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ABSTRACT: Risk-based decision-making for the assessment and design of the built environment
against natural hazards is fast gaining recognition not just for critical structures but also for engineered
structures in general. Robust frameworks formalized within the setting of performance-based
engineering typically involve high-fidelity numerical computations and need to account for the
uncertainties in responses. However, the computational demand associated with uncertainty propagation
can be large which is further exacerbated when dealing with expensive numerical model evaluations
creating a need for efficient simulation schemes. In this study, a two-phase sampling approach is
presented as an extension of stratified sampling, for the simultaneous estimation of multiple failure
probabilities and Bayesian updating of fragility functions. Unlike traditional stratified sampling, any
stratification variable can be selected, not necessarily belonging to the input set of random variables,
with the first phase of sampling efficiently generating samples in each stratum through subset simulation
when Monte Carlo simulation is considered infeasible. Based on user-defined targets on accuracy for the
failure probabilities, an optimization routine is introduced to minimize the number of model evaluations
in the second phase. The strata-wise sampling approach directly allows for the Bayesian updating of
fragility functions which can be attractive for incorporating any prior beliefs and knowledge on
uncertainty in the resulting fragility functions. A case study is presented to illustrate both the efficient
estimation of multiple small failure probabilities and the Bayesian approach to constructing fragility
functions with a limited number of analyses.

1. INTRODUCTION

The rigorous consideration of uncertainty and the
explicit evaluation of performance at different load
levels is the hallmark of performance-based engi-
neering (PBE) for the rational design and appraisal
of structures subject to natural hazards. By qualify-
ing the performance of engineered systems through
probabilistic system-level metrics that can be un-
derstood by a wide range of technical and non-
technical stakeholders, PBE frameworks enable

risk-based decision-making. Such frameworks in-
clude approaches to characterize the natural hazard,
the loads on the structural and the non-structural
components, the resulting system response, and
subsequent damage and losses (e.g. Yang et al.,
2009; Chuang and Spence, 2017; Arunachalam and
Spence, 2022). This is often realized through a se-
quence of high-fidelity numerical models. The need
for stochastic simulation schemes arises from the
need to propagate uncertainty through the numer-
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ical models in order to quantify the uncertainty in
the outputs. The associated problems can take the
form of an estimation of responses associated with
a given annual exceedance probability, reliabilities
associated with a given set of limit states, sensitivity
analyses for highly nonlinear responses, construc-
tion of fragility functions, and finally the study of
highly-nonlinear behavior or collapse under uncer-
tainty (e.g., the relative frequency of different col-
lapse modes or the response of energy-dissipative
devices under extreme stochastic loads). Whereas
these are closely related problems associated with
the stochastic simulation of rare events, this work
is presented within the context of reliability analy-
sis and efficient fragility construction.

The objective of this paper is to develop an
efficient two-phase sampling approach as an ex-
tension of stratified sampling, for the simultane-
ous estimation of multiple failure probabilities and
Bayesian updating of fragility functions. The lit-
erature is replete with a wide spectrum of re-
liability estimation methods ranging from clas-
sic techniques, such as first/second-order relia-
bility methods; methods that fall under the um-
brella of Monte Carlo (MC) methods, including
importance sampling (Schueller et al., 2004), con-
trol variates, stratified sampling, subset simulation
(SuS) (Au and Beck, 2001); and finally coupled
approaches, e.g., adaptive strategies for coupling
sampling-based methods with metamodeling (Ca-
dini et al., 2014). However, for the problems of
interest to this work, namely, problems involving
high-dimensional input spaces (in the order of sev-
eral thousand), estimation of multiple small fail-
ure probabilities (e.g., ≤ 10−4), and highly nonlin-
ear and expensive performance functions (i.e., limit
state functions (LSFs)), it is either ineffective or
infeasible to apply many of the above techniques.
The proposed scheme has the same spirit as dou-
ble sampling (Cochran, 2007), but exploits the mer-
its of SuS and stratified sampling, and is shown to
be practical and efficient for the performance as-
sessment of structures under wind and seismic haz-
ards. Additionally, it is illustrated that the sim-
ulation scheme facilitates the integration of prior
information to update fragility functions using a

Bayesian approach when the hazard intensity mea-
sure (IM) is chosen as the stratification variable.
This is extremely beneficial when explicit hazard
modeling is involved wherein it is not straightfor-
ward to conduct nonlinear dynamic analyses at de-
sired IM levels since the IM is not a basic random
variable. Moreover, the fragility functions are es-
timated efficiently with a small set of analyses and
the statistical uncertainty can be expressed by sam-
ples drawn from the posterior distribution.

