
Discrete & Computational Geometry (2022) 68:881–901
https://doi.org/10.1007/s00454-022-00382-z

On an Equichordal Property of a Pair of Convex Bodies

Dmitry Ryabogin1

Received: 3 November 2020 / Revised: 11 October 2021 / Accepted: 8 November 2021 /
Published online: 11 April 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
Let d ≥ 2 and let K and L be two convex bodies in R

d such that L ⊂ int K and the
boundary of L does not contain a segment. If K and L satisfy the (d + 1)-equichordal
property, i.e., for any line l supporting the boundary of L and the points {ζ±} of the
intersection of the boundary of K with l,

distd+1(L ∩ l, ζ+) + distd+1(L ∩ l, ζ−) = 2σ d+1

holds, where the constant σ is independent of l, does it follow that K and L are
concentric Euclidean balls?We prove that if K and L haveC2-smooth boundaries and
L is a body of revolution, then K and L are concentric Euclidean balls.
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1 Introduction

Let d ≥ 2 and let K and L be two convex bodies in R
d such that L ⊂ int K and the

boundary of L does not contain a segment. For any line l supporting L we consider
two points ζ± of the intersection of the boundary of K with l. Given i ∈ R we say
that the bodies K and L satisfy the i-equichordal property if there exists a constant σ
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Fig. 1 We have disti (L ∩ l, ζ+) + disti (L ∩ l, ζ−) = 2σ i

independent of l such that

disti (L ∩ l, ζ+) + disti (L ∩ l, ζ−) = 2σ i (1)

(see Fig. 1). If i = 0 we replace (1) with

dist(L ∩ l, ζ+) dist(L ∩ l, ζ−) = σ 2 (2)

(cf. [5, p. 233]).

Problem 1.1 Let d ≥ 2 and i ∈ R. Are two concentric Euclidean balls the only pair
of bodies in R

d satisfying the i-equichordal property?

Similar questions to that of the problem above were raised in [12], [2], [4, A1, p. 9],
and [15]; see also [11] and references therein. In particular, it is known that the answer
to Problem 1.1 is affirmative for d ≥ 3, provided L is a Euclidean ball [2].

We would also like to mention several results related to the connection between
Problem 1.1 and Problem 19 of Ulam from the Scottish book, which asks if a solid
of uniform density which floats in water in every position is necessarily a sphere, [6,
p. 90], [4, A9, p. 19].

The plane counterexamples to Ulam’s problem constructed in [1, 13, 14], show that
for d = 2, i = 1, the answer to Problem 1.1 is negative, even under the additional
assumption that for every line l supporting L , the point of tangency L ∩ l divides the
chord K ∩ l into two parts of equal length. On the other hand, it is known [3] that,
under this division assumption and under the assumption that l divides the boundary of
K in constant ratio μ(σ)/(1 − μ(σ)) for μ = 1/3, μ = 1/4, μ = 1/5, and μ = 2/5,
the answer to Problem 1.1 is affirmative; see also [7]. Additionally, if d ≥ 3, and if for
every line l supporting L the point L ∩ l divides the chord K ∩ l into two parts of equal
length, then the answer to Problem 1.1 is affirmative, [8]. Finally, we remark that a
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Fig. 2 K ∩ {(x, y, z) : y = 0} and L ∩ {(x, y, z) : y = 0} with their boundaries described by the graphs of
functions η = f (ξ) and η = g(ξ)

negative answer to Problem 1.1 in the case i = d +1, d ≥ 3, presents a possibility for
a negative answer to Ulam’s conjecture [9, 10]. In this paper we prove the following
result.

Theorem 1.2 Let d ≥ 3 and let K and L be two convex bodies in R
d of class C2

satisfying the (d + 1)-equichordal property. If L is a body of revolution, then K and
L are concentric Euclidean balls.

A similar result can be proved for general i-equichordal property, i ∈ R. Since our
interest in Problem 1.1 comes, partly, from its relation to the problem of Ulam, and
since, in our opinion, the proof for i �= d + 1 does not add to the ideas when L is a
body of revolution, we restrict ourselves to the case i = d + 1.

Notation and basic definitions. Let d ≥ 2. A convex body K ⊂ R
d is a convex

compact set with a non-empty interior int K . We denote by Bd(r) the Euclidean ball
centered at the origin of radius r > 0. Given ξ ∈ Sd−1 we put ξ⊥ = {p ∈ R

d : p ·ξ =
0} to be the subspace orthogonal to ξ , and p · ξ = p1ξ1 +· · ·+ pdξd is the usual inner
product inR

d . We say that a line l is a supporting line of a convex body L if L∩ l �= ∅,
but int L ∩ l = ∅. Let m ∈ N. We say that a convex body K in R

d is of class Cm if for
every point z on the boundary ∂K of K ⊂ R

d there exists a neighborhood Uz of z in
R
d such that ∂K ∩ Uz can be written as a graph of a function having all continuous

partial derivatives up to the m-th order.

2 Auxiliary Statements, K and L are the Bodies of Revolution About
the Same Axis in R

3

First we introduce some convenient notation which helps to work with bodies of
revolution. Let K ⊂ R

3 be a body of revolution about the x-axis with C3 boundary
described by a function η = f (ξ) ≥ 0 supported by the segment [−R1, R2]. Assume
also that L is a body of revolution about the same axis, and its boundary is described
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Fig. 3 The section K ∩ {(x, y, z) : x = a(s)}. We have g(a(s)) =
√

f 2(a(s)) − σ 2

by the function η = g(ξ) ≥ 0 supported by the segment [−r1, r2] ⊂ (−R1, R2) (see
Fig. 2).

