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Abstract

The growing intensity and frequency of extreme wind events, together with the continued
economic and population growth of coastal areas, has created an urgent need for method-
ologies that can inform emergency responders and managers of the increasing risk to the
infrastructure of these areas. To this end, this work outlines a real-time risk forecast frame-
work for hurricane-induced damage to building envelope systems of engineered buildings.
Damage is quantified through a recently introduced multi-demand and coupled progressive
fragility model, with a full range of uncertainty in structural properties, capacities, and wind
stochasticity. To enable real-time assessment, an efficient Kriging metamodel is introduced
to capture the damage statistics conditioned on intensity measures. From official real-time
hurricane advisories, site-specific intensity measures are forecast based on a parametric wind
field model while considering the uncertainty in, among others, the hurricane track, pres-
sure deficit, and filling model. Damage risk is predicted through propagating uncertainty
by Monte Carlo simulation through the Kriging metamodels calibrated to forecast intensity
measures. For illustration, the real time damage risk of the envelope system of a 45-story
building located in Miami, Fl, was estimated for hurricanes Matthew (2016), Irma (2017),
and Dorian (2019). The efficiency and accuracy of proposed is demonstrated.
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1. Introduction

The growing frequency and intensity of hurricanes is increasing the risk of catastrophic
wind-induced damage to coastal areas [1, 2, 3, 4]. This is especially true if it is kept in mind
that coastal areas often have significant socioeconomic importance to a region with expanding
populations and economies [5]. Within this context, emergency response and management is
vital when these areas are subject to upcoming hurricanes [6]. Typically, successful emergency
response and management relies on decision-making that requires real time information on
the risks and consequences of catastrophic damage and loss from upcoming hurricanes [7, 8].
Within this context, the goal of this research is to develop a real-time forecast framework
for estimating the risk of damage to building envelope systems of engineered buildings, e.g.,
critical facilities, from imminent hurricanes.

Important to this goal are the pioneering efforts devoted to the development of frame-
works for estimating the response of residential buildings subject to extreme winds. These
include models that enable the estimation of the damage, [9, 10, 11], reliability [12, 13, 14],
fragility [15, 16, 17|, risk/losses [18, 19, 20, 21, 22, 23], and community level vulnerability
[24, 4] of such systems. In addition, the development of modeling frameworks, e.g., HAZUS-
MH [25, 26] and the Florida Public Hurricane Loss Model (FPHLM) [27, 28], provide holistic
and standardized methodologies for hurricane risk analyses of portfolios of buildings. Moti-
vated by the significant success seen in reducing seismic risk, recent trends in performance
assessment of individual buildings subject to extreme winds have focused on the develop-
ment of frameworks that enable the application of performance-based engineering. This
has led to development of numerous methodologies for the analysis of residential buildings
[29, 30, 31, 32|, high-rise buildings [33, 34, 35, 36, 37, 38, 39, 40], as well as other infrastruc-
ture [41, 42]. In general, the performance assessment of these approaches is supported by
more a comprehensive and quantitative probability-based procedure [15, 43]. As such, they
are very well suited for the performance assessment of engineered systems, e.g., the high-rise
buildings considered in this work. Of the performance-based approaches developed to date,
those recently introduced in [39, 44, 45] are of particular interest to this work as they enable
the explicit damage assessment of the building envelope of engineered system.

A major difficulty in applying these frameworks for real-time damage prediction is the
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significant computational effort required for their evaluation. To circumvent this issue, meta-
modeling techniques, which seek to define a computationally efficient model of the model
without loss of accuracy, is an approach with strong potential. Indeed, metamodeling tech-
niques have been gaining immense interest in computationally intensive applications, e.g.,
uncertainty propagation and optimization. Polynomial regression is among the earliest of
these approaches and has been widely used due to its ease in implementation and high effi-
ciency in predictions [46]. Nonetheless, the determination of an appropriate polynomial order
is generally not trivial, as an order that is too low will generally lead to low accuracy due
to incapability to capture local details, while an excessively high order can lead to overfit-
ting and numerical problems. A candidate solution to this issue is to determine the basis
function adaptively, e.g., through subset search [47, 48, 42|, multivariate adaptive regression
splines (MARS) [49, 50, 51], or adaptive basis function construction (ABFC) [52, 50, 51].
The MARS approach, which can be viewed as a hierarchical forward/backward stepwise
subset selection procedure, introduced recursive partitioning while using spline basis, and
thus have not only good continuity but also the malleability to capture localized features.
The ABFC approach, on the other hand, describes the polynomials through a state matrix
while performing searches with heuristic schemes, and therefore avoids the requirement of a
predesignated set of basis while also reducing the effort required during the search process.
The aforementioned schemes generally assume all known data points are equally important
in the prediction at new inquiry points, i.e., in assigning importance, they do not consider
the distances from the inquiry point to known data points. To overcome this, the moving
least square scheme [53, 54, 7] introduced a distance-related weight therefore emphasizing
the contribution to the prediction of the data points closer to the current inquiry point. This
adaptiveness is not shared with other popular techniques, e.g., neural networks [55, 56|, and
enables higher prediction accuracy given the same set of basis functions. A limitation of
this scheme is the relatively large computational burden associated with the matrix inversion
necessary in making the prediction for each new inquiry point. As an alternative, Kriging-
based schemes retain the merit of emphasizing data closer to the inquiry point, while also
achieving high computational efficiency by not requiring any intensive operations in making

predictions [57, 50, 7, 8, 51]. In addition, this best linear unbiased predictor [58] is interpola-
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tive, and therefore exact at the support data points, while also providing a direct estimate
of the epistemic uncertainty introduced by the model itself.

In this work, a real-time risk forecast framework for hurricane-induced damage to enve-
lope systems of engineered buildings is introduced. Damage is estimated through a recently
introduced high-fidelity multi-demand progressive fragility model that enables probabilistic
evaluation of hurricane-induced damage while considering a full range of uncertainties [39, 44]
i.e., uncertainties in the hurricane forecasts (track and wind field), wind pressure processes
(wind load stochasticity), structural properties in terms of damping, component capacities,
and coupling between envelope damage states. To address the computational demand of the
high-fidelity damage model, and therefore enable real-time application, a Kriging metamod-
eling scheme is introduced for describing the mapping from site-specific intensity measures,
e.g., wind speeds and directions, to conditional statistics of the envelope damages. For real-
time forecast of damage, the metamodel is developed to accept information from parametric
wind field models that provide prediction of the site specific intensity measures from typical
information provided by hurricane advisories issued by the national hurricane center (NHC).
Uncertainty in forecasting the site specific intensity measures is considered through introduc-
ing uncertainty in the predicted hurricane tracks, pressure deficit, and filling model. Monte
Carlo simulation is used to propagate uncertainty through the metemodels and therefore
provide estimates of the risk of wind-induced damage to the building envelope. To illustrate
the framework, the real time prediction of damage risk to the envelope system of a 45-story
building located in Miami, Florida, and subject to three historical hurricane scenarios is con-
sidered. The calibrated metamodel is seem to maintain high accuracy while being over four
orders of magnitude faster than the high-fidelity model therefore successfully enabling real

time damage risk forecast.

