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ABSTRACT1

Performance-based engineering for natural hazards facilitates the design and appraisal of struc-2

tures with rigorous evaluation of their uncertain structural behavior under potentially extreme3

stochastic loads expressed in terms of failure probabilities against stated criteria. As a result,4

efficient stochastic simulation schemes are central to computational frameworks that aim to esti-5

mate failure probabilities associated with multiple limit states using limited sample sets. In this6

work, a generalized stratified sampling scheme is proposed in which two phases of sampling are7

involved: the first is devoted to the generation of strata-wise samples and the estimation of strata8

probabilities whereas the second phase aims at the estimation of strata-wise failure probabilities.9

Phase-I sampling enables the selection of a generalized stratification variable (i.e., not necessarily10

belonging to the input set of random variables) for which the probability distribution is not known11

a priori. To improve the efficiency, Markov Chain Monte Carlo Phase-I sampling is proposed when12

Monte Carlo simulation is deemed infeasible and optimal Phase-II sampling is implemented based13
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on user-specified target coefficients of variation for the limit states of interest. The expressions for14

these coefficients are derived with due regard to the sample correlations induced by the Markov15

chains and the uncertainty in the estimated strata probabilities. The proposed stochastic simulation16

scheme reaps the benefits of near-optimal stratified sampling for a broader choice of stratification17

variables in high-dimensional reliability problems with a mechanism to approximately control the18

accuracy of the estimators of multiple failure probabilities. The practicality and efficiency of19

the scheme are demonstrated using two examples involving the estimation of failure probabilities20

associated with highly nonlinear responses induced by wind and seismic excitations.21

Keywords: Stratified sampling, Monte Carlo methods, Subset simulation, Natural hazards.22

INTRODUCTION23

The advancement of computing power, algorithms, and frameworks in the last couple of decades24

has enabled the analysis of engineering systems with greater scrutiny than ever before. However,25

computational models are not perfect simulators of real-world systems/behavior, and the real world26

itself is uncertain. Uncertainty in model and parameter selection can be characterized using ran-27

dom variables, processes, fields, and waves capturing both epistemic uncertainties (arising from28

the lack of knowledge/data) as well as aleatory uncertainties (arising from intrinsic randomness29

of phenomena) (Shinozuka and Deodatis 1991; Shinozuka and Deodatis 1996; Gurley et al. 1997;30

Gurley and Kareem 1999; Der Kiureghian and Ditlevsen 2009; Melchers and Beck 2018). For31

practical problems, the effect of the input uncertainty on the model outputs is of prime importance32

to characterize safety against violation of multiple constraints (or limit states) through failure prob-33

abilities, or equivalently, reliabilities. The determination of the failure probability of a component,34

or a system, 𝑃 𝑓 ,ℎ involves solving the following 𝑁𝑑-dimensional integral:35

𝑃 𝑓 ,ℎ = 𝑃(ΘΘΘ ∈ Γℎ) =
∫
S

� 𝑓 ,ℎ (θθθ)𝑞(θθθ)𝑑θθθ (1)

where θθθ ∈ S ⊂ R𝑁𝑑 is a realization of the 𝑁𝑑-dimensional vector of basic random variables 𝚯36

with joint probability density function (PDF) 𝑞; Γℎ is the failure region within the sample space S37
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associated with the ℎth limit state; � 𝑓 ,ℎ (θθθ) is an indicator function assuming a value of 1 if θθθ ∈ Γℎ38

and 0 otherwise. For most applications in natural hazards engineering, the following characteristics39

make the estimation of 𝑃 𝑓 ,ℎ of Eq. (1) challenging: (i) a high-dimensional uncertain space, 𝑁𝑑40

in the order of several thousand, necessary for accommodating the white noise sequence, 𝚯𝒁,41

modeling load stochasticity; (ii) the need to simultaneously evaluate multiple nonlinear limit state42

functions (LSFs), Gℎ with ℎ = {1, 2, . . . , 𝐻} where 𝐻 is the total number of associated performance43

objectives; and (iii) the need to estimate small failure probabilities (e.g., 𝑃 𝑓 ,ℎ ≤ 10−4) at affordable44

computational costs while maintaining acceptable accuracy for engineering applications.45

Monte Carlo (MC) methods are the simplest of simulation-based uncertainty quantification46

techniques and are robust to the dimension of the uncertainties as well as the number and nature47

of the limit states. However, they suffer from the need to carry out a large number of system48

evaluations, 𝑛, if small failure probabilities are to be estimated with sufficient accuracy (e.g.,49

𝑛 = 10𝑘+2 samples are required to estimate a 𝑃 𝑓 ,ℎ in the range of 10−𝑘 with a 10% coefficient50

of variation). This is often computationally prohibitive for complex computational models with51

significant nonlinearities, and/or with fine discretization in space/time. A vast literature exists52

on variance reduction techniques for reducing the computational burden associated with MC53

simulation. Importance sampling modifies the sampling density function so as to draw more54

samples from the “important region” of S (Melchers 1989; Fishman 2013). However, identifying55

the optimal importance sampling density (ISD) is generally difficult and when the choice of the56

form of ISD adopted is inappropriate, the variability of the estimator cannot be controlled in the57

presence of a large number of uncertain parameters (Au and Beck 2003a). Importance sampling58

and its variants (e.g., (Au and Beck 1999; Papaioannou et al. 2016)), as well as other methods, such59

as line sampling (Koutsourelakis et al. 2004; Schueller et al. 2004) and subset simulation (SuS) (Au60

and Beck 2001; Au and Beck 2003b), are based on generating samples that better probe the failure61

region such that a larger proportion of them contribute to the evaluation of the failure probabilities.62

SuS is based on the idea of estimating small failure probabilities as a product of larger conditional63

probabilities by introducing intermediate failure events. Although the original algorithm (Au and64
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Beck 2001) focuses on evaluating the failure probability of a single rare failure event (i.e., associated65

with a single LSF), some variants have been proposed that generalize the approach to multiple LSFs66

(Hsu and Ching 2010; Li et al. 2015; Li et al. 2017). In contrast, the class of simulation schemes67

based on stratified designs includes, but is not limited to, stratified random sampling (Cochran68

2007), Latin Hypercube Sampling (LHS) (Stein 1987), and Partially Stratified Sampling (PSS)69

(Shields and Zhang 2016). These represent better sampling plans owing to improved space-filling70

properties but may not be particularly focused on any failure region, or LSF. Surrogate-assisted71

approximation techniques aim to replace the expensive simulator (the LSF or the limit state surface)72

with an emulator (e.g., polynomial chaos expansion, kriging surrogates (Sudret 2012)) built from a73

so-called design of experiments, a set of observed points to approximate the true function/surface.74

However, they are usually unsuitable for high-dimensional and highly-nonlinear problems.75

Conventional stratified sampling is limited to applications where efficient stratification can be76

defined by directly specifying intervals for the components of 𝚯 with known joint PDF, 𝑞. It is not77

generally applicable to a wider set of problems in which a potential efficient stratification variable78

can be identified as the output of an auxiliary computational model or the output of an intermediate79

computational model belonging to the model chain used to estimate the system response. This can80

be a significant limitation when solving reliability problems in performance-based engineering for81

natural hazards that pose the following challenges: (i) response quantities, defining the LSFs of82

interest, that generally require the evaluation of a cascade of computational models for characterizing83

the hazard, hazard-structure interaction, structural response, and loss/damage; (ii) LSFs for which84

intervals directly defined on a subset of 𝚯 do not represent an efficient stratification; (iii) indicator85

functions characterizing the exceedance of LSFs of interest that are expensive to evaluate due to86

the need to evaluate a cascade of high-fidelity models; (iv) performance targets involving small87

failure probabilities, or equivalently, large reliabilities. The post-stratification technique is rarely88

useful since the probability distribution of variables outside of 𝚯 is rarely available. In a similar89

formulation to that of stratified sampling, the double sampling procedure requires two phases of90

sampling; the first is devoted to the generation of strata-wise samples and the estimation of strata91
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probabilities whereas the second phase aims at the estimation of strata-wise failure probabilities. In92

this paper, an extended double-sampling-based stochastic simulation scheme is proposed to estimate93

multiple failure probabilities for a suite of limit states with a built-in optimization procedure to94

control the estimation errors while using limited sample sets. The novelty in the proposed scheme95

is the Markov Chain Monte Carlo (MCMC)-driven Phase-I sampling similar to subset simulation96

when MC simulation is deemed infeasible and the optimal execution of Phase-II sampling based on97

user-specified target coefficients of variation (c.o.v.) for the limit states of interest. The expressions98

for these coefficients are derived with due regard to the sample correlations induced by the Markov99

chains and the uncertainty in the estimated strata probabilities. The proposed scheme is illustrated100

using two examples involving the estimation of failure probabilities associated with highly nonlinear101

responses induced by wind and seismic excitations.102

BACKGROUND103

The basic idea of stratified sampling is to define partitions of the sample space, S, such that104

samples are drawn from each of these partitions (or strata), {S𝑖 : 𝑖 = 1, . . . , 𝑚}, in a preferred105

manner. This implies that the user can decide the stratification variables, denoted by the vector χχχ,106

the strata boundaries as well as the number of samples within each stratum, 𝑛𝑖. The strata need107

to satisfy: ∪𝑚
𝑖=1
S𝑖 = S and S𝑖 ∩ S 𝑗 = ∅ for 𝑖 ≠ 𝑗 . As a result, Eq. (1) can be broken down into108

sub-integrals as:109

𝑃 𝑓 ,ℎ =
𝑚∑
𝑖=1

∫
S𝑖

� 𝑓 ,ℎ (θθθ)𝑞(θθθ)𝑑θθθ (2)

Since for the conditional PDF the following holds: 𝑞(θθθ | S𝑖) = 𝑞(θθθ)�S𝑖 (θθθ)/𝑃(S𝑖); 𝑃 𝑓 ,ℎ can be110

further simplified as:111

𝑃 𝑓 ,ℎ =
𝑚∑
𝑖=1

∫
S𝑖

� 𝑓 ,ℎ (θθθ)𝑞(θθθ | S𝑖)𝑃(S𝑖)𝑑θθθ =
𝑚∑
𝑖=1

𝑃 𝑓𝑖 ,ℎ𝑃(S𝑖) (3)

where 𝑃(S𝑖) = the volume of the 𝑖th stratum in the probability space and 𝑃 𝑓𝑖 ,ℎ = the conditional112

failure probability. When MC sampling is performed within each stratum, the procedure is known113
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as stratified random sampling and 𝑃 𝑓 ,ℎ is approximated as:114

𝑃 𝑓 ,ℎ ≈ 𝑃̃ 𝑓 ,ℎ =
𝑚∑
𝑖=1

𝑛𝑖∑
𝑘=1

� 𝑓 ,ℎ (θθθ
(𝑖)
𝑘 )𝑃(S𝑖)/𝑛𝑖 (4)

where θθθ(𝑖)𝑘 = the 𝑘th independent and identically distributed (i.i.d.) sample out of 𝑛𝑖 samples in the115

𝑖th stratum. Clearly, the decomposition of the integral of Eq. (1) is enabled by the theorem of total116

probability. In particular, 𝑃̃ 𝑓 ,ℎ of Eq. (4) can be seen as a weighted sum of 𝑃̃ 𝑓𝑖 ,ℎ with the weights,117

