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1. Introduction

1.1. Perverse-Hodge symmetry

For a compact irreducible symplectic variety)) M of dimension 27 with a Lagrangian fibration 7t: M — B,
the decomposition theorem, ¢f. [BBD82],

n
(L1) R, Q[ 2n] ~ @Pi[—i], P. ="' (R, Q) [21]) € Perv(B)
i=—n
provides important invariants for the topology of m. A perverse-Hodge symmetry was proven in [SY22],
connecting the cohomology of the perverse sheaves P; with the Hodge numbers of M.

Theorem 1.1 (¢f [SY22]). We have
(12) W™(B,P_y) = hWI(M).
Here h*(—) stands for dim H*(~), and h"’J(~) denotes the Hodge number.

The identity (1.2) governs the cohomology of the Lagrangian base, the invariant cohomology of a
nonsingular fiber of 7, and the Gokapumar-Vafa theory of K3 surfaces; we refer to [SY22, FSY22, HLS"21,
HM22] for more discussions on Theorem 1.1 and its applications.

The purpose of this paper is to explore and propose a categorification of the perverse-Hodge symmetry. It
suggests that Theorem 1.1 should conceptually be viewed as a cohomological shadow of a sheaf-theoretic
symmetry for Lagrangian fibrations with possibly noncompact ambient spaces M. It is a mysterious phenom-
enon since all existing proofs of (1.2), ¢f [SY22, HLS21, HM22], rely heavily on the global cohomological
properties of compact irreducible symplectic manifolds, and they do not “explain” why such a categorification
should exist. Our formulation uses perverse-Hodge complexes constructed from Hodge modules.

1.2. Perverse-Hodge complexes

Let (M, o) be a nonsingular quasi-projective symplectic variety of dimension 2n. Here o is a closed
nowhere degenerate holomorphic 2-form on M. Let 7: M — B be a proper Lagrangian fibration onto a
nonsingular base B; i.e., the restriction of the symplectic form o to regular part of a fiber vanishes. Interesting
examples of 7t include Lagrangian fibrations of compact irreducible symplectic varieties, ¢f [Bea9l], and
Hitchin’s integrable systems, cf. [Hit87a, Hit87b)].

Uwe say that M is irreducible symplectic if it is a compact Kidhler manifold such that H O(M,Q ]2\4) is spanned by a nowhere

degenerate 2-form.
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By Saito’s theory [Sai89, Sai90], the decomposition theorem (1.1) can be upgraded to an identity in the
bounded derived category of Hodge modules. Let QAH/I[Zn] be the trivial Hodge module, i.e., the pure Hodge
module associated with the shifted trivial local system Qp;[21]. We have

(1.3) Qi [2n] = (HPH[-i], PH =M (., Qff[2n]).

The Hodge module P consists of a regular holonomic (left-)Dg-module P; equipped with a good fil-

1
tration F,P;; it corresponds to the perverse sheaf P, under the Riemann-Hilbert correspondence. The

increasing filtration F,P; induces an increasing filtration on the de Rham complex
DR(P,) =[P — P;®Qp — - — P;@ Qj|[n].
The associated graded pieces are natural objects in the bounded derived category of coherent sheaves on B,
grf DR(P;) € DY Coh(B).
Up to re-indexing and shifting, we define
Gix :=gr  DR(P_y)[n —i].

We call G; i the perverse-Hodge complexes associated with the Lagrangian fibration 7t; here i is the perverse
degree, and k is the Hodge degree. The object G, \ is nontrivial only if 0 <7,k < 2n.
Our main proposal is the following conjectural symmetry between perverse-Hodge complexes.

Conjecture 1.2. Let 7t: M — B be a Lagrangian fibration. We have
Gik ~Gyi € D" Coh(B).

As in Theorem 1.5, Conjecture 1.2 categorifies a refined version of Theorem 1.1 when M is a compact
irreducible symplectic variety. By Proposition 3.3, it also recovers Matsushita’s result [Mat05] on the higher
direct images of O);.

1.3. Main results
We provide evidence for Conjecture 1.2 and verify it in several cases.

1.3.1. Smooth morphisms.— Our first theorem verifies Conjecture 1.2 when 7t: M — B is smooth. In fact,
we obtain a stronger result in this case.

Theorem 1.3. Assume that 7t: M — B is smooth. The symplectic form o on M together with a polarization
induces an isomorphism

Gix — Gk

at the level of complexes.

Theorem 1.3 is essentially a reformulation of a result of Donagi and Markman [DM96] on the polarized
variation of Hodge structures associated with the family. Both complexes G;; and Gy ; have the same
length, and a term-by-term isomorphism is constructed between them. The mystery of Conjecture 1.2 is
an “extension” of this isomorphism to the singular fibers. As we see from Section 3.4, in general such an
extension is complicated, and the derived category is essential for the formulation.
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1.3.2. Hilbert schemes.— Next, we consider the Lagrangian fibration
(1.4) . gl . gtm) __, g(n)

induced by an elliptic fibration of a symplectic surface 7t: S — B. Typical examples include:
(i) 7t: S — P! is an elliptic K3, and rlnl: sl — (P1)") = P js a Lagrangian fibration of the compact
irreducible symplectic variety sl and
(i) 7: S — A! and the induced morphisms 7[": S["] — (A1)} = A" are the Hitchin fibrations
associated with five families of moduli of parabolic Higgs bundles labeled by certain affine Dykin
diagrams; ¢f [Grol4, Zhal7|.