We will denote by Hs the plane parallel to the y-axis and containing the line
l(s) = {(ξ, 0, sξ + h(s)) : ξ ∈ R}, where l(s) is tangent to the graph of g at the
corresponding point (a(s), 0, g(a(s))), s = tan α with α ∈ (−π/2, π/2) being the
angle between the x-axis and l(s), and h(s) is the z-intercept of l(s).

Let s ∈ R be fixed and let 	s be the line parallel to the y-axis passing through
(a(s), 0, g(a(s))). Since the section K ∩ Hs is symmetric with respect to the line
l(s), the chord Gs = K ∩ 	s is divided by (a(s), 0, g(a(s))) into two parts of equal
length σ .

Let s ∈ R and a(s) ∈ (−r1, r2). Since K is a body of revolution, the chord of
length 2σ can be inscribed into a circle of radius f (a(s)) only provided

g(a(s)) =
√

f 2(a(s)) − σ 2

(see Fig. 3). Since K ∩ {(x, y, z) ∈ R
3 : x = −r1, r2} are discs of radius σ , we have

f (−r1) = f (r2) = σ, g(ξ) =
√

f 2(ξ) − σ 2 ∀ ξ ∈ [−r1, r2]. (3)

Translating the bodies if necessary, we can and do assume that a(0) = 0.
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2.1 Some Results on the (d + 1)-Equichordal Plane Bodies Symmetric with
Respect to the Axis

Let P ⊂ R
2 be a convex body containing the origin in its interior with C3-smooth

boundary. Assume also that P is symmetric with respect to the x-axis and it satisfies
the (d +1)-equichordal property with respect to the origin, i.e., there exists a constant
σ such that

∀ θ ∈ S1, ρd+1
P (θ) + ρd+1

P (−θ) = 2σ d+1,

for some d ≥ 3. If the upper part of the boundary of P is described by a graph of a
positive function φ on [−τ1, τ2], then by the Pythagorean Theorem and the symmetry
with respect to the x-axis, the function φ satisfies

(x2 + φ2(x))(d+1)/2 + (y2 + φ2(y))(d+1)/2 = 2σ d+1 (4)

(see Fig. 4). Here y ∈ [−τ1, 0], τ1 > 0, and x ∈ [0, τ2], τ2 > 0, are such that

φ(x)

x
= φ(y)

|y| ,

i.e.,

|y|d+1 = (2σ d+1 − (x2 + φ2(x))(d+1)/2)xd+1

(x2 + φ2(x))(d+1)/2
. (5)

To simplify the computations we will write

φ2(x) = σ 2 − x2 + χ(x), x ∈ [−τ1, τ2], (6)

where χ is a function we want to determine. By the symmetry of P with respect to
the x-axis, we have φ(0) = σ , hence, χ(0) = 0. We rewrite (4) as

(σ 2+χ(x))(d+1)/2 + (σ 2+χ(y))(d+1)/2 = 2σ d+1, (7)
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Fig. 4 The equichordiality of P

y ∈ [−τ1, 0], x ∈ [0, τ2]. Let

q(z) = χ(z)

σ 2 = φ2(z) + z2 − σ 2

σ 2 = φ2(z) + z2

σ 2 − 1. (8)

Then conditions (7) and (5) can be written as

(1 + q(x))(d+1)/2 + (1 + q(y))(d+1)/2 = 2, (9)

|y|d+1 = (2σ d+1 − (σ 2 + χ(x))(d+1)/2)xd+1

(σ 2 + χ(x))(d+1)/2
= (2 − (1 + q(x))(d+1)/2)xd+1

(1 + q(x))(d+1)/2
.

(10)

Our first lemma is technical, but it is crucial for our further considerations.

Lemma 2.1 Let χ be as in (7), where y is as in (10). Then

2σ 2χ ′′(0) + (d + 1)(χ ′(0))2 = 0. (11)

Proof Since q(0) = 0, we can assume that there exists a neighborhood U0 of the
origin such that |q(x)| < 1 for all x ∈ U0. Using (10) we see that for y < 0 and x > 0
we have

|y| = x
(2 − (1 + q(x))(d+1)/2)1/(d+1)

(1 + q(x))1/2
∀ x ∈ U0. (12)

We will show first that

|y| = x

(
1 − ε1x +

(
−ε2 + 3 − d

4
ε21

)
x2 + o(x2)

)
∀ x ∈ V0, (13)
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where V0 ⊂ U0 is a neighborhood of the origin that will be chosen later and ε j ,
j = 1, 2, are the Taylor coefficients of the decomposition of q near the origin,

q(x) = ε1x + ε2x
2 + o(x2), ε j = q( j)(0)

j ! = χ( j)(0)

σ 2 j ! , x ∈ V0. (14)

To prove (13), we compute the first and second derivatives of the function

(2 − (1 + z)(d+1)/2)1/(d+1)

(1 + z)1/2
.

Routine calculations show that they are equal to −1 and (3 − d)/4 respectively, and
we can express y via x up to the terms of the second order,

|y| = 1 − q(x) + 3 − d

4
q2(x) + o(q2).

Now we will use (14) and the previous decompositions to obtain

|y| = x

(
1 − (ε1x + ε2x

2) + 3 − d

4
(ε1x + ε2x

2)2 + o(x2)

)
.

This gives (13). Next, we use (13) to obtain two relations that will lead to (11). We
see that

x − |y| = ε1x
2 + o(x2). (15)

Since

y2 = x2(1 − 2ε1x) + o(x3),

we also have

x2 + y2 = 2x2 + o(x2). (16)

Using Taylor’s decomposition,

(1 + z)(d+1)/2 = 1 + d + 1

2
z + d2 − 1

8
z2 + o(z2), |z| < 1, (17)

and applying it for q(x) and q(y), the sum of these and (9) results in

0 = d + 1

2
(q(x) + q(y)) + d2 − 1

8
(q2(x) + q2(y)) + o(q2(x)) + o(q2(y)).
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Fig. 5 We have f 2(x) = φ2(x) + g2(0) = φ2(x) + f 2(0) − σ 2

This and (14) yield

0 = d + 1

2
(ε1x + ε2x

2 − ε1|y| + ε2y
2)

+ d2 − 1

8
((ε1x + ε2x

2)2 + (−ε1|y| + ε2y
2)2) + o(x2)

= d + 1

2
(ε1(x − |y|) + ε2(x

2 + y2)) + d2 − 1

8
ε21(x

2 + y2) + o(x2)

= d + 1

2
ε1(x − |y|) +

(
d2 − 1

8
ε21 + d + 1

2
ε2

)
(x2 + y2) + o(x2).