𝑃(S𝑖). More importantly, 𝑃(S𝑖) is perfectly known only when stratification is directly performed118

by specifying lower and upper bounds for each component of χχχ, with χχχ ⊆ 𝚯, since, under these119

circumstances, 𝑞(χχχ) is available. Moreover, the simulation of i.i.d. samples, θθθ(𝑖)𝑘 , is straightforward120

as the conditional density, 𝑞(θθθ | S𝑖), can be obtained from the joint density 𝑞(θθθ). The variance121

reduction achieved through stratified random sampling is dependent on the choice of χχχ, {S𝑖}1≤𝑖≤𝑚122

and {𝑛𝑖}1≤𝑖≤𝑚. A poor implementation could potentially lead to worse performance than direct MC123

simulation.124

Stratified sampling was developed in the survey sampling community, wherein stratification125

based on demographic features is commonly employed for estimation of sub-population character-126

istics/parameters (Cochran 2007; Arnab 2017). The incorporation of the exact probability weights127

(i.e., stratum probabilities) corrects for differences in the distribution of the traits/features in the128

sample set and in the actual population which explains the unconditional variance reduction when129

proportional sample allocation (i.e., 𝑛𝑖 = 𝑛𝑃(S𝑖)) is considered. In some instances, when a fixed130

number of samples cannot be generated from each stratum due to the choice of χχχ, classification131

of samples into their respective strata can be performed after sampling, a procedure termed post-132

stratification. Post-stratification assumes that the strata probabilities are known accurately and only133

that the stratum to which a sample belongs is unknown (Cochran 2007; Glasgow 2005). Further,134

when even the strata probabilities are not known a priori, a large simple random sample set can be135

drawn to first estimate the strata probabilities and prepare a pool of samples for each stratum from136

which a smaller sample set can be used to evaluate the failure probabilities. This technique is known137
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as double sampling since the process involves a first phase of sampling devoted to strata construc-138

tion, strata-wise sample classification, and estimation of strata probabilities before carrying out a139

second phase of sampling for estimating the failure probabilities of interest through stratification140

(Cochran 2007; Glasgow 2005; Rao 1973). This paper focuses on the development of a generalized141

stratified sampling scheme for risk assessment problems in natural hazards engineering through142

the adoption of double sampling methods. Specifically, improving the computational efficiency in143

double sampling (i.e., χχχ � 𝚯) through both optimal sample allocation as well as the adoption of144

Markov MCMC to accelerate Phase-I sampling is investigated.145

PROPOSED DOUBLE-SAMPLING-BASED SIMULATION SCHEME146

Simulation of Strata-wise Samples147

Basic idea of double sampling148

As discussed earlier, if χχχ ⊆ 𝚯 and 𝑞(θθθ | S𝑖) is known, the generation of strata-wise input149

samples is trivially achieved by sampling 𝑞(θθθ | S𝑖) through MC simulation, a task that generally150

requires minimal computational effort. Consider nowχχχ = H(σσσ) withH a computational model that151

depends on a subset of the input uncertainties, σσσ, with the remaining input uncertainties (assumed152

to be independent of σσσ for simplicity) denoted with τττ so that θθθ = {σσσ,τττ}. For example, consider153

the case in which peak hourly wind speed is selected as the stratification variable but there is no154

predetermined probability distribution characterizing its uncertainty, i.e., the stratification variable155

is not a basic random variable of the problem, then H would denote the function mapping (i.e.,156

the hazard model) between the basic random variables of the wind hazard model (constituting157

σσσ) and the peak hourly wind speed (i.e., χχχ). The remainder of the uncertainties, for example,158

those in the system and aerodynamic parameters, would constitute τττ. Clearly, the choice of the159

stratification variable defines the computational model H of the problem. If for a given problem,160

the cost of evaluating H , denoted as 𝒞(H), is much less relative to the cost of evaluating the limit161

state functions, 𝒞(Gℎ)∀ℎ, then a MC simulation can be implemented to generate a large number of162

samples such that the requisite number of samples in every stratum, {𝑛𝑖}1≤𝑖≤𝑚 is available. It should163

be observed that while this does produce i.i.d. samples θθθ(𝑖)𝑘 in each stratum, if 𝑃(S𝑚) ≈ 10−𝑘 , then164
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it takes 10𝑘+2 evaluations of H to generate roughly 102 samples in S𝑚, i.e., the last stratum, which165

will yield an estimate of 𝑃(S𝑚) with a c.o.v. of 10%. In particular, the estimator is given by the166

expression:167

𝑃̃ 𝑓 ,ℎ =
𝑚∑
𝑖=1

𝑃̃ 𝑓𝑖 ,ℎ𝑃̃(S𝑖)

=
𝑚∑
𝑖=1

(∑𝑛𝑖
𝑘=1

� 𝑓 ,ℎ (θθθ
(𝑖)
𝑘 )

𝑛𝑖

)
𝑛𝑖
𝑛̂

(5)

θθθ(𝑖)𝑘 = [σσσ(𝑖)
𝑘 , 𝜏𝜏𝜏𝑘 ] where 𝜏𝜏𝜏𝑘 = non-conditional MC samples; 𝑛̂ = the total number of MC samples168

generated out of which 𝑛𝑖 lie in the 𝑖th stratum; while 𝑛𝑖 ≤ 𝑛𝑖 are the samples utilized in the169

calculation of conditional failure probabilities. This implies that 𝑛 =
∑

𝑖 𝑛𝑖 limit state evaluations170

are performed in total, whereas 𝑛̂ =
∑

𝑖 𝑛̂𝑖 evaluations ofH are performed to populate samples within171

strata and to estimate the stratum probabilities. It is noted that in the literature, the consideration172

of τττ and its separate MC sampling has not been explicitly described but is essential to this work.173

An important property of the classic stratified sampling of Section “Background” is the uti-174

lization of the knowledge of accurate probability weights which is lost here. Its implications can175

be observed as follows: (i) if 𝑛̂𝑖 = 𝑛𝑖, then Eq. (5) reduces to simple MC estimation of 𝑃 𝑓 ,ℎ.176

Therefore, it is required that 𝑛̂ >> 𝑛 such that 𝑃̃(S𝑖) is a relatively high-accuracy estimate, which is177

feasible since H is cheap to evaluate; (ii) proportional sample allocation (i.e., 𝑛𝑖 = 𝑛𝑃(S𝑖)), which178

guarantees variance reduction for classic stratified sampling regardless of χχχ and {S𝑖}1≤𝑖≤𝑚, loses179

this guarantee since it again reduces the scheme to simple MC estimation. This emphasizes how180

for high-efficiency gains, the sample allocation needs to mirror, as much as possible, the theoretical181

optimal allocation, a problem that is discussed in Section “Sample Allocation Scheme”. Let ˜̃𝑃 𝑓𝑖 ,ℎ182

define the estimate of 𝑃 𝑓𝑖 ,ℎ when 𝑛𝑖 = 𝑛̂𝑖, then the variance can be written as (Theorem 1 (Rao183
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1973)):184

V(𝑃̃ 𝑓 ,ℎ) = V

(
𝑚∑
𝑖=1

𝑃̃ 𝑓𝑖 ,ℎ𝑃̃(S𝑖)

)
= V

(
𝑚∑
𝑖=1

˜̃𝑃 𝑓𝑖 ,ℎ𝑃̃(S𝑖) +
𝑚∑
𝑖=1

(𝑃̃ 𝑓𝑖 ,ℎ −
˜̃𝑃 𝑓𝑖 ,ℎ)𝑃̃(S𝑖)

)
= V

(∑𝑛̂
𝑘=1 � 𝑓 ,ℎ (θθθ

(𝑖)
𝑘 )

𝑛̂

)
+ V

(
𝑚∑
𝑖=1

(𝑃̃ 𝑓𝑖 ,ℎ −
˜̃𝑃 𝑓𝑖 ,ℎ)𝑃̃(S𝑖)

)
= V

(∑𝑛̂
𝑘=1 � 𝑓 ,ℎ (θθθ

(𝑖)
𝑘 )

𝑛̂

)
+ E

(
V

(
𝑚∑
𝑖=1

(𝑃̃ 𝑓𝑖 ,ℎ −
˜̃𝑃 𝑓𝑖 ,ℎ) |𝑃̃(S𝑖)

)
𝑃̃(S𝑖)

)
=

𝑃 𝑓 ,ℎ (1 − 𝑃 𝑓 ,ℎ)

𝑛̂
+

𝑚∑
𝑖=1

𝑃(S𝑖)𝑃 𝑓𝑖 ,ℎ (1 − 𝑃 𝑓𝑖 ,ℎ)

𝑛̂

(
1

𝜈𝑖
− 1

)

(6)

where E = the expectation operator, 𝜈𝑖 = 𝑛𝑖/𝑛̂𝑖 ∈ (0, 1] = the sub-sampling fraction whose value is185

assumed to be fixed and which represents the proportion of samples in the 𝑖th stratum from Phase-I186

considered in Phase-II for failure probability evaluations. In the above derivation, the following187

results were used (Rao 1973; Cochran 2007): Cov( ˜̃𝑃 𝑓𝑖 ,ℎ, 𝑃̃ 𝑓𝑖 ,ℎ −
˜̃𝑃 𝑓𝑖 ,ℎ) = 0, E(𝑃̃ 𝑓𝑖 ,ℎ) =

˜̃𝑃 𝑓𝑖 ,ℎ, and188

V(𝑃̃ 𝑓𝑖 ,ℎ −
˜̃𝑃 𝑓𝑖 ,ℎ) = V(𝑃̃ 𝑓𝑖 ,ℎ) − V(

˜̃𝑃 𝑓𝑖 ,ℎ). Notably, the first summand of the final expression of Eq.189

(6) is fixed for a given limit state and 𝑛̂, whereas the second summand represents the sample-190

allocation-dependent variance contribution which vanishes as 𝑛𝑖 → 𝑛̂𝑖. The estimator is unbiased191

and consistent in the sense that it approaches the true failure probability as 𝑛̂ → ∞, for fixed 𝜈𝑖.192

Finally, the c.o.v. can be estimated as:193

𝜅ℎ =

√
V(𝑃̃ 𝑓 ,ℎ)

𝑃 𝑓𝑖 ,ℎ
≈

√
𝑃̃ 𝑓 ,ℎ (1−𝑃̃ 𝑓 ,ℎ)

𝑛̂ +
∑𝑚

𝑖=1

𝑃̃(S𝑖)𝑃̃ 𝑓𝑖 ,ℎ (1−𝑃̃ 𝑓𝑖 ,ℎ)

𝑛̂

(
1
𝜈𝑖
− 1

)
∑𝑚

𝑖=1 𝑃̃ 𝑓𝑖 ,ℎ𝑃̃(S𝑖)

(7)