Theorem 1.4. Conjecture 1.2 holds for (1.4) for any n > 1.

The decomposition theorem associated with (1.4) has many supports besides the full base B™. In
particular, the isomorphism of Conjecture 1.2 in this case is not merely an extension of the isomorphism
of Theorem 1.3 for variations of Hodge structures. Semisimple objects of the decomposition theorem (1.3)
supported on the “boundary” of B") contribute nontrivially.

1.3.3. Global cohomology.— Lastly, we consider Lagrangian fibrations 7t: M — B associated with compact
irreducible symplectic varieties.?) Since B is projective, the (hyper-)cohomology groups of the perverse-Hodge
complexes are finite-dimensional.

The following theorem shows that in this case Conjecture 1.2 holds cohomologically.

Theorem 1.5. Let t: M — B be a Lagrangian fibration with M a compact irreducible symplectic variety. Then
we have

(15) H*(B, gi,k) = H*(B; gk,i)'

We prove Theorem 1.5 following the ideas of [SY22], which connects the cohomology groups in (1.5) to the
weight spaces of the Looijenga-Lunts—Verbitsky algebra; ¢f. [LL97, Ver90, Ver95, Ver96]. As a byproduct we
deduce that (1.5) refines (1.2), which justifies that Conjecture 1.2 categorifies Theorem 1.1.

From another aspect, Theorem 1.5 suggests that, among all the symmetries encoded by the Looijenga-
Lunts-Verbitsky algebra of M, the particular one inducing (1.5) can be lifted sheaf-theoretically.

Acknowledgments

We are grateful to Davesh Maulik for his enthusiasm and for many helpful discussions. We also thank
Bohan Fang, Mirko Mauri, Peng Shan, and the anonymous referee for useful comments and suggestions.

2. Smooth morphisms and variations of Hodge structures

Throughout this section, we assume that 77: M — B is smooth, so that the Hodge modules PiH are

variations of Hodge structures.

2.1. Variations of Hodge structures

As a consequence of the Arnold-Liouville theorem, a nonsingular fiber of a Lagrangian fibration is
a complex torus. In particular, the smooth map 7w: M — B is a family of abelian varieties. The key to
understanding the topology of 7 is the variation of Hodge structures

V =R',Qy;

(2)As the base B is assumed to be nonsingular, by a result of Hwang [Hwa08] we know that B is a projective space. However, this
fact will not be used in this paper.
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it is polarized of weight 1 with associated holomorphic vector bundle V = V ®p Op. The integrable
connection V: V — V®Q} and the Hodge filtration

2.1) 0=F’VcF'VcFV=V
are compatible via the Griffiths transversality relation
V(F'V)cFlveQl.
This yields an Og-linear map between the graded pieces of (2.1)
(2.2) V0 yolgQl.

Here V177 = gr} V is a vector bundle describing the variation of H!~/(Mj,) of the fibers M}, with b € B.
For our purpose, we also consider the variation of Hodge structures V¥ = AFV of weight k. Its Hodge
filtration is

0 = FIpk c pRlyk o c POVR = k)
where the it piece is given by

Fiyk = Z F,VAF,VA--NF V.

Tk
ij+ip+e i =1

We denote by V'J the graded piece grf Vit
Lemma 2.1. We have a canonical isomorphism of vector bundles
ANV @AY =, pii,

Proof. The morphism is induced by the cup product and the compatibility with Hodge filtrations. It suffices
to check that it is an isomorphism when restricting to each b € B; this follows from the fact that M is an
abelian variety, so that we have

H" (M) = N'HYO (M) ® NN H' (M}). O

2.2. Symplectic form

We discuss the interplay between the symplectic form ¢ and the variation of Hodge structures V.
By [Mat05, Lemma 2.6], the symplectic form ¢ and a polarization on M induce an isomorphism

(2.3) VOl Qf,
which further yields
AR YOk = ARYOL 2 AROL = Ok
Combining (2.2) and (2.3), we obtain a morphism of vector bundles as the composition:
0=01®1)oV: V"’ -V e0; —QpeQ;.

Lemma 2.2 (Donagi-Markman). The morphism 0: V10 — QL ®Q} is symmetric with respect to the two factors
of the target.

Proof: Notice that V!0 is dual to V! ~ Qll3 via the polarization. Hence 6 can be viewed as a section
of Q%; ® Q%; ® Qé The proposition follows from the cubic condition for Lagrangian fibration [DM96,

Lemma 7.5] which says that the section corresponding to 6 is induced by a section of Sym>Q%; see also
[Voil8, Theorem 4.4]. 0
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More generally, for any k > 1 we consider the morphism
ﬁ: Vk,O — Vk—l,l ®Q]13 — Vk—l,O ®VO,] ®Q1
where the first map is induced by the Gauss-Manin connection V: V — V ®Q%} and the second identity is
given by Lemma 2.1.

Corollary 2.3. The composition
(1®:®1)oV: VRO 5 PEL0gpllgnl L y-ligolenl
is symmetric with respect to the second and third factors of the target.