It remains to apply (15) and (16) to obtain

0 = d + 1

2
ε21x

2 +
(
d2 − 1

8
ε21 + d + 1

2
ε2

)
2x2 + o(x2).

Therefore,

(
d + 1

2
+ d2 − 1

4

)
ε21 + (d + 1)ε2 = 0,

or

(d + 1)ε21 + 4ε2 = 0.

This gives the desired result by (8). ��
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2.2 Auxiliary Formulas Describing the Boundary of the Horizontal Section
P = K ∩ H0

We use the notation from the previous subsection. If f describes the boundary of K ,
and φ describes the boundary of the horizontal section K ∩ H0 − (0, 0, g(0)), then

f 2(x) = φ2(x) + g2(0) = φ2(x) + f 2(0) − σ 2 ∀ x ∈ [−τ1, τ2] (18)

(see Fig. 5). Observe that if σ is sufficiently close to zero, then [−τ1, τ2] ⊂ [−r1, r2].
On the other hand, if σ is large enough, then [−r1, r2] ⊂ [−τ1, τ2]. The next lemma
shows that in general we have only these possibilities.

Lemma 2.2 We have [−r1, r2] ⊆ [−τ1, τ2] or [−τ1, τ2] ⊆ [−r1, r2].
Proof Assume the contrary, we have

− r1 < −τ1, r2 < τ2, or − τ1 < −r1, τ2 < r2. (19)

We will show that the first case in (19) is not possible, the proof that the second one
is not possible either is similar.

To this end, consider the horizontal chord inscribed into ∂K and tangent to the
graph of g at (0, 0, g(0)). We have f (−τ1) = f (τ2) = g(0) and f (r2) > f (τ2),
otherwise, the points (R2, 0, 0), (τ2, 0, f (τ2)) and (r2, 0, f (r2)) are on the boundary
of K , which contradicts its convexity. On the other hand, by (3) we have f (−r1) =
f (r2) = σ . Hence, f (−r1) > f (−τ1). This contradicts the convexity of K , for, the
points (−R1, 0, 0), (−r1, 0, f (−r1)), and (−τ1, 0, f (−τ1)) must lie on its boundary.

��
Let

A = s
√

f 2(a(0)) − a2(s) + χ(a(s)) − σ 2,

where for every s ∈ R we have a(s) ∈ (−r1, r2).

Lemma 2.3 Let s ∈ R, a(s) ∈ (−r1, r2) ∩ (−τ1, τ2) be fixed, and let x, y be so small
that a(s) + x, a(s) − y ∈ (−r1, r2) ∩ (−τ1, τ2). Then (7) and (9) hold for these x, y,
with

χa(x) = −2(a + A)x + χ(a + x) − χ(a)

instead of χ , and qa(x) = χa(x)/σ 2 instead of q.

Proof Fix any s ∈ R and a(s) ∈ (−r1, r2) ∩ (−τ1, τ2). We can assume that the
boundary of K ∩ Hs is described by a positive function ψ satisfying the (d + 1)-
equichordal property (we pick (a(s), 0, g(a(s)) as the origin in Hs),

(x2(1 + s2) + ψ2(x
√
1 + s2))(d+1)/2

+ (y2(1 + s2) + ψ2(y
√
1 + s2))(d+1)/2 = 2σ d+1,

(20)
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Fig. 6 We have ψ2(x
√
1 + s2) = f 2(a(s) + x) − (g(a(s)) + xs)2

where

ψ(x
√
1 + s2)

x
= ψ(y

√
1 + s2)

|y| .

This gives

|y|d+1 = (2σ d+1 − ((1 + s2)x2 + ψ2(x
√
1 + s2))(d+1/2))xd+1

((1 + s2)x2 + ψ2(x
√
1 + s2))(d+1)/2

, (21)

and x and y are so small that the conditions of the lemma are satisfied.

By the Pythagorean theorem (see Fig. 6), the assumption a(0) = 0, and (18), we
have

ψ2(x
√
1 + s2) = f 2(a(s) + x) − (g(a(s)) + xs)2

= f 2(0) − σ 2 + φ2(a(s) + x) − (

√
f 2(a(s)) − σ 2 + sx)2

= f 2(0) − σ 2 +φ2(a(s) + x) −(

√
f 2(0) + φ2(a(s)) − 2σ 2 + sx)2.

Therefore, using (6) we have

x2(1 + s2) + ψ2(x
√
1 + s2)

= x2 + f 2(0) − σ 2 + φ2(a(s) + x) − ( f 2(0) + φ2(a(s)) − 2σ 2)

− 2xs
√

f 2(a(s)) − σ 2

= x2 + φ2(a(s) + x) + σ 2

− φ2(a(s)) − 2xs
√

f 2(a(s)) − σ 2

= x2 + φ2(a(s) + x) + σ 2 − φ2(a(s))
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− 2xs
√

f 2(a(0)) + φ2(a(s)) − 2σ 2

= σ 2 − 2a(s)x + χ(a(s) + x) − χ(a(s)) − 2x A.

