

GENERALIZED STRATIFIED SAMPLING FOR EFFICIENT RELIABILITY ASSESSMENT OF STRUCTURES AGAINST NATURAL HAZARDS

Srinivasan Arunachalam, S.M.ASCE

Graduate Student, Department of Civil and Environmental Engineering, University of Michigan,
Ann Arbor, MI 48109. E-mail: sriarun@umich.edu

Seymour M.J. Spence, Ph.D., A.M.ASCE

Associate Professor, Department of Civil and Environmental Engineering, University of
Michigan, Ann Arbor, MI 48109 (corresponding author). E-mail: smjs@umich.edu

1 ABSTRACT

2 Performance-based engineering for natural hazards facilitates the design and appraisal of struc-
3 tures with rigorous evaluation of their uncertain structural behavior under potentially extreme
4 stochastic loads expressed in terms of failure probabilities against stated criteria. As a result,
5 efficient stochastic simulation schemes are central to computational frameworks that aim to esti-
6 mate failure probabilities associated with multiple limit states using limited sample sets. In this
7 work, a generalized stratified sampling scheme is proposed in which two phases of sampling are
8 involved: the first is devoted to the generation of strata-wise samples and the estimation of strata
9 probabilities whereas the second phase aims at the estimation of strata-wise failure probabilities.
10 Phase-I sampling enables the selection of a generalized stratification variable (i.e., not necessarily
11 belonging to the input set of random variables) for which the probability distribution is not known
12 *a priori*. To improve the efficiency, Markov Chain Monte Carlo Phase-I sampling is proposed when
13 Monte Carlo simulation is deemed infeasible and optimal Phase-II sampling is implemented based

14 on user-specified target coefficients of variation for the limit states of interest. The expressions for
 15 these coefficients are derived with due regard to the sample correlations induced by the Markov
 16 chains and the uncertainty in the estimated strata probabilities. The proposed stochastic simulation
 17 scheme reaps the benefits of near-optimal stratified sampling for a broader choice of stratification
 18 variables in high-dimensional reliability problems with a mechanism to approximately control the
 19 accuracy of the estimators of multiple failure probabilities. The practicality and efficiency of
 20 the scheme are demonstrated using two examples involving the estimation of failure probabilities
 21 associated with highly nonlinear responses induced by wind and seismic excitations.

22 **Keywords:** Stratified sampling, Monte Carlo methods, Subset simulation, Natural hazards.

23 **INTRODUCTION**

24 The advancement of computing power, algorithms, and frameworks in the last couple of decades
 25 has enabled the analysis of engineering systems with greater scrutiny than ever before. However,
 26 computational models are not perfect simulators of real-world systems/behavior, and the real world
 27 itself is uncertain. Uncertainty in model and parameter selection can be characterized using ran-
 28 dom variables, processes, fields, and waves capturing both epistemic uncertainties (arising from
 29 the lack of knowledge/data) as well as aleatory uncertainties (arising from intrinsic randomness
 30 of phenomena) (Shinozuka and Deodatis 1991; Shinozuka and Deodatis 1996; Gurley et al. 1997;
 31 Gurley and Kareem 1999; Der Kiureghian and Ditlevsen 2009; Melchers and Beck 2018). For
 32 practical problems, the effect of the input uncertainty on the model outputs is of prime importance
 33 to characterize safety against violation of multiple constraints (or limit states) through failure prob-
 34 abilities, or equivalently, reliabilities. The determination of the failure probability of a component,
 35 or a system, $P_{f,h}$ involves solving the following N_d -dimensional integral:

$$P_{f,h} = P(\boldsymbol{\Theta} \in \Gamma_h) = \int_{\mathbb{S}} \mathbb{1}_{f,h}(\boldsymbol{\Theta}) q(\boldsymbol{\Theta}) d\boldsymbol{\Theta} \quad (1)$$

36 where $\boldsymbol{\Theta} \in \mathbb{S} \subset \mathbb{R}^{N_d}$ is a realization of the N_d -dimensional vector of basic random variables $\boldsymbol{\Theta}$
 37 with joint probability density function (PDF) q ; Γ_h is the failure region within the sample space \mathbb{S}

38 associated with the h th limit state; $\mathbb{1}_{f,h}(\boldsymbol{\Theta})$ is an indicator function assuming a value of 1 if $\boldsymbol{\Theta} \in \Gamma_h$
39 and 0 otherwise. For most applications in natural hazards engineering, the following characteristics
40 make the estimation of $P_{f,h}$ of Eq. (1) challenging: (i) a high-dimensional uncertain space, N_d
41 in the order of several thousand, necessary for accommodating the white noise sequence, $\boldsymbol{\Theta}_Z$,
42 modeling load stochasticity; (ii) the need to simultaneously evaluate multiple nonlinear limit state
43 functions (LSFs), \mathcal{G}_h with $h = \{1, 2, \dots, H\}$ where H is the total number of associated performance
44 objectives; and (iii) the need to estimate small failure probabilities (e.g., $P_{f,h} \leq 10^{-4}$) at affordable
45 computational costs while maintaining acceptable accuracy for engineering applications.

46 Monte Carlo (MC) methods are the simplest of simulation-based uncertainty quantification
47 techniques and are robust to the dimension of the uncertainties as well as the number and nature
48 of the limit states. However, they suffer from the need to carry out a large number of system
49 evaluations, n , if small failure probabilities are to be estimated with sufficient accuracy (e.g.,
50 $n = 10^{k+2}$ samples are required to estimate a $P_{f,h}$ in the range of 10^{-k} with a 10% coefficient
51 of variation). This is often computationally prohibitive for complex computational models with
52 significant nonlinearities, and/or with fine discretization in space/time. A vast literature exists
53 on variance reduction techniques for reducing the computational burden associated with MC
54 simulation. Importance sampling modifies the sampling density function so as to draw more
55 samples from the “important region” of \mathbb{S} (Melchers 1989; Fishman 2013). However, identifying
56 the optimal importance sampling density (ISD) is generally difficult and when the choice of the
57 form of ISD adopted is inappropriate, the variability of the estimator cannot be controlled in the
58 presence of a large number of uncertain parameters (Au and Beck 2003a). Importance sampling
59 and its variants (e.g., (Au and Beck 1999; Papaioannou et al. 2016)), as well as other methods, such
60 as line sampling (Koutsourelakis et al. 2004; Schueller et al. 2004) and subset simulation (SuS) (Au
61 and Beck 2001; Au and Beck 2003b), are based on generating samples that better probe the failure
62 region such that a larger proportion of them contribute to the evaluation of the failure probabilities.
63 SuS is based on the idea of estimating small failure probabilities as a product of larger conditional
64 probabilities by introducing intermediate failure events. Although the original algorithm (Au and

65 Beck 2001) focuses on evaluating the failure probability of a single rare failure event (i.e., associated
66 with a single LSF), some variants have been proposed that generalize the approach to multiple LSFs
67 (Hsu and Ching 2010; Li et al. 2015; Li et al. 2017). In contrast, the class of simulation schemes
68 based on stratified designs includes, but is not limited to, stratified random sampling (Cochran
69 2007), Latin Hypercube Sampling (LHS) (Stein 1987), and Partially Stratified Sampling (PSS)
70 (Shields and Zhang 2016). These represent better sampling plans owing to improved space-filling
71 properties but may not be particularly focused on any failure region, or LSF. Surrogate-assisted
72 approximation techniques aim to replace the expensive simulator (the LSF or the limit state surface)
73 with an emulator (e.g., polynomial chaos expansion, kriging surrogates (Sudret 2012)) built from a
74 so-called design of experiments, a set of observed points to approximate the true function/surface.
75 However, they are usually unsuitable for high-dimensional and highly-nonlinear problems.

76 Conventional stratified sampling is limited to applications where efficient stratification can be
77 defined by directly specifying intervals for the components of Θ with known joint PDF, q . It is not
78 generally applicable to a wider set of problems in which a potential efficient stratification variable
79 can be identified as the output of an auxiliary computational model or the output of an intermediate
80 computational model belonging to the model chain used to estimate the system response. This can
81 be a significant limitation when solving reliability problems in performance-based engineering for
82 natural hazards that pose the following challenges: (i) response quantities, defining the LSFs of
83 interest, that generally require the evaluation of a cascade of computational models for characterizing
84 the hazard, hazard-structure interaction, structural response, and loss/damage; (ii) LSFs for which
85 intervals directly defined on a subset of Θ do not represent an efficient stratification; (iii) indicator
86 functions characterizing the exceedance of LSFs of interest that are expensive to evaluate due to
87 the need to evaluate a cascade of high-fidelity models; (iv) performance targets involving small
88 failure probabilities, or equivalently, large reliabilities. The post-stratification technique is rarely
89 useful since the probability distribution of variables outside of Θ is rarely available. In a similar
90 formulation to that of stratified sampling, the double sampling procedure requires two phases of
91 sampling; the first is devoted to the generation of strata-wise samples and the estimation of strata

92 probabilities whereas the second phase aims at the estimation of strata-wise failure probabilities. In
 93 this paper, an extended double-sampling-based stochastic simulation scheme is proposed to estimate
 94 multiple failure probabilities for a suite of limit states with a built-in optimization procedure to
 95 control the estimation errors while using limited sample sets. The novelty in the proposed scheme
 96 is the Markov Chain Monte Carlo (MCMC)-driven Phase-I sampling similar to subset simulation
 97 when MC simulation is deemed infeasible and the optimal execution of Phase-II sampling based on
 98 user-specified target coefficients of variation (c.o.v.) for the limit states of interest. The expressions
 99 for these coefficients are derived with due regard to the sample correlations induced by the Markov
 100 chains and the uncertainty in the estimated strata probabilities. The proposed scheme is illustrated
 101 using two examples involving the estimation of failure probabilities associated with highly nonlinear
 102 responses induced by wind and seismic excitations.

103 **BACKGROUND**

104 The basic idea of stratified sampling is to define partitions of the sample space, \mathbb{S} , such that
 105 samples are drawn from each of these partitions (or strata), $\{\mathbb{S}_i : i = 1, \dots, m\}$, in a preferred
 106 manner. This implies that the user can decide the stratification variables, denoted by the vector $\boldsymbol{\chi}$,
 107 the strata boundaries as well as the number of samples within each stratum, n_i . The strata need
 108 to satisfy: $\cup_{i=1}^m \mathbb{S}_i = \mathbb{S}$ and $\mathbb{S}_i \cap \mathbb{S}_j = \emptyset$ for $i \neq j$. As a result, Eq. (1) can be broken down into
 109 sub-integrals as:

$$P_{f,h} = \sum_{i=1}^m \int_{\mathbb{S}_i} \mathbb{1}_{f,h}(\boldsymbol{\theta}) q(\boldsymbol{\theta}) d\boldsymbol{\theta} \quad (2)$$

110 Since for the conditional PDF the following holds: $q(\boldsymbol{\theta} \mid \mathbb{S}_i) = q(\boldsymbol{\theta}) \mathbb{1}_{\mathbb{S}_i}(\boldsymbol{\theta}) / P(\mathbb{S}_i)$; $P_{f,h}$ can be
 111 further simplified as:

$$P_{f,h} = \sum_{i=1}^m \int_{\mathbb{S}_i} \mathbb{1}_{f,h}(\boldsymbol{\theta}) q(\boldsymbol{\theta} \mid \mathbb{S}_i) P(\mathbb{S}_i) d\boldsymbol{\theta} = \sum_{i=1}^m P_{f_i,h} P(\mathbb{S}_i) \quad (3)$$

112 where $P(\mathbb{S}_i)$ = the volume of the i th stratum in the probability space and $P_{f_i,h}$ = the conditional
 113 failure probability. When MC sampling is performed within each stratum, the procedure is known

¹¹⁴ as stratified random sampling and $P_{f,h}$ is approximated as:

$$P_{f,h} \approx \tilde{P}_{f,h} = \sum_{i=1}^m \sum_{k=1}^{n_i} \mathbb{1}_{f,h}(\boldsymbol{\Theta}_k^{(i)}) P(\mathbb{S}_i) / n_i \quad (4)$$

¹¹⁵ where $\boldsymbol{\Theta}_k^{(i)}$ = the k th independent and identically distributed (i.i.d.) sample out of n_i samples in the
¹¹⁶ i th stratum. Clearly, the decomposition of the integral of Eq. (1) is enabled by the theorem of total
¹¹⁷ probability. In particular, $\tilde{P}_{f,h}$ of Eq. (4) can be seen as a weighted sum of $\tilde{P}_{f_i,h}$ with the weights,
¹¹⁸ $P(\mathbb{S}_i)$. More importantly, $P(\mathbb{S}_i)$ is perfectly known only when stratification is directly performed
¹¹⁹ by specifying lower and upper bounds for each component of $\boldsymbol{\chi}$, with $\boldsymbol{\chi} \subseteq \boldsymbol{\Theta}$, since, under these
¹²⁰ circumstances, $q(\boldsymbol{\chi})$ is available. Moreover, the simulation of i.i.d. samples, $\boldsymbol{\Theta}_k^{(i)}$, is straightforward
¹²¹ as the conditional density, $q(\boldsymbol{\Theta} \mid \mathbb{S}_i)$, can be obtained from the joint density $q(\boldsymbol{\Theta})$. The variance
¹²² reduction achieved through stratified random sampling is dependent on the choice of $\boldsymbol{\chi}$, $\{\mathbb{S}_i\}_{1 \leq i \leq m}$
¹²³ and $\{n_i\}_{1 \leq i \leq m}$. A poor implementation could potentially lead to worse performance than direct MC
¹²⁴ simulation.

¹²⁵ Stratified sampling was developed in the survey sampling community, wherein stratification
¹²⁶ based on demographic features is commonly employed for estimation of sub-population character-
¹²⁷ istics/parameters (Cochran 2007; Arnab 2017). The incorporation of the exact probability weights
¹²⁸ (i.e., stratum probabilities) corrects for differences in the distribution of the traits/features in the
¹²⁹ sample set and in the actual population which explains the unconditional variance reduction when
¹³⁰ proportional sample allocation (i.e., $n_i = nP(\mathbb{S}_i)$) is considered. In some instances, when a fixed
¹³¹ number of samples cannot be generated from each stratum due to the choice of $\boldsymbol{\chi}$, classification
¹³² of samples into their respective strata can be performed after sampling, a procedure termed post-
¹³³ stratification. Post-stratification assumes that the strata probabilities are known accurately and only
¹³⁴ that the stratum to which a sample belongs is unknown (Cochran 2007; Glasgow 2005). Further,
¹³⁵ when even the strata probabilities are not known *a priori*, a large simple random sample set can be
¹³⁶ drawn to first estimate the strata probabilities and prepare a pool of samples for each stratum from
¹³⁷ which a smaller sample set can be used to evaluate the failure probabilities. This technique is known

138 as double sampling since the process involves a first phase of sampling devoted to strata construc-
139 tion, strata-wise sample classification, and estimation of strata probabilities before carrying out a
140 second phase of sampling for estimating the failure probabilities of interest through stratification
141 (Cochran 2007; Glasgow 2005; Rao 1973). This paper focuses on the development of a generalized
142 stratified sampling scheme for risk assessment problems in natural hazards engineering through
143 the adoption of double sampling methods. Specifically, improving the computational efficiency in
144 double sampling (i.e., $\chi \not\subseteq \Theta$) through both optimal sample allocation as well as the adoption of
145 Markov MCMC to accelerate Phase-I sampling is investigated.

