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Abstract— As part of a 3-day workshop on training faculty
members in concurrency, we developed a module for hands-on
training in Java Fork-Join abstractions that had several related
novel pedagogical and technical components: (1) Source and
runtime checks that (a) tested whether test-aware code created by
the trainees met the expected requirements and (b) logged their
results in the local file system and the IBM cloud. (2) Editable
worked example code along with a guide on how to understand the
underlying concepts behind the code and experiment with the
code. (3) The ability to follow the guide (a) synchronously, with
graduate student help, in a session devoted to this module, and (b)
asynchronously, on one’s own, before or after the synchronous
session. (4) Assignments trainees could do after experimenting
with the worked example. (5) Zoom recording of the entire
synchronous session. Fourteen faculty members across the
country attended the session and had varying amounts of
knowledge of Java and automatic assessment. Data gathered from
check logs and a Zoom recording, together with novel
visualizations of them, provide information to evaluate our
pedagogical model and differentiate the participants.

Keywords— awareness, instructor dashboard, automatic
grading, automatic help, testing, metrics, concurrency, education,
hands-on learning

I. INTRODUCTION

Because of its importance, researchers are actively seeking
methodologies and tools for introducing PDC (Parallel and
Distributed Computing) in introductory CS courses. In [1], the
authors present their effort to implement parallelism in first and
second-year CS courses. The authors found that students were
capable of learning the material and enjoyed the experience. In
[2], the author suggests that a data structure course is a natural
place to introduce parallelism, while several researchers have
focused on teaching PDC topics to students in upper-division
courses [3] [4]. Our previous work has motivated integrating the
teaching of object-oriented programming and concurrency [10,
11]. Researchers have also attempted to integrate PDC
throughout the curriculum [5-9].

These instruction efforts have been led by leaders in
concurrency pedagogy. The impact of these efforts is limited by
the concurrency training of potential instructors of concurrency.
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The last author sent a survey to CS faculty of over a thousand
four-year institutions across all fifty states in the US, and one
hundred and thirty-five responses were received. Nearly 60% of
the respondents indicated that they would not integrate PDC
topics or would be unlikely to integrate PDC topics into their
curriculum without further training or resources that can be
readily integrated.

How this training should be imparted to potential instructors
is a first-class issue in its own right, separate from the issue of
how PDC should be incorporated into the curriculum. In theory,
these two issues could be integrated if every untrained (in
concurrency) instructor could take, as a student, one or more
PDC courses/modules taught by trained instructors at the same
or different institution. However, this approach is impractical for
at least four reasons. First, the untrained instructors have to be
committed to teaching concurrency. Second, and more
important, they need to find enough time in their schedule to take
such courses. Third, most universities open their courses only to
enrolled students. Finally, the instructors might lack background
in the programming language/environment used in the course.

To circumvent these problems, PDC training to potential
instructors on various topics has been limited to conference
sessions focused on a specific topic or special workshops
addressing a wide range of topics. Due to the nature of the
material, such sessions should, ideally, be hands-on, involving
concurrent programming. Based on our experience observing
and conducting these sessions, we can define the following
model for them.

The session is devoted to a main topic, such as OpenMP in
C. The topic is broken into subtopics such as different Open/MP
directives. For each subtopic (such as the parallel directive), a
university professor, typically a leader in the field, gives a
conceptual presentation, showing worked examples (such as a
parallel hello world), and then gives the participants one or more
exercises that use the concepts associated with the topic. The
participants may work alone or in groups. The professor with the
help of possibly some graduate students helps those who
articulate their problems. After the allotted time for the topic, the
instructor moves on to the next subtopic.



This approach has two main problems. First, it is instructor-
heavy, because, as mentioned above a leader in the field gives
the presentation, which limits its scalability. Second, no
mechanism is used to evaluate the pedagogy or differentiate the
participants. In the allotted time, it is possible for the average
participant to finish much earlier or not at all. Worse, given that
many programmers are shy about asking for help [12-14], some
participants may not make any progress with the problems. It is
perhaps because of a lack of data about the effectiveness of these
sessions that, to the best of our knowledge, there is no paper on
training of PDC trainers.

