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Abstract

The growing intensity and frequency of extreme wind events, together with the continued

economic and population growth of coastal areas, has created an urgent need for method-

ologies that can inform emergency responders and managers of the increasing risk to the

infrastructure of these areas. To this end, this work outlines a real-time risk forecast frame-

work for hurricane-induced damage to building envelope systems of engineered buildings.

Damage is quantified through a recently introduced multi-demand and coupled progressive

fragility model, with a full range of uncertainty in structural properties, capacities, and wind

stochasticity. To enable real-time assessment, an efficient Kriging metamodel is introduced

to capture the damage statistics conditioned on intensity measures. From official real-time

hurricane advisories, site-specific intensity measures are forecast based on a parametric wind

field model while considering the uncertainty in, among others, the hurricane track, pres-

sure deficit, and filling model. Damage risk is predicted through propagating uncertainty

by Monte Carlo simulation through the Kriging metamodels calibrated to forecast intensity

measures. For illustration, the real time damage risk of the envelope system of a 45-story

building located in Miami, Fl, was estimated for hurricanes Matthew (2016), Irma (2017),

and Dorian (2019). The efficiency and accuracy of proposed is demonstrated.
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1. Introduction1

The growing frequency and intensity of hurricanes is increasing the risk of catastrophic2

wind-induced damage to coastal areas [1, 2, 3, 4]. This is especially true if it is kept in mind3

that coastal areas often have significant socioeconomic importance to a region with expanding4

populations and economies [5]. Within this context, emergency response and management is5

vital when these areas are subject to upcoming hurricanes [6]. Typically, successful emergency6

response and management relies on decision-making that requires real time information on7

the risks and consequences of catastrophic damage and loss from upcoming hurricanes [7, 8].8

Within this context, the goal of this research is to develop a real-time forecast framework9

for estimating the risk of damage to building envelope systems of engineered buildings, e.g.,10

critical facilities, from imminent hurricanes.11

Important to this goal are the pioneering efforts devoted to the development of frame-12

works for estimating the response of residential buildings subject to extreme winds. These13

include models that enable the estimation of the damage, [9, 10, 11], reliability [12, 13, 14],14

fragility [15, 16, 17], risk/losses [18, 19, 20, 21, 22, 23], and community level vulnerability15

[24, 4] of such systems. In addition, the development of modeling frameworks, e.g., HAZUS-16

MH [25, 26] and the Florida Public Hurricane Loss Model (FPHLM) [27, 28], provide holistic17

and standardized methodologies for hurricane risk analyses of portfolios of buildings. Moti-18

vated by the significant success seen in reducing seismic risk, recent trends in performance19

assessment of individual buildings subject to extreme winds have focused on the develop-20

ment of frameworks that enable the application of performance-based engineering. This21

has led to development of numerous methodologies for the analysis of residential buildings22

[29, 30, 31, 32], high-rise buildings [33, 34, 35, 36, 37, 38, 39, 40], as well as other infrastruc-23

ture [41, 42]. In general, the performance assessment of these approaches is supported by24

more a comprehensive and quantitative probability-based procedure [15, 43]. As such, they25

are very well suited for the performance assessment of engineered systems, e.g., the high-rise26

buildings considered in this work. Of the performance-based approaches developed to date,27

those recently introduced in [39, 44, 45] are of particular interest to this work as they enable28

the explicit damage assessment of the building envelope of engineered system.29

A major difficulty in applying these frameworks for real-time damage prediction is the30
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significant computational effort required for their evaluation. To circumvent this issue, meta-31

modeling techniques, which seek to define a computationally efficient model of the model32

without loss of accuracy, is an approach with strong potential. Indeed, metamodeling tech-33

niques have been gaining immense interest in computationally intensive applications, e.g.,34

uncertainty propagation and optimization. Polynomial regression is among the earliest of35

these approaches and has been widely used due to its ease in implementation and high effi-36

ciency in predictions [46]. Nonetheless, the determination of an appropriate polynomial order37

is generally not trivial, as an order that is too low will generally lead to low accuracy due38

to incapability to capture local details, while an excessively high order can lead to overfit-39

ting and numerical problems. A candidate solution to this issue is to determine the basis40

function adaptively, e.g., through subset search [47, 48, 42], multivariate adaptive regression41

splines (MARS) [49, 50, 51], or adaptive basis function construction (ABFC) [52, 50, 51].42

The MARS approach, which can be viewed as a hierarchical forward/backward stepwise43

subset selection procedure, introduced recursive partitioning while using spline basis, and44

thus have not only good continuity but also the malleability to capture localized features.45

The ABFC approach, on the other hand, describes the polynomials through a state matrix46

while performing searches with heuristic schemes, and therefore avoids the requirement of a47

predesignated set of basis while also reducing the effort required during the search process.48

The aforementioned schemes generally assume all known data points are equally important49

in the prediction at new inquiry points, i.e., in assigning importance, they do not consider50

the distances from the inquiry point to known data points. To overcome this, the moving51

least square scheme [53, 54, 7] introduced a distance-related weight therefore emphasizing52

the contribution to the prediction of the data points closer to the current inquiry point. This53

adaptiveness is not shared with other popular techniques, e.g., neural networks [55, 56], and54

enables higher prediction accuracy given the same set of basis functions. A limitation of55

this scheme is the relatively large computational burden associated with the matrix inversion56

necessary in making the prediction for each new inquiry point. As an alternative, Kriging-57

based schemes retain the merit of emphasizing data closer to the inquiry point, while also58

achieving high computational efficiency by not requiring any intensive operations in making59

predictions [57, 50, 7, 8, 51]. In addition, this best linear unbiased predictor [58] is interpola-60
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tive, and therefore exact at the support data points, while also providing a direct estimate61

of the epistemic uncertainty introduced by the model itself.62

In this work, a real-time risk forecast framework for hurricane-induced damage to enve-63

lope systems of engineered buildings is introduced. Damage is estimated through a recently64

introduced high-fidelity multi-demand progressive fragility model that enables probabilistic65

evaluation of hurricane-induced damage while considering a full range of uncertainties [39, 44]66

i.e., uncertainties in the hurricane forecasts (track and wind field), wind pressure processes67

(wind load stochasticity), structural properties in terms of damping, component capacities,68

and coupling between envelope damage states. To address the computational demand of the69

high-fidelity damage model, and therefore enable real-time application, a Kriging metamod-70

eling scheme is introduced for describing the mapping from site-specific intensity measures,71

e.g., wind speeds and directions, to conditional statistics of the envelope damages. For real-72

time forecast of damage, the metamodel is developed to accept information from parametric73

wind field models that provide prediction of the site specific intensity measures from typical74

information provided by hurricane advisories issued by the national hurricane center (NHC).75

Uncertainty in forecasting the site specific intensity measures is considered through introduc-76

ing uncertainty in the predicted hurricane tracks, pressure deficit, and filling model. Monte77