Substituting the last expression into (20) with y defined by (21), we have

(σ 2 − 2a(s)x + χ(a(s) + x) − χ(a(s)) − 2x A)(d+1)/2

+ (σ 2 + 2a(s)y + χ(a(s) − y) − χ(a(s)) + 2yA)(d+1)/2 = 2σ d+1,

where

|y|d+1 = xd+1 2σ
d+1 − (σ 2 − 2(a + A)x + χ(a + x) − χ(a))(d+1)/2

(σ 2 − 2(a + A)x + χ(a + x) − χ(a))(d+1)/2
.

This gives the desired result. ��
Corollary 2.4 Let s ∈ R be fixed and such that a = a(s) ∈ (−r1, r2) ∩ (−τ1, τ2).
Then

2σ 2χ ′′(a) + (d + 1)(χ ′(a) − 2(a + A))2 = 0, (22)

where A is as in the previous lemma.

Proof By the previous lemma, we have (9) and (12) with qa instead of q and χa instead
of χ , χa(0) = 0. This gives (11) with χa instead of χ , which is the desired result. ��

2.3 Consequences of the Concavity of � on (−r1, r2) ∩ (−�1, �2)

Our next goal is to show that

χ(a) = 0 ∀ a ∈ [−r1, r2] ∩ [−τ1, τ2]. (23)

The proof of (23) is contained in the following three statements.

Lemma 2.5 Let λ1 > 0, λ2 > 0 be such that [−λ1, λ2] ⊆ [−τ1, τ2] and

(σ 2 + χ(−λ1))
(d+1)/2 + (σ 2 + χ(λ2))

(d+1)/2 = 2σ d+1. (24)

If χ ≤ 0 on [−λ1, λ2], then χ = 0 on [−λ1, λ2]. In particular, if χ ≤ 0 on [−τ1, τ2],
then τ1 = τ2 = σ .

Proof By (6), we have

0 ≤ −χ(x) ≤ σ 2 − x2 ≤ σ 2, x ∈ [−λ1, λ2].
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By (24) we can assume that for all x ∈ (0, λ2] and for the corresponding y ∈ [−λ1, 0)
we have the equality in (7). If χ(x) < 0, then the left-hand side of this equality is
strictly less than 2σ d+1. Hence, χ = 0 on [−λ1, λ2].

Assume now that [−λ1, λ2] = [−τ1, τ2]. Since

τ
(d+1)/2
1 + τ

(d+1)/2
2 = 2σ (d+1)/2,

by (6) we have two possibilities

τ1 ≤ σ, τ2 ≥ σ, χ(σ ) = φ2(σ ) ≥ 0, or (25)

τ1 ≥ σ, τ2 ≤ σ, χ(−σ) = φ2(−σ) ≥ 0. (26)

We will consider case (25), the proof for (26) is similar. By (25), χ(σ) = 0. Hence,
φ(σ) = 0 and [0, τ2] = [0, σ ], i.e., τ2 = σ . This gives τ1 = σ and the lemma is
proved. ��
Lemma 2.6 Letχ satisfy (22),χ(0) = 0, and letχ ′(0) = 0. Thenχ = 0 on [−r1, r2]∩
[−τ1, τ2].
Proof Using (22) we have χ ′′(a) ≤ 0 for all a ∈ (−r1, r2) ∩ (−τ1, τ2), i.e., χ is
concave down on (−r1, r2) ∩ (−τ1, τ2). Then using the conditions of the lemma we
get χ ≤ 0 on [−r1, r2] ∩ [−τ1, τ2]. Now we apply Lemma 2.5.

If [−τ1, τ2] ⊂ [−r1, r2] we put λ1 = τ1, λ2 = τ2. Let [−r1, r2] ⊂ [−τ1, τ2].
Consider the maximal segment [−λ1, λ2] ⊆ [−r1, r2] for which (24) holds. We can
assume that λ1 = r1 and λ2 ≤ r2 (the proof in the case λ2 = r2, −λ1 ≥ −r1 is
similar). By Lemma 2.5 we have χ = 0 on [−λ1, λ2]. Therefore, using (3), (6), and
(18) we have

g2(x) = f 2(x) − σ 2, φ2(x) = σ 2 − x2, f 2(x) = σ 2 − x2 + g2(0),

for all x ∈ [−λ1, λ2]. We recall that a(0) = 0. Since for all y ∈ [−λ1, 0] we have

|(0, 0, g(0)) − (y, φ(y), g(0))| = σ,

by the (d + 1)-equichordal property we also have

|(0, 0, g(0)) − (x, φ(x), g(0))| = σ ∀ x ∈ [0, λ2].

This gives λ2 = −λ1 and L must be a Euclidean ball, i.e., we can assume that r2 = λ2.
��

Lemma 2.7 We have χ ′(0) = 0.

Proof We recall that χ(0) = 0. Assume the contrary, that χ ′(0) �= 0. Let χ ′(0) < 0
(the proof for the case χ ′(0) > 0 is similar). By (22) we can assume that χ is concave
down. Hence, there exists ε > 0 such χ > 0 on (−ε, 0) (we recall that a(0) = 0).
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Fig. 7 The chord Gso intersects int T , but it is longer than 2σ

Let Q = {(x, y, z) : |y| ≤ σ, x ≤ 0}, and we recall that Gs = K ∩ 	s is a chord
centered at (a(s), 0, g(a(s)), parallel to the y-axis, and inscribed into ∂K (Gs is of
length 2σ ).