2. EXTENDED STRATIFIED SAMPLING
FOR PBE

2.1. Overview
Stratified-sampling-based MC simulation is at-

tractive to tackle the estimation of multiple failure
probabilities given a limited computational budget.
In addition, the procedure can quantify the uncer-
tainty in the estimates using coefficients of varia-
tion (Arunachalam and Spence, 2023a). However,
it suffers from limited flexibility in the choice of
the stratification variable, χ . Stratification is re-
quired to be performed directly in the input prob-
ability space meaning that the strata need to be de-
fined by specifying bounds for the components of
X, the vector of basic random variables, which can
limit the applicability of the approach. The pro-
posed scheme overcomes this limitation by the use
of SuS to generate strata-wise samples, by which
the possible choice of χ is expanded. This enables
the consideration of both conventional IMs (e.g.,
wind speed and spectral acceleration) as well as less
conventional IMs (e.g., peak elastic base moment
or shear force) that are often an output of a numer-
ical model (e.g., hazard model or elastic structural
model) with an unknown probability distribution.
Obviously, if χ , a potentially complex function of
two or more random variables in X, is not expen-
sive to evaluate, then a MC simulation can be used
to generate many realizations of χ such that ade-
quate samples (i.e., a set of realizations of X) are
available in the strata corresponding to large χ val-
ues. Although such samples will be independent,
unlike the samples generated by Markov chains,
SuS ensures that Phase-I sampling, i.e., generation
of strata-wise samples, does not, in itself, represent
a substantial computational burden. It should be
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mentioned that the adaptive generation of samples
by SuS implies adaptively defined strata bounds
and therefore results in uncertainty in the strata
probabilities. That is, at the kth simulation level in
the SuS procedure, if χk is defined as the (1− p)th
quantile of the conditional samples generated, then
it is important to recognize that pk−1(1− p) is only
a sample estimate for P(Sk) = P(X : χ ∈ (χk−1,χk])
for 1 < k < m, with special considerations at the
boundaries (i.e., k = 1,m).

Given N samples in each stratum as a result of
SuS with χ as the driving variable, Phase-II sam-
pling concerns the selection of ni ≪ N samples
from the ith stratum, Si, so that the conditional fail-
ure probabilities, P(i)

f = P(failure | χ ∈ Si) can be
estimated. Subsequently, by the application of the
total probability theorem, the estimates of P(i)

f and
the stratum probability, P(Si), are combined to pro-
vide an estimate of the overall failure probability,
Pf , as shown below:

P̃f =
m

∑
i=1

P̃(i)
f P̃(Si) (1)

where ∼ denotes estimated values and m the num-
ber of strata. The estimate, P̃f , can be shown to
be asymptotically unbiased and convergent to Pf as
ni → ∞, the derivations of which are not presented
here due to space constraints. The key requirement
of efficiently performing Phase-II sampling is re-
alized using an optimization routine to minimize
n = ∑

m
i=1 ni subject to constraints ensuring a desired

accuracy is met.