Proof- We proceed by induction on k. The induction base is Lemma 2.1. Now assume that the statement
holds for k — 1. We have

Vk,O — /\k—lvl,o A Vl,() — Vk—l,o A Vl,()

We consider a local section s; of V%0 which can be written as s;_; At with s;_; and t local sections of Vk~1.0

and V10, respectively. The image V(sk) consists of two terms V(si_1) A s; and sg_; A V(s;). We obtain from
the induction hypothesis and the induction base that both of them are local sections of V10 @ Sym? Q.
This completes the induction. g

2.3. Proof of Theorem 1.3

The main ingredients of the proof are

i) the isomorphism (2.3) induced by the symplectic form o and a polarization, and
p y ymp p
(ii) the symmetry of Corollary 2.3, which follows from the Donagi-Markman cubic condition.

We first note that by Lemma 2.1 we have a canonical isomorphism
(2.4) ViigQk =vileayilgakQl.
Hence (2.3) induces an isomorphism of vector bundles
(2.5) ik VI ek S Vvikeq)

by switching the second and third factors of the right-hand side of (2.4).
Secondly, for any i, j, k, the Gauss-Manin connection of V induces an Og-linear morphism

V: Vo0l — VT et

The following proposition shows the compatibility between the isomorphisms ; ; y and the morphisms V;
it relies heavily on ingredient (ii).

Proposition 2.4. We have a commautative diagram

ek Y i—1,j+1 o (yk+1
VIeQE —— VT Q"

l/li,j,k l/li—l,j-v-l,kﬂ
. . v . . 1
VikeQp —— pittkleQi™
Proof- To simplify the notation, we write the morphism of the top horizontal arrow as
=1 ] ] — j+1
(2.6) V: Vi eQLe0k — Vi 0e0L" ek,

where we suppress the isomorphisms induced by (2.3) and Lemma 2.1. In particular, for a local section

2.7) s®t®uer(vif°®ﬂg®n’g),
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the image V(s®t ®u) is a local section of V710 Q?l ® Qlf;rl. Similarly, for the same element (2.7) we
have

V(is@uet) er(vi—1,0®Qlé+1 ®Q];1).

To prove the commutativity of the diagram, it suffices to show that V(s®t®u) and V(s ® u ® t) coincide
under the natural isomorphism switching the second and the third factors

i-1,0 j+1 k+1 _vyi-1,0 k+1 j+1
vV ®Q0Qp Q" =V ®Qp ®Qp .

By Griffiths transversality, the morphism V of (2.6) is linear with respect to the second factor on the
left-hand side as it represents V%/. Therefore, we have
V(is®@t@u)=V(s) At Au.
Here
2.8) V(s)er (Ve QpeQj)

and the wedge product with t and u are on the second and third factors, respectively. Hence the desired
property is a consequence of Corollary 2.3, which states that (2.8) is symmetric with respect to the second
and third factors. ]

Lastly, we show that Theorem 1.3 follows from the commutative diagram of Proposition 2.4. Since
1t: M — B is smooth, the Dg-module P;_,, in the Hodge module Pf , is the variation of Hodge structures Vi,
and the filtration F,P;_,, is described as

FPi_, = F Tyl

In particular, the de Rham complex of P;_,, is
DR(P._,) = [vi Vvigal Y. Yy ®Qg][n],
and the associated perverse-Hodge complexes are
Gir = [Vk,i—k Y, pk-Li-k+1 ®QL VoY phenicken ®Qg][2n _il.

We prove Theorem 1.3 by showing that the two complexes G, x and Gy ; match term by term via the
isomorphisms (2.5). For convenience we may assume i < k. As V' =0 for j < 0, we find

(2.9) Gi = [Vi'o Ok L pi-ligokitt Y, T, pkomicken ®Qg][zn —k].

On the other hand, we have V¥J = 0 for j > 1 by the fact that 7 is a family of abelian varieties of dimension 7.
Consequently, the complex Gy ; is of the form

(2.10) gk,i — [Vi,k—i L Vi—l,k—i+1 ®Q% L L Vk—n,n ®QiB_k+”][2n _ k].

We see that the complexes (2.9) and (2.10) are of the same length and are both concentrated in degrees
[k —2n,i—n]. Then Proposition 2.4 yields an isomorphism

(4,0, k—ir Lim1,1 k—it1r -+ 2 bkemyi—k+m,n) * Gik — Gk i»

where the commutative diagram guarantees that it is indeed an isomorphism of complexes. This completes
the proof. 0
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3. Hodge modules

In order to extend the isomorphisms established in Section 2 to the singular fibers, we need to use Saito’s
theory of Hodge modules [Sai89, Sai90]. We begin with some relevant properties of Hodge modules. Then
we recall Matsushita’s result [Mat05] on the higher direct images of Oy; we show in Proposition 3.3 that
Matsushita’s result is equivalent to the case k = 2n of Conjecture 1.2.

3.1. Hodge modules
Recall that a variation of Hodge structures of weight w on a nonsingular variety X is a triple
(3.0) VHE =(V,F,, V), V(EV)CF,VeQl,

where V is a (Q-)local system, F, is an increasing filtration, and V = V ®q Oy, such that the restriction
(Ve E, V) to each x € X is a pure Hodge structure of weight w.®) We say that VH is polarizable if it admits
a morphism

Q: VxV —Qw)=(21)"Q

inducing a polarization on each stalk V.
Pure Hodge modules introduced by Saito [Sai89] are vast generalizations of variations of Hodge structures.
As in (3.1), a pure Hodge module on X is a triple

(3.2) P? = (P,F,,P), V(FP)CF P®Q%L,

where P is a regular holonomic Dx-module, F, is a good filtration on P, and P is a perverse sheaf on X,
such that 7 corresponds to P ®q C via the Riemann-Hilbert correspondence.) Such triples satisfy a number
of technical conditions; in particular, one can define the notions of weight and polarization.

