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A B S T R A C T

We examine the dynamics of a liquid bridge between a sphere and a flat plate being separated from each other.
Unlike previous research, this paper focuses on the case where the viscosity of the bridge is lower than that of the
external fluid within which the particle, the plate, and the liquid bridge are immersed. For the general case of a
viscosity mismatch between the bridge fluid and the external fluid, we develop a lubrication theory-based model
for the viscous force during separation. The model predicts that a low viscosity bridge reduces the force as
compared to both - separation without a liquid bridge, or separation with a bridge of matched viscosity. The
magnitude of force reduction is expected to be more severe at small sphere-plate separations and at large bridge
volumes. Experiments confirm all these predictions qualitatively, but unexpectedly the magnitude of the reduc-
tion is even larger than predicted. Experiments also find that the bridge length at rupture for specified velocity
exceeds that for quasistatic rupture by an amount that increases with the squareroot of the velocity. Although we
only examine bridges between a plate and a spherical particle, all results are expected to apply for bridges be-
tween a pair of particles as well.
1. Introduction

Capillary bridges spanning two solid surfaces are relevant to a wide
variety of physical phenomena including the mechanics of soils or wet
granular media [1,2], the use of binders in pharmaceutical tableting [3,
4], adhesion of insects to walls [5], liquid phase sintering [6], liquid
transfer printing processes [7], and dip pen lithography [8]. This paper is
concerned with forces developed by a liquid bridge between a spherical
particle and a flat surface, when the particle is being separated from the
surface at a sufficiently high speed that viscous forces play a significant
role. The essential physics is equally relevant to a liquid bridge between
two spherical particles undergoing separation. In contrast to previous
studies on this topic, the specific situation of interest here is when the
viscosity of the bridge fluid is much lower than that of the surrounding
fluid.

A large body of literature has examined static liquid bridges between
two solid particles or between a solid particle and a solid wall [9–12].
When the solid surfaces are fully-wetted by the bridge liquid, the bridge
generally induces an attractive capillary force between the surfaces.
When the solid surfaces are poorly-wetted by the liquid, the capillary
eering, University of Pittsburgh,
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force can be repulsive [13,14]. While the above studies were done with
air as the continuous phase outside the liquid bridge, similar research has
also been done using two immiscible liquids, e.g. an oil bridge between
particles which are immersed in water [15,16]. Other issues such as ef-
fects of contact angle hysteresis or pinning [17–19], contact angle
inequality [20], size inequality [21], surface roughness [22], or gravity
[23] have also been considered.

In processing operations with particulate materials however, particles
are in motion with respect to each other, and viscous forces in the liquid
bridge become important. For example, in a fluid bed granulator (FBG)
mixer, the viscous forces in the liquid play an important role as a liquid
binder is applied to a powder and mixed to form granules under a shear
flow. The first step of granulation is when the binder forms liquid bridges
between particles and binds them together by a combination of capillary
and viscous forces [4]. If the relative velocity between the particles is
large, as is common in multiple industrial processes, the viscous forces
may far exceed capillary forces. Following previous studies on this topic
[24,25], this situation was examined by Pitois et al. [26] who estimated
the total force by summing viscous forces and capillary forces. The cen-
tral assumptions of their analysis were that the viscous forces could be
PA, 15260, USA.
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Fig. 1. Schematic of experimental apparatus for measuring the force while
stretching a liquid bridge between a sphere and a plane. Note that there is no
macroscopic motion of the fluid container. B. Schematic defining the various
geometric quantities of the bridge. b is the radial extent of the bridge (Eq. (7))
assuming that the free surface of the bridge is cylindrical. These figures are not
to scale. In experiments, R is 2 mm, the space beteen the pillars is about 20 mm,
the width of the fluid container is roughly 50 mm, and S0 ranges from 0.05 mm
to 2 mm. Figure is in color in electronic version. (For interpretation of the ref-
erences to color in this figure legend, the reader is referred to the Web version of
this article.)
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calculated from the lubrication approximation (valid when particle sep-
aration is small), whereas the capillary forces were unaffected by particle
motion, and hence identical to those under static conditions. The
resulting force expression was in reasonable agreement with experi-
ments. More recently, this same approach was applied to develop a
modified capillary force model with dynamic contact angle hysteresis
[27]. An excellent summary of this past research, including on the static
bridges from the previous paragraph, has been tabulated by Bozkurt et al.
[28].

All the research from the previous paragraph on viscous effects in
liquid bridges [24–27] was conducted with air as the continuous phase
fluid. There appears to be no research on the dynamics of liquid bridges
for the case when the bridge has lower viscosity than the surrounding
liquid. Such “viscosity-inverted” situations are not common in soil me-
chanics or liquid sintering, but they appear in material processing op-
erations. For example, spherical crystallization (also called spherical
agglomeration [29]) has been applied in different industrial sectors,
including in the pharmaceutical industry to make tablets [30], in the food
industry to remove specific particles [31], and in processing wastewater
to remove heavy metals [32]. In spherical crystallization, a binder,
sometimes less viscous than the continuous phase, is added to create
liquid bridges between particles and produce particles agglomerates or
crystals depending on the application [29,33]. Similarly, capillary forces
can be used in particle suspensions to induce aggregation of particles
[34]. For example, mixing a small amount of water into a suspension of
hydrophilic particles in oil can induce the aggregation of particles via
liquid bridges of water [35]. The resulting "pendular state" suspension
can have a yield stress [36,37]. Such suspensions provide a route to
material processing, e.g. to fabricate porous ceramics [38,39], especially
by 3D printing [40]. Similar capillarity-driven aggregation can be
induced in particle-filled polymer blends, e.g., to realize conductive
plastics or adhesives [41,42]. In such cases, the fluid added to the par-
ticles may be much less viscous than the continuous phase polymer, and
there is little knowledge of the behavior of such low-viscosity bridges.