146 PROPOSED DOUBLE-SAMPLING-BASED SIMULATION SCHEME

147 Simulation of Strata-wise Samples

148 Basic idea of double sampling

149 As discussed earlier, if $\chi \subseteq \Theta$ and $q(\Theta \mid \mathbb{S}_i)$ is known, the generation of strata-wise input
150 samples is trivially achieved by sampling $q(\Theta \mid \mathbb{S}_i)$ through MC simulation, a task that generally
151 requires minimal computational effort. Consider now $\chi = \mathcal{H}(\sigma)$ with \mathcal{H} a computational model that
152 depends on a subset of the input uncertainties, σ , with the remaining input uncertainties (assumed
153 to be independent of σ for simplicity) denoted with τ so that $\Theta = \{\sigma, \tau\}$. For example, consider
154 the case in which peak hourly wind speed is selected as the stratification variable but there is no
155 predetermined probability distribution characterizing its uncertainty, i.e., the stratification variable
156 is not a basic random variable of the problem, then \mathcal{H} would denote the function mapping (i.e.,
157 the hazard model) between the basic random variables of the wind hazard model (constituting
158 σ) and the peak hourly wind speed (i.e., χ). The remainder of the uncertainties, for example,
159 those in the system and aerodynamic parameters, would constitute τ . Clearly, the choice of the
160 stratification variable defines the computational model \mathcal{H} of the problem. If for a given problem,
161 the cost of evaluating \mathcal{H} , denoted as $\mathcal{C}(\mathcal{H})$, is much less relative to the cost of evaluating the limit
162 state functions, $\mathcal{C}(\mathcal{G}_h) \forall h$, then a MC simulation can be implemented to generate a large number of
163 samples such that the requisite number of samples in every stratum, $\{n_i\}_{1 \leq i \leq m}$ is available. It should
164 be observed that while this does produce i.i.d. samples $\Theta_k^{(i)}$ in each stratum, if $P(\mathbb{S}_m) \approx 10^{-k}$, then

165 it takes 10^{k+2} evaluations of \mathcal{H} to generate roughly 10^2 samples in \mathbb{S}_m , i.e., the last stratum, which
 166 will yield an estimate of $P(\mathbb{S}_m)$ with a c.o.v. of 10%. In particular, the estimator is given by the
 167 expression:

$$\begin{aligned}
 \tilde{P}_{f,h} &= \sum_{i=1}^m \tilde{P}_{f_i,h} \tilde{P}(\mathbb{S}_i) \\
 &= \sum_{i=1}^m \left(\frac{\sum_{k=1}^{n_i} \mathbb{1}_{f,h}(\boldsymbol{\Theta}_k^{(i)})}{n_i} \right) \frac{\hat{n}_i}{\hat{n}}
 \end{aligned} \tag{5}$$

168 $\boldsymbol{\Theta}_k^{(i)} = [\boldsymbol{\sigma}_k^{(i)}, \boldsymbol{\tau}_k]$ where $\boldsymbol{\tau}_k$ = non-conditional MC samples; \hat{n} = the total number of MC samples
 169 generated out of which \hat{n}_i lie in the i th stratum; while $n_i \leq \hat{n}_i$ are the samples utilized in the
 170 calculation of conditional failure probabilities. This implies that $n = \sum_i n_i$ limit state evaluations
 171 are performed in total, whereas $\hat{n} = \sum_i \hat{n}_i$ evaluations of \mathcal{H} are performed to populate samples within
 172 strata and to estimate the stratum probabilities. It is noted that in the literature, the consideration
 173 of $\boldsymbol{\tau}$ and its separate MC sampling has not been explicitly described but is essential to this work.

174 An important property of the classic stratified sampling of Section ‘‘Background’’ is the utili-
 175 zation of the knowledge of accurate probability weights which is lost here. Its implications can
 176 be observed as follows: (i) if $\hat{n}_i = n_i$, then Eq. (5) reduces to simple MC estimation of $P_{f,h}$.
 177 Therefore, it is required that $\hat{n} \gg n$ such that $\tilde{P}(\mathbb{S}_i)$ is a relatively high-accuracy estimate, which is
 178 feasible since \mathcal{H} is cheap to evaluate; (ii) proportional sample allocation (i.e., $n_i = nP(\mathbb{S}_i)$), which
 179 guarantees variance reduction for classic stratified sampling regardless of $\boldsymbol{\chi}$ and $\{\mathbb{S}_i\}_{1 \leq i \leq m}$, loses
 180 this guarantee since it again reduces the scheme to simple MC estimation. This emphasizes how
 181 for high-efficiency gains, the sample allocation needs to mirror, as much as possible, the theoretical
 182 optimal allocation, a problem that is discussed in Section ‘‘Sample Allocation Scheme’’. Let $\tilde{P}_{f_i,h}$
 183 define the estimate of $P_{f_i,h}$ when $n_i = \hat{n}_i$, then the variance can be written as (Theorem 1 (Rao

¹⁸⁴ 1973)):

$$\begin{aligned}
\mathbb{V}(\tilde{P}_{f,h}) &= \mathbb{V}\left(\sum_{i=1}^m \tilde{P}_{f_i,h} \tilde{P}(\mathbb{S}_i)\right) \\
&= \mathbb{V}\left(\sum_{i=1}^m \tilde{P}_{f_i,h} \tilde{P}(\mathbb{S}_i) + \sum_{i=1}^m (\tilde{P}_{f_i,h} - \tilde{P}_{f_i,h}) \tilde{P}(\mathbb{S}_i)\right) \\
&= \mathbb{V}\left(\frac{\sum_{k=1}^{\hat{n}} \mathbb{1}_{f,h}(\Theta_k^{(i)})}{\hat{n}}\right) + \mathbb{V}\left(\sum_{i=1}^m (\tilde{P}_{f_i,h} - \tilde{P}_{f_i,h}) \tilde{P}(\mathbb{S}_i)\right) \\
&= \mathbb{V}\left(\frac{\sum_{k=1}^{\hat{n}} \mathbb{1}_{f,h}(\Theta_k^{(i)})}{\hat{n}}\right) \\
&\quad + \mathbb{E}\left(\mathbb{V}\left(\sum_{i=1}^m (\tilde{P}_{f_i,h} - \tilde{P}_{f_i,h}) \mid \tilde{P}(\mathbb{S}_i)\right) \tilde{P}(\mathbb{S}_i)\right) \\
&= \frac{P_{f,h}(1 - P_{f,h})}{\hat{n}} + \sum_{i=1}^m \frac{P(\mathbb{S}_i)P_{f_i,h}(1 - P_{f_i,h})}{\hat{n}} \left(\frac{1}{\nu_i} - 1\right)
\end{aligned} \tag{6}$$

¹⁸⁵ where \mathbb{E} = the expectation operator, $\nu_i = n_i/\hat{n}_i \in (0, 1]$ = the sub-sampling fraction whose value is
¹⁸⁶ assumed to be fixed and which represents the proportion of samples in the i th stratum from Phase-I
¹⁸⁷ considered in Phase-II for failure probability evaluations. In the above derivation, the following
¹⁸⁸ results were used (Rao 1973; Cochran 2007): $\text{Cov}(\tilde{P}_{f_i,h}, \tilde{P}_{f_i,h} - \tilde{P}_{f_i,h}) = 0$, $\mathbb{E}(\tilde{P}_{f_i,h}) = \tilde{P}_{f_i,h}$, and
¹⁸⁹ $\mathbb{V}(\tilde{P}_{f_i,h} - \tilde{P}_{f_i,h}) = \mathbb{V}(\tilde{P}_{f_i,h}) - \mathbb{V}(\tilde{P}_{f_i,h})$. Notably, the first summand of the final expression of Eq.
¹⁹⁰ (6) is fixed for a given limit state and \hat{n} , whereas the second summand represents the sample-
¹⁹¹ allocation-dependent variance contribution which vanishes as $n_i \rightarrow \hat{n}_i$. The estimator is unbiased
¹⁹² and consistent in the sense that it approaches the true failure probability as $\hat{n} \rightarrow \infty$, for fixed ν_i .
¹⁹³ Finally, the c.o.v. can be estimated as:

$$\kappa_h = \frac{\sqrt{\mathbb{V}(\tilde{P}_{f,h})}}{P_{f,h}} \approx \frac{\sqrt{\frac{\tilde{P}_{f,h}(1 - \tilde{P}_{f,h})}{\hat{n}} + \sum_{i=1}^m \frac{\tilde{P}(\mathbb{S}_i)\tilde{P}_{f_i,h}(1 - \tilde{P}_{f_i,h})}{\hat{n}} \left(\frac{1}{\nu_i} - 1\right)}}}{\sum_{i=1}^m \tilde{P}_{f_i,h} \tilde{P}(\mathbb{S}_i)} \tag{7}$$

¹⁹⁴ *Extension through subset simulation for high-efficiency gains*

¹⁹⁵ It is inefficient to use MC simulation when $\mathcal{C}(\mathcal{H})$ is not trivial and, in particular, when $P(\mathbb{S}_m)$
¹⁹⁶ is extremely small. The latter might be necessary when rare subspaces of χ (lying in the tail of its

joint PDF) are of special interest in producing extreme responses. In such cases, a more efficient technique is required to populate strata-wise samples and approximate strata probabilities. The class of methods based on MCMC algorithms can achieve adaptive sample generation from conditional distributions (conditional on \mathbb{S}_i) (Papaioannou et al. 2015). For instance, sequential importance sampling can be applied to produce conditional samples by a transition of samples through a sequential reweighting operation whose governing distribution sequence gradually approaches the target conditional distribution (Papaioannou et al. 2016). In this paper, owing to its wider usage, SuS is considered for efficient Phase-I sampling (Au and Beck 2001). Unlike the traditional application of SuS, in this work, SuS only provides sufficient samples in each stratum to enable a stratified sampling-based estimation of multiple failure probabilities.

Consider a single stratification variable denoted by $\chi \in [\chi_L, \chi_U]$, then by fixing the thresholds χ_i , where $\chi_0 < \chi_1 < \dots < \chi_{m-1} < \chi_m$, the strata, $\{\mathbb{S}_i\}_{1 \leq i \leq m}$, and nested intermediate event sequence, $F_1 \supset F_2 \supset \dots \supset F_{m-1}$ are defined as follows: $F_i = \{\boldsymbol{\theta} : \chi > \chi_i\}, \forall i \leq (m-1)$ and $\mathbb{S}_i = \{\boldsymbol{\theta} : \chi \in (\chi_{i-1}, \chi_i]\}, \forall i \leq m$. It is also notationally convenient to define $F_0 = \mathbb{S}$, a certain event. The last stratum, $\mathbb{S}_m = F_{m-1}$, is bounded from above by $\chi_m = \chi_U$ (which need not be finite) and from below by $\chi_0 = \chi_L$ to ensure the satisfaction of the probability partition properties. The adaptive procedure of SuS generates samples in F_i (and \mathbb{S}_{i+1}) by simulating states of Markov chains through MCMC starting from the samples (or seeds) conditional on $F_{i-1}, \forall i \leq (m-1)$ (Au and Beck 2001; Papaioannou et al. 2015). It can be proved that for an idealized version of the SuS method with fixed thresholds, the optimal choice of thresholds is to make the conditional probabilities $P(F_i|F_{i-1})$ equal (Bect et al. 2017). This provides the rationale for the widely adopted idea of fixing the sample estimate of $P(F_i|F_{i-1}), \forall i \leq (m-1)$ to be $p \in [0.1, 0.3]$, a constant such that χ_i and \mathbb{S}_i are adaptively defined. In other words, χ_i is chosen as the $(1-p)$ th quantile of the conditional samples in F_{i-1} . It is easy to note that $\tilde{P}(F_i) = p^i$ and $\tilde{P}(\mathbb{S}_i) = p^{i-1}(1-p), \forall i \leq (m-1)$, where tilde denotes that the quantity is a sample estimate. Let the total number of Markov chain samples in each conditional level of F_i be N , then the number of Markov chain samples generated in the i th stratum for $\forall i \leq (m-1)$ will be $\hat{n}_i = (1-p)N$ with $\hat{n}_m = N$, from which it follows

224 that $\hat{n} = N(m(1 - p) + p)$. The values of n_i , however, are determined according to the optimal
 225 allocation scheme of Section ‘‘Sample Allocation Scheme’’. Both within each stratum and among
 226 strata, the generated samples, $\boldsymbol{\theta}_k^{(i)} = [\boldsymbol{\sigma}_k^{(i)}, \boldsymbol{\tau}_k]$ are correlated through $\boldsymbol{\sigma}_k^{(i)}$ due to inherent correlation
 227 of the Markov chains, while $\boldsymbol{\tau}_k$ are uncorrelated as they are i.i.d. MC samples unaffected by the
 228 SuS, or stratification procedures. The variance expressions need to take into account both the
 229 sample correlations induced by SuS as well as the uncertainty in the estimated strata probabilities.
 230 Appendix I discusses the properties of $\tilde{P}_{f_i,h}$, $\tilde{P}(\mathbb{S}_i)$, and $\tilde{P}_{f,h}$. This includes the derivation of the
 231 variance of $\tilde{P}_{f,h}$ that enables the introduction of the following expression for the estimator c.o.v. of
 232 the extended scheme:

$$\kappa_h \approx \frac{\sqrt{\sum_{i=1}^m \tilde{\vartheta}_{i,h}^2 \left(\tilde{\vartheta}_{\mathbb{S}_i}^2 + \tilde{P}^2(\mathbb{S}_i) \right) + \sum_{i=1}^m \sum_{j=1}^m \tilde{P}_{f_i,h} \tilde{P}_{f_j,h} \tilde{\vartheta}_{\mathbb{S}_{ij}}^2}}{\sum_{i=1}^m \tilde{P}_{f_i,h} \tilde{P}(\mathbb{S}_i)} \quad (8)$$

233 where $\tilde{\vartheta}_{i,h}^2$ = the estimate of $\mathbb{V}(\tilde{P}_{f_i,h})$, $\tilde{\vartheta}_{\mathbb{S}_{ij}}^2$ = the estimate of $\text{Cov}(\tilde{P}(\mathbb{S}_i), \tilde{P}(\mathbb{S}_j))$, and $\tilde{\vartheta}_{\mathbb{S}_i}^2$ = the
 234 estimate of $\mathbb{V}(\tilde{P}(\mathbb{S}_i))$, all of which can be estimated using the simulated Markov chain samples and
 235 evaluation of the limit state violations. Notably, the estimates, $\tilde{\vartheta}_{\mathbb{S}_i}^2$ and $\tilde{\vartheta}_{\mathbb{S}_{ij}}^2$ are dependent only on
 236 the Phase-I samples, and independent of the limit states and Phase-II sampling. On the other hand,
 237 the estimate $\tilde{\vartheta}_{i,h}^2$ is dependent on the Phase-I samples, n_i , and the h th limit state function. This
 238 implies that for a given problem, the variance component $\sum_{i=1}^m \sum_{j=1}^m \tilde{P}_{f_i,h} \tilde{P}_{f_j,h} \tilde{\vartheta}_{\mathbb{S}_{ij}}^2$ of Eq. (8) is
 239 independent of the sample allocation (i.e., of $\{n_i\}_{1 \leq i \leq m}$) and only reflects the adequacy of Phase-I
 240 sampling.

