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ABSTRACT

Understanding dynamics in complex systems is challenging because there are many degrees of freedom, and those that are most important
for describing events of interest are often not obvious. The leading eigenfunctions of the transition operator are useful for visualization, and
they can provide an efficient basis for computing statistics, such as the likelihood and average time of events (predictions). Here, we develop
inexact iterative linear algebra methods for computing these eigenfunctions (spectral estimation) and making predictions from a dataset of
short trajectories sampled at finite intervals. We demonstrate the methods on a low-dimensional model that facilitates visualization and a
high-dimensional model of a biomolecular system. Implications for the prediction problem in reinforcement learning are discussed.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0151309

I. INTRODUCTION

Modern observational, experimental, and computational
approaches often yield high-dimensional time series data (trajec-
tories) for complex systems. In principle, these trajectories contain
rich information about dynamics and, in particular, the infrequent
events that are often most consequential. In practice, however,
high-dimensional trajectory data are often difficult to parse for
useful insight. The need for more efficient statistical analysis
tools for trajectory data is critical, especially when the goal is to
understand rare-events that may not be well represented in the data.

We consider dynamics that can be treated as Markov processes.
A common starting point for statistical analyses of Markov pro-
cesses is the transition operator, which describes the evolution of
function expectations. The eigenfunctions of the transition operator
characterize the most slowly decorrelating features (modes) of the
system.1±5 These can be used for dimensionality reduction to obtain
a qualitative understanding of the dynamics,6,7 or they can be used
as the starting point for further computations.8±10 Similarly, predic-
tion functions, which provide information about the likelihood and

timing of future events as a function of the current state, are defined
through linear equations of the transition operator.10,11

A straightforward numerical approach to obtaining these func-
tions is to convert the transition operator to a matrix by projecting
onto a finite basis for Galerkin approximation.1,2,10±15 The perfor-
mance of such a linear approximation depends on the choice of
basis,10,11,15 and previous work often resorts to a set of indicator
functions on a partition of the state space (resulting in a Markov
state model or MSM14) for lack of a better choice. While Galerkin
approximation has yielded many insights,16,17 the limited expres-
sivity of the basis expansion has stimulated interest in (nonlinear)
alternatives.

In particular, artificial neural networks can be harnessed to
learn eigenfunctions of the transition operator and prediction func-
tions from data.5,18±25 However, existing approaches based on neural
networks suffer from various drawbacks. As discussed in Ref. 5,
their performance can often be very sensitive to hyperparameters,
requiring extensive tuning and varying with random initialization.
Many use loss functions that are estimated against the stationary
distribution,25±30 so that metastable states contribute most heavily,
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which negatively impacts performance.24,30 Assumptions about the
dynamics (e.g., microscopic reversibility) limit applicability. In
Ref. 24, we introduced an approach that overcomes the issues above,
but it uses multiple trajectories from each initial condition; this lim-
its the approach to analysis of simulations and moreover requires
specially prepared datasets.

The need to compute prediction functions from observed
trajectory data also arises in reinforcement learning. There the
goal is to optimize an expected future reward (the prediction
function) over a policy (a Markov process). For a fixed Markov
process, the prediction problem in reinforcement learning is
often solved by temporal difference (TD) methods, which allow
the use of arbitrary ensembles of trajectories without knowledge
of the details of the underlying dynamics.31 TD methods have
a close relationship with an inexact form of power iteration,
which, as we describe, can perform poorly on rare-event related
problems.

Motivated by this relationship, as well as by an inexact power
iteration scheme previously proposed for approximating the station-
ary probability distribution of a Markov process using trajectory
data,32 we propose a computational framework for spectral estima-
tion and rare-event prediction based on inexact iterative numeri-
cal linear algebra. Our framework includes an inexact Richardson
iteration for the prediction problem, as well as an extension to
inexact subspace iteration for the prediction and spectral estima-
tion problems. The theoretical properties of exact subspace iteration
suggest that eigenfunctions outside the span of the approxima-
tion will contribute significantly to the error of our inexact iter-
ative schemes.33 Consistent with this prediction, we demonstrate
that learning additional eigenvalues and eigenfunctions simultane-
ously through inexact subspace iteration accelerates convergence
dramatically relative to inexact Richardson and power iteration
in the context of rare events. While we assume the dynamics
can be modeled by a Markov process, we do not require knowl-
edge of their form or a specific underlying model. The method
shares a number of further advantages with the approach discussed
in Ref. 24 without the need for multiple trajectories from each
initial condition in the dataset. This opens the door to treating
a wide range of observational, experimental, and computational
datasets.

The remainder of the paper is organized as follows: In Sec. II,
we describe the quantities that we seek to compute in terms of
linear operators. In Secs. III and IV, we introduce an inexact sub-
space iteration algorithm that we use to solve for these quantities.
Section V illustrates how the loss function can be tailored to the
known properties of the desired quantity. Section VI summarizes
the two test systems that we use to illustrate our methods: a two-
dimensional potential, for which we can compute accurate refer-
ence solutions, and a molecular example that is high-dimensional
but still sufficiently tractable that statistics for comparison can
be computed from long trajectories. In Sec. VII, we explain the
details of the invariant subspace iteration and then demonstrate
its application to our two examples. Finally, Sec. VIII details how
the subspace iteration can be modified to compute prediction
functions and compares the effect of different loss functions, as
well as the convergence properties of power iteration and sub-
space iteration. We conclude with implications for reinforcement
learning.

II. SPECTRAL ESTIMATION AND THE PREDICTION
PROBLEM

We have two primary applications in mind in this article. First,
we would like to estimate the dominant eigenfunctions and eigen-

values of the transition operator T
t for a Markov process Xt

∈ R
d,

defined as

T
t
f (x) ≙ Ex[ f (Xt)], (1)

where f is an arbitrary real-valued function and the subscript x indi-
cates the initial condition X0

≙ x. The transition operator encodes
how expectations of functions evolve in time. The right eigenfunc-
tions of T t with the largest eigenvalues characterize the most slowly
decorrelating features (modes) of the Markov process.1,2,4,5

Our second application is to compute prediction functions of
the general form

u(x) ≙ Ex[Ψ(XT) + T−1

∑
t≙0

Γ(Xt)], (2)

where T is the first time Xt
∉ D from some domain D, and Ψ and

Γ are functions associated with the escape event (rewards in rein-
forcement learning). Prototypical examples of prediction functions
that appear in our numerical results are the mean first passage time
(MFPT) from each x

m(x) ≙ Ex∥T] (3)

and the committor

q(x) ≙ Ex[𝟙B(XT)] ≙ Px[XT
∈ B], (4)

where A and B are disjoint sets (ªreactantº and ªproductº states) and
D ≙ (A ∪ B)c. TheMFPT is important for estimating rates of transi-
tions between regions of state space, while the committor can serve
as a reaction coordinate29,34±36 and as a key ingredient in transition
path theory statistics.24,37,38 For any τ > 0, the prediction function
u(x) satisfies the linear equation

(I − S τ)u(x) ≙ Ex

⎡⎢⎢⎢⎢⎣
(τ∧T)−1

∑
t≙0

Γ(Xt)⎤⎥⎥⎥⎥⎦ (5)

for x ∈ D, with boundary condition

u(x) ≙ Ψ(x) (6)

for x ∉ D. In (5), I is the identity operator and

S
τ
f (x) ≙ Ex[ f (Xτ∧T)] (7)

is the ªstoppedº transition operator.10 We use the notation
τ ∧ T ≙ min{τ,T}. The parameter τ is known as the lag time. While
it is an integer corresponding to a number of integration steps, in
our numerical examples, we often express it in terms of equivalent
time units.