2. Real-time forecast of site-specific wind intensity

2.1. Preamble

This section outlines a scheme for forecasting site-specific wind intensity based on the
parametric wind field models outlined in [59], as well as information from official hurricane

advisory streams, e.g., those from the national hurricane center of the United States. In

4
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particular, for an imminent hurricane, information from the advisories on hurricane track
and intensity is used as input to the parametric wind field model therefore enabling forecast
of the site-specific wind intensity measures, e.g., the maximum site specific wind speed and
associated direction to occur over the evolution of the imminent hurricane. As outlined in [60],
this site specific information on the hurricane intensity can be used to provide high-fidelity

probabilistic estimates of envelope damage to engineered buildings.

2.2. Hurricane forecast

Hurricane forecasting has experienced significant advances over the past several decades.
The NHC, for example, provides forecast/advisory for all Atlantic, eastern Pacific, and cen-
tral Pacific tropical and subtropical regions [61]. The forecast/advisory for each hurricane
contains, among other information: the current watches and warnings; the track forecast,
defined by the latitude, ¢, and longitude, \.., of the center of the hurricane at tr = 0
(present), 12, 24, 36, 48, 72, 96, and 120 hours into the future; and current intensity ex-
pressed as the central pressure py. This information is usually released every six hours at
03:00, 09:00, 15:00, and 21:00 UTC. In addition, the NHC verifies the forecasts against the
hurricane’s “best track” database by NHC’s post-storm analyses, and provides the associated
error data for the period 1970 to the present [62].

Based on the aforementioned information, stochastic hurricane track samples (¢p., Awp)
can be generated, as shown in Figure 1, by adding to the track forecast coordinates (¢,

Aty ) Tandom errors (€ sy, €xpp):

<¢tT’ )\tT) - (qgtT7 S\tT) + (e¢7tT7 e>\7tT> (1)

In particular, the statistical properties of the errors (e4 .., €x+,) are expected to be consistent
with the official error database. To this end, along- and cross-track forecast errors (ea ¢,

ecty) are assumed to follow a multivariate Gaussian distribution:

[ea.0,€C.05€a12, €012, o) ~ N ([Ea0, €0, €A 12, EC 12 -] Die) (2)

where the mean error vector [€a o, €c0, €A 12, €c 12, .| and covariance matrix 3. are calculated
from the forecast error database of the last five years after official NHC verification [62].

Subsequently, error samples (€4 +.., €ct) at all tp can be generated from Eq. (2), transformed

5
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Figure 1: Real-time track forecast and generation of track samples.

to the geographic coordinate system as longitude ey, and latitude ey, and added to the
original prediction (., A.) therefore defining the track samples of Eq. (1). In addition,
techniques such as cubic spline interpolation can be implemented to infer hurricane positions

between any two consecutive predicted times.

2.3. Wind field model

At each time instant of a track sample, to evaluate the site-specific wind intensity, a
parametric hurricane wind field model is implemented [59]. This model takes the current
central pressure deficit Apy (the difference between the standard air pressure and the current
central pressure pg) and the radius of the maximum wind, r,;, as parameters, and gives both

the tangential and radial velocity components at 500 m above the sea level as:

v(r, B;t) = vy [\/7“’*3 exp(l —r'=B) + a?r? — ar/} (esin 8 —ncosf), r' = L, a= S
I8V 27}1\/[

(3)
(ecosf —msinf), v =||v|| (4)

S (%) s -G,

Bit) = |+ v, o
ulr. 5:) [ rryf

where v(r, 3;t) and u(r, §;t) are respectively the tangential and radial velocity fields in the

polar coordinate system (r, [3) with origin at the hurricane center; B is the Holland number
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that defines the air pressure distribution; K is the diffusion coefficient; f is the Coriolis
parameter, evaluated as f = 20 sin ¢, with Q ~ 7.2921 x 1075 rad/s the rotation rate of the
Earth and ¢, the latitude of the hurricane center; C; ~ 0.0015 is the drag coefficient related
to the boundary layer averaged velocity; h is the boundary layer thickness; o, = —H is
the deflection coefficient that can be assumed to be constant [63, 64]; vy, is the maximum
wind field velocity than can be estimated as:

BAp(t)

epa(l+ ai;) (5)

Vv =

where e is Euler’s number; p, ~ 1.15 kg/m? is the air density; Ap(t) is the center pressure

deficit (with Ap(0) = Apyp), which can be estimated through the filling-rate model [65]:

Ap(t) = Ap(t) exp [—ae(t — 11)] (6)

where ¢; is the time instant when the hurricane makes landfall; ay is the filling constant, with

the uncertainty considered through a zero mean Gaussian variable e:
ar = ago + ag1Apg + € (7)

where ago and ag; are region-specific coefficients available in Vickery and Twisdale [65]. The
filling model simulates the decay process of the hurricane intensity after making landfall due
to the increase of its central pressure, i.e., the “filling” of the pressure deficit.

By superimposing the translation speed of the hurricane with the tangential and radial
velocity components relative to the hurricane center, the resultant wind speed field, i.e.,
relative to the ground, is given by:

va(r, Bit) = v(r, B;t) + u(r, B;t) + cexp(—%) (8)

where c is the translation speed vector of the hurricane while r¢g is the environmental length
scale that governing the radial decay of c.
Based on Eq. (8), the site-specific hourly-mean wind speed 0 (t) can be obtained through:
5
B 20 In [H/z)
Op(t) =0.68 | — ) ————"—||vy(rs, Bs;t 9
() =08 (2 ) Ry, g0 )
where (rg, ) are the polar coordinates locating the building site of interest with respect to

the hurricane eye; 2z, and zg; are respectively the roughness length at the building site and
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meteorological site; H and Hy,e (typically 10 m) are the height at the top of the building
and the meteorological site reference height, respectively; ¢ is an empirical constant; 0.68
is dimensionless coefficient used for converting the wind speeds at the height of 500 m to
the meteorological reference height, Hy, in open terrain [66, 65, 67]. The associated wind
direction, &(t) € [0°, 360°), defined as the angle between vy(||rs||, 5;t) and n, can also be
obtained. The site-specific wind intensity measures, namely the site-specific maximum wind
speed, vy = g(t) = max|vg(t)|, and associated direction a = @(f), can be subsequently
estimated.

