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Abstract

Letd > 2 and let K and L be two convex bodies in R such that L C int K and the
boundary of L does not contain a segment. If K and L satisfy the (d + 1)-equichordal
property, i.e., for any line / supporting the boundary of L and the points {¢+} of the
intersection of the boundary of K with [,

dist™* " (L N1, cp) + dist! L N1, o) = 269!

holds, where the constant ¢ is independent of I, does it follow that K and L are
concentric Euclidean balls? We prove that if K and L have C?-smooth boundaries and
L is a body of revolution, then K and L are concentric Euclidean balls.
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1 Introduction

Letd > 2 and let K and L be two convex bodies in R¢ such that L C int K and the
boundary of L does not contain a segment. For any line / supporting L we consider
two points ¢4 of the intersection of the boundary of K with /. Given i € R we say
that the bodies K and L satisfy the i-equichordal property if there exists a constant o
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K
Fig. 1 We have dist’ (L N1, 4) +dist! (L N1, z_) = 25"
independent of / such that
dist' (L N1, ¢4) +dist (L NI, ¢) = 20! )
(see Fig. 1). If i = 0 we replace (1) with
dist(L N1, ¢y)dist(L N1, -) =0 )

(cf. [5, p-233])).

Problem 1.1 Letd > 2 and i € R. Are two concentric Euclidean balls the only pair
of bodies in R? satisfying the i-equichordal property?

Similar questions to that of the problem above were raised in [12], [2], [4, AL, p. 9],
and [15]; see also [11] and references therein. In particular, it is known that the answer
to Problem 1.1 is affirmative for d > 3, provided L is a Euclidean ball [2].

We would also like to mention several results related to the connection between
Problem 1.1 and Problem 19 of Ulam from the Scottish book, which asks if a solid
of uniform density which floats in water in every position is necessarily a sphere, [0,
p-90], [4, A9, p.19].

The plane counterexamples to Ulam’s problem constructed in [1, 13, 14], show that
ford = 2,i = 1, the answer to Problem 1.1 is negative, even under the additional
assumption that for every line [ supporting L, the point of tangency L N[ divides the
chord K N[ into two parts of equal length. On the other hand, it is known [3] that,
under this division assumption and under the assumption that / divides the boundary of
K in constant ratio u(o)/(1 — u(o)) foru =1/3, u =1/4, u =1/5,and u = 2/5,
the answer to Problem 1.1 is affirmative; see also [7]. Additionally, if d > 3, and if for
every line [ supporting L the point L N/ divides the chord K N1 into two parts of equal
length, then the answer to Problem 1.1 is affirmative, [8]. Finally, we remark that a
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Fig.2 KN{(x,y,z):y=0}and L N{(x,y, z) : y = 0} with their boundaries described by the graphs of
functions n = f(§) and n = g(&)

negative answer to Problem 1.1 inthe casei = d + 1, d > 3, presents a possibility for
a negative answer to Ulam’s conjecture [9, 10]. In this paper we prove the following
result.

Theorem 1.2 Let d > 3 and let K and L be two convex bodies in RY of class Cc?
satisfying the (d + 1)-equichordal property. If L is a body of revolution, then K and
L are concentric Euclidean balls.

A similar result can be proved for general i-equichordal property, i € R. Since our
interest in Problem 1.1 comes, partly, from its relation to the problem of Ulam, and
since, in our opinion, the proof for i # d + 1 does not add to the ideas when L is a
body of revolution, we restrict ourselves to the case i =d + 1.

Notation and basic definitions. Let d > 2. A convex body K C RY is a convex
compact set with a non-empty interior int K. We denote by B%(r) the Euclidean ball
centered at the origin of radius 7 > 0. Given £ € S ' weputét = {peR?: p.& =
0} to be the subspace orthogonal to &, and p - & = p1&1 + - - - + pg&y is the usual inner
product in R?. We say that a line / is a supporting line of a convex body L if L NI # @,
butint L NI = @. Let m € N. We say that a convex body K in R is of class C™ if for
every point z on the boundary 9K of K C R there exists a neighborhood U., of z in
R¢ such that 9K N U, can be written as a graph of a function having all continuous
partial derivatives up to the m-th order.

2 Auxiliary Statements, K and L are the Bodies of Revolution About
the Same Axis in R3

First we introduce some convenient notation which helps to work with bodies of
revolution. Let K C R3 be a body of revolution about the x-axis with C* boundary
described by a function n = f(£) > 0 supported by the segment [—R{, R>]. Assume
also that L is a body of revolution about the same axis, and its boundary is described
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Fig.3 The section K N {(x, y,z) : x = a(s)}. We have g(a(s)) = v/ f2(a(s)) — o2

by the function n = g(¢) > 0 supported by the segment [—ry, 2] C (—Ry, R2) (see
Fig. 2).