This paper is a modeling and experimental study of forces associated
with the stretching and rupture of low viscosity liquid bridges sur-
rounded by a higher viscosity external fluid. In Section 2, we propose a
model for the force for normal motion between a particle and a flat plate.
As previously [26], the model is based on the lubrication approximation
as well as geometric simplifications that are only valid at small separa-
tions. Unlike previously, the model captures both cases: when the bridge
is much more viscous than the surroundings [26] or much less viscous.
Section 3 describes the experimental method, and Section 4 the results
for measured forces during bridge stretching. Section 5 concludes with a
brief discussion and summary.

2. Theory

2.1. Viscous force

Consider the geometry (Fig. 1B) of a plate and a sphere of radius R, at
a separation S0 immersed in an outer fluid of viscosity ηo. Considering
first the case without a liquid bridge, the lubrication equation using the
Reynolds’ approach for the pressure for normal-direction motion in an
axisymmetric geometry is given by [24]

d
dr

�
rS3ðrÞ dPo

dr

�
¼ 12ηorv (1)

where v is the separation velocity and SðrÞ is the distance between the
plate and the sphere at any radial location r. The subscript o indicates that
this pressure is in the outer fluid. At close separation (S0 ≪ R), the ge-
ometry can be approximated by SðrÞ � r2

2Rþ S0. One can then integrate
Eq. (1), set Po ¼ 0 far away (i.e. at r → ∞), and dPo=dr ¼ 0 at r ¼ 0 to
yield the pressure profile PoðrÞ
2

PoðrÞ¼ � 12
ηoR

3v

ð2RS þ r2Þ2 (2)

0

Integration of the above pressure profile yields the viscous force [43].

Fvis ¼ � 6π ηo R
2v

S0
(3)

Note that for positive velocity (i.e. stretching the liquid bridge), the
pressure and force are both negative indicating that the force is attrac-
tive. Turning now to the geometry of Fig. 1B, consider an axisymmetric
liquid bridge of viscosity ηi ¼ η*ηo and volume V . Here η*, dubbed rela-
tive viscosity, is the ratio of the viscosity of the inner to the outer fluid.
For the purposes of calculating the liquid volume, we assume that the
bridge has a cylindrical edge at the radial position b and height SðbÞ, and
write

V ¼
Z b

0
2πrSðrÞdr¼ πR

�
S2ðbÞ� S02

�
(4)

Here the above approximation SðrÞ � r2
2R þ S0 was used in evaluating the

integral. The volume can be rendered non-dimensional as
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V* ¼ V
πRS2

¼ S2ðbÞ
S2

� 1 (5)

0 0

Accordingly, SðbÞ can be written in terms of non-dimensional volume as

SðbÞ¼ S0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V* þ 1

p
(6)

Further, by substituting SðbÞ � b2
2R þ S0 into Eq. (6), one obtains

b¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2RS0

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V* þ 1

p
� 1

�r
(7)

Note that the non-dimensional volume V* (Eq. (5)) depends on the sep-
aration S0. In contrast, previous papers on static liquid bridges often
define non-dimensional volume as V=R3, which is independent of
separation.

We will now derive the pressure profile for the case when ηi 6¼ ηo. For
the outer fluid, the pressure profile is still given by Eq. (2), but only for
r � b. By substituting r ¼ b, we can obtain the pressure at the edge of the
bridge

PoðbÞ¼ � 12
ηoR

3v	
2RS0 þ b2


2 (8)

For the inner fluid, Eq. (1) is still valid, but replacing ηo by ηi :

d
dr

�
rS3ðrÞ dPi

dr

�
¼ 12ηirv for r < b (9)

Here Pi is the pressure inside the bridge. Eq. (9) can be integrated, but
now setting the boundary condition at the edge of the bridge as per Eq.
(8) to impose continuity of pressure. This latter integral then yields

PiðrÞ¼ � 12
ηiR

3v

ð2RS0 þ r2Þ2 þ 12
ðηi � ηoÞR3v	
2RS0 þ b2


2 for r< b (10)

Eq. (2) (for r � bÞ and (10) (for r � bÞ together give the pressure
profile in the entire domain. Fig. 2A–C shows the pressure profiles for
three illustrative cases corresponding to η* ¼ 0.005, 1, and 10. The other
parameters are listed in the caption of Fig. 2, and are typical of the
experimental values used later in this paper. Note that v is taken as
positive, corresponding to moving the particles apart; therefore, the
3

pressures are negative (in fact, Fig. 2A–C plot the negative of the
pressure).

Since the pressure at r � b is given by Eq. (2) regardless of the value of
η*, the orange curve is identical in all three graphs in Fig. 2. For η* ¼
0.005 (Fig. 2A), the pressure inside the bridge is nearly uniform at a value
specified by the pressure at the outer edge of the bridge. In contrast,
when η* ¼ 10, the pressure inside the bridge rises far above that at r ¼ b.
For η* ¼ 1, there is no discontinuity in the slope of the pressure profile,
and Eq. (2) describes the pressure over the entire domain r > 0.