Our specific goal is to solve both the eigenproblem and the
prediction problem for Xt in high dimensions and without direct
access to a model governing its evolution. Instead, we have access to
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trajectories of Xt of a fixed, finite duration τ. A natural and gen-
erally applicable approach to finding an approximate solution to
the prediction problem is to attempt to minimize the residual of
(5) over parameters θ of a neural network uθ(x) representing u(x).
For example, we recently suggested an algorithm that minimizes the
residual norm

1

2
∥(I − S τ)uθ − r∥2μ, (8)

where r(x) is the right-hand side of (5) and μ is an arbitrary distribu-
tion of initial conditions X0 (boundary conditions were enforced by
an additional term).24 The norm ∥ ⋅ ∥μ is defined by ∥ f ∥μ2 ≙ ⟨ f , f ⟩μ,
where ⟨ f , g⟩μ ≙ ∫ f (x)g(x)μ(dx) for arbitrary functions f and g. The
gradient of the residual norm in (8) with respect to neural-network
parameters θ can be written as

⟨(I − S τ)uθ − r,∇θuθ⟩μ − ⟨(I − S τ)uθ − r,S τ
∇θuθ⟩μ. (9)

Given a dataset of initial conditions {X0
j}nj≙1 drawn from μ and a

single sample trajectory {Xt
j}τt≙0 of Xt for each X0

j , the first term in
the gradient (9) can be approximated without bias as

⟨(I − S τ)uθ − r,∇θuθ⟩μ
≈
1

n

n

∑
j≙1

⎛⎝uθ(X0
j) − uθ(Xτ∧T j

j ) − (τ∧T j)−1

∑
t≙0

Γ(Xt
j)⎞⎠∇θuθ(X0

j),
(10)

where Tj is the first time Xt
j ∉ D.

In contrast, unbiased estimation of the second term in (9)
requires access to two independent trajectories of Xt for each sample
initial condition since it is quadratic in S

τ .24,31 In the reinforcement
learning community, TD methods were developed for the purpose
of minimizing a loss of a very similar form to (8), and they perform
a ªsemigradientº descent by following only the first term in (9).31

As in the semigradient approximation, the algorithms proposed in
this paper only require access to inner products of the form ⟨ f , Ag⟩μ
for an operatorA related to T

τ or S τ , and they avoid terms that are
non-linear inA. As we explain, such inner products can be estimated
using trajectory data. However, rather than attempting to minimize
the residual directly by an approximate gradient descent, we view the
eigenproblem and prediction problems through the lens of iterative
numerical linear algebra schemes.

III. AN INEXACT POWER ITERATION

Tomotivate the iterative numerical linear algebra point of view,
observe that the first term in (9) is the exact gradient with respect to
θ′ of the loss

1

2
∥uθ′ − S τ

uθ − r∥2μ, (11)

evaluated at θ′ ≙ θ. The result of many steps of gradient descent
(later, ªinner iterationsº) on this loss with θ held fixed can then
be viewed as an inexact Richardson iteration for (5), resulting in a
sequence

uθs+1 ≈ S
τ
uθs + r, (12)

where, for each s, uθs is a parameterized neural-network approxima-
tion of the solution to (5). To unify our discussion of the prediction
and spectral estimation problems, it is helpful to observe that (12)
can be recast as an equivalent inexact power iteration

Åuθs+1 ≈ AÅuθs , (13)

where

Åuθ ≙
⎛⎜⎝
1

uθ

⎞⎟⎠ and A ≙

⎡⎢⎢⎢⎢⎢⎣
1 0

r S
τ

⎤⎥⎥⎥⎥⎥⎦
. (14)

Note that (1,u)⊺ is the dominant eigenfunction of A and has
eigenvalue equal to 1.

Reference 32 introduced an inexact power iteration to com-
pute the stationary probability measure of T τ , i.e., its dominant left
eigenfunction. As those authors note, an inexact power update, such
as (13), can be enforced using a variety of loss functions. In our set-
ting, the L2μ norm in (11) can be replaced by any other measure of
the difference between uθ′ and S

τuθ + r, as long as an unbiased esti-
mator of its gradient with respect to θ′ is available. This flexibility is
discussed in more detail in Sec. V, and we exploit it in applications
presented later in this article. For now, we focus instead on another
important implication of this viewpoint: the flexibility in the form of
the iteration itself.

We will see that when the spectral gap of A, the difference
between its largest and second largest eigenvalues, is small, the
inexact power iteration (or the equivalent Richardson iteration)
described above fails to reach an accurate solution. The largest eigen-
value ofA in (14) is 1 and its next largest eigenvalue is the dominant
eigenvalue of S τ . For rare-event problems, the difference between
these two eigenvalues is expected to be very small. Indeed, when X0

is drawn from the quasi-stationary distribution of Xt in D, the log-
arithm of the largest eigenvalue of S τ is exactly −τ/E∥T].39 Thus,
when the mean exit time from D is large, we can expect the spectral
gap of A in (14) to be very small. In this case, classical conver-
gence results tell us that exact power iteration converges slowly, with
the largest contributions to the error coming from the eigenfunc-
tions of S τ with largest magnitude eigenvalues.33 Iterative schemes
that approximatemultiple dominant eigenfunctions simultaneously,
such as subspace iteration and Krylov methods, can converge much
more rapidly.33 In Sec. IV, we introduce an inexact form of sub-
space iteration to address this shortcoming. Beyond dramatically
improving performance on the prediction problem for rare-events
when applied with A in (14), it can also be applied with A ≙ T

τ to
compute multiple dominant eigenfunctions and values of T τ itself.

IV. AN INEXACT SUBSPACE ITERATION

Our inexact subspace iteration for the k dominant eigenfunc-

tions/values of A proceeds as follows. Let {φaθs}ka≙1 be a sequence of
k basis functions parameterized by θs (these can be scalar or vector
valued functions depending on the form of A). We can represent
this basis as the vector valued function

Uθs ≙ (φ1θs ,φ2θs , . . . ,φkθs). (15)
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Then, we can obtain a new set of k basis functions by approximately
applyingA to each of the components of Uθs ,

Uθs+1K
s+1
≈ AUθs , (16)

where Ks+1 is an invertible, upper-triangular k × k matrix that does
not change the span of the components of Uθs+1 but is included to
facilitate training. One way the approximate application ofA can be
accomplished is by minimizing

1

2

k

∑
a≙1

∥ k

∑
b≙1

φbθKba −Aφaθs∥
2

μ

(17)

over θ and K with θs held fixed.
The eigenvalues and eigenfunctions of A are then approxi-

mated by solving the finite-dimensional generalized eigenproblem

C
τ
W ≙ C

0
WΛ, (18)

where

C
τ
ab ≙ ⟨φaθs ,Aφbθs⟩μ, (19)

C
0
ab ≙ ⟨φaθs ,φbθs⟩μ, (20)

each inner product is estimated using trajectory data, and W and Λ

are k × k matrices. The matrix Λ is diagonal, and the ath eigenvalue
λa ofA is approximated by Λaa; the corresponding eigenfunction va

is approximated by∑k
b≙1Wab φ

b
θs .

Even when sampling is not required to estimate the matri-
ces in (19) and (20), the numerical rank of Cτ becomes very small
as the eigenfunctions become increasingly aligned with the sin-
gle dominant eigenfunction. To overcome this issue, we apply an
orthogonalization step between iterations (or every few iterations).
Just as the matrices C0 and Cτ can be estimated using trajectory
data, the orthogonalization procedure can also be implemented
approximately using data.

Finally, in our experiments, we find it advantageous to damp
large parameter fluctuations during training by mixing the opera-
tor A with a multiple of the identity, i.e., we perform our inexact
subspace iteration on the operator (1 − αs)I + αsA in place of A
itself. This new operator has the same eigenfunctions as A. In our
experiments, decreasing the parameter αs as the number of iter-
ations increases results in better generalization properties of the
final solution and helps ensure convergence of the iteration. For our
numerical experiments, we use

αs ≙

⎧⎪⎪⎨⎪⎪⎩
1 s < σ

1/√s + 1 − σ s ≥ σ,
(21)

where σ is a user chosen hyperparameter that sets the number of
iterations performed before damping begins.