By symmetry with respect to the xz-plane the ends of Gs , s ≥ 0, must belong to
∂Q ∩ ∂K . We will show that for some small s > 0 this is not true and, by this, will
obtain a contradiction. To this end, let 0 < ε1 < ε be so small that for ξ ∈ (−ε1, 0)
we have

φ2(ξ) = σ 2 + χ ′(0)ξ + o(ξ) > σ 2 ∀ ξ ∈ (−ε1, 0), (27)

where o(ξ) is the remainder from the Taylor decomposition of φ. This shows that the
points on the curve γ− = {(ξ,−φ(ξ), g(0)): ξ ∈ (−ε1, 0)} ⊂ ∂K do not belong to Q.
By the symmetry of K ∩H0 with respect to the line K ∩H0∩{(x, y, z) ∈ R

3 : y = 0},
the points on the curve γ+ = {(ξ, φ(ξ), g(0)) : ξ ∈ (−ε1, 0)} ⊂ ∂K do not belong to
Q either. Define the plane set

B = convhull(γ−, γ+)

= {(ξ, y, g(a(0))) ∈ R
3 : −ε1 < ξ < 0, −φ(ξ) ≤ y ≤ φ(ξ)} ⊂ K ∩ H0,

and let A = convhull (K ∩ Q,B). By convexity of K we have A ⊂ K . We claim
that for some s > 0 small enough, the ends of Gs are not on ∂Q ∩ ∂K , which is a
contradiction.

Indeed, let 0 < ε2 < ε1. Consider a triangle T with with vertices (0, 0, g(0)),
(−ε2, 0, g(0)), (−ε2, 0,−g(0)/2), and let G(x,0,z) be a chord inscribed into ∂K ,
parallel to the y-axis and passing through (x, 0, z) ∈ int T . If ε2 is small enough and
(x, 0, z) ∈ int T , then the ends of G(x,0,z) are not in Q and by (27) its length exceeds
2σ . Since g is concave, we can find so = so(ε2) > 0 so small that a(so) ∈ (−ε2/2, 0),
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and (a(so), 0, g(a(so))) ∈ int T . In other words, the chord Gso intersects int T (see
Fig. 7). But as we noticed above, the length of Gso exceeds 2σ , a contradiction. The
proof in the case χ ′(0) < 0 is complete.

The case χ ′(0) > 0 can be proved similarly, one has only to consider a(so) > 0
for which χ(a(so)) > 0 and s < 0, and to take Q = {(x, y, z) : |y| ≤ σ, x ≥ 0}. The
lemma is proved. ��

2.4 Conclusions

Let K and L be two bodies of revolution about the x1-axis in R
3 satisfying the con-

ditions of Theorem 1.2. We recall that a(0) = 0, and by (23) we know that χ = 0 on
[−r1, r2]∩[−τ1, τ2]. Thismeans thatφ2(x) = σ 2−x2 for all x ∈ [−r1, r2]∩[−τ1, τ2],
and (18) yields

f 2(x) = φ2(x) + f 2(0) − σ 2 = f 2(0) − x2 (28)

for all x ∈ [−r1, r2] ∩ [−τ1, τ2]. Moreover, (3) and (28) yield

g(x) =
√

f 2(0) − x2 − σ 2 (29)

for all x ∈ [−r1, r2] ∩ [−τ1, τ2], and

g(−r1) = g(r2) = 0, r1 = r2 =
√

f 2(0) − σ 2,

provided [−r1, r2] ⊆ [−τ1, τ2].

3 Auxiliary Statements, the Versions of Theorem 1 of Barker and
Larman [2, pp. 83–84]

Lemma 2.1 Let K ⊂ R
3 and L ⊂ R

3 be two convex bodies of revolution about the
x-axis. Assume as above that their boundaries are described by f and g and satisfy
(28) and (29). Then K and L are concentric Euclidean balls of radii f (0) and g(0).

Proof Let � be the xz-plane, and let K ∩� and L ∩� be the corresponding sections.
Observe that since K and L are the bodies of revolution, the sets K ∩ � and L ∩ �

are symmetric with respect to the x-axis.
We will set up a certain 2-dimensional sweeping procedure in which the ends of

the chords, that are tangent to the circular part of ∂L ∩ � and inscribed into ∂K ∩ �,
will sweep out the corresponding circular arcs on ∂K ∩ �. Then, we will show that
these arcs comprise ∂K ∩ �, thus concluding that K ∩ � and L ∩ � are concentric
discs.

Case 1: [−r1, r2] ⊆ [−τ1, τ2]. As we just mentioned, L ∩ � is a disc of radius
g(0) = √

f 2(0) − σ 2 = r1 = r2. We will show that K ∩ � is a disc of radius f (0).
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Fig. 8 The first steps in the sweeping procedure in the case [−r1, r2] ⊆ [−τ1, τ2]. On the left ζ 1r is below
the x-axis, and on the right it is above the x-axis

Let J1 = [ζ 1
l , ζ 1

r ] be the chord inscribed into ∂K ∩ � and tangent to ∂L ∩ � at
(a1, g(a1)), and such that its left end is ζ 1

l = (−g(0), f (−g(0)), and right end is
ζ r1 = (b1, d1). We have two possibilities, d1 = f (b1) > 0 or d1 = − f (b1) < 0
(ζ 1
r is below or above the x-axis, see Fig. 8). Consider the arcs

B1 = {(a, f (a)) : a ∈ [−g(0), g(0)]}, β1 = {(a, g(a)) : a ∈ [−g(0), g(0)]},

of concentric circles, and let J 1(b) = [ζ 1
l (b), ζ 1

r (b)] be the chord inscribed into
∂K ∩� and tangent to ∂L ∩� at (b, g(b)) ∈ β1 for b ∈ [a1, g(0)]. Since the distance
between (b, g(b)) and ζ 1

l (b) is σ , J 1(b) is divided by (b, g(b)) into two parts of
equal length. Hence, while the left end of J 1(b) is sweeping out B1 by moving from
(−g(0), f (−g(0)) to (g(0), f (g(0))), its right end must move along the arc of the
circle of radius f (0) (from (b1, d1) to (g(0),− f (g(0)))) joining −B1 from the right
at (g(0),− f (g(0))).