The total viscous force can be obtained by integrating the overall
pressure profile:

Fvis ¼
Z ∞

0
2πPrdr ¼

Z b

0
2πPirdr þ

Z ∞

b
2πPordr (11)

The final expression is:

Fvis ¼� 6πηoR
2vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V
πRþS02

q �6πR2v
S0

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V
πRþS02

q
�S0

��
ηi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V
πRþS02

q
þS0ðηo�ηiÞ

�
V
πRþS02

(12)

Here the first and the second terms on the right hand side are the viscous
contributions of the outside and bridge fluids respectively. Note that only
quantities that are directly controlled experimentally appear in Eqs. (12)
and (13); b and SðbÞ do not appear.

Rewriting Fvis in non-dimensional terms allows the role of various
quantities to be identified clearly.

Fvis ¼ � 6πηoR
2v

S0

"
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V* þ 1
p þ

	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V* þ 1

p � 1

	
η*

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V* þ 1

p þ 1� η*



V* þ 1

#

(13)

The quantity outside the square brackets in Eq. (13) is the viscous
force in the absence of a liquid bridge (Eq. (3)). The term in the square
brackets is a multiplicative factor that accounts for the geometry and
viscosity of the liquid bridge, captured by the non-dimensional variables
V* and η* respectively. This multiplicative factor is less than 1 when η* <
1 and greater than 1 when η* >1. The square bracket is 1 for V* ¼ 0 (i.e.
absence of a bridge) or for η* ¼ 1 (viscosity-matched bridge), and hence
Eq. (13) reverts to Eq. (3). Eq. (13) also recovers the expression derived
by Pitois [26] for ηo ≪ ηi.
Fig. 2. A-C. Pressure profile for relative viscosity
values of 0.005, 1 and 10. In all three graphs, the
orange curves (i.e. r > b) are identical. Insets in B and
C show a magnified view of the region near r ¼ b. D.
Evolution of viscous force as per Eq. (12) for three
different values of η*. For all four graphs, V ¼ 2 μL,
R ¼ 2 mm, ηo ¼ 30 Pa s, and v ¼ 50 μm/s. Figure is in
color in electronic version. (For interpretation of the
references to color in this figure legend, the reader is
referred to the Web version of this article.)



Table 1
Liquid properties.

Liquids Density (kg/
m3)

Viscosity (Pa
s)

Interfacial tension (mN/m) with
PIB

PIB 24 920 30.0 –

PEG 600 1120 0.156 10.5
PDMS
Oil

960 35.3 2.5 [46]
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Fig. 2D shows the evolution of the viscous force as per Eq. (12) as the
meniscus separates. Similar to the pressure, the forces are also negative
indicating attraction, and Fig. 2D plots the negative of the force. The
central conclusion is that as the viscosity of the liquid bridge reduces, the
viscous force needed for separation reduces to a value below that needed
in the absence of the bridge. It is this regime that has not been studied
previously and is the main focus of this paper. It is crucial to recognize
that even if the bridge fluid were inviscid, the region covered by the
bridge would still contribute to the viscous force. In this inviscid-bridge
limit, the pressure inside the bridge is simply PðbÞ (obtained by setting
ηi ¼ 0 in Eq. (10)) and hence the bridge contribution to the viscous force
is πb2PðbÞ. Thus the force contribution of an inviscid bridge is propor-
tional to the outside viscosity ηo.

We reiterate that the above analysis adopts all the three assumptions
previously made by Pitois et al.: the lubrication approximation (Eq. (1)),
the quadratic approximation for the geometry SðrÞ � r2=2Rþ S0, and the
assumption that the edge of the bridge can be treated as a cylinder for
calculating the volume (Eq. (4)). These assumptions require that S0 ≪
b ≪ R, and hence the analysis is not valid when the particle-plate sepa-
ration becomes large. The experiments in Section 3 go from S0= R values
of 0.025 to 0.6, but it is only in the early portion of this range (roughly
S0=R < 0:2) that a comparison with theory is justified.

2.2. Capillary force

The static capillary force of a small liquid bridge with fixed volume
between a sphere and a plane (Fig. 1) is given by [44].

Fcap ¼ � 4πRγ cos θ
�
1� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V* þ 1
p

�
(14)

where γ is the interfacial tension, and θ is the contact angle. The above
equation is only valid at relatively small contact angles (typically θ <

40�). For relatively large contact angles, the capillary force deviates from
Eq. (14) and may even become repulsive [45], whereas Eq. (14) only
predicts a capillary attraction between the sphere and plane. Further, the
above equation is only valid while the liquid bridge is intact, i.e., when
the S0 is smaller than the static rupture distance of the liquid bridge Srup0;stat .

An expression for Srup0;stat is given in Eq. (19) later in this paper and
compared with experiments.

2.3. Total force

Following Pitois [26], we assume that the total force can be obtained
from the sum of the static capillary force (Eq. (14)) and the viscous force
(Eq. (12)):

Ftot ¼Fcap þ Fvis (15)

3. Experiments

3.1. Apparatus

We seek to quantify viscous effects when the viscosity of the liquid
bridge is lower than of the continuous phase. Thus, not only is the bridge
submerged, but the submerging liquid has a relatively high viscosity. This
requires the force-sensing mechanism (a cantilever in our case) to be
mounted outside this high viscosity liquid; otherwise, viscous drag on the
mechanism would affect the measurements.

