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ABSTRACT

Performance-based engineering for natural hazards facilitates the design and appraisal of struc-
tures with rigorous evaluation of their uncertain structural behavior under potentially extreme
stochastic loads expressed in terms of failure probabilities against stated criteria. As a result,
efficient stochastic simulation schemes are central to computational frameworks that aim to esti-
mate failure probabilities associated with multiple limit states using limited sample sets. In this
work, a generalized stratified sampling scheme is proposed in which two phases of sampling are
involved: the first is devoted to the generation of strata-wise samples and the estimation of strata
probabilities whereas the second phase aims at the estimation of strata-wise failure probabilities.
Phase-I sampling enables the selection of a generalized stratification variable (i.e., not necessarily
belonging to the input set of random variables) for which the probability distribution is not known
a priori. To improve the efficiency, Markov Chain Monte Carlo Phase-I sampling is proposed when

Monte Carlo simulation is deemed infeasible and optimal Phase-II sampling is implemented based
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on user-specified target coefficients of variation for the limit states of interest. The expressions for
these coeflicients are derived with due regard to the sample correlations induced by the Markov
chains and the uncertainty in the estimated strata probabilities. The proposed stochastic simulation
scheme reaps the benefits of near-optimal stratified sampling for a broader choice of stratification
variables in high-dimensional reliability problems with a mechanism to approximately control the
accuracy of the estimators of multiple failure probabilities. The practicality and efficiency of
the scheme are demonstrated using two examples involving the estimation of failure probabilities
associated with highly nonlinear responses induced by wind and seismic excitations.

Keywords: Stratified sampling, Monte Carlo methods, Subset simulation, Natural hazards.

INTRODUCTION

The advancement of computing power, algorithms, and frameworks in the last couple of decades
has enabled the analysis of engineering systems with greater scrutiny than ever before. However,
computational models are not perfect simulators of real-world systems/behavior, and the real world
itself is uncertain. Uncertainty in model and parameter selection can be characterized using ran-
dom variables, processes, fields, and waves capturing both epistemic uncertainties (arising from
the lack of knowledge/data) as well as aleatory uncertainties (arising from intrinsic randomness
of phenomena) (Shinozuka and Deodatis 1991; Shinozuka and Deodatis 1996; Gurley et al. 1997,
Gurley and Kareem 1999; Der Kiureghian and Ditlevsen 2009; Melchers and Beck 2018). For
practical problems, the effect of the input uncertainty on the model outputs is of prime importance
to characterize safety against violation of multiple constraints (or limit states) through failure prob-
abilities, or equivalently, reliabilities. The determination of the failure probability of a component,

or a system, Py ; involves solving the following N,;-dimensional integral:

Pra=P@<T) = [ 1,,@)0(0)d0 (1)

where ® € S ¢ RM is a realization of the N -dimensional vector of basic random variables @

with joint probability density function (PDF) g; I', is the failure region within the sample space S



38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

associated with the Ath limit state; 1 ¢ ,(0) is an indicator function assuming a value of 1if0 € I'y,
and 0 otherwise. For most applications in natural hazards engineering, the following characteristics
make the estimation of Py j of Eq. (1) challenging: (i) a high-dimensional uncertain space, Ny
in the order of several thousand, necessary for accommodating the white noise sequence, @z,
modeling load stochasticity; (ii) the need to simultaneously evaluate multiple nonlinear limit state
functions (LSFs), G, with h = {1, 2, ..., H} where H is the total number of associated performance
objectives; and (iii) the need to estimate small failure probabilities (e.g., Py, < 10~%) at affordable
computational costs while maintaining acceptable accuracy for engineering applications.

Monte Carlo (MC) methods are the simplest of simulation-based uncertainty quantification
techniques and are robust to the dimension of the uncertainties as well as the number and nature
of the limit states. However, they suffer from the need to carry out a large number of system
evaluations, n, if small failure probabilities are to be estimated with sufficient accuracy (e.g.,
n = 10%*? samples are required to estimate a P r.n 1In the range of 107 with a 10% coefficient
of variation). This is often computationally prohibitive for complex computational models with
significant nonlinearities, and/or with fine discretization in space/time. A vast literature exists
on variance reduction techniques for reducing the computational burden associated with MC
simulation. Importance sampling modifies the sampling density function so as to draw more
samples from the “important region” of S (Melchers 1989; Fishman 2013). However, identifying
the optimal importance sampling density (ISD) is generally difficult and when the choice of the
form of ISD adopted is inappropriate, the variability of the estimator cannot be controlled in the
presence of a large number of uncertain parameters (Au and Beck 2003a). Importance sampling
and its variants (e.g., (Au and Beck 1999; Papaioannou et al. 2016)), as well as other methods, such
as line sampling (Koutsourelakis et al. 2004; Schueller et al. 2004) and subset simulation (SuS) (Au
and Beck 2001; Au and Beck 2003b), are based on generating samples that better probe the failure
region such that a larger proportion of them contribute to the evaluation of the failure probabilities.
SuS is based on the idea of estimating small failure probabilities as a product of larger conditional

probabilities by introducing intermediate failure events. Although the original algorithm (Au and
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Beck 2001) focuses on evaluating the failure probability of a single rare failure event (i.e., associated
with a single LSF), some variants have been proposed that generalize the approach to multiple LSFs
(Hsu and Ching 2010; Li et al. 2015; Li et al. 2017). In contrast, the class of simulation schemes
based on stratified designs includes, but is not limited to, stratified random sampling (Cochran
2007), Latin Hypercube Sampling (LHS) (Stein 1987), and Partially Stratified Sampling (PSS)
(Shields and Zhang 2016). These represent better sampling plans owing to improved space-filling
properties but may not be particularly focused on any failure region, or LSF. Surrogate-assisted
approximation techniques aim to replace the expensive simulator (the LSF or the limit state surface)
with an emulator (e.g., polynomial chaos expansion, kriging surrogates (Sudret 2012)) built from a
so-called design of experiments, a set of observed points to approximate the true function/surface.
However, they are usually unsuitable for high-dimensional and highly-nonlinear problems.
Conventional stratified sampling is limited to applications where efficient stratification can be
defined by directly specifying intervals for the components of @ with known joint PDF, ¢g. It is not
generally applicable to a wider set of problems in which a potential efficient stratification variable
can be identified as the output of an auxiliary computational model or the output of an intermediate
computational model belonging to the model chain used to estimate the system response. This can
be a significant limitation when solving reliability problems in performance-based engineering for
natural hazards that pose the following challenges: (i) response quantities, defining the LSFs of
interest, that generally require the evaluation of a cascade of computational models for characterizing
the hazard, hazard-structure interaction, structural response, and loss/damage; (ii) LSFs for which
intervals directly defined on a subset of ® do not represent an efficient stratification; (iii) indicator
functions characterizing the exceedance of LSFs of interest that are expensive to evaluate due to
the need to evaluate a cascade of high-fidelity models; (iv) performance targets involving small
failure probabilities, or equivalently, large reliabilities. The post-stratification technique is rarely
useful since the probability distribution of variables outside of @ is rarely available. In a similar
formulation to that of stratified sampling, the double sampling procedure requires two phases of

sampling; the first is devoted to the generation of strata-wise samples and the estimation of strata
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probabilities whereas the second phase aims at the estimation of strata-wise failure probabilities. In
this paper, an extended double-sampling-based stochastic simulation scheme is proposed to estimate
multiple failure probabilities for a suite of limit states with a built-in optimization procedure to
control the estimation errors while using limited sample sets. The novelty in the proposed scheme
is the Markov Chain Monte Carlo (MCMC)-driven Phase-I sampling similar to subset simulation
when MC simulation is deemed infeasible and the optimal execution of Phase-II sampling based on
user-specified target coefficients of variation (c.o.v.) for the limit states of interest. The expressions
for these coeflicients are derived with due regard to the sample correlations induced by the Markov
chains and the uncertainty in the estimated strata probabilities. The proposed scheme is illustrated
using two examples involving the estimation of failure probabilities associated with highly nonlinear

responses induced by wind and seismic excitations.

