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The late-time nonlinear Lagrangian displacement field is highly correlated with the initial field,
so reconstructing it could enable us to extract primordial cosmological information. Our previous work
[A. Ota et al., Phys. Rev. D 104, 123508 (2021)] carefully studied the displacement field reconstructed
from the late-time density field using the iterative method proposed by Schmittfull et al. [Phys. Rev. D 96,
023505 (2017)] and found that it does not fully converge to the true, underlying displacement field (e.g.,
∼8% offset at k ∼ 0.2 hMpc−1 at z ¼ 0.6). We also constructed the Lagrangian perturbation theory model
for the reconstructed field, but the model could not explain the discrepancy between the true and the
reconstructed fields in the previous work. The main sources of the discrepancy were speculated to be a
numerical artifact in the displacement estimator due to the discreteness of the sample. In this paper, we
develop two new estimators of the displacement fields to reduce such a numerical discreteness effect, the
normalized momentum estimator and the rescaled resumed estimator. We show that the discrepancy Ota
et al. [Phys. Rev. D 104, 123508 (2021)] reported is not due to the numerical artifacts. We conclude that the
method from Schmittfull et al. [Phys. Rev. D 96, 023505 (2017)] cannot fully reconstruct the shape of the
nonlinear displacement field at the redshift we studied, while it is still an efficient baryon acoustic
oscillation reconstruction method. In parallel, by properly accounting for the UV-sensitive term in a
reconstruction procedure with an effective field theory approach, we improve the theoretical model for
the reconstructed displacement field, by almost 5 times, from ∼15% to the level of a few percent at
k ∼ 0.2 hMpc−1 at the redshift z ¼ 0.6.

DOI: 10.1103/PhysRevD.107.123523

I. INTRODUCTION

Baryon acoustic oscillation (BAO) imprints the sound
horizon scale at recombination, which can be used to infer
information about the nature of dark energy. The resulting
precision critically depends on the strength of the BAO
signal while the signal has been smeared as matter travels
from the initial locations during nonlinear structure for-
mation (e.g., [1–3]). However, the displacement of each
mass tracer is mostly free from the degradation effect [4], as
theoretically suggested by the Lagrangian resummation
theory, where the exponential damping factor appears after
resuming the one-loop density power spectrum by using the
Lagrangian displacement [5]. Therefore, the Lagrangian
displacement could be a useful degradation-free alternative,

for extracting the BAO information, to the traditional
observables based on the Eulerian fluid dynamics [6].
Estimating the true displacement field from observed

mass tracers is not straightforward for real surveys. First,
we only measure the final locations of mass tracers. Also,
there is a technical difficulty in estimating an unbiased
displacement field from discrete, subsampled tracers as we
will incorrectly measure the vanishing displacement field at
the location where tracers do not exist.
Recently, there have been promising extensions of the

standard density field reconstruction [7] suggested by
various groups (e.g., [6,8–17]). Among these, Ref. [6]
is one of the subset (for example, the method by
Refs. [10–13] is also designed to derive the displacement
field) that more directly focuses on the aspect of recon-
structing the displacement field.
The method was demonstrated to return a superior

BAO reconstruction performance, compared to the standard*iasota@ust.hk
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method [7], particularly at a very low shot noise regime
[18,19]. In detail, this method attempts to find the uniform
Lagrangian frame by displacing each observed galaxy
particle along the local density gradient, progressively
reducing the smoothing scale. Once we achieve the almost
homogenous mass distribution, we can estimate the dis-
placement field by measuring the difference between the
Eulerian and the estimated Lagrangian positions. If we can
indeed recover the true nonlinear displacement field from
such a method, the broadband shape of the resulting
clustering could be modeled utilizing the perturbation
theories of the displacement field (e.g., [4]), allowing a
cosmological parameter extraction from the shape of the
power spectrum in addition to the reconstructedBAOfeature.
In Ref. [19], we constructed a theoretical model for the

displacement reconstruction by Ref. [6]; there, we found
that, while the method can reconstruct the BAO very well, it
does not recover the shape of the true displacement field,
and our theoretical model could not explain the deviation.
Sources of the discrepancy were speculated, particularly
including a numerical artifact due to the discreteness of the
tracer sample for estimating the vector field.
This paper develops two new estimators of displacement

fields that may reduce such discreteness effects in the
tracers. The first estimator removes the effect of the tracer
distribution, utilizing the fact that the Lagrangian positions
of the (subsampled) particles are uncorrelated with the
nonlinear displacement field. The second estimator asymp-
totically converts the displacement field to a density field.
We first test these estimators for measuring the true

displacements from simulations (i.e., knowing the initial
locations of the particles exactly) for various subsampling
levels. While we perform this test as a sanity check before
applying them to the reconstructed field, this application
could be useful in estimating the nonlinear displacement
field with sampling noise.
We then apply the estimators to the reconstructed

displacement field and show that the discrepancy between
the reconstructed and the true displacement fields remains
even at k ∼ 0.1 hMpc−1 and it is physical, not due to a
numerical artifact. We, therefore, show that the method
from Ref. [6] cannot fully recover the true nonlinear
displacement field near the redshift we studied (z ¼ 0.6),
while it is still an effective BAO reconstruction method.
By better securing the results against the discreteness
effect, we improve the theoretical model for the recon-
structed displacement field by properly accounting for the
UV-sensitive term in a reconstruction procedure with an
effective field theory (EFT) approach.
We organize this paper as follows. In Sec. II, we

review the discreteness effect in galaxy surveys and
pose a question about the displacement field estimators.
Sections III and IV introduce two new displacement field
estimators and give a theoretical background for them.
A comparison of those new estimators and the previous

mass-weighted one is presented in Sec. V. Then we apply
the estimators for the iterative reconstruction in Sec. VI,
and we discuss the remaining inconsistencies in the post-
reconstruction estimators, the true displacement field, and
the one-loop perturbation theory modeling. The final
section is devoted to the conclusions.

II. DISCRETENESS EFFECT
IN GALAXY SURVEYS

This section investigates the theoretical aspects of the
discreteness effect in galaxy surveys. We first briefly
review the mathematics for the discreteness effect in the
galaxy field. Then, we illustrate the issue in the displace-
ment field measurement. This is a problem with interpret-
ing a vector field from measuring mass tracers.

