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Abstract

This paper studies loss functions for finite sets. For a given finite set S, we give
sum-of-square type loss functions of minimum degree. When S is the vertex set of
a standard simplex, we show such loss functions have no spurious minimizers (i.e.,
every local minimizer is a global one). Up to transformations, we give similar loss
functions without spurious minimizers for general finite sets. When S is approxi-
mately given by a sample set 7, we show how to get loss functions by solving a
quadratic optimization problem. Numerical experiments and applications are given
to show the efficiency of these loss functions.

Keywords Loss function - Finite set - Polynomial - Spurious minimizer -
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Mathematics Subject Classification 90C23 - 65K05 - 90C30

1 Introduction

This paper studies loss functions for finite sets. The questions of concerns are: for
a finite set, how do we construct a convenient loss function for it? When does the
loss function have no spurious optimizers, i.e., every local optimizer is also a global
one? We discuss these topics in this paper. Let n, k be positive integers. Suppose S
is a set of k distinct points in the n-dimensional real Euclidean space R”. A func-
tion fin x := (x|, ...,x,) is said to be a loss function for S if the global minimizers
of f are precisely the points in S. For convenience, we often select f such that f is
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nonnegative in R"” and the minimum value is zero. Mathematically, this is equivalent
to that

f(x)=0 if and only if xe€S. (1.1)
When S ={u,,...,u;}, a straightforward choice for the loss function is
f=llx=ull* - |lx — u||>, where || - || is the standard Euclidean norm. This loss

function is a polynomial of degree 2k in the variable x. It requires to use all points of
S. In applications, the cardinality k may be big. Moreover, the set S often has noises
and it may be given by a large number of samplings around the points in S. For this
reason, the above choice of loss function may not be convenient in computational
practice.

A frequently used loss function is the class of sum-of-squares (SOS) polynomi-
als. That is, the loss function f'is in the form

f=pi+- 4,

where each p; is a polynomial in x. Then f is a loss function for S if and only if
each p; = 0 on S. For convenience of computation, we prefer that f and each p; have
degrees as low as possible. A more preferable function is that every local minimizer
of fis a global minimizer (i.e., a zero of f). That is, we wish that the loss function
f has no spurious minimizer." Optimization without spurious minimizers is studied
in [22, 26]. Polynomial loss functions have good mathematical properties and are
convenient computationally (see [1, 9, 12]). In particular, polynomial optimization
problems (especially nonconvex ones) can be efficiently solved by Moment-SOS
relaxations. We refer to Fan et al. [8], Lasserre [18-20], Laurent [23, 24], Nie [28,
29] for recent work on polynomial optimization.

In applications, the set S may not be given explicitly. It is often approximately
given by a sample set

T={v,....,vy},

where each v, is a sample for a point in S and the sample size N > k. For such a
case, we can choose a family F of loss functions, which is parameterized to repre-
sent the set S. Since S is approximated by 7, we choose a loss function f € F such
that the average value of f on T is minimum. Mathematically, this is equivalent to
solving the optimization

N
1
min - 5 ;f(vi)- (1.2)

The optimization (1.2) requires that we choose parameters for f such that the average
loss on T is minimum. The set S can be determined by parameters for fin the family

F.

! A local minimizer that is not a global minimizer is called a spurious minimizer.
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Loss functions are useful in data science optimization. There are broad applica-
tions of loss functions [2, 4, 5, 10, 17, 31, 32, 35, 38]. Selection of loss functions
needs to consider application purposes and data structures. There are various types
of loss functions for different applications. We refer to the survey [37] for loss func-
tions in machine learning. Polynomial loss functions are used in optimal control [13,
14]. Linear loss functions are used for network blocking games [21]. Loss functions
obtained via statistical averaging are given in [3]. For inverted beta loss functions,
their properties and applications are given in [25]. Some properties of Erlang loss
functions are given in [15]. Properties of correntropic loss functions are given in
[36].

1.1 Contributions

The paper studies loss functions for finite sets. We focus on the SOS type loss
functions with minimum degrees. Let S be a given finite set in R". We character-
ize loss functions that satisfy (1.1). When S is approximately given by a set T of
larger cardinality, we look for loss functions by solving the optimization (1.2). Let
x:=(x,...,x,). We consider the loss function f such that f =p% + - +p,2n, where
every p; is a polynomial in x. The fis a loss function for S if and only if § precisely
consists of common real zeros of polynomials p,,...,p,. Mathematically, this is
equivalent to that

S={veR":p()=-=p, =0} (1.3)

For the polynomial p; to have minimum degrees, we consider generating polynomi-
als for the S, which are introduced for symmetric tensor decomposition [30, 31]. Let
@ be the set of all generating polynomials for S. It is interesting to note that ® has
the minimum degree, such that (1.3) holds. In particular, when S is given by vertices
of a standard simplex, the resulting loss function f does not have spurious minimiz-
ers. Up to transformations, we can get loss functions without spurious minimizers,
for general finite sets. In computational practice, we choose such loss functions of
degree four.

When the set S is approximately given by a set T of larger size, we propose to
solve the optimization (1.2) to get the loss function. Equivalently, we determine
parameters for f from a family F of loss functions of S. Each f € F is determined
by a set of parameters, and vice versa. By solving (1.2), we not only get a loss func-
tion, but also get a set S* of k points that are approximations for the points in S. Once
S*is determined, up to transformations, we can use S* to get loss functions that have
no spurious minimizers.

