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A Hybrid Neural Network Approach for
Adaptive Scenario-Based Model Predictive
Control in the LPV Framework

Yajie Bao™ and Javad Mohammadpour Velni

Abstract—This letter presents a hybrid neural network
(NN) approach for adaptive scenario-based model
predictive control (SMPC) design of nonlinear systems in
the linear parameter-varying (LPV) framework. In particular,
a deterministic artificial neural network (ANN)-based LPV
model is learned from data as the nominal model. Then,
a Bayesian NN (BNN) is used to describe the mismatch
between the plant and the LPV-ANN model. Adaptive
scenarios are generated online based on the BNN model
to reduce the conservativeness of scenario generation.
Moreover, a probabilistic safety certificate is incorporated
into the scenario generation by ensuring that the trajec-
tories of scenarios contain the trajectory of the system
and that all the scenarios satisfy the constraints with a
high probability. Furthermore, conditions for the recursive
feasibility of the SMPC are given. Experiments on the
closed-loop simulations of a two-tank system demonstrate
that the proposed approach can better model the behaviors
of nonlinear systems than sole ANN/BNN models can,
and the SMPC based on the hybrid NN (HyNN) model can
improve the control performance compared to the SMPC
with a fixed scenario tree.

Index Terms—Hybrid neural network, adaptive scenario-
based model predictive control, learning-based model
predictive control, linear parameter-varying framework.

[. INTRODUCTION

INEAR parameter-varying (LPV) framework has

attracted increasing attention for data-driven modeling
and learning-based control of complex systems by virtue of
modeling nonlinear and/or time-varying dynamics in the linear
structure [1]. While learning-based control approaches have
been developed using data-driven models [2], identification
and controller design are generally separated in the current
LPV literature [3]. In particular, the data-driven models are
learned by minimizing the prediction errors and validated on
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a testing set without considering the control performance.
Therefore, the identified models with high prediction accuracy
are not necessarily good for control design. Moreover, the
problem of describing the mismatch between the plant and
the learned models has not been investigated, which hinders
robust control design and safety guarantee establishment.
Data-driven modeling of nonlinear systems in the LPV
framework has been discussed in [3], [4]. Among determinis-
tic approaches, artificial neural networks (ANNs) have proven
advantageous in using large amounts of data to learn non-
linear parametric models for fast online evaluation, compared
to kernel-based methods with cubic computational complex-
ity to the data size. Moreover, [4] proposed a Bayesian neural
network (BNN)-based approach to quantify uncertainties in the
data-driven models. While several techniques (e.g., restricting
model complexity and transfer learning) have been developed
to address such problems as the high computational cost and
convergence failure of training BNN, LPV-BNN models still
pose challenges to be employed for control design due to
the increased complexity compared with deterministic (ANN)
models. The authors in [2] reduced the computational burden
of online SMPC optimization by quantizing the scenarios gen-
erated by BNN but may still need offline evaluations of BNN
to further reduce the computational cost. Instead, in this letter,
we propose using an LPV-ANN model learned from data as
the nominal model and then employing BNN to model the mis-
match between the nominal model and the plant to facilitate
control design without compromising the control performance.
The plant-model mismatch is a common problem for model-
based control design and is typically assumed to be bounded.
Recently, data-driven approaches have been employed to
obtain accurate state- and/or input-dependent descriptions of
the possibly time-varying plant-model mismatch such that the
conservativeness of the mismatch estimation is reduced and
the control performance is improved [5], [6]. In particular,
Gaussian process (GP) regression and BNN are two widely
used probabilistic approaches to model mismatch. Specifically,
BNN s treat the model weights of deterministic neural networks
(NNs) as random variables with given prior distributions and
provide the estimation of the posterior distributions condi-
tioned on a dataset using variational inference. Compared with
GP regression, BNNs can model both epistemic and aleatoric
uncertainties with arbitrary distributions, be trained efficiently
using Bayes by Backprop [7] and be fast evaluated without
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using the dataset. Therefore, this letter employs BNNs to
model the mismatch.