Let d1 = f (b1) > 0 (ζ 1
r is above the x-axis, see the right part of Fig. 8). Then,

the right end of J 1(b) for b ∈ [a1, g(0)] sweeps out the circular part of ∂K ∩ �

containing the one joining ( f (0), 0) with (g(0),− f (g(0))). By the aforementioned
symmetry of ∂K ∩ � with respect to the x-axis, we see that the part of ∂K ∩ � lying
in the right half-plane is circular. Since the above procedure is symmetric with respect
to the z-axis (we could start with the chord J1 tangent to ∂L ∩ � at (−a1, g(−a1))
and follow the sweeping arc joining (−b1, d1) to (−g(0),− f (−g(0)))), we conclude
that ∂K ∩ � is a circle of radius f (0).

Now let d1 = − f (b1) < 0 (see the left part of Fig. 8). By the symmetry, four
points (±b1,± f (b1)) are on ∂K ∩ � and we recall that f (x) = √

f 2(0) − x2 for
x ∈ [−b1, b1]. We will repeat the above procedure for the chord J2 inscribed into
∂K ∩ � and tangent to ∂L ∩ � at (a2, g(a2)), 0 < a2 < a1, where J2 = [ζ 2

l , ζ 2
r ],

ζ 2
l = (−b1, f (−b1)), ζ 2

r = (b2, d2), b2 > b1, and the arcs B2 = {(a, f (a)) : a ∈
[−b1, b1]}, β1.
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Fig. 9 The first steps in the sweeping procedure in the case [−τ1, τ2] ⊆ [−r1, r2]. On the left ζr (τ2) is
above the x-axis, and on the right it is below the x-axis

We have two possibilities again, d2 = f (b2) > 0, and d2 = − f (b2) < 0. If
d2 = f (b2) > 0, arguing as above, we see that the part of ∂K ∩ � lying in the right
half-plane is circular, and by the symmetry, ∂K ∩ � is a circle. If d2 = − f (b2) < 0,
taking into account that (±b2,± f (b2)), are on ∂K ∩� and f (x) = √

f 2(0) − x2 for
x ∈ [−b2, b2], we repeat the procedure again. producing the chords J3 = [ζ 3

l , ζ 3
r ],

0 < a3 < a2, and etc.
If for some j ≥ 3 we have d j = f (b j ) > 0, we finish as above. If, on

the other hand, d j = − f (b j ) < 0 for j = 3, 4, . . . , we produce a sequence
of segments {[−b j , b j ]}∞j=1 such that [−b j , b j ] ⊂ [−b j+1, b j+1], and such that

f (x) = √
f 2(0) − x2 for x ∈ [−b, b], b = lim j→∞ b j .

We can also assume that d j = − f (b j ) < −g(0) for all j = 3, 4, . . . . Indeed, since
the points (±b j ,± f (b j )) must be on ∂K ∩ �, then the condition − f (b j ) ≥ −g(0)
for some j ≥ 3 implies that the chord with its left end at (−b j , f (−b j )) must have a
positive second coordinate for its right end, so d j+1 = f (b j+1) > 0.

We claim that ∂K ∩� is a circle. Indeed, let b < f (0) (otherwise, we are done). If
− f (b) ≥ −g(0), then the points (±b,± f (b)) must be on ∂K ∩ �. Hence, the chord
with its left end at (−b, f (−b)) must have (b, f (b)) for its right end, f (b) > 0, and
we are done. Finally, let − f (b) < −g(0) and let

b = sup
{
x ∈ [0, f (0)] : f (x) =

√
f 2(0) − x2 on [0, b]}.

Then − f (b) ≥ −g(0), otherwise (±b,± f (b)) are on ∂K ∩�, and we can repeat the
procedure, contradicting the definition of b. This finishes the proof of Case 1.

Case 2: [−τ1, τ2] � [−r1, r2]. Let Ja = [ζl(a), ζr (a)] be a chord inscribed into ∂K
∩� and tangent to ∂L ∩� at the point (a, g(a)), for some a ∈ (−τ1, τ2) (see Fig. 9).

Consider the arcs of concentric circles B1 = {(a, f (a)) : a ∈ [−τ1, τ2]} and
β1 = {(a, g(a)) : a ∈ [−τ1, τ2]} and observe that for any b ∈ [0, τ2] the distance
between (b, g(b)) and ζl(b) is σ and Jb is divided by (b, g(b)) into two parts of equal
length. Hence, while the left end ζl(b) for b ∈ [0, τ2] is sweeping out the part of
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B1 by moving from ζl(τ2) to ζl(0) = (−τ1, f (τ1)), the right end ζr (b) must move
along the arc of a circle of radius f (0) joining B1 from the right at ζr (0). If we
denote the coordinates of ζr (τ2) by (v1, d1), we have (28) and (29) for all x in the
interval [−τ1, v1] strictly containing [−τ1, τ2]. As in Case 1 we have two possibilities,
d1 = f (v1) < 0 or d1 = − f (v1) < 0.

If d1 = − f (v1) < 0, we stop the procedure and see that the parts of ∂K ∩ � and
∂L ∩ �, located in the right half-plane are concentric circles.