Through Monte Carlo simulation, the aforementioned forecast model can be used to
provide samples of the the site-specific wind intensity measures (vg, o) with full consideration
of the uncertainty inherent to hurricane forecast (e.g., track stochasticity and central pressure
deficit) and adopted models (e.g., the radius of the maximum wind and filling rate). Moreover,
this framework is computationally treatable, allowing for the rapid generation of a large

number of samples of (vy, ) in real-time.

3. High-fidelity building envelope damage assessment model

To evaluate hurricane-induced damage to envelope systems of engineered buildings, the
coupled multi-demand progressive damage assessment framework outlined in Ouyang and
Spence [39, 44] is adopted. This high-fidelity assessment framework allows for the considera-

tion of the coupled and time-evolving nature of damages induced by different wind demands.

3.1. Data-informed stochastic wind pressure

The estimation of damage to building envelopes for a given realization of the intensity
measures, i.e. a realization of the the pair (vy,a), requires the modeling of the external
dynamic wind pressures. These can be seen to represent realizations of stationary multivariate
non-Gaussian stochastic processes. As outlined in [44], the generation of realizations of this
stochastic process can be informed by building specific wind tunnel test data in the form
of time-varying vectors of external dynamic pressure coefficients, C,.(c;t), measured at a
series of carefully located taps on the surface of a rigid scale model of the building for a series

of discrete wind directions a € {ay, s, ...}. After appropriate scaling to a wind speed of
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interest through standard Strouhal number matching [68], this data can be used to calibrate
a Gaussian representation of the external pressure coefficients with the expected turbulence
levels and complex aerodynamics seen in the wind tunnel (e.g., vortex shedding and detached
flow) being captured. Data-driven translation models can then be used to capture any non-
Gaussian features.

The Gaussian process, Cgf(t; @), is defined from the estimation of the second order statis-
tical properties, i.e., the mean C,,.(t; a) and cross power spectral density matrix e, (w;a),
of the measured wind tunnel data. Subsequently, a proper orthogonal decomposition (POD)-
based reduction of Xp, ,(w; ) is performed for each wind direction, o, and discrete frequency

point, w, by solving the following eigenvalue problem [69]:
Yo, (W a)¥i(w;a) = Aj(w; o) ¥ (w; a) (10)

where ¥;(w; o) and A;(w; a) are respectively the ith spectral POD mode shape and eigenvalue
of ¥¢,.. Typically, as the energy of the signal is generally associated with a few lower-
order POD modes, the Gaussian process can thus be well-approximated from the first m,, .

subprocesses, as:

Mp,e

CIT(tia) ~ CIP(ta) = Cpelt;a) + > CITi(t;q) (11)
=1

where C¢7i(t; ) is the ith independent subprocess generated for the ith POD mode W;(w; )
and eigenvalue A;(w; a) as:
nw—1
ngfi(t; a) = Z 2|, (wy; )|y / Ai(wj; a)Aw cos (w;t + 0;(w;) + 0;5) (12)
j=0
where w; = jAw is the jth frequency point with n, the total number of frequency points
and Aw the frequency step size, 6;; is a random phase angles uniformly distributed in [0, 27],
while 0(w;) is given by:

0;(w;) = arctan [Im(mi(wﬁ a))}

Re(@;(w;; o))

The non-Gaussian features of the pressure coefficients can be effectively introduced by

(13)

transforming the marginal Gaussian distributions of Cg,f(t; a) to non-Gaussian marginal

distributions using translation models [70], therefore defining a stationary and multivariate
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non-Gaussian representation of the external pressure coefficients C,.(¢; ). In particular,
the element-wise translation models capturing the non-Gaussian features are calibrated once
again to the building specific wind tunnel test data. To this end, kernel-Pareto mixture
models are adopted in which the raw wind tunnel data is partitioned into into a lower tail
region, a central region, and an upper tail region. Kernel density is then used to represent
the distribution of the data of the central region, while extreme Pareto distributions are
considered for the tail regions [71]. Once C,.(t; a) is generated, the external dynamic pressure
coefficient at an arbitrary location &, i.e., a point outside of where pressures were measured
on the building model used in the wind tunnel tests, can be obtained through instantaneous

interpolation of C,(; a), therefore defining C,.(t; o, &).

3.2. Wind demands

The demands of the envelope damage assessment framework are the in-plane deformations
of the envelope components due to the interstory drift response of the structural system, as
well as the out-of-plane net pressure on the envelope components. To evaluate the interstory
drifts, the structural responses of the system is estimated by solving the following equation

of motion:

MU(t) + CU(t) + KU(t) = F(t; vy, a) (14)

where U(t), U(t), and U(t) are respectively the acceleration, velocity, and displacement
response vectors; M, C, and K are respectively the mass, damping, and stiffness matrices
of the structural system; and F(¢; vy, ) are the stochastic wind loads obtained through the
integration of the external wind pressures derived from the external pressure coefficients of

Section 3.1 as:

1
pe(t;UH,Oé,E) - épavglcp,e@; avE) (15>

where p, is the density of air. It should be noted while Eq. (14) is written as a linear elastic
system, this assumption is by no means central to the framework of this work that can be
equally applied to general nonlinear systems. From U(t), the interstory drift ratios, Dr(t),
at any location, &, of the building envelope can be directly estimated. Due to the progressive

and coupled nature of wind-induced damage to building envelopes, the entire time history
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of interstory response, Dr(t), must be considered as the engineering demand parameter (as
opposed to the peak value commonly adopted in seismic damage modeling).

The out of plane net pressure demand acting on an envelope component of location & is
defined as the difference between the external and the internal pressure and therefore as:

pn(t; VH, &, E) - %pavz [Cp,e(t; «, 5) - Cp,i(t; E)] (16)

where C);(t, §) is the internal dynamic pressure coeflicient at the envelope element, obtained
as outlined in [39]. In particular, in evaluating P, ;(&;¢), the building system is considered as a
set of interconnected air spaces with both internal/external openings. The external openings
are those in the building envelope. In general, at the beginning of a hurricane the building
is considered enclosed, i.e., no external openings exist. As damage occurs, external openings
will appear. As discussed in [39], this not only significantly changes the internal pressure
stochastic process but also couples the drift and pressure demands as external openings
generated by drift will in general effect the net pressure demand. Once external openings
occur, the internal dynamic pressure coefficient, C,,;(t, ), can be estimated from solving the
unsteady-isentropic Bernoulli equation of transient airflow at each opening [72, 73| through
an explicit 4th order Runge-Kutta method. It should be noted that envelope components
will in general experience static fatigue/delayed failure, which, instead of being related to

instantaneous pressure, p,(t; €), are better related to equivalent net pressure [74]:

pltivn.a.&) = (= [ [pn@;vH,a,s)r)i (17)

eq
where %o, is the reference duration, typically taken between 3 s to 60 s and s is an empirical

exponent.