A. Galaxy number density field

Let n̄g be the average galaxy number density and V be
the volume of a given three-dimensional pixel. Then the
probability that the number of galaxies N found in the pixel
follows a Poisson distribution whose average is n̄gV, i.e.,

e−n̄gV
ðn̄gVÞN

N!
: ð1Þ

Using the Poissonian random variable at the position x, i.e.,
NðxÞ, the galaxy number density field is given as

ngðxÞ ¼
NðxÞ
VðxÞ

: ð2Þ

The two-point correlation function of the number density is
given by

hngðxÞngðyÞiPo ¼
!
NðxÞ
VðxÞ

NðyÞ
VðyÞ

"

Po
; ð3Þ

where the subscript “Po”means that the average is taken by
the locally defined Poisson distribution of Eq. (1). For
x ¼ y, we get

hngðxÞ2iPo ¼
n̄g

VðxÞ
: ð4Þ

For x ≠ y, the distributions are uncorrelated, and we find

hngðxÞngðyÞiPo ¼ hngðxÞiPohngðyÞiPo ¼ n̄2g: ð5Þ

To summarize, we derive [20]

hngðxÞngðyÞiPo ¼
δx;y
VðxÞ

ðn̄g − VðxÞn̄2gÞ þ n̄2g; ð6Þ

where δx;y ¼ 1 for x ¼ y, and otherwise zero. In the small
pixel limit [VðxÞn̄g ≪ 1], defining the Poisson noise
δg ≡ ðng − n̄gÞ=n̄g, we get
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hδgðxÞδgðyÞiPo ¼
1

n̄g
δð3ÞD ðx − yÞ; ð7Þ

where δx;y=VðxÞ ≈ δð3ÞD ðx − yÞ is the three-dimensional
Dirac’s delta function. For simplicity, we assume that the
galaxy distribution is linearly related to the underlying dark
matter density fluctuation δm. Then the number fluctuation
due to the primordial density field is written as bδm. We
replace n̄g with the local number n̄gð1þ bδmÞ when we
normalize the Poisson distribution of Eq. (1), and we derive

hδgðxÞδgðyÞiPo;G ¼ δð3ÞD ðx − yÞ
n̄g

þ b2hδmðxÞδmðyÞiG; ð8Þ

where “G” implies the Gaussian average of the primordial
density perturbations. The first term comes from the
Poisson shot noise, while the second term is the cosmo-
logical signal.

B. Displacement field

Next, we consider the discreteness effect for the dis-
placement field. For a given Eulerian coordinate x and its
associated Lagrangian coordinate q, the displacement field
is defined as

x ¼ qþΨðqÞ: ð9Þ

This ΨðqÞ in Eq. (9) is a continuous field, and in practice,
we may interpret the displacement field by measuring
the position of a test particle on the field. We assign the
individual particle displacements to the grid in data
analysis. Let VðqÞ be a pixel volume at q and NðqÞ be
the number of particles found in the pixel, which is a
Poissonian variable defined at a Lagrangian position q. One
may evaluate the center of the mass displacement field

Ψ̃ðqÞ ¼
PNðqÞ

i¼1 ΨðqiÞ
NðqÞ

; ð10Þ

for the cell at q where i is the particle label in the pixel. The
issue is that Eq. (10) is ill-defined for empty pixels, i.e., for
NðqÞ ¼ 0. One may consider interpolating the value at the
empty pixels, e.g., based on the values at the neighboring
pixels, but any ad hoc prescription to N ¼ 0 will introduce
additional complexity in estimating the effect of the
Poisson fluctuations on the displacement estimator. More
importantly, the interpolation becomes quickly inefficient
because most pixels (assuming a reasonable pixel reso-
lution, e.g., 5 Mpc/h for n̄g ¼ 0.001h3=Mpc3) would be
empty in a sparse system such as the galaxy field. In
Refs. [18,19], we selectively set Ψ̃ ¼ 0 for the empty pixel
and attempt to correct the resulting large-scale effect by
rescaling the clustering amplitude by a constant factor.
However, we indeed found that there still is a residual
discrepancy in the small-scale power that depends on the

sampling fraction (e.g., at the level of 6%–7% at k ∼
0.3 hMpc−1 in Fig. 2 between L500 and subL500). Thus, it
was nontrivial to extract the unbiased displacement fields
on small scales using the mass-weighted estimator (MWE)
we adopted.
The MWE fails because the displacement field is

irrespective of the occupation of the pixel. An empty pixel
does not mean the displacement of the pixel is zero.
Eulerian velocity estimators also suffer from a similar
issue to the mass-weighted estimators. To our knowledge,
Ref. [21] was the first to point out that mass-weighted
velocity estimators return a biased estimator of the actual
velocity field since the measurements relying on the mass
tracer counting give the momentum rather than the velocity.
They proposed two volume-weighted assignments, the
Voronoi tessellation method and the Delaunay tessellation
method for velocity measurements, which were applied for
describing shell crossing in Ref. [22]. Furthermore, various
volume weighted assignments are proposed [23–28]. On
the other hand, giving up the displacement/velocity and
considering the momentum field can also be an option
[29–32]. An advantage of the momentum field is that the
sampling issue is solved as momentum is, correctly, zero
without a mass tracer. However, higher-order effects such
as the galaxy bias would complicate estimating the true
momentum field. While the displacement field discreteness
effects are similar to the velocity, we focus on the properties
specific to the Lagrangian perspective to find a solution to
our issue. The following sections introduce new displace-
ment estimators that can reduce the discreteness effect.
As a caveat, while we first test our new estimators with

the true displacement fields in a simulation, we note that the
displacement field is not directly observable in real surveys
since we only measure the final Eulerian position of each
galaxy. Therefore, we are interested in “reconstructing” the
Lagrangian position from the observed Eulerian position,
i.e., the displacement field.Our newestimators are developed
to interpret the reconstructed displacement field properly.
The reconstruction scheme to find the Lagrangian frame
itselfwas also discussed inRefs. [6,18,19], andwe review the
idea in Sec. VI.

III. NORMALIZED MOMENTUM ESTIMATOR

This section introduces a new momentum estimator and
shows how one can normalize it to obtain a volume-weighted
displacement field estimator to a good approximation.

A. Definition

We propose to compute a normalized momentum esti-
mator (NME)

ξ̃ijðq − rÞ≡
DPNðqÞ

a¼1

PNðrÞ
b¼1 ΨiðqaÞΨjðrbÞ

E

hNðqÞNðrÞi
; ð11Þ
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and we will show that ξ̃ij → ξij ≡ hΨiðqÞΨjðrÞi for the
small pixel limit below. With this approximation, we can
avoid the ill-defined mass-weighted displacement in
Eq. (10). In Eq. (11), one first computes the numerator,
which is the correlation function of a momentumlike
quantity, and then we normalize the correlation function
by the density correlation function. This would allow us to
construct an approximately volume-weighted estimator
without, e.g., the Delaunay tessellation method.
Let us prove ξ̃ij → ξij for the V → 0 limit. For sim-

plicity, the particles are Poisson sampled in the uniform
Lagrangian frame. The bracket of Eq. (11) means that we
take both the Poisson and ensemble averages. NðqÞ and
NðrÞ in Eq. (11) are independent of the ensemble average
in Lagrangian space so that we may exclusively take the
ensemble average for the displacement field. ξ is a function
of the distance due to the statistical isotropy and homo-
geneity. Then Eq. (11) is expanded into

ξ̃ijðq − rÞ ¼
X∞

n¼0

F nðq; rÞ∂nxξijðxÞ
####
x¼jq−rj

; ð12Þ

where we used the Taylor expansion

ξijðqa − rbÞ ¼
X∞

n¼0

ϵnab
n!

∂nxξijðxÞ
####
x¼jq−rj

; ð13Þ

ϵab ≡ jqa − rbj − jq − rj; ð14Þ

and then defined

F nðq; rÞ≡
!XNðqÞ

a¼1

XNðrÞ

b¼1

"−1

Po

!XNðqÞ

a¼1

XNðrÞ

b¼1

ϵnab
n!