The following theorem by Saito [Sai90] provides a concrete description of polarizable pure Hodge modules
on X as extensions of polarizable variations of Hodge structures.

Theorem 3.1 (Saito).

(1) The category HM(X, w) of polarizable pure Hodge modules of weight w on X is abelian and semisimple.

(2) For any closed subvariety Z C X, a simple polarizable variation of Hodge structures of weight w —dim Z
on a nonsingular open subset of Z can be uniquely extended to a simple object in HM(X, w).

(3) All simple objects in HM(X, w) arise this way.

From now on, all Hodge modules are assumed to be pure and polarizable. For any simple Hodge
module (3.2), we define its support to be the support of the simple perverse sheaf P.
Set dim X = d. The de Rham complex of a Hodge module PH = (P, F,) is

\% \ \
DR(P) = [P—> PRQL ... = P®Q§(][d]
and is concentrated in degrees [—d, 0]. The filtration F,P induces an increasing filtration
v LV v i
FyDR(P) = |F{P — F 1 P®Qy —> - — Fr g P Q% |[d]

whose k' graded piece is the complex of Ox-modules

griDR(P)z[griplgrQlP@QkLwlgriﬂﬂ’@ﬂi ).

(3)Traditionally the Hodge filtration is a decreasing filtration; the relation with the increasing filtration here is F_j = F k,

HFor convenience, we sometimes only use the pair (P, F,) to denote a pure Hodge module.
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Note that gri P =0 for k >0 when P is given by a variation of Hodge structures, but this is not true for
general Hodge modules. The functor gr; DR(—) extends naturally to the bounded derived category of Hodge
modules taking values in DY Coh(X).

3.2. Decomposition theorem, Saito’s formula, and duality

Let f: X — Y be a projective morphism between nonsingular varieties. For a Hodge module
PH = (P,F,) e HM(X, w), Saito’s decomposition theorem [Sai89] states that there is a decomposition in the
bounded derived category of Hodge modules on Y,

6.3 foP! = A (£PH) 1)

with 7'(f.PH) e HM(Y,w +i). Its compatibility with the functor gri DR(-) is given by the following
formula (often known as Saito’s formula; see [Sai89, Section 2.3.7)):

(3.4) Rf.grf DR(P) = grf DR(£.P) = (P gr DR(H' (£, P))[-i].
i
The functor grf DR(-) is also compatible with Serre duality. Recall that dimX = d. For a Hodge
module PH = (P, F,) e HM(X, w), we have
(3.5) RHomp, (grf DR(P), a)X[d]) ~ grfk_w DR(P),

where wy is the dualizing sheaf of X; see [Schl6, Lemma 7.4].
Now we consider a Lagrangian fibration 7t: M — B with dim M = 2n. For our purpose, we study the
direct image T(+QZI(I/I[2?I] of the trivial Hodge module

Qpi[2n] = (Om,F,),  F_1Opm =0 C FgOpr = Opr.
A direct calculation yields
(3.6) grf, DR(Oy) ~ Q4 [2n - k].
Here conventionally Q'M =0 for k < 0. Formulas (3.3) and (3.4) then read

7, Q[ 2n] = @RH[—i], P = (P, F,) e HM(B, 2n +1)

i=—n

and
n
(3.7) R, QK [2n - k] ~ g, DR(f,Op) ~ @ gr’ DR(P,)[-i].
i=—n

Finally, since dimB = n and all the fibers of 7: M — B have dimension n, we have gr£ DR(P;) =0
for k < max{-2n,—2n—i}. Applying the duality (3.5), we also have gr{: DR(P;) = 0 for k > min{0, —i}.
3.3. Matsushita’s theorem revisited

Let 7t: M — B be a Lagrangian fibration with dim M = 2n. Matsushita [Mat05] calculated the higher
direct images of Oy;.

Theorem 3.2 (Matsushita). For 0 <i <n, we have

(3.8) Rimt,Op ~ Qb



10 J. Shen and Q. Yin

Proof. Matsushita’s proof assumes that M is projective. However, as he explained in [Mat05, Remark 2.10],
the projectivity for M is only used for Kollar’s decomposition [Kol86]

RT(*C()M = @ RiT(*Cl)M[—i].
i

Since the decomposition now holds for any projective morphism as a consequence of Saito’s theory of Hodge
modules [Sai9l], we may safely remove the projectivity assumption for M in Matsushita’s theorem. n

Proposition 3.3. The case k = 2n of Conjecture 1.2 is equivalent to (3.8). In particular, Conjecture 1.2 holds
when k = 2n.

Proof. When k = 2n, the desired isomorphism of Conjecture 1.2 is

(8.9) g1, DR(Pry)[n =] = grl; DR(Py)[-1].

On one hand, the Hodge module P! is the (—n)™" Tate twist of QII;I [1]
Py = Qi [n)(-n) = (Op, F-s),

so the right-hand side of (3.9) is
grf, DR(P,)[-n] ~ Q"[n—1i].