In summary, our major results are:

e For a given finite set S, we give an SOS type loss function of minimum degree,
such that S is precisely the set of global minimizers.

e When S consists of the vertices of a standard simplex, we show that the selected
loss function has no spurious minimizers. For more general finite sets, we give
these loss functions by applying transformations.
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e When the set S is approximately given by a sample set 7, we solve the optimiza-
tion (1.2) to get loss functions of similar properties, i.e., they are in SOS type and
have minimum degrees.

The paper is organized as follows. In Sect. 2, we briefly review some backgrounds for
polynomial ideals. In Sect. 3, we show how to get SOS type loss functions for finite
sets, with desired properties. In Sect. 4, when the set S consists of vertices of a standard
simplex, we show that the constructed loss functions have no spurious minimizers. For
more general S, we show how to get similar loss functions by applying transformations.
In Sect. 5, we show how to get loss functions when the set S is approximately given by
a sample set 7. Some numerical experiments are given in Sect. 6.

2 Preliminaries
2.1 Notation

The symbol R (resp., C, N) denotes the set of real (resp., complex, nonnegative inte-
ger) numbers respectively. The symbol N” (resp., R”, C") stands for the set of n-dimen-
sional vectors with entries in N (resp., R, C) respectively. For an integer k > O,
[k] :={1,...,k}. We use 0 to denote the vector of all zeros and e to denote the vector
of all ones. The symbol ¢; stands for the unit vector such that the ith entry is one and all
other entries are zeros. For a vector v, the ||v|| denotes its Euclidean norm. For a vec-
toru € R"and § > 0, B(u,§):={x € R" : ||x — u|| < 5} denotes the closed ball cen-
tered at u with radius 6. The symbol 7, denotes the n-by-n identity matrix. The super-
script T (resp., ) denotes the operation of matrix transpose (resp., Hermitian). A square
matrix A is said to be positive semidefinite (resp., positive definite) if x” Ax > 0 (resp.,
xTAx > 0) for all nonzero vectors x. For two square matrices X, Y of the same dimen-
sion, their commutator is

[X,Y]:=XY - YX.

That is, X commutes with Y if and only if [X, Y] = 0. For a function f which is con-
tinuously differentiable in x = (x,, ..., x,), the Vf denotes its gradient in x and sz
denotes its Hessian.

Let F =R or C. Denote by F[x]:=F[x,,...,x,] the ring of polynomials in

n

x:=(x,,...,x,) with coefficients in F. For every d € N, F[x], denotes the sub-
space of F[x] which contains all polynomials of degree at most d. For every
a=(ay,...,a,) €N, denote the monomial x®:=x|"--x,". Its total degree is

la|:=a; + -+ a,
A subset I C F[x] is an ideal of F[x] if p-g €[ for all p €1, q € F[x], and
p, +p, €lforall p;,p, € 1. For an ideal [, its radical is the set

VI:={f € Flx] : f* € Ifor some k € N}.

The set 4/1 is also an ideal and I C \/; . The ideal I is said to be radical if I = \/; .
Each ideal I determines the variety in F" as
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VeD):={xeF": p(x) =0 €}
For a polynomial tuple p:=(p,, ...,p,,), we similarly denote that
Ve(p) :={x € F" : p(x)=0}.
The tuple p generates the ideal
Ideal(p):=p, - F[x] + --- +p,, - F[x].

Clearly, Vi (Ideal(p)) = V(p).
For a set S C C”, its vanishing ideal is

I1S):={qgeClx] : gqu)=0meS)}.

If S = V-(p) for some polynomial tuple p in x, then Ideal(p) C I(S) but the equality

may not hold. For every I C Clx], we have I(V-(I)) = \/; . This is Hilbert’s Nullstel-
lensatz [7].

For a given ideal I C Clx], it determines an equivalence relation ~ on C[x] such
that p ~ g if p — g € I, or equivalently, p = ¢ mod /. Then every p € C[x] corre-
sponds to an equivalence class with the module of /, i.e.,

[pPl={q€Clx] : ¢g=p modI}.
The set of all equivalent classes is the quotient ring

Clxl/I:={lp] : p € Clx]}.

3 A class of loss functions

In this section, we give a general framework of constructing loss functions for finite
sets. For convenience, we assume the finite sets are real. Suppose S C R” is a finite
set of cardinality k, say,

S = {uy, ..., }.

A function f is a loss function for § if and only if the global minimizers of f are
precisely the points of S. In computational practice, we often consider the sum-of-
squares loss functions

f=pi+-+p 3.1
where each p; is a polynomial in x. Denote the tuple

P = @1 D)
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Without loss of generality, one can assume that the minimum value of fis zero, up
to shifting of a constant. Note that f(x) = 0 if and only if p(x) = 0. Therefore, fis a
loss function for § if and only if

S={xeR": pjx)=--=p,x =0} (3.2)

The above observation gives the following lemma.

Lemma 3.1 Let S, f be as above. Then f is a loss function for S if and only if S is the
real zero set of p, i.e., S = VR (p).

The existence of p such that S = V(p) is obvious. For instance, one can choose
p, to be a product like

(le - (ul)jl) : (sz - (uz)jz) (xjk - (uk)jk)a

for all possible ji,...,j, € {1,...,n}. However, for such a choice of p, each p; has
degree k and f has degree 2k. The degree is high if the cardinality k is big, and there
are n* such products. This is not practical in applications. In particular, if the set §
is approximately given by a sample set of large size, then the resulting p is not con-
venient for usage. In applications, people prefer loss functions of low degrees.