"

Po

: ð15Þ

We cannot explicitly evaluate F n because we never
know the implicit Poissonian dependence of ϵab, i.e., the
Poissonian dependence of the particle positions. However,
we can find the upper bound easily. An example configu-
ration for q, qa, r, and rb is illustrated in Fig. 1. Let VðqÞ be
a cube and L ¼ V

1
3. The maximum distance between

particles in the same box is
ffiffiffi
3

p
L, so we get

jF nj ≤
ð

ffiffiffi
3

p
LÞn

n!
: ð16Þ

Then one finds

jξ̃ijðjq − rjÞ − ξijðjq − rjÞj ≤
X∞

n¼1

ð
ffiffiffi
3

p
LÞn

n!
j∂nxξijðxÞjx¼jq−rj:

ð17Þ

We can take a sufficiently small V such that Ln∂nξij → 0,
as long as ∂nξij is finite.
The above proof is applicable as particle sampling is

independent of the primordial fluctuations, so the distri-
bution of particles does not have to be Poissonian as long as
it is independent of the ensemble average. Interestingly, the
mass window is canceled in Eq. (11) as we have F 0 ¼ 1 so
that we obtain the volume-weighted correlation function,
the shot noise is zero, and the final result is independent of
the number density n̄g. We would not claim that the
covariance vanishes, but the discreteness effect vanishes.
The above proof is not valid for a singular ξ.
Equation (11) is different from the nominal momentum

estimator in Ref. [32] that corresponds to

!XNðqÞ

a¼1

XNðrÞ

b¼1

ΨiðqaÞΨjðrbÞ
"
: ð18Þ

Equation (18) is a mass-weighted quantity without the
normalization in the denominator of Eq. (11) and therefore
does not correspond to a volume-weighted estimator.
In Eulerian space, e.g., for the late-time velocity field, we

cannot exclusively take the ensemble average in Eq. (11).
This is because the Poisson distribution depends on the
local stochastic variable, as discussed in Sec. II A. Hence,
the bispectrum or higher-order cumulant appears and
cannot be canceled. Therefore, the above proof only applies
to the Eulerian velocity field at leading order perturbations.
Another crucial remark is that because the new estimator

is effectively volume weighted, we expect that Eq. (11) is a
promising estimator for very sparse samples, such as a
biased galaxy tracer. In our future work, we plan to
investigate how well such an estimator of the galaxy field
would relate to the matter displacement field as a function
of scale.

B. Numerical implementation

Below, we compare the mass-weighted estimator used in
Ref. [19] with the operation conducted for the NME in
this paper.

r

q

qa

rb

FIG. 1. An example configuration for q, qa, r, and rb. ϵab ≡
jqa − rbj − jq − rj is within the size of a box.
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The former mass-weighted displacement was defined as

Ψobs
p ¼

P
iWCICðxp;xiÞΨobsðxiÞP

iWCICðxp;xiÞ
; ð19Þ

which corresponds to Eq. (10). Here ΨobsðxiÞ can be either
the true displacement or the iteratively reconstructed
displacement of each mass tracer labeled by xi. WCIC is
the pixel window function indicating that we are using
the cloud-in-cell assignment, and Ψobs

p is the estimator
assigned at a pixel centered at xp.
For NME, we have the same catalog of ΨobsðxiÞ, but we

directly evaluate its power spectrum without explicitly
introducing the displacement field estimators like
Eq. (19). First, we estimate the momentum field

Pobs
p ¼

X

i

WCICðxp;xiÞΨobsðxiÞ: ð20Þ

Then, we consider fast Fourier transformation (FFT) of the
momentum field P̂obs

p and evaluate the momentum power
spectrum hP̂obs

p ðk1Þ · P̂obs
p ðk2Þi. Then, we compute the

correlation function of the momentum field ξP from the
momentum power spectrum. We also calculate the corre-
lation function ξn of the number density field (i.e., the
discreteness selection function):

nobsp ¼
X

i

WCICðxp;xiÞ: ð21Þ

Then, we compute ξP=ξn to convert the momentum field
two-point statistics to the displacement field statistics, and
finally, Fourier transform it to find the displacement field
divergence spectrum. We ignored the curl component for
simplicity so we have ðk ·ΨÞ2 ¼ k2Ψ ·Ψ. As emphasized
in the previous section, because xi is in the Lagrangian
space for the true displacement field or presumably close to
the true Lagrangian space in the reconstructed case, we can
ignore the higher order cumulants in ξn and ξP. Again, the
same operation would not be justified in calculating a late-
time field where xi is not close to the Lagrangian space,
e.g., the Eulerian velocity field. To compare the density
power spectrum, we use k2PΨ rather than PΨ. In Sec. V, we
compare the NME and the exact displacement field.

IV. RESCALED RESUMMATION ESTIMATOR

This section describes another displacement field esti-
mator for a sparse sample we propose in this paper, which
we call the rescaled resummation estimator (RRE). We
measure the displacement field divergence power spectrum
as a rescaled density power spectrum without explicitly
evaluating the vector field on the grid; therefore, we can
avoid the issue of the displacement field assignment with
sparse tracers.

A. Lagrangian resummation theory

Let us consider the density fluctuation exponentiated by
the rescaled displacement field ΨNL=Λ:

δΛNL ≡
Z

d3qe−ik·qðe−ik·
ΨNLðqÞ

Λ − 1Þ: ð22Þ

For Λ ¼ 1, this equation recovers a known integral repre-
sentation of the density perturbation in Lagrangian pertur-
bation theory (LPT). In simulations, Eq. (22) corresponds
to measure the density fluctuation after moving the par-
ticles from their initial/Lagrangian locations by ΨNL=Λ.
Taylor expanding Eq. (22), we get

ΛδΛNL ¼ ik ·ΨNL þOðΛ−1Þ; ð23Þ

and we get the exact nonlinear displacement field in the
Λ → ∞ limit. From Lagrangian resummation theory [5],
the resummed power spectrum of Eq. (22) is given as

Λ2PδΛNL
¼ exp

%
−
k2

R
p2dpPΨNL

6π2Λ2
þOðΛ−3Þ

&

× ðk2PΨNL
þOðΛ−1ÞÞ: ð24Þ

The correction terms are higher-order cumulants in ΨNL,
which are relatively suppressed to the leading order power
spectrum since they carry additional negative powers of Λ.
The exponential damping is the degradation effect due to
the dark matter displacement from the initial BAO con-
figurations. After rescaling (22), the damping effect is
reduced thanks to the Λ2 in the denominator of the
exponential and the estimator asymptotes to the displace-
ment field power spectrum. We obtain the displacement
field divergence power spectrum without explicitly evalu-
ating vector fields and the power spectrum as the density
power spectrum by taking a large Λ limit.

