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Abstract— As part of a 3-day workshop on training faculty 

members in concurrency, we developed a module for hands-on 

training in Java Fork-Join abstractions that had several related 

novel pedagogical and technical components: (1) Source and 

runtime checks that (a) tested whether test-aware code created by 

the trainees met the expected requirements and (b) logged their 

results in the local file system and the IBM cloud.   (2) Editable 

worked example code along with a guide on how to understand the 

underlying concepts behind the code and experiment with the 

code. (3) The ability to follow the guide (a) synchronously, with 

graduate student help, in a session devoted to this module, and (b) 

asynchronously, on one’s own, before or after the synchronous 

session. (4) Assignments trainees could do after experimenting 

with the worked example. (5) Zoom recording of the entire 

synchronous session. Fourteen faculty members across the 

country attended the session and had varying amounts of 

knowledge of Java and automatic assessment. Data gathered from 

check logs and a Zoom recording, together with novel 

visualizations of them, provide information to evaluate our 

pedagogical model and differentiate the participants. 

Keywords— awareness, instructor dashboard, automatic 

grading, automatic help, testing, metrics, concurrency, education, 

hands-on learning 

I. INTRODUCTION 

Because of its importance, researchers are actively seeking 
methodologies and tools for introducing PDC (Parallel and 
Distributed Computing) in introductory CS courses. In [1], the 
authors present their effort to implement parallelism in first and 
second-year CS courses. The authors found that students were 
capable of learning the material and enjoyed the experience. In 
[2], the author suggests that a data structure course is a natural 
place to introduce parallelism, while several researchers have 
focused on teaching PDC topics to students in upper-division 
courses [3] [4]. Our previous work has motivated integrating the 
teaching of object-oriented programming and concurrency [10, 
11]. Researchers have also attempted to integrate PDC 
throughout the curriculum [5-9].  

These instruction efforts have been led by leaders in 
concurrency pedagogy. The impact of these efforts is limited by 
the concurrency training of potential instructors of concurrency. 

The last author sent a survey to CS faculty of over a thousand 
four-year institutions across all fifty states in the US, and one 
hundred and thirty-five responses were received. Nearly 60% of 
the respondents indicated that they would not integrate PDC 
topics or would be unlikely to integrate PDC topics into their 
curriculum without further training or resources that can be 
readily integrated.  

How this training should be imparted to potential instructors 
is a first-class issue in its own right, separate from the issue of 
how PDC should be incorporated into the curriculum.  In theory, 
these two issues could be integrated if every untrained (in 
concurrency) instructor could take, as a student, one or more 
PDC courses/modules taught by trained instructors at the same 
or different institution. However, this approach is impractical for 
at least four reasons.  First, the untrained instructors have to be 
committed to teaching concurrency. Second, and more 
important, they need to find enough time in their schedule to take 
such courses. Third, most universities open their courses only to 
enrolled students. Finally, the instructors might lack background 
in the programming language/environment used in the course. 

To circumvent these problems, PDC training to potential 
instructors on various topics has been limited to conference 
sessions focused on a specific topic or special workshops 
addressing a wide range of topics. Due to the nature of the 
material, such sessions should, ideally, be hands-on, involving 
concurrent programming. Based on our experience observing 
and conducting these sessions, we can define the following 
model for them.  

The session is devoted to a main topic, such as OpenMP in 
C. The topic is broken into subtopics such as different Open/MP 
directives.  For each subtopic (such as the parallel directive), a 
university professor, typically a leader in the field, gives a 
conceptual presentation, showing worked examples (such as a 
parallel hello world), and then gives the participants one or more 
exercises that use the concepts associated with the topic.  The 
participants may work alone or in groups. The professor with the 
help of possibly some graduate students helps those who 
articulate their problems. After the allotted time for the topic, the 
instructor moves on to the next subtopic.  
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This approach has two main problems. First, it is instructor-
heavy, because, as mentioned above a leader in the field gives 
the presentation, which limits its scalability. Second, no 
mechanism is used to evaluate the pedagogy or differentiate the 
participants. In the allotted time, it is possible for the average 
participant to finish much earlier or not at all. Worse, given that 
many programmers are shy about asking for help [12-14], some 
participants may not make any progress with the problems. It is 
perhaps because of a lack of data about the effectiveness of these 
sessions that, to the best of our knowledge, there is no paper on 
training of PDC trainers. 