BACKGROUND

The basic idea of stratified sampling is to define partitions of the sample space, S, such that
samples are drawn from each of these partitions (or strata), {S; : i = 1,...,m}, in a preferred
manner. This implies that the user can decide the stratification variables, denoted by the vector y,
the strata boundaries as well as the number of samples within each stratum, n;. The strata need
to satisfy: U | S; =S and S; N S; = 0 fori # j. As aresult, Eq. (1) can be broken down into

sub-integrals as:

Pra= ) [ 1s@q@)d0 o
i=1 i

Since for the conditional PDF the following holds: g(0 | S;) = ¢(0)1s,(0)/P(S;); Ps,, can be

further simplified as:

P~ le /S 114(®)(® | 5)P(E)d0 = 21 PyaP(S) 3)

where P(S;) = the volume of the ith stratum in the probability space and Py, ; = the conditional

failure probability. When MC sampling is performed within each stratum, the procedure is known
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as stratified random sampling and Py j, is approximated as:

moon
Prp~Ppy= Z Z ILf,h(9,(:.))13(81')/7” “4)
i=1 k=1
where 9]({’) = the kth independent and identically distributed (i.i.d.) sample out of n; samples in the
ith stratum. Clearly, the decomposition of the integral of Eq. (1) is enabled by the theorem of total
probability. In particular, P r.n of Eq. (4) can be seen as a weighted sum of P 1.,n with the weights,
P(S;). More importantly, P(S;) is perfectly known only when stratification is directly performed
by specifying lower and upper bounds for each component of y, with ¥ C @, since, under these
circumstances, ¢ () is available. Moreover, the simulation of i.i.d. samples, 9](:), is straightforward
as the conditional density, g(0 | S;), can be obtained from the joint density ¢(0). The variance
reduction achieved through stratified random sampling is dependent on the choice of ¥, {S;}1<i<m
and {n;}1<i<m. A poor implementation could potentially lead to worse performance than direct MC
simulation.

Stratified sampling was developed in the survey sampling community, wherein stratification
based on demographic features is commonly employed for estimation of sub-population character-
istics/parameters (Cochran 2007; Arnab 2017). The incorporation of the exact probability weights
(i.e., stratum probabilities) corrects for differences in the distribution of the traits/features in the
sample set and in the actual population which explains the unconditional variance reduction when
proportional sample allocation (i.e., n; = nP(S;)) is considered. In some instances, when a fixed
number of samples cannot be generated from each stratum due to the choice of ¥, classification
of samples into their respective strata can be performed after sampling, a procedure termed post-
stratification. Post-stratification assumes that the strata probabilities are known accurately and only
that the stratum to which a sample belongs is unknown (Cochran 2007; Glasgow 2005). Further,
when even the strata probabilities are not known a priori, a large simple random sample set can be
drawn to first estimate the strata probabilities and prepare a pool of samples for each stratum from

which a smaller sample set can be used to evaluate the failure probabilities. This technique is known
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as double sampling since the process involves a first phase of sampling devoted to strata construc-
tion, strata-wise sample classification, and estimation of strata probabilities before carrying out a
second phase of sampling for estimating the failure probabilities of interest through stratification
(Cochran 2007; Glasgow 2005; Rao 1973). This paper focuses on the development of a generalized
stratified sampling scheme for risk assessment problems in natural hazards engineering through
the adoption of double sampling methods. Specifically, improving the computational efficiency in
double sampling (i.e., ¥ € O) through both optimal sample allocation as well as the adoption of

Markov MCMC to accelerate Phase-I sampling is investigated.

PROPOSED DOUBLE-SAMPLING-BASED SIMULATION SCHEME

Simulation of Strata-wise Samples
Basic idea of double sampling

As discussed earlier, if ¥ € @ and ¢(0 | S;) is known, the generation of strata-wise input
samples is trivially achieved by sampling ¢(0 | S;) through MC simulation, a task that generally
requires minimal computational effort. Consider now y = H (o) with H a computational model that
depends on a subset of the input uncertainties, &, with the remaining input uncertainties (assumed
to be independent of ¢ for simplicity) denoted with T so that ® = {¢,t}. For example, consider
the case in which peak hourly wind speed is selected as the stratification variable but there is no
predetermined probability distribution characterizing its uncertainty, i.e., the stratification variable
is not a basic random variable of the problem, then  would denote the function mapping (i.e.,
the hazard model) between the basic random variables of the wind hazard model (constituting
6) and the peak hourly wind speed (i.e., ¥). The remainder of the uncertainties, for example,
those in the system and aerodynamic parameters, would constitute . Clearly, the choice of the
stratification variable defines the computational model H of the problem. If for a given problem,
the cost of evaluating H, denoted as € (), is much less relative to the cost of evaluating the limit
state functions, € (G)Vh, then a MC simulation can be implemented to generate a large number of
samples such that the requisite number of samples in every stratum, {n; }|<;<,, is available. It should

be observed that while this does produce i.i.d. samples 9,@ in each stratum, if P(S,,) ~ 107, then
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it takes 10%*2 evaluations of H to generate roughly 10% samples in S,,, i.e., the last stratum, which
will yield an estimate of P(S,,) with a c.o.v. of 10%. In particular, the estimator is given by the

expression:

i PP (S))

m 1 h(e()) A;
21 i

l

)

0,((") = o (’), 7| where T; = non-conditional MC samples; 7i = the total number of MC samples
generated out of which 7; lie in the ith stratum; while n; < 7; are the samples utilized in the
calculation of conditional failure probabilities. This implies that n = }}; n; limit state evaluations
are performed in total, whereas i = }; /i; evaluations of H are performed to populate samples within
strata and to estimate the stratum probabilities. It is noted that in the literature, the consideration
of T and its separate MC sampling has not been explicitly described but is essential to this work.
An important property of the classic stratified sampling of Section “Background” is the uti-
lization of the knowledge of accurate probability weights which is lost here. Its implications can
be observed as follows: (i) if 7; = n;, then Eq. (5) reduces to simple MC estimation of Py .
Therefore, it is required that 77 >> n such that IS(Si) is a relatively high-accuracy estimate, which is
feasible since H is cheap to evaluate; (ii) proportional sample allocation (i.e., n; = nP(S;)), which
guarantees variance reduction for classic stratified sampling regardless of ¥ and {S;};<j<m, loses
this guarantee since it again reduces the scheme to simple MC estimation. This emphasizes how
for high-efficiency gains, the sample allocation needs to mirror, as much as possible, the theoretical
optimal allocation, a problem that is discussed in Section “Sample Allocation Scheme”. Let P fih

define the estimate of Py, ;, when n; = 7;, then the variance can be written as (Theorem 1 (Rao
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V(Prp) =V Z Pﬁ,hp(Si))

i=1
=V Z PraP(s) + Z (Pfn— Igf,»,h)P(Si))

=1 i=1

S 10 mo L
=V k=l ’],; k +V Z;(Pfi,h_Pfi,h)P(Si)

i (i) - 6)
_y == ]l{,h(ek ))
n

+B(V( Y (P —ﬁﬁ,hnﬁ(s,-)) ﬁ(&-))

P
Piy(1—P m PSP a(1=Pr ) (1
_ £ - f,h)+z (Si) f,,hA( fih) (__1)
n

n Vi

i=1

where E = the expectation operator, v; = n;/i; € (0, 1] = the sub-sampling fraction whose value is
assumed to be fixed and which represents the proportion of samples in the ith stratum from Phase-I
considered in Phase-II for failure probability evaluations. In the above derivation, the following
results were used (Rao 1973; Cochran 2007): Cov(f’fi,h, ﬁfi,h - ﬁfi,h) =0, E(Pfi,h) = Igfi,h, and
V(ﬁfi,h - Igfi,h) = V(Isfi,h) - V(Igfi,h). Notably, the first summand of the final expression of Eq.
(6) is fixed for a given limit state and 7, whereas the second summand represents the sample-
allocation-dependent variance contribution which vanishes as n; — 7;. The estimator is unbiased
and consistent in the sense that it approaches the true failure probability as 7 — oo, for fixed v;.