In this paper, we motivate present and evaluate a new
approach to address these two problems. It has several novel
technical and pedagogical components: (1) Source and runtime
checks that (a) test whether test-aware code created by the
trainees meets the expected requirements and (b) log their results
in the local file system and the IBM cloud. (2) Editable worked
example code along with an experiment-based guide on how to
unravel the underlying concepts. (3) The ability to follow the
guide (a) synchronously, with graduate student help, in a session
with a time limit, and (b) asynchronously, on one’s own, before
or after the synchronous session. (4) A set of assignments
trainees can do after experimenting with the worked example.
(5) Recording of the synchronous session.

In Summer 2022, as part of a 3-day workshop on training
faculty members in concurrency, we applied this approach to
hands-on faculty training in Java Fork-Join abstractions using a
100 minute synchronous session. Fourteen faculty members
across the country attended the session. They had varying
amounts of knowledge of Java and automatic assessment. Check
logs and a zoom recording give a detailed picture of the model
and differentiate the participants along several dimensions.

Section II outlines the context for our work Section III
clarifies what we mean by fork-join. Section IV gives our
pedagogical model. Section V evaluates our approach using th
novel visualizations of data extracted automatically from the
check logs and manually from the Zoom recording. Section VI
presents conclusions.

II. CONTEXT OF TRAINING SESSION

The context of our work was a faculty-development
workshop organized by the Computer Science Department at
Tennessee Tech (TTU) in collaboration with the CDER center
in the summer of 2022 The workshop was targeted at faculty
who usually teach (or are scheduled to teach) early programming
classes and who do not have parallel and distributed computing
expertise. The goal was to help them integrate PDC into these
courses. The workshop was funded by NSF (National Science
Foundation). Selected participants were paid stipends.

The workshop exposed participants to concurrent
programming using C/C++, Java, and Python; and C and Java
OpenMP processors. It also introduced them to PDC-related
pedagogy and assessment techniques. It had both a virtual
component and an in-person component. The in-person
component consisted of three day-long faculty development
activities at Tennessee Tech University.

Each technical session of the workshop followed the
traditional model described in Section 1, that is, lectures by

experts interleaved with hands-on programming activities.
Participants were separated into four groups with graduates
available to provide assistance. For all but one session, there was
no assessment. The exception was a session on the last day that
used our pedagogical model to explain Java fork-join. The night
before the session, the participants were emailed the guide.
Those who were able were encouraged to asynchronously
download the guide, checks, and scaffolding code, and even start
following the guide.

At the start of the session, the first author gave a remote
virtual (Zoom) 50-minute interactive talk in which he first
surveyed the background of each participant and their reason to
attend the workshop, and then motivated and explained the idea
of automatic assessment. The survey asked each participant the
following three questions:

1. Have you ever taught a Java-based course? Ten
participants responded “yes” to the first question, with
one of them saying they had taught Java only once and
another saying their experience was mostly in C++.

2. Have you given an assignment that has been at least
partially auto-graded? Two had used Zybooks, one
Peerson, one Senagauge, and one an unnamed system.

3.  What is your interest in concurrency? There were five
responses: (1) Get practice in parallel algorithms, (2)
Collaborate with CS department to teach an HPC
course, (3) Understand cluster computing and teach
concurrency to students, (4) Guide Capstone projects
and understand Machine Learning systems. (5) Teach
freshmen as they need it in upper-level courses.

Thus, we see the participants had varied motivations for and
backgrounds in the material covered. Four had not never taught
Java, and two were not fluent in it. Nine out of fourteen had
never used any kind of auto-grader, and the remaining five had
used four different kinds of auto grading systems.

After the motivational talk, the participants were given about
100 minutes to follow the guide. They worked in the same four
groups in which they worked in other sessions. Each participant
made changes to their individual code base, and consulted other
members of the group and three TTU graduate students when
they needed help.

III. FORK-JOIN

The term fork-join is applied to both algorithms and
programming abstractions. As we see below, these are related
but different concepts.

A. Fork-Join Algorithm Model

While fork-join abstractions have well-defined semantics, to
the best of our knowledge, fork-join algorithms have no well-
defined definition. Such a definition is crucial to describe our
pedagogical model. Moreover, it forms a basis for the
implementation of our source and runtime checks.

We assume that a program following the model consists of a
single dispatching thread and M worker threads, M >= 0. The
dispatching thread creates or forks the worker threads and then
joins all of them, that is, waits for all of them to finish. Before



forking threads, it performs F pre-fork actions, and after joining,
them it performs J post-join actions, F and J >= 0. Each worker
thread Wi*i <=1 <=M, performs an interactive loop B number of
times, B! >= 0. Before entering the loop, it performs A pre-
iteration steps and C post-iteration steps, A and C >= 0.