The details, including estimators for all required inner prod-
ucts, in the case of the eigenproblem (A ≙ T

τ) are given in Sec. VII
and Algorithm 1. For the prediction problem withA as in (14), they
are given in Sec. VIII and Algorithm 2.

ALGORITHM 1. Inexact subspace iteration (with L
2
μ loss) for spectral estimation.

Require: Subspace dimension k, transition data {X0
j ,X

τ
j}nj≙1, batch size B, learning rate η, number of subspace iterations S, number of inner

iterationsM, regularization parameters γ1 and γ2
1: Initialize {φaθ}ka≙1 and {φ̃a1}ka≙1
2: for s ≙ 1 . . . S do
3: form ≙ 1 . . . M do

4: Sample a batch of data {X0
j ,X

τ
j}Bj≙1

5: L̂1 ←
1
B∑

B
j≙1∑

k
a≙1 [ 12(∑k

b≙1 φ
b
θ(X0

j)Kba)2 −∑k
b≙1 φ

b
θ(X0

j)Kba{αsφ̃as (Xτ
j) + (1 − αs)φ̃as (X0

j)}]
6: L̂K ← γ1∥K − diag (K)∥2F
7: L̂norm ← γ2∑k

a≙1 (2νa( 1B∑B
j≙1 φ

a
θ(X0

j)2 − 1) − ν2a)
8: L̂← L̂1 + L̂K + L̂norm

9: θ ← θ − η∇θL̂

10: K ← K − η triu(∇KL̂)
11: νa ← νa + η∇νa L̂

12: end for

13: Compute the matrix Φia ≙ φ
a
θ(X0

i ) ⊳Φ ∈ R
n×k

14: Compute diagonal matrix N2
aa ≙ ∑i φ

a
θ(X0

i )2
15: Compute QR-decomposition Φ ≙ QR ⊳ Q ∈ Rn×k and R ∈ Rk×k

16: φ̃as ← ∑k
b≙1 φ

b
θ (R−1N)ba

17: K1:i,i ← argminc
1
n∑

n
j≙1 (∑i

a≙1 φ
a
θ(X0

j)ca − φ̃as (Xτ
j))2 + γ2∑i−1

a≙1 c
2
a

18: end for

19: Compute the matrices Ct
ab ≙

1
n∑

n
j≙1 φ̃

a
s (X0

j)φ̃bs (Xt
j) for t ≙ 0, τ ⊳ Ct

∈ R
k×k

20: Solve the generalized eigenproblem CτW ≙ C0WΛ forW and Λ

21: return eigenvalues Λ, eigenfunctions va ≙ ∑k
b≙1Wabφ̃

b
s
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ALGORITHM 2. Inexact subspace iteration (with L
2
μ loss) for prediction functions.

Require: Subspace dimension k, stopped transition data {X0
j ,X

τ∧T j

j }n
j≙1

, reward data {ρ(X j)}nj≙1, batch size B, learning rate η, number of

subspace iterations S, number of inner iterationsM, regularization parameters γ1 and γ2
1: Initialize {φaθ}ka≙1 and {φ̃a1}ka≙1
2: for s ≙ 1 . . . S do
3: form ≙ 1 . . . M do

4: Sample a batch of data {X0
j ,X

τ∧T j

j }Bj≙1, {ρ(X j)}Bj≙1
5: L̂1 ←

1
B∑

B
j≙1∑

k
a≙1 [ 12(∑k

b≙1 φ
b
θ(X0

j)Kba)2 − αs(∑k
b≙1 φ

b
θKba(φ̃as (Xτ∧T j

j ) + ρ(X j)Ia1))]
6: L̂2 ← −

1
B∑

B
j≙1∑

k
a≙1 (1 − αs)∑k

b≙1 φ
b
θKbaφ̃

a
s (X0

j)
7: L̂K ← γ1∥K − diag (K)∥2F
8: L̂norm ← γ2∑k

a≙2 (2νa( 1B∑B
j≙1 φ

a
θ(X0

j)2 − 1) − ν2a)
9: L̂← L̂1 + L̂2 + L̂K + L̂norm

10: θ ← θ − η∇θL̂

11: K ← K − η (triu(∇KL̂))
12: νa ← νa + η∇νa L̂

13: end for

14: if Ψ(x) ≙ 0 then
15: Compute the matrix Φia ≙ φ

a
θ(X0

i ) ⊳Φ ∈ R
n×k

16: else

17: Compute the matrix Φia ≙ φ
a
θ(X0

i ) for a > 1 ⊳Φ ∈ R
n×(k−1)

18: end if

19: Compute QR-decomposition Φ ≙ QR

20: Compute diagonal matrix N2
aa ≙ ∑i φ

a
θ(X0

i )2
21: φ̃as ← ∑k

b≙1 φ
b
θ (R−1N)ba ⊳ if Ψ(x) ≙ 0 exclude a ≙ 1

22: K1:i,i ← argminc
1
n∑

n
j≙1 (∑i

a≙1 φ
a
θ(X0

j)ca − φ̃as (Xτ∧T j

j ))2 + γ2∑i−1
a≙1 c

2
a

23: end for

24: Compute the matrix Ct
ab ≙

1
n∑

n
j≙1 φ

a
θ(X0

j)φbθ(Xt
j) for t ≙ 0, τ ∧ Tj ⊳ Ct

∈ R
k×k

25: Compute the vector pa ≙
1
n∑

n
j≙1 φ

a
θ(X0

j)ρ(X j)
26: Solve linear system (C0

− Cτ)w ≙ p ⊳ if Ψ(x) ≙ 0 enforce w1 ≙ 1

27: return u ≙ ∑k
a≙1waφ

a
θ

V. ALTERNATIVE LOSS FUNCTIONS

As mentioned above, the inexact application of the operator
A can be accomplished by minimizing loss functions other than
(17). The key requirement for a loss function in the present study
is that A appears in its gradient only through terms of the form⟨ f ,Ag⟩μ for some functions f and g, so that the gradient can be esti-
mated using trajectory data. As a result, we have flexibility in the
choice of loss and, in turn, the representation of u. In particular,
we consider the representation uθ ≙ ζ(zθ), where ζ is an increasing
function, and zθ is a function parameterized by a neural network. An
advantage of doing so is that the function ζ can restrict the output
values of uθ to some range. For example, when computing a proba-
bility such as the committor, a natural choice is the sigmoid function
ζ(x) ≙ (1 + e−x)−1.

Our goal is to train a sequence of parameter values so that
uθs approximately follows a subspace iteration, i.e., so that ζ(zθs+1)
≈ Auθs . To this end, we minimize with respect to θ the loss function

EX0
∼μ∥V(zθ) − zθAuθs], (22)

whereV is an antiderivative of ζ, and θs is fixed. The subscriptX0
∼ μ

in this expression indicates that X0 is drawn from μ. Note that, as
desired,A appears in the gradient of (22) only in an inner product of

the required form, and an approximate minimizer, θs+1, of this loss
satisfies ζ(zθs+1) ≈ Auθs . This general form of loss function is adapted

from variational expressions for the divergence of two probability

measures.32,40

The L2μ loss in (17), which we use in several of our numerical

experiments, corresponds to the choice ζ(x) ≙ x and V(x) ≙ x2/2.
The choice of ζ(x) ≙ (1 + e−x)−1 mentioned above corresponds to
V(x) ≙ log(1 + ex); we refer to the loss in (22) with this choice

of V as the ªsoftplusº loss. We note that in the context of com-
mittor function estimation, in the limit of infinite τ the ªsoftplusº

loss corresponds directly to the maximum log-likelihood loss (for

independent Bernoulli random variables) that defines the logistic

regression estimate of the probability of reaching B before A. Logis-

tic regression has previously been used in conjunction with datasets

of trajectories integrated all the way until reachingA or B to estimate

the committor function.41±46
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VI. TEST PROBLEMS

We illustrate our methods with two well-characterized systems
that exemplify features of molecular transitions. In this section, we
provide key details of these systems.