3.3. Envelope capacities and damage measures

The susceptibility of each envelope component of the building system to damage induced
by excessive net pressure, peq(t;vm, o, &), and/or dynamic drift, Dr(t;vgy, o, €), demands,
is modeled through considering suites of N, pressure-induced damage states {DS! : ¢ =
1, 2,..., N,} and Np, drift-induced damage states {DS]" : i = 1, 2,..., Np,}. Each suite

of damage states are considered to follow a sequential damage logic, i.e., the occurrence of
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a certain damage state implies that all preceding damage states have occurred. Each suite
of damage states is associated with a suite of sequential thresholds, i.e., capacities of the
form {CP": i =1, 2,.., Np,, CP7 < CP"} and {C?: i=1, 2,..., N,, C" | < C'}.
In particular, in defining the capacity of an envelope component to resist net pressure, the
common assumption of a parallel mechanism is assumed, i.e., for an envelope component with
two panes of glass, it is assumed that each glass pane resists 50% of peq [75]. The exceedance
at any point during the evolution of a hurricane of a threshold by the respective pressure
or drift demand, i.e., peq(t;€) or Dr(t;€), indicates the occurrence of the damage state.
Uncertainty in the capacities is modeled through suites of sequential fragility functions (one
fragility function or each damage state). In practice, for a given time instant £ € [0, 7] with
T the duration of the event, the current damage states, DS(#), of an envelope component
are the damage states associated with the highest capacities to have been exceeded in [O,ﬂ
for each of the groups. In addition, it should be noted that the drift and pressure induced
damage states will in general be coupled, as, for instance, cracks induced by excessive drift
deformation will generally reduce the capacity of the envelope components to resist net
pressure and viceversa. To account for this coupling, a reduction factor, po(DS), for the
capacities is generally considered. Initially po(DS) = 1 and will degrade upon the occurrence
of a coupled damage state. This coupling, together with the coupling between the demands
discussed in Section 3.2, makes the process of damage accumulation progress in nature and

requires the simulation of the damage process over the entire duration, 7', of the wind event.

3.4. High fidelity probabilistic envelope performance evaluation

As outlined in [39, 44, 45, 60], by embedding the models of Sections 3.1 to 3.3 in gen-
eral uncertainty propagation frameworks (e.g., Monte Carlo simulation schemes and their
derivatives), high-fidelity estimates of the probabilistic performance of the envelope system
of engineered buildings subject to extreme winds can be obtained. In particular, the gen-
erality of the models enable a full range of uncertainty /stochasticity in, for example, the
structural properties (e.g., M, C, and K), the wind excitation (e.g., Cp(t; @, §)), the enve-
lope capacities through the fragility functions of the damage thresholds, and damage coupling
through pco(DS), to be included. The computational burden of this high-fidelity approach

to probabilistic performance estimation of envelope systems is significant as it requires time
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stepping through the entire hurricane event of duration 7" and solving at each time step the
models of Sections 3.1 to 3.3. This includes simulating external stochastic wind pressures,
solving nonlinear internal pressure models (multiple times if cascading failure occurs), in-
tegrating the dynamic equations of motions of the structural system, and performing the
coupled damage analysis of Section 3.3 for each damageable component of the envelope sys-
tem (typically in the order of thousands). Notwithstanding how in [60] it was shown that
for accurate estimation of envelope damage, the simulation need only be carried for the pair
(vg,a) with T'= 1 hour, typical run times on powerful multi-core desktop machines are in

the order of days therefore precluding real-time damage predication.

4. Metamodeling

4.1. Damage measures

As discussed in Section 3.4, the high-fidelity assessment framework is computationally
prohibitive for application in real-time damage assessment. To circumvent this issue, this
work is focused on developing a metamodel of the assessment framework that is capable of
providing equally comprehensive information on the damage to the envelope system while
requiring a fraction of the computational effort. To facilitate metamodeling, it is convenient
to introduce, without any loss of generality, the following dimensionless damage measure for
each damage state of each damageable envelope component:

mingeo,7) [po(DS)C — edp(t)]

D¢ = =

(18)

where C'is the initial capacity of the envelope component to one of its potential damage states
while C' is the expected capacity. In particular, D¢ is a strictly decreasing function over the
duration of the wind event with D¢ < 0 indicating damage and E[D¢] = 1 prior to any dam-
age and in absence of demand. Given specific values of the intensity measures, (vy, @), the
uncertainty /stochasticity considered in the damage assessment framework leads to random-
ness associated with D¢s which, in general, can be expressed through the probability density
function p(Dc|vy, ). In this research, the first two moment of the p(D¢|vy, ), namely the

conditional mean fip,|y,.« and standard deviation opju; ., are of interest for characterizing
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p(De|vg, ). In the next section, Kriging metamodels will be introduced for approximat-
INg Upgjvy,a a0d Opgju, .o for each damage state of all envelope components composing the
system. It should be noted that this does not exclude the possibility of implementing this
framework with different measures for representing p(Dc¢|vg, @), e.g., higher-order statistic

or kernel smoothing.

4.2. The Kriging metamodel

To address the computational bottleneck of the high-fidelity assessment framework, a
Kriging metamodel will be introduced. As in any metamodeling technique, Kriging seeks
to establish a computationally efficient surrogate mapping from the space of the inputs x,
i.e., the wind intensity measures (vy, «) in this case, to the space of the output y, i.e., the
conditional statistics ip. v, e a0d 0pgjvy, .« for each damage state of each envelope component
of the system. In particular, Kriging is based on the prior assumption that y is a Gaussian
process over the space of x:

j(x) = g' (x)a+ ex (19)

where g(x) is a vector of basis functions, with coefficients a to be calibrated; ey is a zero-
mean Gaussian process with its autocovariance af,R(x, x', @) characterized by the parameters
collected in 6.