Finally, the c.o.v. can be estimated as:

= Py n(1-Py ) PSP n(1-Pgp) (4
VY (Prp) \/ il + ?il il (v_, N 1) 7
Kp = ~

P P aP(S))

Extension through subset simulation for high-efficiency gains
It is inefficient to use MC simulation when € (H) is not trivial and, in particular, when P(S,,)

is extremely small. The latter might be necessary when rare subspaces of ¥ (lying in the tail of its
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joint PDF) are of special interest in producing extreme responses. In such cases, a more efficient
technique is required to populate strata-wise samples and approximate strata probabilities. The class
of methods based on MCMC algorithms can achieve adaptive sample generation from conditional
distributions (conditional on S;) (Papaioannou et al. 2015). For instance, sequential importance
sampling can be applied to produce conditional samples by a transition of samples through a
sequential reweighting operation whose governing distribution sequence gradually approaches the
target conditional distribution (Papaioannou et al. 2016). In this paper, owing to its wider usage, SuS
is considered for efficient Phase-I sampling (Au and Beck 2001). Unlike the traditional application
of SuS, in this work, SuS only provides sufficient samples in each stratum to enable a stratified
sampling-based estimation of multiple failure probabilities.

Consider a single stratification variable denoted by y € [y, xYu], then by fixing the thresholds
Xi» Where xo < x1 < ... < Xm=1 < Xm, the strata, {S;}i<;<m, and nested intermediate event
sequence, F| O F» D ... D Fy,_; are defined as follows: F; = {0 : y > x;},Vi < (m —1) and
Si =40 : x € (xi-1,xi]}, Vi < m. Itis also notationally convenient to define Fy = S, a certain
event. The last stratum, S,, = F,,_;, is bounded from above by y,, = yy (which need not be
finite) and from below by yo = yr to ensure the satisfaction of the probability partition properties.
The adaptive procedure of SuS generates samples in F; (and S;;1) by simulating states of Markov
chains through MCMC starting from the samples (or seeds) conditional on F;_1,Vi < (m — 1)
(Au and Beck 2001; Papaioannou et al. 2015). It can be proved that for an idealized version of
the SuS method with fixed thresholds, the optimal choice of thresholds is to make the conditional
probabilities P(F;|F;—1) equal (Bect et al. 2017). This provides the rationale for the widely adopted
idea of fixing the sample estimate of P(F;|F;_1),Vi < (m — 1) tobe p € [0.1,0.3], a constant such
that y; and S; are adaptively defined. In other words, y; is chosen as the (1 — p)th quantile of the
conditional samples in F;_;. Itis easy to note that P(F;) = p’ and P(S;) = p'~'(1-p),Vi < (m—1),
where tilde denotes that the quantity is a sample estimate. Let the total number of Markov chain
samples in each conditional level of F; be N, then the number of Markov chain samples generated

in the ith stratum for Vi < (m — 1) will be , /i; = (1 — p)N with /i, = N, from which it follows

10
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that i = N(m(1 — p) + p). The values of n;, however, are determined according to the optimal
allocation scheme of Section “Sample Allocation Scheme”. Both within each stratum and among
strata, the generated samples, 91(:) = [cl(f), T | are correlated through Gl(f) due to inherent correlation
of the Markov chains, while 7 are uncorrelated as they are i.i.d. MC samples unaffected by the
SuS, or stratification procedures. The variance expressions need to take into account both the
sample correlations induced by SuS as well as the uncertainty in the estimated strata probabilities.
Appendix I discusses the properties of 15‘,3.,;1, P(S;), and P t.n- This includes the derivation of the

variance of P r.» that enables the introduction of the following expression for the estimator c.o.v. of

the extended scheme:

\/Z?l] ﬁih (ﬁé, + ﬁZ(Sl)) + Z?i] ;{1:] Pfishﬁfjshﬁéij
Kp =

— 8
2t PrnP(S) ®

where 5‘1.2’}1 = the estimate of V(Pfi,h), ﬁéu = the estimate of Cov(P(S;), P(Sj)), and 5§i = the
estimate of V(P(S;)), all of which can be estimated using the simulated Markov chain samples and
evaluation of the limit state violations. Notably, the estimates, z%i and %”_ are dependent only on
the Phase-1 samples, and independent of the limit states and Phase-II sampling. On the other hand,
the estimate ﬁih is dependent on the Phase-I samples, n;, and the hth limit state function. This
implies that for a given problem, the variance component 3", ZT:l P fl.,hls fj’hﬁéi]‘ of Eq. (8) is
independent of the sample allocation (i.e., of {n;}1<;<») and only reflects the adequacy of Phase-I
sampling.

For a conceptual illustration of the proposed method, consider a two-dimensional problem
defined by the independent random variables 7 ~ U(0, 10) and oo ~ N(5, 1). Figure 1(a) illustrates
how 1000 random Monte Carlo samples distribute in comparison to a failure region (shaded red in
the figure) given by: 200sin(7) + 30> > 1500. As is expected, very few samples are likely to fall
in the failure region making the estimation of the failure probability challenging. Consider now
taking y = H (o) = o3 as the stratification variable to be sampled in Phase-I while considering five

strata, m = 5, strata probabilities defined by p = 0.1, and an equal allocation of 200 samples in each

11
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stratum. In Phase-II, Monte Carlo sampling is used to generate 1000 corresponding samples of 7.
Figure 1(b) clearly shows the increase in samples falling in the failure region, therefore, facilitating
the estimation of the failure probability. Due to the simplicity of this illustrative example, subset
simulation is not required for generating Phase-I samples. In general, however, y is a complex
function of two or more random variables, in which case subset simulation becomes necessary to

generate the Phase-I strata-wise samples.

Additional remarks

For the more general case of multiple stratification variables, the same framework can be
realized by replacing the SuS algorithm with the generalized subset simulation (GSS) algorithm,
originally developed as an extension of SuS for estimating multiple failure probabilities using a
single run of the simulation scheme (Li et al. 2015; Li et al. 2017). Basically, in the aforementioned
SuS procedure, {F;} are determined using a single driving variable, y, whereas in GSS unified
intermediate events (i.e., F; = {0 : y(V > Xl.(l)} u{e: y® > )(l.(z)} for two stratification variables
¥V and y?) can be defined to drive samples to multiple strata. However, this modification can
be cumbersome in providing sufficient samples in all strata and does not lend itself to calculable
variance expressions that are required for the optimal sample allocation procedure, central to the
proposed simulation scheme.

It is worth mentioning that while the development of this extension was independent, it bears
some similarities with the parallel subset simulation (P-SuS) algorithm (Hsu and Ching 2010)
and the response conditioning method (RCM) proposed by Au 2007. The key idea in P-SuS is
to introduce a principal variable that is correlated with all performance functions, as the driving
variable in SuS, and multiple failure probabilities are estimated simultaneously. Here, the principal
variable is a representative output variable (e.g., an average of the maximum story drifts) such
that each simulation will not only provide a realization of the principal variable but also of all
performance functions (e.g., the maximum story drifts for all stories) at once without requiring
any additional simulation/computation. This can be seen as a special case of the proposed scheme

wherein Phase-II sampling/simulation (including the uncertainties given by ) is absent. On the
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other hand, RCM leverages information from computationally inexpensive approximate solutions
to the target problem to achieve efficient and consistent reliability estimates. The “conditioning
response” which approximates the target response is stratified and SuS enables the conditional
sample generation. However, the method was not directed toward reliability problems with multiple
limit states, and neither of the two methods optimally evaluates samples from each stratum which
is indeed actualized in this paper through a constrained-optimization-based sample allocation
procedure. Further, in contrast to subset simulation where parametrization of the failure domain
is necessary, the proposed method is agreeable to a more generic limit state representation, such
as structural collapse, for which a non-binary measurable limit state function cannot always be

assigned.

Choice of Stratification Variables

The gains from stratification can be significant if the choice of y is such that the stratification
defined by {S;}1<;<,m promotes more intra-stratum homogeneity (with respect to the Ath limit state
violation) than the overall homogeneity in S. The intra-stratum homogeneity can be measured
by the unit variance of the MC conditional probability estimator (i.e., associated with one simple
random sample) given by Py, (1 — Py, ;). In fact, the ideal stratification variable for Py is the
hth limit state function, Gy, itself. Obviously, it is not possible to stratify according to decreasing
values of a limit state function and therefore justifying the adoption of one or more variables
for stratification that are highly correlated with the response(s) of interest. Additionally, in the
proposed scheme, since the stratification is carried out in the space of the random variables and is
therefore independent of the limit state functions, the same sample set within each stratum can be
used to estimate the strata-wise failure probabilities for all limit states. That is, it is not necessary
to rerun the simulation for each limit state of interest. By broadening the scope of selection (i.e.,
X € ©), a good candidate for } can be selected from the output of any intermediate model (from
the sequence of numerical models that is typically involved in response estimation) or from the
output of an auxiliary model not used in the modal chain. However, every choice is associated with

a corresponding computational effort, proportional to € (H), to simulate strata-wise samples. In
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natural hazard applications, by leveraging expert knowledge, or physical intuition, good candidates
for i can take the form of hazard intensity measures such as the maximum mean hourly wind speed,
the geometric mean of spectral accelerations, or the elastic base moments of wind excited systems.
In general, when explicit hazard modeling is involved in natural hazard applications, the intensity
measures are often the output of a numerical model and therefore do not have a known probability
distribution. Because the proposed scheme enables the consideration of any model output as
the stratification variable, it allows the consideration of such intensity measures as stratification
variables. It should be emphasized that the proposed estimator is unbiased and consistent (i.e.,
convergent to the true probability with increasing computational effort, that is for N — oo and
n; — o) as shown in Appendix I.