Extension through subset simulation for high-efficiency gains194

It is inefficient to use MC simulation when 𝒞(H) is not trivial and, in particular, when 𝑃(S𝑚)195

is extremely small. The latter might be necessary when rare subspaces of χχχ (lying in the tail of its196
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joint PDF) are of special interest in producing extreme responses. In such cases, a more efficient197

technique is required to populate strata-wise samples and approximate strata probabilities. The class198

of methods based on MCMC algorithms can achieve adaptive sample generation from conditional199

distributions (conditional on S𝑖) (Papaioannou et al. 2015). For instance, sequential importance200

sampling can be applied to produce conditional samples by a transition of samples through a201

sequential reweighting operation whose governing distribution sequence gradually approaches the202

target conditional distribution (Papaioannou et al. 2016). In this paper, owing to its wider usage, SuS203

is considered for efficient Phase-I sampling (Au and Beck 2001). Unlike the traditional application204

of SuS, in this work, SuS only provides sufficient samples in each stratum to enable a stratified205

sampling-based estimation of multiple failure probabilities.206

Consider a single stratification variable denoted by 𝜒 ∈ [𝜒𝐿, 𝜒𝑈], then by fixing the thresholds207

𝜒𝑖, where 𝜒0 < 𝜒1 < . . . < 𝜒𝑚−1 < 𝜒𝑚, the strata, {S𝑖}1≤𝑖≤𝑚, and nested intermediate event208

sequence, 𝐹1 ⊃ 𝐹2 ⊃ . . . ⊃ 𝐹𝑚−1 are defined as follows: 𝐹𝑖 = {θθθ : 𝜒 > 𝜒𝑖},∀𝑖 ≤ (𝑚 − 1) and209

S𝑖 = {θθθ : 𝜒 ∈ (𝜒𝑖−1, 𝜒𝑖]},∀𝑖 ≤ 𝑚. It is also notationally convenient to define 𝐹0 = S, a certain210

event. The last stratum, S𝑚 = 𝐹𝑚−1, is bounded from above by 𝜒𝑚 = 𝜒𝑈 (which need not be211

finite) and from below by 𝜒0 = 𝜒𝐿 to ensure the satisfaction of the probability partition properties.212

The adaptive procedure of SuS generates samples in 𝐹𝑖 (and S𝑖+1) by simulating states of Markov213

chains through MCMC starting from the samples (or seeds) conditional on 𝐹𝑖−1,∀𝑖 ≤ (𝑚 − 1)214

(Au and Beck 2001; Papaioannou et al. 2015). It can be proved that for an idealized version of215

the SuS method with fixed thresholds, the optimal choice of thresholds is to make the conditional216

probabilities 𝑃(𝐹𝑖 |𝐹𝑖−1) equal (Bect et al. 2017). This provides the rationale for the widely adopted217

idea of fixing the sample estimate of 𝑃(𝐹𝑖 |𝐹𝑖−1),∀𝑖 ≤ (𝑚 − 1) to be 𝑝 ∈ [0.1, 0.3], a constant such218

that 𝜒𝑖 and S𝑖 are adaptively defined. In other words, 𝜒𝑖 is chosen as the (1 − 𝑝)th quantile of the219

conditional samples in 𝐹𝑖−1. It is easy to note that 𝑃̃(𝐹𝑖) = 𝑝𝑖 and 𝑃̃(S𝑖) = 𝑝𝑖−1(1− 𝑝),∀𝑖 ≤ (𝑚−1),220

where tilde denotes that the quantity is a sample estimate. Let the total number of Markov chain221

samples in each conditional level of 𝐹𝑖 be 𝑁 , then the number of Markov chain samples generated222

in the 𝑖th stratum for ∀𝑖 ≤ (𝑚 − 1) will be , 𝑛̂𝑖 = (1 − 𝑝)𝑁 with 𝑛̂𝑚 = 𝑁 , from which it follows223
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that 𝑛̂ = 𝑁 (𝑚(1 − 𝑝) + 𝑝). The values of 𝑛𝑖, however, are determined according to the optimal224

allocation scheme of Section “Sample Allocation Scheme”. Both within each stratum and among225

strata, the generated samples, θθθ(𝑖)𝑘 = [σσσ(𝑖)
𝑘 , 𝜏𝜏𝜏𝑘 ] are correlated throughσσσ(𝑖)

𝑘 due to inherent correlation226

of the Markov chains, while 𝜏𝜏𝜏𝑘 are uncorrelated as they are i.i.d. MC samples unaffected by the227

SuS, or stratification procedures. The variance expressions need to take into account both the228

sample correlations induced by SuS as well as the uncertainty in the estimated strata probabilities.229

Appendix I discusses the properties of 𝑃̃ 𝑓𝑖 ,ℎ, 𝑃̃(S𝑖), and 𝑃̃ 𝑓 ,ℎ. This includes the derivation of the230

variance of 𝑃̃ 𝑓 ,ℎ that enables the introduction of the following expression for the estimator c.o.v. of231

the extended scheme:232

𝜅ℎ ≈

√∑𝑚
𝑖=1 𝜗̃

2
𝑖,ℎ

(
𝜗̃2
S𝑖
+ 𝑃̃2(S𝑖)

)
+
∑𝑚

𝑖=1

∑𝑚
𝑗=1 𝑃̃ 𝑓𝑖 ,ℎ𝑃̃ 𝑓 𝑗 ,ℎ𝜗̃

2
S𝑖 𝑗∑𝑚

𝑖=1 𝑃̃ 𝑓𝑖 ,ℎ𝑃̃(S𝑖)
(8)

where 𝜗̃2
𝑖,ℎ = the estimate of V(𝑃̃ 𝑓𝑖 ,ℎ), 𝜗̃2

S𝑖 𝑗
= the estimate of Cov(𝑃̃(S𝑖), 𝑃̃(S 𝑗 )), and 𝜗̃2

S𝑖
= the233

estimate of V(𝑃̃(S𝑖)), all of which can be estimated using the simulated Markov chain samples and234

evaluation of the limit state violations. Notably, the estimates, 𝜗̃2
S𝑖

and 𝜗̃2
S𝑖 𝑗

are dependent only on235

the Phase-I samples, and independent of the limit states and Phase-II sampling. On the other hand,236

the estimate 𝜗̃2
𝑖,ℎ is dependent on the Phase-I samples, 𝑛𝑖, and the ℎth limit state function. This237

implies that for a given problem, the variance component
∑𝑚

𝑖=1

∑𝑚
𝑗=1 𝑃̃ 𝑓𝑖 ,ℎ𝑃̃ 𝑓 𝑗 ,ℎ𝜗̃

2
S𝑖 𝑗

of Eq. (8) is238

independent of the sample allocation (i.e., of {𝑛𝑖}1≤𝑖≤𝑚) and only reflects the adequacy of Phase-I239

sampling.240

For a conceptual illustration of the proposed method, consider a two-dimensional problem241

defined by the independent random variables 𝜏 ∼ 𝑈 (0, 10) and 𝜎 ∼ 𝑁 (5, 1). Figure 1(a) illustrates242

how 1000 random Monte Carlo samples distribute in comparison to a failure region (shaded red in243

the figure) given by: 200 sin(𝜏) + 3𝜎3 > 1500. As is expected, very few samples are likely to fall244

in the failure region making the estimation of the failure probability challenging. Consider now245

taking 𝜒 = H(𝜎) = 𝜎3 as the stratification variable to be sampled in Phase-I while considering five246

strata, 𝑚 = 5, strata probabilities defined by 𝑝 = 0.1, and an equal allocation of 200 samples in each247
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stratum. In Phase-II, Monte Carlo sampling is used to generate 1000 corresponding samples of 𝜏.248

Figure 1(b) clearly shows the increase in samples falling in the failure region, therefore, facilitating249

the estimation of the failure probability. Due to the simplicity of this illustrative example, subset250

simulation is not required for generating Phase-I samples. In general, however, 𝜒 is a complex251

function of two or more random variables, in which case subset simulation becomes necessary to252

generate the Phase-I strata-wise samples.253

Additional remarks254

For the more general case of multiple stratification variables, the same framework can be255

realized by replacing the SuS algorithm with the generalized subset simulation (GSS) algorithm,256

originally developed as an extension of SuS for estimating multiple failure probabilities using a257

single run of the simulation scheme (Li et al. 2015; Li et al. 2017). Basically, in the aforementioned258

SuS procedure, {𝐹𝑖} are determined using a single driving variable, 𝜒, whereas in GSS unified259

intermediate events (i.e., 𝐹𝑖 = {θθθ : 𝜒(1) > 𝜒(1)
𝑖 } ∪ {θθθ : 𝜒(2) > 𝜒(2)

𝑖 } for two stratification variables260

𝜒(1) and 𝜒(2)) can be defined to drive samples to multiple strata. However, this modification can261

be cumbersome in providing sufficient samples in all strata and does not lend itself to calculable262

variance expressions that are required for the optimal sample allocation procedure, central to the263

proposed simulation scheme.264

It is worth mentioning that while the development of this extension was independent, it bears265

some similarities with the parallel subset simulation (P-SuS) algorithm (Hsu and Ching 2010)266

and the response conditioning method (RCM) proposed by Au 2007. The key idea in P-SuS is267

to introduce a principal variable that is correlated with all performance functions, as the driving268

variable in SuS, and multiple failure probabilities are estimated simultaneously. Here, the principal269

variable is a representative output variable (e.g., an average of the maximum story drifts) such270

that each simulation will not only provide a realization of the principal variable but also of all271

performance functions (e.g., the maximum story drifts for all stories) at once without requiring272

any additional simulation/computation. This can be seen as a special case of the proposed scheme273

wherein Phase-II sampling/simulation (including the uncertainties given by 𝜏𝜏𝜏) is absent. On the274
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other hand, RCM leverages information from computationally inexpensive approximate solutions275

to the target problem to achieve efficient and consistent reliability estimates. The “conditioning276

response” which approximates the target response is stratified and SuS enables the conditional277

sample generation. However, the method was not directed toward reliability problems with multiple278

limit states, and neither of the two methods optimally evaluates samples from each stratum which279

is indeed actualized in this paper through a constrained-optimization-based sample allocation280

procedure. Further, in contrast to subset simulation where parametrization of the failure domain281

is necessary, the proposed method is agreeable to a more generic limit state representation, such282

as structural collapse, for which a non-binary measurable limit state function cannot always be283

assigned.284

Choice of Stratification Variables285

The gains from stratification can be significant if the choice of χχχ is such that the stratification286

defined by {S𝑖}1≤𝑖≤𝑚 promotes more intra-stratum homogeneity (with respect to the ℎth limit state287

violation) than the overall homogeneity in S. The intra-stratum homogeneity can be measured288

by the unit variance of the MC conditional probability estimator (i.e., associated with one simple289

random sample) given by 𝑃 𝑓𝑖 ,ℎ (1 − 𝑃 𝑓𝑖 ,ℎ). In fact, the ideal stratification variable for 𝑃 𝑓 ,ℎ is the290

ℎth limit state function, Gℎ, itself. Obviously, it is not possible to stratify according to decreasing291

values of a limit state function and therefore justifying the adoption of one or more variables292

for stratification that are highly correlated with the response(s) of interest. Additionally, in the293

proposed scheme, since the stratification is carried out in the space of the random variables and is294

therefore independent of the limit state functions, the same sample set within each stratum can be295

used to estimate the strata-wise failure probabilities for all limit states. That is, it is not necessary296

to rerun the simulation for each limit state of interest. By broadening the scope of selection (i.e.,297