In the following, we show how to choose a computationally efficient loss func-
tion for S. Let B, be the set of first k vectors in the nonnegative power set N”, in the
graded lexicographic ordering, i.e.,

BO::{ O, €15 oy €, 2el’ 4] +62""’ }
N _

- 3.3)
first k of them
Then, we consider the set
B1:=<(61 +ByU - U(en+[B0)> \ B, 3.4)

For convenience of notation, denote the monomial vectors
e (v P 1
[x]Bo '_(x )ae[EBO’ [x][Bl '_(x )ae[EBl'

Since S is a finite set of cardinality k, we wish to select By, so that the set of equiv-
alent classes of monomials in {x’ : § € B,} is a basis for the quotient space
R[x]/I(S), where I(S) is the vanishing ideal of S. This requires that x* (« € B,) is a
linear combination of monomials x* (8 € B,), modulo /(S). Equivalently, there exist
scalars G(f8, @) such that

o[G, a](x):=x* — Z G, )’ =0 mod I(S)

“ 3.5)

for each a € B,. Let G:=(G(f, a)) € RB*Bi be the matrix of all such scalars G(8, ).
The polynomial @[G, a] has coefficients that are linear in entries of G. For conveni-
ence, denote that
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9G] = (#[G. al) g -
= [luJg, - [wlg,]: (3.6)
[ “L]B, [”k]B,]-

The X, is a square matrix, which is nonsingular if the points in S are in generic posi-
tions. For ¢[G] to vanish on S, the Eq. (3.5) implies that

-G'X, =0.

If X, is nonsingular, then the matrix G is given as
G =X;"x]. (3.7)
We look for conditions on G such that @[G] has k common zeros in C". For each

i=1,...,n, define the multiplication matrix Mx,.(G) such that

1 if x,-x€By,, u=v+e,,
M, (G)],, = 0 if x;-x"eBy, u#v+te, (3.8)
G(u,v+e)if x;-x' €B,.

The rows and columns of M, (G) are labelled by monomial powers u,v € B,. The
following proposition characterizes when @[G] has kK common zeros.

Proposition 3.2 [30, Proposition 2.4] Let B, B, be as in (3.3)—(3.4). Then, the poly-
nomial tuple |G| has k common complex zeros (counting multiplicities) if and only
if the multiplication matrices MXl G),....M x,,(G) commute, i.e.,

M (G),M (G)]=0 (I1<i<j<n). (3.9)

In particular, p[G] has k distinct complex zeros if and only if M (G), ... M, (G)are
simultaneously diagonalizable.

The polynomial tuple @[G] generates the vanishing ideal /(S) of S and p = ¢[G]
has minimum degrees for (3.2) to hold.

Theorem 3.3 Assume S is a finite set such that X, is nonsingular. Let G be as in
(3.7). Then, the ideal 1deal(@[G]) equals the vanishing ideal of S, i.e.,

Ideal(p[G]) = {h€R[x] : h=0 on S}. (3.10)

In particular, if a polynomial h vanishes on S identically, then there are polynomials
p, (@ € B,) such that

h =), q,0lG.al), deg(q,) +lal <deg(h). Gl

aE€B,;
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Proof Since X, is nonsingular, the set S has & distinct points. Since G is given as
in (3.7), the polynomial equation @[G](x) = 0 has k distinct solutions. By Proposi-
tion 3.2, the multiplication matrices M, G,... ,Mxn(G) are simultaneously diago-
nalizable. Note that the ideal Ideal(@[G]) is zero-dimensional, because the quotient
space C[x]/Ideal(¢[G]) has the dimension k. The ideal Ideal(¢[G]) must be radical.
This can be implied by Corollary 2.7 of [33]. So (3.10) holds.

Suppose & is a polynomial such that 2 =0 on S. Then the above shows that
h € Ideal(¢[G]). So there exist polynomials g, (¢« € B,) such that

h= ), 4,#[G.al

aEB,

The multiplication matrices M, (G), ..., M, (G) commute. One can check that the
set of polynomials in the tuple @[G] is a Grobner basis for Ideal(@[G]), with respect
to the graded lexicographical ordering. This can also be implied by the proof of
Lemma 2.8 in [30]. Therefore, we can further select polynomials g, € R[x] with
degree bounds as in (3.11). O

The condition that X, is nonsingular holds when the points of S are in generic
positions. The Eq. (3.11) shows that the polynomial tuple @[G] is a minimum-degree
generating set for the vanishing ideal /(S). The following are some examples.

Example 3.4

(i) Consider the set S in R3 such that

21 [-1
S=31].|-2];,
3| | 4
(0] [1 ol [o] [2] [1] [1
B, =2[0[.|0|} B, =2|1[.|0].[0of.|1].
ol |o 1| fo 1

Xz_xl"l'l_

X1 11

2 ——

-1 Hopp _2 3 3
G= 1_3110 i [, olGl= xp—x; =2
3 3 XX, —2

10x, 2

XIJC3—-3 +§
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R
o[- =B

The matrix G as in (3.7) and @[G] are

[ , 12x, 3x; 58]

A TR TR

| ¥ -8 2%, 23x, 14
G=5| 3 -23 =20 ¢lGl=|xn+ 2+ L+ |
~12 -22 23 19 1919

2o 23x, 20x; 82

27719 T 19 19

BT
oo{ B o= (BB

The matrix G in (3.7) and the polynomial vector g[G] are

[ 9X% 7x,
x1x2+7+7x2—7—20
20 -5 =36 22
3x2 3
1.3 _p 9 P el N R A
= 2 2 2 = 2 2
G=1_7 3 1 -5} ¢l .2 2
9 3 9 _ 1 X = 9x] — 12x) + 2x; + 36
2 2 2 )
) 11)6] 9x]
_x1x2+T+5x2—7—22_

For given S, the polynomial tuple ¢[G] with G as in (3.7), gives the loss function
f = llo[G]||> whose global minimizers are precisely the points in S. However, the
loss function f may have spurious minimizers.