Stratified sampling suffers from the ‘“curse of dimensionality” since full stratification in k
dimensions with m strata per dimension quickly causes an explosion in the number of strata, m*,
and the sampling demands to meet certain accuracy in the unit variance estimation needed for
optimal sample allocation, and consequently, the estimated failure probabilities (Pharr et al. 2017).
This encourages the thoughtful selection of one or two variables for stratification that strongly affect
the responses, which is usually not difficult to identify from the intermediate model inputs/outputs in
natural hazard applications. The number of strata, m is typically determined by P(S,,) and the order
of the smallest probability, min, Py, ,, however, increasing m beyond 10 will seldom be profitable
as it increases the sampling demands, or contributes to increased estimator variance arising from
large uncertainty in the unit variance estimations and sub-optimality of sample allocation for fixed

sampling costs (Cochran 2007).

Sample Allocation Scheme

In addition to the choice of y and {S;}<;<m, the allocation of samples among the strata defined
by {n;}1<i<m affects the variance reduction for a fixed number of limit state evaluations, n. For
a single limit function, the optimal allocation, termed “Neyman allocation”, assigns samples to
strata in proportion to P(S;) as well as the square root of the unit variance (Neyman 1934; Cochran

2007; Arunachalam and Spence 2021). For multiple LSFs, since any sample allocation cannot be
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simultaneously Neyman optimal for all LSFs, the solution to the following c.o.v. based constrained

optimization problem needs to be considered:

m
min n= Z n;
i=1

{nit1<i<m
. . )
subject to: kp(ni,...,ny,) < wp h<H
n; <n; i<m
where «j, (ny,...,n;) = the sample-allocation-dependent c.o.v. of P r.n whereas w), = the user-

specified c.o.v. target for controlling the estimation accuracy. The “optimal solution” to the above-
formulated problem is denoted as {73, } | <;<;» and can be found using any gradient-based optimization
technique. However, the c.o.v. calculation requires the knowledge of the unit variances for all limit
state functions and strata, the unavailability of which requires one to conduct a preliminary study
(Evans 1951). The goal of the preliminary simulation-based study, say using n,, samples in each
stratum, is purely to enable the resolution of Eq. (9) (for efficiently allocating the remaining
n — n, samples) by quantifying the intra-stratum variability associated with the estimated failure
probabilities associated with the selected LSFs. The preliminary study can be viewed as an
exploration step carried out prior to the exploitation step of optimally executing Phase-II sampling to
estimate the failure probabilities. Itis important to mention that the preliminary study may introduce
a systematic error in estimation, referred to as cardinal error, associated with misrepresenting any
of the unit variances as zero due to inadequate exploration (Amelin 2004; Arunachalam and Spence
2021). This can be avoided to some extent through careful strata construction and by imposing a

constant lower limit on »; Vi.

Overall Algorithm

The proposed procedure is summarized as follows:

1. Initialization: Choose a stratification variable, y, the number of strata, m, and probability

constant, p € [0.1,0.3], defining the stratification and fixing the estimates of the strata
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probabilities.

2. Stratification and conditional sample generation: If € (H)/(P(S,,)€(Gr)) < 1,Vh, then
a MC-based Phase-I sampling is feasible, else consider a subset-simulation-based sampling.
If MC-based Phase-I sampling is adopted, select the total number of Phase-I samples 7,
or, if SuS-based Phase-I sampling is adopted, select N. Choose the number of preliminary
test samples in each stratum, n,,. Populate strata-wise samples, cl(f), and define y; and S;
adaptively in the process.

3. Preliminary study and optimal sample allocation: Conduct preliminary study using n,
samples drawn at random from each stratum (along with MC samples of 7) to obtain first-
level estimates of the failure probabilities with which Eq. (9) is solved to obtain {7i; }1<j<m.
If SuS-based Phase-I sampling is adopted, the calculation of «j involves sample estimates
of 93,93 . 97, and Py, .

4. Estimation of failure probabilities and associated errors: Using 71; samples in S;, the

conditional failure probabilities are estimated, combined with the strata probabilities to

estimate the overall failure probabilities and their associated c.o.v. using either Eq. (7) or

Eq. (8).

When the preliminary-study-based optimal sample allocation roughly matches the true opti-
mum, it is expected that the c.o.v., kj, will be close to the respective targets, wy, while only utilizing
limited computational effort. The proposed procedure is summarized in the flowchart of Figure 2.

The scheme can also be used in a sub-optimal form if equal sample allocation is adopted. Such
an application will avoid the need to perform a preliminary study followed by optimal sample
allocation. Further, if measures of accuracy in the final estimates are not required, then the

implementation of the scheme will not require the evaluation of Eq. (7) or Eq. (8).

CASE STUDY
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Example 1: Wind-excited 45-story RC building
Overview

A 45-story reinforced concrete (RC) building of height, H = 180.6 m, story height, 4y = 4 m,
subjected to extreme wind loads is considered to illustrate the simultaneous estimation of exceedance
probabilities using the proposed methodology. The structure is assumed to be located in New York
City, and the hazard model is based on the simulation of full hurricane tracks characterized by the
combination of a storm track model (Vickery and Twisdale 1995a), wind field model (Jakobsen
and Madsen 2004) and a filling-rate model (Vickery and Twisdale 1995b). The evolving wind
velocity field is modeled at the site of the building through time-varying hourly mean wind speed
at the building height, v (7), and time-varying direction, @ (¢), to which a fully non-stationary and
non-straight stochastic wind load model is calibrated (Ouyang and Spence 2021). In this example,
peak hourly-mean wind speed, v = max; vy () is chosen as the stratification variable as it is highly
correlated with the responses of interest, yet is itself an output of the hurricane hazard model and
therefore appropriate for the demonstration of the presented scheme. The following six responses
of interest define the limit state functions: peak roof drift ratio in two orthogonal directions, YX’rOOf
and YYyroof; residual inter-story drift ratio (IDR), Yg(r) and Yg), and finally peak IDR over the
building height, Yx and Yy. Two thresholds are considered for the peak roof drift ratio: 1/400,
associated with the operational performance objective (American Society of Civil Engineers 2019)
and 1/200, associated with the continuous occupancy performance objective (American Society of
Civil Engineers 2019). A threshold of 1/1000 is selected for the residual IDRs corresponding to
the continuous occupancy objective (American Society of Civil Engineers 2019) and 1/200 for the
peak IDRs. The consideration of peak roof drifts in the reliability assessment is to limit sway at
the building top and avoid issues with elevator operation/alignment whereas the consideration of
residual IDRs is to limit permanent deformation due to inelastic responses (American Society of
Civil Engineers 2019). The peak and residual IDRs in each orthogonal direction are reported as
absolute values at the story location where the largest values occur. It can be noted that the results

of the structural analyses within each stratum permit the simultaneous evaluation of all the limit
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state functions and consequently the direct estimation of their strata-wise failure probabilities.