A. Müller-Brown potential

The first system is defined by the Müller±Brown potential47

(Fig. 1)

VMB(y, z) ≙ 1

20

4

∑
i≙1

Ci exp [ai(y − yi)2
+ bi(y − yi)(z − zi) + ci(z − zi)2]. (23)

The two-dimensional nature of this model facilitates visualization.
The presence of multiple minima and saddlepoints that are con-
nected by a path that does not align with the coordinate axes makes
the system challenging for both sampling and analysis methods.
In Secs. VII A and VIII A, we use Ci ≙ {−200,−100,−170, 15},
ai ≙ {−1,−1,−6.5, 0.7}, bi ≙ {0, 0, 11, 0.6}, ci ≙ {−10,−10,−6.5,
0.7}, yi ≙ {1,−0.27,−0.5,−1}, and zi ≙ {0, 0.5, 1.5, 1}. In Sec. VIII B,
we tune the parameters to make transitions between minima rarer;
there, the parameters are Ci ≙ {−250,−150,−170, 15}, ai ≙ {−1,
−3,−6.5, 0.7}, bi ≙ {0, 0, 11, 0.6}, ci ≙ {−10,−30,−6.5, 0.7}, yi ≙ {1,
−0.29,−0.5,−1}, and zi ≙ {0, 0.5, 1.5, 1}. For prediction, we analyze
transitions between the upper left minimum (A) and the lower
right minimum (B) in Fig. 1; these states are defined as

A ≙ {y, z : 6.5(y + 0.5)2 − 11(y + 0.5)(z − 1.5) + 6.5(z − 1.5)2 < 0.3}
B ≙ {y, z : (y − 0.6)2 + 0.5(z − 0.02)2 < 0.2}. (24)

To generate a dataset, we randomly draw 50 000 initial
conditions X0

j uniformly from the region

Ω ≙ {y, z : −1.5 < y < 1.0, −0.5 < z < 2.5, VMB(y, z) < 12} (25)

and, from each of these initial conditions, generate one trajectory
according to the discretized overdamped Langevin dynamics

X
t
j ≙ X

t−1
j − δt ∇VMB(Xt−1

j ) +√δt 2β
−1 ξtj , (26)

FIG. 1. Müller±Brown potential energy surface. The orange and red ovals indicate
the locations of states A and B, respectively, when computing predictions. Contour
lines are drawn every 1 β−1.

where 1 ≤ t ≤ τ, the ξtj are independent standard Gaussian random
variables, and the timestep is δt ≙ 0.001. We use an inverse tem-
perature of β ≙ 2, and we vary τ as indicated below (note that
τ is an integer number of steps, but we present our results for the
Müller±Brown model in terms of the dimensionless scale used for
δt immediately above). For each test, we use independent random
numbers and redraw the initial conditions because it is faster to gen-
erate the trajectories than to read them from disk in this case. All
error bars are computed from the empirical standard deviation over
ten replicate datasets.

To validate our results, we compare the neural-network results
against grid-based references, computed as described in Sec. S4 of
the supplementary material of Ref. 11 and the appendix of Ref. 48
(our notation here follows the former more closely). The essential
idea is that the terms in the infinitesimal generator of the transition
operator can be approximated on a grid to second order in the spac-
ing by expanding both the probability for transitions between sites
and a test function. To this end, we define the transition matrix for
neighboring sites x ≙ (y, z) and x′ ≙ (y ± δx, z) or (y, z ± δx) on a
grid with spacings δx,

P(x′∣x) ≙ 1

1 + eβ∥V(x
′)−V(x)]

(27)

(this definition differs from that in Ref. 11 by a factor of 1/4, and
we scale P − I, where I is the identity matrix, accordingly to set
the time units below). The diagonal entry P(x∣x) is fixed to make
the transition matrix row-stochastic. We use δx ≙ 0.0125; the grid
is a rectangle with y ∈ ∥−1.5, 1.0], and z ∈ ∥−0.5, 2.0]. The refer-
ence invariant subspaces are computed by diagonalizing the matrix
2(P − I)/βδ2x with a sparse eigensolver; we use scipy.sparse.linalg.
We obtain the reference committor q̂+ for grid sites in (A ∪ B)c by
solving

diag (𝟙̂
(A∪B)c

)(P − I)q̂+ ≙ −diag (𝟙̂(A∪B)c)(P − I)𝟙̂B (28)

and for grid sites in A ∪ B by setting q̂+ ≙ 𝟙̂B. Here, q̂+ and 𝟙̂B are
vectors corresponding to the functions evaluated at the grid sites.

B. AIB9 helix-to-helix transition

The second system is a peptide of nine α-aminoisobutyric acids
(AIB9; Fig. 2). Because AIB is achiral around its α-carbon atom, AIB9

can form left- and right-handed helices with equal probabilities, and
we study the transitions between these two states. This transition
was previously studied using MSMs and long unbiased molecular
dynamics simulations.49,50 AIB9 poses a stringent test due to the
presence of many metastable intermediate states.

The states are defined in terms of the internal ϕ and ψ dihedral
angles. We classify an amino acid as being in the ªleftº state if its
dihedral angle values are within a circle of radius 25○ centered at(41○, 43○), that is,

(ϕ − 41○)2 + (ψ − 43○)2 ≤ (25○)2.
Amino acids are classified as being in the ªrightº state using the
same radius, but centered instead at (−41○,−43○). States A and B
are defined by the amino acids at sequence positions 3±7 being all
left or all right, respectively. We do not use the two residues on each
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FIG. 2. Helix-to-helix transition of AIB9. (Left) Left- and right-handed helices, which
we use as states A and B, respectively, when computing predictions. Carbon, nitro-
gen, and oxygen atoms are shown in yellow, blue, and red, respectively; hydrogen
atoms are omitted. (Right) Potential of mean force constructed from the histogram
of value pairs of the first two dihedral angle principal components; data are from
the 20 trajectories of 5 μs that we use to construct reference statistics (see text).
The left-handed helix corresponds to the left-most basin, and the right-handed
helix corresponds to the right-most basin. Contour lines are drawn every 2 β−1

corresponding to a temperature of 300 K.

end of AIB9 in defining the states as these are typically more flexi-
ble.50 The states can be resolved by projecting onto dihedral angle
principal components (dPCs; Fig. 2, right) as described previously.51

Following a procedure similar to that described in Ref. 50,
we generate a dataset of short trajectories. From each of the 691
starting configurations in Ref. 50, we simulate ten trajectories
of duration 20 ns with initial velocities drawn randomly from a
Maxwell±Boltzmann distribution at a temperature of 300 K. The
short trajectory dataset thus contains 6910 trajectories, correspond-
ing to a total sampling time of 138.2 μs. We use a timestep of
4 fs together with a hydrogen mass repartitioning scheme,52 and
configurations are saved every 40 ps. We employ the AIB para-
meters from Forcefield_NCAA53 and the GBNeck2 implicit-solvent
model.54 Simulations are performed with the Langevin integrator in
OpenMM 7.7.055 using a friction coefficient of 1 ps−1. To generate a
reference for comparison to our results, we randomly select 20 con-
figurations from the dataset above and, from each, run a simulation
of 5 μs with the same simulation parameters. For all following tests
on AIB9, batches consist of pairs of frames separated by τ drawn
randomly with replacement from the short trajectories (i.e., from
all possible such pairs in the dataset). From each frame, we use
only the atom positions because the momenta decorrelate within
a few picoseconds, which is much shorter than the lag times that
we consider. However, in principle, the momenta could impact the
prediction functions56 and be used as neural-network inputs as well.