Example 3.5 Consider the S = { [_52] , [;‘] }in R2. The loss function f = ||@[G]||?

1S
F() = (x, + 5%, = 23)% + (7 — 9x; + 20) + (x;x, + 22x; — 100).

Its total gradient Vf is
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4xf - 54x% + 2x1x§ + 88x;x, + 1260x; — 190x, — 4990
2xy — 190x; + Zx%xz + 44x% —46

and its Hessian V2f is

126} — 108x; + 25 + 88x; + 1260 88x, + 4x,x, — 190
88x; + 4xx, — 190 26 +2 |

By checking the optimality conditions V£(x) = 0, V?f(x) > 0, we get a local mini-
mizer (—2.2588, —49.7911), which is not a global one.

4 Simplicial loss functions

In this section, we study loss functions when S is the vertex set of a standard sim-
plex. For such a case, we show that the loss function f = ||@[G]||*> has no spurious
minimizers, i.e., every local minimizer of f is also a global minimizer. Moreover,
when S is not the vertex set of a standard simplex, we apply a transformation and get
similar loss functions.

4.1 Simplicial loss functions

For a vector a:=(a,, ..., a,), with each scalar a; # 0, consider the standard simplex
vertex set
A (a):={0, ajey,...,a,e,}. 4.1
For the special case thata = (1, ..., 1), we denote
A,:={0,¢,...,¢,}. “4.2)

When the dimension # is clear in the context, we just write A = A, for convenience.
In this subsection, we consider the special case that S = A, (a). Then the monomial
power sets B, B, are respectively

B, ={0,¢e,....¢,},
B, = {2e,e; +e,, ..., 2¢,}.

For the matrix G € RBo*Bi given as in (3.7), we have that

lG, 2¢;] = xiz —a;x; (i € [n]),
plG.e; +¢] = xx; i<y).

4.3)

The resulting loss function for the set A, (a) is
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n

fx) = Z 2()C—ct)2+ 2 x . 4.4)

i= 1<i<j<n
In particular, the above loss function for A, is
Fx):= sz(x L DY (4.5)
1<i<j<n

A nice property is that the simplicial loss function as in (4.4) has no spurious
minimizers.

Theorem 4.1 Fix nonzero scalars a, ... ,a,, the function fin (4.4) has no spurious
minimizers, i.e., every local minimizer of f is also a global minimizer.

Proof Suppose z = (z;, ..., z,) is a local minimizer of f. Then z satisfies the optimal-
ity conditions

Vf(z) =0, V() >0.

This implies that fori =1, ... ,n,

J

a—){(z) =27,(22 = 3a;;;+ (z— 2 +a)) =0, (4.6)
f

a—(z) = 12z - 12a,z;+2(z"z - z + al.z) > 0. 4.7)

L

Denote 6,(z):=a; — 8(z"z — z). The real solutions for (4.6) are z; = 0 and

3a; +1/6,(2)

7 if 6,z)> 0. (4.8)

3=
If each z; = 0, then z = O is a global minimizer. Suppose some z; is nonzero, then it
satisfies 6,(z) > 0 and 2z — 3a,z; + (22 — 22 + a?) = 0. So (4.7) can be reformulated
as
o’f
ﬁ(Z) = 8z —6a,z; = 2z7,(4z; — 3a;) > 0.

Plug (4.8) into the above inequality. Since 1/6;(z) < |a;| < |34;| (note a; # 0),

3a;—1/6,(2)

= 4
Zi 3a4+1/6,)

4

ifa; <0,

ifa; > 0.

@ Springer



432 J.Nie, S. Zhong

It is clear that |z;| > |3a;/4]|. If z; is the only nonzero entry of z, then 1/6,(z) = |a;|
and z = a;e;, which is a global minimizer. Suppose z has another nonzero entry z;.

By a similar argument, we can get 6,(z) 20 and |z;| > |3a;/4|. Note that
2a7 — 9a? > Osince

3a; 2
01-2‘8‘|Tj| > a; -8z 2 5,(2) 2 0.

Similarly, 2aj? - 9ai2 >0, so

a2—9a222a?—9‘2a? 772>0
i J 2% 2
The above holds if and only if a; = 0, which contradicts that all a,,...,a, are
nonzero. Therefore, every local minimizer of f is a global minimizer, i.e., f has no
spurious minimizers. O

4.2 Transformation for general sets

When S is not a simplicial vertex set, we can still use the function F in (4.5) to get
new loss functions, up to a transformation. These new functions have no spurious
minimizers. They are called transformed simplicial loss functions. Consider that S
is given as

S = {uy, ..., }. “4.9)

We discuss the transformation for two different cases.