Fig. 1 shows a schematic of how this was accomplished. The particle
(4 mm diameter) is attached by a long pin of diameter 0.8 mm to a
cantilever. The deflection of the cantilever can be measured to sub-
micron accuracy using an optical displacement sensor (Philtec) which
measures light reflected from the back of the cantilever (not shown in
Fig. 1). A horizontal plate sits on a movable platform below the particle.
The platform is suspended as illustrated in Fig. 1 using two “pillars” of
4

0.8 mm diameter each. The vertical position of the platform is controlled
with a stepper motor (Moons Industries). During a typical experiment,
the particle and the plate are connected by a liquid bridge with some
initial separation (see Section 3.3). The stepper motor then lowers the
platform at a fixed velocity v, and the corresponding cantilever deflection
is recorded. It is crucial to recognize that the particle-plate separation is
changed without translating the fluid bath, thus there is negligible
change in height at the upper surface of the liquid. This is essential to the
current experiment; any gross motion of the air-liquid interface induces
capillary and gravity forces on the surface of the pin holding the particle,
which overwhelm the forces of interest. Further, it is essential that the
upper surface of the particle be submerged at least several mm below the
free surface of the fluid at the beginning of the experiment. If the particle
breached the upper surface, or approached it closely, it significantly
affected the force measurements. The apparatus is mounted in an active
air vibration isolation table (Kinetic Systems).
3.2. Materials

Polyisobutylene (PIB 24, Soltex) was used as the outer continuous
phase fluid in all experiments. Most experiments used polyethylene
glycol (PEG, molecular weight 600 g/mol) as the low-viscosity bridge
fluid. A limited number of experiments were conducted using poly-
dimethylsiloxane (PDMS, Rhodia), whose viscosity is close to that of the
PIB. The properties of each fluid used are available in Table 1. The
continuous phase fluid viscosity is much higher than of water or small-
molecule organic fluids. This gives the benefit of slowing down the dy-
namics, which permits imaging without needing a high-speed camera.
The high viscosity and low velocities also make inertial effects negligible
(Reynolds numbers in these experiments are lower than 0.01).

The particles were glass spheres of diameter 4 mm. When using PEG
as the bridge fluid, the particles were preferentially wetted by PEG.When
using PDMS as the bridge fluid, the particles were coated with a thin
layer of Sylgard 184 silicone rubber to ensure near-complete wetting by
the PDMS fluid. In all cases, the contact angle was observed to be small,
and θ ¼ 0� was used in Eq. (14).
3.3. Experimental procedure

A drop of the bridge fluid of the desired volume was first placed on a
glass slide in air with a micropipette (for PEG bridges), or with a plastic
toothpick (for PDMS bridges). In the latter case, the bridge volume was
determined using the drop's weight. The slide was placed on the hori-
zontal platform. It was then immersed into the reservoir of PIB, imme-
diately under the glass particle. The particle was brought into contact
with the plate and allowed to rest for 4 min to let the bridge equilibrate.
The platform was then moved downwards at a separation velocity in the
range of v ¼ 1 μm/s to 320 μm/s. The experiments were video-recorded
with a Dino-Lite digital microscope. The corresponding cantilever
deflection was converted into force using the cantilever spring constant.

The cantilevers were 3D-printed plates whose thickness was selected
based on a tradeoff between the noisiness in the data and the maximum
cantilever deflection that can be tolerated. At low speeds or under quasi-
static conditions, the forces encountered were low and hence softer
cantilevers were needed to achieve an adequate signal-to-noise ratio. At
higher speeds, the deflection of these softer cantilevers becomes a sig-
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nificant portion of the applied displacement, which is unacceptable.
Thus, higher velocities needed stiffer cantilevers. The cantilever spring
constant was calibrated using deadweights hung from the cantilever at
the same position as the pin holding the particle. The deflection of the
cantilever was subtracted from the applied displacement to obtain the
true separation S0.

Two validation tests of the force measurements are shown in the
supplementary information: the force as a function of velocity in the
absence of liquid bridges, and the force of a PEG meniscus with air as the
surrounding fluid.

4. Results

4.1. Meniscus evolution during particle separation

Before discussing forces, we qualitatively show how the bridge
evolves with time and discuss the effect of velocity on the meniscus
evolution. A liquid bridge of V ¼ 5 μL of PEG 600 was added between the
sphere and the glass slide, and the initial separation was set at S0 ¼ 50
μm. A first experiment was conducted at a separation velocity v ¼ 1 μm/
s, and the images in Fig. 3A–D were recorded. The initial separation was
then reset to 50 μm, and the liquid bridge allowed to equilibrate for 4 min
before the experiment was repeated at v ¼ 100 μm/s, and the images in
Fig. 3 E-H were recorded. The recession of the bridge is clearly different
in both cases. At low velocity, the bridge has more time for equilibration
(indeedwewill show later that this experimentmay be regarded as quasi-
static). Accordingly, the bridge fluid is sucked out of the liquid bridge,
both due to capillarity as well as gravity, leading to a thin bridge which
ruptures when S0 is roughly 1600 μm. In contrast, high separation ve-
locity results in a fatter liquid bridge which does not rupture even at S0 ¼
2000 μm. This increase in rupture distance with velocity will be covered
in detail in Section 4.5.