On the other hand, since grf »n DR(Pi_,,) is always a sheaf (concentrated in degree 0), combining (3.6)
and (3.7), we obtain that the left-hand side of (3.9) is

(3.10) grf, DR(P_,)[n—i] =~ R "mwp[n—i] =~ R"w,Op[n - i].
Consequently, (3.9) is equivalent to (3.8). g

Remark 3.4. In view of (3.7), Conjecture 1.2 would provide a new recipe for calculating the higher direct
images of Q?\/I for all k, extending Matsushita’s work. We could use the perverse-Hodge symmetry to trade
the contributions of grf « DR(P) for all i for the contributions of grl_: ; DR(Py_,) for all i. The latter has the
advantage of only involving a single Hodge module Pkff -

3.4. An example

To illustrate the subtleties when extending Theorem 1.3 to the singular fibers, we consider the following
basic example.

Let 7t: S — B be an elliptic fibration of a symplectic surface. We assume that 7t only has singular fibers
with a double point, over a finite set D C B. Let j: U = B\D <> B be the open embedding.

We look at the symmetry

(3.11) grl_:1 DR(P_y)[1] = grg DR(P,)

proposed by Conjecture 1.2. Since the Hodge module P_P{ is the trivial Hodge module Qg [1], the left-
hand side of (3.11) is Q}[1]. For the right-hand side, let (V,F,, V) denote the variation of Hodge struc-
tures RlT(U*QSU on U. Then the Hodge module POH on B is the minimal extension (j,V, F,), which can be
described concretely using Deligne’s canonical extension.

Recall that the canonical extension depends on a real interval [a,a+1) or (a,a+ 1] where the eigenvalues of
the residue endomorphism should lie. In our situation, the monodromy around each point of D is unipotent
(given by the matrix (1) in local coordinates), so the eigenvalues are necessarily integers. Let V be the
canonical extension of )V with respect to either [0,1) or (=1, 0]; it is locally free of rank 2 on B. Schmid’s
theorem says that F,V := j,F,)VNV is a filtration by locally free subsheaves. By [Sai90, Section 3.10], we have

jV =Dg-V cV(+D),
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where the Dg-action is induced by Deligne’s meromorphic connection on V(+D), and

FjV = ZFiDB -FiV.
i>0
It follows that for the right-hand side of (3.11), we have
V+F Dg-F_ |V v, F1Dg-V+F,Dg-F_V
F_lv V-i— F1DB 1V

(3.12) gri DR(Py) = ®Qp|[1]

In particular, as a complex it has two nontrivial terms. But V is clearly surjective; to see its kernel, we do
a calculation in local coordinates. Let ¢ be the local coordinate of B near 0 € D, and let «,  be a local
trivialization of V. Since the monodromy matrix around 0 is (} }), the residue matrix for V is (0 1/ 276@).
In other words, we have

1 dt
Va=0, V= aR —
P 2ntV-1
We also have
FoV =(f(t)a+g(t)B),

where f(t),g(t) are holomorphic functions with g(#) nonvanishing. From this we see that
F,Dg-V=V+F Dg-F_V,

hence

(V\
(3.13) V(P_IV) = 0.

On the other hand, the map V induces an isomorphism

V-f-FlDB V ~ 1DB~V+P2DB'F_IV
v F1D3~V

(3.14) V: ®Qp

sending %a to —tlza ®dt. Combining (3.13) and (3.14), we deduce that the kernel of V in (3.12) is

_ Y _
ker(V) = _ —orfy.
(V) F .y 228

Finally, by [Kol86, Theorem 2.6] and (3.8), we have
grgv ~ R'7,05 ~ Q},

which yields the desired isomorphism (3.11) only(!) in the derived category DY Coh(B).
Note that the proof in Section 4.1 works for all symplectic surfaces S with 77: S — B and does not rely on
information about the singular fibers.

4. Hilbert schemes of points

In this section we prove Theorem 1.4; it is completed by a series of compatibility results regarding the
perverse-Hodge symmetry and natural geometric operations.
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4.1. Surfaces

We first verify Theorem 1.4 for n = 1, where the Lagrangian fibration is an elliptic surface 7: S — B. It
suffices to prove Conjecture 1.2 for
0<i<k<2

The cases when k = 2 were covered by Proposition 3.3. Therefore, it remains to show the symmetry (3.11)
for S, whose left-hand side is
grly DR(P-p)[1] = Q1]
The right-hand side can be computed via the duality (3.5):
gry DR(P) = RHomg, (grf, DR(Py), wp(1]) ~ Qp[1],

where the last isomorphism follows from (3.10).

4.2. Closed embeddings and finite morphisms

Let X be an irreducible quasi-projective variety of dimension d. Let

(41) {ff =i F)}_,
be a finite sequence of Hodge modules on X. We say that the Hodge modules in (4.1) are perverse-Hodge
symmetric (PHS for short) on X if for any i,k € Z we have

grt, DR(Q;_y)[d —i] ~ grf, DR(Qy_y)[d — k].O)

Clearly Conjecture 1.2 is equivalent to the statement that the Hodge modules PiH given by the decomposition
theorem (1.3) are PHS on B. In general we say that a morphism f: X — Y is PHS if the trivial Hodge
module Q;I [dim X] is pure on X and the Hodge modules obtained from the decomposition theorem
of f,Q¥[dim X] are PHS on Y.

The following proposition shows the compatibility between the perverse-Hodge symmetry and push-
forwards along closed embeddings and finite morphisms.

Proposition 4.1. Assume that the Hodge modules QZH =(Q;, F,) are PHS on Z.
(1) Let1: Z < X be a closed embedding of codimension c. Then the Hodge modules

QH =1,Qf(~c)

are PHS on X.
(2) If f: Z — X is a finite surjective morphism with dim X = dim Z, then the Hodge modules
QfH =f+ QzH
are PHS on X.