We will denote by H; the plane parallel to the y-axis and containing the line
I(s) = {(£,0,s& + h(s)) : & € R}, where I(s) is tangent to the graph of g at the
corresponding point (a(s), 0, g(a(s))), s = tanw with « € (—m/2, 7/2) being the
angle between the x-axis and /(s), and & (s) is the z-intercept of I(s).

Let s € R be fixed and let £, be the line parallel to the y-axis passing through
(a(s), 0, g(a(s))). Since the section K N Hy is symmetric with respect to the line
[(s), the chord Gy = K N £ is divided by (a(s), 0, g(a(s))) into two parts of equal
length o.

Let s € R and a(s) € (—ry, r2). Since K is a body of revolution, the chord of
length 20 can be inscribed into a circle of radius f(a(s)) only provided

g(a(s)) =/ f2(a(s)) — o2

(see Fig. 3). Since K N {(x, y,2) € R3:x=—r, rp} are discs of radius o, we have

f(=r)=f(r) =0, gE&) =/, —0? V&el-r,nl 3

Translating the bodies if necessary, we can and do assume that a(0) = 0.
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2.1 Some Results on the (d + 1)-Equichordal Plane Bodies Symmetric with
Respect to the Axis

Let P C R? be a convex body containing the origin in its interior with C3-smooth
boundary. Assume also that P is symmetric with respect to the x-axis and it satisfies

the (d + 1)-equichordal property with respect to the origin, i.e., there exists a constant
o such that

voes',  pbtO) + ppt(-0) = 2007,

for some d > 3. If the upper part of the boundary of P is described by a graph of a
positive function ¢ on [—1y, 12], then by the Pythagorean Theorem and the symmetry
with respect to the x-axis, the function ¢ satisfies

(4 @2V 4 07 4 97 () = 200 @)
(see Fig. 4). Here y € [—11,0], 71 > 0, and x € [0, 2], 70 > 0, are such that

o) _ 90
x Iyl

ie.,

(20.d+1 _ ()C2 +¢2(x))(d+l)/2)xd+1

d+1 _
Iy - (xz 4 ¢2(x))(a'+l)/2 ®)
To simplify the computations we will write
¢*(0) =0? =2’ + x(0), xel-u. nl ©)

where x is a function we want to determine. By the symmetry of P with respect to
the x-axis, we have ¢ (0) = o, hence, x (0) = 0. We rewrite (4) as

(02+X(x))(d+l)/2+ (02+X (y))(d+1)/2 220d+1’ 7
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(\Aul\p)) *, X))

Fig.4 The equichordiality of P

y € [—11,0], x € [0, 12]. Let

_x@ P+ -0 P+
SEiae _

q(2) p) = " 1. ®)
Then conditions (7) and (5) can be written as
1+ g2 4 (14 q(y)“th2 =2, ©)
| |d+l B (20d+1 _ (0_2 + X(x))(d+l)/2)xd+l B Q-0 +q(x))(d+l)/2)xd+l
T (02 + x(x)@+D/2 B (1+q(x)@+b/z -
(10)

Our first lemma is technical, but it is crucial for our further considerations.

Lemma 2.1 Let x be as in (7), where y is as in (10). Then
20%%"(0) + (d + D(x'(0)* = 0. (11)

Proof Since ¢(0) = 0, we can assume that there exists a neighborhood Uy of the
origin such that |g(x)| < 1 for all x € Uy. Using (10) we see that fory < Oand x > 0
we have

2 — (1 + g(x))@+D/2yl/@+D

Iyl =x TETELE Vx € Uy. (12)
We will show first that
ly| = x(l —e1x + (—82 + — sf)xz + o(xz)) Vx eV, (13)
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where Vo C Up is a neighborhood of the origin that will be chosen later and ¢,
Jj = 1,2, are the Taylor coefficients of the decomposition of g near the origin,

_ q(j)(()) _ X(j)(o)
j! o2’

q(x) = e1x + 25> + 0o(x?), ¢ xeVy. (14

To prove (13), we compute the first and second derivatives of the function

(2 — (1 4 7)@+D/2y1/@+D
(1+2z)1/2

Routine calculations show that they are equal to —1 and (3 — d)/4 respectively, and
we can express y via x up to the terms of the second order,

3—-d
YI=1-g0) + =——¢*®) +o(g?).

Now we will use (14) and the previous decompositions to obtain

ly| = x(l — (e1x + 82)62) + (e1x + 82)62)2 + 0(x2)>.