Carlo simulation is used to propagate uncertainty through the metemodels and therefore78

provide estimates of the risk of wind-induced damage to the building envelope. To illustrate79

the framework, the real time prediction of damage risk to the envelope system of a 45-story80

building located in Miami, Florida, and subject to three historical hurricane scenarios is con-81

sidered. The calibrated metamodel is seem to maintain high accuracy while being over four82

orders of magnitude faster than the high-fidelity model therefore successfully enabling real83

time damage risk forecast.84

2. Real-time forecast of site-specific wind intensity85

2.1. Preamble86

This section outlines a scheme for forecasting site-specific wind intensity based on the87

parametric wind field models outlined in [59], as well as information from official hurricane88

advisory streams, e.g., those from the national hurricane center of the United States. In89
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particular, for an imminent hurricane, information from the advisories on hurricane track90

and intensity is used as input to the parametric wind field model therefore enabling forecast91

of the site-specific wind intensity measures, e.g., the maximum site specific wind speed and92

associated direction to occur over the evolution of the imminent hurricane. As outlined in [60],93

this site specific information on the hurricane intensity can be used to provide high-fidelity94

probabilistic estimates of envelope damage to engineered buildings.95

2.2. Hurricane forecast96

Hurricane forecasting has experienced significant advances over the past several decades.97

The NHC, for example, provides forecast/advisory for all Atlantic, eastern Pacific, and cen-98

tral Pacific tropical and subtropical regions [61]. The forecast/advisory for each hurricane99

contains, among other information: the current watches and warnings; the track forecast,100

defined by the latitude, φ̄tT , and longitude, λ̄tT , of the center of the hurricane at tT = 0101

(present), 12, 24, 36, 48, 72, 96, and 120 hours into the future; and current intensity ex-102

pressed as the central pressure p0. This information is usually released every six hours at103

03:00, 09:00, 15:00, and 21:00 UTC. In addition, the NHC verifies the forecasts against the104

hurricane’s “best track” database by NHC’s post-storm analyses, and provides the associated105

error data for the period 1970 to the present [62].106

Based on the aforementioned information, stochastic hurricane track samples (φtT , λtT)107

can be generated, as shown in Figure 1, by adding to the track forecast coordinates (φ̄tT ,108

λ̄tT) random errors (eφ,tT , eλ,tT):109

(φtT , λtT) = (φ̄tT , λ̄tT) + (eφ,tT , eλ,tT) (1)

In particular, the statistical properties of the errors (eφ,tT , eλ,tT) are expected to be consistent110

with the official error database. To this end, along- and cross-track forecast errors (eA,tT ,111

eC,tT) are assumed to follow a multivariate Gaussian distribution:112

[eA,0, eC,0, eA,12, eC,12, ...] ∼ N ([ēA,0, ēC,0, ēA,12, ēC,12, ...] ,Σe) (2)

where the mean error vector [ēA,0, ēC,0, ēA,12, ēC,12, ...] and covariance matrix Σe are calculated113

from the forecast error database of the last five years after official NHC verification [62].114

Subsequently, error samples (eA,tT , eC,tT) at all tT can be generated from Eq. (2), transformed115

5



Figure 1: Real-time track forecast and generation of track samples.

to the geographic coordinate system as longitude eφ,tT and latitude eλ,tT , and added to the116

original prediction (φ̄tT , λ̄tT) therefore defining the track samples of Eq. (1). In addition,117

techniques such as cubic spline interpolation can be implemented to infer hurricane positions118

between any two consecutive predicted times.119

2.3. Wind field model120

At each time instant of a track sample, to evaluate the site-specific wind intensity, a121

parametric hurricane wind field model is implemented [59]. This model takes the current122

central pressure deficit Δp0 (the difference between the standard air pressure and the current123

central pressure p0) and the radius of the maximum wind, rM , as parameters, and gives both124

the tangential and radial velocity components at 500 m above the sea level as:125

v(r, β; t) = vM

[√
r′−B exp(1− r′−B) + a2r′2 − ar′

]
(e sin β − n cos β), r′ =

r

rM
, a =

frM
2vM

(3)126

u(r, β; t) =

[
K
r

∂
∂r

(
r ∂v
∂r

)−K v
r2

− Cdv
2

h

√
1 + α2

M
∂v
∂r

+ v
r
+ f

]
(e cos β − n sin β), v = ||v|| (4)

where v(r, β; t) and u(r, β; t) are respectively the tangential and radial velocity fields in the127

polar coordinate system (r, β) with origin at the hurricane center; B is the Holland number128
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that defines the air pressure distribution; K is the diffusion coefficient; f is the Coriolis129

parameter, evaluated as f = 2Ω sinφt, with Ω ∼ 7.2921× 10−5 rad/s the rotation rate of the130

Earth and φt the latitude of the hurricane center; Cd ∼ 0.0015 is the drag coefficient related131

to the boundary layer averaged velocity; h is the boundary layer thickness; αM = − ||u||
||v|| is132

the deflection coefficient that can be assumed to be constant [63, 64]; vM is the maximum133

wind field velocity than can be estimated as:134

vM =

√
BΔp(t)

eρa(1 + α2
M)

(5)

where e is Euler’s number; ρa ∼ 1.15 kg/m3 is the air density; Δp(t) is the center pressure135

deficit (with Δp(0) = Δp0), which can be estimated through the filling-rate model [65]:136

Δp(t) = Δp(tl) exp [−af(t− tl)] (6)

where tl is the time instant when the hurricane makes landfall; af is the filling constant, with137

the uncertainty considered through a zero mean Gaussian variable ε:138

af = af,0 + af,1Δp0 + ε (7)

where af,0 and af,1 are region-specific coefficients available in Vickery and Twisdale [65]. The139

filling model simulates the decay process of the hurricane intensity after making landfall due140

to the increase of its central pressure, i.e., the “filling” of the pressure deficit.141

By superimposing the translation speed of the hurricane with the tangential and radial142

velocity components relative to the hurricane center, the resultant wind speed field, i.e.,143

relative to the ground, is given by:144

vs(r, β; t) = v(r, β; t) + u(r, β; t) + c exp(− r

rG
) (8)

where c is the translation speed vector of the hurricane while rG is the environmental length145

scale that governing the radial decay of c.146

Based on Eq. (8), the site-specific hourly-mean wind speed ṽH(t) can be obtained through:147

ṽH(t) = 0.68 ·
(

z0
z01

)δ
ln [H/z0]

ln [Hmet/z01]
||vs(rs, βs; t)|| (9)

where (rs, βs) are the polar coordinates locating the building site of interest with respect to148

the hurricane eye; z0 and z01 are respectively the roughness length at the building site and149
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meteorological site; H and Hmet (typically 10 m) are the height at the top of the building150

and the meteorological site reference height, respectively; δ is an empirical constant; 0.68151

is dimensionless coefficient used for converting the wind speeds at the height of 500 m to152

the meteorological reference height, Hmet, in open terrain [66, 65, 67]. The associated wind153

direction, α̃(t) ∈ [0◦, 360◦), defined as the angle between vs(||rsc||, β; t) and n, can also be154

obtained. The site-specific wind intensity measures, namely the site-specific maximum wind155

speed, vH = ṽH(t̂) = max |ṽH(t)|, and associated direction α = α̃(t̂), can be subsequently156

estimated.157

Through Monte Carlo simulation, the aforementioned forecast model can be used to158

provide samples of the the site-specific wind intensity measures (vH , α) with full consideration159

of the uncertainty inherent to hurricane forecast (e.g., track stochasticity and central pressure160

deficit) and adopted models (e.g., the radius of the maximum wind and filling rate). Moreover,161

this framework is computationally treatable, allowing for the rapid generation of a large162

number of samples of (vH , α) in real-time.163

3. High-fidelity building envelope damage assessment model164

To evaluate hurricane-induced damage to envelope systems of engineered buildings, the165

coupled multi-demand progressive damage assessment framework outlined in Ouyang and166