Proof- We only prove (1) as (2) is completely parallel. For a closed embedding i: Z < X, we have

g’ DR(Q}_,)[d ~i] = 1, g, DR(Q;_a(~¢))[d ~ 1]

=k grl_:(k_c) DR(Q(i—¢)-dimz)[dim Z — (i —c)].

Similarly,

grl—:i DR(Q];_d)[d - k] =1 grf(i,c) DR(Q(k—c)—dimZ)[dimZ - (k - C)]
The proposition then follows from the isomorphism

8rf(k_c) DR(Q(i—¢)-dimz)[dim Z — (i = ¢)] ~ grf(i_@ DR(Q(k-c)-dim z)[dim Z — (k — ¢)]

given by the assumption. O

(5)By [Sch16, Lemma 7.3], the functor gr;, DR(—) is well defined for possibly singular varieties.



Perverse-Hodge complexes for Lagrangian fibrations 13

4.3. External products

Let X and Y be quasi-projective varieties, and let

=(P,F,), Q"=(QF,)

be Hodge modules on X and Y, respectively. We recall the following standard lemma concerning the
external product
PrQ=pryP®pryQ
on X xY.
Lemma 4.2. We have

gri DR(PRQ) ~ @ gr! DR(P)mgr! DR(Q) € D" Coh(X x ).

l+]

Proof. This follows from the fact that the (filtered) de Rham functor is compatible with taking external
product (¢f- [MSSI1, Equation (1.4.1)]). O

Now we consider projective morphisms
(4.2) f]-:Xj—>Y]~, ji=12,...,n

with X; nonsingular. For each f;, we have the Hodge modules QZH] obtained from the decomposition theorem
£l [dimXj] = @D @ [-il, Q= (£ [dimX;]).
i
We show the compatibility between the perverse-Hodge symmetry and products of varieties.

Proposition 4.3. If the morphisms (4.2) are PHS, then the product morphism
f:H]f} X:XlXsz-.~xXn—>Y:Y1szx...XYn

is also PHS.
Proof. Since

QH[dimX] ~x" QY [dim X;]

X j=1"<X; il
we have
f.QF[dim X] ~ =, f;, QY [dim X;].

Therefore, from the decomposition theorem

f,Q%[dimX] ~ QB wH-i], W = (f,Qf[dimX]),

we obtain each summand

H H H
@ Qi 1®Q; ,®--RQ;

i)+ ti, =1

By Lemma 4.2 this further yields
gI‘ DR(WI dim Y @ gI‘ DR(Qll —dim Yj,1 ) N grfkn DR(Qi,,—dim Y,,,n)-

iy +eti,=i
ky+-+k,=k

Using this decomposition and the fact that the Qﬁ] are PHS, we see that there is a one-to-one correspondence
between the summands in the decompositions of

gr' DRWi_gimy)[dim Y —i],  grl, DR(Wi_gimy)[dim Y k],

respectively. This completes the proof. 0
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Remark 4.4. 1f each f;: X; — Y; is a Lagrangian fibration, then the product f: X — Y is also a Lagrangian
fibration. Hence Proposition 4.3 provides consistency checks for Conjecture 1.2; it shows that if each f;
satisfies Conjecture 1.2, then their product satisfies it as well.

Remark 4.5. We note that the only use of the nonsingular assumption in Proposition 4.3 is that the trivial
Hodge modules Q)hgj [dim X;] on X; are pure.

4.4. Symmetric products

Let Q" = (Q,F,) be a Hodge module on X. Its symmetric product (Q)™ was introduced in [MSSI1],

(n

which defines a Hodge module on the symmetric product X" of the variety. Furthermore, such an operation

is extended to the bounded derived category of Hodge modules on X.
Proposition 4.6. If the QIH are PHS on X, then the (QZH)(”) are PHS on X"

Proof Let g: X" — X" be the S,,-quotient map. For an object F* € D? Coh(X), we similarly consider the
symmetric product

Sy
(F*)" = (g.F7*=")™" € D’ Coh(x™).
Now by Proposition 4.3, we know that the Hodge modules (Qf{ )®" are PHS on X". Proposition 4.1(2) further
implies that the Hodge modules q+(QfJ )= are PHS on X", To prove the corresponding property for
Sy
Q)" = (q,(Qf)=)
on X(”), it suffices to show that the natural isomorphism
9.8r; DR((Qf")™") ~ gr, DR (q,.(Qf)™")

is equivariant with respect to the S, -actions. It follows from [MSSI]] that the (filtered) de Rham functor is
compatible with the symmetric group action on X"; more precisely, see [MSSI1, proof of Proposition 1.5]. [

4.5. Proof of Theorem 1.4

For our purpose, we describe the decomposition theorem associated with the morphism

f )

. glnl 2, gn) = ~(n)

The first map f: S["l — S of the composition is semismall, and the associated decomposition theorem
is calculated in [GS93], which we now review. For a partition

(4.3) y=1%2%...n%
of 1, we use SV to denote the variety
SV = gla1) o g(a2) o ... 5 glan),

We consider the stratification of the target variety S (1) by the combinatorial types of the points:

4

there is a canonical finite surjective morphism

Kyt s 51(,”);

see [GS93, Section 3]. We use |v| to denote the length ) ;a; of the partition (4.3). Then we have

codim g (si”)) =2(n—v|).
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The main result of [GS93] is the decomposition theorem