This gives (13). Next, we use (13) to obtain two relations that will lead to (11). We
see that

x — |yl = e1x? + o(x?). (15)
Since
V2 =x7(1 = 261%) + 0(x),
we also have
X2+ y2 =22+ o(xz). (16)
Using Taylor’s decomposition,

d+1+f—
2 © 8

1
(142)@tD2 =14 Z+oi@), <1, (17)

and applying it for g (x) and g(y), the sum of these and (9) results in

d+1 d>—1

0="—"— @@ +q0)+— @) + ) + 0(g*(x)) + 0(g* ().
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fix)
//4{/:;—\iyﬁ§\\mmo

7 \ (x)

Fig.5 We have f2(x) = ¢2(x) + g2(0) = ¢%(x) + f2(0) — o2

This and (14) yield

d+1
O=+

(e1x + e2x% — &1]y| + £2)7)

2 _
+ ((e1x + 2322 + (—e1ly| + £29%)?) + o(x?)
d+1 d* -1
== (e1(x — |y]) + 2> +y?) + < et (x? +y?) +o(x?)
d+1 d*—1 d+1
= 81(x—|y|)+< 3 sf—i- 3 82)(x2+y2)+0(x2).

It remains to apply (15) and (16) to obtain

d+1 d*>—1 d+1
0= + £%x2 + 8% + + &2 )2x% + o(x?).
2 8 2
Therefore,
d+1+d2_1 e+ (d+1ery=0
2 4 )7 2
or
(d+ )&l +4e, =0.
This gives the desired result by (8). O
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2.2 Auxiliary Formulas Describing the Boundary of the Horizontal Section
P=KNH,

We use the notation from the previous subsection. If f describes the boundary of K,
and ¢ describes the boundary of the horizontal section K N Hy — (0, 0, g(0)), then

2 = ¢*(x) + £2(0) = ¢*(x) + f2(0) —0?  VYxe[-t,m] (18

(see Fig. 5). Observe that if o is sufficiently close to zero, then [—t1, T2] C [—71, 72].
On the other hand, if o is large enough, then [—r1, 2] C [—11, T2]. The next lemma
shows that in general we have only these possibilities.

Lemma 2.2 We have [—r1,1r2] C [—11, T2] or [—T1, T2] C [—11, 12].

Proof Assume the contrary, we have
—r < -1, r<r1, or T < -—ry, T <Tnr. 19)

We will show that the first case in (19) is not possible, the proof that the second one
is not possible either is similar.

To this end, consider the horizontal chord inscribed into d K and tangent to the
graph of g at (0,0, g(0)). We have f(—11) = f(r2) = g(0) and f(r2) > f(72),
otherwise, the points (R, 0, 0), (12, 0, f(12)) and (2, 0, f(r2)) are on the boundary
of K, which contradicts its convexity. On the other hand, by (3) we have f(—r;) =
f(@r2) = o.Hence, f(—r;) > f(—rt1). This contradicts the convexity of K, for, the
points (—Ry, 0, 0), (—r1, 0, f(—r1)), and (—71, 0, f(—71)) must lie on its boundary.

O

Let

A =5/ f2a(0) — () + x(a(s) — 0,

where for every s € R we have a(s) € (—r1, r2).

Lemma 23 Lets € R, a(s) € (—r1,r2) N (=11, 12) be fixed, and let x, y be so small
that a(s) + x, a(s) —y € (—r1,1r2) N (=11, 12). Then (7) and (9) hold for these x, y,
with

Xa(x) = =2(a + A)x + x(a + x) — x(a)
instead of x, and q,(x) = xq4 ()c)/cr2 instead of q.

Proof Fix any s € R and a(s) € (—ry,r) N (=11, 72). We can assume that the
boundary of K N H; is described by a positive function i satisfying the (d + 1)-
equichordal property (we pick (a(s), 0, g(a(s)) as the origin in Hy),

21+ 5% + wz(xm))(d-&-l)/z

(20)
+ (yZ(l +S2) + wZ(ym))(d+l)/2 — 20,d+l’
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fla(s)+x)

Ze@e) Ta(s1x)

d
-n a(s) )
L

Fig.6 We have ¥2(xv/1 +52) = f2(a(s) + x) — (g(a(s)) + xs)?

a(s)+x R,

where

YovT+sD) _ yoVI+s)

X [yl

This gives

(2O.d+1 o ((1 +S2)X2 + wZ(xm))(d+l/2))xd+l
(14522 + Y2 (/T4 52)) @+ D2

y[H = , Q1)

and x and y are so small that the conditions of the lemma are satisfied.

By the Pythagorean theorem (see Fig. 6), the assumption a(0) = 0, and (18), we
have

YAV 1+ 52) = fals) +x) — (g(als)) + xs)?

= f2(0) — 0% + ¢*(a(s) + x) — (\/ f2(a(s)) — a2 + sx)?

= 12(0) = 0% +8%(a(s) + %) —(/ £2(0) + ¢2(a(s)) — 202 + 5.

Therefore, using (6) we have

x2(1+ 5% + ¥2(xV1 +52)
=22+ £2(0) — 02 + ¢ (als) + x) — (f2(0) + ¢*(a(s)) — 20%)

—2x54/ f2(a(s)) — o2

=x>+ ¢%(a(s) +x) + o>

- ¢2(61(5)) —2x8+/ f2(a(s)) — o2

=x? +¢%as) +x) + o’ — ¢ (a(s))
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— 25/ 2@(0) + #2(a(s) — 207
=02 —2a(s)x + x(a(s) + x) — x(a(s)) — 2xA.