B. Noise modeling

A large Λ will improve the recovery of the displacement
field power spectrum (and the BAO feature in it), but
multiplying large Λ may also amplify the noise in the
density field. This subsection illustrates the potential issue
and how to mitigate some effects. A possible error comes
from the uncertainty χ in the estimated Lagrangian position
during reconstruction; i.e., the estimated Lagrangian posi-
tion should be written as qþ χ rather than q. Because of
this error, the estimated displacement field is also shifted by
the same amount. Therefore, the rescaled particle location
will be replaced as

qþΨNL

Λ
→ qþ χ þΨNL − χ

Λ
: ð25Þ

We cannot isolate χ from the observed data, so the rescaling
happens only for ΨNL − χ. Nonvanishing χ is generally
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inevitable when reconstructing the displacement field from
actual data. Equation (22) is generalized to

δΛNL →
Z

d3qe−ik·q
h
e−ik·ð

ðΛ−1Þχ ðqÞ
Λ þΨNLðqÞ

Λ Þ − 1
i
: ð26Þ

The χ term in the above equation is not scaled for a large Λ,
so the noise term is relatively amplified after multiplying Λ
in Eq. (23). The resummed power spectrum is given as

Λ2PδΛNL
→ exp

'
−
k2

R
p2dp

6π2

%
PΨNL

Λ2
þ ðΛ − 1Þ2

Λ2
Pχ

&(

× k2½PΨNL
þ 2ðΛ − 1ÞPχΨNL

þ ðΛ − 1Þ2Pχ &;
ð27Þ

where we ignored Oðχ3;Λ−1Þ terms. χ and ΨNL are
generally correlated. Equation (27) implies that the RRE
works well without amplifying noise when we have the
following relation:

ðΛ − 1Þ2 ≪
PΨNL

Pχ
; Λ − 1 ≪

PΨNL

PΨNLχ
; ð28Þ

which will not be satisfied for large Λ or large inhomoge-
neities in χ.Howcanwe thenmitigate the amplification of the
χ contribution? We provide a simple method as follows. By
setting Λ ¼ ∞ we can estimate the noise field as

δ∞NL ¼
Z

d3qe−ik·qðe−ik·χ − 1Þ: ð29Þ

This is the nonvanishing inhomogeneity in the estimated
Lagrangian space, as reconstruction is not perfect. In our
method, the error field can be approximately estimated from
the final density field of the galaxies after a series of iterative
reconstructions. We can therefore subtract the noise field to
define

δ̂ΛNL ≡ δΛNL − δ∞NL: ð30Þ

The corrected RRE is expanded into

Λδ̂ΛNL ¼ ik · ðΨNL − χ Þ þOðΛ−1Þ: ð31Þ

Thus, the positive power of Λ is removed so we can avoid
amplifying the noise term, whereas the noise χ is inevitable.1

The resummed power spectrum has the following form:

Λ2Pδ̂ΛNL
¼ exp

'
−
k2

R
p2dp

6π2
Pχ

(

× k2½PΨNL
− 2PχΨNL

þ Pχ þOðχ;Λ−1Þ&: ð32Þ

Now, the condition that Λδ̂ΛNL converges to the displacement
is independent from Λ, and Eq. (28) reduces to

1 ≪
PΨNL

Pχ
; 1 ≪

PΨNL

PΨNLχ
: ð33Þ

The subtraction in Eq. (30) bears a resemblance to the
operation in the standard BAO reconstruction estimator as
well as the standard iterative scheme introduced in Ref. [33],
which is written as the difference of the shifted reference
density perturbation (denoted as δs in Ref. [33]) and the
displaced galaxy density perturbation (δd in Ref. [33]). δd in
standard/iterative reconstruction adds reconstructed small-
scale information; likewise, we find that in RRE, subtracting
with δ∞NL (i.e., δd) recovers the small-scale clustering by
removing most of the effect of χ. We assume this procedure
also subtracts the shot noise contribution to a good extent and
therefore does not apply a separate shot-noise subtraction.

V. NEW ESTIMATORS IN N-BODY SIMULATIONS

We proposed the two new displacement field estimators
in the previous sections and will now assess their perfor-
mance in numerical simulations. As mentioned earlier,
we want to reconstruct the displacement field from actual
galaxy surveys and apply the estimators for the post-
reconstruction data. In this section, we first test the methods
by deriving the true displacement field (i.e., the difference
between the initial Lagrangian positions and the final
Eulerian positions in the simulations); we check if these
estimators have advantages in mitigating the discreteness
and/or subsampling effect. We will then consider the post-
reconstruction data in the next section.
This paper uses two different simulations from Ref. [19]

for different purposes. We briefly summarize the param-
eters of these simulations. First, we focus on dark matter
simulation rather than galaxies or halos for simplicity. Both
simulations are based on the flat ΛCDM cosmology in
Ref. [34] with Ωm ¼ 0.3075, Ωbh2 ¼ 0.0223, h ¼ 0.6774,
and σ8 ¼ 0.8159. Full N-body simulations were produced
using the MP-Gadget [35–37] with the box size of
500 Mpc=h and 1500 Mpc=h, and the simulations evolve
15363 particles from z ¼ 99 by computing forces in a grid
of 15363. For the former 500 Mpc=h simulation, we
average five realizations and use only 4% of the dark
matter particles at z ¼ 0.6 for the dataset named L500 and
0.15% for subL500 in Table I. We use a grid of 5123 to
Fourier transform and reconstruct this nonlinear field for
L500 and subL500. These datasets are prepared to test the
robustness of the estimators: L500 has almost no empty FT
grids, but the subsampled particles are not necessarily in the

1We could have chosen to subtract by ð1 − 1=ΛÞδ∞NL in
Eq. (30) to cancel out the effect of χ more efficiently. We find
that with that option, by boosting the small-scale contribution
slightly due to the factor ð1 − 1=ΛÞ, the method reaches a better
reconstruction at n < 6 while the agreement with respect to the
theory model and the NME is worse. For n > 8 we find this
choice also converges to NME.
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center of each mesh, while subL500 represents a sparse
sample with 96% of grids/meshes being empty. We prepare
the latter 1500 Mpc=h box simulation to generate the
reference displacement field that we called the “true dis-
placement field.”We name the set fullL1500, which samples
all particles in the center of each grid in Lagrangian space.
Therefore, there is no empty pixel in the set, and the
displacement measured in each grid is straightforwardly
interpreted as the displacement field without sampling noise
as a volume-weighted displacement.
In this work we compute the auto power spectrum of the

displacement field divergence Pik·Ψ, and the cross-power
spectrum of the displacement field divergence and the
linear matter fluctuation, PδLik·Ψ. Both are normalized by
the linear matter power spectrum PL. We also refer
PδL∇·Ψ=PL to the propagator Cik·Ψ. As we have only 1
or 5 realizations for simulations, it is difficult to derive
reliable error bars. We therefore maximally utilize the
variance cancellation by comparing propagators and power
spectra relative to their corresponding initial conditions
when presenting the results.
In Figs. 2 and 3, we show the displacement field power

spectrum measured in L500, subL500, and fullL1500,
normalized by the linear matter power spectrum for various
estimators. The NME and MWE converge for k≲
0.2 hMpc−1 within 1%, but the MWE starts to depart
from the true displacement field at higher k. The NME
(Fig. 2) is more robust than the MWE. A few percent
convergences are extended to k < 0.5 hMpc−1; the solid
green (L500) and dotted green (subL500) show much better
consistency with respect to the true displacement field
(solid black) even though subL500 has 96% of its grid cells
empty, compared to MWE. We also add subsubL500 for
the NME in the same figure (faint dashed), which corre-
sponds to nparticle ¼ 0.0043 h3Mpc−3 (i.e., 99.6% of the
meshes we used were empty). Despite the high sampling
noise, it still shows the convergence to the true displace-
ment field in both the power spectrum and the propagator.
For the RREs (Fig. 3), Λ ¼ 1 shown in the purple line

returns the true nonlinear density field as expected from
Eq. (22), as a sanity check. With increasing Λ, RRE
approaches the true displacement field with decreasing
BAO damping. Note that with Λ ¼ 10, the propagator
already recovered the propagator of the true displacement.