241 For a conceptual illustration of the proposed method, consider a two-dimensional problem
 242 defined by the independent random variables $\tau \sim U(0, 10)$ and $\sigma \sim N(5, 1)$. Figure 1(a) illustrates
 243 how 1000 random Monte Carlo samples distribute in comparison to a failure region (shaded red in
 244 the figure) given by: $200 \sin(\tau) + 3\sigma^3 > 1500$. As is expected, very few samples are likely to fall
 245 in the failure region making the estimation of the failure probability challenging. Consider now
 246 taking $\chi = \mathcal{H}(\sigma) = \sigma^3$ as the stratification variable to be sampled in Phase-I while considering five
 247 strata, $m = 5$, strata probabilities defined by $p = 0.1$, and an equal allocation of 200 samples in each

248 stratum. In Phase-II, Monte Carlo sampling is used to generate 1000 corresponding samples of τ .
249 Figure 1(b) clearly shows the increase in samples falling in the failure region, therefore, facilitating
250 the estimation of the failure probability. Due to the simplicity of this illustrative example, subset
251 simulation is not required for generating Phase-I samples. In general, however, χ is a complex
252 function of two or more random variables, in which case subset simulation becomes necessary to
253 generate the Phase-I strata-wise samples.

254 *Additional remarks*

255 For the more general case of multiple stratification variables, the same framework can be
256 realized by replacing the SuS algorithm with the generalized subset simulation (GSS) algorithm,
257 originally developed as an extension of SuS for estimating multiple failure probabilities using a
258 single run of the simulation scheme (Li et al. 2015; Li et al. 2017). Basically, in the aforementioned
259 SuS procedure, $\{F_i\}$ are determined using a single driving variable, χ , whereas in GSS unified
260 intermediate events (i.e., $F_i = \{\boldsymbol{\theta} : \chi^{(1)} > \chi_i^{(1)}\} \cup \{\boldsymbol{\theta} : \chi^{(2)} > \chi_i^{(2)}\}$ for two stratification variables
261 $\chi^{(1)}$ and $\chi^{(2)}$) can be defined to drive samples to multiple strata. However, this modification can
262 be cumbersome in providing sufficient samples in all strata and does not lend itself to calculable
263 variance expressions that are required for the optimal sample allocation procedure, central to the
264 proposed simulation scheme.

265 It is worth mentioning that while the development of this extension was independent, it bears
266 some similarities with the parallel subset simulation (P-SuS) algorithm (Hsu and Ching 2010)
267 and the response conditioning method (RCM) proposed by Au 2007. The key idea in P-SuS is
268 to introduce a principal variable that is correlated with all performance functions, as the driving
269 variable in SuS, and multiple failure probabilities are estimated simultaneously. Here, the principal
270 variable is a representative output variable (e.g., an average of the maximum story drifts) such
271 that each simulation will not only provide a realization of the principal variable but also of all
272 performance functions (e.g., the maximum story drifts for all stories) at once without requiring
273 any additional simulation/computation. This can be seen as a special case of the proposed scheme
274 wherein Phase-II sampling/simulation (including the uncertainties given by τ) is absent. On the

275 other hand, RCM leverages information from computationally inexpensive approximate solutions
276 to the target problem to achieve efficient and consistent reliability estimates. The “conditioning
277 response” which approximates the target response is stratified and SuS enables the conditional
278 sample generation. However, the method was not directed toward reliability problems with multiple
279 limit states, and neither of the two methods optimally evaluates samples from each stratum which
280 is indeed actualized in this paper through a constrained-optimization-based sample allocation
281 procedure. Further, in contrast to subset simulation where parametrization of the failure domain
282 is necessary, the proposed method is agreeable to a more generic limit state representation, such
283 as structural collapse, for which a non-binary measurable limit state function cannot always be
284 assigned.

285 **Choice of Stratification Variables**

286 The gains from stratification can be significant if the choice of χ is such that the stratification
287 defined by $\{\mathbb{S}_i\}_{1 \leq i \leq m}$ promotes more intra-stratum homogeneity (with respect to the h th limit state
288 violation) than the overall homogeneity in \mathbb{S} . The intra-stratum homogeneity can be measured
289 by the *unit variance* of the MC conditional probability estimator (i.e., associated with one simple
290 random sample) given by $P_{f_i,h}(1 - P_{f_i,h})$. In fact, the ideal stratification variable for $P_{f,h}$ is the
291 h th limit state function, \mathcal{G}_h , itself. Obviously, it is not possible to stratify according to decreasing
292 values of a limit state function and therefore justifying the adoption of one or more variables
293 for stratification that are highly correlated with the response(s) of interest. Additionally, in the
294 proposed scheme, since the stratification is carried out in the space of the random variables and is
295 therefore independent of the limit state functions, the same sample set within each stratum can be
296 used to estimate the strata-wise failure probabilities for all limit states. That is, it is not necessary
297 to rerun the simulation for each limit state of interest. By broadening the scope of selection (i.e.,
298 $\chi \not\subseteq \Theta$), a good candidate for χ can be selected from the output of any intermediate model (from
299 the sequence of numerical models that is typically involved in response estimation) or from the
300 output of an auxiliary model not used in the modal chain. However, every choice is associated with
301 a corresponding computational effort, proportional to $\mathcal{C}(\mathcal{H})$, to simulate strata-wise samples. In

302 natural hazard applications, by leveraging expert knowledge, or physical intuition, good candidates
303 for χ can take the form of hazard intensity measures such as the maximum mean hourly wind speed,
304 the geometric mean of spectral accelerations, or the elastic base moments of wind excited systems.
305 In general, when explicit hazard modeling is involved in natural hazard applications, the intensity
306 measures are often the output of a numerical model and therefore do not have a known probability
307 distribution. Because the proposed scheme enables the consideration of any model output as
308 the stratification variable, it allows the consideration of such intensity measures as stratification
309 variables. It should be emphasized that the proposed estimator is unbiased and consistent (i.e.,
310 convergent to the true probability with increasing computational effort, that is for $N \rightarrow \infty$ and
311 $n_i \rightarrow \infty$) as shown in Appendix I.

312 Stratified sampling suffers from the “curse of dimensionality” since full stratification in k
313 dimensions with m strata per dimension quickly causes an explosion in the number of strata, m^k ,
314 and the sampling demands to meet certain accuracy in the *unit variance* estimation needed for
315 optimal sample allocation, and consequently, the estimated failure probabilities (Pharr et al. 2017).
316 This encourages the thoughtful selection of one or two variables for stratification that strongly affect
317 the responses, which is usually not difficult to identify from the intermediate model inputs/outputs in
318 natural hazard applications. The number of strata, m is typically determined by $P(\mathbb{S}_m)$ and the order
319 of the smallest probability, $\min_h P_{f_i,h}$, however, increasing m beyond 10 will seldom be profitable
320 as it increases the sampling demands, or contributes to increased estimator variance arising from
321 large uncertainty in the *unit variance* estimations and sub-optimality of sample allocation for fixed
322 sampling costs (Cochran 2007).

323 **Sample Allocation Scheme**

324 In addition to the choice of χ and $\{\mathbb{S}_i\}_{1 \leq i \leq m}$, the allocation of samples among the strata defined
325 by $\{n_i\}_{1 \leq i \leq m}$ affects the variance reduction for a fixed number of limit state evaluations, n . For
326 a single limit function, the optimal allocation, termed “Neyman allocation”, assigns samples to
327 strata in proportion to $P(\mathbb{S}_i)$ as well as the square root of the *unit variance* (Neyman 1934; Cochran
328 2007; Arunachalam and Spence 2021). For multiple LSFs, since any sample allocation cannot be

329 simultaneously Neyman optimal for all LSFs, the solution to the following c.o.v. based constrained
 330 optimization problem needs to be considered:

$$\begin{aligned}
 \min_{\{n_i\}_{1 \leq i \leq m}} \quad & n = \sum_{i=1}^m n_i \\
 \text{subject to:} \quad & \kappa_h(n_1, \dots, n_m) \leq \omega_h \quad h \leq H \\
 & n_i \leq \hat{n}_i \quad i \leq m
 \end{aligned} \tag{9}$$

331 where $\kappa_h(n_1, \dots, n_m)$ = the sample-allocation-dependent c.o.v. of $\tilde{P}_{f,h}$ whereas ω_h = the user-
 332 specified c.o.v. target for controlling the estimation accuracy. The “optimal solution” to the above-
 333 formulated problem is denoted as $\{\check{n}_i\}_{1 \leq i \leq m}$ and can be found using any gradient-based optimization
 334 technique. However, the c.o.v. calculation requires the knowledge of the *unit variances* for all limit
 335 state functions and strata, the unavailability of which requires one to conduct a preliminary study
 336 (Evans 1951). The goal of the preliminary simulation-based study, say using n_p samples in each
 337 stratum, is purely to enable the resolution of Eq. (9) (for efficiently allocating the remaining
 338 $n - n_p$ samples) by quantifying the intra-stratum variability associated with the estimated failure
 339 probabilities associated with the selected LSFs. The preliminary study can be viewed as an
 340 exploration step carried out prior to the exploitation step of optimally executing Phase-II sampling to
 341 estimate the failure probabilities. It is important to mention that the preliminary study may introduce
 342 a systematic error in estimation, referred to as cardinal error, associated with misrepresenting any
 343 of the *unit variances* as zero due to inadequate exploration (Amelin 2004; Arunachalam and Spence
 344 2021). This can be avoided to some extent through careful strata construction and by imposing a
 345 constant lower limit on $n_i \forall i$.

346 Overall Algorithm

347 The proposed procedure is summarized as follows:

348 1. *Initialization:* Choose a stratification variable, χ , the number of strata, m , and probability
 349 constant, $p \in [0.1, 0.3]$, defining the stratification and fixing the estimates of the strata

350 probabilities.

- 351 2. *Stratification and conditional sample generation:* If $\mathcal{C}(\mathcal{H})/(P(\mathbb{S}_m)\mathcal{C}(\mathcal{G}_h)) \ll 1, \forall h$, then
352 a MC-based Phase-I sampling is feasible, else consider a subset-simulation-based sampling.
353 If MC-based Phase-I sampling is adopted, select the total number of Phase-I samples \hat{n} ,
354 or, if SuS-based Phase-I sampling is adopted, select N . Choose the number of preliminary
355 test samples in each stratum, n_p . Populate strata-wise samples, $\sigma_k^{(i)}$, and define χ_i and \mathbb{S}_i
356 adaptively in the process.
- 357 3. *Preliminary study and optimal sample allocation:* Conduct preliminary study using n_p
358 samples drawn at random from each stratum (along with MC samples of τ) to obtain first-
359 level estimates of the failure probabilities with which Eq. (9) is solved to obtain $\{\check{n}_i\}_{1 \leq i \leq m}$.
360 If SuS-based Phase-I sampling is adopted, the calculation of κ_h involves sample estimates
361 of $\vartheta_{\mathbb{S}_i}^2$, $\vartheta_{\mathbb{S}_{ij}}^2$, $\vartheta_{i,h}^2$, and $P_{f_i,h}$.
- 362 4. *Estimation of failure probabilities and associated errors:* Using \check{n}_i samples in \mathbb{S}_i , the
363 conditional failure probabilities are estimated, combined with the strata probabilities to
364 estimate the overall failure probabilities and their associated c.o.v. using either Eq. (7) or
365 Eq. (8).

366 When the preliminary-study-based optimal sample allocation roughly matches the true opti-
367 mum, it is expected that the c.o.v., κ_h , will be close to the respective targets, ω_h , while only utilizing
368 limited computational effort. The proposed procedure is summarized in the flowchart of Figure 2.

369 The scheme can also be used in a sub-optimal form if equal sample allocation is adopted. Such
370 an application will avoid the need to perform a preliminary study followed by optimal sample
371 allocation. Further, if measures of accuracy in the final estimates are not required, then the
372 implementation of the scheme will not require the evaluation of Eq. (7) or Eq. (8).

373 **CASE STUDY**

374 **Example 1: Wind-excited 45-story RC building**

375 *Overview*

376 A 45-story reinforced concrete (RC) building of height, $H = 180.6$ m, story height, $h_s = 4$ m,
377 subjected to extreme wind loads is considered to illustrate the simultaneous estimation of exceedance
378 probabilities using the proposed methodology. The structure is assumed to be located in New York
379 City, and the hazard model is based on the simulation of full hurricane tracks characterized by the
380 combination of a storm track model (Vickery and Twisdale 1995a), wind field model (Jakobsen
381 and Madsen 2004) and a filling-rate model (Vickery and Twisdale 1995b). The evolving wind
382 velocity field is modeled at the site of the building through time-varying hourly mean wind speed
383 at the building height, $v_H(t)$, and time-varying direction, $\alpha(t)$, to which a fully non-stationary and
384 non-straight stochastic wind load model is calibrated (Ouyang and Spence 2021). In this example,
385 peak hourly-mean wind speed, $\hat{v}_H = \max_t v_H(t)$ is chosen as the stratification variable as it is highly
386 correlated with the responses of interest, yet is itself an output of the hurricane hazard model and
387 therefore appropriate for the demonstration of the presented scheme. The following six responses
388 of interest define the limit state functions: peak roof drift ratio in two orthogonal directions, $\hat{Y}_{X,\text{roof}}$
389 and $\hat{Y}_{Y,\text{roof}}$; residual inter-story drift ratio (IDR), $Y_X^{(r)}$ and $Y_Y^{(r)}$, and finally peak IDR over the
390 building height, \hat{Y}_X and \hat{Y}_Y . Two thresholds are considered for the peak roof drift ratio: 1/400,
391 associated with the operational performance objective (American Society of Civil Engineers 2019)
392 and 1/200, associated with the continuous occupancy performance objective (American Society of
393 Civil Engineers 2019). A threshold of 1/1000 is selected for the residual IDRs corresponding to
394 the continuous occupancy objective (American Society of Civil Engineers 2019) and 1/200 for the
395 peak IDRs. The consideration of peak roof drifts in the reliability assessment is to limit sway at
396 the building top and avoid issues with elevator operation/alignment whereas the consideration of
397 residual IDRs is to limit permanent deformation due to inelastic responses (American Society of
398 Civil Engineers 2019). The peak and residual IDRs in each orthogonal direction are reported as
399 absolute values at the story location where the largest values occur. It can be noted that the results
400 of the structural analyses within each stratum permit the simultaneous evaluation of all the limit

401 state functions and consequently the direct estimation of their strata-wise failure probabilities.