VII. SPECTRAL ESTIMATION

In this section, we provide some further numerical details for
the application of our method to spectral estimation and demon-
strate the method on the test problems. For our subspace iteration
with A ≙ T

τ , we require estimators for inner products of the form⟨ f , T τg⟩μ. For example, the gradient of the loss function (17)
involves inner products of the form

⟨∇θφ
a
θ, T

τφbθ⟩
μ
. (29)

For these, we use the unbiased data-driven estimator

⟨ f , T τ
g⟩μ ≈ 1

n

n

∑
j≙1

f (X0
j)g(Xτ

j). (30)

As discussed in Sec. IV, applying the operator T
τ repeatedly

causes each basis function to converge to the dominant eigen-
function and leads to numerical instabilities. To avoid this, we
orthogonalize the outputs of the networks with a QR decomposi-
tion at the end of each subspace iteration by constructing the matrix
Φia ≙ φ

a
θ(X0

i ) and then computing the factorization Φ ≙ QR, where
Q is an n × kmatrix with orthogonal columns and R is an upper tri-

angular k × k matrix. Finally, we set φ̃as ≙ ∑k
b≙1 φ

b
θ (R−1N)ba, where

N is a diagonal matrix with entries equal to the norms of the columns
ofΦ (before orthogonalization). To ensure that the networks remain
well-separated (i.e., the eigenvalues of C0 remain away from zero),
we penalize large off-diagonal entries of K by adding to the loss

γ1∥K − diag (K)∥2F, (31)

where γ1 allows us to tune the strength of this term relative to oth-
ers, and ∥ ⋅ ∥F is the Frobenius norm. We control the scale of each
network output using the strategy from Ref. 32; that is, we add to the
loss a term of the form

γ2∑
k

a≙1
[2νa( 1

n
∑

n

j≙1
φaθ(X0

j)2 − 1) − ν2a], (32)

where we have introduced the conjugate variables νa, which wemax-
imize with gradient ascent (or similar optimization). In general, our
numerical experiments suggest that it is best to keep γ1 and γ2 rel-
atively small. We find that stability of the algorithm over many
subspace iterations is improved if the matrix K is set at its optimal
value before each inner loop. To do this, we set

K1:i,i ≙ argmin
c

1

n
∑

n

j≙1
(∑i

a≙1
φaθ(X0

j)ca − φ̃as (Xτ
j))2 + γ2∑i−1

a≙1
c
2
a.

(33)
The above minimization can be solved with linear least squares.
Finally, we note that, in practice, any optimizer can be used
for the inner iteration steps, though the algorithm below imple-
ments stochastic gradient descent. In this work, we use Adam57

for all numerical tests. We summarize our procedure for spectral
estimation in Algorithm 1.

A. Müller±Brown model

As a first test of our method, we compute the k ≙ 3 dominant
eigenpairs for the Müller±Brown model. Since we know that the
dominant eigenfunction of the transition operator is the constant
function v1(y, z) ≙ 1 with eigenvalue λ1 ≙ 1, we directly include this
function in the basis as a non-trainable function, i.e., φ1θ(y, z) ≙ 1.
To initialize φ̃a1 for each a > 1, we choose a standard Gaussian vector(Ya,Za) ∈ R2, and set φ̃a1(y, z) ≙ y Ya

+ z Za. This ensures that the
initial basis vectors are well-separated and the first QR step is numer-
ically stable. Here and in all subsequent Müller±Brown tests, batches
of trajectories are drawn from the entire dataset with replacement.
Other hyperparameters are listed in Table I.

Figure 3 shows that we obtain good agreement between the esti-
mate produced by the inexact subspace iteration in Algorithm 1 and
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TABLE I. Parameter choices used in this work.

Spectral estimation Committor MFPT

Hyperparameter Müller-Brown AIB9 Müller-Brown Modified Müller-Brown AIB9 AIB9

Subspace dimension k 3 5 1 2, 1a 1 5
Input dimensionality 2 174 2 2 174 174
Hidden layers 6 6 6 6 6 6
Hidden layer width 64 128 64 64 150 150
Hidden layer nonlinearity CeLU CeLU ReLU ReLU ReLU ReLU
Output layer nonlinearity None tanh Sigmoid/none None None None
Outer iterations S 10 100 100 4 + 10a 100 300
Inner iterationsM 5000 2000 200 5000 2000 1000
σ 2 50 50 0 50 0
Batch size B 2000 1024 5000 2000 1024 2000
Learning rate η 0.001 0.0001 0.001 0.001 0.001 0.001
γ1 0.15 0.001 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0.1
γ2 0.01 0.01 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 10

Loss for φ1θ L2μ L2μ L2μ/softplus Softplus Softplus L2μ
Loss for φaθ for a > 1 L2μ L2μ ⋅ ⋅ ⋅ L2μ ⋅ ⋅ ⋅ L2μ

aFour subspace iterations with k = 2 followed by ten iterations with k = 1.

reference eigenfunctions. Figure 4 (upper panels) shows how the
corresponding eigenvalues vary with lag time; again there is good
agreement with the reference. Furthermore, there is a significant
gap between λ3 and λ4, indicating that a three-dimensional subspace
captures the dynamics of interest for this system.

We compare the subspace that we obtain from our method
with that from an MSM constructed from the same amount of data
by using k-means to cluster the configurations into 400 states and
counting the transitions between clusters. This is a very fine dis-
cretization for this system, and the MSM is sufficiently expressive
to yield eigenfunctions in good agreement with the reference. The
relative error of 1 − λ2 is comparable for the two methods (Fig. 4,

FIG. 3. First two non-trivial eigenfunctions of the Müller±Brown model. (Top) Grid-
based reference. (Bottom) Neural network subspace after ten subspace iteration
steps, computed with τ = 300 steps (i.e., 0.3 δ−1

t
).

lower left). To compare two finite dimensional subspaces, U and V,
we define the subspace distance as4

d(U ,V) ≙ ∥(I − P U)PV∥F, (34)

where P U and PV denote the orthogonal projections onto U and V,
respectively, and ∥ ⋅ ∥F is the Frobenius norm. Figure 4 (lower right)
shows the subspace distances from the reference as functions of lag
time. We see that the inexact subspace iteration better approximates
the three-dimensional dominant eigenspace for moderate to long lag
times, even though the eigenvalues are comparable.

B. AIB9

For the molecular test system, we compute the dominant five-
dimensional subspace.We compare the inexact subspace iteration in
Algorithm 1 with MSMs constructed on dihedral angles (ªdihedral
MSMº) and on Cartesian coordinates (ªCartesian MSMº). We
expect the dihedral MSM to be accurate given that the dynamics of
AIB9 are well-described by the backbone dihedral angles,49,50 and
we thus use it as a reference. It is constructed by clustering the
sine and cosine of each of the backbone dihedral angles (ϕ and ψ)
for the nine residues (for a total of 2 × 2 × 9 ≙ 36 input features)
into 1000 clusters using k-means and counting transitions between
clusters. The Cartesian MSM is constructed by similarly count-
ing transitions between 1000 clusters from the k-means algorithm,
but the clusters are based on the Cartesian coordinates of all non-
hydrogen atoms after aligning the backbone atoms of the trajec-
tories, for a total of 174 input features. Because of the difficulty
of clustering high-dimensional data, we expect the Cartesian MSM
basis to give poor results. The neural network for the inexact sub-
space iteration receives the same 174 Cartesian coordinates as input
features. We choose to use Cartesian coordinates rather than dihe-
dral angles as inputs because it requires the network to identify
nontrivial representations for describing the dynamics.
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FIG. 4. Spectral estimation as a function of lag time (in units of δ−1
t

) for the Müller±Brown model. (Top left) Second eigenvalue. (Top right) Third and fourth eigenvalues; only
the reference fourth eigenvalue is shown to illustrate the spectral gap. (Bottom left) Relative error in the first spectral gap (i.e., 1 − λ2). (Bottom right) Subspace distance
between estimated and reference three-dimensional invariant subspaces.