In Fig. 3, the convergence of Λ ¼ 100 and Λ ¼ 200 implies
that the correction of OðΛ−1Þ is negligible for Λ≳ 100 at
least. However, both curves do not converge to the true
displacement field orNMEfor k≳ 0.2 hMpc−1.As a caveat,
we know the initial Lagrangian locations of the particles
exactly in this test, and therefore χ ¼ 0 in Eq. (25). However,
the RREs and true displacement field still disagree. The
disagreement ismanifest even for largeΛ, which implies that
errors are described by neither Λ nor χ. The discrepancies in
L500 should be different from the sampling noise since
almost one tracer per mesh is observed in these data. The
solid pink curve in Fig. 3 showsRREwithΛ ¼ 100whenwe
assign the rescaled displacement at the center of the FFT grid

TABLE I. Simulations and sampling parameters used in this paper. The simulations assume a flat ΛCDM
cosmology in Ref. [34] (Ωm ¼ 0.3075, Ωbh2 ¼ 0.0223, h ¼ 0.6774, and σ8 ¼ 0.8159).

Name Subsampling %
Number of
meshes

Box size
½Mpc=h&3

Number of
original particles

Number of
simulations

fullL1500 100 15363 15003 15363 1
L500 4 5123 5003 15363 5
subL500 0.15 5123 5003 15363 5
subsubL500 0.015 5123 5003 15363 5

FIG. 2. The displacement field divergence power spectra (top)
and propagators (bottom) of the MWE and NME for various
sampling fractions. The linear matter power spectrum normalizes
the power spectrum, and the propagator is defined as the cross-
power spectrum normalized by the linear matter power spectrum.
The figure is based on the N-body simulation L500 (solid line)
and subL500 (dotted line) summarized in Table I. We also add
subsubL500 for the NME (faint dashed line) that corresponds to
nparticle ¼ 0.0043 h3 Mpc−3, which still shows the convergence to
the true displacement field in both panels despite the high
sampling noise. The black solid curve corresponds to the
fullL1500.
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where the initial position of each particle falls, rather than at
the actual initial particle position. This manipulation intro-
duces χ ≠ 0, but the deviation from the true displacement is
removed for L500. Thus, a part of the unknown error is
reduced by this procedure. In more subsampled cases, the
pink and blue dotted curves (subL500) show a similar noise,
which can now be understood as the shot noise. Thus,
centering seems to reduce some of the unknown errors
but cannot reduce the sampling noise. We note that this
empirical observation ismissing the theoretical explanation. It
is not obvious how to apply this “centering” on a highly
subsampled case, so the centering operation is not necessarily
useful. Thus, we conclude that the NME is more robust on
scales k > 0.2 hMpc−1 than the MWE approach used in
Refs. [6,19], while the RRE requires further investigation for
the error correction.

VI. POST-RECONSTRUCTION ESTIMATORS

So far, we have discussed how to assign given particle
displacements to the grid and constructed the displacement

field estimators robust to the discreteness effect. In Figs. 2
and 3, we tested our proposed methods for estimating the
true displacement field of particles (i.e., in simulations, we
knew all initial particle positions a priori and compute the
particle displacements by subtracting the initial positions
from the final positions). However, this is not the case in
real data. We only know the final locations of galaxies in
the actual surveys, so we need to reconstruct the displace-
ment field without prior knowledge of the initial mass
locations.

A. Displacement field reconstruction

A displacement field reconstruction method from the
observed mass locations is proposed in Ref. [6]. They
proposed to move the mass tracers along the smoothed local
density gradient iteratively by progressively reducing the
smoothing scale. After several iterations, they found that the
mass configuration becomes almost uniform, and the final
locations can be interpreted as estimated Lagrangian posi-
tions for each mass. In this section, we review the math-
ematical aspect of the algorithmand apply the newestimators
NME and RRE on the iteratively reconstructed field.
To reconstruct the displacement field from the observed

density field and the mass tracer locations, in principle, we
have to solve

δNLðkÞ ¼
Z

d3qe−ik·qðe−ik·ΨNLðqÞ − 1Þ; ð34Þ

for ΨNL. However, this equation is a complicated nonlinear
integral equation, which we cannot solve exactly.2 Let us
consider the following eigenfunction decomposition of the
perturbation on the flat Friedmann Lemaître Robertson
Walker background:

ΨNL ¼ ikϕNL þ β; ð35Þ

where∇ · β ¼ 0. Expanding Eq. (34) to the leading order in
ϕNL, we get

δNL ≃ k2ϕNL þ R; ð36Þ

where the residual R is the higher order terms in ϕNL and β
is shown to be small in Ref. [4]. The inverse for Eq. (36) is
easy if we can ignore R. However, the Zel’dovich approxi-
mation δNL ≈ k2ϕNL is valid only for low k. The iterative
reconstruction assumes that there exists a cutoff scale kcut
such that δNL ≃ k2ϕNL, for all k < kcut, and then we
introduce the smoothed negative displacement

s ¼ −
ik
k2

SδNL; ð37Þ

FIG. 3. The displacement field divergence power spectra (top)
and propagators (bottom) of the MWE and RRE for various
sampling fractions. The linear matter power spectrum normalizes
the power spectrum, and the propagator is defined as the cross-
power spectrum normalized by the linear matter power spectrum.
The figure is based on the N-body simulation L500 (solid line)
and subL500 (dotted line) summarized in Table I. The black solid
curve corresponds to the fullL1500. The violet line reproduces
the nonlinear field with Λ ¼ 1. ⊙ implies that we assigned the
displacement fields at the center of each pixel. We again add
subsubL500 for the RRE Λ ¼ 100 (faint blue dashed line) that
corresponds to nparticle ¼ 0.0043 h3 Mpc−3. Contrary to NME,
the top panel shows a residual contribution from the sampling
noise, while the propagator fairly well converged to the true
displacement field.