MPC is commonly used for model-based control of a pro-
cess while satisfying constraints. For MPC design using LPV
model descriptions of nonlinear systems, one challenge lies
in the uncertainty of the future evolution of the scheduling
variable(s) [8]. One practical solution to address this chal-
lenge is to assume fixed scheduling variables in the prediction
horizons, which may result in large prediction errors and
thus degrade the control performance. Therefore, the uncer-
tainty of the scheduling variables must be considered for
MPC design. The authors in [2] proposed to generate sce-
narios that can represent the joint uncertainty of models and
scheduling variables based on pure BNN model descriptions
for SMPC design. Additionally, using BNNs to model mis-
match for SMPC design has been studied in [9]. The BNN was
used to model state- and input-dependent uncertainties, and the
statistics (including mean and standard deviation) of the BNN
predictions were used to generate scenarios. However, [9]
assumed a given general nonlinear nominal model and did
not establish the recursive feasibility for the proposed SMPC
scheme due to the high model complexity of BNN. This letter
uses hybrid and pure data-driven models to take advantage
of the LPV-MPC approach and establish recursive feasibility
for the proposed LPV-SMPC scheme based on a reasonably
accurate characterization of the BNN model.

The main contribution of this letter lies in presenting a
hybrid NN (HyNN) approach in the LPV framework for
adaptive SMPC design and providing a set of conditions for
recursive feasibility and probabilistic safety guarantees of the
proposed approach. Remainder of this letter is organized as
follows: Section II describes the problem formulation and
the HyNN approach for data-driven modeling. The SMPC
design using the HyNN model is explained in Section III.
Section IV presents the experimental results, and finally
concluding remarks are provided in Section V.

Il. PROBLEM FORMULATION

Consider a constrained, discrete-time nonlinear system

x(k + 1) = f(x(k), u(k)),
xe X, uel,

(1a)
(1b)

where x denotes the states, u denotes the control inputs, and
k € N denotes the time instant. X C R™ and &/ € R™ in (1b)
are the constraint sets of the states and inputs, respectively.
Additionally, X" is assumed to be convex. Assuming that (1a)
is unknown but a sufficient dataset D = {(x(i), u(i), 6 (i), x(i+
1)}f.V:D1 over X x U x ® can be collected from the system,
a data-driven model needs to be learned from D for MPC
design. In particular, we learn a HyNN model composed of
a deterministic LPV-ANN nominal model to take advantage
of the LPV framework and a stochastic BNN-based residual
model to take care of the plant-model mismatch for robust
MPC design, as discussed in Section I. SMPC has proven
to be efficient for employing a BNN-based mismatch model
for control design. This letter aims to design SMPC for the
system (1) using the HyNN model and provide the recursive
feasibility and probabilistic safety guarantees.

The LPV-ANN nominal model is in the form of
ik + 1) = A@R)x(k) + BOKR)uk) 2 fF(x(k), uk)), (2)

where A:R"™ > R™™ and B:R"™ > R™*™ gre matrix
functions represented by ANNs; 6 denote the scheduling vari-
ables which can be (nonlinear) functions of inputs/states, but
are converted into an exogenous signal by confining the val-
ues of 6 to some suitable set ® such that the associated set of
admissible trajectories (i.e., the set of input and output signals
that are compatible with the dynamics) of (2) is a superset of
the set of trajectories of the original nonlinear system (1) [8].

Then, a BNN will be used to model the mismatch between
the plant and the LPV-ANN model. In particular, we evalu-
ate the mismatch g(i) = x(i + 1) — (i + 1) where x(i + 1)
is computed by (2) on the dataset D, to obtain the dataset
Dy = {(x(d), u(i), 0(1)), g(i)}f,v=1 for training the BNN-based
mismatch model. The training and evaluation procedures of
BNN can be found in [4]. In this letter, we use a multi-layer,
fully-connected BNN to model the unknown vector-valued
function g. The BNN is trained by minimizing

NBNN

> [logaw®; ¢) — 10g () — logp@IW )] 3)

i=1

NBNN

over ¢ via stochastic gradient descent where w(® are the i-th
sample generated by Monte Carlo (MC) for approximating the
evidence lower bound (ELBO), and Ngnn is the MC sample
size determined such that (3) is convergent. Using the trained
BNN model, the density of g at given (x(k), u(k)) can be eval-
uated by drawing samples from the posteriors of weights and
calculating the possible g’s with each set of sampled weights.
To provide safety guarantees, we need reliable estimates of g
inside the operating region X x U, which is similar to [6] and
formally described in the following assumption:

Assumption 1: For a confidence level 6, € (0, 1], there
exists a scaling factor 8 such that with a probability greater
than 1 — 4,

Vk € N, |gi(k) — flgm)| < Biog) < 1Gjls
J=1,2,...,ny, (@)

given (x(k),u(k)) € X x U, where [igx) and G,k denote
the estimated mean and standard deviation of the j-th entry
of g(k), respectively, using the learned BNN model with MC
methods, and |G;| denotes the maximum value of valid g;.