In this paper, we motivate present and evaluate a new 
approach to address these two problems. It has several novel 
technical and pedagogical components: (1) Source and runtime 
checks that (a) test whether test-aware code created by the 
trainees meets the expected requirements and (b) log their results 
in the local file system and the IBM cloud.   (2) Editable worked 
example code along with an experiment-based guide on how to 
unravel the underlying concepts. (3) The ability to follow the 
guide (a) synchronously, with graduate student help, in a session 
with a time limit, and (b) asynchronously, on one’s own, before 
or after the synchronous session. (4) A set of assignments 
trainees can do after experimenting with the worked example. 
(5) Recording of the synchronous session.  

In Summer 2022, as part of a 3-day workshop on training 
faculty members in concurrency, we applied this approach to 
hands-on faculty training in Java Fork-Join abstractions using a 
100 minute synchronous session. Fourteen faculty members 
across the country attended the session. They had varying 
amounts of knowledge of Java and automatic assessment. Check 
logs and a zoom recording give a detailed picture of the model 
and differentiate the participants along several dimensions. 

Section II outlines the context for our work Section III 
clarifies what we mean by fork-join. Section IV gives our 
pedagogical model. Section V evaluates our approach using th 
novel visualizations of data extracted automatically from the 
check logs and manually from the Zoom recording. Section VI 
presents conclusions. 

II. CONTEXT OF TRAINING SESSION 

The context of our work was a faculty-development 
workshop organized by the Computer Science Department at 
Tennessee Tech (TTU) in collaboration with the CDER center 
in the summer of 2022 The workshop was targeted at faculty 
who usually teach (or are scheduled to teach) early programming 
classes and who do not have parallel and distributed computing 
expertise. The goal was to help them integrate PDC into these 
courses. The workshop was funded by NSF (National Science 
Foundation). Selected participants were paid stipends. 

 The workshop exposed participants to concurrent 
programming using C/C++, Java, and Python; and C and Java 
OpenMP processors. It also introduced them to PDC-related 
pedagogy and assessment techniques. It had both a virtual 
component and an in-person component. The in-person 
component consisted of three day-long faculty development 
activities at Tennessee Tech University.  

Each technical session of the workshop followed the 
traditional model described in Section 1, that is, lectures by 

experts interleaved with hands-on programming activities. 
Participants were separated into four groups with graduates 
available to provide assistance. For all but one session, there was 
no assessment.  The exception was a session on the last day that 
used our pedagogical model to explain Java fork-join. The night 
before the session, the participants were emailed the guide. 
Those who were able were encouraged to asynchronously 
download the guide, checks, and scaffolding code, and even start 
following the guide. 

At the start of the session, the first author gave a remote 
virtual (Zoom) 50-minute interactive talk in which he first 
surveyed the background of each participant and their reason to 
attend the workshop, and then motivated and explained the idea 
of automatic assessment. The survey asked each participant the 
following three questions: 

1. Have you ever taught a Java-based course? Ten 
participants responded “yes” to the first question, with 
one of them saying they had taught Java only once and 
another saying their experience was mostly in C++. 

2. Have you given an assignment that has been at least 
partially auto-graded? Two had used Zybooks, one 
Peerson, one Senagauge, and one an unnamed system. 

3. What is your interest in concurrency? There were five 
responses: (1) Get practice in parallel algorithms, (2) 
Collaborate with CS department to teach an HPC 
course, (3) Understand cluster computing and teach 
concurrency to students, (4) Guide Capstone projects 
and understand Machine Learning systems. (5) Teach 
freshmen as they need it in upper-level courses. 

Thus, we see the participants had varied motivations for and 
backgrounds in the material covered. Four had not never taught 
Java, and two were not fluent in it. Nine out of fourteen had 
never used any kind of auto-grader, and the remaining five had 
used four different kinds of auto grading systems.  

After the motivational talk, the participants were given about 
100 minutes to follow the guide. They worked in the same four 
groups in which they worked in other sessions. Each participant 
made changes to their individual code base, and consulted other 
members of the group and three TTU graduate students when 
they needed help.  

III. FORK-JOIN  

The term fork-join is applied to both algorithms and 
programming abstractions. As we see below, these are related 
but different concepts.  

A. Fork-Join Algorithm Model 

While fork-join abstractions have well-defined semantics, to 
the best of our knowledge, fork-join algorithms have no well-
defined definition. Such a definition is crucial to describe our 
pedagogical model. Moreover, it forms a basis for the 
implementation of our source and runtime checks. 