In all experiments, a portion of the bridge fluid remains as a layer on
the bottom of the particle, whereas a larger portion remains coated on the
plate, presumably due to gravitational effects. One may compare the
magnitude of gravity (roughly on the order of the hydrostatic stress Δ
ρgSðbÞ where Δρ is the density difference between the fluids) and the
viscous stresses (on the order of PoðbÞ � 3η0Rv=SðbÞ2 from Eq. (8)). This
comparison suggests that at the beginning of the experiment, viscous
forces dominate over gravity at all except the lowest experimental ve-
locities tested. With decreasing velocity or increasing separation, gravi-
tational effects are expected to become more important. Since the bridge
fluid has higher density than the surrounding PIB, gravity induces the
5

bridge to sag downward. Indeed, it was found that the portion of bridge
fluid left on the plate increased with decreasing separation velocity. This
trend has been reported previously for liquid bridges between two flat
plates [47], and indicates that gravity has more influence at low velocity.
The influence of gravity in the limit of low velocity can be captured by
the Bond number, which is the ratio of gravitational force to the surface
tension force in the liquid bridge:

Bo¼V
2
3Δρg
γ

(16)

where Δρ is the density difference, and g is the acceleration constant. For
the V values in this paper (1–5 μL) the Bond number is in the range of
0.22–0.65. Incidentally it is common to instead define a Bond number

based on the dimension b. If we define Bo as b2Δρg
γ , then using the b values

calculated from Eq. (7) at a separation distance of 50 μm, the Bo values
are in range of 0.3–0.72. With either definition, Bo is on the order of 1
suggesting a moderate effect of the gravitational forces, at least under
static conditions.
4.2. Effect of bridge viscosity on the force during separation

The key issue of interest here is how low viscosity bridges affect the
total liquid bridge force. Fig. 4 illustrates the main effects qualitatively.
We compare the measured force in three cases: no bridge, viscosity-
matched bridge (PDMS), and low viscosity bridge (PEG) where the
latter two have roughly comparable volumes. In all cases, the separation
velocity was v ¼ 100 μm/s, and the initial separation was S0 ¼ 50 μm. As
will be shown later, at this velocity, capillary forces are much smaller
than viscous forces, thus allowing the effects of bridge viscosity to be
identified clearly.

In the absence of the liquid bridge, the separation force follows Eq.
(3), as may be expected from the more comprehensive set of data for the
no-bridge case in Fig. S1. For the nearly viscosity-matched liquid bridge,
the viscous contribution to the force is nearly identical to that from Eq.
(3). The total force is in reasonable agreement with Eq. (15). Remarkably,
the theory is in reasonable agreement with the experiments throughout
the range of separations even though (as mentioned in Section 2.1), the
lubrication approximation requires S0 ≪ R.

In contrast, the low viscosity bridge shows much lower forces at small
separations, which is in qualitative agreement with the theoretical
model. To our knowledge, this is the first documentation in the literature
of a low viscosity liquid bridge lowering the total force during separation.
Fig. 3. Liquid bridge of PEG 600 with a volume V ¼ 5
μL undergoing separation at velocity v ¼ 1 μm/s
(upper row) and v ¼ 100 μm/s (lower row). The S0
values for the first three images in each row are listed
at the top. Image D is at S0 ¼ 1557 μm, immediately
after rupture. Image H corresponds to S0 ¼ 2000 μm
and the bridge has not yet ruptured. A horizontal
stripe pattern is placed in the background to accen-
tuate the edge of the bridge. Figure is in color in
electronic version. (For interpretation of the refer-
ences to color in this figure legend, the reader is
referred to the Web version of this article.)



Fig. 4. (A–D) Images of a low-viscosity PEG bridge with V ¼ 2 μL, and (E–H)
images of a viscosity-matched PDMS bridge of V ¼ 2.68 μL at different S0= R
values (labeled at the top of each column). In both cases, the continuous fluid
was PIB. The dark black region in A-D is an ink-mark made on the front edge of
the bottom plate and does not interfere with this experiment. It was placed
during early experiments to track motion of the bottom plate. I) Total force
during separation for both bridges and for a no-bridge case, all at a separation
velocity of v ¼ 100 μm/s. Lines are predictions of Eq. (15), with line color
matching the corresponding symbol color. Although Eq. (15) is plotted across
the entire range of S0=R values, the approximations underpinning Eq. (15) are
only valid for relatively small S0=R values (see Section 3.1). Figure is in color in
electronic version. (For interpretation of the references to color in this figure
legend, the reader is referred to the Web version of this article.)

Fig. 5. A) Force curves during separation for a liquid bridge of volume V ¼ 2 μL
at different separation velocities and the predictions of Eq. (15) (dot-dashed
lines, where the line color corresponds to each symbol color). B) Ratio of the
force divided by velocity compared to the total force Eq. (15). Although Eq. (15)
is plotted across the entire range of S0=R values, the approximations under-
pinning Eq. (15) are only valid for relatively small S0=R values (see Section 3.1).
Figure is in color in electronic version. (For interpretation of the references to
color in this figure legend, the reader is referred to the Web version of
this article.)
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Quantitatively however, Eq. (15) overestimates the total force for the
case of low viscosity meniscus by a factor of ~2. This will be discussed
further in Section 5.