χχχ � 𝚯), a good candidate for χχχ can be selected from the output of any intermediate model (from298

the sequence of numerical models that is typically involved in response estimation) or from the299

output of an auxiliary model not used in the modal chain. However, every choice is associated with300

a corresponding computational effort, proportional to 𝒞(H), to simulate strata-wise samples. In301
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natural hazard applications, by leveraging expert knowledge, or physical intuition, good candidates302

for χχχ can take the form of hazard intensity measures such as the maximum mean hourly wind speed,303

the geometric mean of spectral accelerations, or the elastic base moments of wind excited systems.304

In general, when explicit hazard modeling is involved in natural hazard applications, the intensity305

measures are often the output of a numerical model and therefore do not have a known probability306

distribution. Because the proposed scheme enables the consideration of any model output as307

the stratification variable, it allows the consideration of such intensity measures as stratification308

variables. It should be emphasized that the proposed estimator is unbiased and consistent (i.e.,309

convergent to the true probability with increasing computational effort, that is for 𝑁 → ∞ and310

𝑛𝑖 → ∞) as shown in Appendix I.311

Stratified sampling suffers from the “curse of dimensionality” since full stratification in 𝑘312

dimensions with 𝑚 strata per dimension quickly causes an explosion in the number of strata, 𝑚𝑘 ,313

and the sampling demands to meet certain accuracy in the unit variance estimation needed for314

optimal sample allocation, and consequently, the estimated failure probabilities (Pharr et al. 2017).315

This encourages the thoughtful selection of one or two variables for stratification that strongly affect316

the responses, which is usually not difficult to identify from the intermediate model inputs/outputs in317

natural hazard applications. The number of strata, 𝑚 is typically determined by 𝑃(S𝑚) and the order318

of the smallest probability, minℎ 𝑃 𝑓𝑖 ,ℎ, however, increasing 𝑚 beyond 10 will seldom be profitable319

as it increases the sampling demands, or contributes to increased estimator variance arising from320

large uncertainty in the unit variance estimations and sub-optimality of sample allocation for fixed321

sampling costs (Cochran 2007).322

Sample Allocation Scheme323

In addition to the choice of χχχ and {S𝑖}1≤𝑖≤𝑚, the allocation of samples among the strata defined324

by {𝑛𝑖}1≤𝑖≤𝑚 affects the variance reduction for a fixed number of limit state evaluations, 𝑛. For325

a single limit function, the optimal allocation, termed “Neyman allocation”, assigns samples to326

strata in proportion to 𝑃(S𝑖) as well as the square root of the unit variance (Neyman 1934; Cochran327

2007; Arunachalam and Spence 2021). For multiple LSFs, since any sample allocation cannot be328
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simultaneously Neyman optimal for all LSFs, the solution to the following c.o.v. based constrained329

optimization problem needs to be considered:330

min
{𝑛𝑖}1≤𝑖≤𝑚

𝑛 =
𝑚∑
𝑖=1

𝑛𝑖

subject to: 𝜅ℎ (𝑛1, . . . , 𝑛𝑚) ≤ 𝜔ℎ ℎ ≤ 𝐻

𝑛𝑖 ≤ 𝑛̂𝑖 𝑖 ≤ 𝑚

(9)

where 𝜅ℎ (𝑛1, . . . , 𝑛𝑚) = the sample-allocation-dependent c.o.v. of 𝑃̃ 𝑓 ,ℎ whereas 𝜔ℎ = the user-331

specified c.o.v. target for controlling the estimation accuracy. The “optimal solution” to the above-332

formulated problem is denoted as {𝑛̆𝑖}1≤𝑖≤𝑚 and can be found using any gradient-based optimization333

technique. However, the c.o.v. calculation requires the knowledge of the unit variances for all limit334

state functions and strata, the unavailability of which requires one to conduct a preliminary study335

(Evans 1951). The goal of the preliminary simulation-based study, say using 𝑛𝑝 samples in each336

stratum, is purely to enable the resolution of Eq. (9) (for efficiently allocating the remaining337

𝑛 − 𝑛𝑝 samples) by quantifying the intra-stratum variability associated with the estimated failure338

probabilities associated with the selected LSFs. The preliminary study can be viewed as an339

exploration step carried out prior to the exploitation step of optimally executing Phase-II sampling to340

estimate the failure probabilities. It is important to mention that the preliminary study may introduce341

a systematic error in estimation, referred to as cardinal error, associated with misrepresenting any342

of the unit variances as zero due to inadequate exploration (Amelin 2004; Arunachalam and Spence343

2021). This can be avoided to some extent through careful strata construction and by imposing a344

constant lower limit on 𝑛𝑖 ∀𝑖.345

Overall Algorithm346

The proposed procedure is summarized as follows:347

1. Initialization: Choose a stratification variable, 𝜒, the number of strata, 𝑚, and probability348

constant, 𝑝 ∈ [0.1, 0.3], defining the stratification and fixing the estimates of the strata349

15



probabilities.350

2. Stratification and conditional sample generation: If 𝒞(H)/(𝑃(S𝑚)𝒞(Gℎ)) � 1,∀ℎ, then351

a MC-based Phase-I sampling is feasible, else consider a subset-simulation-based sampling.352

If MC-based Phase-I sampling is adopted, select the total number of Phase-I samples 𝑛̂,353

or, if SuS-based Phase-I sampling is adopted, select 𝑁 . Choose the number of preliminary354

test samples in each stratum, 𝑛𝑝. Populate strata-wise samples, σσσ(𝑖)
𝑘 , and define 𝜒𝑖 and S𝑖355

adaptively in the process.356

3. Preliminary study and optimal sample allocation: Conduct preliminary study using 𝑛𝑝357

samples drawn at random from each stratum (along with MC samples of 𝜏𝜏𝜏) to obtain first-358

level estimates of the failure probabilities with which Eq. (9) is solved to obtain {𝑛̆𝑖}1≤𝑖≤𝑚.359

If SuS-based Phase-I sampling is adopted, the calculation of 𝜅ℎ involves sample estimates360

of 𝜗2
S𝑖

, 𝜗2
S𝑖 𝑗

, 𝜗2
𝑖,ℎ, and 𝑃 𝑓𝑖 ,ℎ.361

4. Estimation of failure probabilities and associated errors: Using 𝑛̆𝑖 samples in S𝑖, the362

conditional failure probabilities are estimated, combined with the strata probabilities to363

estimate the overall failure probabilities and their associated c.o.v. using either Eq. (7) or364

Eq. (8).365

When the preliminary-study-based optimal sample allocation roughly matches the true opti-366

mum, it is expected that the c.o.v., 𝜅ℎ, will be close to the respective targets, 𝜔ℎ, while only utilizing367

limited computational effort. The proposed procedure is summarized in the flowchart of Figure 2.368

The scheme can also be used in a sub-optimal form if equal sample allocation is adopted. Such369

an application will avoid the need to perform a preliminary study followed by optimal sample370

allocation. Further, if measures of accuracy in the final estimates are not required, then the371

implementation of the scheme will not require the evaluation of Eq. (7) or Eq. (8).372

CASE STUDY373
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Example 1: Wind-excited 45-story RC building374

Overview375

A 45-story reinforced concrete (RC) building of height, 𝐻 = 180.6 m, story height, ℎ𝑠 = 4 m,376

subjected to extreme wind loads is considered to illustrate the simultaneous estimation of exceedance377

probabilities using the proposed methodology. The structure is assumed to be located in New York378

City, and the hazard model is based on the simulation of full hurricane tracks characterized by the379

combination of a storm track model (Vickery and Twisdale 1995a), wind field model (Jakobsen380

and Madsen 2004) and a filling-rate model (Vickery and Twisdale 1995b). The evolving wind381

velocity field is modeled at the site of the building through time-varying hourly mean wind speed382

at the building height, 𝑣𝐻 (𝑡), and time-varying direction, 𝛼(𝑡), to which a fully non-stationary and383

non-straight stochastic wind load model is calibrated (Ouyang and Spence 2021). In this example,384

peak hourly-mean wind speed, 𝑣̂𝐻 = max𝑡 𝑣𝐻 (𝑡) is chosen as the stratification variable as it is highly385

correlated with the responses of interest, yet is itself an output of the hurricane hazard model and386

therefore appropriate for the demonstration of the presented scheme. The following six responses387

of interest define the limit state functions: peak roof drift ratio in two orthogonal directions, Υ̂X,roof388

and Υ̂Y,roof; residual inter-story drift ratio (IDR), Υ(𝑟)
X

and Υ(𝑟)
Y

, and finally peak IDR over the389

building height, Υ̂X and Υ̂Y. Two thresholds are considered for the peak roof drift ratio: 1/400,390

associated with the operational performance objective (American Society of Civil Engineers 2019)391

and 1/200, associated with the continuous occupancy performance objective (American Society of392

Civil Engineers 2019). A threshold of 1/1000 is selected for the residual IDRs corresponding to393

the continuous occupancy objective (American Society of Civil Engineers 2019) and 1/200 for the394

peak IDRs. The consideration of peak roof drifts in the reliability assessment is to limit sway at395

the building top and avoid issues with elevator operation/alignment whereas the consideration of396

residual IDRs is to limit permanent deformation due to inelastic responses (American Society of397

Civil Engineers 2019). The peak and residual IDRs in each orthogonal direction are reported as398

absolute values at the story location where the largest values occur. It can be noted that the results399

of the structural analyses within each stratum permit the simultaneous evaluation of all the limit400

17



state functions and consequently the direct estimation of their strata-wise failure probabilities.401

Stochastic wind loads402

Description of the full evolution of a hurricane event is realized through a parametric hurricane403

model that simulates hurricane tracks as straight lines crossing a circular sub-region centered at404

the building site. The outputs 𝑣𝐻 (𝑡) and 𝛼(𝑡) are modeled as functions of the distance between405

the building site and the eye of the hurricane, along with the consideration of the pressure decay406

following landfall (Vickery and Twisdale 1995a; Vickery et al. 2000; Vickery and Twisdale 1995b;407

Jakobsen and Madsen 2004; Ouyang and Spence 2021). The stratification variable, 𝑣̂𝐻 is dependent408

on the hurricane track input parameters, 𝚽, composed of the initial central pressure difference,409

Δ𝑝0, translation speed, 𝑐, size of the hurricane, 𝑟𝑀 , approach angle, 𝜃app, minimum distance,410

𝑑min, between the building site and the hurricane track, and the coefficients 𝑎0, 𝑎1, and 𝜖 𝑓 of the411

filling-rate model. Consequently, the mean annual rate of exceeding a given wind speed, 𝜆𝑣̂𝐻 , also412

known as the non-directional hurricane hazard curve, can be expressed as:413

𝜆𝑣̂𝐻 (𝑣
′) = 𝜆hurr

∫ ∞

𝑣′

(∫
𝚽

𝑓𝑣̂𝐻 |𝚽(𝑣 |𝚽) 𝑓𝚽(𝚽)𝑑𝚽

)
𝑑𝑣 (10)

where 𝑓𝑣̂𝐻 |𝚽 = the PDF of 𝑣̂𝐻 conditional on 𝚽, 𝑓𝚽 = the joint PDF of the components of 𝚽, and414