Spence [39, 44] is adopted. This high-fidelity assessment framework allows for the considera-167

tion of the coupled and time-evolving nature of damages induced by different wind demands.168

3.1. Data-informed stochastic wind pressure169

The estimation of damage to building envelopes for a given realization of the intensity170

measures, i.e. a realization of the the pair (vH , α), requires the modeling of the external171

dynamic wind pressures. These can be seen to represent realizations of stationary multivariate172

non-Gaussian stochastic processes. As outlined in [44], the generation of realizations of this173

stochastic process can be informed by building specific wind tunnel test data in the form174

of time-varying vectors of external dynamic pressure coefficients, Cp,e(α; t), measured at a175

series of carefully located taps on the surface of a rigid scale model of the building for a series176

of discrete wind directions α ∈ {α1, α2, ...}. After appropriate scaling to a wind speed of177

8



interest through standard Strouhal number matching [68], this data can be used to calibrate178

a Gaussian representation of the external pressure coefficients with the expected turbulence179

levels and complex aerodynamics seen in the wind tunnel (e.g., vortex shedding and detached180

flow) being captured. Data-driven translation models can then be used to capture any non-181

Gaussian features.182

The Gaussian process, CGP
p,e (t;α), is defined from the estimation of the second order statis-183

tical properties, i.e., the mean C̄p,e(t;α) and cross power spectral density matrix ΣCp,e(ω;α),184

of the measured wind tunnel data. Subsequently, a proper orthogonal decomposition (POD)-185

based reduction of ΣPp,e(ω;α) is performed for each wind direction, α, and discrete frequency186

point, ω, by solving the following eigenvalue problem [69]:187

ΣCp,e(ω;α)Ψi(ω;α) = Λi(ω;α)Ψi(ω;α) (10)

whereΨi(ω;α) and Λi(ω;α) are respectively the ith spectral POD mode shape and eigenvalue188

of ΣCp,e . Typically, as the energy of the signal is generally associated with a few lower-189

order POD modes, the Gaussian process can thus be well-approximated from the first mp,e190

subprocesses, as:191

CGP
p,e (t;α) ≈ ĈGP

p,e (t;α) = C̄p,e(t;α) +

mp,e∑
i=1

CGPi
p,e (t;α) (11)

where CGPi
p,e (t;α) is the ith independent subprocess generated for the ith POD mode Ψi(ω;α)192

and eigenvalue Λi(ω;α) as:193

CGPi
p,e (t;α) =

nω−1∑
j=0

2|Ψi(ωj;α)|
√
Λi(ωj;α)Δω cos (ωjt+ θj(ωj) + θij) (12)

where ωj = jΔω is the jth frequency point with nω the total number of frequency points194

and Δω the frequency step size, θij is a random phase angles uniformly distributed in [0, 2π],195

while θj(ωj) is given by:196

θj(ωj) = arctan

[
Im(Ψi(ωj;α))

Re(Ψi(ωj;α))

]
(13)

The non-Gaussian features of the pressure coefficients can be effectively introduced by197

transforming the marginal Gaussian distributions of ĈGP
p,e (t;α) to non-Gaussian marginal198

distributions using translation models [70], therefore defining a stationary and multivariate199
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non-Gaussian representation of the external pressure coefficients Cp,e(t;α). In particular,200

the element-wise translation models capturing the non-Gaussian features are calibrated once201

again to the building specific wind tunnel test data. To this end, kernel-Pareto mixture202

models are adopted in which the raw wind tunnel data is partitioned into into a lower tail203

region, a central region, and an upper tail region. Kernel density is then used to represent204

the distribution of the data of the central region, while extreme Pareto distributions are205

considered for the tail regions [71]. OnceCp,e(t;α) is generated, the external dynamic pressure206

coefficient at an arbitrary location ξ, i.e., a point outside of where pressures were measured207

on the building model used in the wind tunnel tests, can be obtained through instantaneous208

interpolation of Cp,e(t;α), therefore defining Cp,e(t;α, ξ).209

3.2. Wind demands210

The demands of the envelope damage assessment framework are the in-plane deformations211

of the envelope components due to the interstory drift response of the structural system, as212

well as the out-of-plane net pressure on the envelope components. To evaluate the interstory213

drifts, the structural responses of the system is estimated by solving the following equation214

of motion:215

MÜ(t) +CU̇(t) +KU(t) = F(t; vH , α) (14)

where Ü(t), U̇(t), and U(t) are respectively the acceleration, velocity, and displacement216

response vectors; M, C, and K are respectively the mass, damping, and stiffness matrices217

of the structural system; and F(t; vH , α) are the stochastic wind loads obtained through the218

integration of the external wind pressures derived from the external pressure coefficients of219

Section 3.1 as:220

pe(t; vH , α, ξ) =
1

2
ρav

2
HCp,e(t;α, ξ) (15)

where ρa is the density of air. It should be noted while Eq. (14) is written as a linear elastic221

system, this assumption is by no means central to the framework of this work that can be222

equally applied to general nonlinear systems. From U(t), the interstory drift ratios, Dr(t),223

at any location, ξ, of the building envelope can be directly estimated. Due to the progressive224

and coupled nature of wind-induced damage to building envelopes, the entire time history225
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of interstory response, Dr(t), must be considered as the engineering demand parameter (as226

opposed to the peak value commonly adopted in seismic damage modeling).227

The out of plane net pressure demand acting on an envelope component of location ξ is228

defined as the difference between the external and the internal pressure and therefore as:229

pn(t; vH , α, ξ) =
1

2
ρav

2
H [Cp,e(t;α, ξ)− Cp,i(t; ξ)] (16)

where Cp,i(t, ξ) is the internal dynamic pressure coefficient at the envelope element, obtained230

as outlined in [39]. In particular, in evaluating Pp,i(ξ; t), the building system is considered as a231

set of interconnected air spaces with both internal/external openings. The external openings232

are those in the building envelope. In general, at the beginning of a hurricane the building233

is considered enclosed, i.e., no external openings exist. As damage occurs, external openings234

will appear. As discussed in [39], this not only significantly changes the internal pressure235

stochastic process but also couples the drift and pressure demands as external openings236

generated by drift will in general effect the net pressure demand. Once external openings237

occur, the internal dynamic pressure coefficient, Cp,i(t, ξ), can be estimated from solving the238

unsteady-isentropic Bernoulli equation of transient airflow at each opening [72, 73] through239

an explicit 4th order Runge-Kutta method. It should be noted that envelope components240

will in general experience static fatigue/delayed failure, which, instead of being related to241

instantaneous pressure, pn(t; ξ), are better related to equivalent net pressure [74]:242

peq(t; vH , α, ξ) =

(
1

teq

∫ t

0

[pn(t; vH , α, ξ)]
s

) 1
s

(17)

where teq is the reference duration, typically taken between 3 s to 60 s and s is an empirical243

exponent.244

3.3. Envelope capacities and damage measures245

The susceptibility of each envelope component of the building system to damage induced246

by excessive net pressure, peq(t; vH , α, ξ), and/or dynamic drift, Dr(t; vH , α, ξ), demands,247

is modeled through considering suites of Np pressure-induced damage states {DSp
i : i =248