2Note that the displacement field divergence is not the log
normal field: ln½1þ δNLðqÞ& ≠ −∇q ·ΨNLðqÞ.
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where S ¼ expð−k2=2k2cÞ such that SR ≈ 0. This is equiv-
alent to solving the smoothed linearized continuity equa-
tion, as we may identify the time derivative of the
displacement field with the velocity. Then we shift the
particles from x to xþ sðxÞ. Thus, we partly estimated
the Lagrangian position for k < kcut modes. The new
shifted frame would be closer to the uniform Lagrangian
frame, so the nonlinearity would be reduced there. The new
cutoff scale can be bigger; kcut;new > kcut. Then we rees-
timate the negative displacement for the reduced density
perturbations by reducing the smoothing scale as kcut →
kcut;new ¼ ϵkcut with ϵ > 1 in Eq. (37). We repeat this cycle
until we derive almost zero nth step displacement. The
shifted frame is given recursively as

xðnþ1Þ ¼ xðnÞ þ sðnÞðxðnÞÞ; ð38Þ

and the final location xð∞Þ will be close to the uniform
density frame, which is the estimated Lagrangian position.
In this way, we find a “coordinate transformation” from the
Eulerian to Lagrangian coordinate in the simulation. In the
iteration, Eq. (36) is generalized to

δðnÞNL ¼ k2ϕðnÞ
NL þ RðnÞ; ð39Þ

where the superscript n implies a step of iteration; that is,
δðnÞNL is the density perturbation measured in the nth step
particle distribution, and ϕðnÞ

NL is the nth step displacement
field. We attempt to reduce the nonlinearity in the input
mass distribution by solving the linear algebra iteratively.
References [6,18,19] confirmed that the BAO damping is
significantly reduced by reconstructing the displacement
field in this way.
Our new estimators reduce the potential discreteness

effect in evaluating the reconstructed displacement field.
We follow the same iterative reconstruction process as in
Ref. [19]. The location of the mass tracers after each
iteration is identical among the estimators we are testing in
this paper.

B. Discrepancy between true and reconstructed
displacement fields

In our earlier work, we also investigated to what extent
the iterative procedure reconstructs the true displacement
field in the broadband shape of the power spectrum [19]. In
that work, we saw about 8% discrepancies between the true
displacement field measured in the same simulation and the
reconstructed displacement field measured with the MWE
estimator for k > 0.1 hMpc−1. We suspected the incon-
sistency was partly due to the discreteness effect in the
MWE estimator. In Fig. 4, we compare the MWE, NME,
and RRE estimators of the reconstructed displacement field
to revisit this inconsistency since we expect the new
estimators are more robust against the discreteness effect.

The solid lines are for L500, and the dotted lines are for
subL500. Although we expect some sampling noise of the
observed field [38], MWE shows a drastic difference
between the two subsamplings rather even though the shot
noise of subL500 is still quite negligible, as pointed out in
Ref. [19]. Our new estimators, NME and RRE are more
stable for subsampling than MWE is. As we progress to
n > 6, we begin to see differences in the power spectrum
on small scales due to the noise of the field affecting
reconstruction and also the difference between RRE and
NME; because the power spectrum is divided by the linear
matter power spectrum, a small residual shot noise will
appear significant in this plot. On the other hand, the
propagator shows the expected consistency between
these two subsamplings when using NME and RRE.
The dashed lines show subsubL500, which corresponds
to nparticle ¼ 0.0043 h3Mpc−3, i.e., closer to a realistic
dense galaxy sample such as from the Bright Galaxy
Survey in Dark Energy Spectroscopic Instrument [39].
The reconstruction efficiency of this subsample is expected
to be noticeably lower than L500 and subL500, and the
small scale will be dominated by shot noise (a typical
particle separation of 6.15 h−1Mpc). Indeed, the maximum
efficiency for this sample happens at n ∼ 5–6, where the
smoothing scale of the step (3.5 − 6 h−1Mpc) is close to
this average particle spacing, and a further iteration with a
smaller smoothing scale decreases the efficiency.
While robustness against sampling/discreteness is

improved, we still found inconsistency with respect to
the true displacement field (gray), even on the quasilinear
scale, k ∼ 0.1 hMpc−1, where the estimators are converg-
ing toward each other. The difference between NME and
RRE is small at that scale, so we can now interpret the
discrepancy with respect to the true displacement field
as an indication that the iterative displacement field
reconstruction cannot recover the true displacement
field even on the quasilinear scale perfectly, contrary to
our theory expectation in Ref. [19]. We still recover the
initial density information. The propagator in the lower
panel of the figure shows that iterative reconstruction is an
efficient density field reconstruction method, but it does not
fully recover the nonlinear displacement field in the
broadband.
Based on this result we argue that the iterative

reconstruction method in Ref. [6] does not reproduce
the true displacement field. Introducing 2LPT or higher-
order corrections for Eq. (36) could improve the agree-
ment with respect to the true displacement. Reference [3]
implemented 2LPT as an extension to the standard
reconstruction, but found a minor improvement in the
reconstructed density field. In the current case, the combi-
nation of the iterative steps and the 2LPT focusing on the
displacement field is worth investigating, since the iterative
process extends to the higher k than the standard BAO
reconstruction. We leave this investigation for future work.
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C. Discrepancy between reconstructed displacement
fields and the model

So far, we have developed methods to reduce the
discreteness effect in estimating the displacement fields,

which was considered an obstacle for comparing the
reconstructed field and the true displacement field in
Ref. [19]. Then we found that the discreteness effect
cannot explain the discrepancy of 8% at k ∼ 0.2 hMpc−1.

FIG. 4. A comparison of the power spectra (top) and propagators (bottom) of the various estimators for iterative reconstruction for
n ¼ 1, 3, 6, and 9, in comparison to the true displacement (gray line). The black curve means the correlation functions with the nonlinear
density perturbations. A solid (dotted) curve represents L500 (subL500). Various estimators agree with each other for n ≤ 6 and
k < 0.2 hMpc−1, except for the traditional mass weighted estimators (orange line). The behavior of NME and RRE as a function of n
shows a stable trend compared to MWE. The dashed lines show subsubL500, which corresponds to nparticle ¼ 0.0043 h3 Mpc−3, i.e.,
closer to a realistic galaxy sample; here, the difference is mainly due to the effect of the sampling noise on the reconstruction efficiency.
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Note that the discrepancy is apparent even from the very
first iteration. Therefore, we revisit and improve the
theoretical modeling to address this discrepancy better.
In Ref. [19], we modeled the reconstruction procedure
up to one-loop order in LPT (see the Appendix for a
summary). A possible cause of discrepancy is that the
standard perturbation theory (SPT) prediction fails at the
quasi-nonlinear scale; i.e., we have δðnÞNL;SPT ≫ δðnÞNL;sim for
k≳ 0.1 hMpc−1 at z ¼ 0.6, and therefore theory over-
estimates the displacement field (see Fig. 5). As a result, the
estimation of the shift vector within SPT,

sðnÞ ≈ −
ik
k2

SðnÞδðnÞNL;SPT; ð40Þ

may not be very accurate, depending on the smoothing
kernel and the redshift. Indeed, Fig. 5 shows the difference
between Eq. (40) (dashed curves) and the actual shift vector
(solid curves) from the simulations. The shortcoming of the
one-loop calculation is mainly because of the UV-sensitive
loop integrals. We can try to correct this term with effective
field theory [40]. At one-loop order, a possible EFT
correction is written as

sðnÞ ≈ −
ik
k2

SðnÞ½δðnÞNL;SPT þ αk2δðnÞL &: ð41Þ

We observe the nonlinear density field at every step and
find a single parameter α by fitting all steps simultaneously.
With the least-squares method, we found α ¼ −0.999'
0.011 by fitting simulations in 0.2 < kMpc=h < 2.3