𝜆hurr = 0.67 is the mean annual recurrence rate of the site-specific hurricanes. The expression in415

parenthesis of Eq. (10) is equal to 𝑓𝑣̂𝐻 . In the proposed approach, through the generation of strata-416

wise samples, 𝚽|S𝑖, and the corresponding site-specific wind speed 𝑣̂𝐻 , strata-wise construction of417

𝑓𝑣̂𝐻 |S𝑖 (or equivalently, the conditional cumulative distribution function) is enabled. Subsequently,418

these empirical quantities are combined with 𝑃̃(S𝑖), which is also estimated in the process, to obtain419

the hazard curve. In this example, the following holds σσσ = 𝚽.420

While the evaluation of the hazard model,H , is less computationally intensive than the nonlinear421

dynamic analysis involved in the response estimation, its computational cost is large enough to422

preclude the direct use of MC to generate strata-wise samples. The non-straight and non-stationary423

Gaussian stochastic wind load model outlined in Ouyang and Spence 2021 was adopted and424
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calibrated to building-specific wind tunnel data to convert wind speed and direction time histories425

to stochastic aerodynamic floor loads through spectral proper orthogonal decomposition (Chen426

and Kareem 2005). The time-varying wind loads complying with the hurricane evolution in the427

sub-region span several hours in duration.428

Building system429

The 45-story RC core building was designed by the ASCE 7-22 task committee on performance-430

based wind engineering. The lateral load-resisting system is composed of multiple shear walls431

connected by coupling beams at each floor level. The shear walls were modeled using the equivalent432

frame method as columns modeled with displacement-based beam-column elements and rigid links433

whereas the floors were modeled as rigid diaphragms for horizontal movements. Figure 3 shows the434

structural model of the building. A modal damping ratio of 2% was considered. A stress-resultant435

plasticity model was developed and solved through an adaptive fast nonlinear analysis (AFNA)436

scheme (Li 2022; Li et al. 2021). The approach captures second-order P-Delta effects through a437

linearized P-Delta model. Three-dimensional piece-wise linear yield surfaces were adopted for438

representing the yield domains of the reinforced concrete members, the details of which can be439

found in Li 2022. No system uncertainties were considered and the mean values reported in Li 2022440

were adopted for the material properties and gravity loads. Here, τττ consists of the high-dimensional441

stochastic sequence (in the order of tens of thousands of random variables) within the stochastic442

wind load model enabling the capture of record-record variability. It should be observed that the443

neglect of system uncertainties in this example was simply a modeling choice and should not be444

viewed as a limitation of the proposed scheme which can equally be applied to problems with445

system uncertainties, as will be demonstrated in the second example of this work. In addition,446

although system uncertainties are neglected in this first example, the stochastic excitation is highly447

non-stationary while the response will, in general, be nonlinear resulting in non-stationary and448

non-Gaussian response processes making, therefore, the application of classic methods based on449

the estimation of the outcrossing rate difficult if not infeasible (Der Kiureghian 2022)450
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Results451

For estimating the small failure probabilities, the construction of strata with low probabilities452

is essential, and therefore, to initialize the process with SuS-based Phase-I sampling, 𝑚 = 9,453

𝑝 = 0.2, and 𝑁 = 1300 were considered. This ensured 1300 samples in the last stratum with454

𝑃̃(S𝑚) = 0.28 = 2.56 × 10−6. The SuS-based procedure took about four minutes to generate455

9620 samples when run sequentially on an Intel i7-7700 3.60 GHz processor and for comparison,456

MC-based Phase-I sampling would have taken more than a month given 𝒞(H) ≈ 6 milliseconds.457

For the preliminary study, 𝑛𝑝 = 150 was considered, and the c.o.v. targets, 𝜔ℎ were set to 10% only458

for the limit states associated with Υ̂Y,roof and Υ̂Y. The largest peak IDRs were most often observed459

at the 37th story in the X direction and at the 45th story in the Y direction. Similarly, the largest460

residual IDRs were most often observed at the 28th story in the X direction and at the 45th story461

in the Y direction. For a representative sample in the last stratum, the time-varying wind speed,462

and direction are shown in Figure 4 corresponding to a 17-hour storm. The peak hourly-mean463

wind speed is also indicated in Figure 4(a) and the resulting X-direction load at the 40th level is464

shown in Figure 4(c). In response to this significant loading, the structure experiences significant465

nonlinearity that is illustrated by Figure 5 where the considerable proportion (around 56%) of466

yielded elements (in red) at the end of the wind event is noteworthy. The generation of 𝑚𝑛𝑝 = 1350467

response samples involved nonlinear dynamic analyses taking around 10 days to compute. Based468

on the preliminary study results, it was observed that due to the significant sample-allocation-469

independent variance contribution, the c.o.v. could not be reduced to less than about 20%. This470

implies that 𝑁 = 1300 constructs the hazard curve and estimates strata probabilities with large471

uncertainty that is inadequate for attaining the target c.o.v. Therefore, the 𝑚𝑛𝑝 = 1350 response472

evaluations were augmented with an additional 8750 samples, bringing the Phase-I sampling total473

to 𝑁 = 10, 000, but with fixed strata thresholds as given by the previous trial. It was expected474

that the lower limit of the c.o.v. would approximately reduce by a factor of

√
1300
10000

and could475

be brought down to less than 10%. Notably, the time taken to repeat the Phase-I sampling was476

only about 20 minutes. Figure 6(a) compares the hazard curves constructed using 𝑁 = 1300 and477
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𝑁 = 10, 000, as well as indicates the division of the wind speed range that reflects the stratification.478

The difference is significant in the large wind speed range as a result of successively accumulating479

errors in the case of 𝑁 = 1300. The site-specific ASCE 7-22 wind speeds (ASCE 7-22 2022) are480

also reported. Figure 6(a) also illustrates how through the application of the SuS-based Phase-I481

sampling, large wind speeds in the tail of the wind speed distribution are efficiently sampled to482

enable the non-parametric estimation of the hazard curve and the subsequent simulation of extreme483

structural responses, i.e., each stratum (interval of wind speeds) has a prescribed number of samples484

independently of how small (rare) the stratum probability is. Figure 6(b) shows the update in the485

strata probabilities, including the estimation error, wherein the shaded region indicates a scatter of486

1.96 times the standard deviation, 𝜗̃S𝑖 , around the estimates. The updated strata probabilities and487

the results of the optimization are reported in Table 1. Although the estimate 𝑃̃(S𝑚) has increased,488

the c.o.v. in its estimation dropped from 23.0% to 7.9%, roughly by the factor

√
1300
10000

. For the three489

limit states considered in the optimization procedure, additional samples, (𝑛𝑖 − 𝑛𝑝), were required490

only in the last three strata. The annual failure probabilities, 𝑃̃ 𝑓 ,ℎ, for all eight limit states were491

estimated using a total of 𝑛 = 2730 response evaluations. Since these probabilities are conditional492

on the occurrence of a hurricane event, they were transformed into annual exceedance rates (AERs)493

by multiplying with 𝜆hurr. The AERs, the associated c.o.v. and the 50-year reliability indices,494

estimated as 𝛽50 = Φ−1
𝑁 [(1 − 𝜆hurr𝑃̃ 𝑓 ,ℎ)

50] where Φ𝑁 is the standard normal distribution function,495

are reported in Table 2. Clearly, the c.o.v. for the limit states LS2, LS4, and LS8 are around 10%496

as targeted and demonstrate the capability of the proposed procedure to achieve a desired level of497

confidence in the estimates. The enormous efficiency gain provided by the procedure can be better498

appreciated by observing that for attaining the c.o.v. reported in Table 2, a simple MC simulation499

would have required samples in the range of 𝑛MC ≈ 104𝑛 for all limit states except LS8, which500

would have required ≈ 103𝑛 samples and LS4 which would have required ≈ 102𝑛 samples. In501

other words, and as illustrated in Table 2 through the ratio 𝑛MC/𝑛, a reduction of several orders of502

magnitude in necessary samples for achieving a target accuracy is achieved through the application503

of the proposed approach. The AER curves for the quantities of interest as a function of the response504
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values can also be constructed, similar to the hazard curve, through the total probability theorem505

and are reported in Figure 7. This figure also highlights how the proposed scheme enabled the non-506

parametric estimation of the AER curves for small annual exceedance rates by direct simulation of507

the extreme responses. It can be noted from these curves that, in general, the Y-direction responses508

are more dominant for the structure relative to X.509

Example 2: Ground Motion-excited Steel Frame510

Overview511

In this example, the objective is to estimate multiple failure probabilities associated with IDR-512

based limit states for a four-story archetype structure subjected to stochastic ground motions. The513

spectral acceleration at the first-mode period with 5% damping, 𝑆𝑎 (𝑇1, 5%), is selected as the514

stratification variable. Unlike the peak ground acceleration (PGA), which is only a characteristic of515

the ground motion, spectral acceleration also accounts for the frequency content of the excitation516

around the structure’s first-mode period (Jalayer and Beck 2006). It is a popularly used intensity517

measure (IM) in seismic risk analysis. The choice of 𝜒 = 𝑆𝑎 is motivated by the expectation that518

the variability in nonlinear responses at a given value of 𝑆𝑎 is much less than that in the entire519

response set (Shome et al. 1998). The following 12 limit states are considered: structural collapse,520

defined as maximum peak IDR exceeding 15% (Elkady 2019); peak IDR for each of the four stories,521

Υ̂𝑘 , 1 ≤ 𝑘 ≤ 4, and its maximum (over all stories) exceeding 3%; residual IDR for each story,522

Υ(𝑟)
𝑘 , 1 ≤ 𝑘 ≤ 4, and its maximum (over all stories) exceeding 1.41%; and finally, residual roof523

drift ratio, Υ(𝑟)
roof

, exceeding 0.91%. The thresholds for the peak, residual IDRs, and residual roof524

drift ratio are selected on the basis of repairability limits suggested in literature (Iwata et al. 2006;525

Bojórquez and Ruiz-García 2013).526

Stochastic ground motion model527

A point-source stochastic model is adopted for ground motion modeling where the spectrum528

of the ground motion that encapsulates both the physics of the fault rupture, as well as the wave529

propagation, is expressed as a product of the source, 𝐸 ( 𝑓 ; 𝑀), path, 𝑃( 𝑓 ; 𝑟), and site, 𝐺 ( 𝑓 ),530

contributions (Boore 2003). The frequency-dependent total spectrum, 𝐴( 𝑓 ; 𝑀, 𝑟), is parameterized531
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by the seismic moment magnitude, 𝑀 , and epicentral distance, 𝑟, to characterize the seismic hazard.532

That is,533

𝐴( 𝑓 ; 𝑀, 𝑟) = (2𝜋 𝑓 )2𝐸 ( 𝑓 ; 𝑀)𝑃( 𝑓 ; 𝑟)𝐺 ( 𝑓 ) (11)