The rest of this article only examines the case of the low viscosity
liquid bridge, first examining the effect of separation velocity, and then
of the meniscus volume.
4.3. Effect of velocity

Fig. 5A shows the effect of separation velocity on the force evolution
for the low viscosity PEG bridge at a bridge volume of V ¼ 2 μL. The
force increases with increasing velocity indicating increasing viscous
contributions. In contrast, the capillary contributions are expected to
depend primarily on separation; in fact, the model assumes that the
capillary force is equal to the static capillary force, and therefore is
velocity-independent. Accordingly, Eq. (15) has the form Ftot ¼ Fcapþ Av
where Fcap and A both depend on S0 but not on v. Therefore, two regimes
may be distinguished: a viscosity-dominated regime with Ftot∝ v and a
capillary-dominated regime with Ftot being independent of v. The former
regime may be identified by testing whether the measured Ftot= v vs S0 is
independent of v. The corresponding plot, Fig. 5B shows that speeds
above v¼ 60 μm/s are viscosity-dominated, whereas below that velocity,
surface tension makes a significant contribution to the total force. In the
viscosity-dominated regime, the total force Ftot in Eq. (15) may be
6

approximated as Fvis (Eq. (13)) since the capillary force is negligible;
however, Fig. 5B shows that the data lie significantly below the model.
This is discussed further in Section 5.
4.4. Effect of bridge volume

Finally, we turn to examining the effect of bridge volume on the
separation forces. Eq. (15) predicts that with increasing bridge volume,
the viscous contribution to the separation force decreases. This is because
the bridge spans a wider region (i.e. a larger V implies a larger b, Eq. (7)),
and hence more of the near-contact region is occupied by the low vis-
cosity fluid. On the other hand, a larger bridge volume raises the rupture
distance Srup0 , and allows the capillary force to persist to larger values of
S0. Thus, experiments must be conducted at both high and low velocities
to evaluate the differing effects in the viscosity-dominated vs capillary-
dominated regimes.

Fig. 6A shows that at high velocity, the separation force is much lower
than the case without a liquid bridge as also shown previously in Fig. 4.
Further, the magnitude of decrease in force increases with increasing
bridge volume. Beyond a nondimensional separation of about S0=R of
0.6, all three volumes have comparable forces suggesting that the bridge
makes little contribution to the total force at larger separations.

In the opposite extreme, at v ¼ 5 μm/s, the situation is reversed. The
viscous forces are relatively small, and for the V ¼ 5 μL liquid bridge, the
separation force exceeds that of the no-bridge case, and further, the force
decreases only gradually as separation increases. This is a consequence of
the relatively large bridge volume which allows the bridge to survive



Fig. 6. The total force exerted in a particle with a PEG bridge volume of V ¼ 1
μL, 5 μL and no-bridge using a separation velocity of A) v ¼ 320 μm/s, B) 40
μm/s and C) 5 μm/s). Note that the y-scale changes several fold going from A to
C. Although Eq. (15) is plotted across the entire range of S0= R values, the ap-
proximations underpinning Eq. (15) are only valid for relatively small S0= R
values (see Section 3.1). Figure is in color in electronic version. (For interpre-
tation of the references to color in this figure legend, the reader is referred to the
Web version of this article.)

Fig. 7. A) Rupture distance ðSrup0 Þ as a function of separation velocity and B)
normalized rupture distance (δ*Þ vs capillary number for a PEG liquid bridge. C-
E. Images of liquid bridge immediately prior to rupture at different velocities C)
v ¼ 2 μm/s, D) 20 μm/s E) 40 μm/s and F) 80 μm/s. Dashed lines, indicating the
edge of the particle and the location of the plate, illustrate the increase in
rupture distance with velocity. Figure is in color in electronic version. (For
interpretation of the references to color in this figure legend, the reader is
referred to the Web version of this article.)
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without rupturing up to a large separation. Similar results were observed
previously in the capillary force dominated regime for the case of a
viscous meniscus with air as the surrounding fluid [26,48]. At lower
bridge volume V ¼ 1 μL, the force approaches zero because the bridge
ruptures beyond S0=R ¼ 0.5, and the viscous forces are small at v ¼ 5
μm/s.

The case of v ¼ 40 μm/s appears intermediate between these two
extremes. The liquid bridge reduces the force at small separations when
viscous force dominates, but not at large separations. Indeed at large
separation, the bridge may increase the force slightly because of capillary
contributions.

4.5. Liquid bridge rupture distance

Finally, our experiments also show the velocity-dependence of the
distance Srup0 at which the liquid bridge ruptures. These are shown in
Fig. 7A for bridges of volume of V ¼ 1 and 5 μL. The maximum velocity
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shown in Fig. 7A is v ¼ 100 μm/s since beyond this velocity, the liquid
bridge draws into a very thin filament prior to breaking, making it
difficult to determine the precise instant at which the liquid bridge
breaks. At both bridge volumes, the rupture distance increases signifi-
cantly as velocity increases. Similar results have been seen by Pitois et al.
[26] for viscous bridges between particles, and by Zhang and Basaran for
inertial bridges between parallel plates [47].

Pitois et al. [26] observed that for a liquid bridge of high relative
viscosity, the results could be well-captured by

Srup0 � Srup0 stat∝v
1
2 (17)

where Srup0 stat is the rupture distance at static conditions, i.e. in the limit of
v → 0. Eq. (17) can be written in non-dimensional terms as

δ* ¼ Srup0 � Srup0 stat

Srup0 stat
∝Ca

1
2 (18)

where Ca ¼ vη0=γ is the capillary number, and δ* is the fractional in-
crease in rupture distance over its static value.