402 *Stochastic wind loads*

403 Description of the full evolution of a hurricane event is realized through a parametric hurricane
404 model that simulates hurricane tracks as straight lines crossing a circular sub-region centered at
405 the building site. The outputs $v_H(t)$ and $\alpha(t)$ are modeled as functions of the distance between
406 the building site and the eye of the hurricane, along with the consideration of the pressure decay
407 following landfall (Vickery and Twisdale 1995a; Vickery et al. 2000; Vickery and Twisdale 1995b;
408 Jakobsen and Madsen 2004; Ouyang and Spence 2021). The stratification variable, \hat{v}_H is dependent
409 on the hurricane track input parameters, Φ , composed of the initial central pressure difference,
410 Δp_0 , translation speed, c , size of the hurricane, r_M , approach angle, θ_{app} , minimum distance,
411 d_{min} , between the building site and the hurricane track, and the coefficients a_0 , a_1 , and ϵ_f of the
412 filling-rate model. Consequently, the mean annual rate of exceeding a given wind speed, $\lambda_{\hat{v}_H}$, also
413 known as the non-directional hurricane hazard curve, can be expressed as:

$$\lambda_{\hat{v}_H}(v') = \lambda_{hurr} \int_{v'}^{\infty} \left(\int_{\Phi} f_{\hat{v}_H|\Phi}(v|\Phi) f_{\Phi}(\Phi) d\Phi \right) dv \quad (10)$$

414 where $f_{\hat{v}_H|\Phi}$ = the PDF of \hat{v}_H conditional on Φ , f_{Φ} = the joint PDF of the components of Φ , and
415 $\lambda_{hurr} = 0.67$ is the mean annual recurrence rate of the site-specific hurricanes. The expression in
416 parenthesis of Eq. (10) is equal to $f_{\hat{v}_H}$. In the proposed approach, through the generation of strata-
417 wise samples, $\Phi|\mathbb{S}_i$, and the corresponding site-specific wind speed \hat{v}_H , strata-wise construction of
418 $f_{\hat{v}_H|\mathbb{S}_i}$ (or equivalently, the conditional cumulative distribution function) is enabled. Subsequently,
419 these empirical quantities are combined with $\tilde{P}(\mathbb{S}_i)$, which is also estimated in the process, to obtain
420 the hazard curve. In this example, the following holds $\sigma = \Phi$.

421 While the evaluation of the hazard model, \mathcal{H} , is less computationally intensive than the nonlinear
422 dynamic analysis involved in the response estimation, its computational cost is large enough to
423 preclude the direct use of MC to generate strata-wise samples. The non-straight and non-stationary
424 Gaussian stochastic wind load model outlined in Ouyang and Spence 2021 was adopted and

425 calibrated to building-specific wind tunnel data to convert wind speed and direction time histories
426 to stochastic aerodynamic floor loads through spectral proper orthogonal decomposition (Chen
427 and Kareem 2005). The time-varying wind loads complying with the hurricane evolution in the
428 sub-region span several hours in duration.

429 *Building system*

430 The 45-story RC core building was designed by the ASCE 7-22 task committee on performance-
431 based wind engineering. The lateral load-resisting system is composed of multiple shear walls
432 connected by coupling beams at each floor level. The shear walls were modeled using the equivalent
433 frame method as columns modeled with displacement-based beam-column elements and rigid links
434 whereas the floors were modeled as rigid diaphragms for horizontal movements. Figure 3 shows the
435 structural model of the building. A modal damping ratio of 2% was considered. A stress-resultant
436 plasticity model was developed and solved through an adaptive fast nonlinear analysis (AFNA)
437 scheme (Li 2022; Li et al. 2021). The approach captures second-order P-Delta effects through a
438 linearized P-Delta model. Three-dimensional piece-wise linear yield surfaces were adopted for
439 representing the yield domains of the reinforced concrete members, the details of which can be
440 found in Li 2022. No system uncertainties were considered and the mean values reported in Li 2022
441 were adopted for the material properties and gravity loads. Here, τ consists of the high-dimensional
442 stochastic sequence (in the order of tens of thousands of random variables) within the stochastic
443 wind load model enabling the capture of record-record variability. It should be observed that the
444 neglect of system uncertainties in this example was simply a modeling choice and should not be
445 viewed as a limitation of the proposed scheme which can equally be applied to problems with
446 system uncertainties, as will be demonstrated in the second example of this work. In addition,
447 although system uncertainties are neglected in this first example, the stochastic excitation is highly
448 non-stationary while the response will, in general, be nonlinear resulting in non-stationary and
449 non-Gaussian response processes making, therefore, the application of classic methods based on
450 the estimation of the outcrossing rate difficult if not infeasible (Der Kiureghian 2022)

451 *Results*

452 For estimating the small failure probabilities, the construction of strata with low probabilities
453 is essential, and therefore, to initialize the process with SuS-based Phase-I sampling, $m = 9$,
454 $p = 0.2$, and $N = 1300$ were considered. This ensured 1300 samples in the last stratum with
455 $\tilde{P}(\mathbb{S}_m) = 0.2^8 = 2.56 \times 10^{-6}$. The SuS-based procedure took about four minutes to generate
456 9620 samples when run sequentially on an Intel i7-7700 3.60 GHz processor and for comparison,
457 MC-based Phase-I sampling would have taken more than a month given $\mathcal{C}(\mathcal{H}) \approx 6$ milliseconds.
458 For the preliminary study, $n_p = 150$ was considered, and the c.o.v. targets, ω_h were set to 10% only
459 for the limit states associated with $\hat{Y}_{Y,\text{roof}}$ and \hat{Y}_Y . The largest peak IDRs were most often observed
460 at the 37th story in the X direction and at the 45th story in the Y direction. Similarly, the largest
461 residual IDRs were most often observed at the 28th story in the X direction and at the 45th story
462 in the Y direction. For a representative sample in the last stratum, the time-varying wind speed,
463 and direction are shown in Figure 4 corresponding to a 17-hour storm. The peak hourly-mean
464 wind speed is also indicated in Figure 4(a) and the resulting X-direction load at the 40th level is
465 shown in Figure 4(c). In response to this significant loading, the structure experiences significant
466 nonlinearity that is illustrated by Figure 5 where the considerable proportion (around 56%) of
467 yielded elements (in red) at the end of the wind event is noteworthy. The generation of $mn_p = 1350$
468 response samples involved nonlinear dynamic analyses taking around 10 days to compute. Based
469 on the preliminary study results, it was observed that due to the significant sample-allocation-
470 independent variance contribution, the c.o.v. could not be reduced to less than about 20%. This
471 implies that $N = 1300$ constructs the hazard curve and estimates strata probabilities with large
472 uncertainty that is inadequate for attaining the target c.o.v. Therefore, the $mn_p = 1350$ response
473 evaluations were augmented with an additional 8750 samples, bringing the Phase-I sampling total
474 to $N = 10,000$, but with fixed strata thresholds as given by the previous trial. It was expected
475 that the lower limit of the c.o.v. would approximately reduce by a factor of $\sqrt{\frac{1300}{10000}}$ and could
476 be brought down to less than 10%. Notably, the time taken to repeat the Phase-I sampling was
477 only about 20 minutes. Figure 6(a) compares the hazard curves constructed using $N = 1300$ and

478 $N = 10,000$, as well as indicates the division of the wind speed range that reflects the stratification.
 479 The difference is significant in the large wind speed range as a result of successively accumulating
 480 errors in the case of $N = 1300$. The site-specific ASCE 7-22 wind speeds (ASCE 7-22 2022) are
 481 also reported. Figure 6(a) also illustrates how through the application of the SuS-based Phase-I
 482 sampling, large wind speeds in the tail of the wind speed distribution are efficiently sampled to
 483 enable the non-parametric estimation of the hazard curve and the subsequent simulation of extreme
 484 structural responses, i.e., each stratum (interval of wind speeds) has a prescribed number of samples
 485 independently of how small (rare) the stratum probability is. Figure 6(b) shows the update in the
 486 strata probabilities, including the estimation error, wherein the shaded region indicates a scatter of
 487 1.96 times the standard deviation, $\tilde{\sigma}_{\$i}$, around the estimates. The updated strata probabilities and
 488 the results of the optimization are reported in Table 1. Although the estimate $\tilde{P}(\$m)$ has increased,
 489 the c.o.v. in its estimation dropped from 23.0% to 7.9%, roughly by the factor $\sqrt{\frac{1300}{10000}}$. For the three
 490 limit states considered in the optimization procedure, additional samples, $(n_i - n_p)$, were required
 491 only in the last three strata. The annual failure probabilities, $\tilde{P}_{f,h}$, for all eight limit states were
 492 estimated using a total of $n = 2730$ response evaluations. Since these probabilities are conditional
 493 on the occurrence of a hurricane event, they were transformed into annual exceedance rates (AERs)
 494 by multiplying with λ_{hurr} . The AERs, the associated c.o.v. and the 50-year reliability indices,
 495 estimated as $\beta_{50} = \Phi_N^{-1}[(1 - \lambda_{\text{hurr}}\tilde{P}_{f,h})^{50}]$ where Φ_N is the standard normal distribution function,
 496 are reported in Table 2. Clearly, the c.o.v. for the limit states LS2, LS4, and LS8 are around 10%
 497 as targeted and demonstrate the capability of the proposed procedure to achieve a desired level of
 498 confidence in the estimates. The enormous efficiency gain provided by the procedure can be better
 499 appreciated by observing that for attaining the c.o.v. reported in Table 2, a simple MC simulation
 500 would have required samples in the range of $n_{\text{MC}} \approx 10^4 n$ for all limit states except LS8, which
 501 would have required $\approx 10^3 n$ samples and LS4 which would have required $\approx 10^2 n$ samples. In
 502 other words, and as illustrated in Table 2 through the ratio n_{MC}/n , a reduction of several orders of
 503 magnitude in necessary samples for achieving a target accuracy is achieved through the application
 504 of the proposed approach. The AER curves for the quantities of interest as a function of the response

505 values can also be constructed, similar to the hazard curve, through the total probability theorem
506 and are reported in Figure 7. This figure also highlights how the proposed scheme enabled the non-
507 parametric estimation of the AER curves for small annual exceedance rates by direct simulation of
508 the extreme responses. It can be noted from these curves that, in general, the Y-direction responses
509 are more dominant for the structure relative to X.

510 **Example 2: Ground Motion-excited Steel Frame**

511 *Overview*

512 In this example, the objective is to estimate multiple failure probabilities associated with IDR-
513 based limit states for a four-story archetype structure subjected to stochastic ground motions. The
514 spectral acceleration at the first-mode period with 5% damping, $S_a(T_1, 5\%)$, is selected as the
515 stratification variable. Unlike the peak ground acceleration (PGA), which is only a characteristic of
516 the ground motion, spectral acceleration also accounts for the frequency content of the excitation
517 around the structure's first-mode period (Jalayer and Beck 2006). It is a popularly used intensity
518 measure (IM) in seismic risk analysis. The choice of $\chi = S_a$ is motivated by the expectation that
519 the variability in nonlinear responses at a given value of S_a is much less than that in the entire
520 response set (Shome et al. 1998). The following 12 limit states are considered: structural collapse,
521 defined as maximum peak IDR exceeding 15% (Elkady 2019); peak IDR for each of the four stories,
522 $\hat{Y}_k, 1 \leq k \leq 4$, and its maximum (over all stories) exceeding 3%; residual IDR for each story,
523 $\Upsilon_k^{(r)}, 1 \leq k \leq 4$, and its maximum (over all stories) exceeding 1.41%; and finally, residual roof
524 drift ratio, $\Upsilon_{\text{roof}}^{(r)}$, exceeding 0.91%. The thresholds for the peak, residual IDRs, and residual roof
525 drift ratio are selected on the basis of repairability limits suggested in literature (Iwata et al. 2006;
526 Bojórquez and Ruiz-García 2013).

527 *Stochastic ground motion model*

528 A point-source stochastic model is adopted for ground motion modeling where the spectrum
529 of the ground motion that encapsulates both the physics of the fault rupture, as well as the wave
530 propagation, is expressed as a product of the source, $E(f; M)$, path, $P(f; r)$, and site, $G(f)$,
531 contributions (Boore 2003). The frequency-dependent total spectrum, $A(f; M, r)$, is parameterized

532 by the seismic moment magnitude, M , and epicentral distance, r , to characterize the seismic hazard.

533 That is,

$$A(f; M, r) = (2\pi f)^2 E(f; M) P(f; r) G(f) \quad (11)$$

534 In particular, the two-corner point-source model developed by Atkinson and Silva 2000 for Cal-
535 ifornia sites is used, wherein the functional form of the source spectrum contains two corner
536 frequencies. The duration of the ground motion is determined by the time-dependent envelope
537 function, $e(t; M, r)$, which is yet again parameterized by M and r . Ultimately, the ground mo-
538 tion acceleration time history is generated according to this model by modulating a white noise
539 sequence, \mathbf{Z} , by $e(t; M, r)$, transforming into the frequency domain, normalizing it before mul-
540 tiplying by $A(f; M, r)$ and finally transforming it back to the time domain (Boore 2003). The
541 high-dimensional vector \mathbf{Z} models the record-record variability while the uncertain seismic hazard
542 parameters, M and r , represent the dominant risk factors (Vetter and Taflanidis 2012). The pre-
543 dictive relationships that relate the source, path, and site contributions, as well as the time-domain
544 envelope function to M and r , can be found elsewhere (Atkinson and Silva 2000; Boore 2003;
545 Vetter and Taflanidis 2012). In calibrating the ground motion model, the following parameters
546 were adopted: Radiation pattern $R_\Phi = 0.55$, source shear-wave velocity $\beta_s = 3.5$ km/s, density
547 $\rho_s = 2.8$ g/cm³, seismic velocity $c_Q = 3.5$ km/s; an elastic attenuation factor $Q(f) = 180f^{0.45}$ (for
548 California region according to Atkinson and Silva 2000), geometric spreading function $Z(R) = 1/R$
549 for $R < 70$ km and $Z(R) = 1/70$ for $R \geq 70$ km, where R is the radial distance from the source
550 to site; the path-independent energy loss is modeled by the diminution function which is expressed
551 by the f_{max} filter, where $f_{max} = 15$ rad/s; finally, the site amplification is described for NEHRP
552 “D” site condition (i.e., the building site condition) using empirical curves presented in Boore and
553 Joyner 1997. The duration of the simulated stochastic ground accelerations is 60 s with $\Delta t = 0.01$
554 s. Therefore, the length of \mathbf{Z} is 6001. The parameters λ_t and η_t in the envelope function were set
555 to 0.2 and 0.05, respectively, as suggested in Boore 2003.

556 The moment magnitude M was modeled by the bounded Gutenberg-Richter recurrence rela-

557 tionship as a truncated exponential distribution with $M_{min} = 6$ and $M_{max} = 8$ (Kramer 2003):

$$p(M) = \frac{\beta \exp(-\beta(M - M_{min}))}{1 - \exp(-\beta(M_{max} - M_{min}))} \quad M_{min} \leq M \leq M_{max} \quad (12)$$

558 where the regional seismicity factor β is chosen as $0.9 \log_e(10)$. Eq. (12) could equivalently be
559 expressed as an equation for the mean annual rate of exceedance, λ_M , of an earthquake of magnitude
560 M by setting a value for the exceedance rate for the lower threshold magnitude, $\lambda_{M_{min}}$ (Kramer
561 2003). In this study, $\lambda_{M6} = 0.6$. The uncertainty in r is modeled using a lognormal distribution
562 with a median of 15 km and c.o.v. of 0.4. Here, $\sigma = [M, r, \mathbf{Z}]$ and the function \mathcal{H} involved in
563 computing S_a is the ground motion model evaluation followed by the linear oscillator response
564 estimation which combined only takes 3-4 milliseconds to run sequentially on an Intel i7-7700 3.60
565 GHz processor.