1, 2, ..., Np} and NDr drift-induced damage states {DSDr
i : i = 1, 2, ..., NDr}. Each suite249

of damage states are considered to follow a sequential damage logic, i.e., the occurrence of250
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a certain damage state implies that all preceding damage states have occurred. Each suite251

of damage states is associated with a suite of sequential thresholds, i.e., capacities of the252

form {CDr
i : i = 1, 2, ..., NDr, CDr

i−1 ≤ CDr
i } and {Cp

i : i = 1, 2, ..., Np, Cp
i−1 ≤ Cp

i }.253

In particular, in defining the capacity of an envelope component to resist net pressure, the254

common assumption of a parallel mechanism is assumed, i.e., for an envelope component with255

two panes of glass, it is assumed that each glass pane resists 50% of peq [75]. The exceedance256

at any point during the evolution of a hurricane of a threshold by the respective pressure257

or drift demand, i.e., peq(t; ξ) or Dr(t; ξ), indicates the occurrence of the damage state.258

Uncertainty in the capacities is modeled through suites of sequential fragility functions (one259

fragility function or each damage state). In practice, for a given time instant t̂ ∈ [0, T ] with260

T the duration of the event, the current damage states, DS(t̂), of an envelope component261

are the damage states associated with the highest capacities to have been exceeded in [0, t̂]262

for each of the groups. In addition, it should be noted that the drift and pressure induced263

damage states will in general be coupled, as, for instance, cracks induced by excessive drift264

deformation will generally reduce the capacity of the envelope components to resist net265

pressure and viceversa. To account for this coupling, a reduction factor, ρC(DS), for the266

capacities is generally considered. Initially ρC(DS) = 1 and will degrade upon the occurrence267

of a coupled damage state. This coupling, together with the coupling between the demands268

discussed in Section 3.2, makes the process of damage accumulation progress in nature and269

requires the simulation of the damage process over the entire duration, T , of the wind event.270

3.4. High fidelity probabilistic envelope performance evaluation271

As outlined in [39, 44, 45, 60], by embedding the models of Sections 3.1 to 3.3 in gen-272

eral uncertainty propagation frameworks (e.g., Monte Carlo simulation schemes and their273

derivatives), high-fidelity estimates of the probabilistic performance of the envelope system274

of engineered buildings subject to extreme winds can be obtained. In particular, the gen-275

erality of the models enable a full range of uncertainty/stochasticity in, for example, the276

structural properties (e.g., M, C, and K), the wind excitation (e.g., Cp,e(t;α, ξ)), the enve-277

lope capacities through the fragility functions of the damage thresholds, and damage coupling278

through ρC(DS), to be included. The computational burden of this high-fidelity approach279

to probabilistic performance estimation of envelope systems is significant as it requires time280
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stepping through the entire hurricane event of duration T and solving at each time step the281

models of Sections 3.1 to 3.3. This includes simulating external stochastic wind pressures,282

solving nonlinear internal pressure models (multiple times if cascading failure occurs), in-283

tegrating the dynamic equations of motions of the structural system, and performing the284

coupled damage analysis of Section 3.3 for each damageable component of the envelope sys-285

tem (typically in the order of thousands). Notwithstanding how in [60] it was shown that286

for accurate estimation of envelope damage, the simulation need only be carried for the pair287

(vH , α) with T = 1 hour, typical run times on powerful multi-core desktop machines are in288

the order of days therefore precluding real-time damage predication.289

4. Metamodeling290

4.1. Damage measures291

As discussed in Section 3.4, the high-fidelity assessment framework is computationally292

prohibitive for application in real-time damage assessment. To circumvent this issue, this293

work is focused on developing a metamodel of the assessment framework that is capable of294

providing equally comprehensive information on the damage to the envelope system while295

requiring a fraction of the computational effort. To facilitate metamodeling, it is convenient296

to introduce, without any loss of generality, the following dimensionless damage measure for297

each damage state of each damageable envelope component:298

DC =
mint∈[0,T ] [ρC(DS)C − edp(t)]

C̄
(18)

where C is the initial capacity of the envelope component to one of its potential damage states299

while C̄ is the expected capacity. In particular, DC is a strictly decreasing function over the300

duration of the wind event with DC < 0 indicating damage and E[DC ] = 1 prior to any dam-301

age and in absence of demand. Given specific values of the intensity measures, (vH , α), the302

uncertainty/stochasticity considered in the damage assessment framework leads to random-303

ness associated with DC which, in general, can be expressed through the probability density304

function p(DC |vH , α). In this research, the first two moment of the p(DC |vH , α), namely the305

conditional mean μDC |vH ,α and standard deviation σDC |vH ,α, are of interest for characterizing306
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p(DC |vH , α). In the next section, Kriging metamodels will be introduced for approximat-307

ing μDC |vH ,α and σDC |vH ,α for each damage state of all envelope components composing the308

system. It should be noted that this does not exclude the possibility of implementing this309

framework with different measures for representing p(DC |vH , α), e.g., higher-order statistic310

or kernel smoothing.311

4.2. The Kriging metamodel312

To address the computational bottleneck of the high-fidelity assessment framework, a313

Kriging metamodel will be introduced. As in any metamodeling technique, Kriging seeks314

to establish a computationally efficient surrogate mapping from the space of the inputs x,315

i.e., the wind intensity measures (vH , α) in this case, to the space of the output y, i.e., the316

conditional statistics μDC |vH ,α and σDC |vH ,α for each damage state of each envelope component317

of the system. In particular, Kriging is based on the prior assumption that y is a Gaussian318

process over the space of x:319

ŷ(x) = gT(x)a+ εx (19)

where g(x) is a vector of basis functions, with coefficients a to be calibrated; εx is a zero-320

mean Gaussian process with its autocovariance σ2
yR(x,x′,θ) characterized by the parameters321

collected in θ.322

Given a set of observations S = {(xi, yi), i = 1, 2, ..., nx}, the joint distribution between323

S and any new data points, e.g., S′ = {(x′
i, y′i), i = 1, 2, ..., n′

x}, can be written as:324 ⎡
⎣Y
Y′

⎤
⎦ ∼ N

⎛
⎝
⎡
⎣GT

G′T

⎤
⎦ a,

⎡
⎣RYY RYY′

RT
YY′ RY′Y′

⎤
⎦ σ2

y

⎞
⎠ (20)

whereY = [y1, . . . , ynx ]
T,Y′ = [y′1, . . . , y

′
n′
x
]T,G = [g(x1), . . . ,g(xnx)],G

′ = [g(x′
1), . . . ,g(x

′
n′
x
)],325

while RYY is given by:326

RYY =

⎡
⎢⎢⎢⎣
R(x1,x1,θ) . . . R(x1,xnx ,θ)

...
. . .

...