4.3 Casel:k<n+1

Consider the vertex set of a standard simplex set in R¥~!
Ak—l = {O, el, ooy ek_l }

The loss function as in (4.5) for A,_, is

Fia(@: —Zz(z -+ Y 2 (4.10)

1<i<j<k-1

in the variable z = (z, ..., z;,_;). Consider the linear map
£ RN S RY fle)=u—u,i=1,... k=1, 4.11)

The representing matrix for the linear map Z is
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U= uy—uy = wey —uy]. 4.12)
When u,, ..., u; are in generic positions, the matrix U has full column rank. Let
ut:=w'u'u"
be the Pseudo inverse of U. For x = (x,, ..., x,,), consider the loss function
f® =F (UM - ). (4.13)

Recall that Null(UT) denotes the null space of the matrix U,

Theorem 4.2 Suppose k <n+1 and rank U = k — 1. Then, the function f as in
(4.13) is a loss function for the set

S+Null(U"):={x+y: x€S,U'y=0}.

Moreover, f has no spurious minimizers.

Proof The function f as in (4.13) is nonnegative everywhere. Note that f(x) = 0 if
and only if UT(x — u;) € A,_;. It holds that

Ay = (Ux—u) : x€S).

For x € R", we have U’ (x — u;) € A,_,if and only if x € S + Null(U"). This shows
that fis a loss function for S + Null(U) in R™.
The gradient and Hessian of f can be written as

V@) =UYV.F_ @), VY@=U)VF_,U".

Note that U' has full row rank. If u is a local minimizer of f, then V f(u) = 0,
V2f(u) = 0. Let z = U'(u — u;), then the above implies that

V.F, (=0, VIF,_,(x)>0.

As in the proof of Theorem 4.1, one can show that z € A;_,. This implies that z is a
global minimizer of F,_, and hence u is a global minimizer of f. So f'has no spurious
minimizers. O

4.4 Casell:k>n+1

Let w : R" — R*!be the monomial function such that

1
[x]s, = [w(x>] : (4.14)

where By, is the power set in (3.3). For the set S as in (4.9), denote
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S‘::{w(ul),...,w(uk)} C RK1, (4.15)
Define the linear map £ such that
L: RIS REL D Le) = o) — o), i=1,... . k—1.
The representing matrix for the linear map L is
L= o) -+ o_)| - o) - ow)]. (4.16)

When u, ..., u, are in generic positions, the matrix L is nonsingular. For such a
case, define the function

J@:i=F (L7 @ - o)), (4.17)

in the z = (zy, ..., z_,), where F,_, is the simplicial loss function as in (4.10). The
above f is called a transformed simplicial loss function for S. The following theo-
rem follows from Theorem 4.2.

Theorem 4.3 Suppose k > n+ 1 and L is nonsingular. Then, the function f as in
(4.17) is a loss function for 8 and it has no spurious minimizers.

For x = (xy, ... ,x,), define the function

) = Fi_y (LN @) — w(uy)). (4.18)

Corollary 4.4 Suppose k > n+ 1and L in (4.16) is nonsingular, then the function fin
(4.18) is a loss function for S.

Proof The function f as in (4.18) is nonnegative everywhere. By Theorem 4.3, we
know f(x) =0 if and only if w(x) € §. Since w is a one-to-one map, the fis a loss
function for S. O

The transformed simplicial loss functions in (4.13) and (4.17) have no spuri-
ous minimizers. The following are some examples of transformed simplicial loss

functions.

Example 4.5

(i) Consider the set S in R3 such that

4 -1
S = { 21,1 3 }
1 =5
The matrix U as in (4.12) and its Pseudo inverse are
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5 | 57
U=|-5| U'=—|-5
6 86| ¢

Since k = 2, the simplicial loss function for A,_; is F, = z%(z — 1)? in the
univariate variable z. Then, the transformed simplicial loss function as in
(4.13) is

S5x;  5x, 3x3 25 : S5x; 5xy  3x3 18 :
===+ —=+=) ==+ =-—=).
S < 86 86 43 43 86 86 43 43

(ii) Consider the set S in R? such that

21 |-1 1 -2
s={ ][] 5]
Since k =4 > n + 1, the set $'in 4.15) is

21 -1 1 -2

The matrix L as in (4.16) and its inverse are

4 1 3 ) 3 6 —7
L=|1 -4 =5 L—1=1——3 12 =23 |.
0 -3 -3 8 312 17

Since k = 4, the simplicial loss function for A,_; is
Fi@) =21z = 1’ + 2515 + 5 — 1)* + 5523 + 2553 — D%

in the variable z = (2, 2, 23). Then, the transformed simplicial loss function
as in (4.17) is f(z) = F3(L™"(z — w(uy)), with

321 + 6Z2 - 7Z3 + 22
L'z — o(uy)) = 8 37, + 12z, — 237, + 62 |.
3Z1 - 12Z2 + 17Z3 - 38

5 Finite sets with noises
In this section, we study loss functions for finite sets that are given with noises. In

many applications, the finite set S, with the cardinality k, is often approximately
given by another finite set 7, with the cardinality N > k. For instance, each point of
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S is often approximated by a number of samplings, and 7T consists of all such sam-
plings. The cardinality N is the total number of samplings. We look for good loss
functions for such approximately given sets. This kind of questions have important
applications in clustering and classification.

5.1 Best approximation sets

Suppose S is approximately given by a sampling set 7, say,
T={v,....,vy}. 5.1

Each point of S is sampled by a certain number of points in 7. We discuss how to
recover the k points of S from sampling points in 7.