566 *Building description*

567 A four-story archetype office steel building designed with perimeter special moment frames
568 (SMFs) assumed to be located in downtown Los Angeles, California, is considered in this study.
569 The schematic plan view of the building is shown in Figure 8. The considered two-dimensional
570 nonlinear model (noted as the “B model” in Elkady and Lignos 2015) represents the building in the
571 E-W loading direction. It models the bare steel structural components of the SMF while ignoring
572 the effects of both the composite floor slab and the gravity framing. This model was developed by
573 Elkady 2016; Elkady 2019 in the Open System for Earthquake Engineering Simulation (OpenSees)
574 platform (Mazzoni et al. 2006). The fundamental period of the structure, T_1 , is 1.43 s while the
575 building height H is 16.5 m. The key modeling aspects include panel zone modeling, reduced-
576 beam-section connections, consideration of P-Delta effects using a fictitious “leaning” column,
577 and member modeling using a combination of elastic elements and flexural springs at their ends.
578 Rayleigh damping is calibrated by assigning the damping ratios, ζ , of the first and third modes.
579 The material yield strength, F_y , and ζ are modeled as lognormal random variables with a mean of
580 417 MPa and 1.5%, respectively, and c.o.v. of 0.06 and 0.4. Here, $\tau = [F_y, \zeta]$.

581 *Results*

582 Since $\mathcal{C}(\mathcal{H})$ is negligible, MC-based Phase-I sampling is considered. By setting, $m = 5$,
583 $p = 0.1$, and $\hat{n} = 5 \times 10^5$, it took around 30 minutes to generate enough samples to have
584 50 in the last stratum with $\tilde{P}(\mathbb{S}_5) = 10^{-4}$. The strata boundaries were adaptively obtained as
585 $\{\chi_0, \chi_1, \chi_2, \chi_3, \chi_4, \chi_5\} = \{0, 0.20, 0.48, 0.83, 1.21, \infty\}$ in units of g (acceleration due to gravity).
586 Figure 9 shows the strata-wise sample scatter of the seismic hazard parameters, M and r . The
587 figure illustrates the well-known downside of MC sampling which is the wasteful generation of
588 abundant Phase-I samples in the earlier strata, roughly in proportion to the strata probabilities, in
589 order to generate the required number in the last stratum. For the preliminary study, $n_p = 25$ was
590 considered, and the c.o.v. targets, ω_h , were set to 10% for all limit states, except for collapse for
591 which it was set to 5%. The results of the preliminary study for certain key limit states and the
592 estimated optimal sample sizes are reported in Table 3. Notably, no additional samples were needed
593 in \mathbb{S}_5 since the refined estimation of conditional probabilities in the earlier strata with higher strata
594 probabilities was preferred by the optimization algorithm to meet the c.o.v. targets. It was found that
595 the total number of simulations required is $n = 1574$ inclusive of the 125 preliminary test samples.
596 Figure 10 shows the estimated spectral acceleration hazard curve along with the strata thresholds.
597 Figure 11(a) illustrates the evolution of $\max_k \hat{Y}_k$ and $\max_k Y_k^{(r)}$ with different intensity levels of
598 $S_a(T_1, 5\%)$ and the stratum number. The increasing trend of the drift ratios with increasing spectral
599 acceleration provides support for the choice of the latter as the stratification variable. It should be
600 noted that the figure only shows the maximum residual IDRs for the non-collapse samples as they
601 cannot be quantified for the collapse samples, however, the corresponding limit states are assumed
602 to be violated. The procedure also enables a natural construction of fragility functions when the
603 pertinent hazard intensity measure is selected as the stratification variable. For instance, lognormal
604 collapse fragility can be defined by first assuming each point estimate of the conditional collapse
605 probabilities to be located at the average $S_a(T_1, 5\%)$ in the associated stratum, and secondly, by
606 applying the maximum likelihood approach for fitting (Baker 2015). Additionally, the calculation
607 of $\tilde{\vartheta}_{i,h}$ for collapse enables the specification of error bounds for the fragility curves. Following this

608 approach, Figure 11(b) reports the collapse fragility curve and error confidence bounds estimated
609 with the conditional probabilities set to $\tilde{P}_{f_i,h} \pm 1.65\tilde{\theta}_{i,h}$. The median of the collapse fragility curve
610 is 0.69 g, while the dispersion is 0.37. Finally, the overall failure probabilities were estimated
611 and multiplied by $\lambda_{M6} = 0.6$ to convert to AERs. The AERs and their c.o.v. are expressed both
612 graphically in Figure 12 as well as in Table 4. Figure 12 reports the estimated AERs along with
613 the error margins represented using their standard deviation, $\kappa_h\tilde{\lambda}_h$. Clearly, the target accuracy in
614 the estimations has been met for all limit states except for collapse. The violation of this c.o.v.
615 target can be attributed to the fact that the 5% target was an active constraint in the optimization
616 procedure, therefore, more sensitive to the accuracy of the preliminary-study-based optimal sample
617 sizes. However, the preliminary study incorrectly estimated the conditional collapse probability for
618 \mathbb{S}_2 of about 0.91% to be zero which also highlights the importance of n_p . It would be reasonable to
619 specify stricter c.o.v. targets than desired at the stage of optimization if they are to be met rigorously,
620 although it may potentially increase the sampling demands. Notably, the relatively large annual
621 failure rates in this case study justify the use of $m = 5$ and only $n = 1574$ samples for providing
622 estimations with high accuracy. As would be expected, the variance reduction factor, n_{MC}/n , is
623 more modest than seen in the first example, although still in the order of one magnitude, due to the
624 relatively large failure rates in comparison to those of the first example.

625 CONCLUSION

626 The evaluation of extreme nonlinear structural responses using complex models and the descrip-
627 tion of the uncertainty in the exceedance of associated acceptance criteria using failure probabilities
628 has become central to modern performance-based engineering approaches. Building on the idea of
629 classic double sampling, in this paper an extended two-phase-sampling-based stochastic simulation
630 scheme is proposed to tackle high-dimensional reliability problems in natural hazard applications
631 characterized by multiple limit states. The proposed methodology is cast as a generalization of
632 stratified sampling wherein Phase-I sampling generates strata-wise samples and estimates the strata
633 probabilities. Phase-I sampling enables the selection of a generalized stratification variable for
634 which the probability distribution is not known *a priori*. To improve the efficiency, Phase-I sam-

pling takes the form of SuS when the use of MC is deemed infeasible. Notably, the first case study illustrated the significance of Phase-I sampling in realizing the adequate accuracy in the estimated strata probabilities, which in turn affected the attainable lower limit on the c.o.v. The benefits of employing SuS over MC are tremendous when the Phase-I sampling demands are high. On the other hand, the goal of Phase-II sampling is to estimate the final failure probabilities within the constraints of target c.o.v. with a minimum number of evaluations of the performance functions. This is achieved by an optimization approach that requires a preliminary simulation-based study as well as mathematical expressions for the c.o.v. Therefore, the required expressions were derived while taking into account the sample correlations induced by MCMC and the uncertainty in the strata probabilities. The case study examples demonstrated not only the estimation of large reliabilities for multiple limit states with error measures, but also the capability to roughly control these estimation errors with minimum computational expense.

647 **ACKNOWLEDGMENTS**

648 This research effort was supported in part by the National Science Foundation (NSF) under
649 Grant No. CMMI-1750339 and CMMI-2118488. This support is gratefully acknowledged.

650 **APPENDIX I. STATISTICAL PROPERTIES OF THE SUS-BASED DOUBLE SAMPLING**

651 **ESTIMATOR**

652 **Properties of $\tilde{P}_{fi,h}$**

653 The modified version of the Metropolis-Hastings (M–H) sampler proposed by Au and Beck
 654 2001 is adopted in this study. This approach is based on a component-wise sample generation
 655 to avoid the small acceptance rate of the original M–H sampler in high dimensions. Samples
 656 $\boldsymbol{\Theta}^{(i-1)}$ in F_{i-1} , $2 \leq i \leq m$ are distributed as $q(\boldsymbol{\Theta}|F_{i-1})$ and represent consecutive states of a Markov
 657 chain (typically, multiple chains exist arising from multiple seeds) with $q(\boldsymbol{\Theta}|F_{i-1})$ as the stationary
 658 distribution. A separate treatment of $\boldsymbol{\tau}$ is not necessary as it is independent of $\boldsymbol{\sigma}$ and therefore,
 659 unaffected by any conditioning on \mathbb{S}_i (that is, $q(\boldsymbol{\tau}|\mathbb{S}_i) = q(\boldsymbol{\tau})$). Therefore, for simplicity of notation,
 660 $\boldsymbol{\Theta}$ is written with both $\boldsymbol{\sigma}$ (samples generated using subset simulation) and $\boldsymbol{\tau}$ (generated with MC
 661 simulation) included and not explicitly stated hereafter. It can be shown that the samples $\boldsymbol{\Theta}_k^{(i-1)} \in \mathbb{S}_i$
 662 will be distributed as:

$$\begin{aligned} \frac{\mathbb{1}_{\mathbb{S}_i}(\boldsymbol{\Theta}|F_{i-1})q(\boldsymbol{\Theta}|F_{i-1})}{P(\mathbb{S}_i|F_{i-1})} &= \frac{\mathbb{1}_{\mathbb{S}_i}(\boldsymbol{\Theta}|F_{i-1})q(\boldsymbol{\Theta})\mathbb{1}_{F_{i-1}}(\boldsymbol{\Theta})}{P(F_{i-1})P(\mathbb{S}_i|F_{i-1})} \\ &= \frac{\mathbb{1}_{\mathbb{S}_i}(\boldsymbol{\Theta})q(\boldsymbol{\Theta})}{P(\mathbb{S}_i)} = q(\boldsymbol{\Theta}|\mathbb{S}_i) \end{aligned} \quad (13)$$

663 This implies that $\mathbb{E}(\mathbb{1}_{f,h}(\boldsymbol{\Theta}_k^{(i-1)})) = P_{fi,h}$ and consequently, $\mathbb{E}(\tilde{P}_{fi,h}) = P_{fi,h}$, where $\tilde{P}_{fi,h}$ is the
 664 sample mean of the failure indicator function over a random subset of n_i samples (denoted as \mathcal{W}_i)
 665 selected from the set of \hat{n}_i samples (denoted as $\hat{\mathcal{W}}_i$) in \mathbb{S}_i expressed as:

$$\tilde{P}_{fi,h} = \frac{1}{n_i} \sum_k \mathbb{1}_{f,h}(\boldsymbol{\Theta}_k^{(i-1)}) \quad (14)$$

666 The variance of $\tilde{P}_{fi,h}$ can be derived using the following assumptions and notations similar to (Au
 667 and Beck 2001): (a) At the $(i-1)$ simulation level, although the samples in \mathcal{W}_i (and $\hat{\mathcal{W}}_i$) are in
 668 general dependent due to the seeds themselves being correlated, inter-chain correlation with respect
 669 to the occurrence of failure is assumed to be zero, i.e., $\mathbb{E}((\mathbb{1}_{f,h,jk}^{(i-1)} - P_{fi,h})(\mathbb{1}_{f,h,j'k'}^{(i-1)} - P_{fi,h})) = 0$

670 for $j \neq j'$, where $\mathbb{1}_{fh,jk}^{(i-1)}$ denotes $\mathbb{1}_{f,h}(\boldsymbol{\Theta}_{jk}^{(i-1)})$ and $\boldsymbol{\Theta}_{jk}^{(i-1)} \in F_{i-1}$ denotes the k th sample in the j th
671 Markov chain; and (b) the covariance between $\mathbb{1}_{fh,jk}^{(i-1)}$ and $\mathbb{1}_{fh,jk'}^{(i-1)}$ for the samples in \mathbb{S}_i is denoted
672 as:

$$R_{\mathbb{S}_i}(k - k') = \mathbb{E} \left((\mathbb{1}_{fh,jk}^{(i-1)} - P_{f_i,h})(\mathbb{1}_{fh,jk'}^{(i-1)} - P_{f_i,h}) \right) \quad (15)$$

673 where the stationarity of the sample sequence is invoked and hence the dependency is only on the
674 relative distance between the states $(k - k')$ in a Markov chain. Further, the independence from the
675 chain index j is justified because all chains are probabilistically equivalent. Notably, the covariance
676 at zero lag, $R_{\mathbb{S}_i}(0)$ is equal to $P_{f_i,h}(1 - P_{f_i,h})$ since it equals the variance of the failure indicator
677 function (a Bernoulli random variable) for the samples in \mathbb{S}_i . Since not all Markov chain states of
678 any j th chain necessarily lie in \mathbb{S}_i , and more specifically in \mathcal{W}_i , let π_i denote the set of chain indices
679 with at least one sample in \mathcal{W}_i , and π_{ij} contain the set of Markov state indices for every $j \in \pi_i$.

680 Then for $2 \leq i \leq m$:

$$\begin{aligned} \mathbb{V}(\tilde{P}_{f_i,h}) &= \vartheta_{i,h}^2 = \mathbb{E} \left[\left(\frac{1}{n_i} \sum_{j \in \pi_i} \sum_{k \in \pi_{ij}} (\mathbb{1}_{fh,jk}^{(i-1)} - P_{f_i,h}) \right)^2 \right] \\ &= \frac{1}{n_i^2} \sum_{j \in \pi_i} \mathbb{E} \left[\left(\sum_{k \in \pi_{ij}} (\mathbb{1}_{fh,jk}^{(i-1)} - P_{f_i,h}) \right)^2 \right] \\ &= \frac{1}{n_i^2} \sum_{j \in \pi_i} \sum_{k, k' \in \pi_{ij}} R_{\mathbb{S}_i}(k - k') \\ &= \frac{1}{n_i^2} \sum_{j \in \pi_i} R_{\mathbb{S}_i}(0) \psi_{ij} = \frac{P_{f_i,h}(1 - P_{f_i,h})}{n_i} \psi_i \end{aligned} \quad (16)$$

681 where ψ_{ij} is a linear combination of the ratios $R_{\mathbb{S}_i}(l)/R_{\mathbb{S}_i}(0)$ whose expression (i.e., the indices l to
682 be evaluated and the corresponding coefficients) depends on π_i, π_{ij} . The intra-stratum correlation
683 is captured by $\psi_i = \sum_{j \in \pi_i} \psi_{ij}/n_i$ based on the intra-chain correlation between the states of the
684 stationary Markov chains. It is clear that the estimator $\tilde{P}_{f_i,h}$ is consistent and that trivially, for the
685 first stratum $\mathbb{V}(\tilde{P}_{f_1,h}) = P_{f_1,h}(1 - P_{f_1,h})/n_1$ which is the MC variance expression. Since inter-chain
686 sample correlation is assumed to be zero, it follows that $\tilde{P}_{f_i,h}$ and $\tilde{P}_{f_j,h}$ are independent. Notably,

687 $\vartheta_{i,h}^2$ accounts for the variability in the MC realizations of the uncertainties in $\boldsymbol{\tau}$ as well since they
 688 are included in the $\boldsymbol{\Theta}$ samples used to evaluate $\mathbb{1}_{fh,jk}^{(i-1)}$ while calculating $R_{\mathbb{S}_i}$ of Eq. (15).