2.2. Estimation of Multiple Failure Probabilities
The proposed simulation scheme is capable

of estimating failure probabilities associated with
multiple LSFs, Gl(X) for l = 1,2, . . . ,NL, with a
single run of the entire procedure, a meritorious fea-
ture not easily achieved using other popular vari-
ance reduction methods, e.g., SuS. The capability
to tackle multiple limit states stems from how the
stratification is carried out in the space of the ran-
dom variables and is therefore independent of the
limit states. That is, for every limit state, the strata-
wise failure probabilities are evaluated using the
same set of strata-wise samples followed by the

application of Eq. (1). The coefficient of varia-
tion (COV) associated with failure probability es-
timate for the lth LSF denoted by P̃f ,l is given by
(Arunachalam and Spence, 2023b):

κl ≈

√
∑

m
i=1 ϑ̃ 2

i,l

(
ϑ̃ 2
Sii
+ P̃2(Si)

)
+ω2

P̃f ,l
(2)

where ϑ̃ 2
i,l is the estimate of the variance, V(P̃(i)

f ,l )

and P̃(i)
f ,l denotes P̃(i)

f for Gl; ϑ̃ 2
Si j

is the estimate of
the covariance, CV(P̃(Si), P̃(S j)); ω2 denotes the
component of the variance that quantifies the qual-
ity of the Phase-I sampling and is given by:

ω
2 =

m

∑
i=1

m

∑
j=1

P̃(i)
f ,l P̃

( j)
f ,l ϑ̃

2
Si j

(3)

Essentially, κl accounts for the sample correla-
tions induced by the Markov chains (within the
SuS procedure) and the uncertainty in the estimated
strata probabilities. The estimate ϑ̃ 2

i,l depends on
the ith stratum samples chosen to evaluate Gl and
the variability of Gl within the stratum. In sum-
mary, the ϑ̃ 2 terms can be obtained from the sim-
ulated Markov chains and by evaluating the intra-
chain correlation between the states of the station-
ary Markov chains with respect to the occurrence of
failure (i.e., Gl < 0). A detailed discussion includ-
ing the derivations and the expressions for evaluat-
ing the ϑ̃ 2 terms can be found in Arunachalam and
Spence (2023b).

The sample distribution ni/n affects κl and the
optimal distribution that minimizes κl varies for
different limit states. To this end, the following
nonlinear convex optimization problem is formu-
lated to account for user-defined constraints on the
target accuracy:

minimize n =
m

∑
i=1

ni

subject to:

κ
2
l (n1,n2, . . . ,nm)≤ ∆

2
l l = 1,2, . . . ,NL

(4)
where ∆l is the user-defined COV threshold for Gl .
Clearly, the optimal solution represents the sample
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sizes to be considered in Phase-II sampling for the
efficient estimation of multiple failure probabilities.
However, to perform the above optimization, one
requires the knowledge of κl,∀l which can be esti-
mated using a test set of samples, e.g, np samples in
each stratum, leading to an approximately optimal
sample distribution which is acceptable for practi-
cal problems.

2.3. Bayesian Updating of Fragility Functions
2.3.1. Preamble

The fragility function specifies the probability of
attaining a damage state (e.g., earthquake-induced
collapse) or violating a performance objective (e.g.,
occupant comfort under wind loads) as a func-
tion of the hazard IM. Fragility functions are crit-
ical components of risk assessment and life cycle
cost analyses to help analyze system vulnerabilities
and develop cost-effective management solutions
(Darestani and Shafieezadeh, 2019). This section
describes the applicability of a Bayesian approach
for fragility estimation within the framework of the
proposed extended stratified sampling scheme. The
essential motivation for a Bayesian approach is the
integration of prior information, and the ability to
describe uncertainty in the model parameters using
a distribution rather than point estimates. Through
a full probabilistic description of the parameters of
the fragility function, samples can be drawn from
the posterior distribution to infer confidence in the
fragility estimation as well as to propagate uncer-
tainty to other functions (e.g., collapse risk by com-
bining the collapse fragility with a site-specific haz-
ard curve).