Substituting the last expression into (20) with y defined by (21), we have

(0% — 2a(s)x + x(a(s) +x) — x(a(s)) — 2x A)@+D/2
+ (02 +2a(s)y + x(@(s) — y) — x(a(s)) +2yA)d+th/2 = o5d+1,

where
i o 208 = @ =20t Ax ok x(at o) - x(@) e
(02 —=2(a+ A)x + x(a+x) — x(a)d+h/2
This gives the desired result. O

Corollary 2.4 Let s € R be fixed and such that a = a(s) € (—r1,r2) N (=711, 12).
Then

202x" (@) + (d + 1)(x'(@) —2(a + A))* =0, (22)

where A is as in the previous lemma.

Proof By the previous lemma, we have (9) and (12) with ¢, instead of ¢ and , instead
of x, xa(0) = 0. This gives (11) with yx, instead of x, which is the desired result. O

2.3 Consequences of the Concavity of yon (—rq, r;) N (—171, 72)
Our next goal is to show that
x@ =0 Vae[-r,rn]N[-1,1] (23)

The proof of (23) is contained in the following three statements.

Lemma2.5 Let .y > 0, Ay > 0 be such that [—A1, A2] C [—711, T2] and
(@% + x (=22 4 (02 + x (A)@TD/2 = 25T (24)

If x <0on[—A1, A2], then x = 0on[—A1, A2]. In particular, if x < 0on[—11, 12],
thenty =1 =o0.

Proof By (6), we have
0<—x(x) <o’ —x*<0’  xel[-Ahl
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By (24) we can assume that for all x € (0, A2] and for the corresponding y € [—X1, 0)
we have the equality in (7). If x(x) < O, then the left-hand side of this equality is
strictly less than 209+1, Hence, x =0on[—Aq, A2].

Assume now that [—A1, 2] = [—11, 12]. Since

T1(d+1)/2 + r2(dJrl)/Z =25 +D/2,

by (6) we have two possibilities

7 <o, n >0, X(©@)=¢*(0) =0, or (25
7 >0, n <o, X(=0) = ¢*(—0) = 0. (26)
We will consider case (25), the proof for (26) is similar. By (25), x(¢) = 0. Hence,

¢(o) = 0 and [0, 7o] = [0, 0], i.e., 7o = o. This gives 17 = o and the lemma is
proved. O

Lemma 2.6 Let yx satisfy (22), x (0) = 0, and let x'(0) = 0. Then x = Oon[—ri, r2]N
[—71, 2]

Proof Using (22) we have x”(a) < O forall a € (—ry, 1) N (—11, ), i.€., X 18
concave down on (—ry, r2) N (—11, 72). Then using the conditions of the lemma we
get x <0on[—r1, ] N[—11, 12]. Now we apply Lemma 2.5.

If [-11, 2] C [—r1, 2] we put Ay = 11, Ap = 12. Let [—ry, 2] C [—11, 12].
Consider the maximal segment [—A, A2] € [—ry, r2] for which (24) holds. We can
assume that A; = r; and A, < ry (the proof in the case Ay = ry, —A; > —ry is
similar). By Lemma 2.5 we have x = 0 on [—A1, A2]. Therefore, using (3), (6), and
(18) we have

g = -0% PP =0’-x fFa) =0 -2’ +g%0),
for all x € [—X1, A2]. We recall that a(0) = 0. Since for all y € [—A1, 0] we have
10,0, 8(0)) = (v, ¢ (), 8(0))| = o,
by the (d + 1)-equichordal property we also have
1(0,0.8(0) — (x,¢(x),g(0))| =0 Vx € [0, A2].

This gives A» = —X1 and L must be a Euclidean ball, i.e., we can assume that rp = A.
O

Lemma 2.7 We have x’(0) = 0.

Proof We recall that x (0) = 0. Assume the contrary, that x'(0) # 0. Let x'(0) < 0
(the proof for the case x’(0) > 0 is similar). By (22) we can assume that x is concave
down. Hence, there exists & > 0 such x > 0 on (—¢, 0) (we recall that a(0) = 0).
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('Ezaosg(o))

Fig.7 The chord Gy, intersects int 7', but it is longer than 2o

Let QO = {(x,y,2) : |y] <o, x <0}, and we recall that Gy, = K N ¥£; is a chord
centered at (a(s), 0, g(a(s)), parallel to the y-axis, and inscribed into dK (G is of
length 20).