By Assumption 1, the learned model is sufficiently accu-
rate such that the values of g are contained in the credible
intervals of our probabilistic model. If Assumption 1 does not
hold for the trained model, then the model accuracy should be
improved by adjusting the model architecture and optimization
or collecting more data for training until the hypotheses of
Assumption 1 are satisfied.

Next, we introduce the definition of safety. Using k:X x
N — U to denote the SMPC law, the closed-loop system can
be described by

x(k+ 1) = fx(k), k (x(k)) + g(x(k), k (x(k)))
2 Dy (x(k)). (&)

Additionally, we use x(k|x(0)) to denote the solution
{x@)i=1,...,k} to (5) given the initial state x(0).
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Definition 1: Given x(0) € X, the system (la) is said to be
safe under a control law « if for Vk € N,

D, (x(k)) € X, k(x(k) eU. (6)

Moreover, the system (la) is said to be §-safe under the
control law « if Vk € N,

Pr[®, (x(k)) € X, k(x(k)) e U] > 8, @)

where Pr[-] denotes the probability of an event.

In general, the hard constraints (6) cannot be enforced
without additional assumptions [10], especially when (la)
is unknown. However, §-safety relaxes the requirements of
safety to safety with a high probability. Furthermore, an input
sequence u is said to be valid for a system with initial state
x(0) if applying the input sequence to the system is safe.

Lemma 1: Given x(0), a valid control input sequence u, a
BNN model that fulfills Assumption 1, and a confidence level
8. € (0, 1], there exists an Nyc such that for Vk € N and
j=1,...,ny,

Pr[x;(k[x(0)) € [%),min(kIx(0)), R} max (k|x(0))]] >

where &) min (k|x(0)) = min; X" (k|(0)) and R} max (k|x(0)) =
max; %" (k[x(0)) with f((’)(k|x(0)) FE & — 11x(0)).
u(k—1))+g(’)(f((l)(k—1|x(0)) u(k—1)); g(’) is the prediction
of g using the lth sampled model from the BNN model,
i=1,...,Nuck), ! =1,...,Nmc(k — 1); Nuc(k) is the
number of models drawn from the BNN model using MC
methods at the time instant k; Nyic = maxg Nyvic (k).

Proof: Let k = 0, x(0|x(0)) = x(0). Since |g;(x(0),
u(0)) — ,&g_/(x(()),u(o)ﬂ < ﬂj&g/.(x(o),u(o)) by Assumption 1, there
exists an Nyc(0) such that

x;(11x(0)) = £(x(0), u(0)) + g;(x(0), u(0))
€ [%j.min(11x(0)), Xj,max (11x(0))],
holds almost surely, i.e., § — 0. Then, at time instant
k + 1, Nmc(l) can be found such that x;(2|x(0)) €
[X}.min (2[x(0)), Xj max (21x(0))], as

x;(11x(0)) € [%; min<1|x(0)> %) max (11x(0)],
18 & (11x(0)), u(1)) -

1 -4 (8)

Hg&? (11x).u) |

— /3] gJ(X(])(HX(O)) ll(l))’ l = 1’ MR NMC(O)’

and the support of the weights as random variables in the BNN
model is unbounded. Through induction, (8) is obtained using
Nyic = maxg Nvic (k). |

Lemma 1 guarantees that, with a high probability, the state
trajectory of the system is always contained in the multiple
trajectories simulated by the BNN model, which is used later
to establish safety guarantees.