We assume that a program following the model consists of a 
single dispatching thread and M worker threads, M >= 0. The 

dispatching thread creates or forks the worker threads and then 
joins all of them, that is, waits for all of them to finish. Before 



forking threads, it performs F pre-fork actions, and after joining, 

them it performs J post-join actions, F and J >= 0. Each worker 

thread Wi , i <=i <= M, performs an interactive loop B number of 

times, Bi >= 0. Before entering the loop, it performs A pre-

iteration steps and C post-iteration steps, A and C >= 0.  

Thus, the control flow for the dispatching thread is: (1) 
Perform F pre-fork actions. (2) Fork M worker threads. (3) 

Perform J post-join actions. The control flow for each worker 

thread Wi is: (1) Perform A pre-iteration steps, (2) Perform Bi 

iteration steps, (3) Perform C post-iteration steps. The number 

of iteration steps is thread-dependent because work cannot 
always be divided evenly among threads. 

TABLE I.  FORK-JOIN PARAMETERS 

F Number of pre-fork actions by dispatcher thread 
M Number of threads forked by dispatcher thread 
J Number of post-join actions by dispatcher thread 
A Number of pre-iteration steps by each worker thread 
Bi Number of iteration steps by the ith worker thread 
C Number of post-iteration steps by each worker thread 

B. Java Fork-Join Abstractions 

There are many ways in Java to fork and join threads, some 
higher-level and/or more stylistically correct than others. For 
instance, to fork a thread, it is possible (a) to create a class that 
implements the Java Runnable interface and pass an instance of 
it as a constructor argument to the Java Thread class, or (b) to 
subclass the Java Thread class directly and override its run 
method. The former is more stylistically correct – hence we 
assume this approach. Similarly, joining of worker threads can 
be supported (a) by the dispatching thread making Java wait 
calls and workers making notify calls, or (b) by the dispatching 
thread making a Thread join call on each worker thread. The 
latter is higher level as it does not require explicit 
synchronization between the worker and dispatcher threads – 
hence we assume this approach.  

C. Fork-Join Testing Requirements 

In our previous work, we developed an approach for testing 
concurrency requirements [15] for applications that visualize 
their concurrency [10, 11]. Our fork-join algorithm model 
assumes a variable M and thus does not guarantee such 

visualization. When M = 0, the multi-threaded version is 

identical to the single-threaded one. This means that the input-
output relationships of single-threaded and multi-threaded are 
the same. 

To overcome this problem, we require a testable program to 
produce special output to demonstrate its concurrency steps.  
The program must produce special output to identify the nature 
and number of the various kinds of steps   We specify to each 
runtime check the values of F, M, J, A, Bi, and C and regular 

expressions describing the output produced by these steps. The 
check ensures that the program follows these requirements while 
also checking that work is balanced among the threads.  As this 
output would not be required if the program was not 
automatically tested, we call a program that produces such 
output as testing-aware. However, as we see later, such output 
also has the potential pedagogical benefit of helping 

programmers understand the concurrency behavior of their 
implementations and also to debug their implementations. 

IV. PEDAGOGICAL MODEL AND IMPLEMENTATION 

Our guided active presentation serves as a general 
pedagogical model for explaining how the fork-join algorithm 
model should be implemented using the Java fork-join 
abstractions. We refer to the implementation of the general 
model in the TTU workshop mentioned as simply the 
implementation. The implementation in our guide is 26 pages 
long (with figures). Here we describe the underlying model by 
identifying and  illustrating the principles it uses including a 
focus on multithreading, a common programming pattern for 
implementing fork-join, in-context concept descriptions 
centered around source and runtime checks, and the use of the 
underlying programming environment and tests to unravel 
concepts through guided experimentation, 

A. Focus on Multithreading 

Our pedagogical model assumes implementations of single-
threaded versions of assignments are given to the participants as 
scaffolding code.  In our implementation, the two planned 
assignments were to find, using four threads, (1) the prime 
numbers in a set of random numbers and (2) the value of PI using 
the Monte Carlo method. The participants were told that the PI 
problem was optional but they should try and solve the prime 
number problem, time permitting. Not requiring participants to 
implement the single-threaded aspects of the problems allows us 
to focus more on the common concurrency aspects of the 
problems rather than idiosyncrasies of single-threaded 
implementations, which is particularly important when a single 
session is devoted to the matter.  