R(xnx ,x1,θ) . . . R(xnx ,xnx ,θ)

⎤
⎥⎥⎥⎦ (21)

with RYY′ and RY′Y′ defined similarly when considering R(x,x′,θ) and R(x′,x′,θ).327
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The predictive distribution at new points given the known observations S can therefore328

be derived as [76]:329

Y′|Y ∼ N (μY′|Y,ΣY′|Y
)

(22)

where μY′|Y = G′Ta + RT
YY′R−1

YY(Y − GTa) and ΣY′|Y = RY′Y′σ2
y − RT

YY′R−1
YYRYY′σ2

y330

are respectively the mean and covariance of Y′ conditioned on Y. The Kriging predictor is331

exactly the mean function in Eq. (22). For instance, the Kriging predictor for only a single332

new point ŷ(x) is given by:333

ŷ(x) = gT(x)a+ rT(x)b (23)

where r(x) = RYŷ = [R(x1,x,θ) . . . R(xnx ,x,θ)]
T and b = R−1

YY(Y−GTa).334

Overall, the predictive distribution contains unknown parameters a (b fully depends on335

a), σ2
y and θ, which can be estimated by the maximum likelihood method [77]. In particular,336

the likelihood function L is defined as:337

L(a, σ2
y ,θ) = ln p(Y|a, σ2

y ,θ,x1, ...,xnx)

= −nx ln 2π

2
− ln |RYY|

2
− nx ln σ

2
y

2
−
(
Y−GTa

)T
R−1

YY

(
Y−GTa

)
2σ2

y

(24)

The maximum likelihood estimate of a can be obtained by imposing ∂L
∂a

= 0, therefore giving:338

â =
(
GR−1

YYG
T
)−1

GR−1
YYY (25)

Similarly, σ2
y can be inferred by imposing ∂L

∂(σ2
y)

= 0 which yields:339

σ̂2
y =

(
Y−GTâ

)T
R−1

YY

(
Y−GTâ

)
nx

(26)

Unlike a and σ2
y , the parameter vector θ depends on the generally nonlinear functionR(x,x′,θ).340

Therefore, numerical optimization is generally required for its estimation. This optimization341

problem can be simplified by substituting Eqs. (25) and (26) into Eq. (24), therefore yielding:342

θ̂ = argmin
θ

[
ln |RYY|+ nx ln σ̂

2
y

]
(27)

In Eq. (23), the first term gT(x)a in ŷ(x) is essentially a regression model with basis343

functions collected in g(x). This term captures the global trend within the observations S.344

The second term rT(x)b, on the other hand, acts as an interpolation model defined through345
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the radial bases in r(x), which enables ŷ(x) to learn local behaviors in S, in addition to the346

global trend captured by the regression model. Moreover, r(x) can be viewed as a weighting347

function that gives higher weights to observations that are closer to the point x, indicated as348

ŷ(x), with adaptiveness as in the moving least squares approach [7]. In addition, Eq. (23) is349

highly efficient since all time-consuming calculations, e.g., matrix inversions and numerical350

optimizations involved in Eqs. (25) to (27), will only need to be performed once for the351

training set S. This is an important advantage over, for instance, the moving least squares352

approach [78]. The aforementioned merits in terms of efficiency and accuracy makes Kriging353

an ideal metamodeling choice as compared to the alternatives discussed in the introduction,354

e.g., polynomial schemes and neural networks. These properties ensure, that once calibrated,355

the Kriging metamodel possess the efficiency that will enable real-time damage assessment356

while maintaining the fidelity and resolution of the framework outlined in Section 3. A357

summary of the calibration process is as follows:358

1. Design of experiments: Select a set of samples/support points within the input space,359

i.e., the space defined by x = [vH , α]
T.360

2. Data collection: For each of the support points, carry out a high-fidelity damage as-361

sessment as outlined in Section 3 and evaluate the conditional statistics of the damage362

measures defined in Section 4.1. As such, the training set S is formulated by pairing363

the outputs (the conditional statistics μDC |vH ,α and σDC |vH ,α) with the corresponding364

support points.365

3. Kriging calibration: The Kriging metamodel is calibrated by solving Eqs. (25)-(27)366

through an appropriate algorithm, e.g., the highly efficient and robust Design and367

Analysis of Computer Experiments (DACE) toolbox [79], for each conditional statistic368

of each damage state of each envelope component.369

4. Kriging validation: The accuracy of the calibrated Kriging metamodels (one for each370

damage state of each envelope component) are tested by making predictions on a set371

of inputs not used during calibration. The accuracy is measured through the difference372

between the Kriging predictions and the ground truth outputs calculated from the high-373

fidelity model. If satisfactory accuracy is achieved, the calibrated Kriging metamodels374

are accepted. If the accuracy is not deemed sufficient, the four steps outlined above are375
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repeated for an adjusted design of experiments and/or Kriging configuration (e.g., the376

choice of R(x,x′,θ)).377

5. Real-time damage risk forecast378

By assuming that the conditional probabilities, P (DC |vH , α), can be described by an379

appropriate two parameter distribution, the Kriging metamodels for μDC |vH ,α and σDC |vH ,α380

can be used to directly estimate P (DC |vH , α). From the knowledge of P (DC |vH , α), the381

unconditional risk of damage, P (DC < 0), for each envelope component and damage state of382

the building system, can be directly evaluated through the law of total probability as:383

P (DC < 0) =

∫∫
vH ,α

P (DC < 0|vH , α)p(vH , α)dvHdα (28)

where p(vH , α) is the joint probability density function between vH and α while P (DC <384

0|vH , α) is the conditional probability of {DC : DC < 0}, i.e., of damage. In practice, by385

generating in real-time N samples of vH and α belonging to p(vH , α) through the forecast386

model of Section 2.2, Eq. (28) can be directly estimated through Monte Carlo simulation as:387

P (DC < 0) ≈ 1

N

N∑
i=1

P (DC < 0|vH,i, αi) (29)

were vH,i and αi for i = 1, 2, ..., N are the samples belonging to p(vH , α).388

The risk of damage of Eq. (29) can be seen as a direct measure of disaster consequence389

and provides powerful information in support to early emergency response and management.390

Figure 2 presents an overview flowchart of the proposed risk forecasting framework for enve-391

lope systems of engineered buildings. It should be noted that this framework can be applied392

to portfolios of engineered buildings, e.g., all the critical facilities of a given county, as the393

Kriging metamodels can be completely calibrated offline.394

6. Case study395

6.1. The building system396

A rectangular 45-story building located in Miami, Florida, is considered as a case study397

(Figure 3a). The total height of the building is 180 m, with each story height 4 m. The398
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Figure 2: Schematic of the proposed real-time damage risk forecasting framework.
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Figure 3: The case study building: (a) 3D view; (b) the unfolded envelope system.

building’s structural system is a steel braced frame with box sections for columns and W24399

sections (standard American Institute for Steel Construction (AISC) members) for beams400

and braces. The structure was designed to meet the requirement of interstory drift ratios not401

exceeding 1/400 under a wind speed with mean recurrence interval (MRI) of 50 years and402

to have all members remaining linear elastic for wind speeds with MRIs of 1700 years. In403

addition to the structural mass, a carried mass of 0.38 t/m2 at each floor level was considered.404

As a result, the first three natural frequencies of the structure were 1.30, 1.67, and 2.70 rad/s,405

respectively. For the dynamic response analyses, the first 10 vibration modes were considered406

sufficient. In integrating the modal equations, the modal damping ratios were considered407

fully correlated with uncertainty describe by a lognormal distribution with mean 1.4% and408

coefficient of variation of 0.3. The stochastic pressure model of Section 3.1 was calibrated409

to datasets of the Tokyo Polytechnic University wind pressure database [80]. This data was410

used to estimate the spectral POD eigenvalues and eigenvectors of Eq. (12). The first 10411

spectral modes were considered sufficient for representing the external pressure field. The412

kernal-Pareto mixture model of the marginal distributions of the pressure coefficients were413

calibrated considering 5% upper and lower tail thresholds.414

The envelope system consists of a total of 8,100 damageable glazing components, with415

180 elements on each floor (Figure 3b). Each of the envelope components is composed of an416
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Table 1: Parameters of fragility functions.