Stochastic wind loads

Description of the full evolution of a hurricane event is realized through a parametric hurricane
model that simulates hurricane tracks as straight lines crossing a circular sub-region centered at
the building site. The outputs vy () and «(¢) are modeled as functions of the distance between
the building site and the eye of the hurricane, along with the consideration of the pressure decay
following landfall (Vickery and Twisdale 1995a; Vickery et al. 2000; Vickery and Twisdale 1995b;
Jakobsen and Madsen 2004; Ouyang and Spence 2021). The stratification variable, ¥ is dependent
on the hurricane track input parameters, ®, composed of the initial central pressure difference,
Apy, translation speed, c, size of the hurricane, ry, approach angle, 6,,,, minimum distance,
dmin, between the building site and the hurricane track, and the coefficients ao, a;, and €7 of the
filling-rate model. Consequently, the mean annual rate of exceeding a given wind speed, A¢,,, also

known as the non-directional hurricane hazard curve, can be expressed as:

100 = b [ [ Fjo10) fw(@1a0) v (10)

where f;,, /@ = the PDF of ¥4 conditional on @, fg = the joint PDF of the components of ®, and
Anurr = 0.67 is the mean annual recurrence rate of the site-specific hurricanes. The expression in
parenthesis of Eq. (10) is equal to f;,,. In the proposed approach, through the generation of strata-
wise samples, @|S;, and the corresponding site-specific wind speed ¥, strata-wise construction of
Sous: (or equivalently, the conditional cumulative distribution function) is enabled. Subsequently,
these empirical quantities are combined with P(S;), which is also estimated in the process, to obtain
the hazard curve. In this example, the following holds ¢ = ®.

While the evaluation of the hazard model, H, is less computationally intensive than the nonlinear
dynamic analysis involved in the response estimation, its computational cost is large enough to
preclude the direct use of MC to generate strata-wise samples. The non-straight and non-stationary

Gaussian stochastic wind load model outlined in Ouyang and Spence 2021 was adopted and
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calibrated to building-specific wind tunnel data to convert wind speed and direction time histories
to stochastic aerodynamic floor loads through spectral proper orthogonal decomposition (Chen
and Kareem 2005). The time-varying wind loads complying with the hurricane evolution in the

sub-region span several hours in duration.

Building system

The 45-story RC core building was designed by the ASCE 7-22 task committee on performance-
based wind engineering. The lateral load-resisting system is composed of multiple shear walls
connected by coupling beams at each floor level. The shear walls were modeled using the equivalent
frame method as columns modeled with displacement-based beam-column elements and rigid links
whereas the floors were modeled as rigid diaphragms for horizontal movements. Figure 3 shows the
structural model of the building. A modal damping ratio of 2% was considered. A stress-resultant
plasticity model was developed and solved through an adaptive fast nonlinear analysis (AFNA)
scheme (Li 2022; Li et al. 2021). The approach captures second-order P-Delta effects through a
linearized P-Delta model. Three-dimensional piece-wise linear yield surfaces were adopted for
representing the yield domains of the reinforced concrete members, the details of which can be
found in Li 2022. No system uncertainties were considered and the mean values reported in Li 2022
were adopted for the material properties and gravity loads. Here, T consists of the high-dimensional
stochastic sequence (in the order of tens of thousands of random variables) within the stochastic
wind load model enabling the capture of record-record variability. It should be observed that the
neglect of system uncertainties in this example was simply a modeling choice and should not be
viewed as a limitation of the proposed scheme which can equally be applied to problems with
system uncertainties, as will be demonstrated in the second example of this work. In addition,
although system uncertainties are neglected in this first example, the stochastic excitation is highly
non-stationary while the response will, in general, be nonlinear resulting in non-stationary and
non-Gaussian response processes making, therefore, the application of classic methods based on

the estimation of the outcrossing rate difficult if not infeasible (Der Kiureghian 2022)
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Results

For estimating the small failure probabilities, the construction of strata with low probabilities
is essential, and therefore, to initialize the process with SuS-based Phase-I sampling, m = 9,
p = 0.2, and N = 1300 were considered. This ensured 1300 samples in the last stratum with
P(S,) = 0.2% = 2.56 x 1075. The SuS-based procedure took about four minutes to generate
9620 samples when run sequentially on an Intel 17-7700 3.60 GHz processor and for comparison,
MC-based Phase-I sampling would have taken more than a month given € () ~ 6 milliseconds.
For the preliminary study, n, = 150 was considered, and the c.o.v. targets, w;, were set to 10% only
for the limit states associated with YY,rOOf and Yy. The largest peak IDRs were most often observed
at the 37th story in the X direction and at the 45th story in the Y direction. Similarly, the largest
residual IDRs were most often observed at the 28th story in the X direction and at the 45th story
in the Y direction. For a representative sample in the last stratum, the time-varying wind speed,
and direction are shown in Figure 4 corresponding to a 17-hour storm. The peak hourly-mean
wind speed is also indicated in Figure 4(a) and the resulting X-direction load at the 40th level is
shown in Figure 4(c). In response to this significant loading, the structure experiences significant
nonlinearity that is illustrated by Figure 5 where the considerable proportion (around 56%) of
yielded elements (in red) at the end of the wind event is noteworthy. The generation of mn, = 1350
response samples involved nonlinear dynamic analyses taking around 10 days to compute. Based
on the preliminary study results, it was observed that due to the significant sample-allocation-
independent variance contribution, the c.o.v. could not be reduced to less than about 20%. This
implies that N = 1300 constructs the hazard curve and estimates strata probabilities with large
uncertainty that is inadequate for attaining the target c.o.v. Therefore, the mn, = 1350 response
evaluations were augmented with an additional 8750 samples, bringing the Phase-I sampling total
to N = 10,000, but with fixed strata thresholds as given by the previous trial. It was expected
that the lower limit of the c.o.v. would approximately reduce by a factor of % and could

be brought down to less than 10%. Notably, the time taken to repeat the Phase-I sampling was

only about 20 minutes. Figure 6(a) compares the hazard curves constructed using N = 1300 and
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N =10, 000, as well as indicates the division of the wind speed range that reflects the stratification.
The difference is significant in the large wind speed range as a result of successively accumulating
errors in the case of N = 1300. The site-specific ASCE 7-22 wind speeds (ASCE 7-22 2022) are
also reported. Figure 6(a) also illustrates how through the application of the SuS-based Phase-I
sampling, large wind speeds in the tail of the wind speed distribution are efficiently sampled to
enable the non-parametric estimation of the hazard curve and the subsequent simulation of extreme
structural responses, i.e., each stratum (interval of wind speeds) has a prescribed number of samples
independently of how small (rare) the stratum probability is. Figure 6(b) shows the update in the
strata probabilities, including the estimation error, wherein the shaded region indicates a scatter of
1.96 times the standard deviation, 5&., around the estimates. The updated strata probabilities and
the results of the optimization are reported in Table 1. Although the estimate P(S,,) has increased,
the c.o.v. in its estimation dropped from 23.0% to 7.9%, roughly by the factor %. For the three
limit states considered in the optimization procedure, additional samples, (n; — n,), were required
only in the last three strata. The annual failure probabilities, P t.h» for all eight limit states were
estimated using a total of n = 2730 response evaluations. Since these probabilities are conditional
on the occurrence of a hurricane event, they were transformed into annual exceedance rates (AERs)
by multiplying with Ap,r. The AERSs, the associated c.o.v. and the 50-year reliability indices,
estimated as S50 = 431_\,1 [(1 = ApureP t, 2)°°] where @y is the standard normal distribution function,
are reported in Table 2. Clearly, the c.o.v. for the limit states L.S2, LS4, and LS8 are around 10%
as targeted and demonstrate the capability of the proposed procedure to achieve a desired level of
confidence in the estimates. The enormous efficiency gain provided by the procedure can be better
appreciated by observing that for attaining the c.o.v. reported in Table 2, a simple MC simulation
would have required samples in the range of nyc ~ 10*n for all limit states except LS8, which
would have required ~ 10°n samples and LS4 which would have required ~ 10?z samples. In
other words, and as illustrated in Table 2 through the ratio nyic/n, a reduction of several orders of
magnitude in necessary samples for achieving a target accuracy is achieved through the application

of the proposed approach. The AER curves for the quantities of interest as a function of the response
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values can also be constructed, similar to the hazard curve, through the total probability theorem
and are reported in Figure 7. This figure also highlights how the proposed scheme enabled the non-
parametric estimation of the AER curves for small annual exceedance rates by direct simulation of
the extreme responses. It can be noted from these curves that, in general, the Y-direction responses

are more dominant for the structure relative to X.