689 Properties of $\tilde{P}(\mathbb{S}_i)$

690 In general, $\tilde{P}(\mathbb{S}_i)$ is asymptotically unbiased as shown below:

$$\begin{aligned}\mathbb{E}(\tilde{P}(\mathbb{S}_i)) &= \mathbb{E}(\tilde{P}(F_{i-1})\tilde{P}(\bar{F}_i|F_{i-1})) \\ &= [P(F_{i-1}) + O(1/N)]P(\bar{F}_i|F_{i-1}) \\ &= P(\mathbb{S}_i) + O(1/N), \quad 2 \leq i \leq m-1\end{aligned}\tag{17}$$

691 where the overbar denotes the complement of an event, the above properties of $\tilde{P}(F_i|F_{i-1})$ and
 692 $\tilde{P}(\bar{F}_{i-1})$ can be noted from the original subset simulation paper (Au and Beck 2001). Obviously,
 693 $\tilde{P}(\mathbb{S}_1)$ is estimated only using MC samples and is unbiased. Also, $\mathbb{E}(\tilde{P}(\mathbb{S}_m)) = \mathbb{E}(\tilde{P}(F_{m-1})) =$
 694 $P(\mathbb{S}_m) + O(1/N)$. Next, expressions for $\mathbb{V}(\tilde{P}(\mathbb{S}_i))$ and the covariance, $\text{Cov}(\tilde{P}(\mathbb{S}_i), \tilde{P}(\mathbb{S}_j))$ are
 695 derived in terms of the quantities used in Au and Beck 2001 for the c.o.v. of $\tilde{P}(F_i|F_{i-1})$ that are
 696 given by:

$$\delta_i = \sqrt{\frac{(1 - P(F_i|F_{i-1}))(1 + \gamma_i)}{NP(F_i|F_{i-1})}}, \quad 1 \leq i \leq m-1\tag{18}$$

697 where γ_i is a correlation factor associated with the samples of F_{i-1} also lying in F_i (Au and Beck
 698 2001). Obviously, $\gamma_1 = 0$. In the following discussion, it is assumed that $\{\tilde{P}(F_i|F_{i-1}), \tilde{P}(F_j|F_{j-1})\}$
 699 are independent for $i \neq j$ which is a reasonable assumption according to Au and Beck 2001.
 700 This also implies that $\tilde{P}(\mathbb{S}_i)$ is unbiased (i.e., eliminating the $O(1/N)$ term). Since $\tilde{P}(\mathbb{S}_i) =$
 701 $\tilde{P}(F_{i-1}) - \tilde{P}(F_i)$, the following can be written for $2 \leq i \leq m-1$:

$$\begin{aligned}\mathbb{V}(\tilde{P}(\mathbb{S}_i)) &= \vartheta_{\mathbb{S}_i}^2 = \mathbb{V}(\tilde{P}(F_{i-1})) + \mathbb{V}(\tilde{P}(F_i)) \\ &\quad - 2\text{Cov}(\tilde{P}(F_{i-1}), \tilde{P}(F_{i-1})\tilde{P}(F_i|F_{i-1})) \\ &= P^2(F_{i-1})(1 - 2P(F_i|F_{i-1})) \sum_{k=1}^{i-1} \delta_k^2 + P^2(F_i) \sum_{k=1}^i \delta_k^2\end{aligned}\tag{19}$$

702 At the boundaries, $\mathbb{V}(\tilde{P}(\mathbb{S}_1)) = \mathbb{V}(\tilde{P}(F_1)) = \tilde{P}(F_1)(1 - \tilde{P}(F_1))/N$ and similarly, $\mathbb{V}(\tilde{P}(\mathbb{S}_m)) =$
 703 $\mathbb{V}(\tilde{P}(F_{m-1})) = P^2(F_{m-1}) \sum_{k=1}^{m-1} \delta_k^2$. Similarly, the covariance $\vartheta_{\mathbb{S}_{ij}}^2 = \text{Cov}(\tilde{P}(\mathbb{S}_i), \tilde{P}(\mathbb{S}_j))$ can be
 704 derived as:

$$\begin{aligned}
 \vartheta_{\mathbb{S}_{ij}}^2 &= \mathbb{E}(\tilde{P}(\mathbb{S}_i)\tilde{P}(\mathbb{S}_j)) - P(\mathbb{S}_i)P(\mathbb{S}_j) \\
 &= \mathbb{E}(\tilde{P}(F_{i-1})\tilde{P}(\bar{F}_i|F_{i-1})\tilde{P}(F_{j-1})\tilde{P}(\bar{F}_j|F_{j-1})) - P(\mathbb{S}_i)P(\mathbb{S}_j) \\
 &= \left(P(F_i|F_{i-1}) - P^2(F_i|F_{i-1})(\delta_i^2 + 1) \right) P(\bar{F}_j|F_{j-1}) \\
 &\quad \times P^2(F_{i-1}) \left(\sum_{k=1}^{i-1} \delta_k^2 + 1 \right) \prod_{k=i+1}^{j-1} P(F_k|F_{k-1}) - P(\mathbb{S}_i)P(\mathbb{S}_j)
 \end{aligned} \tag{20}$$

705 for the case $1 < i < m - 1$ and $i < j < m$. For convenience of notation, ξ_{ij} will be defined in the
 706 following as:

$$\xi_{ij} = \left(P(F_i|F_{i-1}) - P^2(F_i|F_{i-1})(\delta_i^2 + 1) \right) \prod_{k=i+1}^{j-1} P(F_k|F_{k-1}) \tag{21}$$

707 For all the possible cases of $i \leq j$, $(\vartheta_{\mathbb{S}_{ij}}^2 + P(\mathbb{S}_i)P(\mathbb{S}_j))$ can be written as:

$$\left\{
 \begin{array}{ll}
 \xi_{ij} P^2(F_{i-1}) \left(\sum_{k=1}^{i-1} \delta_k^2 + 1 \right) P(\bar{F}_j|F_{j-1}), & 1 < i < m - 1, \\
 & i < j < m \\
 \xi_{ij} P^2(F_{i-1}) \left(\sum_{k=1}^{i-1} \delta_k^2 + 1 \right), & 1 < i < m, \\
 & j = m \\
 \xi_{ij} P(\bar{F}_j|F_{j-1}), & i = 1, 1 < j < m \\
 \xi_{ij}, & i = 1, j = m \\
 \vartheta_{\mathbb{S}_i}^2 + P(\mathbb{S}_i)P(\mathbb{S}_j), & i = j
 \end{array}
 \right. \tag{22}$$

708 Obviously, the full covariance matrix (i.e., both $i \leq j$ and $i > j$) can be constructed using Eq. (22).

709 **Properties of $\tilde{P}_{f,h}$**

710 It can be shown that the overall estimator is asymptotically unbiased as follows:

$$\begin{aligned}
 \mathbb{E}(\tilde{P}_{f,h}) &= \sum_{i=1}^m \mathbb{E}(\mathbb{E}(\tilde{P}_{f_i,h} \tilde{P}(\mathbb{S}_i) | \tilde{P}(\mathbb{S}_i))) \\
 &= \sum_{i=1}^m \mathbb{E}(P_{f_i,h} \tilde{P}(\mathbb{S}_i)) = \sum_{i=1}^m P_{f_i,h}(P(\mathbb{S}_i) + O(1/N)) \\
 &= P_{f,h} + O(1/N)
 \end{aligned} \tag{23}$$

711 While Eq. (23) is generally true, under the additional assumption of independence between
 712 $\tilde{P}(F_i | F_{i-1})$ and $\tilde{P}(F_j | F_{j-1})$, $i \neq j$, the overall estimator is unbiased. The variance of the overall
 713 estimator can be decomposed according to the total variance theorem as:

$$\begin{aligned}
 \mathbb{V}\left(\sum_{i=1}^m \tilde{P}_{f_i,h} \tilde{P}(\mathbb{S}_i)\right) &= \mathbb{E}\left(\mathbb{V}\left(\sum_{i=1}^m \tilde{P}_{f_i,h} \tilde{P}(\mathbb{S}_i) | \tilde{P}(\mathbb{S}_i)\right)\right) \\
 &\quad + \mathbb{V}\left(\mathbb{E}\left(\sum_{i=1}^m \tilde{P}_{f_i,h} \tilde{P}(\mathbb{S}_i) | \tilde{P}(\mathbb{S}_i)\right)\right) \\
 &= \mathbb{E}\left(\sum_{i=1}^m \vartheta_{i,h}^2 \tilde{P}^2(\mathbb{S}_i)\right) + \mathbb{V}\left(\sum_{i=1}^m P_{f_i,h} \tilde{P}(\mathbb{S}_i)\right) \\
 &= \sum_{i=1}^m \vartheta_{i,h}^2 (\vartheta_{\mathbb{S}_i}^2 + P^2(\mathbb{S}_i)) \\
 &\quad + \sum_{i=1}^m \sum_{j=1}^m P_{f_i,h} P_{f_j,h} \vartheta_{\mathbb{S}_{ij}}^2
 \end{aligned} \tag{24}$$

714 Since $\delta_i^2 = O(1/N)$, $\vartheta_{\mathbb{S}_i}^2 = O(1/N)$, and $\vartheta_{i,h}^2 = O(1/n_i)$, it can be seen that $\tilde{P}_{f,h}$ is consistent (i.e.,
 715 guarantees convergence to true probability as $N \rightarrow \infty$ and $n_i \rightarrow \infty$).

⁷¹⁶ **DATA AVAILABILITY STATEMENT**

⁷¹⁷ All data, models, and code generated or used during the study appear in the submitted article.

718 **REFERENCES**

719 Amelin, M. (2004). "On Monte Carlo simulation and analysis of electricity markets." Ph.D. thesis, KTH
720 Royal Institute of Technology, Stockholm, Sweden.

721 American Society of Civil Engineers (2019). *Prestandard for performance-based wind design*. Reston, VA.

722 Arnab, R. (2017). *Survey sampling theory and applications*. Academic Press.

723 Arunachalam, S. and Spence, S. M. J. (2021). "A stochastic simulation scheme for the estimation of
724 small failure probabilities in wind engineering applications." *Proc. of European Safety and Reliability
725 Conference (ESREL 2021)*.

726 ASCE 7-22 (2022). *Minimum Design Loads for Buildings and Other Structures*. American Society of Civil
727 Engineers (ASCE), Reston, VA.

728 Atkinson, G. M. and Silva, W. (2000). "Stochastic modeling of California ground motions." *Bulletin of the
729 Seismological Society of America*, 90(2), 255–274.

730 Au, S. (2007). "Augmenting approximate solutions for consistent reliability analysis." *Probabilistic Engi-
731 neering Mechanics*, 22(1), 77–87.

732 Au, S.-K. and Beck, J. (2003a). "Important sampling in high dimensions." *Structural safety*, 25(2), 139–163.

733 Au, S.-K. and Beck, J. L. (1999). "A new adaptive importance sampling scheme for reliability calculations."
734 *Structural safety*, 21(2), 135–158.

735 Au, S.-K. and Beck, J. L. (2001). "Estimation of small failure probabilities in high dimensions by subset
736 simulation." *Probabilistic engineering mechanics*, 16(4), 263–277.

737 Au, S.-K. and Beck, J. L. (2003b). "Subset simulation and its application to seismic risk based on dynamic
738 analysis." *Journal of Engineering Mechanics*, 129(8), 901–917.

739 Baker, J. W. (2015). "Efficient analytical fragility function fitting using dynamic structural analysis." *Earth-
740 quake Spectra*, 31(1), 579–599.

741 Bect, J., Li, L., and Vazquez, E. (2017). "Bayesian subset simulation." *SIAM/ASA Journal on Uncertainty
742 Quantification*, 5(1), 762–786.

743 Bojórquez, E. and Ruiz-García, J. (2013). "Residual drift demands in moment-resisting steel frames subjected
744 to narrow-band earthquake ground motions." *Earthquake engineering & structural dynamics*, 42(11),
745 1583–1598.

746 Boore, D. M. (2003). "Simulation of ground motion using the stochastic method." *Pure and applied geo-*

747 *physics*, 160(3), 635–676.

748 Boore, D. M. and Joyner, W. B. (1997). “Site amplifications for generic rock sites.” *Bulletin of the Seismological Society of America*, 87(2), 327–341.

750 Chen, X. and Kareem, A. (2005). “Proper orthogonal decomposition-based modeling, analysis, and simula-
751 tion of dynamic wind load effects on structures.” *Journal of Engineering Mechanics*, 131(4), 325–339.

752 Cochran, W. G. (2007). *Sampling techniques*. John Wiley & Sons.

753 Der Kiureghian, A. (2022). *Structural and system reliability*. Cambridge University Press.

754 Der Kiureghian, A. and Ditlevsen, O. (2009). “Aleatory or epistemic? Does it matter?” *Structural safety*,
755 31(2), 105–112.

756 Elkady, A. (2016). “Collapse risk assessment of steel moment resisting frames designed with deep wide-
757 flange columns in seismic regions.” Ph.D. thesis, Dept. of Civil Engineering and Applied Mechanics,
758 McGill University, Montreal, Canada.

759 Elkady, A. (2019). “Two-dimensional OpenSees numerical models for archetype steel buildings with special
760 moment frames.” *GitHub repository*.

761 Elkady, A. and Lignos, D. G. (2015). “Effect of gravity framing on the overstrength and collapse capacity
762 of steel frame buildings with perimeter special moment frames.” *Earthquake Engineering & Structural
763 Dynamics*, 44(8), 1289–1307.

764 Evans, W. D. (1951). “On stratification and optimum allocations.” *Journal of the American Statistical
765 Association*, 46(253), 95–104.

766 Fishman, G. (2013). *Monte Carlo: concepts, algorithms, and applications*. Springer Science & Business
767 Media.

768 Glasgow, G. (2005). “Stratified sampling types.” *Encyclopedia of Social Measurement*, Elsevier, New York,
769 683–688.

770 Gurley, K. and Kareem, A. (1999). “Applications of wavelet transforms in earthquake, wind and ocean
771 engineering.” *Engineering structures*, 21(2), 149–167.

772 Gurley, K. R., Tognarelli, M. A., and Kareem, A. (1997). “Analysis and simulation tools for wind engineer-
773 ing.” *Probabilistic Engineering Mechanics*, 12(1), 9–31.

774 Hsu, W.-C. and Ching, J. (2010). “Evaluating small failure probabilities of multiple limit states by parallel
775 subset simulation.” *Probabilistic Engineering Mechanics*, 25(3), 291–304.

776 Iwata, Y., Sugimoto, H., and Kuwamura, H. (2006). “Reparability limit of steel structural buildings based
777 on the actual data of the Hyogoken-Nanbu earthquake.” *Proceedings of the 38th Joint Panel. Wind and*
778 *Seismic effects. NIST Special Publication*, 1057, 23–32.

779 Jakobsen, F. and Madsen, H. (2004). “Comparison and further development of parametric tropical cyclone
780 models for storm surge modelling.” *Journal of Wind Engineering and Industrial Aerodynamics*, 92(5),
781 375–391.

782 Jalayer, F. and Beck, J. (2006). “Using information theory concepts to compare alternative intensity measures
783 for representing ground motion uncertainty.” *Proc., 8th US National Conf. Earthquake Engineering, Paper*
784 *ID 974.*

785 Koutsourelakis, P.-S., Pradlwarter, H. J., and Schueller, G. I. (2004). “Reliability of structures in high
786 dimensions, part I: algorithms and applications.” *Probabilistic Engineering Mechanics*, 19(4), 409–417.

787 Kramer, S. L. (2003). *Geotechnical earthquake engineering*. Prentice Hall.

788 Li, B. (2022). “Rapid stochastic response estimation of dynamic nonlinear structures: Innovative frameworks
789 and applications.” Ph.D. thesis, University of Michigan, Ann Arbor, MI.