Damage state Phenomenon Median Dispersion Mean Std

DSDr
1 (rad) Hair-line crack 0.021 0.45 - -

DSDr
2 (rad) Crack 0.024 0.45 - -

DSp (kPa) Blow-out - - 5.29 0.91

internal and external laminated glass pane, both with a size of 1.2 m × 2 m and thickness of417

6 mm. Each envelope component was assumed to be susceptible two drift induced damage418

states, DSDr
1 and DSDr

2 respectively, and one pressure-induced damage state, DSp. The drift419

induced damage states physically refer to the occurrence of hair-line cracking or cracking of420

the laminated glass panes, while the pressure induced damage state refers to glass blow-out.421

In evaluating peq, teq and s were taken respectively as 60 s and 16 in Eq. (17). The parameters422

of the fragility functions describing the uncertainties in the damage states are summarized423

in Table 1 [81, 82]. In addition, to account for the coupling between the occurrence of a424

drift induced damage state and the reduction in the capacity of the component to resist net425

pressure, a random reduction factor ρCp is considered for Cp. In particular, it is assumed426

that ρCp follows a truncated normal distribution in [0, 1] with a coefficient of variance of 0.1.427

The mean reduction in capacity to resist net pressure upon occurrence of DSDr
1 or DSDr

2 was428

set to 90% and 10% respectively.429

6.2. Kriging-based rapid damage assessment: Offline stage430

6.2.1. Kriging training431

A high-fidelity training dataset, S, was simulated through the framework in Section 3. In432

particular, the support points xi = (vH,i, αi) were generated through a grid sampling plan433

defined by α belonging to the discrete set {0◦, 10◦, ..., 350◦} and the axis of vH divided434

into three, five, three equispaced intervals of ranges 0 m/s to 43.90 m/s (MRI = 50 years),435

43.90 m/s to 75.66 m/s (MRI = 107 years), and 75.66 m/s to 94.70 m/s (MRI = 1013 years),436

as shown in Figure 4. The data grid is denser for higher vH where stronger nonlinearity is437

expected in the Kriging metamodel. Further, it should be noted that α is bounded, and438

thus the training dataset is augmented by adding a grid at α = 360◦, with data copied439

from α = 0◦. Within this context, a total of nx = 444 support points were generated for440

20



Figure 4: The training dataset (support points) and the testing dataset.

the Kriging training. At each of the support points, the first two conditional moments, i.e.,441

μDC |vH ,α and σDC |vH ,α, were estimated for all 24,300 potential damage states (8,100 envelope442

components with three damage states each) of the envelope system. To this end, Monte Carlo443

simulations were carried out using 1,000 samples at each support point from which μDC |vH ,α444

and σDC |vH ,α were directly estimated for all 24,300 potential damage states.445

In defining a Kriging metamodel, the selection of the correlation function R(x,x′,θ)446

is critical to accurate predictions. To this end, the commonly used forms summarized447

in Table 2 will be comparatively discussed so as to determine the most appropriate cor-448

relation function for the applications of this work. The second-order polynomial bases449

g(vH , α) = [1, vH , α, v
2
H , vH α̂, α2] was considered to enable a reasonable extrapolation450

at inquiry points that fall outside of the range covered by the support points. Within this451

context, a single output Kriging predictor is calibrated for each of the three pairs of damage452

statistics, i.e., (μD
CDr
1

|vH ,α, σD
CDr
1

|vH ,α), (μD
CDr
2

|vH ,α, σD
CDr
2

|vH ,α), and (μDCp |vH ,α, σDCp |vH ,α), for453

the 8,100 envelope components. Calibration was performed through the DACE toolbox [79].454

The computational effort is measured in terms of the total time elapsed in learning the dam-455

age statistics for all 8,100 envelope components in the training set. A comparative summary456

is reported in Table 3. It is seen that the spherical correlation function is the most efficient for457

calibrating. Note that all computations of this work were performed on a personal computer458
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Table 2: Correlation functions considered in calibrating the Kriging metamodel.

Function Rj

Exponential exp
(−θj |xj − x′

j |
)

Generalized exponential exp
(−θj |xj − x′

j |θn+1
)

Gaussian exp
(−θj |xj − x′

j |2
)

Linear max{0, 1− θj |xj − x′
j |}

Spherical 1− 1.5ηj + 0.5η3j , ηj = min{1, θj |xj − x′
j |}

Spline

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1− 15η2j + 30η3j , ηj ∈ [0, 0.2]

1.25(1− ηj)
3, ηj ∈ (0.2, 1)

0, ηj ∈ [1,+∞)

, ηj = θj |xj − x′
j |

Note: R(x,x′,θ) =
∏n

j=1 Rj .

Table 3: The computational effort measured by elapsed time during training (in seconds).

Kernel μD
CDr
1

|vH ,α σD
CDr
1

|vH ,α μD
CDr
2

|vH ,α σD
CDr
2

|vH ,α μDCp |vH ,α σDCp |vH ,α

Exponential 382.16 282.69 366.70 281.84 306.86 356.07

Generalized exponential 434.18 411.47 410.63 406.51 940.09 451.07

Gaussian 333.22 322.46 320.46 319.45 309.77 319.45

linear 128.78 115.22 121.68 108.77 222.99 145.13

Spherical 121.91 100.45 118.51 100.52 199.49 164.72

Spline 197.61 144.92 186.53 144.33 287.34 268.02

Note: Minimum training times indicated with underlining.

with Intel(R) with i7-8700 Core(TM) with 32 GB RAM.459

6.2.2. Kriging testing460

To test the generality of the calibrated Kriging predictor, a testing dataset composed of461

n′
x = 60 random samples was considered (asterisks in Figure 4). The average mean error462

(AME) [78] is considered to quantify the accuracy:463

AME =
1

ne

ne∑
k=1

[∑n′
x

i=1

∣∣y′i(x′
i; ξ̄k)− ŷ′i(x

′
i; ξ̄k)

∣∣∑n′
x

i=1

∣∣y′i(x′
i; ξ̄k)

∣∣
]

(30)

where k = 1, 2, ..., ne are the indices of the envelope elements, and ne = 8, 100 in this464

case. This error measure is defined to reflect the global performance of the predictor in465

reproducing a certain damage statistic for all envelope elements and testing samples. The466

AME by Kriging considering each of the correlation functions is summarized in Table 4. In467
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Table 4: Prediction accuracy measured by AME over the testing dataset.