By symmetry with respect to the xz-plane the ends of Gy, s > 0, must belong to
a0 N oK. We will show that for some small s > O this is not true and, by this, will
obtain a contradiction. To this end, let 0 < &; < & be so small that for & € (—¢q, 0)
we have

3 (€) =0 + (D€ +0(E) > 0% V& e (—¢1,0), (27)

where o() is the remainder from the Taylor decomposition of ¢. This shows that the
points on the curve y_ = {(§, —¢ (&), g(0)): & € (—&1,0)} C 9K donotbelong to Q.
By the symmetry of K N Hy with respect to the line K N HyN{(x, y,z) € R : y =0},
the points on the curve y4 = {(§, ¢(§), g(0)) : & € (—¢1,0)} C 9K do not belong to
Q either. Define the plane set

B = convhull (y_, y4)
={(5,y,80) eR’: —e) <£ <0, —¢(§) <y < $(£)} C K N Hy,

and let A = convhull (K N Q, B). By convexity of K we have A C K. We claim
that for some s > 0 small enough, the ends of G are not on dQ N dK, which is a
contradiction.

Indeed, let 0 < &2 < ¢;. Consider a triangle 7 with with vertices (0, 0, g(0)),
(—€2,0, g(0)), (—&2,0, —g(0)/2), and let G, 0, be a chord inscribed into 9K,
parallel to the y-axis and passing through (x, 0, z) € int T'. If &7 is small enough and
(x,0,z) €int T, then the ends of Gy 0,y are not in Q and by (27) its length exceeds
20 . Since g is concave, we can find s, = 5,(g2) > 0 so small thata(s,) € (—&2/2,0),
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and (a(s,), 0, g(a(s,))) € intT. In other words, the chord G, intersects int 7 (see
Fig. 7). But as we noticed above, the length of G, exceeds 20, a contradiction. The
proof in the case x’(0) < 0 is complete.

The case x'(0) > 0 can be proved similarly, one has only to consider a(s,) > 0
for which x (a(s,)) > Oands < 0, and to take Q = {(x, y,z) : |y| <o, x > 0}. The
lemma is proved. O

2.4 Conclusions

Let K and L be two bodies of revolution about the x|-axis in R3 satisfying the con-
ditions of Theorem 1.2. We recall that a(0) = 0, and by (23) we know that x = 0 on
[=r1, 2]N[—71, T2]. This means that¢>2(x) =o2—x2forallx € [—r;, n]N[—11, T,
and (18) yields

F2x) = ¢*(x) + £2(0) — 0% = £2(0) — x? (28)

for all x € [—ry, 2] N [—11, T72]. Moreover, (3) and (28) yield

g(x) =/ f2(0) —x* — 02 (29)

forall x € [—r1, 2] N [—11, 2], and

g(=r) =g() =0, ri=r=,/f*0)~0a?

provided [—ry, r2] € [—11, T2].

3 Auxiliary Statements, the Versions of Theorem 1 of Barker and
Larman [2, pp. 83-84]

Lemma2.1 Let K C R and L C R3 be two convex bodies of revolution about the
x-axis. Assume as above that their boundaries are described by f and g and satisfy
(28) and (29). Then K and L are concentric Euclidean balls of radii f(0) and g(0).

Proof Let IT be the xz-plane, and let K N IT and L N IT be the corresponding sections.
Observe that since K and L are the bodies of revolution, the sets K N IT and L N IT
are symmetric with respect to the x-axis.

We will set up a certain 2-dimensional sweeping procedure in which the ends of
the chords, that are tangent to the circular part of L N IT and inscribed into 0 K N I,
will sweep out the corresponding circular arcs on d K N I1. Then, we will show that
these arcs comprise d K N I, thus concluding that K N IT and L N IT are concentric
discs.

Case 1: [—r1,r2] C [—711, 72]. As we just mentioned, L N IT is a disc of radius
g(0) =/ f2(0) — 02 = r; = ry. We will show that K N IT is a disc of radius f(0).
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Fig.8 The first steps in the sweeping procedure in the case [—ry, 2] € [—71, 72]. On the left {,.1 is below
the x-axis, and on the right it is above the x-axis

Let J1 = [g“ll, §r1] be the chord inscribed into 9 K N IT and tangent to dL N IT at
(a1, g(ay)), and such that its left end is {ll = (—g(0), f(—g(0)), and right end is
¢{ = (b1, dy). We have two possibilities, dy = f(b1) > Oordy = —f(b1) <0
(;rl is below or above the x-axis, see Fig. 8). Consider the arcs

By ={(a, f(a)) :a €[—g(0), g0}, 1 ={(a,g@):ac[-g0),gO)]},

of concentric circles, and let J'(b) = [g“ll (b), g“,l (b)] be the chord inscribed into
dK NTI and tangent to 0 L N IT at (b, g(b)) € By for b € [a;, g(0)]. Since the distance
between (b, g(b)) and §ll () is o, J'(b) is divided by (b, g(b)) into two parts of
equal length. Hence, while the left end of 7! (b) is sweeping out B; by moving from
(—g(0), f(—g(0)) to (g(0), f(g(0))), its right end must move along the arc of the
circle of radius f(0) (from (b1, dy) to (g(0), — f(g(0)))) joining —3; from the right
at (g(0), —f(g(0))).