 In addition, we assume a partial implementation of a 
separate problem, we call a worked-example, that correctly 
implements the single-threaded requirements and also has all of 
the code, some of it commented out, for meeting the multi-
threaded requirements. In our implementation, the worked 
example was to find the odd numbers in a set of random 
numbers, also using four threads. The code to implement multi-
threading is commented out, so the uncommented code only 
does single-threading. The guide asks the participant to 
incrementally uncomment the multi-threaded code and observe 
the results to understand the steps it performs,  

B. Fork-Join Programming Pattern 

The implementations of the worked example and 
assignments follow a common pattern, consistent with both the 
ideas of loop patterns [16] and concurrency patterns [17]. The 
pattern is designed to meet the following three goals: 

1. Allow the loop that implements the single-threaded 
version of the problem to be reused, without any 
modification, in the multi-threaded version. 

2. Allow the test-aware code in the single-threaded version 
to be reused in the multi-threaded version without 
requiring any additional test-aware code.  

3. Demonstrate in the worked example a general pattern 
for implementing the fork-join algorithm that can be 



implicitly followed in the assignments to make them 
both easy to implement and modular. 

The key component of the pattern has to do with the iteration 
steps. It is implemented as a standalone method, called the 
iterating method, illustrated in Fig 1. The method takes as 
parameters a description of the portion of the problem the loop 
is expected to handle. In the odd and prime number problems, 
this description consists of an array of numbers and the start and 
stop index indices of the elements of the array to be handled by 
the loop. In the PI problem, this description is the number of 
iterations the loop is expected to use to do a Monte Carlo 
estimation of PI. In the serial version of the problem, the method 
is invoked by the dispatcher thread and is given the complete 
problem. In the concurrent version, the method is invoked by 
each worker thread, and is given the portion of the problem 
assigned to the thread.  

 

The loop consists of iteration, input, and output steps, which 
include printing of test-aware information through a predefined 
printProperty method shown in the figure. The iteration step 
gives information about the iteration number. In the odd and 
prime number problems, it is the index of the array element 
processed by the iteration. In the PI problem, it is the number of 
iterations performed so far. The input step accesses and prints 
the input data processed by the iteration. In the odd and prime 
number problems, the input data consists of the array element 
processed, and in the PI problem, it consists of two generated 
random doubles, in the range 0-1, representing X and Y 
coordinates of a random Cartesian point. The output step 
performs a problem-specific computation on the input and prints 
the result. In the odd and prime number problems, the 
computation determines if the input number is odd or prime, 
respectively, and in the PI problem, it determines if the input 
Cartesian point is in a circle of radius 1, that is, it calculates a 
hypotenuse from the origin to the X and Y coordinates and 
determines if it is less than the 1.0.  

The input and output steps are used by the checks to 
determine if the computations are correct in each iteration. The 
iteration step is used to determine if work allocated to different 
threads is balanced.  

The single and multi-threaded solutions also contain a 
deposit method to collect, in a global data structure, partial 
results. In the odd and prime number problems, it collects odd 
or prime number, and in the PI problem, it collects the number 

of iterations in which the random Cartesian point was in circle. 
This method is expected to be made synchronized in the multi-
threaded solution. The commented version of this method in the 
worked-example is shown in Fig. 2. 

The iterating method calls this method to deposit part or all 
of the results computed by the method. In the odd and prime 
number problem, it calls this method in each iteration that 
detects an odd or prime number (Fig. 1). In the PI problem, it 
calls this method after the loop to deposit the number of random 
points in the circle. 

 

Before executing the iterating method, the single-threaded 
solution is expected to perform an input-processing step, which 
retrieves and prints the input. In the odd and prime number 
problems, the input is the array of numbers to be checked for 
odd and prime numbers. In the PI problem, it is the total number 
of iterations to be used to determine PI. The input processing 
step becomes a pre-fork step in the multi-threaded solution. 
After executing the iterating method, the single-threaded 
solution performs an output-processing step, which retrieves the 
deposited data and computes and prints the final output. This 
step becomes the post-join step in the multi-threaded solution. 