Thus, the control flow for the dispatching thread is: (1)
Perform F pre-fork actions. (2) Fork M worker threads. (3)
Perform J post-join actions. The control flow for each worker
thread Wt is: (1) Perform A pre-iteration steps, (2) Perform B!
iteration steps, (3) Perform C post-iteration steps. The number
of iteration steps is thread-dependent because work cannot
always be divided evenly among threads.

TABLE L FORK-JOIN PARAMETERS

Number of pre-fork actions by dispatcher thread
Number of threads forked by dispatcher thread
Number of post-join actions by dispatcher thread
Number of pre-iteration steps by each worker thread
* | Number of iteration steps by the i" worker thread
Number of post-iteration steps by each worker thread

QW >yl

B. Java Fork-Join Abstractions

There are many ways in Java to fork and join threads, some
higher-level and/or more stylistically correct than others. For
instance, to fork a thread, it is possible (a) to create a class that
implements the Java Runnable interface and pass an instance of
it as a constructor argument to the Java Thread class, or (b) to
subclass the Java Thread class directly and override its run
method. The former is more stylistically correct — hence we
assume this approach. Similarly, joining of worker threads can
be supported (a) by the dispatching thread making Java wait
calls and workers making notify calls, or (b) by the dispatching
thread making a Thread join call on each worker thread. The
latter is higher level as it does not require explicit
synchronization between the worker and dispatcher threads —
hence we assume this approach.

C. Fork-Join Testing Requirements

In our previous work, we developed an approach for testing
concurrency requirements [15] for applications that visualize
their concurrency [10, 11]. Our fork-join algorithm model
assumes a variable M and thus does not guarantee such
visualization. When M = 0, the multi-threaded version is
identical to the single-threaded one. This means that the input-
output relationships of single-threaded and multi-threaded are
the same.

To overcome this problem, we require a testable program to
produce special output to demonstrate its concurrency steps.
The program must produce special output to identify the nature
and number of the various kinds of steps We specify to each
runtime check the values of F, M, J, A, Bi, and C and regular
expressions describing the output produced by these steps. The
check ensures that the program follows these requirements while
also checking that work is balanced among the threads. As this
output would not be required if the program was not
automatically tested, we call a program that produces such
output as testing-aware. However, as we see later, such output
also has the potential pedagogical benefit of helping

programmers understand the concurrency behavior of their
implementations and also to debug their implementations.

IV. PEDAGOGICAL MODEL AND IMPLEMENTATION

Our guided active presentation serves as a general
pedagogical model for explaining how the fork-join algorithm
model should be implemented using the Java fork-join
abstractions. We refer to the implementation of the general
model in the TTU workshop mentioned as simply the
implementation. The implementation in our guide is 26 pages
long (with figures). Here we describe the underlying model by
identifying and illustrating the principles it uses including a
focus on multithreading, a common programming pattern for
implementing fork-join, in-context concept descriptions
centered around source and runtime checks, and the use of the
underlying programming environment and tests to unravel
concepts through guided experimentation,

A. Focus on Multithreading

Our pedagogical model assumes implementations of single-
threaded versions of assignments are given to the participants as
scaffolding code. In our implementation, the two planned
assignments were to find, using four threads, (1) the prime
numbers in a set of random numbers and (2) the value of PI using
the Monte Carlo method. The participants were told that the PI
problem was optional but they should try and solve the prime
number problem, time permitting. Not requiring participants to
implement the single-threaded aspects of the problems allows us
to focus more on the common concurrency aspects of the
problems rather than idiosyncrasies of single-threaded
implementations, which is particularly important when a single
session is devoted to the matter.

In addition, we assume a partial implementation of a
separate problem, we call a worked-example, that correctly
implements the single-threaded requirements and also has all of
the code, some of it commented out, for meeting the multi-
threaded requirements. In our implementation, the worked
example was to find the odd numbers in a set of random
numbers, also using four threads. The code to implement multi-
threading is commented out, so the uncommented code only
does single-threading. The guide asks the participant to
incrementally uncomment the multi-threaded code and observe
the results to understand the steps it performs,

B. Fork-Join Programming Pattern

The implementations of the worked example and
assignments follow a common pattern, consistent with both the
ideas of loop patterns [16] and concurrency patterns [17]. The
pattern is designed to meet the following three goals:

1. Allow the loop that implements the single-threaded
version of the problem to be reused, without any
modification, in the multi-threaded version.