A finite set can be represented as the optimizer set of a loss function. For conveni-
ence, we consider loss functions whose minimum values are zeros. Let F be a family
of loss functions such that each f € F has k common zeros. The loss function family
JF is parameterized by some parameters. For such given F, we look for the best loss
function in F such that its average value on T is the smallest. This leads to the follow-
ing definition.

Definition 5.1 Let F be a family of loss functions such that each f € F is nonnega-
tive and it has kK common zeros. A set $* = {uf, ,u;’; } is called the best F-approxi-
mation set for 7" as in (5.1) if $* is the zero set of f*, where f*is the minimizer of the
optimization

min u(f):=3; TS0

st. feF.

||M2

5.2)

For a given set S, if the matrix G is as in (3.7), then S is the common zero set of
the polynomial tuple @[G], given as in (3.5). In fact, Ideal(@[G]) is the vanishing ideal
1(S) and @[G] gives the minimum-degree generating set for /(S). The relation between
S and @[G] is characterized by Theorem 3.3. As shown in Proposition 3.2, ¢[G] has k
common zeros (counting multiplicities and all complex ones) if and only if the multi-
plication matrices M, (G) M, (G) commute with each other. Moreover, @[G]has k
distinct zeros if and only if M (G) , M, (G) are simultaneously diagonalizable. So,
one can use the matrix G and the polynormal tuple @[G] to represent the finite set S. As
in Sect. 3, we consider the family of the following loss functions

fo = llelGI%, (5.3)

parameterized by G. We look for the matrix G such that the average of the values of
Jfoon T is minimum and ¢[G] has kK common zeros.
In view of the above, we consider the following matrix optimization problem
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N
min 19(G):=§ ;l fo®)

= (5.4)
st [M (G, M (@] =0(1 <i<j<n)

The value @[G](v;) is linear in the matrix G. The feasible set of (5.4) is given by a set
of quadratic equations. The optimization (5.4) is the specialization of (5.2) such that
JF is the family of loss function f;, with ¢[G] having kK common zeros.

5.2 Approximation analysis

Suppose G* is the minimizer of (5.4). Let S, denote the common zero set of @[G*].
We can use S, to approximate the points in S. In some applications, the set S con-
tains only real points and people like to get a real set approximation for S.

First, we study the approximation quality of the optimization (5.4). For each @ € B,
the sub-Hessian of the objective 9(G) with respect to the ath column G(:, a) is the
matrix

N
Hi= ]% Z:,[Vj]Bo([Vj]Bo)H'
J=

In the above, the superscript  denotes the Hermitian transpose.

Theorem 5.2 Let T be as in (5.1) and let S = {u,, ..., u, } be such that the matrix X,
as in (3.6) is nonsingular. Assume there exists 6 > 0 such that H > 261,. Suppose
the set T is such that

TCS+B@0,¢), TNBu,e)#08@(i=1,...,k), 5.5

for some € > 0. Then, as € — 0, the optimizer G* of (5.4) converges to G:=XO‘TX1T,
and the common zero set S, of p|G*] converges to S.

In particular, when S, T C R", if € > 0 is sufficiently small, the common zero set
S, contains k distinct real points.

Proof First, we show the convergence G* — G as e — 0. Since the set
B:= Uf?zl B(u;, 1) is compact, the polynomial function @[G1(x) is Lipschitz continu-
ous on B. There exists R > 0 such that for alli € [k] and for all x € B(u;, €),

lp[G1(x) — P[Glw )l < Rllx — ;]| < Re.

Since T C S + B(0, €), each v,€T belongs to some B(u; , €) for i € {1,...,k}. So
the above inequality implies that (note that each (p[G](uij) =0)
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N
86) = Y IolG10)IP
=

N
= L 3 l01610;) - 061w )IP < (R
=1

Since G* is the minimizer of (5.4), we have
0 < 9(G*) < 9(G) < (Re)™. (5.6)

Moreover, it holds that

N
9G*) = ]iv Z l9[G*1(v) — @[G1) + @[GIW) I,

N ) ) 2
Z (Ilrp[G*](V,) = plGIW)Il = IIw[G](vj)II>

J=1

ZIH

2|H

N . N ) 2
> — (D 191G 16) = @l GI6)I = X el GIoI )
j=1

J=1

In the above, the first inequality follows from that ||a + b||> > (|||l — ||»]|)? and the
second inequality follows from the Cauchy-Schwartz inequality. Then, we have

N N
D 106110 - 9lGIWIl < NVIGH) + Y 1ol G0

J=1 J=1

By the formula of ¢[G](x) and using Cauchy-Schwartz inequality again, we get
N
DG = &)y, || < N(VOG) + /9 ).
j=1
. » ~ 2
Since B 11(G* = &) jls, I < (L, 1G” = 6) vl ), we have
N
1 . 2 a0 )2
% LG =6 Iyl IP < N(VBGH +1/96) )
=1
By the assumption H > 261, the above implies

16" - 6l < \/g (V@) + /96 ).

Therefore, as ¢ — 0, we have G* converges to G.
In the following, we assume that S, 7 C R”". Since X, is nonsingular, S has k dis-
tinct real points. Recall the multiplication matrices M, (G*), MX[(G) given as in (3.8).