Kernel μD
CDr
1

|vH ,α σD
CDr
1

|vH ,α μD
CDr
2

|vH ,α σD
CDr
2

|vH ,α μDCp |vH ,α σDCp |vH ,α

Exponential 1.77% 3.38% 1.72% 3.38% 0.76% 2.57%

Generalized exponential 1.79% 3.90% 1.74% 3.91% 0.76% 2.59%

Gaussian 3.07% 5.60% 2.89% 5.60% 4.70% 5.97%

linear 1.87% 3.82% 1.83% 3.82% 0.77% 2.65%

Spherical 1.81% 3.27% 1.75% 3.27% 0.76% 2.58%

Spline 2.04% 3.25% 1.95% 3.25% 0.84% 2.94%

addition, the Kriging surfaces and predicted values of μDC |vH ,α and μDC |vH ,α ± σDC |vH ,α for a468

representative envelope component are compared to the high-fidelity data in Figure 5. Except469

for the Gaussian correlation function, all other correlation functions yield similar results to470

the spherical kernel and are therefore omitted from Figure 5 for clarity of presentation.471

The prediction accuracy demonstrated in Figure 5 is consistent with Table 4. It is seen472

from Table 4 that overall the exponential correlation shows the best accuracy, while the473

spherical correlation exhibited similar performance. However, the most widely used Gaussian474

correlation performs the worst among the considered correlation functions. It can be observed475

from the Kriging surfaces in Figure 5 that the predictor using the Gaussian correlation is476

showing an erroneous fluctuation around lower wind speeds. This fluctuation is the major477

reason for the worst performance of the Gaussian correlation function. In addition, the478

simulation efficiency relative to the high-fidelity damage assessment framework is shown in479

Table 5, where all the correlation functions enable the Kriging metamodel to be more than480

four orders of magnitude faster than the high-fidelity framework. In particular, the linear481

correlation function is seen to have the highest efficiency, which is reasonable as it is the482

simplest in terms of function operations. The exponential and spherical correlation functions483

are seen to have similar efficiency, with both accelerating the damage evaluation by more484

than 30,000 folds. The spline correlation is seen to have the lowest efficiency due to the485

more complex operations involved. Overall, the spherical correlation is excellent in training,486

simulation efficiency, as well as accuracy, and thus will be adopted in the following online487

stage, i.e., real-time forecast.488
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Figure 5: The Kriging surfaces and predicted values of μDC |vH ,α and μDC |vH ,α ± σDC |vH ,α compared to the

high-fidelity data. The results shown are for the 20th (count from the left) envelope element at the 10th floor

of the front face of the building of Figure 3(b).
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Table 5: Comparison of the simulation efficiency between the high-fidelity and Kriging models over the testing

dataset.

Kernel High-fidelity Kriging Speed-up by

Exponential

15.45 days

42.26 sec 31,578

Generalized exponential 52.22 sec 25,559

Gaussian 44.58 sec 29,946

linear 39.03 sec 34,196

Spherical 42.62 sec 31,317

Spline 78.71 sec 16,956

Figure 6: Best tracks and pressure deficits of the three considered historical hurricanes.
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6.3. Real-time damage forecast: Online stage489

To demonstrate the applicability of the calibrated Kriging metamodel for real-time dam-490

age risk forecasting, three historical hurricanes that impacted Florida, namely hurricane491

Matthew in 2016 [83], hurricane Irma in 2017 [84], and hurricane Dorian in 2019 [85], are492

considered. The intensity of each hurricane is described through the evolution of the pressure493

deficit, Δp0. This is reported in Figure 6 together with the best track estimate. In this sec-494

tion, with the calibrated Kriging metamodel, the proposed framework is firstly implemented495

for the three hurricanes, with results reported in Section 6.3.1. Further, validations to justify496

the risk evaluations are provided in the subsequent Section 6.3.2.497

6.3.1. Forecast results498

To implement the framework, the site-specific wind intensity is forecast every six hours499

from when the hurricane event begins. The forecast is based on the scheme outlined in500

Section 2 and therefore the real-time advisories issued by NHC during the hurricane events.501

In particular, for the scheme outlined in Section 2, the Holland number was taken as B = 1.5,502

the boundary layer thickness was taken as h = 1000 m, and the diffusion coefficient was503

taken as K = 0.5κ2Bvr with κ = 0.4 [59]. In addition, the deflection coefficient was taken as504

αM = tan(20◦). The environmental length scale rG in Eq. (8) was taken as 500 km. For the505

wind speed transformation of Eq. (9), the terrain roughness length at the site of interest and506

the meteorological station were respectively z0 = 1.28 m and z01 = 0.03 m, while the height507

at the building top and the meteorological station were H = 180 m and Hmet = 10 m. The508

empirical constant was taken as δ = 0.0706. Within this context, samples of the forecast site-509

specific wind intensity were generated every six hours, and input into the calibrated Kriging510

metamodel to predict for the conditional damage statistics. These were used to calibrate511

prescribed conditional distribution functions for P (DC |vH , α) and the damage risks of all512

envelope elements were subsequently evaluated through Eq. (29). In particular, based on513

experience, the prescribed conditional distribution functions for P (DC |vH , α) were assumed514

as shifted lognormal distributions for drift-induced damage and normal distributions for515

pressure-induced damage. Following these assumptions, the conditional probability of a516
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given envelope component damage state can be written as:517

P (DC < 0|vH , α) = Φ

(
l −m

s

)
(31)

with Φ(·) the standard normal distribution function and where for one of the two (i = 1, 2)518

drift-induced damage states: l = ln(1 − μD
CDr
i

|vH ,α), m = − ln

(√
σ2
D

CDr
i

|vH ,α + 1

)
, and519

s =
√

ln(σ2
D

CDr
i

|vH ,α + 1); while for the pressure-induced damage state: l = 0, m = μDCp |vH ,α,520

and s = σDCp |vH ,α.521

In terms of uncertainty, in addition to the randomness of the structural properties, ca-522

pacities, stochasticity of the wind loads, and storm tracks, the radius to the maximum wind,523

rM , and filling model of Eq. (7), through the parameter ε, are considered as uncertain with524

rM following a lognormal distribution and ε a normal distribution [86, 65]. Additionally, the525

current central pressure deficit Δp0 is assumed to follow a normal distribution, with mean set526

to the value of Δp0 obtained from the real-time hurricane advisory and standard deviation527

set to 9.5 mb, as suggested in [87].528

Through the developed framework, real-time probabilistic damage forecasts during the529

entire lifetime of the three hurricanes were generated. The framework was used to provide530

forecasts up to five days ahead. In particular, forecasts for three and five days ahead for531

hurricane Matthew (2016), Irma (2017), and Dorian (2019) are shown in Figures 7, 8, and532

9, respectively. The five day forecast for hurricane Matthew and Dorian are not included as533

the damage risks were seen to be negligible. The results contain comprehensive information534

on the likelihood of an envelope component experiencing damage ranging form glazing unit535

cracking to complete blowout. For example, from Figure 8 and the five day damage forecast,536

it can be seen that there is around a 1% chance of window blowout on the right edge of537

the right face of the building. The subsequent three day damage forecast shows how the538

1% chance of window blowout has now extended to include the right edge of the left face.539