Let d1 = f (v1) > 0. Denote by α ∈ (0, π/2) the angle between the tangent line
to ∂L ∩ � passing through (R2, 0) and the x1-axis (we recall that (R2, 0) is the point
of intersection of ∂K with the x-axis). If α1 is the angle between the line containing
Jτ2 and the x1-axis, then v1 − τ2 = σ cosα1, and by convexity α1 < α. We repeat the
process with the larger arcs of concentric circles B2 = {(a, f (a)) : a ∈ [−τ1, v1]}
and β2 = {(a, g(a)) : a ∈ [−τ1, v1]} instead of B1 and β1. As above we have two
possibilities d2 = f (v2) > 0 or d2 = − f (v2) < 0 for the corresponding right end
(v2, d2) of the chord Jv1 . If d2 = − f (v2) ≤ 0, we stop. If d2 = f (v2) > 0 we repeat,
observing that v2 − v1 = σ cosα2 for the angle α2 between the line containing Jv1

and the x1-axis, α2 < α. Proceeding this way, we will construct the corresponding
arcs B j and β j , j = 3, . . . ,m. If for some j we have d j = − f (v j ) < 0 for the
corresponding right end of the chord Jv j−1 , we will stop. Otherwise, we will proceed
with d j = f (v j ) > 0 for all j = 3, . . . ,m, and the corresponding angles α j < α.
Since v j − v j−1 = σ cosα j ≥ σ cosα for j = 2, . . . ,m, we will have

vm = τ2 + (v1 − τ2) + · · · + vm − vm−1 ≥ τ2 + mσ cosα ≥ R2,

provided m is large enough. We have proved that the parts of ∂K ∩ � and ∂L ∩ �,
located in the right half-plane are concentric circles.

Similarly, while the right end ζr (b) for b ∈ [−τ1, 0] is sweeping out the part of B1
by moving from ζr (−τ1) to ζr (0) = (τ2, f (τ2)), the left end ζl(b) must move along
the arc of a circle of radius f (0) joining B1 from the left at ζl(0). If we denote the
coordinates of ζl(−τ1) by (−u1, d1), we have (28) and (29) for all x in the interval
[−u1, τ2] strictly containing [−τ1, τ2]. This gives (28) and (29) for all x ∈ [−u1, τ2].
Considering two cases d2 = f (τ2) > 0 or d2 = − f (τ2) < 0, we can repeat the
argument above to obtain that ∂K ∩ � and ∂L ∩ � are concentric discs. ��

Lemma 2.2 Let K and L be two convex bodies in R
3 satisfying the conditions of

Theorem 1.2. If L is a body of revolution, then K is also a body of revolution with the
same axis of rotation.

Proof We assume that the x-axis is the axis of rotation of L . We will set up a 3-
dimensional sweeping procedure rotating the cones that are tangent to ∂L with vertices
on ∂K .

Let Wx be a plane parallel to the yz-plane and passing through (x, 0, 0), x ∈ R,
and let M(x) ⊂ Wx be a circle centered at (x, 0, 0). We will show that for every x
such that (x, y, z) ∈ int K , the generators of the sweeping cones cut out the circles
M(x) ⊂ ∂K , thus proving that K is a body of revolution about the x-axis.
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Fig. 10 The sweeping cones in the 3-dimensional procedure. On the left part we have Me′ is left to Me′′
and on the right part Me′ is right to Me′′

Let e′ = (x ′, 0, 0), e′′ = (x ′′, 0, 0), be two points of the intersection of the x-axis
with ∂K , x ′ > 0, x ′′ < 0. To set up the procedure, we will make several auxiliary
remarks and observations.

By the (d + 1)-equatorial property of K and L , for every ray τ emanating from e′
and tangent to ∂L we have

|e′ − ∂L ∩ τ |d+1 + |∂L ∩ τ − ∂K ∩ τ |d+1 = 2σ d+1. (30)

Since |e′ − ∂L ∩ τ | is constant independent of τ , by (30) we see that the same is true
for |∂L ∩ τ − ∂K ∩ τ |. Therefore, for all rays τ emanating from e′ and tangent to
∂L , all the chords K ∩ τ have the same length. Since L is the body of revolution,
for any rotation � = �ϕ by the angle ϕ ∈ (0, 2π) around the x-axis, the points
{∂L ∩ �ϕτ : ϕ ∈ [0, 2π ]} form a circle centered on the x-axis. By similarity of
triangles, the ends {∂K ∩ �ϕτ �= e′ : ϕ ∈ [0, 2π ]} of the chords K ∩ �ϕτ form a
circle Me′ = ∂K ∩ Ce′ centered on the x-axis, where Ce′ is the cone tangent to ∂L
with the vertex at e′ (see Fig. 10).

Now we take any point e ∈ Me′ ⊂ ∂K and repeat a similar argument for the cone
Ce tangent to ∂L with the vertex at e. Observe that for any ray ν generatingCe, the ends
{∂K ∩�ϕν �= �ϕe : ϕ ∈ [0, 2π ]} of the chords K ∩�ϕν form a circleMe,ν(e′) ⊂ ∂K
with the center on the x-axis and which is parallel to Me′ (see Fig. 10).

Indeed, let e ∈ Me′ and let ν be any ray generating Ce. By rotation invariance of
the length, |�(K ∩ ν)| = |K ∩ ν|, and by the rotation invariance of L , |e− ∂L ∩ ν| =
|�(e) − ∂L ∩ �(ν)|. Since (30) holds with e, ν, and �(e),�(ν), instead of e′, τ , and
since for ϕ ∈ [0, 2π ] the points �ϕ(e) and ∂L ∩ �ϕ(ν), “move along" the circles
centered on the x-axis, we see that the ends {∂K ∩ �ϕν �= �ϕe : ϕ ∈ [0, 2π ]} of
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Fig. 11 Sections of the sweeping cones by the xz-plane and the construction of x ′
1 and x ′

2

the chords K ∩ �ϕν form a circle Me,ν(e′) parallel to Me′ and centered on the x-axis.
This proves the observation. We can repeat the same argument with e′′ instead of e′.

Now we are ready to make the first step of our procedure. Let

x ′
1 = inf {x : M(x) = Me,ν(e

′) with ν generatingCe, e ∈ Me′ },
x ′′
1 = sup {x : M(x) = Me,ν(e

′′) with ν generatingCe, e ∈ Me′′ }.