This pattern meets all of our requirements. The multi-
threaded solution can completely use the iterating method, 
deposit method, and input and output processing steps, which 
also implies it does not contain any test-aware code. Thus, 
converting the solution to a multi-threaded one involves only 
steps having to do with concurrency, which include: 

1. Adding the synchronized keyword to the header of the 
deposit method (Fig 2.). 

2. Declaring a runnable class with the following 
properties. It has a constructor that takes the same 
arguments as the iterating method and stores these 
values in its instance variables. The run method of the 
class calls the iterating method with the values of these 
instance variables. The version of this class in the 
worked odd number problem is shown in Fig, 3. 

3. In the code of the dispatching thread: (a) removing the 
call to the iterating method, (b) after the input 
processing step, instantiating the runnable class once for 
each thread to be created, passing appropriate 
parameters to the runnable constructor to balance work, 
(c) using each runnable instance to create and start a 
worker thread, and (d) joining the started threads after 
forking them and before performing the output 
processing step. 

public static void fillOddNumbers(int[] aNumbers,  
int aStartIndex, int aStopIndex) { 

  int aNumberOfOddNumbers = 0; 
  for (int index = aStartIndex; index < aStopIndex;  

index++) { 
  printProperty("Index", index); 
  int aNumber = aNumbers[index]; 
  printProperty("Number", aNumber); 
  boolean isOdd = isOddNumber(aNumber); 
  printProperty("Is Odd", isOdd); 
  if (isOdd) { 
 addOddNumber(aNumber); 
 aNumberOfOddNumbers++;    } 
} 

Fig 1. Example of Iterating Method with Iterating Pattern 

 

// Uncomment the following line to serialize access 
// to the shared variables 
// synchronized  
public static void addOddNumber(int aNumber) { 
 
// The first operation is redundant but is  
// performed to increase race condition chances. 
// Both actions are not thread safe 
  totalNumberOddNumbers++;      
  oddNumbers.add(aNumber);  
} 

Fig. 2  Commented Depsoit Method 

 



 

This pattern is not explicitly spelled out in the guide – 
participants are expected to implicitly follow it, and perhaps 
even explicitly derive it, based on the commented concurrent 
worked example. 

C. Runtime Checks  

The guide is centered around checks. Checks are executed 
by running a special program in the scaffolding code, which 
creates the GUI shown in Fig, 4 and Fig, 5, which lists the names 
of all checks. Each execution of the program starts a new test 
session. Double clicking on a check name executes the check. 
Unexecuted, passed, partially passed, and failed checks are 
colored grey, green, orange and red, respectively. Each 
execution of this program starts a new test session. 

The first instruction in the guide is to execute the single 
runtime check for the worked example - 
OddNumberFixedItems. The correctness component of the 
check succeeds as it is a correct single-threaded implementation 
of the problem. The concurrency component of the check 
however fails as it is not a complete multi-threaded 
implementation. This action serves two purposes. First, it logs 
the start of the programmers’ work so we can estimate how long 
they took. Second, it gives the programmers an idea of the steps 
that have been done for them in the given code and the tasks that 
remain.   

 

Fig, 4 Failure of Runtime Check On Given Worked Example 

In the GUI, the check name is colored orange (Fig. 4) to 
indicate partial success. The console output, partially produced 
below, gives detailed information about the check status 

Pre fork output correct  
Post fork output did not match:[.*Thread.*-
>Index:.*\d.*.*, .*Thread.*->Number:.*\d.*.*, … ..  
Post join output correct%0.2 

It indicates that the pre-fork and post-join outputs are 
correct. The pre-fork output in our worked example is: 

Thread 1->Random Numbers:[373, 790, 378, 226, 285, 577, 
712, 411, 608, 773, 129, 189, 55, 510, 316, 530, 708, 853, 
904, 567, 75, 82, 729, 115, 784, 772, 46] 

The post-join output is: 

Thread 1->Odd Numbers:[373, 285, 577, 411, 773, 129, 189, 
55, 853, 567, 75, 729, 115] 

As we see, the relationship between the two is correct, with 
all of the input odd numbers being found. The check indicates 
that testing-aware output produced between pre-fork and post-
join:  

Thread 1->Index:0 
Thread 1->Number:373 
Thread 1->Is Odd:true 
Thread 1->Index:1 
Thread 1->Number:790 
Thread 1->Is Odd:false 
 
does not match certain expected regular expressions. The guide 
explains that a symptom of the problem is that all of the 
intermediate per-iteration output is produced by a single thread. 
Our runtime checks assume multiple threads must be created by 
the tested program. Our assignments and worked example were 
required to create exactly 4 threads 

D. Source Checks 

At this point, the programmers are introduced to the source 
checks (Fig. 5). Often students given a programming assignment 
say they do not know where to start or ask an instructor if they 
are on the right path. The source checks give them an idea of the 
code that must be included in a correct solution. Understanding 
source checks is made an optional step for those who need help 
with understanding the steps. The names of the tests are mostly 
self-explanatory. They indicate source-code milestones that 
must be met to solve the problem.   