Given a set of observations S = {(x;, i), ¢ = 1,2, ..., nx}, the joint distribution between

S and any new data points, e.g., S" = {(x}, y), i = 1,2,...,n.}, can be written as:

Y GT RYY RYY' 2
v ~N o a, B R o, (20)
YY’ Y'Y’

where Y = [y1, ..,y Y = [y, ..,y 11 G = [g(x1), - 8(x0,)], G = [8(X), -, 8(x,

while Ryv is given by:

R(x1,%x1,0) ... R(x1,Xp,,0)
Ryy = : : (21)
R(xp,,x1,0) ... R(xXp.,X,.,0)

with Ryy’ and Ryry defined similarly when considering R(x,x’,0) and R(x/,x/, ).
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The predictive distribution at new points given the known observations S can therefore
be derived as [76]:
Y'Y ~N (H’Y’\Y? EY’|Y) (22)

where piyry = G a+ RV, R, (Y — GTa) and Yyviy = Ryyo) — RST(Y/R{(%(RYVO;
are respectively the mean and covariance of Y’ conditioned on Y. The Kriging predictor is
exactly the mean function in Eq. (22). For instance, the Kriging predictor for only a single
new point g(x) is given by:

j(x) =g (x)a+r'(x)b (23)

where r(x) = Ry; = [R(x1,%,0) ... R(x,,,x,0)]" and b = R (Y — GTa).
Overall, the predictive distribution contains unknown parameters a (b fully depends on
a), aj and 6, which can be estimated by the maximum likelihood method [77]. In particular,

the likelihood function L is defined as:

L(a, az, 0) =Inp(Y|a, aZ, 0,x1,....Xp,)

nln2r  In|Ryy| nelno? (Y- GTa) Ry, (Y- GTa) (24
2 > > 202

The maximum likelihood estimate of a can be obtained by imposing g—g = 0, therefore giving:

a=(GRyYG") " GRy,Y (25)

Similarly, 05 can be inferred by imposing %Lg) = 0 which yields:

_(Y-G'a) Ryy(Y-G'a) (26)

Nnx

~2
Uy

Unlike a and 02, the parameter vector 8 depends on the generally nonlinear function R(x,x’, 0).

Therefore, numerical optimization is generally required for its estimation. This optimization

problem can be simplified by substituting Eqs. (25) and (26) into Eq. (24), therefore yielding:
- arg mgn [ln |Ryvy| + nx In 65] (27)

In Eq. (23), the first term g'(x)a in §(x) is essentially a regression model with basis
functions collected in g(x). This term captures the global trend within the observations S.

The second term rT(x)b, on the other hand, acts as an interpolation model defined through
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the radial bases in r(x), which enables y(x) to learn local behaviors in S, in addition to the
global trend captured by the regression model. Moreover, r(x) can be viewed as a weighting
function that gives higher weights to observations that are closer to the point x, indicated as
y(x), with adaptiveness as in the moving least squares approach [7]. In addition, Eq. (23) is
highly efficient since all time-consuming calculations, e.g., matrix inversions and numerical
optimizations involved in Egs. (25) to (27), will only need to be performed once for the
training set S. This is an important advantage over, for instance, the moving least squares
approach [78]. The aforementioned merits in terms of efficiency and accuracy makes Kriging
an ideal metamodeling choice as compared to the alternatives discussed in the introduction,
e.g., polynomial schemes and neural networks. These properties ensure, that once calibrated,
the Kriging metamodel possess the efficiency that will enable real-time damage assessment
while maintaining the fidelity and resolution of the framework outlined in Section 3. A

summary of the calibration process is as follows:

1. Design of experiments: Select a set of samples/support points within the input space,
i.e., the space defined by x = [vy, a]*.

2. Data collection: For each of the support points, carry out a high-fidelity damage as-
sessment as outlined in Section 3 and evaluate the conditional statistics of the damage
measures defined in Section 4.1. As such, the training set S is formulated by pairing
the outputs (the conditional statistics fipg|v,,a and Tpgjuy,,a) With the corresponding
support points.

3. Kriging calibration: The Kriging metamodel is calibrated by solving Eqs. (25)-(27)
through an appropriate algorithm, e.g., the highly efficient and robust Design and
Analysis of Computer Experiments (DACE) toolbox [79], for each conditional statistic
of each damage state of each envelope component.

4. Kriging validation: The accuracy of the calibrated Kriging metamodels (one for each
damage state of each envelope component) are tested by making predictions on a set
of inputs not used during calibration. The accuracy is measured through the difference
between the Kriging predictions and the ground truth outputs calculated from the high-
fidelity model. If satisfactory accuracy is achieved, the calibrated Kriging metamodels

are accepted. If the accuracy is not deemed sufficient, the four steps outlined above are
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repeated for an adjusted design of experiments and/or Kriging configuration (e.g., the

choice of R(x,x’,0)).

5. Real-time damage risk forecast

By assuming that the conditional probabilities, P(D¢|vy, @), can be described by an
appropriate two parameter distribution, the Kriging metamodels for pip v, .« and opgjuy
can be used to directly estimate P(Dcl|vy,«). From the knowledge of P(Dc|vg,«), the
unconditional risk of damage, P(D¢ < 0), for each envelope component and damage state of

the building system, can be directly evaluated through the law of total probability as:
P(D¢c <0) = // P(D¢ < Olvg, a)p(vy, a)dvgda (28)
VH,X

where p(vy,«) is the joint probability density function between vy and o while P(De <
Olvg, ) is the conditional probability of {Dc : Do < 0}, i.e., of damage. In practice, by
generating in real-time N samples of vy and « belonging to p(vy, @) through the forecast

model of Section 2.2, Eq. (28) can be directly estimated through Monte Carlo simulation as:
| N
P(Dc < 0) =~ N ZZIP(DC < 0|UH,1'7051') (29)

were vy, and oy for i = 1,2,..., N are the samples belonging to p(vg, «).

The risk of damage of Eq. (29) can be seen as a direct measure of disaster consequence
and provides powerful information in support to early emergency response and management.
Figure 2 presents an overview flowchart of the proposed risk forecasting framework for enve-
lope systems of engineered buildings. It should be noted that this framework can be applied
to portfolios of engineered buildings, e.g., all the critical facilities of a given county, as the

Kriging metamodels can be completely calibrated offline.