Since G* — G, the common zero set of @[G*] converges to that of qo[G]. The zero set
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of (p[G] is S, which consists of k distinct real points. Hence, @[G*] also has k distinct
common zeros when € > 0 is sufficiently small. Then it remains for us to show that
all common zeros of ¢[G*] are real. For a vector § = (§, ..., ¢,), define the matrices

n n

M= Y EM (G, M=) &M, (G).

i=1 i=1
Their characteristic polynomials are
pi(A):=det(M, — Al), p,(A):=det(M, — Al).

Fix a generic real value for ¢ so that M, has k distinct real eigenvalues. This is
because @[G](x) has real distinct solutions and by the Stickelberger’s Theorem (see
(5.8) as in [23, 33]). Note that both p,(4), p,(4) have degree k and all coefficients
are real. The p,(4) has k distinct real roots. They are ordered as

21 < 22 < b < jk'
We can choose real scalars by, ... , b, such that
by < A <b, < - <b_, <X <b,.

As € — 0, the coefficients of p, converge to those of p,. So, when € > 0 is small
enough, p,(b;) has the same sign as p,(b;) does. Since each p,(b;_)p,(b;) <0, we
have

This implies that p, has k distinct real roots. Equivalently, M, has k distinct real
eigenvalues for ¢ > 0 sufficiently small. By Proposition 3.2, the multiplication matri-
ces M, (G"), ... ,Mxn(G*) are simultaneously diagonalizable. Also note that M is
diagonalizable and there is a unique real eigenvector (up to scaling) for each real
eigenvalue. This shows that M, (G*) M, (G*) can be simultaneously diagonal-
ized by common real elgenvectors All M, (G*) .M, (G*) have real entries, so
they have only real eigenvalues. Therefore, by Stlckelberger s Theorem, @[G*] has k
distinct real common zeros if € > 0 is sufficiently small. O

5.3 Loss functions for noisy sets

When the set S is approximately given by the sampling set 7, we can solve (5.4) for an
optimizer matrix G*, to get loss functions. Let S, be the common zero set of the poly-
nomial tuple @[G*]. If T is far from S, S, may have non-real points. If real points are
wanted, we can choose the real part set

S*:={Re(u): u€Ss,). (5.7)
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First, we show how to compute the common zero set S;,. By Stickelberger’s Theorem
(see [23, 33]), the set S, can be expressed as

3 3g € CK\ {0} such that
i {ul’""i”) MG = kg i=1...on >-8)
To get S, numerically, people often use Schur decompositions. Let
Ml = élMxl (G*) + -+ inMxn(G*)’ (59)
where &, ..., &, are generically chosen scalars. Then, compute the Schur decomposi-
tion for M;:
O'M\Q0 =P, Q=g - q. (5.10)
In the above, Q € C** is a unitary matrix and P € C*¥ is upper triangular. Based
on the Schur decomposition (5.10), the common zeros i, ..., i, of p[G*] can be
given as
it[::(q?Mxl(G*)q[, ,q?Mxn(G*)qi), i=1,... k (5.11)

We refer to Corless et al. [6] for how to use Schur decompositions to compute com-
mon zeros of zero-dimensional polynomial systems. For general cases, the set S
contains k distinct points. It holds when S, 7 C R" and the points in 7 are close to S;
see Theorem 5.2.

Based on the above discussions, we get the following algorithm for obtaining loss
functions when S is approximately given by the sampling set 7.

Algorithm 1 For the given set T as in (5.1) and the cardinality &, do the following:

Step 1  Solve quadratic optimization (5.4) for the optimizer G*.

Step 2 Compute the common zero set S, = {i&,, ..., 1, } of @[G*]. Let $* be the set
S, or $™ be as in (5.7) if the real points are wanted.

Step 3 Get a loss function for the set S*, by the method in Sect. 3 or Sect. 4.

In Step 1, the optimization (5.4) has a convex quadratic objective, but its con-
straints are given by quadratic equations, in the matrix variable G. So (5.4) is a quad-
ratically constrained quadratic program (QCQP). It can be solved as a polynomial
optimization problem (e.g., by the software GloptiPoly 3 [11]). The classical
nonlinear optimization methods, (e.g., Gauss-Newton, trust region, and Levenberg-
Marquardt type methods) can also be applied to solve (5.4). We refer to Kelley [16],
More [27] and Yuan [39] for such references.

In Step 2, the common zero set S, can be computed as in (5.11), by using the
Schur decomposition (5.10) for the matrix M, in (5.9), for generically chosen scalars
Ely s &

In Step 3, there are two options for obtaining loss functions for the set $*, given in
Sects. 3 and 4 respectively. One is to choose f = ||@[G]||?; the other one is to apply
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Table 1 The numerical results of Example 6.1

N; € (NER max f(u)

50 0.05 0.0064 127 x 1074
0.1 0.0145 2.98x 1074
0.5 0.1821 0.0862

100 0.05 0.0055 8.06 x 1073
0.1 0.0067 1.89 x 1074
0.5 0.1080 0.0359

a transformation first and then choose f similarly. After the transformation, there are
no spurious optimizers for the loss function.

6 Numerical experiments

In this section, we present numerical experiments for loss functions. The compu-
tation is implemented in MATLAB R2018a, in a Laptop with CPU 8th Generation
Intel® Core™ i5-8250U and RAM 16 GB. The optimization problem (5.4) can be
solved by the polynomial optimization software GloptiPoly 3 (with the SDP
solver SeDuMi [34]), or it can be solved by classical nonlinear optimization solvers
(e.g., the MATLAB function fmincon can be used for convenience).