Example 2: Ground Motion-excited Steel Frame
Overview

In this example, the objective is to estimate multiple failure probabilities associated with IDR-
based limit states for a four-story archetype structure subjected to stochastic ground motions. The
spectral acceleration at the first-mode period with 5% damping, S,(7},5%), is selected as the
stratification variable. Unlike the peak ground acceleration (PGA), which is only a characteristic of
the ground motion, spectral acceleration also accounts for the frequency content of the excitation
around the structure’s first-mode period (Jalayer and Beck 2006). It is a popularly used intensity
measure (IM) in seismic risk analysis. The choice of y = §, is motivated by the expectation that
the variability in nonlinear responses at a given value of S, is much less than that in the entire
response set (Shome et al. 1998). The following 12 limit states are considered: structural collapse,
defined as maximum peak IDR exceeding 15% (Elkady 2019); peak IDR for each of the four stories,
Yk, 1 < k < 4, and its maximum (over all stories) exceeding 3%; residual IDR for each story,
Y,(Cr), 1 < k < 4, and its maximum (over all stories) exceeding 1.41%; and finally, residual roof
drift ratio, Yi:g)f’ exceeding 0.91%. The thresholds for the peak, residual IDRs, and residual roof
drift ratio are selected on the basis of repairability limits suggested in literature (Iwata et al. 2006;

Bojorquez and Ruiz-Garcia 2013).

Stochastic ground motion model

A point-source stochastic model is adopted for ground motion modeling where the spectrum
of the ground motion that encapsulates both the physics of the fault rupture, as well as the wave
propagation, is expressed as a product of the source, E(f; M), path, P(f;r), and site, G(f),

contributions (Boore 2003). The frequency-dependent total spectrum, A( f; M, r), is parameterized

22



532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

by the seismic moment magnitude, M, and epicentral distance, r, to characterize the seismic hazard.

That is,

A(fsM,r) = Qrf)’E(f; M)P(f;r)G(f) (11)

In particular, the two-corner point-source model developed by Atkinson and Silva 2000 for Cal-
ifornia sites is used, wherein the functional form of the source spectrum contains two corner
frequencies. The duration of the ground motion is determined by the time-dependent envelope
function, e(t; M, r), which is yet again parameterized by M and r. Ultimately, the ground mo-
tion acceleration time history is generated according to this model by modulating a white noise
sequence, Z, by e(t; M, r), transforming into the frequency domain, normalizing it before mul-
tiplying by A(f; M, r) and finally transforming it back to the time domain (Boore 2003). The
high-dimensional vector Z models the record-record variability while the uncertain seismic hazard
parameters, M and r, represent the dominant risk factors (Vetter and Taflanidis 2012). The pre-
dictive relationships that relate the source, path, and site contributions, as well as the time-domain
envelope function to M and r, can be found elsewhere (Atkinson and Silva 2000; Boore 2003;
Vetter and Taflanidis 2012). In calibrating the ground motion model, the following parameters
were adopted: Radiation pattern Ry = 0.55, source shear-wave velocity S = 3.5 km/s, density
ps = 2.8 glem?, seismic velocity c¢p = 3.5 km/s; an elastic attenuation factor Q(f) = 180f 045 (for
California region according to Atkinson and Silva 2000), geometric spreading function Z(R) = 1/R
for R < 70 km and Z(R) = 1/70 for R >= 70 km, where R is the radial distance from the source
to site; the path-independent energy loss is modeled by the diminution function which is expressed
by the f,,q.x filter, where f,,,, = 15 rad/s; finally, the site amplification is described for NEHRP
“D” site condition (i.e., the building site condition) using empirical curves presented in Boore and
Joyner 1997. The duration of the simulated stochastic ground accelerations is 60 s with Ar = 0.01
s. Therefore, the length of Z is 6001. The parameters A; and 7, in the envelope function were set
to 0.2 and 0.05, respectively, as suggested in Boore 2003.

The moment magnitude M was modeled by the bounded Gutenberg-Richter recurrence rela-
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tionship as a truncated exponential distribution with M,,;,, = 6 and M,,,,, = 8 (Kramer 2003):

_ ﬁ exp(_ﬂ(M - Mmzn)) )
p(M) - 1- exp(_ﬁ(Mmax - mm)) Mmzn =M< Mmax (12)

where the regional seismicity factor 8 is chosen as 0.91og,(10). Eq. (12) could equivalently be
expressed as an equation for the mean annual rate of exceedance, 1,7, of an earthquake of magnitude

M by setting a value for the exceedance rate for the lower threshold magnitude, Ay,

min

(Kramer
2003). In this study, Ap6 = 0.6. The uncertainty in r is modeled using a lognormal distribution
with a median of 15 km and c.o.v. of 0.4. Here, 6 = [M,r,Z] and the function H involved in
computing S, is the ground motion model evaluation followed by the linear oscillator response
estimation which combined only takes 3-4 milliseconds to run sequentially on an Intel 17-7700 3.60

GHz processor.

Building description

A four-story archetype office steel building designed with perimeter special moment frames
(SMFs) assumed to be located in downtown Los Angeles, California, is considered in this study.
The schematic plan view of the building is shown in Figure 8. The considered two-dimensional
nonlinear model (noted as the “B model” in Elkady and Lignos 2015) represents the building in the
E-W loading direction. It models the bare steel structural components of the SMF while ignoring
the effects of both the composite floor slab and the gravity framing. This model was developed by
Elkady 2016; Elkady 2019 in the Open System for Earthquake Engineering Simulation (OpenSees)
platform (Mazzoni et al. 2006). The fundamental period of the structure, 77, is 1.43 s while the
building height H is 16.5 m. The key modeling aspects include panel zone modeling, reduced-
beam-section connections, consideration of P-Delta effects using a fictitious “leaning” column,
and member modeling using a combination of elastic elements and flexural springs at their ends.
Rayleigh damping is calibrated by assigning the damping ratios, £, of the first and third modes.
The material yield strength, Fy, and { are modeled as lognormal random variables with a mean of

417 MPa and 1.5%, respectively, and c.o.v. of 0.06 and 0.4. Here, T = [F), {].
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Results

Since € (H) is negligible, MC-based Phase-I sampling is considered. By setting, m = 5,
p = 0.1, and 4 = 5 x 10°, it took around 30 minutes to generate enough samples to have
50 in the last stratum with P(S5) = 107, The strata boundaries were adaptively obtained as
{x0s X1> X2, X3> X4, x5} = {0,0.20,0.48,0.83, 1.21, 0o} in units of g (acceleration due to gravity).
Figure 9 shows the strata-wise sample scatter of the seismic hazard parameters, M and r. The
figure illustrates the well-known downside of MC sampling which is the wasteful generation of
abundant Phase-1 samples in the earlier strata, roughly in proportion to the strata probabilities, in
order to generate the required number in the last stratum. For the preliminary study, n, = 25 was
considered, and the c.o.v. targets, wp, were set to 10% for all limit states, except for collapse for
which it was set to 5%. The results of the preliminary study for certain key limit states and the
estimated optimal sample sizes are reported in Table 3. Notably, no additional samples were needed
in S5 since the refined estimation of conditional probabilities in the earlier strata with higher strata
probabilities was preferred by the optimization algorithm to meet the c.o.v. targets. It was found that
the total number of simulations required is n = 1574 inclusive of the 125 preliminary test samples.
Figure 10 shows the estimated spectral acceleration hazard curve along with the strata thresholds.
Figure 11(a) illustrates the evolution of maxy Yk and maxy Y,(:) with different intensity levels of
Sa (T, 5%) and the stratum number. The increasing trend of the drift ratios with increasing spectral
acceleration provides support for the choice of the latter as the stratification variable. It should be
noted that the figure only shows the maximum residual IDRs for the non-collapse samples as they
cannot be quantified for the collapse samples, however, the corresponding limit states are assumed
to be violated. The procedure also enables a natural construction of fragility functions when the
pertinent hazard intensity measure is selected as the stratification variable. For instance, lognormal
collapse fragility can be defined by first assuming each point estimate of the conditional collapse
probabilities to be located at the average S,(77,5%) in the associated stratum, and secondly, by
applying the maximum likelihood approach for fitting (Baker 2015). Additionally, the calculation

of 9, ;, for collapse enables the specification of error bounds for the fragility curves. Following this
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approach, Figure 11(b) reports the collapse fragility curve and error confidence bounds estimated
with the conditional probabilities set to Py, ; + 1.659; 5. The median of the collapse fragility curve
is 0.69 g, while the dispersion is 0.37. Finally, the overall failure probabilities were estimated
and multiplied by A6 = 0.6 to convert to AERs. The AERs and their c.o.v. are expressed both
graphically in Figure 12 as well as in Table 4. Figure 12 reports the estimated AERs along with
the error margins represented using their standard deviation, ;4. Clearly, the target accuracy in
the estimations has been met for all limit states except for collapse. The violation of this c.o.v.
target can be attributed to the fact that the 5% target was an active constraint in the optimization
procedure, therefore, more sensitive to the accuracy of the preliminary-study-based optimal sample
sizes. However, the preliminary study incorrectly estimated the conditional collapse probability for
S, of about 0.91% to be zero which also highlights the importance of n,. It would be reasonable to
specify stricter c.o.v. targets than desired at the stage of optimization if they are to be met rigorously,
although it may potentially increase the sampling demands. Notably, the relatively large annual
failure rates in this case study justify the use of m = 5 and only n = 1574 samples for providing
estimations with high accuracy. As would be expected, the variance reduction factor, nyc/n, is
more modest than seen in the first example, although still in the order of one magnitude, due to the

relatively large failure rates in comparison to those of the first example.