6. Case study

6.1. The building system

A rectangular 45-story building located in Miami, Florida, is considered as a case study

(Figure 3a). The total height of the building is 180 m, with each story height 4 m. The
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Figure 2: Schematic of the proposed real-time damage risk forecasting framework.
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Figure 3: The case study building: (a) 3D view; (b) the unfolded envelope system.

building’s structural system is a steel braced frame with box sections for columns and W24
sections (standard American Institute for Steel Construction (AISC) members) for beams
and braces. The structure was designed to meet the requirement of interstory drift ratios not
exceeding 1/400 under a wind speed with mean recurrence interval (MRI) of 50 years and
to have all members remaining linear elastic for wind speeds with MRIs of 1700 years. In
addition to the structural mass, a carried mass of 0.38 t/m? at each floor level was considered.
As a result, the first three natural frequencies of the structure were 1.30, 1.67, and 2.70 rad/s,
respectively. For the dynamic response analyses, the first 10 vibration modes were considered
sufficient. In integrating the modal equations, the modal damping ratios were considered
fully correlated with uncertainty describe by a lognormal distribution with mean 1.4% and
coefficient of variation of 0.3. The stochastic pressure model of Section 3.1 was calibrated
to datasets of the Tokyo Polytechnic University wind pressure database [80]. This data was
used to estimate the spectral POD eigenvalues and eigenvectors of Eq. (12). The first 10
spectral modes were considered sufficient for representing the external pressure field. The
kernal-Pareto mixture model of the marginal distributions of the pressure coefficients were
calibrated considering 5% upper and lower tail thresholds.

The envelope system consists of a total of 8,100 damageable glazing components, with

180 elements on each floor (Figure 3b). Each of the envelope components is composed of an
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Table 1: Parameters of fragility functions.

Damage state ~ Phenomenon  Median Dispersion Mean  Std

DSP" (rad)  Hair-line crack ~ 0.021 0.45 - -
DSY™ (rad) Crack 0.024 0.45 - -
DS? (kPa) Blow-out - - 529 091

internal and external laminated glass pane, both with a size of 1.2 m x 2 m and thickness of
6 mm. Each envelope component was assumed to be susceptible two drift induced damage
states, DSP™ and DSP" respectively, and one pressure-induced damage state, DSP. The drift
induced damage states physically refer to the occurrence of hair-line cracking or cracking of
the laminated glass panes, while the pressure induced damage state refers to glass blow-out.
In evaluating pey, teq and s were taken respectively as 60 s and 16 in Eq. (17). The parameters
of the fragility functions describing the uncertainties in the damage states are summarized
in Table 1 [81, 82]. In addition, to account for the coupling between the occurrence of a
drift induced damage state and the reduction in the capacity of the component to resist net
pressure, a random reduction factor per is considered for CP. In particular, it is assumed
that pcr follows a truncated normal distribution in [0, 1] with a coefficient of variance of 0.1.
The mean reduction in capacity to resist net pressure upon occurrence of DSlD "or DS2D " was

set to 90% and 10% respectively.

6.2. Kriging-based rapid damage assessment: Offline stage
0.2.1. Kriging training

A high-fidelity training dataset, S, was simulated through the framework in Section 3. In
particular, the support points x; = (vm;, ;) were generated through a grid sampling plan
defined by « belonging to the discrete set {0°, 10°, ..., 350°} and the axis of vy divided
into three, five, three equispaced intervals of ranges 0 m/s to 43.90 m/s (MRI = 50 years),
43.90 m/s to 75.66 m/s (MRI = 107 years), and 75.66 m/s to 94.70 m/s (MRI = 10! years),
as shown in Figure 4. The data grid is denser for higher vy where stronger nonlinearity is
expected in the Kriging metamodel. Further, it should be noted that « is bounded, and
thus the training dataset is augmented by adding a grid at o = 360°, with data copied

from o = 0°. Within this context, a total of ny, = 444 support points were generated for
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Figure 4: The training dataset (support points) and the testing dataset.

the Kriging training. At each of the support points, the first two conditional moments, i.e.,
D lvs,a A vy .o, Were estimated for all 24,300 potential damage states (8,100 envelope
components with three damage states each) of the envelope system. To this end, Monte Carlo
simulations were carried out using 1,000 samples at each support point from which pp v,
and opg vy« Were directly estimated for all 24,300 potential damage states.

In defining a Kriging metamodel, the selection of the correlation function R(x,x’,8)
is critical to accurate predictions. To this end, the commonly used forms summarized
in Table 2 will be comparatively discussed so as to determine the most appropriate cor-
relation function for the applications of this work. The second-order polynomial bases
glvg,a) = [1, vy, a,v%, vgd, o?] was considered to enable a reasonable extrapolation
at inquiry points that fall outside of the range covered by the support points. Within this
context, a single output Kriging predictor is calibrated for each of the three pairs of damage
statistics, i.e., (/‘Dchrlvaav UDCPT\”H@)’ (MDCQDT|UH70“ O-DCéDTWH:a)’ and (1D gplvm,ar ODeplvm,a)» for
the 8,100 envelope components. Calibration was performed through the DACE toolbox [79].
The computational effort is measured in terms of the total time elapsed in learning the dam-
age statistics for all 8,100 envelope components in the training set. A comparative summary
is reported in Table 3. It is seen that the spherical correlation function is the most efficient for

calibrating. Note that all computations of this work were performed on a personal computer
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Table 2: Correlation functions considered in calibrating the Kriging metamodel.

Function R;
Exponential exp (—0;]z; — ’ )
Generalized exponential exp (—0;|z; — T | 1)
Gaussian exp (—0;]x; — x]?)
Linear max{0, 1 —0;|z; — 2|}
Spherical 1 —1.5m; +0.573, n; = min{1, 6;|z; — 2[}

1 — 1502 + 3002, n; € [0,0.2]
Spline 1.25(1—m;)%, n; € (0.2,1) 1 = jlz; — ]
0, n; € [1,+00)
Note: R(x,x’,0) = [[;_, R;.

Table 3: The computational effort measured by elapsed time during training (in seconds).

Kernel KDoprlvima  ODgprlvaa  MDgpolvma  ODgprlvna  HDonlvma  ODerlvaa
Exponential 382.16 282.69 366.70 281.84 306.86 356.07
Generalized exponential 434.18 411.47 410.63 406.51 940.09 451.07
Gaussian 333.22 322.46 320.46 319.45 309.77 319.45
linear 128.78 115.22 121.68 108.77 222.99 145.13
Spherical 121.91 100.45 118.51 100.52 199.49 164.72
Spline 197.61 144.92 186.53 144.33 287.34 268.02

Note: Minimum training times indicated with underlining.

with Intel(R) with i7-8700 Core(TM) with 32 GB RAM.