2. Allow the test-aware code in the single-threaded version
to be reused in the multi-threaded version without
requiring any additional test-aware code.

3. Demonstrate in the worked example a general pattern
for implementing the fork-join algorithm that can be



implicitly followed in the assignments to make them
both easy to implement and modular.

The key component of the pattern has to do with the iteration
steps. It is implemented as a standalone method, called the
iterating method, illustrated in Fig 1. The method takes as
parameters a description of the portion of the problem the loop
is expected to handle. In the odd and prime number problems,
this description consists of an array of numbers and the start and
stop index indices of the elements of the array to be handled by
the loop. In the PI problem, this description is the number of
iterations the loop is expected to use to do a Monte Carlo
estimation of PI. In the serial version of the problem, the method
is invoked by the dispatcher thread and is given the complete
problem. In the concurrent version, the method is invoked by
each worker thread, and is given the portion of the problem
assigned to the thread.

public static void fillOddNumbers(int[] aNumbers,
int aStartIndex, int aStopIndex) {

int aNumberOfOddNumbers = @;

for (int index = aStartIndex; index < aStopIndex;
index++) {

printProperty("Index", index);

int aNumber = aNumbers[index];

printProperty("Number", aNumber);

boolean isOdd = isOddNumber(aNumber);

printProperty("Is 0dd", isOdd);

if (iso0dd) {
addOddNumber (aNumber) ;
aNumberOfOddNumbers++; }

Fig 1. Example of Iterating Method with Iterating Pattern

The loop consists of iteration, input, and output steps, which
include printing of test-aware information through a predefined
printProperty method shown in the figure. The iteration step
gives information about the iteration number. In the odd and
prime number problems, it is the index of the array element
processed by the iteration. In the PI problem, it is the number of
iterations performed so far. The input step accesses and prints
the input data processed by the iteration. In the odd and prime
number problems, the input data consists of the array element
processed, and in the PI problem, it consists of two generated
random doubles, in the range 0-1, representing X and Y
coordinates of a random Cartesian point. The output step
performs a problem-specific computation on the input and prints
the result. In the odd and prime number problems, the
computation determines if the input number is odd or prime,
respectively, and in the PI problem, it determines if the input
Cartesian point is in a circle of radius 1, that is, it calculates a
hypotenuse from the origin to the X and Y coordinates and
determines if it is less than the 1.0.

The input and output steps are used by the checks to
determine if the computations are correct in each iteration. The
iteration step is used to determine if work allocated to different
threads is balanced.

The single and multi-threaded solutions also contain a
deposit method to collect, in a global data structure, partial
results. In the odd and prime number problems, it collects odd
or prime number, and in the PI problem, it collects the number

of iterations in which the random Cartesian point was in circle.
This method is expected to be made synchronized in the multi-
threaded solution. The commented version of this method in the
worked-example is shown in Fig. 2.

The iterating method calls this method to deposit part or all
of the results computed by the method. In the odd and prime
number problem, it calls this method in each iteration that
detects an odd or prime number (Fig. 1). In the PI problem, it
calls this method after the loop to deposit the number of random
points in the circle.

// Uncomment the following line to serialize access
// to the shared variables

// synchronized

public static void addOddNumber(int aNumber) {

// The first operation is redundant but is
// performed to increase race condition chances.
// Both actions are not thread safe
totalNumberOddNumbers++;
oddNumbers .add(aNumber) ;
¥

Fig. 2 Commented Depsoit Method

Before executing the iterating method, the single-threaded
solution is expected to perform an input-processing step, which
retrieves and prints the input. In the odd and prime number
problems, the input is the array of numbers to be checked for
odd and prime numbers. In the PI problem, it is the total number
of iterations to be used to determine PI. The input processing
step becomes a pre-fork step in the multi-threaded solution.
After executing the iterating method, the single-threaded
solution performs an output-processing step, which retrieves the
deposited data and computes and prints the final output. This
step becomes the post-join step in the multi-threaded solution.