In particular, the two-corner point-source model developed by Atkinson and Silva 2000 for Cal-534

ifornia sites is used, wherein the functional form of the source spectrum contains two corner535

frequencies. The duration of the ground motion is determined by the time-dependent envelope536

function, 𝑒(𝑡; 𝑀, 𝑟), which is yet again parameterized by 𝑀 and 𝑟. Ultimately, the ground mo-537

tion acceleration time history is generated according to this model by modulating a white noise538

sequence, Z, by 𝑒(𝑡; 𝑀, 𝑟), transforming into the frequency domain, normalizing it before mul-539

tiplying by 𝐴( 𝑓 ; 𝑀, 𝑟) and finally transforming it back to the time domain (Boore 2003). The540

high-dimensional vector Z models the record-record variability while the uncertain seismic hazard541

parameters, 𝑀 and 𝑟, represent the dominant risk factors (Vetter and Taflanidis 2012). The pre-542

dictive relationships that relate the source, path, and site contributions, as well as the time-domain543

envelope function to 𝑀 and 𝑟, can be found elsewhere (Atkinson and Silva 2000; Boore 2003;544

Vetter and Taflanidis 2012). In calibrating the ground motion model, the following parameters545

were adopted: Radiation pattern 𝑅Φ = 0.55, source shear-wave velocity 𝛽𝑠 = 3.5 km/s, density546

𝜌𝑠 = 2.8 g/cm3, seismic velocity 𝑐𝑄 = 3.5 km/s; an elastic attenuation factor 𝑄( 𝑓 ) = 180 𝑓 0.45 (for547

California region according to Atkinson and Silva 2000), geometric spreading function 𝑍 (𝑅) = 1/𝑅548

for 𝑅 < 70 km and 𝑍 (𝑅) = 1/70 for 𝑅 >= 70 km, where 𝑅 is the radial distance from the source549

to site; the path-independent energy loss is modeled by the diminution function which is expressed550

by the 𝑓𝑚𝑎𝑥 filter, where 𝑓𝑚𝑎𝑥 = 15 rad/s; finally, the site amplification is described for NEHRP551

“D” site condition (i.e., the building site condition) using empirical curves presented in Boore and552

Joyner 1997. The duration of the simulated stochastic ground accelerations is 60 s with Δ𝑡 = 0.01553

s. Therefore, the length of Z is 6001. The parameters 𝜆𝑡 and 𝜂𝑡 in the envelope function were set554

to 0.2 and 0.05, respectively, as suggested in Boore 2003.555

The moment magnitude 𝑀 was modeled by the bounded Gutenberg-Richter recurrence rela-556
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tionship as a truncated exponential distribution with 𝑀𝑚𝑖𝑛 = 6 and 𝑀𝑚𝑎𝑥 = 8 (Kramer 2003):557

𝑝(𝑀) =
𝛽 exp(−𝛽(𝑀 − 𝑀𝑚𝑖𝑛))

1 − exp(−𝛽(𝑀𝑚𝑎𝑥 − 𝑀𝑚𝑖𝑛))
𝑀𝑚𝑖𝑛 ≤ 𝑀 ≤ 𝑀𝑚𝑎𝑥 (12)

where the regional seismicity factor 𝛽 is chosen as 0.9 log𝑒 (10). Eq. (12) could equivalently be558

expressed as an equation for the mean annual rate of exceedance, 𝜆𝑀 , of an earthquake of magnitude559

𝑀 by setting a value for the exceedance rate for the lower threshold magnitude, 𝜆𝑀𝑚𝑖𝑛 (Kramer560

2003). In this study, 𝜆𝑀6 = 0.6. The uncertainty in 𝑟 is modeled using a lognormal distribution561

with a median of 15 km and c.o.v. of 0.4. Here, σσσ = [𝑀, 𝑟,Z] and the function H involved in562

computing 𝑆𝑎 is the ground motion model evaluation followed by the linear oscillator response563

estimation which combined only takes 3-4 milliseconds to run sequentially on an Intel i7-7700 3.60564

GHz processor.565

Building description566

A four-story archetype office steel building designed with perimeter special moment frames567

(SMFs) assumed to be located in downtown Los Angeles, California, is considered in this study.568

The schematic plan view of the building is shown in Figure 8. The considered two-dimensional569

nonlinear model (noted as the “B model” in Elkady and Lignos 2015) represents the building in the570

E-W loading direction. It models the bare steel structural components of the SMF while ignoring571

the effects of both the composite floor slab and the gravity framing. This model was developed by572

Elkady 2016; Elkady 2019 in the Open System for Earthquake Engineering Simulation (OpenSees)573

platform (Mazzoni et al. 2006). The fundamental period of the structure, 𝑇1, is 1.43 s while the574

building height 𝐻 is 16.5 m. The key modeling aspects include panel zone modeling, reduced-575

beam-section connections, consideration of P-Delta effects using a fictitious “leaning” column,576

and member modeling using a combination of elastic elements and flexural springs at their ends.577

Rayleigh damping is calibrated by assigning the damping ratios, 𝜁 , of the first and third modes.578

The material yield strength, 𝐹𝑦, and 𝜁 are modeled as lognormal random variables with a mean of579

417 MPa and 1.5%, respectively, and c.o.v. of 0.06 and 0.4. Here, τττ = [𝐹𝑦, 𝜁].580
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Results581

Since 𝒞(H) is negligible, MC-based Phase-I sampling is considered. By setting, 𝑚 = 5,582

𝑝 = 0.1, and 𝑛̂ = 5 × 105, it took around 30 minutes to generate enough samples to have583

50 in the last stratum with 𝑃̃(S5) = 10−4. The strata boundaries were adaptively obtained as584

{𝜒0, 𝜒1, 𝜒2, 𝜒3, 𝜒4, 𝜒5} = {0, 0.20, 0.48, 0.83, 1.21,∞} in units of 𝑔 (acceleration due to gravity).585

Figure 9 shows the strata-wise sample scatter of the seismic hazard parameters, 𝑀 and 𝑟. The586

figure illustrates the well-known downside of MC sampling which is the wasteful generation of587

abundant Phase-I samples in the earlier strata, roughly in proportion to the strata probabilities, in588

order to generate the required number in the last stratum. For the preliminary study, 𝑛𝑝 = 25 was589

considered, and the c.o.v. targets, 𝜔ℎ, were set to 10% for all limit states, except for collapse for590

which it was set to 5%. The results of the preliminary study for certain key limit states and the591

estimated optimal sample sizes are reported in Table 3. Notably, no additional samples were needed592

in S5 since the refined estimation of conditional probabilities in the earlier strata with higher strata593

probabilities was preferred by the optimization algorithm to meet the c.o.v. targets. It was found that594

the total number of simulations required is 𝑛 = 1574 inclusive of the 125 preliminary test samples.595

Figure 10 shows the estimated spectral acceleration hazard curve along with the strata thresholds.596

Figure 11(a) illustrates the evolution of max𝑘 Υ̂𝑘 and max𝑘 Υ
(𝑟)
𝑘 with different intensity levels of597

𝑆𝑎 (𝑇1, 5%) and the stratum number. The increasing trend of the drift ratios with increasing spectral598

acceleration provides support for the choice of the latter as the stratification variable. It should be599

noted that the figure only shows the maximum residual IDRs for the non-collapse samples as they600

cannot be quantified for the collapse samples, however, the corresponding limit states are assumed601

to be violated. The procedure also enables a natural construction of fragility functions when the602

pertinent hazard intensity measure is selected as the stratification variable. For instance, lognormal603

collapse fragility can be defined by first assuming each point estimate of the conditional collapse604

probabilities to be located at the average 𝑆𝑎 (𝑇1, 5%) in the associated stratum, and secondly, by605

applying the maximum likelihood approach for fitting (Baker 2015). Additionally, the calculation606

of 𝜗̃𝑖,ℎ for collapse enables the specification of error bounds for the fragility curves. Following this607
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approach, Figure 11(b) reports the collapse fragility curve and error confidence bounds estimated608

with the conditional probabilities set to 𝑃̃ 𝑓𝑖 ,ℎ ± 1.65𝜗̃𝑖,ℎ. The median of the collapse fragility curve609

is 0.69 g, while the dispersion is 0.37. Finally, the overall failure probabilities were estimated610

and multiplied by 𝜆𝑀6 = 0.6 to convert to AERs. The AERs and their c.o.v. are expressed both611

graphically in Figure 12 as well as in Table 4. Figure 12 reports the estimated AERs along with612

the error margins represented using their standard deviation, 𝜅ℎ𝜆̃ℎ. Clearly, the target accuracy in613

the estimations has been met for all limit states except for collapse. The violation of this c.o.v.614

target can be attributed to the fact that the 5% target was an active constraint in the optimization615

procedure, therefore, more sensitive to the accuracy of the preliminary-study-based optimal sample616

sizes. However, the preliminary study incorrectly estimated the conditional collapse probability for617

S2 of about 0.91% to be zero which also highlights the importance of 𝑛𝑝. It would be reasonable to618

specify stricter c.o.v. targets than desired at the stage of optimization if they are to be met rigorously,619

although it may potentially increase the sampling demands. Notably, the relatively large annual620

failure rates in this case study justify the use of 𝑚 = 5 and only 𝑛 = 1574 samples for providing621

estimations with high accuracy. As would be expected, the variance reduction factor, 𝑛MC/𝑛, is622

more modest than seen in the first example, although still in the order of one magnitude, due to the623

relatively large failure rates in comparison to those of the first example.624

CONCLUSION625

The evaluation of extreme nonlinear structural responses using complex models and the descrip-626

tion of the uncertainty in the exceedance of associated acceptance criteria using failure probabilities627

has become central to modern performance-based engineering approaches. Building on the idea of628

classic double sampling, in this paper an extended two-phase-sampling-based stochastic simulation629

scheme is proposed to tackle high-dimensional reliability problems in natural hazard applications630

characterized by multiple limit states. The proposed methodology is cast as a generalization of631

stratified sampling wherein Phase-I sampling generates strata-wise samples and estimates the strata632

probabilities. Phase-I sampling enables the selection of a generalized stratification variable for633

which the probability distribution is not known a priori. To improve the efficiency, Phase-I sam-634
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pling takes the form of SuS when the use of MC is deemed infeasible. Notably, the first case study635

illustrated the significance of Phase-I sampling in realizing the adequate accuracy in the estimated636

strata probabilities, which in turn affected the attainable lower limit on the c.o.v. The benefits of637

employing SuS over MC are tremendous when the Phase-I sampling demands are high. On the638

other hand, the goal of Phase-II sampling is to estimate the final failure probabilities within the639

constraints of target c.o.v. with a minimum number of evaluations of the performance functions.640

This is achieved by an optimization approach that requires a preliminary simulation-based study as641

well as mathematical expressions for the c.o.v. Therefore, the required expressions were derived642

while taking into account the sample correlations induced by MCMC and the uncertainty in the643

strata probabilities. The case study examples demonstrated not only the estimation of large relia-644

bilities for multiple limit states with error measures, but also the capability to roughly control these645

estimation errors with minimum computational expense.646
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APPENDIX I. STATISTICAL PROPERTIES OF THE SUS-BASED DOUBLE SAMPLING650

ESTIMATOR651

Properties of 𝑃̃ 𝑓𝑖 ,ℎ652

The modified version of the Metropolis-Hastings (M–H) sampler proposed by Au and Beck653

2001 is adopted in this study. This approach is based on a component-wise sample generation654

to avoid the small acceptance rate of the original M–H sampler in high dimensions. Samples655