790 Li, B., Chuang, W.-C., and Spence, S. M. (2021). “An adaptive fast nonlinear analysis (AFNA) algorithm
791 for rapid time history analysis.” *8th ECCOMAS Thematic Conference on Computational Methods in*
792 *Structural Dynamics and Earthquake Engineering*.

793 Li, D.-Q., Yang, Z.-Y., Cao, Z.-J., Au, S.-K., and Phoon, K.-K. (2017). “System reliability analysis of slope
794 stability using generalized subset simulation.” *Applied Mathematical Modelling*, 46, 650–664.

795 Li, H.-S., Ma, Y.-Z., and Cao, Z. (2015). “A generalized subset simulation approach for estimating small
796 failure probabilities of multiple stochastic responses.” *Computers & Structures*, 153, 239–251.

797 Mazzoni, S., McKenna, F., Scott, M. H., and Fenves, G. L. (2006). *OpenSees command language manual*.
798 University of California, Berkeley, CA.

799 Melchers, R. (1989). “Importance sampling in structural systems.” *Structural safety*, 6(1), 3–10.

800 Melchers, R. E. and Beck, A. T. (2018). *Structural reliability analysis and prediction*. John wiley & sons.

801 Neyman, J. (1934). “On the two different aspects of the representative method: The method of stratified
802 sampling and the method of purposive selection.” *Journal of the Royal Statistical Society*, 97(4), 558–606.

803 Ouyang, Z. and Spence, S. M. (2021). “A performance-based wind engineering framework for engineered
804 building systems subject to hurricanes.” *Frontiers in Built Environment*, 133.

805 Papaioannou, I., Betz, W., Zwirglmaier, K., and Straub, D. (2015). “MCMC algorithms for subset simulation.”
806 *Probabilistic Engineering Mechanics*, 41, 89–103.

807 Papaioannou, I., Papadimitriou, C., and Straub, D. (2016). “Sequential importance sampling for structural
808 reliability analysis.” *Structural safety*, 62, 66–75.

809 Pharr, M., Jakob, W., and Humphreys, G. (2017). “13 - Monte Carlo Integration.” *Physically Based Ren-*
810 *dering*, M. Pharr, W. Jakob, and G. Humphreys, eds., Morgan Kaufmann, Boston, third edition edition,
811 747–802.

812 Rao, J. N. K. (1973). “On double sampling for stratification and analytical surveys.” *Biometrika*, 60(1),
813 125–133.

814 Schueller, G. I., Pradlwarter, H. J., and Koutsourelakis, P.-S. (2004). “A critical appraisal of reliability
815 estimation procedures for high dimensions.” *Probabilistic engineering mechanics*, 19(4), 463–474.

816 Shields, M. D. and Zhang, J. (2016). “The generalization of Latin hypercube sampling.” *Reliability Engi-*
817 *neering & System Safety*, 148, 96–108.

818 Shinozuka, M. and Deodatis, G. (1991). “Simulation of stochastic processes by spectral representation.”
819 *Applied Mechanics Reviews*, 44(4), 191–204.

820 Shinozuka, M. and Deodatis, G. (1996). “Simulation of multi-dimensional gaussian stochastic fields by
821 spectral representation.” *Applied Mechanics Reviews*, 49(1), 29–53.

822 Shome, N., Cornell, C. A., Bazzurro, P., and Carballo, J. E. (1998). “Earthquakes, records, and nonlinear
823 responses.” *Earthquake spectra*, 14(3), 469–500.

824 Stein, M. (1987). “Large sample properties of simulations using Latin hypercube sampling.” *Technometrics*,
825 29(2), 143–151.

826 Sudret, B. (2012). “Meta-models for structural reliability and uncertainty quantification.” *arXiv preprint*
827 *arXiv:1203.2062*.

828 Vetter, C. and Taflanidis, A. A. (2012). “Global sensitivity analysis for stochastic ground motion modeling
829 in seismic-risk assessment.” *Soil Dynamics and Earthquake Engineering*, 38, 128–143.

830 Vickery, P., Skerlj, P., and Twisdale, L. (2000). “Simulation of hurricane risk in the US using empirical track
831 model.” *Journal of structural engineering*, 126(10), 1222–1237.

832 Vickery, P. J. and Twisdale, L. A. (1995a). “Prediction of hurricane wind speeds in the United States.”
833 *Journal of Structural Engineering*, 121(11), 1691–1699.

⁸³⁴ Vickery, P. J. and Twisdale, L. A. (1995b). "Wind-field and filling models for hurricane wind-speed predictions." *Journal of Structural Engineering*, 121(11), 1700–1709.

⁸³⁵

836 **List of Tables**

837	1	Stratification and optimal sample allocation.	40
838	2	Annual failure rates and estimation error for example 1.	41
839	3	Preliminary study and optimal sample allocation.	42
840	4	Annual failure rates and estimation error for example 2.	43

TABLE 1. Stratification and optimal sample allocation.

Stratum	χ_L [m/s]	χ_U [m/s]	$\tilde{P}(\mathbb{S}_i)$	n_i
Stratum 1	0.00	22.63	8.04×10^{-1}	150
Stratum 2	22.63	33.21	1.58×10^{-1}	150
Stratum 3	33.21	42.45	3.10×10^{-2}	150
Stratum 4	42.45	49.23	5.38×10^{-3}	150
Stratum 5	49.23	55.43	1.30×10^{-3}	150
Stratum 6	55.43	60.66	2.90×10^{-4}	150
Stratum 7	60.66	65.82	7.99×10^{-5}	170
Stratum 8	65.82	70.96	2.33×10^{-5}	514
Stratum 9	70.96	∞	1.01×10^{-5}	1146

TABLE 2. Annual failure rates and estimation error for example 1.

Limit states	Description	AER	β_{50}	c.o.v.	n_{MC}/n
LS1	$\hat{Y}_{X,\text{roof}} > 1/200$	1.24×10^{-7}	4.37	24.0%	3.45×10^4
LS2	$\hat{Y}_{Y,\text{roof}} > 1/200$	1.43×10^{-6}	3.80	11.2%	1.37×10^4
LS3	$\hat{Y}_{X,\text{roof}} > 1/400$	8.52×10^{-7}	3.93	12.8%	1.75×10^4
LS4	$\hat{Y}_{Y,\text{roof}} > 1/400$	8.04×10^{-5}	2.65	9.6%	3.32×10^2
LS5	$\hat{Y}_{X,28}^{(r)} > 1/1000$	6.15×10^{-7}	4.01	14.7%	1.84×10^4
LS6	$\hat{Y}_{Y,45}^{(r)} > 1/1000$	7.09×10^{-7}	3.97	12.4%	2.25×10^4
LS7	$\hat{Y}_{X,37} > 1/200$	2.19×10^{-7}	4.24	18.3%	3.37×10^4
LS8	$\hat{Y}_{Y,45} > 1/200$	8.21×10^{-6}	3.35	10.7%	2.63×10^3

TABLE 3. Preliminary study and optimal sample allocation.

Stratum	$\tilde{P}(\mathbb{S}_i)$	$\tilde{P}(\max_k \hat{Y}_k > 15\%)$	$\tilde{P}(\max_k \hat{Y}_k > 3\%)$	$\tilde{P}(\max_k Y_k^{(r)} > 1.41\%)$	$\tilde{P}(Y_{\text{roof}}^{(r)} > 0.91\%)$	n_i
Stratum 1	9×10^{-1}	0	0	0	0	25
Stratum 2	9×10^{-2}	0	0	0.04	0.12	659
Stratum 3	9×10^{-3}	0.24	0.52	0.52	0.60	797
Stratum 4	9×10^{-4}	0.84	0.92	0.96	0.96	68
Stratum 5	1×10^{-4}	0.92	1.00	1.00	1.00	25

TABLE 4. Annual failure rates and estimation error for example 2.

Limit states	Description	AER	c.o.v.	n_{MC}/n
LS1	$\max_k \hat{Y}_k > 15\%$	2.67×10^{-3}	8.32%	20.5
LS2	$\max_k \hat{Y}_k > 3\%$	5.39×10^{-3}	7.59%	12.2
LS3	$\hat{Y}_1 > 3\%$	4.33×10^{-3}	7.66%	14.9
LS4	$\hat{Y}_2 > 3\%$	5.36×10^{-3}	7.63%	12.1
LS5	$\hat{Y}_3 > 3\%$	4.66×10^{-3}	7.72%	13.6
LS6	$\hat{Y}_4 > 3\%$	2.17×10^{-3}	9.43%	19.7
LS7	$\max_k Y_k^{(r)} > 1.41\%$	8.42×10^{-3}	6.98%	9.2
LS8	$Y_1^{(r)} > 1.41\%$	7.61×10^{-3}	7.19%	9.6
LS9	$Y_2^{(r)} > 1.41\%$	8.31×10^{-3}	7.01%	9.2
LS10	$Y_3^{(r)} > 1.41\%$	7.70×10^{-3}	7.17%	9.5
LS11	$Y_4^{(r)} > 1.41\%$	4.45×10^{-3}	7.87%	13.7
LS12	$Y_{\text{roof}}^{(r)} > 0.91\%$	1.08×10^{-2}	6.42%	8.4

841 **List of Figures**

842 1	Illustration of sample distribution for: (a) MC simulation; and (b) the proposed	45
843	generalized stratification scheme.	
844 2	Flowchart of the proposed stochastic simulation procedure.	46
845		
846 3	Three-dimensional numerical model of the 45-story concrete building using equiv-	
	alent frame method.	47
847 4	Wind loading for a representative sample in the last stratum: (a) Evolution of the	
848	mean hourly wind speed; (b) wind direction; (c) X-direction wind load at the 40th	
849	level.	48
850 5	Wind-induced structural yielding for a representative sample of the last wind speed	
851	stratum.	49
852 6	(a) Updated wind speed hazard curve; (b) updated strata probabilities.	50
853 7	Annual exceedance rate curves for the limit state functions.	51
854 8	Plan view of the four-story archetype steel building.	52
855 9	Strata-wise sample scatter of M and r	53
856 10	Spectral acceleration hazard curve.	54
857 11	(a) Evolution of drift ratios with increasing $S_a(T_1, 5\%)$ and stratum number; (b)	
858	estimated collapse fragility curve with error bounds.	55
859 12	AER with error estimation.	56

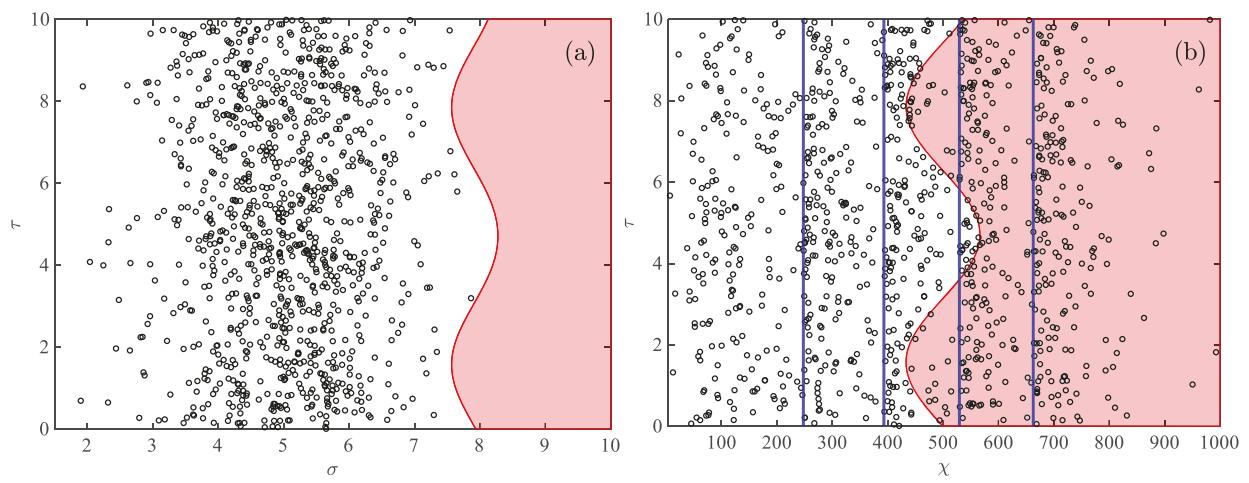


Fig. 1. Illustration of sample distribution for: (a) MC simulation; and (b) the proposed generalized stratification scheme.

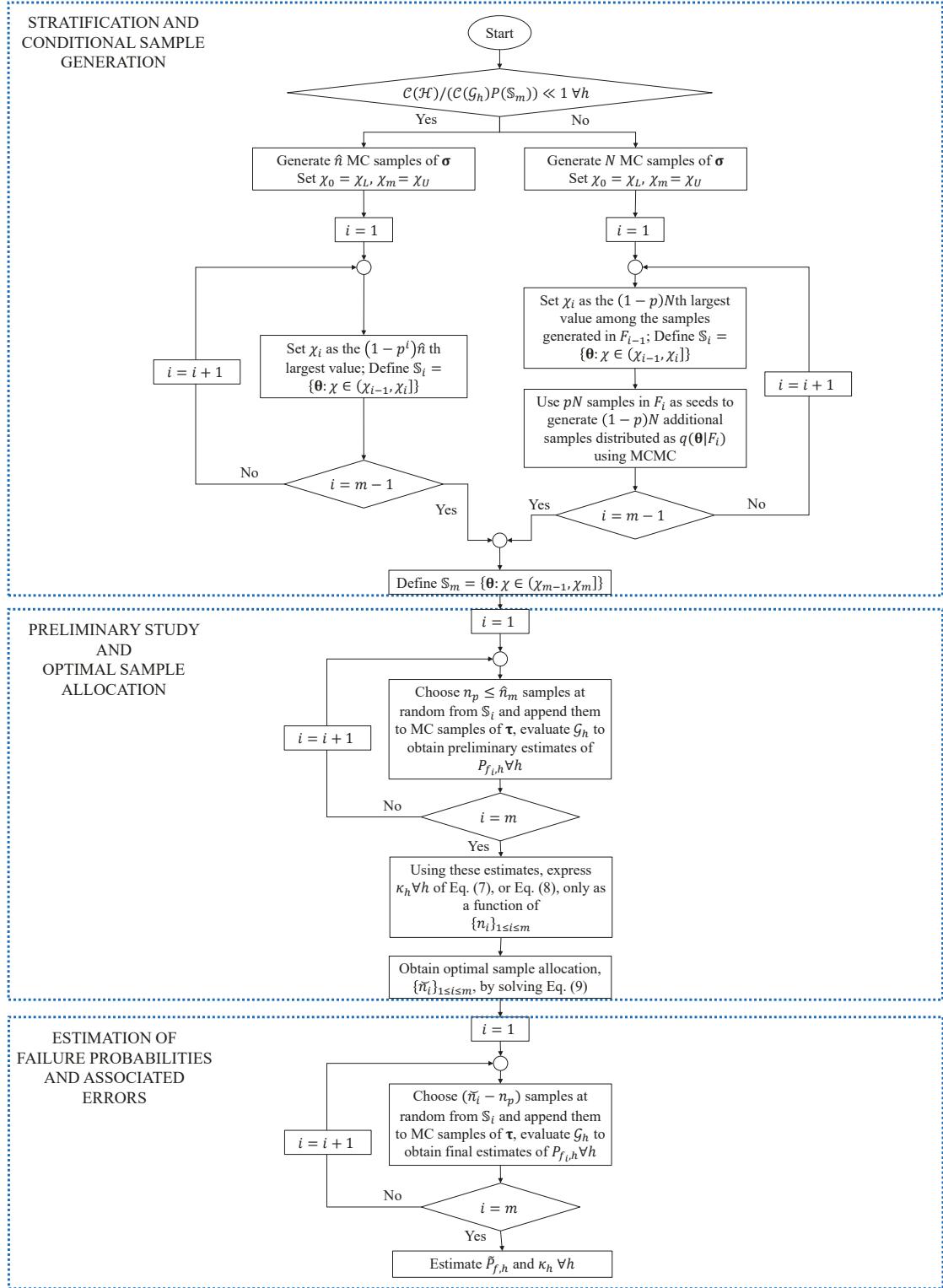


Fig. 2. Flowchart of the proposed stochastic simulation procedure.