First, we explore the numerical performance of Algorithm 1.

Example 6.1 Consider the set

s= {016 BT

Suppose T is a sampling set of S such that
TCS+e[-1,1°, and
TN {u; +e[-1,11*}| =N, (i=1,...,6).

We apply Algorithm 1 for cases N; € {50,100} and e € {0.05,0.1,0.5}. The sam-
ples are generated with MATLAB function randn. We summarize the computa-
tional results in Table 1 and Fig. 1. In Table 1, the symbol S* denotes the computed
approximation set as in (5.7). We use the distance

IS —S*|| := maxmin [|v — u]|
vES* uw,€S

to measure the approximation quality of §* to S. The loss function for §* is in form of
f = |l¢[G]]|?>, whose maximum value on S is shown in the fourth column. In Fig. 1,
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Fig. 1 The performance of Algorithm 1 for Example 6.1. The left column is for N; = 50, and the right
column is for N; = 100. The first row is for € = 0.05, the second row is for € = 0.1, and the third row is
fore = 0.5

the sampling points in 7 are plotted in dots, the points in S are plotted in diamonds
and the points in S* are plotted in squares. The left column from top to bottom shows
cases for N; = 50 and € = 0.05, 0.1, 0.5 respectively. The right column shows cases
for N; = 100 accordingly.
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Fig.2 The performance of Algorithm 1 for Example 6.2

We explore the performance of Algorithm 1 for sampling sets 7 that are not
evenly distributed around S.

Example 6.2 Let S be the same set given as in Example 6.1. Suppose 7 is a sampling
set of S such that foreachi=1,...,6,

TCS+al-1,1% |Tn{u+al[-1,1°}| =b,
where a = (a,,...,a¢5)and b = (b, ..., bg) are given as

a=(04,0.2,0.6,0.2, 0.32, 0.4),
b = (50, 25, 100, 30, 40, 70).

We apply Algorithm 1 for samples generated with the MATLAB function randn.
The computational results are summarized as follows. The computed approximation
set is

g = 0.8820( [3.0807| |1.1759| [2.3481 1.9854| (3.0292
) [0.9557]11.7892] * |2.5383| * [3.0050( * |1.6354| * [0.8541] [~
We have that
[|S = S*|| = 0.3264, masxf(u) =0.2147,
Uue,
where f(x) = ||@[G](x)||? is the loss function for S*. The visualization of Exam-

ple 6.2 is given in Fig. 2, where the points in S are plotted in diamonds and the
points in S$* are plotted in squares.
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Table 2 The computational

kA t CPU ti
results for Example 6.3 " ceuracy rate e

Diagonal (%) Non-diagonal (%) Diagonal Non-diagonal

4 4 71.66 85.34 66.14 68.28
5 88.73 98.92 93.32 90.76

5 3 80.93 84.04 73.35 75.25
4 82.40 89.58 132.88  129.19

Then, we apply loss functions to study Gaussian mixture models. For a given
sampling set 7, we compute the finite set S* and its loss function by Algorithm 1.
The loss function in Sect. 4 are used, so there are no spurious minimizers. For
a point v € T, apply a nonlinear optimization method (we use MATLAB func-
tion fminunc) to minimize f with the starting point v. Once a minimizer u is
returned, we cluster v to the group labeled by the point u € S*.

Example 6.3 We use Algorithm 1 and the transformed simplicial loss functions in
Sect. 4 to learn Gaussian mixture models (GMMs). Each GMM has parameters
W, i, ), i =1,...,k, where each weight w; > 0, the mean vector y; € R" and
the covariance matrix ¥; € S’ , (the cone of real symmetric positive definite n-by-n
matrices), such that w; + --- +w, = 1. We explore the performance of transformed
simplicial loss functions for two cases

D:n=4ke{4,5}), II): n=5,ke{3,4}.

In particular, we compare the results for diagonal Gaussian mixture models (each
%, is diagonal) and non-diagonal Gaussian mixture models (each X; is non-diago-
nal). For each instance, 1000 samples are generated. The weights wy, ..., w, are also
computed from sampling: we first use the MATLAB command randi getting 1000
integers from [k], and then counting each w; based on the occurrence probability of
i € [k]. We generate each covariance matrix as X; = R’R, for some randomly gener-
ated square matrix R. The clustering accuracy rate counts the percentage of samples
belonging to the correct cluster. We run 10 instances for each case and give the aver-
age CPU time (in seconds) consumed by the method and the accuracy rate for all
instances. The computational results are reported in Table 2. Algorithm 1 together
with transformed simplicial loss functions has good performance for both diagonal
and non-diagonal Gaussian mixture models. The clustering accuracy rate is higher
for non-diagonal Gaussian mixtures than that for diagonal ones. In particular, for
(n, k) = (4,5), the clustering accuracy rate can be as high as 98.92%.
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7 Conclusions

This paper studies loss functions for finite sets. We give a framework for loss
functions. For a generic finite set S, we show that S can be equivalently given as
the zero set of SOS polynomials with minimum degrees. When S is the vertex
set of a standard simplex, we show that the given loss function has no spurious
minimizers. For general finite sets, after a transformation, we can get similar loss
functions that have no spurious minimizers. When § is approximately given by a
sampling set 7, we show how to get loss functions for S based on sampling points
in T. This can be done by solving a quadratic optimization problem. Some exam-
ples are given to show the efficiency of the proposed loss functions.
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