Letdy = f(b1) > 0 (Crl is above the x-axis, see the right part of Fig. 8). Then,
the right end of 7' (b) for b € [a;, g(0)] sweeps out the circular part of 9K N IT
containing the one joining (f(0), 0) with (g(0), —f(g(0))). By the aforementioned
symmetry of d K N IT with respect to the x-axis, we see that the part of d K N I lying
in the right half-plane is circular. Since the above procedure is symmetric with respect
to the z-axis (we could start with the chord 7 tangent to L N IT at (—ay, g(—ay))
and follow the sweeping arc joining (—b1, d1) to (—g(0), — f(—g(0)))), we conclude
that 0 K N IT is a circle of radius f(0).

Now let dj = — f(b1) < 0 (see the left part of Fig. 8). By the symmetry, four
points (b1, & f(b1)) are on 3K N IT and we recall that f(x) = 1/ f2(0) — x2 for
x € [—b1, b1]. We will repeat the above procedure for the chord 7> inscribed into
dK N II and tangent to dL N IT at (az, g(a2)), 0 < ax < aj, where J» = [§l2, ;rz],
¢F = (=by, f(=b1)), ¢? = (by, d), by > by, and the arcs By = {(a, f(a)) : a €
[=b1, b1}, Br.
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B, T

Tzl rz

1
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K K

Fig. 9 The first steps in the sweeping procedure in the case [—71, 2] € [—ry, r2]. On the left {-(12) is
above the x-axis, and on the right it is below the x-axis

We have two possibilities again, d» = f(by) > 0, and dp = —f(by) < 0. If
dy = f(by) > 0, arguing as above, we see that the part of 9 K N IT lying in the right
half-plane is circular, and by the symmetry, d K N ITis acircle. If d» = — f(b2) <O,
taking into account that (b5, = f (b)), are on dK NITand f(x) =/ f2(0) — x2 for
x € [—ba, by], we repeat the procedure again. producing the chords J3 = [513, {,3],
0 < a3 < ap, and etc.

If for some j > 3 we have d; = f(b;) > 0, we finish as above. If, on
the other hand, d; = —f(b;) < 0 for j = 3,4,..., we produce a sequence
of segments {[—b;, bj]};?ol such that [—b;,b;] C [=bjt1,bj4+1], and such that

fx) =/ f20) —x2forx € [-b,b], b =1limj_, o bj.

We can also assume thatd; = — f(bj) < —g(0) forall j = 3,4, ....Indeed, since
the points (£b;, & f(b;)) must be on dK N I1, then the condition — f(b;) > —g(0)
for some j > 3 implies that the chord with its left end at (—b;, f(—b;)) must have a
positive second coordinate for its right end, so dj 1 = f(bj+1) > 0.

We claim that d K N IT is a circle. Indeed, let b < f(0) (otherwise, we are done). If
— f(b) = —g(0), then the points (b, = f (b)) must be on d K N I1. Hence, the chord
with its left end at (—b, f(—b)) must have (b, f (b)) for its right end, f(b) > 0, and
we are done. Finally, let — f(b) < —g(0) and let

b =sup{x € [0, f(0)]: f(x) =4/ f2(0) —x2 on [0, b]}.

Then — f(b) > —g(0), otherwise (£b, =1 (b)) are on d K N I1, and we can repeat the
procedure, contradicting the definition of b. This finishes the proof of Case 1.

Case 2: [—11, 12] € [—r1, 2]. Let J, = [§(a), ¢r-(a)] be a chord inscribed into 0 K
N IT and tangent to d L N IT at the point (a, g(a)), for some a € (—11, 12) (see Fig. 9).

Consider the arcs of concentric circles By = {(a, f(a)) : a € [—11, 2]} and
B1 = {(a, g(a)) : a € [—11, 1]} and observe that for any b € [0, 12] the distance
between (b, g(b)) and ¢;(b) is o and Jp is divided by (b, g(b)) into two parts of equal
length. Hence, while the left end ¢;(b) for b € [0, 72] is sweeping out the part of
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B1 by moving from ¢;(t2) to §(0) = (—71, f(r1)), the right end ¢, (b) must move
along the arc of a circle of radius f(0) joining By from the right at ¢,(0). If we
denote the coordinates of ¢-(t2) by (v, d1), we have (28) and (29) for all x in the
interval [—7y, v1] strictly containing [—71, 72]. As in Case 1 we have two possibilities,
di = f(v1) <0ord; =—f(v) <O.

Ifdy = — f(v1) < 0, we stop the procedure and see that the parts of d K N IT and
dL N TI, located in the right half-plane are concentric circles.

