G.: The saddle point problem of polynomials. Found. Comput. Math. 22(4), 
1–37 (2021)

	30.	 Nie, J.: Generating polynomials and symmetric tensor decompositions. Found. Comput. Math. 17, 
423–465 (2017)

	31.	 Nie, J.: Low rank symmetric tensor approximations. SIAM J. Matrix Anal. Appl. 38(4), 1517–1540 
(2017)

	32.	 Schorfheide, F.: Loss function-based evaluation of DSGE models. J. Appl. Economet. 15(6), 645–
670 (2000)

	33.	 Sturmfels, B.: Solving systems of polynomial equations. In: CBMS Regional Conference Series in 
Mathematics, vol. 97. AMS, Providence (2002)

	34.	 Sturm, J.: Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optim. 
Methods Softw. 11, 625–653 (1999)

	35.	 Sudre, C.H., Li, W., Vercauteren, T., et al.: Generalised dice overlap as a deep learning loss func-
tion for highly unbalanced segmentations. In: Deep Learning in Medical Image Analysis and Multi-
modal Learning for Clinical Decision Support, pp. 240–248. Springer, Cham (2017)

	36.	 Syed, M.N., Pardalos, P.M., Principe, J.C.: On the optimization properties of the correntropic loss 
function in data analysis. Optim. Lett. 8(3), 823–839 (2014)

	37.	 Wang, Q., Ma, Y., Zhao, K., Tian, Y.: A comprehensive survey of loss functions in machine learn-
ing. Ann. Data Sci. (2020). https://​doi.​org/​10.​1007/​s40745-​020-​00253-5

https://doi.org/10.1007/978-1-4612-4380-9_35
https://doi.org/10.1007/s11590-021-01811-3
https://doi.org/10.1007/s40745-020-00253-5


447

1 3

Loss functions for finite sets﻿	

	38.	 Wu, Z., Shamsuzzaman, M., Pan, E.S.: Optimization design of control charts based on Taguchi’s 
loss function and random process shifts. Int. J. Prod. Res. 42(2), 379–390 (2004)

	39.	 Yuan, Y.X.: Recent advances in numerical methods for nonlinear equations and nonlinear least 
squares. Numer. Algebra Control Optim. 1, 15–34 (2011)

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps 
and institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the 
author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article 
is solely governed by the terms of such publishing agreement and applicable law.


	Loss functions for finite sets
	Abstract
	1 Introduction
	1.1 Contributions

	2 Preliminaries
	2.1 Notation

	3 A class of loss functions
	4 Simplicial loss functions
	4.1 Simplicial loss functions
	4.2 Transformation for general sets
	4.3 Case I: 
	4.4 Case II: 

	5 Finite sets with noises
	5.1 Best approximation sets
	5.2 Approximation analysis
	5.3 Loss functions for noisy sets

	6 Numerical experiments
	7 Conclusions
	References