As in the Müller±Brown example, we use φ1θ ≙ 1 and a random
linear combination of coordinate functions to initialize φ̃a1 for a > 1.
Other hyperparameters are listed in Table I. With these choices,
the neural-network training typically requires about 20 minutes on
a single NVIDIA A40 GPU; this is much longer than the time
required for diagonalization of the 1000 × 1000 MSM transition
matrix, which is nearly instantaneous. However, the time for neural-
network training is negligible compared with the time to generate
the dataset, which is the same for both approaches.

Taking the dihedral MSM as a reference, the Cartesian MSM
systematically underestimates the eigenvalues (Fig. 5). The subspace
iteration is very accurate for the first four eigenvalues, but the esti-
mates for the fifth are low and vary considerably from run to run.
A very small gap between λ4 and λ5 may contribute to the diffi-
culty in estimating λ5. In Fig. 6, we plot the first two non-trivial

eigenfunctions (v2 and v3), which align with the axes of the dPC pro-
jection. The eigenfunction v2 corresponds to the transition between
the left- and right-handed helices; the eigenfunction v3 is nearly
orthogonal to v2 and corresponds to transitions between interme-
diate states. It is challenging to visualize the remaining two eigen-
functions by projecting onto the first two dPCs because v4 and v5

are orthogonal to v2 and v3. The estimates for v2 are in qualitative
agreement for all lag times tested (Fig. 6 shows results for τ corre-
sponding to 40 ps), but the subspace iteration results are less noisy
for the shortest lag times. Moreover, the estimate for v3 from sub-
space iteration agrees more closely with that from the dihedral MSM
than does the estimate for v3 from the CartesianMSM. The subspace
distance for v2 and v3 between the subspace iteration and the dihe-
dral MSM is 0.947, compared with a value of 0.969 for the subspace
distance between the two MSMs. Together, our results indicate that

FIG. 5. First five eigenvalues of the transition operator for AIB9 as a function of lag time. (Left) Comparison between eigenvalues computed using the dihedral MSM with
1000 clusters (solid lines) and the inexact subspace iteration (dashed lines). The shading indicates standard deviations over five trained networks for the subspace iteration.
(Right) Comparison between a dihedral MSM (solid lines) and Cartesian MSMs with 1000 clusters (dashed lines). The standard deviations for the Cartesian MSMs over five
random seeds for k-means clustering are too narrow to be seen.
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FIG. 6. First two non-trivial eigenfunctions of AIB9 projected onto the first two
dPCs (i.e., averaged for bins in the two-dimensional space shown). (Top) MSM
constructed on sine and cosine of dihedral angles with 1000 clusters and lag
time corresponding to 40 ps. (Middle) Inexact subspace iteration using Carte-
sian coordinates and the same lag time. (Bottom) MSM constructed on Cartesian
coordinates with 1000 clusters and the same lag time.

the neural networks are able to learn the leading eigenfunctions and
eigenvalues of the transition operator (dynamical modes) of this sys-
tem despite being presented with coordinates that are not the natural
ones for describing the dynamics.

VIII. PREDICTION

Inexact subspace iteration for A in (14) is equivalent to per-
forming the inexact Richardson iteration in (12) on the first basis
function φ1θ and then performing an inexact subspace iteration for
the operator S

τ on the rest of the basis functions. The iteration
requires unbiased estimators of the forms

⟨ f , S τ
g⟩

μ
≈
1

n

n

∑
j≙1

f (X0
j)g(Xτ∧T j

j ) (35)

and

⟨ f , r⟩μ ≈ 1

n

n

∑
j≙1

f (X0
j)(τ∧T j)−1

∑
t≙0

Γ(Xt
j), (36)

where Tj is the first time Xt
j enters D

c and r is the right-hand side
of (5), as previously.

The Richardson iterate, φ1θ, must satisfy the boundary condi-
tion φ1θ(x) ≙ Ψ(x) for x ∉D. The other basis functions should satisfy
φaθ(x) ≙ 0 for x ∉ D. In practice, we enforce the boundary conditions
by explicitly setting φ1θ(x) ≙ Ψ(x) and φaθ(x) ≙ 0 for a > 1 when
x ∉ D.

When the boundary condition is zero, as for the MFPT, we find
an approximate solution of the form

uθ ≙
k

∑
a≙1

waφ
a
θ (37)

by solving the k-dimensional linear system

(C0
− C

τ)w ≙ p, (38)

where, for a, b ≥ 1,

C
t
ab ≙ ⟨φaθ,S tφbθ⟩μ (39)

for t ≙ 0, τ, and

pa ≙ ⟨φaθ,Ex∥ρ(X)]⟩μ. (40)

In (40), we introduce the notation

ρ(X) ≙ (τ∧T)−1∑
t≙0

Γ(Xt) (41)

for use in Algorithm 2.
When the boundary condition is non-zero, as for the com-

mittor, we restrict (38) to a (k − 1)-dimensional linear system by
excluding the indices a ≙ 1 and b ≙ 1 in (39) and (40) and setting

ρ(X) ≙ φ1θ(Xτ∧T) − φ1θ(X0) + (τ∧T)−1∑
t≙0

Γ(Xt). (42)

In this case, the corresponding approximate solution is

uθ ≙ φ
1
θ +

k

∑
a≙2

waφ
a
θ. (43)

This approximate solution corresponds to the one given by dynami-

cal Galerkin approximation10,11 with the basis {φaθ}ka≙2 and a ªguessº
function of φ1θ.

When the boundary conditions are zero, the orthogonalization
procedure and the matrix K are applied to all basis functions as in
Sec. VII. When the boundary conditions are non-zero, the orthogo-

nalization procedure is only applied to the basis functions {φaθ}ka≙2,
and Ka1 ≙ Ia1 the a1 element of the identity matrix. We summarize
our procedure for prediction in Algorithm 2.

A. Müller±Brown committor

In this section, we demonstrate the use of our method for pre-
diction by estimating the committor for the Müller±Brown model
with a shallow intermediate basin at (−0.25, 0.5) (Fig. 1). Here, the
sets A and B are defined as in Eq. (24) and T is the time of first
entrance to Dc ≙ A ∪ B. In this case, a one-dimensional subspace
iteration (i.e., k ≙ 1 in Algorithm 2) appears sufficient to accurately
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FIG. 7. First eigenvalue of S τ [second of A in (14)] for the Müller±Brown model
as a function of lag time (in units of δ−1

t
). The gap between this eigenvalue and

the dominant eigenvalue, which is one, determines the rate of convergence of the
Richardson iteration.

solve the prediction problem. Figure 7 shows the largest eigenvalue
of the stopped transition operator S τ [the second largest of A in
(14)] computed from our grid-based reference scheme (Sec. VI A).
Richardson iteration should converge geometrically in this eigen-
value,33 and so, for moderate lag times, we can expect our method
to converge in a few dozen iterations. To initialize the algorithm we
choose φ̃11 ≙ 𝟙B. All other hyperparameters are listed in Table I.

We compare the estimate of the committor from our approach
with that from an MSM constructed from the same amount of data
by using k-means to cluster the configurations outside A and B into
400 states and counting the transitions between clusters. In addition
to the root mean square error (RMSE) for the committor itself, we
show the RMSE of

logitε(q) ≙ log( ε + q

1 + ε − q
) (44)

for points outside A and B. This function amplifies the importance
of values close to zero and one. We include ε because we want to
assign only a finite penalty if the procedure estimates q to be exactly
zero or one; we use ε ≙ e−20.