 

Fig, 5 Source Check Results on Given Worked Example 

As we see from the names, some of these checks test if 
certain classes are instantiated. An example is 

ConcurrentOddInstantiatesWorker which ensures that 
the runnable worker class (which has a prescribed name) is 
instantiated. Most of the checks test if calls to certain methods 
are included in the code. They provide class-level and method-
level source granularity based on whether they specify the class 
or method that makes the call. A method makes a call if it calls 
the method, directly or indirectly, through a sequence of 
methods.  A class “makes” a call if some method in it makes the 
call directly or indirectly. ConcurrentOddCallsThreadStart 
and ConcurrentOddMainCallsThreadStart are examples of 

class OddNumbersWorker implements Runnable { 
  int[] numbers; 
  int startIndex, stopIndex; 
  public OddNumbersWorker(int[] aNumbers,  
         int aStartIndex, int aStopIndex) { 
    numbers = aNumbers; 
    startIndex = aStartIndex; 
    stopIndex = aStopIndex; 
   }  
   public void run() {  
      ConcurrentOddNumbers.fillOddNumbers( 

numbers, startIndex, 
stopIndex); 

    } 
} 

Fig. 3. Odd Number Worker  (Comments Removed) 

 



checks that provide class and method-level granularities, 
respectively, determining if the class implementing the odd 
number problem and the main method in this class, respectively, 
make a call to start a thread. As we see in Fig. 5, the former 
succeeds while the latter fails on the given code for odd 
numbers. The class given to participants has a method - 
createAndStartThreads (Fig. 7)- that makes this call, but the 
main class runs sequential code and thus does not currently 
invoke this method. The distinction between these two kinds of 
granularities is crucial to our approach of having trainees 
uncomment and comment calls to understand their behavior. 

The source checks verify three kinds of constraints: single-
thread, multi-thread, and test-awareness. An example of single-
thread constraints is the call to parseInt, which arises in all of 
our three problems, as they must convert String arguments to 
numbers (such as the number of random numbers to be 
generated). These constraints, in general, are problem-
dependent. An example of a multi-thread constraint is the call to 
Thread start. Such a constraint is applicable to any fork-join 
problem implemented using Java fork-join abstractions. An 
example of a test-awareness constraint is the call to the 
printProperty method provided by our test library. Such a 
constraint is applicable to any application that uses our fork-join 
testing infrastructure. 

E. Concepts Exposed Through Tests 

The Java fork-join abstractions require, of course, an 
explanation of how to start and join threads. Trainees also 
require an explanation of synchronization of 
concurrent/interleaved threads. These concepts are unraveled in 
our model by the programmers performing guided changes to 
the given code. 

The given code contains two methods, 
concurrentFillOddNumbers and serialFillOddNumbers, 
with the given main calling the latter. The first guided change is 
to call the former instead: 

//serialFillOddNumbers(); // comment this line to 
turn off serial processing 
concurrentFillOddNumbers(); // uncomment this line to 
turn on parallel processing 

The two failed source checks in Fig, 5 now succeed. The 
runtime check gives more but not complete success: 

Post fork output correct  
Post join output correct  
Number of forked threads correct  
Pre fork events correct  
Correct number of iterations  
No interleaving during fork  
Fork correct  
Post join events correct 

The guide explains the concepts behind the partial but not 
complete success: thread creation and joining. These are 
described in terms of the associated source checks and runtime 
stacks.  

For example, the guide contains the following explanation of 
the ConcurrentOddInstantiatesWorker source check:  

Creating a thread involves simply instantiating the predefined 
Thread class. Each thread is the asynchronous execution of a procedure. 

The term asynchronous means that the procedure that started a thread 
does not immediately block waiting for the thread to complete. It can 
do other tasks such as creating and starting other threads or not join the 
started thread. This means each thread is a new stack with its own base 
procedure at the start of the stack. The procedure that created the thread 
is not in this stack. If it was, it would have to immediately wait for the 
thread to finish. This is shown in Fig. 6 in the stack traces produced 
when the concurrent version of the worked example is run. 