CONCLUSION

The evaluation of extreme nonlinear structural responses using complex models and the descrip-
tion of the uncertainty in the exceedance of associated acceptance criteria using failure probabilities
has become central to modern performance-based engineering approaches. Building on the idea of
classic double sampling, in this paper an extended two-phase-sampling-based stochastic simulation
scheme is proposed to tackle high-dimensional reliability problems in natural hazard applications
characterized by multiple limit states. The proposed methodology is cast as a generalization of
stratified sampling wherein Phase-I sampling generates strata-wise samples and estimates the strata
probabilities. Phase-1 sampling enables the selection of a generalized stratification variable for

which the probability distribution is not known a priori. To improve the efficiency, Phase-I sam-
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pling takes the form of SuS when the use of MC is deemed infeasible. Notably, the first case study
illustrated the significance of Phase-I sampling in realizing the adequate accuracy in the estimated
strata probabilities, which in turn affected the attainable lower limit on the c.o.v. The benefits of
employing SuS over MC are tremendous when the Phase-I sampling demands are high. On the
other hand, the goal of Phase-II sampling is to estimate the final failure probabilities within the
constraints of target c.0.v. with a minimum number of evaluations of the performance functions.
This is achieved by an optimization approach that requires a preliminary simulation-based study as
well as mathematical expressions for the c.o.v. Therefore, the required expressions were derived
while taking into account the sample correlations induced by MCMC and the uncertainty in the
strata probabilities. The case study examples demonstrated not only the estimation of large relia-
bilities for multiple limit states with error measures, but also the capability to roughly control these

estimation errors with minimum computational expense.
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APPENDIX I. STATISTICAL PROPERTIES OF THE SUS-BASED DOUBLE SAMPLING

ESTIMATOR

Properties of P,

The modified version of the Metropolis-Hastings (M—H) sampler proposed by Au and Beck
2001 is adopted in this study. This approach is based on a component-wise sample generation
to avoid the small acceptance rate of the original M—H sampler in high dimensions. Samples
0= in F;_1,2 < i < m are distributed as ¢(0|F;_) and represent consecutive states of a Markov
chain (typically, multiple chains exist arising from multiple seeds) with ¢(0|F;_1) as the stationary
distribution. A separate treatment of T is not necessary as it is independent of ¢ and therefore,
unaffected by any conditioning on S; (that is, g (t|S;) = ¢(t)). Therefore, for simplicity of notation,
0 is written with both 6 (samples generated using subset simulation) and T (generated with MC
simulation) included and not explicitly stated hereafter. It can be shown that the samples 91(:_1) €s;

will be distributed as:

s, (81Fi-1)q@[Fi-1) _ 15,(8]Fi-1)q(8)1F_,(0)

P(Si|Fi_1) ~ P(F—)P(SilFio1) (13)
15,(8)q(0)
= W =q(8[S)

This implies that E (ﬂf,,,(eﬁj‘”)) = Py, and consequently, E(Py. ) = Py, where Py is the
sample mean of the failure indicator function over a random subset of n; samples (denoted as ‘W)

selected from the set of 71; samples (denoted as ‘W,-) in S; expressed as:
- 1 i
Prn=— D 1ran®") (14)
l
k

The variance of P 1, can be derived using the following assumptions and notations similar to (Au
and Beck 2001): (a) At the (i — 1) simulation level, although the samples in “W; (and ‘Wi) are in
general dependent due to the seeds themselves being correlated, inter-chain correlation with respect

to the occurrence of failure is assumed to be zero, i.e., E ((Il}l;i)k - Pﬁ,h)(ﬂﬁf}:;),k, - Pﬁ,h)) =0
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(i-1)

for j # j’, where 1 denotes 1 f,h(ej"k‘”) and Gyk_l) € F;_; denotes the kth sample in the jth

Sfhijk
Markov chain; and (b) the covariance between llﬁf;?k and Ilﬁi)k for the samples in S; is denoted
as:
’ i—1 i—1
Re (k= k) =B (150 = Prn = Pr) (15)

where the stationarity of the sample sequence is invoked and hence the dependency is only on the
relative distance between the states (k — k”) in a Markov chain. Further, the independence from the
chain index j is justified because all chains are probabilistically equivalent. Notably, the covariance
at zero lag, Rs,(0) is equal to Py, (1 — Py, 1) since it equals the variance of the failure indicator
function (a Bernoulli random variable) for the samples in S;. Since not all Markov chain states of
any jth chain necessarily lie in S;, and more specifically in W}, let r; denote the set of chain indices
with at least one sample in ‘W, and n;; contain the set of Markov state indices for every j € n;.

Then for2 <i < m:

. 1 i
_ 92 _ - (-1
V(Pf,-,h) = ﬂi,h =E . E E (nfh,jk Pﬁ.,h)

JEm; kem;j

1 (i-1)
-—3N'E (1% _pe)
2 Z Z fhjk — 1 fih
mjem | \Kemy ! (16)

=Y D Rek- k)

i jem; k,k’EHij
1 Ppn(1=Ppp)
= Z Rs, (0)¢ij = - Wi

i jem; !

2

where ;; is a linear combination of the ratios Rs; (/)/Rs, (0) whose expression (i.e., the indices / to
be evaluated and the corresponding coefficients) depends on 7, 7r;;. The intra-stratum correlation
is captured by ¢; = X e, ¥ij/ni based on the intra-chain correlation between the states of the
stationary Markov chains. It is clear that the estimator ﬁfi, 5 1s consistent and that trivially, for the
first stratum V(Pp, ) = Pf, n(1 — Pf.p)/n1 which is the MC variance expression. Since inter-chain

sample correlation is assumed to be zero, it follows that P 1,n and P f;.h are independent. Notably,
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-, accounts for the variability in the MC realizations of the uncertainties in T as well since they

(i=1)

are included in the @ samples used to evaluate 1 Fhijk
J

while calculating Rs, of Eq. (15).

Properties of P(S;)

In general, P(S;) is asymptotically unbiased as shown below:

E(P(S)) = E(P(F-1)P(F;|Fi-1))
= [P(Fi—1) + O(1/N)]P(F;|F;—y) (17)

= P(S)+O0(1/N), 2<i<m—1

where the overbar denotes the complement of an event, the above properties of P(F;|F;_;) and
P(F;_1) can be noted from the original subset simulation paper (Au and Beck 2001). Obviously,
P(S)) is estimated only using MC samples and is unbiased. Also, E(P(S,,)) = E(P(F,_1)) =
P(Sw) + O(1/N). Next, expressions for V(P(S;)) and the covariance, Cov(P(S;), P(S;)) are
derived in terms of the quantities used in Au and Beck 2001 for the c.o.v. of P(F;|F;_1) that are

given by:

51_:\/(1—P<B|Fi_1>><1+y,->, e (8)

NP(F;|Fi-)

where 7; is a correlation factor associated with the samples of F;_; also lying in F; (Au and Beck
2001). Obviously, y; = 0. In the following discussion, it is assumed that { P(F;|F;_;), IS(FJ- |Fi-1)}
are independent for i # j which is a reasonable assumption according to Au and Beck 2001.
This also implies that P(S;) is unbiased (i.e., eliminating the O(1/N) term). Since P(S;) =

P(F,_;) — P(F;), the following can be written for2 < i < m — 1:

V(P(S) = 93, = V(P(Fi-1)) + V(P(F))