Results as a function of lag time are shown in Fig. 8. We see
that the Richardson iterate is more accurate than the MSM for all
but the shortest lag times. When using the L2μ loss, the results are
comparable, whereas the softplus loss allows the Richardson iterate
to improve the RMSE of the logit function in (44) with no decrease in
performance with respect to the RMSE of the committor. Results as
a function of the size of the dataset are shown in Fig. 9 for a fixed lag
time of τ ≙ 0.1δ−1t . The Richardson iterate generally does as well or
better than theMSM. Again, the differences aremore apparent in the
RMSE of the logit function in (44). By that measure, the Richardson
iterate obtained with both loss functions is significantly more accu-
rate than the MSM for small numbers of trajectories. The softplus
loss maintains an advantage even for large numbers of trajectories.

B. Accelerating convergence by incorporating
eigenfunctions

As discussed in Sec. III, we expect Richardson iteration to con-
verge slowly when the largest eigenvalue of S τ , λ1, is close to 1. More
precisely, the number of iterations required to reach convergence
should scale with −1/ log λ1 ≙ E∥T]/τ, the mean escape time from
the quasi-stationary distribution to the boundary of D divided by
the lag time. With this in mind, we can expect inexact Richardson
iteration for the Müller±Brown to perform poorly if we deepen the
intermediate basin at (−0.25, 0.5) as in Fig. 10 (top left). Again, the
sets A and B are defined as in (24), and T is the time of first entrance
to Dc ≙ A ∪ B. In this case, −1/log λ1 is on the order of 100 for the
lag times we consider and, as expected, inexact Richardson iteration
converges slowly (Fig. 10, bottom left). Estimates of the committor

FIG. 8. Committor prediction for the Müller±Brown system as a function of lag time (in units of δ−1
t

). (Left) Comparison of the inexact Richardson iteration using the L
2
μ loss

and an MSM with 400 states. (Right) Same comparison using the softplus loss in place of the L
2
μ loss.
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FIG. 9. Committor prediction for the Müller±Brown as a function of number of initial conditions for a fixed lag time of τ = 0.1δ−1
t

. (Left) Comparison of inexact Richardson

iteration using the L
2
μ loss and an MSM with 400 states. (Right) Same comparison using the softplus loss in place of the L

2
μ loss.

by inexact Richardson iteration do not reach the correct values even
after hundreds of iterations (Fig. 10, bottom right).

We now show that convergence can be accelerated dramati-
cally by incorporating additional eigenfunctions of S τ (i.e., k > 1 in
Algorithm 2). For the Müller±Brown model with a deepened inter-
mediate basin, the second eigenvalue of S τ is of order 10−4 for a
lag time of τ ≙ 1000 steps or 1 δt

−1 (while the first is near one as
discussed above). We therefore choose k ≙ 2 with φ̃21 initialized as
a random linear combination of coordinate functions as in previous

examples.We run the subspace iteration for four iterations, compute
the committor as a linear combination of the resulting functions,
and then refine this result with a further ten Richardson iterations
(i.e., k ≙ 1 with the starting vector as the output of the k ≙ 2 sub-
space iteration). To combine the functions, we use a linear solve
which incorporates memory (Algorithm 3).58,59 We find that the use
ofmemory improves the data-efficiency substantially for poorly con-
ditioned problems. For our tests here, we use three memory kernels,
corresponding to τmem ≙ ⌊τ/4⌋.

FIG. 10. Richardson iteration for the committor converges slowly for a Müller±Brown potential with a deepened intermediate. (Top left) Potential energy surface, with states
A and B indicated. Contour lines are drawn every 1 β−1. (Top right) Reference committor. (Bottom left) Dominant eigenvalue as a function of lag time (in units of δ−1

t
) from an

MSM with 400 states, subspace iteration, and the grid-based reference. (Bottom right) Example of the Richardson iteration after 400 iterations. Note the overfitting artifacts
and lack of convergence near the intermediate state.
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ALGORITHM 3. Memory-corrected linear solve for predictions.

Require: Stopped transition data {X0
j ,X

1∧T j

j , . . . ,X
τ∧T j

j }n
j≙1

, guess function h, reward data {ρ(X j)}nj≙1, basis set{ f a}ka≙1, lag between memory kernels τmem.
1: for s ≙ 0 . . . (τ/τmem) do
2: Initialize the matrix Cs with zeros ⊳ Cs

∈ R
(k+1)×(k+1)

3: Cs
11 ← 1

4: for a ≙ 2 . . . k do

5: Cs
a1 ←

1
n∑

n
j≙1 f

a(X0
j)ρ(Xsτmem∧T j

j )
6: for b ≙ 2 . . . k do

7: Cs
ab ←

1
n∑

n
j≙1 f

a(X0
j) f b(Xsτmem∧T j

j )
8: end for

9: end for

10: end for

11: A← C1 ± C0

12: for s ≙ 0 . . . (τ/τmem) − 2 do
13: Ms

← Cs+2
− Cs+1

− A(C0)−1Cs+1
−∑s

j≙0M
j(C0)−1Cs− j

14: end for

15: Amem ← A +∑(τ/τmem)−2
s≙0 Ms

16: Solve Amemw ≙ w

17: return u ≙ h +∑k
a≙2wa f

a

The bottom row of Fig. 11 illustrates the idea of the subspace
iteration. The second eigenfunction (Fig. 11, center) is peaked at the
intermediate. As a result, the two neural-network functions linearly
combined by the Galerkin approach with memory can yield a good
result for the committor (Fig. 11, bottom right). Figure 12 compares
the RMSE for the committor and the RMSE for the logit in (44) for
Algorithm 2 with k ≙ 1 (pure Richardson iteration) and k ≙ 2 (incor-
porating the first non-trivial eigenfunction), and an MSM with 400
states. We see that the Richardson iteration suffers large errors at

all lag times; as noted previously, this error is mainly in the vicinity
of the intermediate. The MSM cannot accurately compute the small
probabilities, but does as well as the subspace iteration in terms of
RMSE.

C. AIB9 prediction results

As an example of prediction in a high-dimensional system,
we compute the committor for the transition between the left- and

FIG. 11. Illustration of the subspace iteration for the Müller±Brown committor. (Top left) Modified Müller±Brown potential. (Top center) Reference second eigenfunction. (Top
right) Reference committor. (Bottom left) Neural-network Richardson iterate after four iterations. (Bottom center) First non-dominant eigenfunction obtained from the neural
network after four iterations. (Bottom right) Committor resulting from linear combination of the Richardson iterate and second eigenfunction. Results shown are for τ = 1000
steps (i.e., 1 δt

−1).
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FIG. 12. Committor for the Müller±Brown potential with deepened intermediate as a function of lag time (in units of δt
−1). (Left) Comparison of RMSE for subspace iteration

as described above, Richardson iteration (as in Sec. VIII A but instead with 500 subspace iterations), and an MSM with 400 states. (Right) RMSE of the logit function in (44).

FIG. 13. AIB9 committor for the transition between left- and right-handed helices. (Left) Averages of 𝟙B(X
T) for initial conditions in bins in the first two dPCs computed from

20 long (5 μs) trajectories. (Middle) Averages of representative neural-network committors trained on the dataset of 6910 short (20 ns) trajectories; τ corresponds to 400 ps.
(Right) Comparison between empirical committors [as defined in (45)] and the neural-network committors (trained as for the middle panel). Error bars indicate standard
deviations over ten different initializations of the neural-network parameters.

right-handed helices of AIB9 using the inexact Richardson iteration
scheme (k ≙ 1 in Algorithm 2) with the softplus loss function. Specif-
ically, for this committor calculation, T is the time of first entrance to
Dc ≙ A ∪ BwithA and B defined in Sec. VI B. As before, we initialize
φ̃11 ≙ 𝟙B.