θθθ(𝑖−1) in 𝐹𝑖−1, 2 ≤ 𝑖 ≤ 𝑚 are distributed as 𝑞(θθθ|𝐹𝑖−1) and represent consecutive states of a Markov656

chain (typically, multiple chains exist arising from multiple seeds) with 𝑞(θθθ|𝐹𝑖−1) as the stationary657

distribution. A separate treatment of τττ is not necessary as it is independent of σσσ and therefore,658

unaffected by any conditioning on S𝑖 (that is, 𝑞(τττ|S𝑖) = 𝑞(τττ)). Therefore, for simplicity of notation,659

θθθ is written with both σσσ (samples generated using subset simulation) and τττ (generated with MC660

simulation) included and not explicitly stated hereafter. It can be shown that the samples θθθ(𝑖−1)

𝑘 ∈ S𝑖661

will be distributed as:662

�S𝑖 (θθθ|𝐹𝑖−1)𝑞(θθθ|𝐹𝑖−1)

𝑃(S𝑖 |𝐹𝑖−1)
=
�S𝑖 (θθθ|𝐹𝑖−1)𝑞(θθθ)�𝐹𝑖−1

(θθθ)

𝑃(𝐹𝑖−1)𝑃(S𝑖 |𝐹𝑖−1)

=
�S𝑖 (θθθ)𝑞(θθθ)

𝑃(S𝑖)
= 𝑞(θθθ|S𝑖)

(13)

This implies that E
(
� 𝑓 ,ℎ (θθθ

(𝑖−1)

𝑘 )
)
= 𝑃 𝑓𝑖 ,ℎ and consequently, E(𝑃̃ 𝑓𝑖 ,ℎ) = 𝑃 𝑓𝑖 ,ℎ, where 𝑃̃ 𝑓𝑖 ,ℎ is the663

sample mean of the failure indicator function over a random subset of 𝑛𝑖 samples (denoted as W𝑖)664

selected from the set of 𝑛̂𝑖 samples (denoted as Ŵ𝑖) in S𝑖 expressed as:665

𝑃̃ 𝑓𝑖 ,ℎ =
1

𝑛𝑖

∑
𝑘

� 𝑓 ,ℎ (θθθ
(𝑖−1)

𝑘 ) (14)

The variance of 𝑃̃ 𝑓𝑖 ,ℎ can be derived using the following assumptions and notations similar to (Au666

and Beck 2001): (a) At the (𝑖 − 1) simulation level, although the samples in W𝑖 (and Ŵ𝑖) are in667

general dependent due to the seeds themselves being correlated, inter-chain correlation with respect668

to the occurrence of failure is assumed to be zero, i.e., E
(
(�

(𝑖−1)

𝑓 ℎ, 𝑗 𝑘 − 𝑃 𝑓𝑖 ,ℎ) (�
(𝑖−1)

𝑓 ℎ, 𝑗 ′𝑘 ′ − 𝑃 𝑓𝑖 ,ℎ)
)
= 0669
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for 𝑗 ≠ 𝑗 ′, where �
(𝑖−1)

𝑓 ℎ, 𝑗 𝑘 denotes � 𝑓 ,ℎ (θθθ
(𝑖−1)

𝑗 𝑘 ) and θθθ(𝑖−1)

𝑗 𝑘 ∈ 𝐹𝑖−1 denotes the 𝑘th sample in the 𝑗 th670

Markov chain; and (b) the covariance between �
(𝑖−1)

𝑓 ℎ, 𝑗 𝑘 and �
(𝑖−1)

𝑓 ℎ, 𝑗 𝑘 ′ for the samples in S𝑖 is denoted671

as:672

𝑅S𝑖 (𝑘 − 𝑘′) = E
(
(�

(𝑖−1)

𝑓 ℎ, 𝑗 𝑘 − 𝑃 𝑓𝑖 ,ℎ) (�
(𝑖−1)

𝑓 ℎ, 𝑗 𝑘 ′ − 𝑃 𝑓𝑖 ,ℎ)
)

(15)

where the stationarity of the sample sequence is invoked and hence the dependency is only on the673

relative distance between the states (𝑘 − 𝑘′) in a Markov chain. Further, the independence from the674

chain index 𝑗 is justified because all chains are probabilistically equivalent. Notably, the covariance675

at zero lag, 𝑅S𝑖 (0) is equal to 𝑃 𝑓𝑖 ,ℎ (1 − 𝑃 𝑓𝑖 ,ℎ) since it equals the variance of the failure indicator676

function (a Bernoulli random variable) for the samples in S𝑖. Since not all Markov chain states of677

any 𝑗 th chain necessarily lie in S𝑖, and more specifically in W𝑖, let 𝜋𝑖 denote the set of chain indices678

with at least one sample in W𝑖, and 𝜋𝑖 𝑗 contain the set of Markov state indices for every 𝑗 ∈ 𝜋𝑖.679

Then for 2 ≤ 𝑖 ≤ 𝑚:680

V(𝑃̃ 𝑓𝑖 ,ℎ) = 𝜗2
𝑖,ℎ = E

⎡⎢⎢⎢⎢⎣���
1

𝑛𝑖

∑
𝑗∈𝜋𝑖

∑
𝑘∈𝜋𝑖 𝑗

(�
(𝑖−1)

𝑓 ℎ, 𝑗 𝑘 − 𝑃 𝑓𝑖 ,ℎ)
���

2⎤⎥⎥⎥⎥⎦
=

1

𝑛2
𝑖

∑
𝑗∈𝜋𝑖

E

⎡⎢⎢⎢⎢⎣���
∑
𝑘∈𝜋𝑖 𝑗

(�
(𝑖−1)

𝑓 ℎ, 𝑗 𝑘 − 𝑃 𝑓𝑖 ,ℎ)
���

2⎤⎥⎥⎥⎥⎦
=

1

𝑛2
𝑖

∑
𝑗∈𝜋𝑖

∑
𝑘,𝑘 ′∈𝜋𝑖 𝑗

𝑅S𝑖 (𝑘 − 𝑘′)

=
1

𝑛2
𝑖

∑
𝑗∈𝜋𝑖

𝑅S𝑖 (0)𝜓𝑖 𝑗 =
𝑃 𝑓𝑖 ,ℎ (1 − 𝑃 𝑓𝑖 ,ℎ)

𝑛𝑖
𝜓𝑖

(16)

where 𝜓𝑖 𝑗 is a linear combination of the ratios 𝑅S𝑖 (𝑙)/𝑅S𝑖 (0) whose expression (i.e., the indices 𝑙 to681

be evaluated and the corresponding coefficients) depends on 𝜋𝑖, 𝜋𝑖 𝑗 . The intra-stratum correlation682

is captured by 𝜓𝑖 =
∑

𝑗∈𝜋𝑖 𝜓𝑖 𝑗/𝑛𝑖 based on the intra-chain correlation between the states of the683

stationary Markov chains. It is clear that the estimator 𝑃̃ 𝑓𝑖 ,ℎ is consistent and that trivially, for the684

first stratumV(𝑃̃ 𝑓1,ℎ) = 𝑃 𝑓1,ℎ (1 − 𝑃 𝑓1,ℎ)/𝑛1 which is the MC variance expression. Since inter-chain685

sample correlation is assumed to be zero, it follows that 𝑃̃ 𝑓𝑖 ,ℎ and 𝑃̃ 𝑓 𝑗 ,ℎ are independent. Notably,686
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𝜗2
𝑖,ℎ accounts for the variability in the MC realizations of the uncertainties in τττ as well since they687

are included in the θθθ samples used to evaluate �
(𝑖−1)

𝑓 ℎ, 𝑗 𝑘 while calculating 𝑅S𝑖 of Eq. (15).688

Properties of 𝑃̃(S𝑖)689

In general, 𝑃̃(S𝑖) is asymptotically unbiased as shown below:690

E(𝑃̃(S𝑖)) = E(𝑃̃(𝐹𝑖−1)𝑃̃(𝐹̄𝑖 |𝐹𝑖−1))

= [𝑃(𝐹𝑖−1) +𝑂 (1/𝑁)]𝑃(𝐹̄𝑖 |𝐹𝑖−1)

= 𝑃(S𝑖) +𝑂 (1/𝑁), 2 ≤ 𝑖 ≤ 𝑚 − 1

(17)

where the overbar denotes the complement of an event, the above properties of 𝑃̃(𝐹𝑖 |𝐹𝑖−1) and691

𝑃̃(𝐹̄𝑖−1) can be noted from the original subset simulation paper (Au and Beck 2001). Obviously,692

𝑃̃(S1) is estimated only using MC samples and is unbiased. Also, E(𝑃̃(S𝑚)) = E(𝑃̃(𝐹𝑚−1)) =693

𝑃(S𝑚) + 𝑂 (1/𝑁). Next, expressions for V(𝑃̃(S𝑖)) and the covariance, Cov(𝑃̃(S𝑖), 𝑃̃(S 𝑗 )) are694

derived in terms of the quantities used in Au and Beck 2001 for the c.o.v. of 𝑃̃(𝐹𝑖 |𝐹𝑖−1) that are695

given by:696

𝛿𝑖 =

√
(1 − 𝑃(𝐹𝑖 |𝐹𝑖−1)) (1 + 𝛾𝑖)

𝑁𝑃(𝐹𝑖 |𝐹𝑖−1)
, 1 ≤ 𝑖 ≤ 𝑚 − 1 (18)

where 𝛾𝑖 is a correlation factor associated with the samples of 𝐹𝑖−1 also lying in 𝐹𝑖 (Au and Beck697

2001). Obviously, 𝛾1 = 0. In the following discussion, it is assumed that {𝑃̃(𝐹𝑖 |𝐹𝑖−1), 𝑃̃(𝐹𝑗 |𝐹𝑗−1)}698

are independent for 𝑖 ≠ 𝑗 which is a reasonable assumption according to Au and Beck 2001.699

This also implies that 𝑃̃(S𝑖) is unbiased (i.e., eliminating the 𝑂 (1/𝑁) term). Since 𝑃̃(S𝑖) =700

𝑃̃(𝐹𝑖−1) − 𝑃̃(𝐹𝑖), the following can be written for 2 ≤ 𝑖 ≤ 𝑚 − 1:701

V(𝑃̃(S𝑖)) = 𝜗2
S𝑖
= V(𝑃̃(𝐹𝑖−1)) + V(𝑃̃(𝐹𝑖))

− 2Cov(𝑃̃(𝐹𝑖−1), 𝑃̃(𝐹𝑖−1)𝑃̃(𝐹𝑖 |𝐹𝑖−1))

= 𝑃2(𝐹𝑖−1) (1 − 2𝑃(𝐹𝑖 |𝐹𝑖−1))

𝑖−1∑
𝑘=1

𝛿2
𝑘 + 𝑃2(𝐹𝑖)

𝑖∑
𝑘=1

𝛿2
𝑘

(19)
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At the boundaries, V(𝑃̃(S1)) = V(𝑃̃(𝐹1)) = 𝑃̃(𝐹1) (1 − 𝑃̃(𝐹1))/𝑁 and similarly, V(𝑃̃(S𝑚)) =702