6.2.2. Kriging testing

To test the generality of the calibrated Kriging predictor, a testing dataset composed of

A

' = 60 random samples was considered (asterisks in Figure 4). The average mean error

n

(AME) [78] is considered to quantify the accuracy:
1 o= |22 \yi(XQ,Ek) - @;(Xivék)‘

AME = — o . (30)
Te ; 2121 |@/;(X;7€k)|
where £k = 1,2,...,n, are the indices of the envelope elements, and n, = 8,100 in this

case. This error measure is defined to reflect the global performance of the predictor in
reproducing a certain damage statistic for all envelope elements and testing samples. The

AME by Kriging considering each of the correlation functions is summarized in Table 4. In
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Table 4: Prediction accuracy measured by AM E over the testing dataset.

Kernel KDprlvna  ODgprlvma  FDgprlvwa  ODgprlvm.a  HDorlvma  TDovlvn.a
Exponential 1.77% 3.38% 1.72% 3.38% 0.76% 2.57%
Generalized exponential 1.79% 3.90% 1.74% 3.91% 0.76% 2.59%
Gaussian 3.07% 5.60% 2.89% 5.60% 4.70% 5.97%
linear 1.87% 3.82% 1.83% 3.82% 0.77% 2.65%
Spherical 1.81% 3.27T% 1.75% 3.27% 0.76% 2.58%
Spline 2.04% 3.25% 1.95% 3.25% 0.84% 2.94%

addition, the Kriging surfaces and predicted values of pp,jv;.o and fpgjvy.a £ Opejvy,o for a
representative envelope component are compared to the high-fidelity data in Figure 5. Except
for the Gaussian correlation function, all other correlation functions yield similar results to
the spherical kernel and are therefore omitted from Figure 5 for clarity of presentation.
The prediction accuracy demonstrated in Figure 5 is consistent with Table 4. It is seen
from Table 4 that overall the exponential correlation shows the best accuracy, while the
spherical correlation exhibited similar performance. However, the most widely used Gaussian
correlation performs the worst among the considered correlation functions. It can be observed
from the Kriging surfaces in Figure 5 that the predictor using the Gaussian correlation is
showing an erroneous fluctuation around lower wind speeds. This fluctuation is the major
reason for the worst performance of the Gaussian correlation function. In addition, the
simulation efficiency relative to the high-fidelity damage assessment framework is shown in
Table 5, where all the correlation functions enable the Kriging metamodel to be more than
four orders of magnitude faster than the high-fidelity framework. In particular, the linear
correlation function is seen to have the highest efficiency, which is reasonable as it is the
simplest in terms of function operations. The exponential and spherical correlation functions
are seen to have similar efficiency, with both accelerating the damage evaluation by more
than 30,000 folds. The spline correlation is seen to have the lowest efficiency due to the
more complex operations involved. Overall, the spherical correlation is excellent in training,
simulation efficiency, as well as accuracy, and thus will be adopted in the following online

stage, i.e., real-time forecast.
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Table 5: Comparison of the simulation efficiency between the high-fidelity and Kriging models over the testing

dataset.

Kernel High-fidelity = Kriging  Speed-up by

Exponential 42.26 sec 31,578

Generalized exponential 52.22 sec 25,559

Gaussian 44.58 sec 29,946

15.45 days

linear 39.03 sec 34,196

Spherical 42.62 sec 31,317

Spline 78.71 sec 16,956

Apogm 110 (mb)

100

Irma 2017 50

(30 Aug — 12 Sep )

S AR B Y

Doria;n 201 9 20
4 Aug — 09 Sep)

75°W 60 W

Figure 6: Best tracks and pressure deficits of the three considered historical hurricanes.
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6.3. Real-time damage forecast: Online stage

To demonstrate the applicability of the calibrated Kriging metamodel for real-time dam-
age risk forecasting, three historical hurricanes that impacted Florida, namely hurricane
Matthew in 2016 [83], hurricane Irma in 2017 [84], and hurricane Dorian in 2019 [85], are
considered. The intensity of each hurricane is described through the evolution of the pressure
deficit, Apg. This is reported in Figure 6 together with the best track estimate. In this sec-
tion, with the calibrated Kriging metamodel, the proposed framework is firstly implemented
for the three hurricanes, with results reported in Section 6.3.1. Further, validations to justify

the risk evaluations are provided in the subsequent Section 6.3.2.

6.3.1. Forecast results

To implement the framework, the site-specific wind intensity is forecast every six hours
from when the hurricane event begins. The forecast is based on the scheme outlined in
Section 2 and therefore the real-time advisories issued by NHC during the hurricane events.
In particular, for the scheme outlined in Section 2, the Holland number was taken as B = 1.5,
the boundary layer thickness was taken as h = 1000 m, and the diffusion coefficient was
taken as K = 0.5x*Bur with x = 0.4 [59]. In addition, the deflection coefficient was taken as
ay = tan(20°). The environmental length scale r¢ in Eq. (8) was taken as 500 km. For the
wind speed transformation of Eq. (9), the terrain roughness length at the site of interest and
the meteorological station were respectively zop = 1.28 m and zp; = 0.03 m, while the height
at the building top and the meteorological station were H = 180 m and Hp,e; = 10 m. The
empirical constant was taken as 6 = 0.0706. Within this context, samples of the forecast site-
specific wind intensity were generated every six hours, and input into the calibrated Kriging
metamodel to predict for the conditional damage statistics. These were used to calibrate
prescribed conditional distribution functions for P(D¢|vy, ) and the damage risks of all
envelope elements were subsequently evaluated through Eq. (29). In particular, based on
experience, the prescribed conditional distribution functions for P(D¢|vy, ) were assumed
as shifted lognormal distributions for drift-induced damage and normal distributions for

pressure-induced damage. Following these assumptions, the conditional probability of a
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given envelope component damage state can be written as:

P(De < Olvg,a) = @ (l _Sm) (31)

with ®(-) the standard normal distribution function and where for one of the two (i = 1,2)

drift-induced damage states: I = In(1 — pp_p,jvpa)y m = —In (\/ ; + 1), and

o
DcP’I‘ [vp o

s = \/IH(UIQDCDMUH,@ + 1); while for the pressure-induced damage state: [ =0, m = Uppjvy,as
and s = 0p vy ,a-

In terms of uncertainty, in addition to the randomness of the structural properties, ca-
pacities, stochasticity of the wind loads, and storm tracks, the radius to the maximum wind,
rar, and filling model of Eq. (7), through the parameter €, are considered as uncertain with
ry following a lognormal distribution and € a normal distribution [86, 65]. Additionally, the
current central pressure deficit Apg is assumed to follow a normal distribution, with mean set
to the value of Apy obtained from the real-time hurricane advisory and standard deviation
set to 9.5 mb, as suggested in [87].