This pattern meets all of our requirements. The multi-
threaded solution can completely use the iterating method,
deposit method, and input and output processing steps, which
also implies it does not contain any test-aware code. Thus,
converting the solution to a multi-threaded one involves only
steps having to do with concurrency, which include:

1. Adding the synchronized keyword to the header of the
deposit method (Fig 2.).

2. Declaring a runnable class with the following
properties. It has a constructor that takes the same
arguments as the iterating method and stores these
values in its instance variables. The run method of the
class calls the iterating method with the values of these
instance variables. The version of this class in the
worked odd number problem is shown in Fig, 3.

3. In the code of the dispatching thread: (a) removing the
call to the iterating method, (b) after the input
processing step, instantiating the runnable class once for
each thread to be created, passing appropriate
parameters to the runnable constructor to balance work,
(c) using each runnable instance to create and start a
worker thread, and (d) joining the started threads after
forking them and before performing the output
processing step.



class OddNumbersWorker implements Runnable {
int[] numbers;
int startIndex, stopIndex;
public OddNumbersWorker(int[] aNumbers,
int aStartIndex, int aStopIndex) {
numbers = aNumbers;
startIndex = aStartIndex;
stopIndex = aStopIndex;

public void run() {
ConcurrentOddNumbers . fil LOddNumbers (
numbers, startIndex,
stopIndex);

Fig. 3. Odd Number Worker (Comments Removed)

This pattern is not explicitly spelled out in the guide —
participants are expected to implicitly follow it, and perhaps
even explicitly derive it, based on the commented concurrent
worked example.

C. Runtime Checks

The guide is centered around checks. Checks are executed
by running a special program in the scaffolding code, which
creates the GUI shown in Fig, 4 and Fig, 5, which lists the names
of all checks. Each execution of the program starts a new test
session. Double clicking on a check name executes the check.
Unexecuted, passed, partially passed, and failed checks are
colored grey, green, orange and red, respectively. Each
execution of this program starts a new fest session.

The first instruction in the guide is to execute the single
runtime check  for the  worked example -
OddNumberFixedItems. The correctness component of the
check succeeds as it is a correct single-threaded implementation
of the problem. The concurrency component of the check
however fails as it is not a complete multi-threaded
implementation. This action serves two purposes. First, it logs
the start of the programmers’ work so we can estimate how long
they took. Second, it gives the programmers an idea of the steps
that have been done for them in the given code and the tasks that
remain.

§ [ OddNumbersExecutionChecks[10.0 pts]
|j| Score:2.0
¢ 3
D Score:2.0
D Message:Event tests will not be run until output
[™1 computed Max Scere:10.0

Fig, 4 Failure of Runtime Check On Given Worked Example

In the GUI, the check name is colored orange (Fig. 4) to
indicate partial success. The console output, partially produced
below, gives detailed information about the check status

Pre fork output correct

Post fork output did not match:[.*Thread.*-
>Index:.*\d.*.*, .*Thread.*->Number:.*\d.*.*, .. ..
Post join output correct%e.2

It indicates that the pre-fork and post-join outputs are
correct. The pre-fork output in our worked example is:

Thread 1->Random Numbers:[373, 790, 378, 226, 285, 577,
712, 411, 608, 773, 129, 189, 55, 510, 316, 530, 708, 853,
904, 567, 75, 82, 729, 115, 784, 772, 46]

The post-join output is:

Thread 1->0dd Numbers:[373, 285, 577, 411, 773, 129, 189,
55, 853, 567, 75, 729, 115]

As we see, the relationship between the two is correct, with
all of the input odd numbers being found. The check indicates
that testing-aware output produced between pre-fork and post-
join:

Thread 1->Index:0
Thread 1->Number:373
Thread 1->Is Odd:true
Thread 1->Index:1
Thread 1->Number:790
Thread 1->Is 0dd:false

does not match certain expected regular expressions. The guide
explains that a symptom of the problem is that all of the
intermediate per-iteration output is produced by a single thread.
Our runtime checks assume multiple threads must be created by
the tested program. Our assignments and worked example were
required to create exactly 4 threads

D. Source Checks

At this point, the programmers are introduced to the source
checks (Fig. 5). Often students given a programming assignment
say they do not know where to start or ask an instructor if they
are on the right path. The source checks give them an idea of the
code that must be included in a correct solution. Understanding
source checks is made an optional step for those who need help
with understanding the steps. The names of the tests are mostly
self-explanatory. They indicate source-code milestones that
must be met to solve the problem.