 

Fig, 6 Underyling Programming System Can Aid Understanding 

The base of the top stack is the main method of the main class. 
This stack represents a thread the underlying system automatically 
created when main was run. The four other stacks represent four 
threads spawned by the main thread, At the base of each stack is the 
predefined run method of the four instances of the predefined 
Thread class. This run method calls a run method specific to our 
problem - the run method of OddNmbersWorker. The Thread run 
method knows about the problem-specific method because when 
the Thread instance was created, its constructor was passed an 
instance of a class – OddNumbersWorker - that implements the 
problem-specific run method. We refer to such a class as a worker 
class, as it does the real problem-specific work. This check ensures 
that the main class instantiates the worker class. 

F. Leveraging the Underlying Programming Environment 

Our trainees used the command line to do their work. Had 
they used a visual programming environment, they could have 
set breakpoints to themselves create the stacks shown in Fig. 6, 
thereby leveraging the features provided by the underlying 
system to augment their learning. 

An example of such use is in our explanation of interleaving. 
The guide explains that the tests currently show partial success 
because the given worked example has a delay between thread 
starts (Fig. 7), allowing each thread to finish before the next 
thread is started. Commenting out the delay gets rid of this 
problem, but potentially creates race conditions (exposed by the 
checks) because of shared access to two variables. This problem, 
in turn, is solved by uncommenting the synchronized keyword 
from the declaration of the deposit method (Fig. 2.)  

These are the kind of explanations that, in the traditional 
model, would be provided in a lecture by a professor before 
hands-on programming. Here, the document and the underlying 
system provide this information in context, while programming 
and testing the example, making our model instructor-light. 

V. DATA 

We have two main sources of data about the trainee 
activities: Logging of test runs and Zoom recording of the entire 
session. 



 

A. Logged Data 

Each test execution results in an entry with a course ID and 
an anonymous user ID being sent to the IBM cloud. A client de-
multiplexer pulls all entries with a given course ID and 
distributes them in files based on the user ID, and converts the 
user ID into a synthesized name such as Zora West. Log 
analyzer and visualization programs then process these files. We 
have used the above architecture to create several visualizations 
of the activities of the participants. These were created after the 
workshop as we currently do not have tools to show them during 
a session.  

Fig, 8 shows one such visualization of their progress. The X-
axis shows time (EST) and the Y axis represents participants 
with their fake names.  For all participants, we show when they 
executed the first (green circle) and last check (red circle) and 
when they completely passed the runtime check for the odd 
number problem (blue) and the prime number problem (purple). 
The size of each milestone circle is proportional to the number 
of tests they ran to complete the milestone. The grey circles 
represent test execution sessions. The vertical line marks the 
start of the training session (and the end of the motivational talk). 

 

Fig, 8  Log-Based Awareness of Test Use and Milestones 

These data help identify several kinds of trainees who did 
not follow the norm. These include those:(a) such as Jalyn, 
Lavina, and Ora who did not finish the odd number problem; (b) 
such as Emil, Summer, and Kayla who finished the prime 
numbers problem; (c) such as Mafalda who ran tests after 

finishing the odd number problem, but never finished the prime 
number problem presumably because of lack of time;  (d) such 
as  Izaiaiah, Mafalda and Emil, who started working 
asynchronously on the hands-on programming exercise before 
the start of the training session; (e) such as Jalyn and Lavina who 
ran a small number of tests;  (f) such as Emil and Ora, who ran 
a  large number of tests – presumably the optional source checks. 

Together these data suggest that Jalyn and Lavina did not 
finish because of lack of effort, assuming they did not face 
hurdles that prevented them from running tests; and Ora did not 
finish despite test-based effort, and Emil achieved exceptional 
success perhaps because of an early asynchronous start.  

If such information is available while the exercise is being 
executed, then it is possible to offer help to people like Ora who 
are running tests but not succeeding, or talk to people like Jalyn 
and Lavina, who are not running any tests to find the reason. 
This is important for students too shy to ask for help [12-14];  

If such information is available after the exercise, then it is 
possible to identify how much time it takes different kinds of 
trainees to complete milestones. In a traditional course, it can be 
used to determine if the number of hours students are putting in 
is near the expected number based on the course credits.  