Through the developed framework, real-time probabilistic damage forecasts during the
entire lifetime of the three hurricanes were generated. The framework was used to provide
forecasts up to five days ahead. In particular, forecasts for three and five days ahead for
hurricane Matthew (2016), Irma (2017), and Dorian (2019) are shown in Figures 7, 8, and
9, respectively. The five day forecast for hurricane Matthew and Dorian are not included as
the damage risks were seen to be negligible. The results contain comprehensive information
on the likelihood of an envelope component experiencing damage ranging form glazing unit
cracking to complete blowout. For example, from Figure 8 and the five day damage forecast,
it can be seen that there is around a 1% chance of window blowout on the right edge of
the right face of the building. The subsequent three day damage forecast shows how the
1% chance of window blowout has now extended to include the right edge of the left face.
The computational time to generate/update these results was eight minutes on the desktop
computer of Section 6.2.1. This efficiency clearly illustrates the potential of the approach
as a real-time damage risk framework. The comprehensive information of damage risk to
the building envelope would allow disaster managers to order preventative measures to be

implemented or evacuation of personnel and equipment to be performed ahead of time in
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Figure 7: Real time damage forecast on Oct 04 at 03:00 AM UTC (3 days ahead) for envelope components

during hurricane Matthew.
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Figure 9: Real time damage forecast on Aug 30 at 21:00 PM UTC (3 days ahead) for envelope components

during the hurricane Dorian.
certain parts of the building or, if deemed necessary, the entire building.

6.3.2. Validation of the real-time damage forecast model

The hurricane track model adopted in the real-time damage forecast framework of this
work has already been validated by NHC [62]. The discrepancies seen in this validation
are treated as a source of uncertainty through the random variables ey, and ey;.. In
addition, the parametric wind field model has been carefully validated [59, 88] and serves
as the basis of the ASCE 7 wind maps. Notwithstanding how the validity of the Kriging
metamodels for predicting the conditional damage statistics is demonstrated in Section 6.2.2,
the accuracy of the assumed distributions, p(D¢|vy, @), for the conditional damage measures
(based on which the risk is evaluated) requires investigation. This section studies, therefore,
the accuracy of reconstructing p(Dc|vg, o) from the damage statistics, i.e., ftpgju, .o and

ODelvg.a- To evaluate the accuracy, Pearson’s x? test and Kullback-Leibler (KL) divergence

measure are considered. In particular, Pearson’s y? test examines how the observed frequency
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distribution, estimated from n samples of the high-fidelity model, differs from the assumed
distribution, with the difference measured by the test statistic:

X = Zl OBy ?EE) (32)

where k is the total number of mutually exclusive classes, O; are the observations of the
high-fidelity model in class ¢, while E; is the expected number of observations (based on
the total number of simulated samples n and the assumed distribution) in class i. The test
statistic is then compared with a critical value derived from the chi-squared distribution at
a designated significance level, which, as in this work, is typically taken as 5%. The assumed
distribution is accepted (binary indicator h = 0) if x? is lower than the critical value, and
rejected (h = 1) otherwise. In addition, KL divergence provides a supplementary measure of
the difference in logarithmic scale, which can be taken as the expected excess surprise from

using the assumed distribution:

O; O;
dxr, = Z o log <E) (33)

The goodness of fit measures introduced in Egs. (32)-(33) were estimated for all damage
states of each envelope component for the hurricane cases considered in Section 6.3.1. The
validation results are shown in Figures 10-13 in the form of contour plots, where the rejection
rates of h and the expected value of di;, over all envelope components, indicated as h and
dkr, are estimated for the three possible damage states. In estimating the contours, 1000
high-fidelity samples were used following the wind speed and direction grid of Figure 4 with
domain extension estimated from the wind speed and direction samples forecast for each
event. It is seen from Figures 10-13 that, despite some variability, & is generally around 5%
while dkr, is around 0.003. This is confirmed in Table 6 that reports the average value of h
and dii, over the wind speed and direction domains of each event forecast. As can been seen,
all average values are under 5% and 0.003. These results attest to the overall adequacy of

the probability distributions assumed for the real time risk evaluations of this work.
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Table 6: Average rejection rates and KL divergence.

Average rejection rate

Average KL divergence

Damage states Deo- Dep- D¢y D¢p- Depr Dc»
Matthew, 3 Days ahead 4.8217% 4.8222% 4.7350% 0.002845 0.002845 0.002835
Irma, 5 Days ahead 4.5407% 4.5362% 4.5195%  0.002682 0.002682 0.002678
Irma, 3 Days ahead 4.7415%  4.7372%  4.7417%  0.002797 0.002797  0.002796
Dorian, 3 days ahead ~ 4.6115% 4.6131% 4.5039% 0.002723 0.002723 0.002711

7. Conclusion

0.1

0.08

0.06

In this paper, a metamodel-driven real-time risk forecast framework for hurricane-induced

building damage was outlined for the envelope systems of engineered buildings. The frame-

work consists of a scheme for site-specific wind intensity forecasting and the Kriging meta-

modeling technique for rapid probabilistic damage quantification. In particular, with high-

fidelity damage being simulated through a recently developed probabilistic multi-demand

progressive and coupled fragility model, the Kriging metamodeling technique is introduced

as a surrogate to gain the efficiency needed for real-time applications. The Kriging meta-

model, once calibrated, is further used in Monte Carlo simulations for rapidly estimating
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damage risk from real time forecasts of site-specific wind intensity of an imminent hurricane
obtained by integrating real-time hurricane advisories with parametric wind field models.
The efficiency and applicability of the developed framework was illustrated through a case
study consisting in a 45-story building located in Miami, Florida. Through a comparative
study, it was found that Kriging with spherical correlation function has the best overall per-
formance for the applications of this work. This Kriging configuration, once calibrated, can
predict the second order conditional damage statistics associated with each component of a
envelope system with remarkable accuracy and with an efficiency gain of more than four or-
ders of magnitude as compared to the high-fidelity reference solution. Subsequently, with the
calibrated Kriging metamodel, real-time forecast of damage risks is successfully demonstrated
by considering the real-time advisories of three historical hurricane events. The efficiency and
accuracy of the developed framework demonstrates its potential as a decision support tool
for emergency response and management of buildings in hurricanes prone regions. Moreover,
the framework can be extended to portfolios of buildings or infrastructures therefore defining

a regional real-time hurricane-induced damage alert framework.
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