QY [2n] = P . QK 21V II(Iv] - ).

v

Composing with the symmetric product map 77™: $ — C induced by 7: S — C, we have
(4.4 n ol (2n] = Pk, QU [21[1(1v] - )
v

Now we consider the commutative diagram

s Ly gt

ln(v l/n(”)

Ky
)
c Ky gl

where «/,: CV) — CLH) is defined analogously to «,,, (") is induced by 7, and the right vertical arrow is the
restriction of 77(": S(" — C"). Since

1
codim ) (C,(,n)) =3 codimg (S,(,n)) =n-|v|
the right-hand side of (4.4) can be expressed as

(4.5) P, (nf)Qg{V) [dim ] (—codimcm (CL”)))).

v

We complete the proof of Theorem 1.4 by showing that the Hodge modules given by each term in (4.5) are
PHS on C").

Since 7t: S — C is PHS, by Proposition 4.3, 7*: Sk — C* is PHS for any k > 1. Combining with
Proposition 4.6, we obtain that each symmetric product 0. s _ Ck) is PHS, which further yields
that 7): ") — C(") is PHS by taking products. Equivalently, the Hodge modules va obtained from the

decomposition theorem

rQll, [dims”] = Dl -, Qff =7 (="l [dims™])
i
are PHS on C!”). Finally, we push forward the Tate-twisted Hodge modules

(4.6) va (— codim ¢ (@))

along the composition of the finite surjective map cv - Cf,n) with the closed embedding C(Vn) < C),
By Proposition 4.1, the Hodge modules (4.6) are PHS on C™ as desired, where the Tate twist in (4.6) is
crucial. O

5. Global cohomology and LLV algebras

We specialize to Lagrangian fibrations 7t: M — B associated with compact irreducible symplectic varieties.
We prove Theorem 1.5, which is the perverse-Hodge symmetry at the level of global cohomology. Our main
tool is the Looijenga-Lunts-Verbitsky (LLV for short) Lie algebra [Ver95, Ver96, LL97], a structure that is
unique to compact irreducible symplectic varieties.
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5.1. LLV (sub)algebras

Let M be a compact irreducible symplectic variety or, equivalently, a projective hyper-Kéhler manifold.
Assume dim M = 2n. We call an element a € H?(M, C) of Lefschetz type if for any k > 0, cupping with a*

gives an isomorphism
afu: H>" K (M, C) = H?*" (M, C).

Such a class @ induces an sl,-triple (L,, H,A,) acting on H*(M, C). The LLV algebra g(M) is generated by
all sl,-triples associated with Lefschetz type classes. As is shown in [Ver95, Ver96] and [LL97] independently,

there is a natural isomorphism
g(M) = so(by(M) + 2),

where by(M) is the second Betti number of M.

Two subalgebras of g(M) played a crucial role in establishing Theorem 1.1. The first is Verbitsky’s so(5)
generated by the sl,-triples associated with the three Kéhler classes wr, wj, wg. By [Ver90], the weight
decomposition of H*(M, C) under Verbitsky’s s0(5) coincides with the Hodge decomposition. Consider the
Cartan subalgebra of this s0(5) spanned by

H,Hp := =V=1[Ly,, Ay |-
Then the Hodge decomposition

(5.0) H*(M,C) = EB HY (M) = @ H/(M,Ql,)
i,j i,j

satisfies
Hlpiigvy = (i +j—2n)id,  Hplgijy = (i —j)id.

The second is the perverse s0(5) introduced in [SY22], which concerns a Lagrangian fibration 77: M — B.
Let € H*(M,C) be the pull-back of an ample class on B, and let 17 € H*(M, C) be a relatively ample class
satisfying gps(17) = 0; here gp;(—) is the Beauville-Bogomolov-Fujiki form on H?(M, C). The perverse s0(5)
is generated by the sl,-triples associated with

n+p, —N=1(1-p)
and a third element p € H2(M, C) satisfying

am(p) =am(n+B), (o,mm = (p,f)m =0;

here (—,—)ps is the bilinear form associated with g;(—).
By [SY22, Theorem 3.1], the weight decomposition of H*(M, C) under the perverse s0(5) takes the form

(5.2) H*(M,€) = (HPH" (M) = D H/™(B, P, ©o ©),
i,j i,j

where the P; are as in (L1). In terms of the Cartan subalgebra spanned by
H,Hp = V=1 [Lysp Ay, ]

we have

Hlopiionn = (i +j = 2n)id,  Hplopgipy = (i — j)id.
(M) (M)
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5.2. Perverse-Hodge algebra

Let t: M — B be a Lagrangian fibration with M a compact irreducible symplectic variety of dimension 2.
Since B is of Picard rank 1, the ample class w; € H?>(M,C) admits a unique decomposition w; = n+p
with 77, as in the previous section. We also have w; = 0 + 0, where o is the symplectic form; hence
(wp,m)m = (wy, B)m = 0. In particular, the perverse $0(5) can be generated by the sl,-triples associated
with w; = i+ B, —V-1(11 - B), and wj.

We now consider the subalgebra g C g(M) generated by the sl,-triples associated with

(5.3) wr =1+, —VN-1( - B), wj, w.