Fig. 8. Liquid bridge at A) initial configuration, and B) after some separation
assuming that the contact line recedes along both solid surfaces. C) A thin re-
sidual coating of the bridge liquid remains on the sphere and the plate. The
vertical dashed lines correpond to cylindrical surfaces enclosing the same vol-
ume as the bridge (Eq. (7)). Note that in C, the separation distance is identical to
that in B, but the contact line on the sphere and the plate is still at its initial
value in A. Figure is in color in electronic version. (For interpretation of the
references to color in this figure legend, the reader is referred to the Web version
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For a plate-sphere configuration, the rupture distance Srup0 stat is given
by [49]

Srup0;stat ¼
�
1þ θ

4

�"�
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� 2
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�2
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#
(19)

The values of Srup0;stat calculated from Eq. (19) are in reasonable agreement
with those measured at v ¼ 1 μm/s, suggesting that this velocity is near
quasi-static conditions. We therefore adopt the values of Srup0 at v ¼ 1
μm/s as static rupture distance Srup0;stat . The δ

* thus-calculated (expressed as
a percentage) are plotted against Ca in Fig. 7B, and are in reasonable
agreement with the square root dependence Eq. (17).

Fig. 7B shows that the δ* for high viscosity bridges measured previ-
ously [26] are much lower than our measurements. However the com-
parison is not exact for two reasons: first we use Ca ¼ vηo=γ whereas for a
high viscosity bridge, it is necessary to define Ca ¼ vηi= γ; and second the
value of V* is not identical in our experiments vs [26]. Regardless, our
results show relatively large magnitudes of δ*, approaching 100%. In
contrast, the largest value of δ* noted by Pitois [26] was about 10%.

5. Discussion

To summarize briefly, the model and experiments both show that the
forces needed to elongate a liquid bridge between a plate and sphere
decrease significantly when the liquid bridge has a much lower viscosity
than the surrounding fluid. This section addresses two issues.

The first is the distinction between viscous-dominated vs capillary-
dominated regimes of separation. In Fig. 5B, this distinction was made
empirically based on whether the total force is proportional to velocity or
not. A theoretical approach however is to take the ratio of the viscous to
capillary forces, which, based on Eqs. (12) and (14), result in an equation
of the form

Fvis

Fcap
¼ v ηo

γ

R
S0

F ðV*; η*Þ¼Ca
R
S0

F ðV*; η*Þ (20)

The function F can be deduced from Eqs. (12) and (14). In some
situations, e.g. coating operations, breakup of drops and bubbles, the
viscous-dominated vs capillary-dominated regimes may be identified
solely based on whether Ca is much larger or much less than 1. In the
present situation however, it is clear that the ratio of viscous to capillary
forces increases as S0 reduces. Accordingly, if the particles are initially in
contact with S0 ¼ 0 (which would generally be the case for freely-
suspended smooth particles bonded by a liquid bridge), Eq. (20) pre-
dicts the separation process always starts in a viscosity-dominated regime
no matter how small the velocity. During the separation process, Fvis=Fcap
may become less than 1, i.e. the separation process may transition to a
capillary-dominated regime as was indeed noted previously [26]. This
point – that the initial separation is always viscosity-dominated – applies
regardless of whether ηo is more or less than ηi, and does not appear to be
emphasized in the previous literature. We caution however that this
conclusion is strictly valid only for perfectly-smooth particles, whereas
particles in contact have an average separation S0 that is on the order of
particle roughness. Nevertheless, as long as the roughness is small (i.e. R=
S0 is large), Eq. (20) predicts that Fvis=Fcap would be a large, i.e. early
stages of separation are more likely to be viscosity-dominated.

The second is the discrepancy between predictions and experiment.
One may intuitively expect, and indeed Eqs. (12) and (13) predict, that a
low viscosity bridge would reduce the force required for separation.
While this is observed experimentally, the observed effect is even larger
than predicted: for low viscosity bridges separated at relatively high
speeds (Fig. 5), the experimentally-measured forces are typically 2x
smaller than the predictions. At the high velocities in Fig. 5, Fcap ≪ Fvis
suggesting that it is the Fvis that is underpredicted. In fact, the ~2x
underprediction remains even at small separations when the lubrication
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approximation, Eq. (1), and the geometric approximations leading to Eq.
(7) are most likely to be valid. In contrast, Eq. (12) is in good agreement
with experiments for a viscosity-matched bridge (Fig. 4), and/or for a
high viscosity bridge [26]. While we are not able to explain this
discrepancy, we speculate that it is attributable to a failure of Eq. (15).

Eq. (15) is based on two assumptions. The first is that the capillary
force remains equal to its static value (Eq. (14)) regardless of separation
velocity. The second is that viscous forces are decoupled from the
capillary forces (i.e. viscous forces are unaffected by capillary phenom-
ena at the edge of the bridge). Yet, these assumptions may be violated as
illustrated in Fig. 8.

Fig. 8A sketches the initial static configuration of the bridge. For
quasistatic separation, the contact line of the liquid bridge recedes as the
separation distance increases (compare Fig. 8A and B). Furthermore,
quasistatic separation means that the interface remains in mechanical
equilibrium such that the interfacial curvature in Fig. 8B matches that
under static conditions at the same value of S0. Since the radial extent of
the bridge and its curvature are both equal to the static case, the Fcap
remains equal to the static value. Viscous forces are of course negligible
under quasistatic conditions.