The computational time to generate/update these results was eight minutes on the desktop540

computer of Section 6.2.1. This efficiency clearly illustrates the potential of the approach541

as a real-time damage risk framework. The comprehensive information of damage risk to542

the building envelope would allow disaster managers to order preventative measures to be543

implemented or evacuation of personnel and equipment to be performed ahead of time in544
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Figure 7: Real time damage forecast on Oct 04 at 03:00 AM UTC (3 days ahead) for envelope components

during hurricane Matthew.
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Figure 8: Real time damage forecast on Sep 05 at 21:00 PM UTC (5 days ahead) and Sep 07 21:00 PM UTC

(3 days ahead) for envelope components during hurricane Irma.
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Figure 9: Real time damage forecast on Aug 30 at 21:00 PM UTC (3 days ahead) for envelope components

during the hurricane Dorian.

certain parts of the building or, if deemed necessary, the entire building.545

6.3.2. Validation of the real-time damage forecast model546

The hurricane track model adopted in the real-time damage forecast framework of this547

work has already been validated by NHC [62]. The discrepancies seen in this validation548

are treated as a source of uncertainty through the random variables eφ,tT and eλ,tT . In549

addition, the parametric wind field model has been carefully validated [59, 88] and serves550

as the basis of the ASCE 7 wind maps. Notwithstanding how the validity of the Kriging551

metamodels for predicting the conditional damage statistics is demonstrated in Section 6.2.2,552

the accuracy of the assumed distributions, p(DC |vH , α), for the conditional damage measures553

(based on which the risk is evaluated) requires investigation. This section studies, therefore,554

the accuracy of reconstructing p(DC |vH , α) from the damage statistics, i.e., μDC |vH ,α and555

σDC |vH ,α. To evaluate the accuracy, Pearson’s χ2 test and Kullback–Leibler (KL) divergence556

measure are considered. In particular, Pearson’s χ2 test examines how the observed frequency557
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distribution, estimated from n samples of the high-fidelity model, differs from the assumed558

distribution, with the difference measured by the test statistic:559

χ2 =
k∑

i=1

(Oi − Ei)
2

Ei

(32)

where k is the total number of mutually exclusive classes, Oi are the observations of the560

high-fidelity model in class i, while Ei is the expected number of observations (based on561

the total number of simulated samples n and the assumed distribution) in class i. The test562

statistic is then compared with a critical value derived from the chi-squared distribution at563

a designated significance level, which, as in this work, is typically taken as 5%. The assumed564

distribution is accepted (binary indicator h = 0) if χ2 is lower than the critical value, and565

rejected (h = 1) otherwise. In addition, KL divergence provides a supplementary measure of566

the difference in logarithmic scale, which can be taken as the expected excess surprise from567

using the assumed distribution:568

dKL =
k∑

i=1

Oi

n
log

(
Oi

Ei

)
(33)

569

The goodness of fit measures introduced in Eqs. (32)-(33) were estimated for all damage570

states of each envelope component for the hurricane cases considered in Section 6.3.1. The571

validation results are shown in Figures 10-13 in the form of contour plots, where the rejection572

rates of h and the expected value of dKL over all envelope components, indicated as h̄ and573

d̄KL, are estimated for the three possible damage states. In estimating the contours, 1000574

high-fidelity samples were used following the wind speed and direction grid of Figure 4 with575

domain extension estimated from the wind speed and direction samples forecast for each576

event. It is seen from Figures 10-13 that, despite some variability, h̄ is generally around 5%577

while d̄KL is around 0.003. This is confirmed in Table 6 that reports the average value of h̄578

and d̄KL over the wind speed and direction domains of each event forecast. As can been seen,579

all average values are under 5% and 0.003. These results attest to the overall adequacy of580

the probability distributions assumed for the real time risk evaluations of this work.581
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Figure 10: Contour maps of h̄ and d̄KL for the forecast of Oct 04 at 03:00 AM UTC (3 days ahead) during

hurricane Matthew: (a)-(c) rejection rates for damage states DCDr
1

, DCDr
2

, and DCp ; (d)-(f) average KL

divergence for damage states DCDr
1

, DCDr
2

, and DCp .

Table 6: Average rejection rates and KL divergence.

Average rejection rate Average KL divergence

Damage states DCDr
1

DCDr
2

DCp DCDr
1

DCDr
2

DCp

Matthew, 3 Days ahead 4.8217% 4.8222% 4.7350% 0.002845 0.002845 0.002835

Irma, 5 Days ahead 4.5407% 4.5362% 4.5195% 0.002682 0.002682 0.002678

Irma, 3 Days ahead 4.7415% 4.7372% 4.7417% 0.002797 0.002797 0.002796

Dorian, 3 days ahead 4.6115% 4.6131% 4.5039% 0.002723 0.002723 0.002711

7. Conclusion582

In this paper, a metamodel-driven real-time risk forecast framework for hurricane-induced583

building damage was outlined for the envelope systems of engineered buildings. The frame-584

work consists of a scheme for site-specific wind intensity forecasting and the Kriging meta-585

modeling technique for rapid probabilistic damage quantification. In particular, with high-586

fidelity damage being simulated through a recently developed probabilistic multi-demand587

progressive and coupled fragility model, the Kriging metamodeling technique is introduced588

as a surrogate to gain the efficiency needed for real-time applications. The Kriging meta-589

model, once calibrated, is further used in Monte Carlo simulations for rapidly estimating590
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Figure 11: Contour maps of h̄ and d̄KL for the forecast of Sep 05 at 21:00 PM UTC (5 days ahead) during

hurricane Irma: (a)-(c) rejection rates for damage statesDCDr
1

, DCDr
2

, andDCp ; (d)-(f) average KL divergence

for damage states DCDr
1

, DCDr
2

, and DCp .

Figure 12: Contour maps of h̄ and d̄KL for the forecast of Sep 07 at 21:00 PM UTC (3 days ahead) during

hurricane Irma: (a)-(c) rejection rates for damage statesDCDr
1

, DCDr
2

, andDCp ; (d)-(f) average KL divergence

for damage states DCDr
1

, DCDr
2

, and DCp .
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Figure 13: Contour maps of h̄ and d̄KL for the forecast of Aug 30 at 21:00 PM UTC (3 days ahead) during

the hurricane Dorian: (a)-(c) rejection rates for damage states DCDr
1

, DCDr
2

, and DCp ; (d)-(f) average KL

divergence for damage states DCDr
1

, DCDr
2

, and DCp .

damage risk from real time forecasts of site-specific wind intensity of an imminent hurricane591

obtained by integrating real-time hurricane advisories with parametric wind field models.592

The efficiency and applicability of the developed framework was illustrated through a case593

study consisting in a 45-story building located in Miami, Florida. Through a comparative594

study, it was found that Kriging with spherical correlation function has the best overall per-595

formance for the applications of this work. This Kriging configuration, once calibrated, can596

predict the second order conditional damage statistics associated with each component of a597

envelope system with remarkable accuracy and with an efficiency gain of more than four or-598

ders of magnitude as compared to the high-fidelity reference solution. Subsequently, with the599

calibrated Kriging metamodel, real-time forecast of damage risks is successfully demonstrated600

by considering the real-time advisories of three historical hurricane events. The efficiency and601

accuracy of the developed framework demonstrates its potential as a decision support tool602

for emergency response and management of buildings in hurricanes prone regions. Moreover,603

the framework can be extended to portfolios of buildings or infrastructures therefore defining604

a regional real-time hurricane-induced damage alert framework.605
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