To validate our results, we use the 5 μs reference trajectories to
compute an empirical committor as a function of the neural network
outputs, binned into intervals

Åq(s) ≙ P[XT
∈ B ∣ uθ(X0) ∈ ∥s, s + Δs]] (45)

for s ∈ ∥0, 1 − Δs]. Here, we use Δs ≙ 0.05. The overall error in the
committor estimate is defined as

q error ≙
⎛⎝Δs

1/Δs−1

∑
n≙0

∥Åq(nΔs) − nΔs]2⎞⎠
1/2

. (46)

While this measure of error can only be used when the dataset con-
tains trajectories of long enough duration to reach Dc, it has the
advantage that it does not depend on the choice of projection that
we use to visualize the results.

Results for the full dataset with τ corresponding to 400 ps are
shown in Fig. 13. The projection on the principal components is con-
sistent with the symmetry of the system, and the predictions show
good agreement with the empirical committors. As τ decreases, the
results become less accurate (Fig. 14, top left); at shorter lag times
we would expect further increases in the error. We also examine

FIG. 14. AIB9 committor for the transition between left- and right-handed helices,
as functions of lag time (in ps) and number of initial conditions. (Top left) Error
in the committor as a function of lag time (in ps). Shading indicates the standard
deviation over ten different initializations of the neural-network parameters. (Top
right) Error in the committor as a function of the number of initial conditions with τ
corresponding to 160 ps. Shading indicates the standard deviation over ten differ-
ent random samples of the trajectories. (Bottom) Comparison between empirical
committors and neural-network committors trained on datasets with (left) 1/2 and
(right) 1/20 of the short trajectories. Error bars indicate standard deviations over
ten random samples of the trajectories.
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FIG. 15. AIB9 MFPT to the right-handed helix. (Left) Averages of the time to next reach B for initial conditions in bins in the first two dPCs computed from 20 long
(5 μs) trajectories. (Middle) Averages of representative neural-network committors trained on the dataset of 6910 short (20 ns) trajectories; τ corresponds to 400 ps.
(Right) Comparison between empirical committors [as defined in (47)] and the neural-network committors (trained as for the middle panel). Error bars indicate standard
deviations over ten different initializations of the neural-network parameters.

the dependence of the results on the size of the dataset by subsam-
pling the short trajectories and then training neural networks on
the reduced set of trajectories (Fig. 14, top right). We find that the
performance steadily drops as the number of trajectories is reduced
and degrades rapidly for the datasets subsampled more than 20-
fold (Fig. 14, bottom right), corresponding to about 7 μs of total
sampling.

Finally, we compute the MFPT to reach the right-handed helix
using the same dataset. For the MFPT calculation T is the time of
first entrance to Dc ≙ B. Note that the time of first entrance to B
includes long dwell times in A and is expected to be much larger
than the time of first entrance to A ∪ B.

We compare against an empirical estimate of the MFPT
defined by

Åm(s) ≙ E[T ∣uθ(X0) ∈ ∥s, s + Δs]] (47)

for s ∈ ∥0,mmax − Δs], where Δs ≙ 3 and mmax ≙ 57 ns. Overall error
is defined analogously to Eq. (46).

In Fig. 15, we show the MFPT obtained from Algorithm 2 with
k ≙ 5 and the L2μ loss function. Initially, we set φ̃

1
1 equal to an arbi-

trary positive function (we use 5𝟙A) and φ̃
a
s for a > 1 to a random

linear combination of coordinate functions. In Fig. 16, we exam-
ine the convergence of the MFPT from the left-handed helix to

FIG. 16. MFPT between left- and right-handed helices for the AIB9 system. (Top left) Convergence of Richardson iteration. (Top right) Convergence of a five-dimensional
subspace iteration. (Bottom left) MFPT after 100 and 200 subspace iterations as a function of lag time. Shading indicates standard deviations over ten different initializations
of the neural-network parameters. (Bottom right) Overall error in MFPT. To obtain the results shown in this figure, we first use the short-trajectory dataset to train neural
networks to predict the MFPT; we then use these networks with fixed parameters to evaluate the MFPT for all structures in the long reference trajectories and average the
results for those structures in the left-handed helix state. The horizontal lines in the top panels are obtained from averaging the time to the right-handed helix for the same
structures.
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the right-handed helix for the MFPT computed with k ≙ 1 (pure
Richardson iteration) and k ≙ 5. To obtain the results shown, we
train neural networks on the short-trajectory dataset and then aver-
age their predictions for structures in the left-handed helix state in
the long reference trajectories. The horizontal line in Fig. 16 indi-
cates a MFPT of about 56 ns estimated from the long reference
trajectories. We see that the algorithm with k ≙ 5 converges much
faster (note the differing scales of the horizontal axes) and yields
accurate results at all lag times other than the shortest shown. The
need to choose k > 1 for this MFPT calculation is again consistent
with theoretical convergence behavior of exact subspace iteration.
Because the typical time of first entrance to B from points in A is
very large, we expect the dominant eigenvalue of S τ to be very near
to one when D ≙ Bc. In contrast, the committor calculation benefits
from the fact that the time of first entrance to A ∪ B is much shorter,
implying a smaller dominant eigenvalue of S τ when D ≙ (A ∪ B)c.
IX. CONCLUSIONS

In this work, we have presented a method for spectral esti-
mation and rare-event prediction from short-trajectory data. The
key idea is that we use the data as the basis for an inexact sub-
space iteration. For the test systems that we considered, the method
not only outperforms high-resolution MSMs, but it can be tuned
through the choice of loss function to compute committor prob-
abilities accurately near the reactants, transition states, and prod-
ucts. Other than the Markov assumption, our method requires no
knowledge of the underlying model and puts no restrictions on its
dynamics.

As discussed in prior neural-network based prediction
work,24,30 our method is sensitive to the quality and distribution of
the initial sampling data. However, our work shares with Ref. 24 the
major advantage of allowing the use of arbitrary inner products. This
enables adaptive sampling of the state space24,60 andÐtogether with
the features described aboveÐthe application to observational and
experimental data, for which the stationary distribution is generally
unavailable.

In the present work, we focused on statistics of transition oper-
ators, but our method can readily be extended to solve problems
involving their adjoint operators as well. By this means, we can
obtain the stationary distribution as well as the backward com-
mittor. The combination of forward and backward predictions
allows the analysis of transition paths using transition path the-
ory without needing to generate full transition paths37,38,48 and
has been used to understand rare transition events in molecular
dynamics10,13,16,17,61,62 and geophysical flows.63±67 We leave these
extensions to future work.

In cases in which trajectories that reach the reactant and
product states are available, it would be interesting to com-
pare our inexact iterative schemes against schemes for com-
mittor approximation based on logistic regression and related
approaches.35,41±46,68 These schemes are closely related to what is
called ªMonte Carloº approximation in reinforcement learning,31

and also to the inexact Richardson iteration that we propose here
with τ →∞.

We have seen that temporal difference (TD) learning, a
workhorse for prediction in reinforcement learning, is closely related
to an inexact form of Richardson iteration. Variants like TD(λ),

have similar relationships to inexact iterative schemes. As we
showed, subspace iteration is a natural way of addressing slow con-
vergence. We thus anticipate that our results have implications for
reinforcement learning, particularly in scenarios in which the value
function depends on the occurrence of some rare-event. Finally, we
note that our framework can be extended to the wider range of iter-
ative numerical linear algebra algorithms. In particular, Krylov or
block Krylov subspace methods may offer further acceleration. In
fact, very recently an approach along these lines was introduced for
value function estimation in reinforcement learning.69
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