Letd; = f(v1) > 0. Denote by @ € (0, w/2) the angle between the tangent line
to d L N IT passing through (R7, 0) and the xj-axis (we recall that (R», 0) is the point
of intersection of d K with the x-axis). If «; is the angle between the line containing
Jr, and the x1-axis, then v| — 10 = o cos o, and by convexity o] < «. We repeat the
process with the larger arcs of concentric circles B, = {(a, f(a)) : a € [—11, v1]}
and By = {(a, g(a)) : a € [—11, v1]} instead of By and B;. As above we have two
possibilities dy = f(v2) > 0 or do = — f(v2) < O for the corresponding right end
(v2, d2) of the chord 7y, . If d» = — f(v2) < 0, westop. If d» = f(v2) > O we repeat,
observing that v, — vi = o cos ay for the angle oy between the line containing 7,
and the xj-axis, @y < «. Proceeding this way, we will construct the corresponding
arcs B and Bj, j = 3,...,m. If for some j we have d; = —f(v;) < O for the
corresponding right end of the chord ju,q , we will stop. Otherwise, we will proceed
withd; = f(v;) > Oforall j = 3,...,m, and the corresponding angles «; < a.
Since v; —vj_| =0ocosa; > ocosa for j =2,...,m, we will have

tp=T2+ W —1)+ -+ Uy —Uy—1 =12 +mocosa > Ry,

provided m is large enough. We have proved that the parts of dK N IT and 0L N IT,
located in the right half-plane are concentric circles.

Similarly, while the right end ¢, (b) for b € [—1y, 0] is sweeping out the part of B
by moving from ¢,(—11) to &-(0) = (72, f(12)), the left end ¢;(b) must move along
the arc of a circle of radius f(0) joining B; from the left at £;(0). If we denote the
coordinates of {;(—ty) by (—u1, 91), we have (28) and (29) for all x in the interval
[—u1, 2] strictly containing [—t1, 72]. This gives (28) and (29) for all x € [—u1, 12].
Considering two cases 02 = f(12) > Oor 0o = —f(12) < 0, we can repeat the
argument above to obtain that d K N IT and dL N IT are concentric discs. O

Lemma2.2 Let K and L be two convex bodies in R3 satisfying the conditions of
Theorem 1.2. If L is a body of revolution, then K is also a body of revolution with the
same axis of rotation.

Proof We assume that the x-axis is the axis of rotation of L. We will set up a 3-
dimensional sweeping procedure rotating the cones that are tangent to d L with vertices
ondK.

Let W, be a plane parallel to the yz-plane and passing through (x, 0,0), x € R,
and let M (x) C W, be a circle centered at (x, 0, 0). We will show that for every x
such that (x, y, z) € int K, the generators of the sweeping cones cut out the circles
M (x) C 0K, thus proving that K is a body of revolution about the x-axis.
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Fig. 10 The sweeping cones in the 3-dimensional procedure. On the left part we have M, is left to M
and on the right part M,/ is right to M,

Lete' = (x/,0,0), ¢” = (x”, 0, 0), be two points of the intersection of the x-axis
with 0K, x> 0, x” < 0. To set up the procedure, we will make several auxiliary
remarks and observations.

By the (d + 1)-equatorial property of K and L, for every ray t emanating from ¢’
and tangent to 0 L we have

e’ —aL Nt +10L Nt — oK Nzt = 26971, (30)

Since |¢’ — 0L N 7| is constant independent of 7, by (30) we see that the same is true
for |[dL Nt — 3K N t|. Therefore, for all rays T emanating from ¢’ and tangent to
dL, all the chords K N t have the same length. Since L is the body of revolution,
for any rotation & = @, by the angle ¢ € (0, 27) around the x-axis, the points
{0L N Dyt : ¢ € [0,27]} form a circle centered on the x-axis. By similarity of
triangles, the ends {0K N O, # e : ¢ € [0,2m]} of the chords K N ®,1 form a
circle My, = 9K N C, centered on the x-axis, where C, is the cone tangent to 9L
with the vertex at ¢’ (see Fig. 10).

Now we take any point e € M, C 9K and repeat a similar argument for the cone
C, tangent to d L with the vertex at e. Observe that for any ray v generating C,, the ends
{0KN®yv # Dye : ¢ € [0, 2]} of the chords KN, v form a circle M, (') C K
with the center on the x-axis and which is parallel to M, (see Fig. 10).

Indeed, let e € M,/ and let v be any ray generating C,. By rotation invariance of
the length, |[® (K Nv)| = | K Nv|, and by the rotation invariance of L, |[e —9dL Nv| =
|®(e) —dL N ®(v)|. Since (30) holds with e, v, and ®(e), ®(v), instead of ¢/, T, and
since for ¢ € [0, 2] the points P, (e) and IL N Py (v), “move along” the circles
centered on the x-axis, we see that the ends {0K N ®yv # Pye : ¢ € [0, 27]} of
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Fig. 11 Sections of the sweeping cones by the xz-plane and the construction of xi and xé

the chords K N ®,v form a circle M, ,(¢') parallel to M, and centered on the x-axis.
This proves the observation. We can repeat the same argument with ¢ instead of ¢’.