¢
D Score:8.2
=3
=3
=3
-
=
&[5 ConcurrentOddMainCalls ThreadStart[0.9 pts]
=3
&= [ ConcurrentOddMainCalls ThreadJoin[0.9 pts]
-
=
-3
Fig, 5 Source Check Results on Given Worked Example

As we see from the names, some of these checks test if
certain classes are instantiated. An example is
ConcurrentOddInstantiatesWorker which ensures that
the runnable worker class (which has a prescribed name) is
instantiated. Most of the checks test if calls to certain methods
are included in the code. They provide class-level and method-
level source granularity based on whether they specify the class
or method that makes the call. A method makes a call if it calls
the method, directly or indirectly, through a sequence of
methods. A class “makes” a call if some method in it makes the
call directly or indirectly. ConcurrentOddCallsThreadStart
and ConcurrentOddMainCallsThreadStart are examples of



checks that provide class and method-level granularities,
respectively, determining if the class implementing the odd
number problem and the main method in this class, respectively,
make a call to start a thread. As we see in Fig. 5, the former
succeeds while the latter fails on the given code for odd
numbers. The class given to participants has a method -
createAndStartThreads (Fig. 7)- that makes this call, but the
main class runs sequential code and thus does not currently
invoke this method. The distinction between these two kinds of
granularities is crucial to our approach of having trainees
uncomment and comment calls to understand their behavior.

The source checks verify three kinds of constraints: single-
thread, multi-thread, and test-awareness. An example of single-
thread constraints is the call to parseInt, which arises in all of
our three problems, as they must convert String arguments to
numbers (such as the number of random numbers to be
generated). These constraints, in general, are problem-
dependent. An example of a multi-thread constraint is the call to
Thread start. Such a constraint is applicable to any fork-join
problem implemented using Java fork-join abstractions. An
example of a test-awareness constraint is the call to the
printProperty method provided by our test library. Such a
constraint is applicable to any application that uses our fork-join
testing infrastructure.

E. Concepts Exposed Through Tests

The Java fork-join abstractions require, of course, an
explanation of how to start and join threads. Trainees also
require an explanation of  synchronization of
concurrent/interleaved threads. These concepts are unraveled in
our model by the programmers performing guided changes to
the given code.

The given code contains two methods,
concurrentFillOoddNumbers and serialFillOddNumbers,
with the given main calling the latter. The first guided change is
to call the former instead:

//serialFillOddNumbers(); // comment this line to
turn off serial processing
concurrentFillOddNumbers(); // uncomment this line to
turn on parallel processing

The two failed source checks in Fig, 5 now succeed. The
runtime check gives more but not complete success:

Post fork output correct

Post join output correct

Number of forked threads correct
Pre fork events correct

Correct number of iterations

No interleaving during fork

Fork correct

Post join events correct

The guide explains the concepts behind the partial but not
complete success: thread creation and joining. These are
described in terms of the associated source checks and runtime
stacks.

For example, the guide contains the following explanation of
the ConcurrentOddInstantiatesWorker source check:

Creating a thread involves simply instantiating the predefined
Thread class. Each thread is the asynchronous execution of a procedure.

The term asynchronous means that the procedure that started a thread
does not immediately block waiting for the thread to complete. It can
do other tasks such as creating and starting other threads or not join the
started thread. This means each thread is a new stack with its own base
procedure at the start of the stack. The procedure that created the thread
is not in this stack. If it was, it would have to immediately wait for the
thread to finish. This is shown in Fig. 6 in the stack traces produced
when the concurrent version of the worked example is run.

v [@ ConcurrentOddNumbersDriver [Java Application]
v & ConcurrentOddNumbersDriver at localhost:49308

~ o Thread [main] (Suspended (breakpoint at line 221 in ConcurrentOddNumber:

= ConcurrentOddNumbers.joinThreads() line: 221

= ConcurrentOddNumbers.concurrentFill OddMumbers() line: 175
= ConcurrentOddNumbers.main(String[]) line: 40