In the present context, the fragility, θk,l =P(Gl <
0 | χ = xk) is desired to be estimated correspond-
ing to a target Gl and the IM given by χ . The
data, D, comprises outcomes from Bernoulli exper-
iments (i.e., categorical data with a binary outcome)
conducted at nB different values of χ . Among many
representations of the fragility functions, includ-
ing theoretical forms and metamodels (e.g., krig-
ing (Bhat et al., 2018)), the most common are the
logit regression model (Ghosh et al., 2013; Reed
et al., 2016) and the lognormal cumulative distri-
bution function (CDF) (Ellingwood et al., 2004).
Since both are two-parameter models, let the pa-

rameters be denoted by (α,β ). For example, the
lognormal CDF expresses the relation between θk,l
and the model parameters at a given value of χ = xk
as:

θk,l = Φ

(
ln(xk/α)

β

)
(5)

where Φ(·) is the standard normal CDF, α repre-
sents the median of the fragility function (the IM
level associated with 50% failure probability) and β

represents the dispersion value. Using Bayes rule,
the posterior distribution, f (α,β |D), is defined as
follows:

f (α,β |D) ∝ P(D | α,β ) f (α,β ) (6)

where L = P(D | α,β ) is the likelihood function
and P(α,β ) is the prior. The likelihood, regarded
as a function of α and β for a fixed D, is not a prob-
ability distribution but the conditional probability
of observing the data given the parameters (Gel-
man et al., 2013). For the estimation of fragility
with limited data, it is proposed to use a prelimi-
nary study, henceforth referred to as Step-I (to dif-
ferentiate from the preliminary study of the pre-
vious section), e.g., nB,I samples in each stratum,
to obtain first-level estimates of P(i)

f ,l , denoted by

P̃(i)
f ,l,I. The next set of samples (i.e., Step-II) to re-

fine the fragility estimate will be selected accord-

ing to ni,B,II ∝

√
P̃(i)

f ,l,I(1− P̃(i)
f ,l,I). Clearly, the adap-

tive sampling procedure identifies the strata where
prediction uncertainty is high (through Step-I) fol-
lowed by aggressive sampling at such locations,
such that the total number of limit state evaluations
will be nB = mnB,I +∑

m
i=1 ni,B,II.

2.3.2. Prior selection
The prior information corresponding to Gl can

be sought from a variety of sources including
engineering judgment based on previous anal-
yses/experience, simplified analysis procedures
(e.g., using low-fidelity models, pushover analysis
for seismic fragilities), publicly available datasets
provided in the literature (e.g., hurricane-induced
power outage data (Reed et al., 2016)), and data on
the performance of electrical substation equipment
in past earthquakes (Straub and Der Kiureghian,
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2008). The alternative is to use non-informative or
weakly informative priors. It is imperative to point
out that while conjugacy provides significant math-
ematical convenience in obtaining analytical poste-
riors, it is not necessary as drawing samples from
an unnormalized posterior has become computa-
tionally cheap in the last decade. Gokkaya et al.
(2015) illustrated a Bayesian approach to estimate
the seismic collapse fragility function, albeit per-
forming inference on θk,l rather than the fragility
model parameters so that beta-binomial conjugacy
could be exploited. However, the approach reduced
the posterior fragility model parameters to point es-
timates.

2.3.3. Likelihood model
The data, D, consists of binary outcomes, {yk},

corresponding to {χ = xk} for k = 1, . . . ,nB. Since
P(1Gl<0(xk) = yk | θk,l) is given by the Bernoulli
likelihood function (where 1(·) is an indicator func-
tion), and if the lognormal link function of Eq. (5)
is adopted, then the likelihood for the entire data set
can be written as:

L=
nB

∏
k=1

Φ

(
ln(xk/α)

β

)yk
[

1−Φ

(
ln(xk/α)

β

)]1−yk

(7)
The above equation assumes the independence of
the outcomes at the different χ values which is true
when MC-based Phase-I sampling is carried out.
However, it is not strictly valid when SuS-based
Phase-I sampling is adopted due to the correlation
between Markov chain samples. This issue could
potentially be alleviated by choosing samples that
are not consecutive but well-spaced, although this
aspect is not investigated in the present study. It is
noteworthy that the above likelihood is unaffected
by the uncertainty in the estimation of the strata
probabilities.