Now we are ready to make the first step of our procedure. Let

xj; =inf {x : M(x) = M, ,(¢') withv generating C, e € M},
x{ =sup{x : M(x) = M, (e") withv generating C,, e € M,}.

Observe that x| < x" and x” < x{'. We will consider two cases, M, is right to M,
and M, is left to M,» (see Fig. 10). In both cases, by the above observations we have
M(x) C 9K forallx € [x],x"TU [x", x{],ie., the sets {(x, y,z) € K : x € [x], x']}
and {(x, y,z) € K : x € [x”, x{']} are the bodies of revolution about the x-axis.

Let M, be right to M,». We repeat the above argument for the generators of the
cone C,, with e belonging to the circles M (x}) and M (x{) . This gives M (x) C K
forall x € [x}, x}] forsome x, € [x”, x]) (see the right part of Fig. 11), and, similarly,
M (x) C 9K forall x € [x{, x}] for some x € (x{, x'], and etc.

We claim that after m € N steps we have M(x) C 9K for all x € [x”, x'], i.e.,
K is a body of revolution. In fact, since the lengths of all chords tangent to d L and
inscribed into 0 K exceed or equal to

2@+ g = min {x 4y : x4+ 4 4+ = 209 and x > 0, y > 0},

we have x} — x}H > 21/d+D) cosa’/.. Here by convexity oe;.H < oz} < 7/2 for
j=0,1,....m,x{ = x', x{ = x" (see the right part of Fig. 11). Similarly, x}’ﬂ —

x> 21/@+D 5 cos o/ for the corresponding o} Hence, for sufficiently large m we
have ‘

m m
I l " " 1/(d+1) / " ’ "
E () =X + &7 = X7 )) = E 2 o(cosa; +cosa) > x" —x”,
=0 j=0
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and the claim is proved.

It remains to consider the case where M, is left to M, . As above, we will
run the procedure that starts at ¢’ and follows the cones C, with vertices e at
M (x}), M(x}), ..., M(x,,). This time, however, each point x;., j=2,...,m, wil
be constructed slightly differently: for the cones C(x) = C.(x]), tangent to d L with
e € M(x}), define

xf =sup{x: (x,y,2) € (Cox)) NIK) \ M(x]) fore € M(x})};
in its turn, for the cones C (x}) = C.(x]), tangent to dL with e € M (x}), let
xy =inf {x : (x,y,2) € (Ce(x]) NIK) \ M(x}) fore € M(x})}

(see the left part of Fig. 11). Observe that x}, < x{, and for all x € [x}, x{] we have
M(x) C K.

We can repeat the construction with the corresponding xl’; and x}, j=2,...,m,to
see that M (x) C 9K for x € [x,,, x']. Let r; and rp be such that {x : (x, y,z) €L} =
[—r1,72]. If0 < inf ;57 x} < rp, we stop the procedure. For, considering the cone C,
tangent to d L with e € M(inf > x}), we see that the parts of K and L in {(x, y,z) €

R3 : x > 0} are bodies of revolution.

Assume now that inf ;> x;. > rp, and let

y=inf{x: M(y) COKVy>x}, Ofyfinfzx}
iz

(without loss of generality we can assume that y > r», otherwise we finish as above).
If sup;-, x;.‘ > —r1, we stop. In this case, considering the cone C, tangent to d L with
ee M(supjzz x;‘), we see that the part of K in {(x, y, z) € R3:x > 0} is a body of
revolution. Finally, the case sup =2 x;.‘ < —ry is impossible, for, we could continue
the procedure, which contradicts the definition of y.

Thus, the parts of K and L in {(x, y,z) € R3 :x > 0} are bodies of revolution.
The analogous argument for {(x, y, z) € R? : x < 0} corresponding to ¢” follows
similarly. O

4 Proof of Theorem 1.2

Let L be a body of revolution about the xj-axis and let W be any 3-dimensional
subspace containing the x-axis. If d > 4, we will consider K N W, L N W, where
without loss of generality we assume that W = {x e RY : x4 = ... = x4 = 0}.

By Lemma 2.2 we know that K N W and L N W are bodies of revolution about
the x-axis. It follows that, by Lemmas 2.6 and 2.7, we have (28) and (29). Hence, by
Lemma 2.1, K N W and L N W are the concentric Euclidean balls.

Let now IT be any 2-dimensional subspace of RY, and let e be the first coordinate
vector. If ey ¢ I1, let W = span(I1, e1), and if ey € IT let Wy be any 3-dimensional
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subspace containing I1. In both cases, by the above, K N Wiy and L N Wy are the
concentric Euclidean balls. Hence, K N IT and L N IT are the concentric discs. Since
IT was chosen arbitrarily, the application of [5, Corollary 7.1.4, p.272] finishes the
proof of Theorem 1.2.
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