Observe that x ′
1 < x ′ and x ′′ < x ′′

1 . We will consider two cases, Me′ is right to Me′′
and Me′ is left to Me′′ (see Fig. 10). In both cases, by the above observations we have
M(x) ⊂ ∂K for all x ∈ [x ′

1, x
′] ∪ [x ′′, x ′′

1 ], i.e., the sets {(x, y, z) ∈ K : x ∈ [x ′
1, x

′]}
and {(x, y, z) ∈ K : x ∈ [x ′′, x ′′

1 ]} are the bodies of revolution about the x-axis.
Let Me′ be right to Me′′ . We repeat the above argument for the generators of the

cone Ce, with e belonging to the circles M(x ′
1) and M(x ′′

1 ) . This gives M(x) ⊂ ∂K
for all x ∈ [x ′

2, x
′
1] for some x ′

2 ∈ [x ′′, x ′
1) (see the right part of Fig. 11), and, similarly,

M(x) ⊂ ∂K for all x ∈ [x ′′
1 , x ′′

2 ] for some x ′′
2 ∈ (x ′′

1 , x ′], and etc.
We claim that after m ∈ N steps we have M(x) ⊂ ∂K for all x ∈ [x ′′, x ′], i.e.,

K is a body of revolution. In fact, since the lengths of all chords tangent to ∂L and
inscribed into ∂K exceed or equal to

21/(d+1)σ = min
{
x + y : xd+1 + yd+1 = 2σ d+1 and x ≥ 0, y ≥ 0

}
,

we have x ′
j − x ′

j+1 ≥ 21/(d+1)σ cosα′
j . Here by convexity α′

j+1 < α′
j < π/2 for

j = 0, 1, . . . ,m, x ′
0 = x ′, x ′′

0 = x ′′ (see the right part of Fig. 11). Similarly, x ′′
j+1 −

x ′′
j ≥ 21/(d+1)σ cosα′′

j for the corresponding α′′
j . Hence, for sufficiently large m we

have

m∑

j=0

((x ′
j − x ′

j+1) + (x ′′
j − x ′′

j+1)) ≥
m∑

j=0

21/(d+1)σ (cosα′
j + cosα′′

j ) ≥ x ′ − x ′′,
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and the claim is proved.
It remains to consider the case where Me′ is left to Me′′ . As above, we will

run the procedure that starts at e′ and follows the cones Ce with vertices e at
M(x ′

1), M(x ′
2), . . . , M(x ′

m). This time, however, each point x ′
j , j = 2, . . . ,m, will

be constructed slightly differently: for the cones C(x ′
1) = Ce(x ′

1), tangent to ∂L with
e ∈ M(x ′

1), define

x∗
1 = sup

{
x : (x, y, z) ∈ (Ce(x

′
1) ∩ ∂K ) \ M(x ′

1) for e ∈ M(x ′
1)

};

in its turn, for the cones C(x∗
1 ) = Ce(x∗

1 ), tangent to ∂L with e ∈ M(x∗
1 ), let

x ′
2 = inf

{
x : (x, y, z) ∈ (Ce(x

∗
1 ) ∩ ∂K ) \ M(x∗

1 ) for e ∈ M(x∗
1 )

}

(see the left part of Fig. 11). Observe that x ′
2 < x ′

1, and for all x ∈ [x ′
2, x

′
1] we have

M(x) ⊂ ∂K .
We can repeat the construction with the corresponding x∗

j and x
′
j , j = 2, . . . ,m, to

see that M(x) ⊂ ∂K for x ∈ [x ′
m, x ′]. Let r1 and r2 be such that {x : (x, y, z)∈ L} =

[−r1, r2]. If 0 < inf j≥2 x ′
j ≤ r2, we stop the procedure. For, considering the cone Ce

tangent to ∂L with e ∈ M(inf j≥2 x ′
j ), we see that the parts of K and L in {(x, y, z) ∈

R
3 : x ≥ 0} are bodies of revolution.
Assume now that inf j≥2 x ′

j > r2, and let

γ = inf {x : M(y) ⊂ ∂K ∀ y ≥ x}, 0 ≤ γ ≤ inf
j≥2

x ′
j

(without loss of generality we can assume that γ > r2, otherwise we finish as above).
If sup j≥2 x

∗
j ≥ −r1, we stop. In this case, considering the cone Ce tangent to ∂L with

e ∈ M(sup j≥2 x
∗
j ), we see that the part of K in {(x, y, z) ∈ R

3 : x ≥ 0} is a body of
revolution. Finally, the case sup j≥2 x

∗
j < −r1 is impossible, for, we could continue

the procedure, which contradicts the definition of γ .
Thus, the parts of K and L in {(x, y, z) ∈ R

3 : x ≥ 0} are bodies of revolution.
The analogous argument for {(x, y, z) ∈ R

3 : x ≤ 0} corresponding to e′′ follows
similarly. ��

4 Proof of Theorem 1.2

Let L be a body of revolution about the x1-axis and let W be any 3-dimensional
subspace containing the x1-axis. If d ≥ 4, we will consider K ∩ W , L ∩ W , where
without loss of generality we assume that W = {x ∈ R

d : x4 = . . . = xd = 0}.
By Lemma 2.2 we know that K ∩ W and L ∩ W are bodies of revolution about

the x1-axis. It follows that, by Lemmas 2.6 and 2.7, we have (28) and (29). Hence, by
Lemma 2.1, K ∩ W and L ∩ W are the concentric Euclidean balls.

Let now � be any 2-dimensional subspace of R
d , and let e1 be the first coordinate

vector. If e1 /∈ �, let W� = span(�, e1), and if e1 ∈ � let W� be any 3-dimensional
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subspace containing �. In both cases, by the above, K ∩ W� and L ∩ W� are the
concentric Euclidean balls. Hence, K ∩ � and L ∩ � are the concentric discs. Since
� was chosen arbitrarily, the application of [5, Corollary 7.1.4, p. 272] finishes the
proof of Theorem 1.2.
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