2.3.4. Sampling from the posterior distribution
Posterior sampling entails drawing samples of

α and β from the unnormalized posterior density
given by Eq. (6). This can be achieved numer-
ically using the Metropolis-Hastings algorithm (a
family of Markov chain simulation methods), re-
jection sampling, and importance sampling (Gel-

man et al., 2013) when conjugacy is inapplica-
ble or simple grid-based approaches are infeasible.
With access to the posterior samples of the model
parameters, not only any posterior statistic of the
parameters can be obtained, but also samples of
g(α,β ) can be simulated for any function g(·) to
describe its uncertainty, unlike the substitution of
point estimates (e.g., the maximum likelihood es-
timates of the model parameters). From Eq. (7),
it is easy to note that, for reasonably large nB (e.g.,
≥ 30), the likelihood values can be extremely small.
As such, to avoid computational underflows, one
should work with the logarithm of L (Gelman et al.,
2013).

3. DEMONSTRATION PROBLEM
3.1. Problem Setup

The objective of this demonstration example is
two-fold: (i) To highlight the capability to si-
multaneously estimate three failure probabilities
associated with the highly nonlinear response of
an archetype 45-story reinforced concrete building
subjected to extreme hurricane events; (ii) To il-
lustrate the Bayesian fragility estimation procedure
for a chosen LSF. The structure is assumed to be
located in New York City, and the hazard model-
ing entails the simulation of site-specific hurricane
tracks from which time-varying wind speed and di-
rection outputs are obtained (Ouyang and Spence,
2021). The annual occurrence rate of the hurricanes
is λH = 0.67. A non-stationary/-Gaussian wind load
model calibrated to building-specific wind tunnel
data is adopted to convert the wind speed and direc-
tion time histories to aerodynamic loads (Ouyang
and Spence, 2021). A stress-resultant plasticity-
based structural model is adopted to perform non-
linear dynamic analyses using the adaptive fast non-
linear analysis (AFNA) technique (Li et al., 2021).
A modal damping ratio of 2% was considered. The
basic random variables include the parameters of
the hurricane track generation model and the fill-
ing rate model (Vickery and Twisdale, 1995) be-
sides the high-dimensional white noise sequence
within the stochastic wind load model (Suksuwan
and Spence, 2018). It should be noted that the
time-varying wind loads, which comply with the
full evolution of a stochastic hurricane event in the
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proximity (a circular sub-region) of the building
site, span several hours in duration leading to sig-
nificant computational cost for each time-domain
nonlinear analysis.

The SuS-based Phase-I sampling was imple-
mented with nine strata, 1300 samples in each sub-
set, and p = 0.2 (within the SuS procedure). The
LSFs of interest were the peak roof drift ratios in
the X and Y directions, δX ,roo f and δY,roo f , and
the Y-direction residual inter-story drift ratio at the
45th floor level, δY,45. The response thresholds con-
sidered for the failure probability estimations were
1/400 for the peak roof drifts and 1/1000 for the
residual. The case study is representative of modern
performance-based reliability assessment problems
for wind-excited structures and the response thresh-
olds are associated with the operational and contin-
uous occupancy performance objectives (American
Society of Civil Engineers, 2019). To demonstrate
the mechanism to approximately control the esti-
mator accuracy, different COV targets, ∆l , of 15%
for LS1 (i.e., P̃(δX ,roo f > 1/400)), 10% for LS2
(i.e., P̃(δY,roo f > 1/400)), and 20% for LS3 (i.e.,
P̃(δY,45 > 1/1000)) were specified. The peak mean
hourly wind speed, vH , at the building height, H =
180.6 m, was chosen as the stratification variable
as wind-induced responses are the most sensitive to
this quantity.

3.2. Results
3.2.1. Estimation of multiple failure probabilities

For the preliminary study, np = 75, i.e., the num-
ber of structural analyses in each stratum, was con-
sidered and it was observed that the ni-independent
COV contribution, ω/P̃f ,l , was larger than 19% for
all the three limit states, indicating large uncertainty
in the strata probabilities due to insufficient samples
in Phase-I sampling. This was rectified by revising
Phase-I sampling with 104 samples in each subset
so that ω could be reduced roughly by a factor of√