= ConcurrentOddNumbersDriver.main(String[]) line: 5

~ o Thread [Thread-0] (Suspended (breakpoint at line 259 in OddNumbersWorke

= OddNumbersWorker.run{) line: 259
= Thread.run() line: 844

~ o Thread [Thread-2] (Suspended (breakpoint at line 259 in OddNumbersWorke

= OddNumbersWorker.run() line: 259
= Thread.run() line: 844

Fig, 6 Underyling Programming System Can Aid Understanding

The base of the top stack is the main method of the main class.
This stack represents a thread the underlying system automatically
created when main was run. The four other stacks represent four
threads spawned by the main thread, At the base of each stack is the
predefined run method of the four instances of the predefined
Thread class. This run method calls a run method specific to our
problem - the run method of OddNmbersWorker. The Thread run
method knows about the problem-specific method because when
the Thread instance was created, its constructor was passed an
instance of a class — OddNumbersWorker - that implements the
problem-specific run method. We refer to such a class as a worker
class, as it does the real problem-specific work. This check ensures
that the main class instantiates the worker class.

F. Leveraging the Underlying Programming Environment

Our trainees used the command line to do their work. Had
they used a visual programming environment, they could have
set breakpoints to themselves create the stacks shown in Fig. 6,
thereby leveraging the features provided by the underlying
system to augment their learning.

An example of such use is in our explanation of interleaving.
The guide explains that the tests currently show partial success
because the given worked example has a delay between thread
starts (Fig. 7), allowing each thread to finish before the next
thread is started. Commenting out the delay gets rid of this
problem, but potentially creates race conditions (exposed by the
checks) because of shared access to two variables. This problem,
in turn, is solved by uncommenting the synchronized keyword
from the declaration of the deposit method (Fig. 2.)

These are the kind of explanations that, in the traditional
model, would be provided in a lecture by a professor before
hands-on programming. Here, the document and the underlying
system provide this information in context, while programming
and testing the example, making our model instructor-light.

V. DATA

We have two main sources of data about the trainee
activities: Logging of test runs and Zoom recording of the entire
session.



private static void createAndStartThreads() {
for (int index = ©@; index < workers.length;
index++) {
threads[index] = new
Thread(workers[index]);
threads[index].start();
// comment out this try catch block to ensure
// concurrent_rather than serial execution of the
// thread run methods
try {
Thread.sleep(100);
} catch (InterruptedException e) {
e.printStackTrace();
}

// Both actions are not thread safe
totalNumberOddNumbers++;
oddNumbers .add (aNumber) ;

}

Fig, 7 Leveraging the System to Explore Interleaving

A. Logged Data

Each test execution results in an entry with a course ID and
an anonymous user ID being sent to the IBM cloud. A client de-
multiplexer pulls all entries with a given course ID and
distributes them in files based on the user ID, and converts the
user ID into a synthesized name such as Zora West. Log
analyzer and visualization programs then process these files. We
have used the above architecture to create several visualizations
of the activities of the participants. These were created after the
workshop as we currently do not have tools to show them during
a session.

Fig, 8 shows one such visualization of their progress. The X-
axis shows time (EST) and the Y axis represents participants
with their fake names. For all participants, we show when they
executed the first (green circle) and last check (red circle) and
when they completely passed the runtime check for the odd
number problem (blue) and the prime number problem (purple).
The size of each milestone circle is proportional to the number
of tests they ran to complete the milestone. The grey circles
represent test execution sessions. The vertical line marks the
start of the training session (and the end of the motivational talk).
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° OddNumbersFixediiems
@ PrimesExecutionFixeditems
® Last Session Rur
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Krystel-Kiehn @ o
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Liam-Poliich .
Key Time

Mafalda-Beier . . — Training Start

Ora-Connelly

Salvatore-Sipes

Summer-Jast [ ]
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Fig, 8 Log-Based Awareness of Test Use and Milestones

These data help identify several kinds of trainees who did
not follow the norm. These include those:(a) such as Jalyn,
Lavina, and Ora who did not finish the odd number problem; (b)
such as Emil, Summer, and Kayla who finished the prime
numbers problem; (c) such as Mafalda who ran tests after

finishing the odd number problem, but never finished the prime
number problem presumably because of lack of time; (d) such
as  Izaiaiah, Mafalda and Emil, who started working
asynchronously on the hands-on programming exercise before
the start of the training session; (e) such as Jalyn and Lavina who
ran a small number of tests; (f) such as Emil and Ora, who ran
a large number of tests — presumably the optional source checks.

Together these data suggest that Jalyn and Lavina did not
finish because of lack of effort, assuming they did not face
hurdles that prevented them from running tests; and Ora did not
finish despite test-based effort, and Emil achieved exceptional
success perhaps because of an early asynchronous start.