In Fig. 5, we show a comparison of the power spectra
of the shift vector for the simulation (solid line), LPT
(dashed line), and EFT (dotted lines). The figure shows
that this single EFT term can reduce the discrepancy
in sðnÞ between the theory and the simulation, especially
for n ≤ 5.
We now propagate this EFT correction to the recon-

structed displacement potential, which is written as

ϕðnÞ
rec;EFT ¼ ϕðnÞ

rec;LPT − αδL
Xn−1

i¼0

SðiÞBðiÞ: ð42Þ

BðnÞ is the reconstruction kernel defined in the Appendix.
The corresponding post-reconstruction power spectrum is
written as

PðnÞ
rec;EFT ¼ PðnÞ

rec;LPT − 2k2αB̄ðnÞPL

Xn−1

i¼0

SðiÞBðiÞ; ð43Þ

where B̄ðnÞ ≡ 1 − BðnÞ. Figure 6 shows a comparison
of one-loop LPT and EFT for iterative reconstruction
modeling, and we show our EFT helps to reach a few
percent agreements for the displacement field up to
k < 0.5 hMpc−1 for z ¼ 0.6, particularly for NME and
for n < 6 while the agreement is less for RRE. The EFT
term can improve the agreement between the assumption in
the theoretical model and the simulation and, therefore, the
theoretical model of the resulting reconstructed displace-
ment field within 1% for NME at k < 0.2 hMpc−1.
Therefore our new theory model explains that we do not
recover the true displacement field with the current
reconstruction method. While we fixed α in the above
consideration, we also varied α for each iteration and
considered independent fits; however, it did not improve
the EFT correction any further.
In Ref. [19], we tested a different option of adopting

EFT; i.e., the EFT fit directly to the post-reconstruction
spectrum, by introducing the one-loop EFT term for the
displacement field from the LPT perspective. That is, we
considered

P̄ðnÞ
rec;EFT ¼ PðnÞ

rec;LPT þ 2ᾱk2PðnÞ;lin
rec;LPT; ð44Þ

with the linear power spectrum of nth step displacement
field ϕðnÞ

rec;LPT, that is, P
ðnÞ;lin
rec;LPT. This prescription is based

on the EFT for the displacement field in Ref. [4]. Such a

FIG. 5. A comparison of the shift vector [i.e., the input to
reconstruction as in Eq. (40) or (41)] power spectra normalized by
the linear power spectrum for the simulation (solid line), in
comparison to our theoretical model based on LPT (dashed
line) and EFT (dotted line) at each iteration. The y axis is the
power spectrum of the shift vector normalized by the linear
power spectrum, which is the smoothed density fluctuation power
spectrum normalized by the linear spectrum. The shift vector of
the simulation is better approximated by introducing the EFT
terms [in Eq. (41)] up to n ≤ 6 for k ≤ 0.4 hMpc−1.

3α ∼ −1 is just by accident as α has dimension.
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EFT choice was good at reproducing the true displacement
field, but it could not model the power spectrum of the
post-reconstruction field. In detail, the offset between
the model and the reconstructed simulation happened
mainly in the propagator (approximately P13); i.e., the
simulation returned P13 more negative than the theory.
In contrast, the P22 contribution seemed in a good
agreement.
In this paper, we fit the post-reconstruction spectrum at a

few percent precision with the proper choice of the EFT
terms. The corrections in the shift vectors at each iteration
with a fitting parameter α are considered. The new model
predicts the P13 contribution to 1% for n ≤ 9 in the lower
panel of Fig. 6. The accuracy of the improved theory model
is almost at the same level as the one-loop EFT fit for the
pre-reconstruction matter power spectrum.
To summarize, once we correct Eq. (40) with the EFT,

our model explains that Ref. [6] could not reconstruct the
nonlinear displacement field. This implies that truncation of
RðnÞ in Eq. (39) causes the discrepancy in Sec. VI B. Thus,
at least partly, the nonlinear physics prevents us from
recovering the nonlinear displacement field.

VII. CONCLUSIONS

The Lagrangian displacement can be useful in large-
scale structure analysis since it contains the BAO feature
such as the linear field. Reference [6] proposed a
reconstruction method of the displacement field and con-
firmed the post-reconstruction field is highly correlated
with the linear field. In Ref. [19], we compared the

reconstructed displacement field and the true one. We
also constructed a theoretical model for the displace-
ment reconstruction for broadband analysis in that work.
Then we found two discrepancies: the difference between
the reconstructed displacement and the true one; and the
disagreement between the simulations and the model.
The former is the level of 8%, and the latter is 15% at
k ∼ 0.2 hMpc−1 for n ¼ 9 at z ¼ 0.6. Sources of the
discrepancies were speculated, particularly including a
numerical artifact due to the discreteness of the sample.
This paper worked on mitigating such numerical artifacts

by developing new estimators. The new estimators are
robust to sampling, but we still observed the difference
between the true displacement and the reconstructed one.
Therefore, we conclude that the method in Ref. [6] does
not reproduce the true displacement field. Based on the
new estimators, we identified the source of the discrepancy
between the theoretical model and the reconstruction
method. Using the EFT approach, we improved our theo-
retical model and decreased the discrepancy between the
model and simulation to a fewpercent at k ∼ 0.2 hMpc−1 for
n ¼ 9 at z ¼ 0.6. We summarize our results below.
First, the mass-weighted displacement estimator we used

in Ref. [19] is subject to the error particularly sensitive
to the number of empty pixels. We proposed two new
displacement field estimators to overcome the discreteness
effect: the NME and the RRE. The NME is the momentum-
like estimator that does not suffer significantly from the
empty pixel. Then, utilizing the fact that the Lagrangian
positions of the tracers are independent of their displace-
ment field, we showed that the momentum correlation

FIG. 6. The post-reconstruction power spectrum normalized by the linear power spectrum (top) and correlation function (bottom) for
the simulation, one-loop LPT, and one-loop EFT. The EFT parameter is obtained by fitting the shift vector power spectra with a one-loop
EFT correction. The simulation estimators are the NME (left) and the corrected RRE (right) for L500.
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function normalized by the mass correlation function could
closely return the displacement field. This method can
avoid the complexity of direct, volume-weighted estimators
using tessellation [21]. Another new estimator, RRE, is a
density field-based estimator of the displacement field we
devised. Based on the Lagrangian resummation theory [5],
we showed that a rescaled density field power spectrum
asymptotes to the displacement divergence power spec-
trum. That is, the RRE reduces to the displacement field
divergence spectrum without explicit evaluation of the
vector field, and thus we could avoid the empty pixel
issue. We investigated the convergence of two estimators
for various sampling cases. We concluded that NME
performs much better than the RRE and MWE for dealing
with the sampling artifacts. We confirmed that NME is
stable for k≲ 0.2 hMpc−1 at z ∼ 0.6 even if 99.6% of
pixels are empty.
We applied our new methods for the post-reconstruc-

tion displacement fields. Then we identified the residual
difference between the theoretical model in Ref. [19] and
the reconstructed field in our simulation. With a physically
motivated implementation of effective field theory for
iterative reconstruction, we could produce a more accurate
model for the post-reconstructed field. The precision of our
model for the broadband of the reconstructed power
spectrum is a few percent at k < 0.2 hMpc−1 at z ¼ 0.6.
This work only considered dark matter N-body simu-

lation in real space. In terms of the numerical operation,
we expect that NME and RRE can be straightforwardly
extended to galaxy samples in redshift space, which we
plan for future investigation. Also, we plan to extend our

perturbation theory model approach for a more realistic
setup with galaxy bias and redshift-space distortion, in
addition to the shot noise effect.
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APPENDIX: LPT MODELING
OF ITERATIVE RECONSTRUCTION