We call it the perverse-Hodge algebra; it is naturally isomorphic to s0(6) by the description of g(M) in [Ver95,
Theorem 11.1]. A Cartan subalgebra 1 C g is spanned by

(5.4) H, Hp = —N=1|Ly5A_y V0P | He = =V=1[Lay, Auy |-
We have the weight decomposition
(5.5) H*(M,C) = @ HY64(M),
ik,d
so that

Hlgikay = (d - 2n)id, HP|H1kd =(2i—-d)id, leHlkd =(2k-d)id.
The perverse—Hodge algebra g contains both the perverse so0(5) and Verbltsky s 50(5) as subalgebras.
Comparing (5.5) with (5.2) and (5.1), we find

H"™ (M) = grf, H*>"(B,P,_,, ®q C[n — i),

where F_; = F¥ is the Hodge filtration on the pure Hodge structure HY2"(B, P, [n—1]).
On the other hand, by Saito’s formula (3.4) applied to the Hodge module an under the projection
f: B — pt, we have

H4=2n (B, grfk DR(P;_,,)[n— 1]) ~ grfk HA=2n (B, P_, ®qCl[n— z])
The left-hand side is precisely the cohomology of the perverse-Hodge complex G; . We conclude that
(5.6) HYM (M) = H2(B, G ).

5.3. Proof of Theorem 1.5

Via (5.6), we have identified the cohomology groups H*(B, G; ) with the weight spaces of H*(M, C) under
the perverse-Hodge algebra g. Theorem L5 is then equivalent to the symmetry of the weight spaces

(5.7) H¥&4 (M) ~ HE (M),
The symmetry is a feature of s0(6)-representations. More concretely, consider the subspace
V ={w; =1 +B,-V-1(1 - B), wj, wg) € H*(M, C)
equipped with the quadratic form gy = gps|y. Set

-vemew@, w-awe(’ )

By [Ver95, Theorem 11.1] we have a natural isomorphism g =~ so(V). Up to renormalization, we may assume

Q. )y =By =(0,0)y=1

so that —(),77,0,1, 8,0 form a standard isotropic basis of V. Under this basis, the three elements H, Hp, Hg
in (5.4) are precisely (twice) the basis of  C g described in [FH91, Section 18.1]. Let H*, Hy,, H;. denote the
dual basis of i*. By [FHII, Section 18.1, p. 271], the Weyl group of g is isomorphic to (Z/2Z)? =S5, where the
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symmetric group S3 permutes the three coordinate axes of Ir* and the generators of (Z/2Z)? act diagonally
by (1,-1,-1) and (-1,-1,1). In particular, there is an element of the Weyl group exchanging Hp, Hy
while fixing H*. Consequently, we obtain the symmetry of the weight spaces (5.7) through the Weyl group
action. O

Remark 5.1. We have been kindly informed by Mirko Mauri that the isomorphism (5.7) can be obtained by
combining Verbitsky’s so(5)-action and the monodromy symmetry; see the proof of [HM23, Corollary 3.5].

Remark 5.2. Starting from the isomorphism H'*/~=2"(B, Gik) = Hi*i=2n(B, Gy,i), we may sum over the index k.
On one hand, we get

2n 2n
D H"2"(B,Gij) = ) grt H 72 (B, P, @ C[n - i)
kZO k:O

~ H"J72"(B, P,_, ®q C[n —i])
~ H/™"(B,P._,, ®q C).
On the other hand, by (3.7) we have

m 2n
P H"I2"(B,Gy) ~ H" | B, D gr! DR(Piy )~ k]
k=0 k=0

~ H*I=2" (B, Ryr, Q21— )

~ HI(M,Q})).

We see that Theorem 1.5 refines Theorem 1.1.

Remark 5.3. One can collect the numbers h""*? := dim H*®¢(M) and depict them in a 3-space. We call it
the perverse-Hodge diamond of 7t: M — B. For example, the (d = 2n)-plane has the shape

hn,Zn,Zn
hO,n,Zn . hn,n,2n . th,n,Zn

hn,O,Zn

To simplify the discussion we assume b,(M) > 5. Then the perverse-Hodge algebra g can be upgraded to
an 50(7) by adding one more sl,-triple, namely the one associated with an element p € H?(M, C) which is
orthogonal to the four classes in (5.3) with respect to gp;(—) and shares the same norm. The Weyl group
of 50(7) is the full symmetry group of the regular octahedron, and as such it acts on the perverse-Hodge
diamond (whereas the Weyl group of s0(6) acts as the subgroup of rotational symmetries). Meanwhile, it is
expected that the perverse-Hodge diamond has precisely the shape of a regular octahedron, meaning that
no nonzero numbers 154 lie outside the convex hull of the six vertices

hO’O’O hO,n,Zn hn,O,Zn hn,Zn,2n h2n,n,2n h2n,2n,4n
’ ’ ’ ’ ’ .

See also [GKL*22, Conjecture 1.19] for an even stronger conjecture. This expectation is verified for all
known families of compact irreducible symplectic varieties in [GKL*22, Theorem 1.23]. For even cohomology
H®*" (M, C), the expectation is shown in [GKL*22, Theorem 5.2] and [HM23, Corollary 3.4] to be equivalent
to Nagai’s conjecture for type II degenerations of hyper-K#hler manifolds deformation equivalent to M. It is
verified for 2n < 8 in [GKL"22, Proposition 6.5]; more generally, the (d = 2n)-plane and (d = 2n — 2)-plane
cases are proven in [HM23, Theorem 1.2]. (Alternatively, one can show the two cases using octahedral
symmetry and the knowledge that the border of the Hodge diamond of M only has 1’s and 0’s.)
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