If such information is available while the exercise is being
executed, then it is possible to offer help to people like Ora who
are running tests but not succeeding, or talk to people like Jalyn
and Lavina, who are not running any tests to find the reason.
This is important for students too shy to ask for help [12-14];

If such information is available after the exercise, then it is
possible to identify how much time it takes different kinds of
trainees to complete milestones. In a traditional course, it can be
used to determine if the number of hours students are putting in
is near the expected number based on the course credits.

Together, these data suggest that most trainees who did not
finish the second milestone stopped testing much before the
session end time. On the other hand, it also shows some who
tested after the first milestone such as Cara and Mafalda did not
complete the second milestone, implying that the time devoted
to the training session (around 100 minutes) was not sufficient
for some participants to complete the prime number exercise. No
one started the optional PI assignment. In retrospect, this is not
surprising as the guide was 26 pages long (with figures) and
involved understanding and experimenting with dense
commented Java code. These data also indicate that the three
trainees who finished the prime number problem took much less
time and ran fewer tests to reach this milestone than the previous
milestone of following the guide to solve the odd number
worked-example, showing the effectiveness of the instructor-
less guide as a teaching tool. Finally, the data suggest the
possibility of doing asynchronous work, before the training
session, which may have been the reason for Emil’s success.

As we see above, this visualization is designed for a test-
based synchronous short-duration session in which trainees do
most of their work in that session and possibly a little before and
after the session. It complements our previous research on
visualizations describing long-duration (multiple days and
weeks) asynchronous work on concurrency assignments carried
out in homework assignments using logging of not only tests but
also programming environment commands [18].

B. Zoom Recording

The Zoom recording was used to identify the usefulness of a
synchronous session in which graduate assistants helped
overcome hurdles faced by the trainees working in groups. It
was used to identify (a) times when questions were asked both
within the group and to the assistants, and (b) the nature of the
question. Not all questions were identified because the camera
captured only one group and the audio was not picked up
uniformly.



Fig. 9 visualizes this information. Again, the X-axis shows
absolute times (EST) and the vertical line marks the start of the
training session. The Y-axis now shows groups rather than
individual users. The questions were classified into five
categories, each of which is associated with a different color: (a)
Questions about interfaces (purple); (b) questions answered by
a group member through intra-group collaboration - the nature
of the question could not be deciphered (beige); (c) confusion
about an error message (red); and (d) set up issues (pink).

Question Category
@ Interface Question
Group 1 ® 00 Intra Group Collaboration
@ Error
Setup Issue
Confusion About Instruction
@ Record Start
Group2 ® Key Time
— Training Start
Group 3 L]
Group 4
12PM 1215 1230 1245 O1PM 0115 0130 0145 02PM 0215
Timestamp

Fig, 9 Zoom-based Awareness of Problems and Help Seeking Behavior

Even though we did not capture all questions, the data show
the usefulness of graduate assistants providing help throughout
the session. The wide prevalence of (purple) interface questions
suggests one such reason — this is a Java concept missing in C++
- and it is likely such concepts were unfamiliar to many
participants. The wide prevalence of (yellow) instruction
questions shows that our first attempt at writing an instructor-
less guide has room for improvement. The presence of red dots
shows that the error handling in our checks needs improvement.
The absence of any questions from group 4 — consisting of a
remote participant - suggests the importance of in-person help.

VI. CONCLUSIONS

This paper makes several contributions. It is the first to show
the need for studying the training of trainers as a first-class issue
separate from training students. Some of the differences our data
show are the uneven background - some participants needed
help with interfaces — and motivation - two trainees apparently
did little work to meet the first milestone, and most stopped after
the first one, despite having time. It is doubtful students being
graded for such work would have shown such behavior. These
findings are enabled by our automatic logging of tests and
manual analysis of Zoom recordings — mechanisms unique to
our work - and novel visualizations of these data.

The pedagogical model with a focus on multi-threading, a
pattern for converting single-thread code to multi-thread fork-
join code, concepts descriptions centered around checks, and in-
context exposition of concepts through experimentation enabled
by the underlying programming environment and checks is the
most important conceptual contribution. It is built on a new
model of fork-join algorithms and Java fork-join abstractions.

Further work is of course needed to carry out a follow-up
larger experiment — involving both faculty and students - and
porting of our checks to other concurrency models and
abstractions,
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