1300/104. The wind speed hazard curve which
represents the annual exceedance rate, λ (vH), as a
function of vH can be constructed from the Phase-I
samples. Figure 1 shows the hazard curve along
with the strata thresholds to illustrate the rapidly
decaying strata probabilities that the stratification
achieves. Based on the results from the prelimi-
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Figure 1: Wind speed hazard curve.

nary study, the constrained optimization of Eq. (4)
was solved to obtain the number of additional sim-
ulations, (ni − 75), in the ith stratum, required to
attain the target accuracy. While mnp = 675 non-
linear analyses were conducted as a part of the pre-
liminary study, based on the optimization routine,
an additional 330 analyses were conducted. The
estimated annual failure rates (i.e., the annual fail-
ure probabilities times λH) are reported in Table 1
along with the estimates of the COV, κl .

It is notable that the attained COV values approx-
imately meet the set target values even for small
failure probabilities/rates. For LS1, the COV has
slightly exceeded the target which can be attributed
to the sensitivity of the optimal sample allocation
to the information obtained from the preliminary
study. It is interesting to observe that the quality
of Phase-I sampling (i.e., associated with the use of
104 samples in each subset) which affects the uncer-
tainty in the strata probabilities has contributed sig-
nificantly (about 40% for LS1 and LS3, and about
70% for LS2) towards the overall COV values.

Table 1: Estimated annual failure rates and margin of
error measured by the COV.

Limit state LS1 LS2 LS3
∆l 15.0% 10.0% 20.0%

ω/P̃f ,l 7.9% 7.0% 7.9%
κl 17.8% 10.0% 18.8%

λH P̃f ,l (×10−6) 1.05 142.00 0.99
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Figure 2: Bayesian fragility estimation: (a) Posterior samples and MAP after Step-I; (b) Posterior samples and
MAP after Step-II; (c) Marginal posterior distribution of α .

3.2.2. Bayesian fragility estimation

The aim of this section is to illustrate the
Bayesian fragility estimation procedure for LS2.
For Step-I, nB,I = 20 was considered. The likeli-
hood function of Eq. (7) was constructed by assum-
ing a lognormal CDF form for the fragility function.
A non-informative prior is assumed for the model
parameters, i.e., f (α,β ) = 1. Rejection sampling
with uniform proposal distribution was performed
to sample from the posterior distribution. The re-
sulting samples of (α,β ) and the fragility functions
along with the maximum a posteriori (MAP) es-
timate of the fragility function are shown in Fig-
ure 2(a). The MAP estimate of the fragility func-
tion is obtained by the substitution of the model
parameters which are taken equal to the mode of
the posterior distribution. Clearly, from the poste-
rior samples drawn at the end of Step-I, the large
uncertainty in the fragility fit can be observed, and
subsequently, to reduce the variance an additional
100 sample points were considered. As discussed
in Section 2.3.1, the proportions of samples from
each stratum to be considered for Step-II analysis
were optimally obtained. Figure 2(b) reports the
refined MAP estimate after Step-II. Although there
is not a huge difference from the Step-I MAP es-
timate, the posterior draws illustrate the improved
confidence in the fragility estimate. Finally, Fig-
ure 2(c) shows the marginal posterior distribution
of α , the IM level associated with 50% probabil-
ity of failure, and how a small variance is achieved
with only nB = 280 analyses. It should be noted that
nB could have been much smaller if an informative

prior, perhaps from the fragility of a different but
related limit state, was available.

4. DISCUSSION
An extended stratified sampling scheme was out-

lined that integrates SuS and stratified sampling for
the estimation of multiple failure probabilities with
user-specified accuracy targets as well as the ef-
ficient Bayesian estimation of fragility functions.
The scheme targets problems where the desired
stratification variable is an intermediate model out-
put, a situation commonly encountered when ex-
plicit hazard modeling is involved. In the case
study, the proposed scheme was successfully used
to estimate rare event probabilities/rates with speci-
fied accuracy limits using limited sample sets. In
comparison, the use of standard MC simulation
would have required a 10000-fold increase in sam-
ples. The Bayesian approach was shown to facili-
tate the integration of prior knowledge while effec-
tively communicating the uncertainty in the result-
ing fragilities.
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