V(𝑃̃(𝐹𝑚−1)) = 𝑃2(𝐹𝑚−1)
∑𝑚−1

𝑘=1 𝛿2
𝑘 . Similarly, the covariance 𝜗2

S𝑖 𝑗
= Cov(𝑃̃(S𝑖), 𝑃̃(S 𝑗 )) can be703

derived as:704

𝜗2
S𝑖 𝑗

= E
(
𝑃̃(S𝑖)𝑃̃(S 𝑗 )

)
− 𝑃(S𝑖)𝑃(S 𝑗 )

= E
(
𝑃̃(𝐹𝑖−1)𝑃̃(𝐹̄𝑖 |𝐹𝑖−1)𝑃̃(𝐹𝑗−1)𝑃̃(𝐹̄𝑗 |𝐹𝑗−1)

)
− 𝑃(S𝑖)𝑃(S 𝑗 )

=
(
𝑃(𝐹𝑖 |𝐹𝑖−1) − 𝑃2(𝐹𝑖 |𝐹𝑖−1) (𝛿

2
𝑖 + 1)

)
𝑃(𝐹̄𝑗 |𝐹𝑗−1)

× 𝑃2(𝐹𝑖−1)

(
𝑖−1∑
𝑘=1

𝛿2
𝑘 + 1

)
𝑗−1∏

𝑘=𝑖+1

𝑃(𝐹𝑘 |𝐹𝑘−1) − 𝑃(S𝑖)𝑃(S 𝑗 )

(20)

for the case 1 < 𝑖 < 𝑚 − 1 and 𝑖 < 𝑗 < 𝑚. For convenience of notation, 𝜉𝑖 𝑗 will be defined in the705

following as:706

𝜉𝑖 𝑗 =
(
𝑃(𝐹𝑖 |𝐹𝑖−1) − 𝑃2(𝐹𝑖 |𝐹𝑖−1) (𝛿

2
𝑖 + 1)

) 𝑗−1∏
𝑘=𝑖+1

𝑃(𝐹𝑘 |𝐹𝑘−1) (21)

For all the possible cases of 𝑖 ≤ 𝑗 ,
(
𝜗2
S𝑖 𝑗

+ 𝑃(S𝑖)𝑃(S 𝑗 )
)

can be written as:707

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜉𝑖 𝑗 𝑃
2(𝐹𝑖−1)

(∑𝑖−1
𝑘=1 𝛿

2
𝑘 + 1

)
𝑃(𝐹̄𝑗 |𝐹𝑗−1), 1 < 𝑖 < 𝑚 − 1,

𝑖 < 𝑗 < 𝑚

𝜉𝑖 𝑗 𝑃
2(𝐹𝑖−1)

(∑𝑖−1
𝑘=1 𝛿

2
𝑘 + 1

)
, 1 < 𝑖 < 𝑚,

𝑗 = 𝑚

𝜉𝑖 𝑗 𝑃(𝐹̄𝑗 |𝐹𝑗−1), 𝑖 = 1, 1 < 𝑗 < 𝑚

𝜉𝑖 𝑗 , 𝑖 = 1, 𝑗 = 𝑚

𝜗2
S𝑖
+ 𝑃(S𝑖)𝑃(S 𝑗 ), 𝑖 = 𝑗

(22)

Obviously, the full covariance matrix (i.e., both 𝑖 ≤ 𝑗 and 𝑖 > 𝑗) can be constructed using Eq. (22).708
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Properties of 𝑃̃ 𝑓 ,ℎ709

It can be shown that the overall estimator is asymptotically unbiased as follows:710

E(𝑃̃ 𝑓 ,ℎ) =
𝑚∑
𝑖=1

E
(
E
(
𝑃̃ 𝑓𝑖 ,ℎ𝑃̃(S𝑖) |𝑃̃(S𝑖)

) )
=

𝑚∑
𝑖=1

E
(
𝑃 𝑓𝑖 ,ℎ𝑃̃(S𝑖)

)
=

𝑚∑
𝑖=1

𝑃 𝑓𝑖 ,ℎ (𝑃(S𝑖) +𝑂 (1/𝑁))

= 𝑃 𝑓 ,ℎ +𝑂 (1/𝑁)

(23)

While Eq. (23) is generally true, under the additional assumption of independence between711

𝑃̃(𝐹𝑖 |𝐹𝑖−1) and 𝑃̃(𝐹𝑗 |𝐹𝑗−1), 𝑖 ≠ 𝑗 , the overall estimator is unbiased. The variance of the overall712

estimator can be decomposed according to the total variance theorem as:713

V

(
𝑚∑
𝑖=1

𝑃̃ 𝑓𝑖 ,ℎ𝑃̃(S𝑖)

)
= E

(
V

(
𝑚∑
𝑖=1

𝑃̃ 𝑓𝑖 ,ℎ𝑃̃(S𝑖) |𝑃̃(S𝑖)

))
+ V

(
E

(
𝑚∑
𝑖=1

𝑃̃ 𝑓𝑖 ,ℎ𝑃̃(S𝑖) |𝑃̃(S𝑖)

))
= E

(
𝑚∑
𝑖=1

𝜗2
𝑖,ℎ𝑃̃

2(S𝑖)

)
+ V

(
𝑚∑
𝑖=1

𝑃 𝑓𝑖 ,ℎ𝑃̃(S𝑖)

)
=

𝑚∑
𝑖=1

𝜗2
𝑖,ℎ

(
𝜗2
S𝑖
+ 𝑃2(S𝑖)

)
+

𝑚∑
𝑖=1

𝑚∑
𝑗=1

𝑃 𝑓𝑖 ,ℎ𝑃 𝑓 𝑗 ,ℎ𝜗
2
S𝑖 𝑗

(24)

Since 𝛿2
𝑖 = 𝑂 (1/𝑁), 𝜗2

S𝑖
= 𝑂 (1/𝑁), and 𝜗2

𝑖,ℎ = 𝑂 (1/𝑛𝑖), it can be seen that 𝑃̃ 𝑓 ,ℎ is consistent (i.e.,714

guarantees convergence to true probability as 𝑁 → ∞ and 𝑛𝑖 → ∞).715
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TABLE 1. Stratification and optimal sample allocation.

Stratum 𝜒𝐿 [m/s] 𝜒𝑈 [m/s] 𝑃̃(S𝑖) 𝑛𝑖
Stratum 1 0.00 22.63 8.04 × 10−1 150

Stratum 2 22.63 33.21 1.58 × 10−1 150

Stratum 3 33.21 42.45 3.10 × 10−2 150

Stratum 4 42.45 49.23 5.38 × 10−3 150

Stratum 5 49.23 55.43 1.30 × 10−3 150

Stratum 6 55.43 60.66 2.90 × 10−4 150

Stratum 7 60.66 65.82 7.99 × 10−5 170

Stratum 8 65.82 70.96 2.33 × 10−5 514

Stratum 9 70.96 ∞ 1.01 × 10−5 1146
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TABLE 2. Annual failure rates and estimation error for example 1.

Limit states Description AER 𝛽50 c.o.v. 𝑛MC/𝑛

LS1 Υ̂X,roof > 1/200 1.24 × 10−7 4.37 24.0% 3.45 × 104

LS2 Υ̂Y,roof > 1/200 1.43 × 10−6 3.80 11.2% 1.37 × 104

LS3 Υ̂X,roof > 1/400 8.52 × 10−7 3.93 12.8% 1.75 × 104

LS4 Υ̂Y,roof > 1/400 8.04 × 10−5 2.65 9.6% 3.32 × 102

LS5 Υ(𝑟 )
X,28

> 1/1000 6.15 × 10−7 4.01 14.7% 1.84 × 104

LS6 Υ(𝑟 )
Y,45

> 1/1000 7.09 × 10−7 3.97 12.4% 2.25 × 104

LS7 Υ̂X,37 > 1/200 2.19 × 10−7 4.24 18.3% 3.37 × 104

LS8 Υ̂Y,45 > 1/200 8.21 × 10−6 3.35 10.7% 2.63 × 103
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TABLE 3. Preliminary study and optimal sample allocation.

Stratum 𝑃̃(S𝑖) 𝑃̃(max𝑘 Υ̂𝑘 > 15%) 𝑃̃(max𝑘 Υ̂𝑘 > 3%) 𝑃̃(max𝑘 Υ
(𝑟 )
𝑘 > 1.41%) 𝑃̃(Υ(𝑟 )

roof
> 0.91%) 𝑛𝑖

Stratum 1 9 × 10−1 0 0 0 0 25

Stratum 2 9 × 10−2 0 0 0.04 0.12 659

Stratum 3 9 × 10−3 0.24 0.52 0.52 0.60 797

Stratum 4 9 × 10−4 0.84 0.92 0.96 0.96 68

Stratum 5 1 × 10−4 0.92 1.00 1.00 1.00 25
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TABLE 4. Annual failure rates and estimation error for example 2.

Limit states Description AER c.o.v. 𝑛MC/𝑛

LS1 max𝑘 Υ̂𝑘 > 15% 2.67 × 10−3 8.32% 20.5

LS2 max𝑘 Υ̂𝑘 > 3% 5.39 × 10−3 7.59% 12.2

LS3 Υ̂1 > 3% 4.33 × 10−3 7.66% 14.9

LS4 Υ̂2 > 3% 5.36 × 10−3 7.63% 12.1

LS5 Υ̂3 > 3% 4.66 × 10−3 7.72% 13.6

LS6 Υ̂4 > 3% 2.17 × 10−3 9.43% 19.7

LS7 max𝑘 Υ
(𝑟 )
𝑘 > 1.41% 8.42 × 10−3 6.98% 9.2

LS8 Υ(𝑟 )
1

> 1.41% 7.61 × 10−3 7.19% 9.6

LS9 Υ(𝑟 )
2

> 1.41% 8.31 × 10−3 7.01% 9.2

LS10 Υ(𝑟 )
3

> 1.41% 7.70 × 10−3 7.17% 9.5

LS11 Υ(𝑟 )
4

> 1.41% 4.45 × 10−3 7.87% 13.7

LS12 Υ(𝑟 )
roof

> 0.91% 1.08 × 10−2 6.42% 8.4
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Fig. 1. Illustration of sample distribution for: (a) MC simulation; and (b) the proposed generalized

stratification scheme.
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Fig. 2. Flowchart of the proposed stochastic simulation procedure.
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Fig. 3. Three-dimensional numerical model of the 45-story concrete building using equivalent

frame method.
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Fig. 4. Wind loading for a representative sample in the last stratum: (a) Evolution of the mean

hourly wind speed; (b) wind direction; (c) X-direction wind load at the 40th level.
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Fig. 5. Wind-induced structural yielding for a representative sample of the last wind speed stratum.
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Fig. 6. (a) Updated wind speed hazard curve; (b) updated strata probabilities.
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Fig. 7. Annual exceedance rate curves for the limit state functions.
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Fig. 8. Plan view of the four-story archetype steel building.
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Fig. 9. Strata-wise sample scatter of 𝑀 and 𝑟.
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Fig. 10. Spectral acceleration hazard curve.
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Fig. 11. (a) Evolution of drift ratios with increasing 𝑆𝑎 (𝑇1, 5%) and stratum number; (b) estimated

collapse fragility curve with error bounds.
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Fig. 12. AER with error estimation.
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