Together, these data suggest that most trainees who did not 
finish the second milestone stopped testing much before the 
session end time. On the other hand, it also shows some who 
tested after the first milestone such as Cara and Mafalda did not 
complete the second milestone, implying that the time devoted 
to the training session (around 100 minutes) was not sufficient 
for some participants to complete the prime number exercise. No 
one started the optional PI assignment. In retrospect, this is not 
surprising as the guide was 26 pages long (with figures) and 
involved understanding and experimenting with dense 
commented Java code. These data also indicate that the three 
trainees who finished the prime number problem took much less 
time and ran fewer tests to reach this milestone than the previous 
milestone of following the guide to solve the odd number 
worked-example, showing the effectiveness of the instructor-
less guide as a teaching tool. Finally, the data suggest the 
possibility of doing asynchronous work, before the training 
session, which may have been the reason for Emil’s success. 

As we see above, this visualization is designed for a test-
based synchronous short-duration session in which trainees do 
most of their work in that session and possibly a little before and 
after the session.  It complements our previous research on 
visualizations describing long-duration (multiple days and 
weeks) asynchronous work on concurrency assignments carried 
out in homework assignments using logging of not only tests but 
also programming environment commands [18]. 

B. Zoom Recording 

The Zoom recording was used to identify the usefulness of a 
synchronous session in which graduate assistants helped 
overcome hurdles faced by the trainees working in groups. It 
was used to identify (a) times when questions were asked both 
within the group and to the assistants, and (b) the nature of the 
question. Not all questions were identified because the camera 
captured only one group and the audio was not picked up 
uniformly. 

private static void createAndStartThreads() { 
  for (int index = 0; index < workers.length; 
index++) { 
  threads[index] = new    

Thread(workers[index]); 
  threads[index].start(); 
// comment out this try catch block to ensure  
// concurrent rather than serial execution of the  
// thread run methods 
  try { 
 Thread.sleep(100); 
  } catch (InterruptedException e) { 
 e.printStackTrace(); 
  } 
. 
// Both actions are not thread safe 
  totalNumberOddNumbers++;      
  oddNumbers.add(aNumber);  
} 

Fig, 7  Leveraging the System  to Explore Interleaving 

 



Fig. 9 visualizes this information.  Again, the X-axis shows 
absolute times (EST) and the vertical line marks the start of the 
training session. The Y-axis now shows groups rather than 
individual users. The questions were classified into five 
categories, each of which is associated with a different color: (a) 
Questions about interfaces (purple); (b) questions answered by 
a group member through intra-group collaboration - the nature 
of the question could not be deciphered (beige); (c) confusion 
about an error message (red); and (d) set up issues (pink). 

 

Fig, 9  Zoom-based Awareness of Problems and Help Seeking Behavior 

 Even though we did not capture all questions, the data show 
the usefulness of graduate assistants providing help throughout 
the session. The wide prevalence of (purple) interface questions 
suggests one such reason – this is a Java concept missing in C++ 
- and it is likely such concepts were unfamiliar to many 
participants. The wide prevalence of (yellow) instruction 
questions shows that our first attempt at writing an instructor-
less guide has room for improvement. The presence of red dots 
shows that the error handling in our checks needs improvement.  
The absence of any questions from group 4 – consisting of a 
remote participant - suggests the importance of in-person help.  

VI. CONCLUSIONS 

This paper makes several contributions. It is the first to show 
the need for studying the training of trainers as a first-class issue 
separate from training students. Some of the differences our data 
show are the uneven background - some participants needed 
help with interfaces – and motivation - two trainees apparently 
did little work to meet the first milestone, and most stopped after 
the first one, despite having time. It is doubtful students being 
graded for such work would have shown such behavior. These 
findings are enabled by our automatic logging of tests and 
manual analysis of Zoom recordings – mechanisms unique to 
our work - and novel visualizations of these data. 

The pedagogical model with a focus on multi-threading, a 
pattern for converting single-thread code to multi-thread fork-
join code, concepts descriptions centered around checks, and in-
context exposition of concepts through experimentation enabled 
by the underlying programming environment and checks is the 
most important conceptual contribution. It is built on a new 
model of fork-join algorithms and Java fork-join abstractions. 

Further work is of course needed to carry out a follow-up 
larger experiment – involving both faculty and students - and 
porting of our checks to other concurrency models and 
abstractions,  
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