—2Cov(P(Fi_1), P(Fi_1)P(F)|Fi_1)) (19)

i—1 i
= PX(Fi)(1 = 2P(F|Fr1) ) 61+ PX(F) ) 63
k=1 k=1
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xe At the boundaries, V(P(S1)) = V(P(F;)) = P(F))(1 — P(Fy))/N and similarly, V(P(S,,)) =

~
o
w

V(P(Fn-1)) = P2(Fu-1) 277 62. Similarly, the covariance 92 = Cov(P(S;), P(S;)) can be
ij

704 derived as:

=]

83, =E(P(5)P(S)) - P(S)P(S))

=E (P(F-1)P(Fi|Fi1)P(Fj_1)P(Fj|Fj-1)) — P(S)P(S))

= (PCIF 1) = PPCRIF )6+ D) POFE; 1) 0
i—1 Jj-1
xP%E4>}]ﬁ+1)rlpwum4>—P®»mS»
k=1 k=i+1

7

o

s forthe case 1 <i <m—1andi < j < m. For convenience of notation, &;; will be defined in the

7

o

¢ following as:
j-1
& = (P(FIF) = P(EIF)@E+ D) [ ] POFFC) @
k=i+1

7

o

» For all the possible cases of i < j, (ﬁéu + P(Si)P(Sj)) can be written as:
ij

&P (Fin) (i 82 + 1) P(FyIFyy), 1 <i<m=—1,
i<j<m
&P (Fioy) (z',;ll 52 + 1), | <i<m,
j=m 22)
&iP(Fj|F-y), i=1,1<j<m
&ijs i=1,j=m
92+ P(S)P(S)), i=j

78 Obviously, the full covariance matrix (i.e., both i < j andi > j) can be constructed using Eq. (22).

o
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o

s Properties of P,

7

0 It can be shown that the overall estimator is asymptotically unbiased as follows:
E(Pra)= ) E(E(PraP(S)IP(S)))
i=1

i=1

ZE PP (S5)) Z Psu(P(S;) + O(1/N)) (23)
i=1
=Pyp+O(1/N)

7

+ While Eq. (23) is generally true, under the additional assumption of independence between

7

N

P(F;|F;—y) and P(F i|Fj-1),1 # j, the overall estimator is unbiased. The variance of the overall

7

s estimator can be decomposed according to the total variance theorem as:

3

m
% Zﬁﬁ,hﬁ(si)) ~E|V
i=1

oV E( \ ﬁﬁ,hﬁ(smzﬁ(si)))

PrnP(S)) |15(Si)))

-E Z 92,P(S))

i=1
=392, (ﬁgi + PZ(S,-))
=1

Zip WP 03,

i=1 j=1

+V

ZPf hP<S,)) (24)

+

7

>

Since 62 O(1/N), 192 O(1/N), and ﬁih = O(1/n;), it can be seen that P is consistent (i.e.,

o

guarantees convergence to true probability as N — oo and n; — o0).
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TABLE 1. Stratification and optimal sample allocation.

Stratum  yy [m/s] yy [m/s] P(S;) n;
Stratum 1 0.00 2263  8.04x 10T 150
Stratum 2 22.63 33.21 1.58x 107" 150
Stratum 3 33.21 4245  3.10x 1072 150
Stratum 4 42.45 4923  538x1073 150
Stratum 5 49.23 5543  1.30x 1073 150
Stratum 6 55.43 60.66  2.90x107* 150
Stratum 7 60.66 65.82  7.99%x 107 170
Stratum 8  65.82 70.96  2.33x107° 514
Stratum 9 70.96 ) 1.01 x 107 1146
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TABLE 2. Annual failure rates and estimation error for example 1.

Limit states Description AER P50 C.0.V. nmc/n
LS1 Yxoof > 1/200 1.24x 1077 437 24.0% 3.45x 10*
LS2 Yvioor > 1/200 1.43x107° 380 11.2% 1.37x10*
LS3 Yxroof > 1/400  8.52x 1077 393 12.8% 1.75x 10*

LS4 Yyroof > 17400 8.04x 1075 265 9.6% 3.32x 10>

LS5 Yo > 1/1000  6.15x 107 401 147% 1.84x 10
LS6 YY) > 1/1000 7.09x107 397 124% 2.25x 10*
LS7 Txa7>1/200 2.19x107 424 183% 3.37x 10*
LS8 Yyas > 1/200 821x10°° 335 10.7% 2.63 x 103
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TABLE 3. Preliminary study and optimal sample allocation.

Stratum  A(S;)  P(max Vi > 15%) P(maxg Yy > 3%) P(max, YU > 1.41%) P(Y") >091%) n;

Stratum 1 9 x 1077 0 0 0 0 25
Stratum 2 9 x 1072 0 0 0.04 0.12 659
Stratum 3 9 x 1073 0.24 0.52 0.52 0.60 797
Stratum 4 9 x 1074 0.84 0.92 0.96 0.96 68
Stratum 5 1 x 107 0.92 1.00 1.00 1.00 25
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TABLE 4. Annual failure rates and estimation error for example 2.

Limit states Description AER c.ov. nyc/n
LSI maxg Yx > 15%  2.67x 1073 832%  20.5
LS2 max; Yi > 3%  539x1073  7.59% 122
LS3 Y, > 3% 433x1073  7.66% 149
LS4 Y, > 3% 536x 1073 7.63%  12.1
LS5 Y5 > 3% 4.66x 1073 7.72%  13.6
LS6 Y, > 3% 217%x 1073 943% 197
LS7 maxe Y > 1.41%  8.42x107  6.98% 9.2
LS8 Y s> 141%  7.61x107° 7.19% 9.6
LS9 Y = 1419 831x 1073 7.01% 9.2
LS10 YE’) >141%  770x107° 7.17% 9.5
LS11 Y)) > 1.41%  445%x107° 7.87% 137
LS12 Y 5 091%  1.08x1072 642% 84

roof
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Fig. 1. Illustration of sample distribution for

stratification scheme.
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i STRATIFICATION AND
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C(H)/(C(GP(Sm)) K 1Vh

Yes No
! I
Generate i MC samples of & Generate N MC samples of o
Set Xo = X1, Xm= Xy Set xo = X1, Xm= Xy

Set x; as the (1 — p)Nth largest
value among the samples
A generated in F;_;; Define §; =

Set x; as the (1 -p )n th 0:x € (i xil}

i=i+1 largest value; Define S; = l

{6:x € Cri-v i}

Use pN samples in F; as seeds to
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samples distributed as q(0|F;)

using MCMC

PRELIMINARY STUDY
AND
OPTIMAL SAMPLE
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I
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Fig. 2. Flowchart of the proposed stochastic simulation procedure.
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Fig. 3. Three-dimensional numerical model of the 45-story concrete building using equivalent

frame method.
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Fig. 4. Wind loading for a representative sample in the last stratum: (a) Evolution of the mean
hourly wind speed; (b) wind direction; (c) X-direction wind load at the 40th level.
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Fig. 5. Wind-induced structural yielding for a representative sample of the last wind speed stratum.
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Fig. 6. (a) Updated wind speed hazard curve; (b) updated strata probabilities.
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Fig. 7. Annual exceedance rate curves for the limit state functions.
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Fig. 8. Plan view of the four-story archetype steel building.

52



Stratum 1 Stratum 4
Stratum 2 ° Stratum 5
Stratum 3

100 1 1 1

6 6.5 7 7.5 8
M

Fig. 9. Strata-wise sample scatter of M and r.
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Fig. 10. Spectral acceleration hazard curve.

54



(a) | (b)

10%¢ _ f I T 1 =
maxj, Ty I | |
maxy, Tff) I | |
_____ A S 0.8
ook s-traluta thresholds, x; ]——-—AJ-Th i A
0 limit state thresholds . I
g ’!. “ o6
= I )
Hog2 ‘ ! 2
e 10 ] | E
. ! A B Soaf
r | | =
-4 | | | i =
10 I I I I 02k O  Raw estimates, Py,
! | | | Fit collapse fragility
! | | | — — — Error bounds
10 . 1 1 (I 0 . . .
107! 10° 0 0.5 1 1.5 2
Su(T1,5%) [g] Sa(11,5%) [e]

Fig. 11. (a) Evolution of drift ratios with increasing S, (77, 5%) and stratum number; (b) estimated
collapse fragility curve with error bounds.
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Fig. 12. AER with error estimation.
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