As velocity increases, the capillary and viscous forces may affect each
other in a complex manner. Fig. 8C illustrates a possible scenario where
the contact line does not recede, but instead a thin residual coating of the
bridge is left behind on the plate and on the sphere such that the contact
is pinned nearly to its original location (compare Fig. 8A and C). In the
scenario of Fig. 8C, the interfacial curvature and the extent of the bridge
both deviate from the static value, and hence Fcap would become velocity-
dependent. Further, since the bridge liquid has a low viscosity
(η* ¼ 0:005 here), the thin residual coating may provide excellent
lubrication. In the context of Fig. 2, the viscous pressure would become
independent of r over a larger region, which would reduce the force
needed for the separation as compared to the model of Section 2.1. We
emphasize that a thin coating of the bridge fluid may be left behind
regardless of η*. However, when η* ≫ 1, e.g. when the outside fluid is air,
this thin coating would not affect the fluid mechanics in the bridge region
of this article.)
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or separation force. It is only when the bridge has low viscosity that this
thin coating affects the separation force.

To summarize the above speculation, the assumptions underlying Eq.
(15) would fail if the contact line does not recede as expected. This would
make Fcap dependent on velocity, and make Fvis dependent on capillary
phenomena. The first step to test the physical picture of Fig. 8 would be
direct visualization of the three-phase contact lines. That is not viable
with the imaging method used in this paper; instead, imaging along the z-
direction, perhaps with tracer particles added to the bridge fluid, may be
necessary.

However, we note that even though the idea of a thin residual coating
is appealing, it is unlikely to be the sole reason for the discrepancy. This is
because the model overpredicts the force right from the beginning of the
separation, whereas the notion of a residual coating is meaningful only
after some separation. It is possible that the velocity field in the outer
fluid is significantly perturbed by the interface, whereas the lubrication
model of course presumes a parabolic velocity profile at all locations.
More precise modeling, possibly informed by computational results, may
be needed to explain why the model overpredicts the separation force.

6. Summary and conclusion

This paper examines the dynamics of a liquid bridge between a sphere
and a flat plate being separated from each other. The total force needed
for separation has contributions from both, viscous as well as capillary
forces. Unlike previous research in this area [24–26,28] this paper fo-
cuses on situations where the viscosity of the bridge is far lower than of
the external fluid within which the particle and the plate are immersed.
We hypothesize that such low viscosity bridges reduce the force when the
separation velocity is sufficiently large that viscous forces make a sig-
nificant contribution.

We develop a theoretical model for the total force during separation.
Similar to previous research [26] the total force is postulated to be a sum
of the capillary force (assumed to be equal to the static capillary force)
and the viscous force. The latter is calculated using the lubrication
approximation, and hence the model is justified only when the
particle-plate separation is much smaller than the particle radius. Unlike
previous research where the external fluid was assumed to be inviscid
[24–26], the model in this paper is valid at any ratio of viscosity of the
bridge fluid to the external fluid. The total force thus calculated includes
viscous contributions from both, the pressure outside the liquid bridge
(proportional to the viscosity of the outside fluid), and from the pressure
inside the liquid bridge. In the case of interest here, when the bridge
viscosity is low, the model predicts that the pressure in the bridge is
nearly constant and has a value that is governed entirely by the external
fluid. Crucially, the bridge region is predicted to contribute to the viscous
force even if the bridge fluid is inviscid. As hypothesized, the model
predicts that a low viscosity bridge reduces the separation force as
compared to both, separation with a bridge of matched viscosity, or
separation without a liquid bridge.

The model is compared with experiments in which a sphere is sepa-
rated from a flat plate at a specified velocity. Unlike previous literature
on force measurements of liquid bridges [see the numerous citations
reviewed in Refs. [10,28]], in the present situation, the external fluid has
high viscosity. Thus, any macroscopic motion of the external fluid leads
to additional forces beyond those in the liquid bridge which can obfus-
cate measurements. To eliminate these, a new apparatus was designed
wherein the sphere-plate separation could be changed without macro-
scopic motion of the external fluid container. Experiments confirm that a
low-viscosity bridge reduces the total force during separation, and that
the magnitude of force reduction increases as the bridge volume in-
creases or as sphere-plate separation reduces. To our knowledge, this is
the first report of a liquid bridge reducing the force needed to separate
two surfaces. This experimental observation is most obvious at small
separations at which the geometric assumptions underpinning the theory
are well-justified. The magnitude of force reduction is almost two-fold
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larger than predicted by the model. Although we are not able to fully
explain this discrepancy, we speculate that one reason for the discrep-
ancy is that the contact line may not recede as expected as the solid
surfaces separate from each other. Finally, experiments on low viscosity
bridges also show that the bridge length at rupture at specified velocity
exceeds that for quasistatic rupture by an amount that increases with the
square root of the velocity. This same square root dependence was noted
previously [26] for high viscosity bridges suggesting that it is universal,
i.e. valid regardless of viscosity mismatch.

Although experiments are conducted and the theory is derived for
bridges between a plate and a spherical particle, all results are expected
to apply for bridges between a pair of particles as well. Thus these results
are immediately relevant to particulate suspensions in which a wetting
fluid is used to induce aggregation of the particles by liquid bridges, often
into a space-spanning network [34,38,50]. Such suspensions typically
have a yield stress, making them useful in applications such as
extrusion-based 3D printing. The rheology of these suspensions, which is
critical to their applications for materials processing, is governed by the
micromechanics of breaking liquid bridges between particles. These re-
sults suggest that low viscosity bridges may facilitate flow of these sus-
pensions at a specified rate while leaving unaffected their yield stress
which depends on static capillary forces.
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