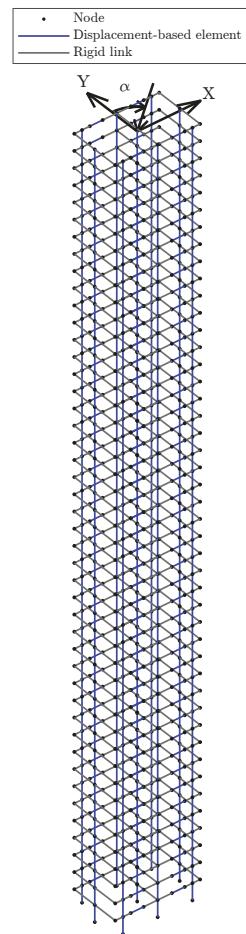


Fig. 3. Three-dimensional numerical model of the 45-story concrete building using equivalent frame method.

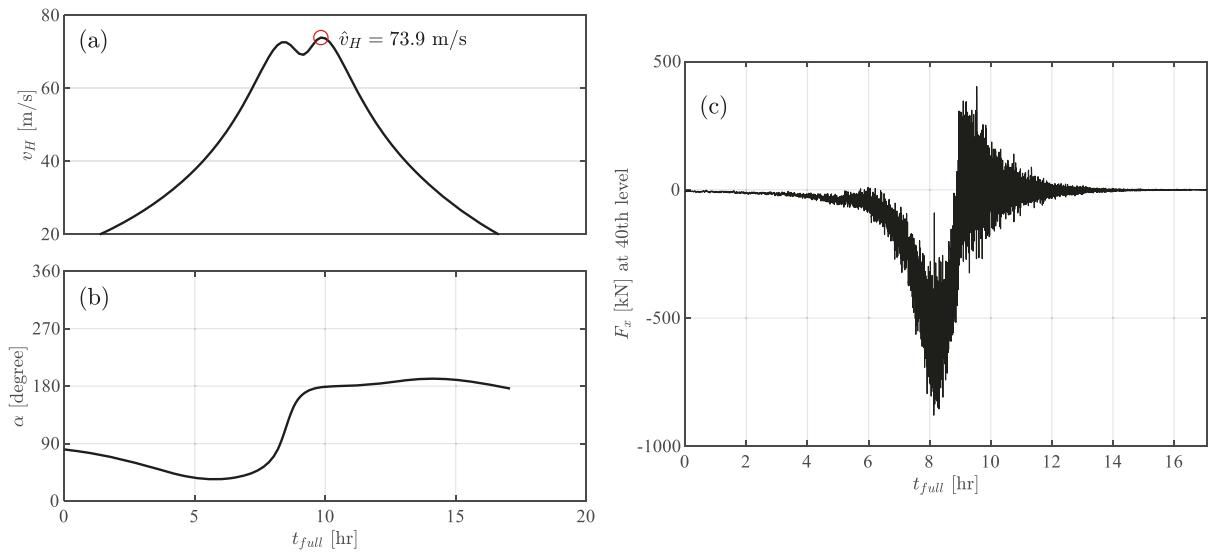


Fig. 4. Wind loading for a representative sample in the last stratum: (a) Evolution of the mean hourly wind speed; (b) wind direction; (c) X-direction wind load at the 40th level.

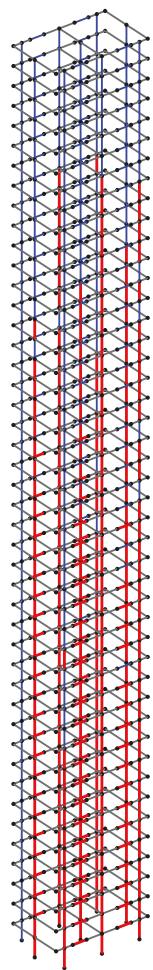


Fig. 5. Wind-induced structural yielding for a representative sample of the last wind speed stratum.

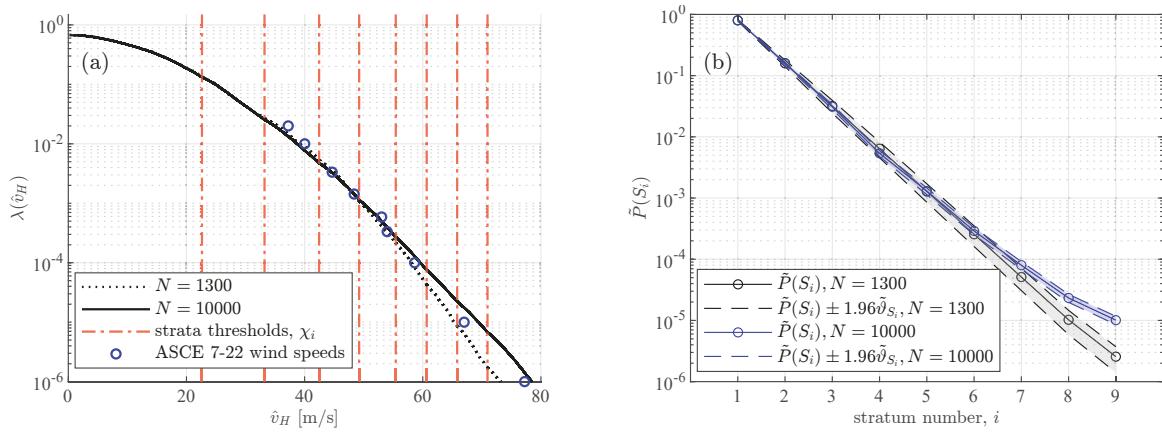


Fig. 6. (a) Updated wind speed hazard curve; (b) updated strata probabilities.

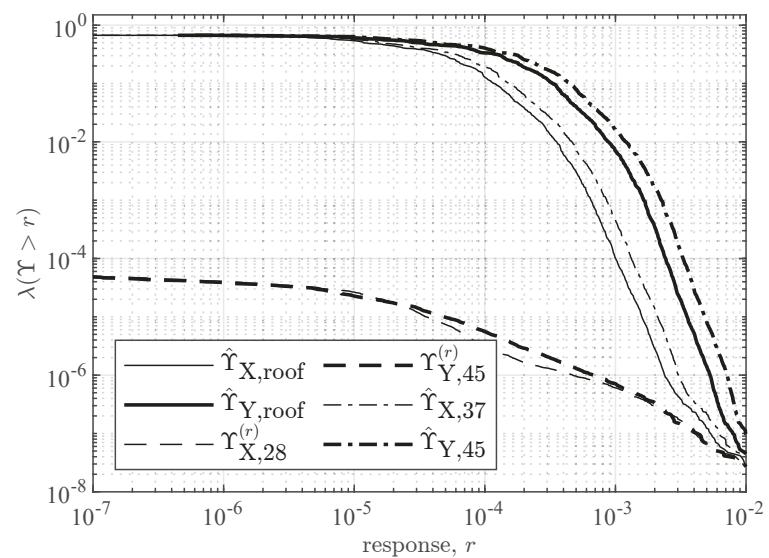


Fig. 7. Annual exceedance rate curves for the limit state functions.

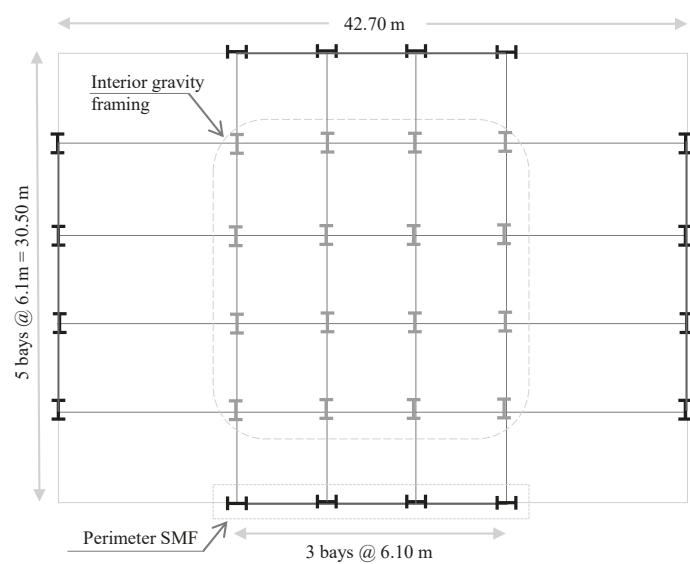


Fig. 8. Plan view of the four-story archetype steel building.

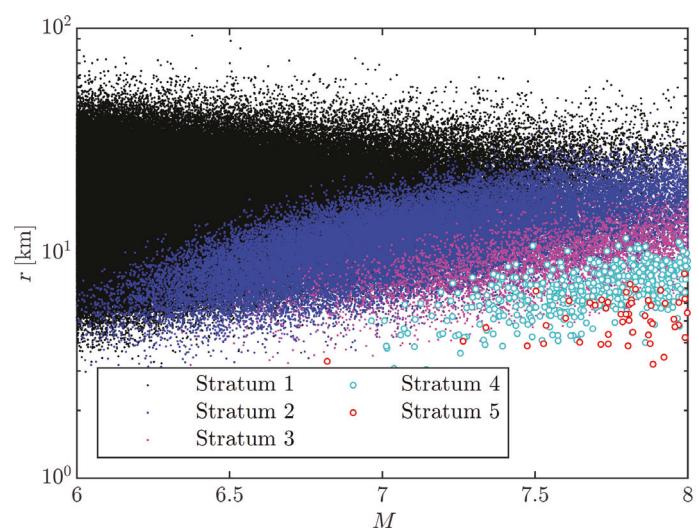


Fig. 9. Strata-wise sample scatter of M and r .

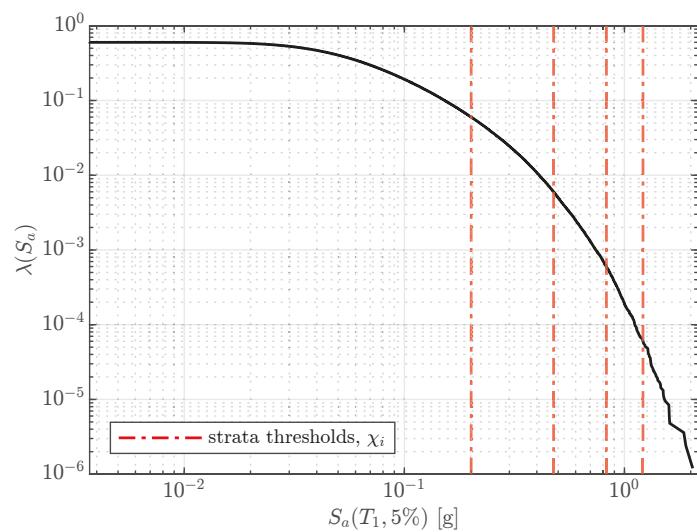


Fig. 10. Spectral acceleration hazard curve.

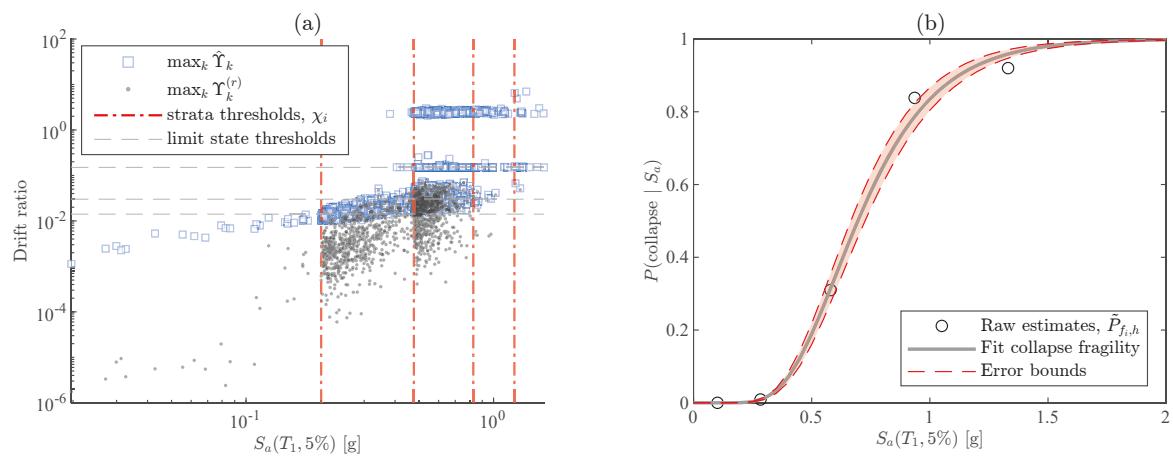


Fig. 11. (a) Evolution of drift ratios with increasing $S_a(T_1, 5\%)$ and stratum number; (b) estimated collapse fragility curve with error bounds.

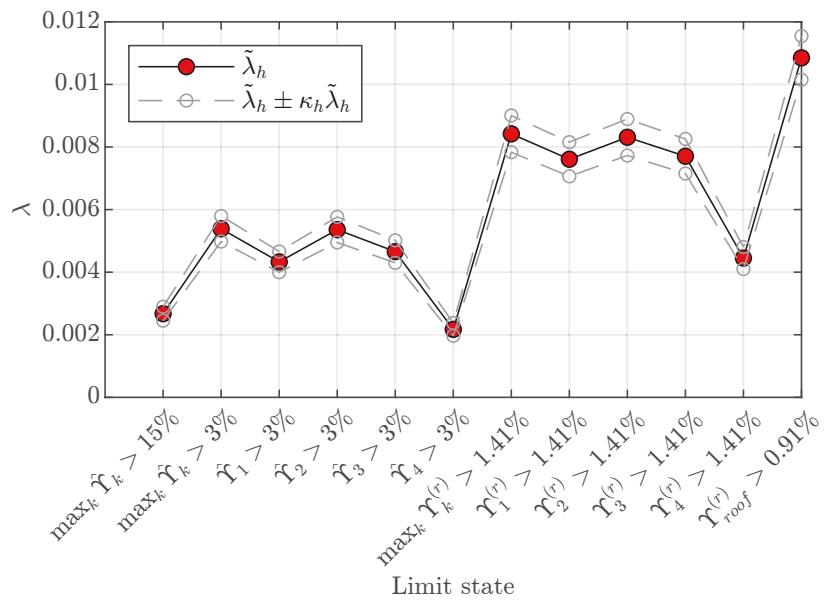


Fig. 12. AER with error estimation.