The main text considers the effective field theory
modeling of post-reconstruction displacement based on
the one-loop LPT modeling discussed in Ref. [19].
In this appendix, we summarize the derivation in the
reference. In that work, we started from a general
perturbative expansion ansatz of the nth step nonlinear
displacement ϕðnÞ:

k2ϕðnÞðkÞ ¼ BðnÞðkÞδLðkÞ þ
1

2!

Z
d3k1d3k2
ð2πÞ6

ð2πÞ3δð3ÞD ðk − k1 − k2ÞBðnÞðk1;k2ÞδLðk1ÞδLðk2Þ

þ 1

3!

Z
d3k1d3k2d3k3

ð2πÞ9
ð2πÞ3δð3ÞD ðk − k1 − k2 − k3ÞBðnÞðk1;k2;k3ÞδLðk1ÞδLðk2ÞδLðk3Þ: ðA1Þ

We determine the LPT kernels BðnÞ by solving the recurrence relations, which are derived by modeling the steps
summarized in Sec. VI. In this appendix, we consider the expansion with respect to δL, while the original expansion was for
ϕð0Þ since we expanded ϕð0Þ into δL in the end. We confirmed that the final results are unchanged for both conventions.
Then, the estimated displacement field is the sum of the total negative displacement

ϕðnÞ
rec;LPT ≡

Xn−1

i¼0

ðϕðiÞ − ϕðiþ1ÞÞ ¼ ϕð0Þ − ϕðnÞ: ðA2Þ

The LPT post-reconstruction power spectrum of Eq. (A2) up to one-loop order is written as follows:

PLPT
ϕðnÞ
rec

¼ P
ϕðnÞ
rec11

þ P
ϕðnÞ
rec22

þ P
ϕðnÞ
rec13

; ðA3Þ

where we defined

k4P
ϕðnÞ
rec11

¼ ðBð0Þ − BðnÞÞ2PL; ðA4Þ
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k4P
ϕðnÞ
rec22

¼ k3

4π2

Z
∞

0
x2dx

Z
1

−1
dμPLðkyÞPLðkxÞ

ðXð0Þ − XðnÞÞ2

2
; ðA5Þ

k4P
ϕðnÞ
rec13

¼ k3

4π2
B̄ðnÞPL

Z
∞

0
x2dx

Z
1

−1
dμPLðkxÞðYð0Þ − YðnÞÞ: ðA6Þ

XðnÞ, YðnÞ, and ZðnÞ are defined as

XðnÞðk; kx; μÞ≡ BðnÞðk − k0;k0Þ; ðA7Þ

YðnÞðk; kx; μÞ≡ BðnÞð−k;k0;−k0Þ; ðA8Þ

ZðnÞðk; kx; μÞ≡ BðnÞð−k;k0Þ; ðA9Þ

with jk0j ¼ kx, ðk × k0Þ2=ðkk0Þ2 ¼ 1 − μ2, and y2 ¼ 1–2xμþ x2. The recurrence relations for X, Y, and Z are

Xðnþ1Þ ¼ XðnÞ − SðnÞðkÞXðnÞ − x−1y−2μð1 − xμÞSðnÞðkÞBðnÞðkxÞBðnÞðkyÞ

− x−1y−2ðx − μÞð1 − xμÞSðnÞðkyÞBðnÞðkxÞBðnÞðkyÞ − y−2μðx − μÞSðnÞðkxÞBðnÞðkxÞBðnÞðkyÞ; ðA10Þ

Yðnþ1Þ ¼ YðnÞ − SðnÞðkÞYðnÞ þ 2x−2μ2SðnÞðkÞBðnÞðkÞBðnÞðkxÞ2 þ 2μ2SðnÞðkxÞBðnÞðkÞBðnÞðkxÞ2

− 2x−1y−2μð1 − xμÞSðnÞðkÞBðnÞðkxÞZðnÞ − 2μðx − μÞy−2SðnÞðkxÞBðnÞðkxÞZðnÞ

− 2x−1ðx − μÞð1 − xμÞy−2SðnÞðkyÞBðnÞðkxÞZðnÞ

− 2y−2x−2ðx − μÞ2ð1 − xμÞ2SðnÞðkyÞBðnÞðkÞBðnÞðkxÞ2; ðA11Þ

Zðnþ1Þ ¼ ZðnÞ − SðnÞðkyÞZðnÞ − x−1ðx − μÞð1 − xμÞSðnÞðkyÞBðnÞðkÞBðnÞðkxÞ

− μðx − μÞSðnÞðkxÞBðnÞðkÞBðnÞðkxÞ − x−1μð1 − xμÞSðnÞðkÞBðnÞðkÞBðnÞðkxÞ: ðA12Þ

Note that the factors of 2 in Eq. (A11) come from the μ → −μ symmetry. The initial conditions for the recurrence relations
are given as

Xð0Þ ¼ 3ð1 − μ2Þ
7y2

; ðA13Þ

Yð0Þ ¼ 10ð1 − μ2Þ2

21y2
; ðA14Þ

Zð0Þ ¼ 3ð1 − μ2Þ
7

: ðA15Þ

Similarly, we find that the power spectra of the shift vectors Eq. (40) are written as

PsðnÞ ¼ PsðnÞ11 þ PsðnÞ22 þ PsðnÞ13; ðA16Þ

where we defined

k4PsðnÞ11 ¼ BðnÞðkÞ2PLðkÞ; ðA17Þ

k4PsðnÞ22 ¼
k3

4π2

Z
x2dx

Z
dμPLðkxÞPLðkyÞ

1

2

'
XðnÞ þ μð1 − xμÞ

xy2
BðnÞðkxÞBðnÞðkyÞ

(
2

; ðA18Þ

k4PsðnÞ;13 ¼
k3

4π2
BðnÞPL

Z
x2dx

Z
dμPLðkxÞ

'
2ð1 − xμÞμ

xy2
ZðnÞBðnÞðkxÞ þ YðnÞ −

μ2

x2
BðnÞðkxÞ2BðnÞðkÞ

(
: ðA19Þ

We confirmed that the above equation coincides with the one-loop SPT spectrum for n ¼ 0.
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