A. Scenario-Based MPC Design

Given probability distribution of uncertainties, the objective
of stochastic MPC at the time instant k is

N—1

minE{ Z Ex(ilk), uilk)) + VN(X(NIk))} €))
i=0

where E is the expected value operator over the random vec-

tor sequence g = {g(0),...,g(N — 1)} with g denoting the

plant-model mismatch. It is noted that the uncertainties of g
are propagated forward through the prediction model (1a) and
thus the closed-form probability density function of g is hard
to derive. Moreover, (9) is not directly solvable over generic
feedback control law u(k) = k (x(k)).

To evaluate (9), SMPC represents the uncertainty of a
system using a tree of discrete scenarios. Each particular
branch stemming from a node represents a scenario/realization
of uncertainty [11]. Then, the scenario-based optimal con-
trol problem for an uncertain system at time instant k can
be formulated as

N—1
min ZP’[Z (i), u’(llk))+VN(xf(N|k)):| (10a)

X, — =0

st Wi+ k) = F(P k), W (1K) + & (i), (10b)
(+/(ilk), W (ilk)) € X x U, (10c)
¥ (0lk) = x(k), (10d)
W(ilk) = dl(ilk) if X9 (k) = D (ilk), (10e)

where the superscript j indicates the particular scenario j €
{1,...,8}h p’ denotes the probability of the j-th scenario;
0¥ (ik), W (ilk)) and Vy(¥(N|k)) are the stage cost and
terminal cost for the trajectory of the j-th scenario, respec-
tively; N is the prediction horizon; & denotes the mismatch
realization based on the BNN model; and (10e) enforces a non-
anticipativity constraint, which represents the fact that each
control input that branches from the same parent node must
be equal (x"¥)(i) is the parent state of /(i + 1)). The non-
anticipativity constraint is crucial in order to accurately model
the real-time decision problem such that the control inputs
do not anticipate the future (i.e., decisions cannot realize the
uncertainty). The solution to this optimization problem is used
to generate the control law,

K (x(k)) = u*(0lk). Y

A potential challenge to the scenario-based optimal con-
trol problem is the exponential nature of the scenario tree
formulation. To combat this, we utilize a method described
in [11], in which a robust horizon N, < N is defined. The sce-
nario tree stops branching beyond the robust horizon, and the
uncertainty realizations are assumed to be constant thereafter.
Consequently, considering a fixed number of scenarios s at
each node, the total number of scenarios is S = s™r. To further
save computational cost, we should accurately approximate (9)
with a relatively small number of scenarios.

Given the structure of the scenario tree, it is crucial to gen-
erate appropriate scenarios at each stage of the optimization
to accurately represent the uncertainty of the system. As such,
several methods of scenario generation have been proposed in
the literature, including Monte Carlo sampling methods [12],
moment matching methods [13], and even machine learn-
ing techniques [14]. Despite those efforts, the methods are
typically only applied to convex problems and assume full
recourse. In this letter, we propose an efficient online sce-
nario generation approach and incorporate a probabilistic
safety certificate into the scenario generation. In particular,
we generate representative scenarios whose behaviors contain
the system behaviors. Then, the system is safe under (11)
if (10) where all the scenarios are subject to the constraints
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is feasible. Moreover, the uncertainties considered are state-
and input-dependent, which provides the opportunity to adapt
the uncertainty estimation and thus the scenarios at each time
instant.

I11. LEARNING-BASED SMPC DESIGN USING BNNSs

In this section, we formulate the SMPC using the HyNN
model learned from the data. In particular, the scenario
generation method is presented, and the probabilistic safety
guarantee is provided.

A. Learning-Based Scenario Generation

At each time instant k, we draw Nyic samples from normal
distributions and calculate weights w by applying the repa-
rameterization trick [7] to the i-th sample. While Lemma 1
claims that the trajectories of the Nyic sampled models con-
tain the system trajectory, Nyc can be too large for online
optimization of the SMPC problems. Specifically, Nyc >
%((nx — 1) In(2) —In(B)) to guarantee confidence level § with
probability 1 — B8 [15]. To reduce the number of scenarios,
instead, we estimate g using w'”

Nyvic

1 .
A _ /\(l)
Hety = = E g, (12)
g(k) Nuic i

Nmvc
Oey = | =— Z(é(i) — fg) T @Y — figwy), (13)

Nmc ‘=
and use /,lg(k)’ /lg(k) + m/(ATg(k), ,&g(k) — m’(ATg(k),j =1,..., %
where n? are the tuning multipliers for S uncertainty realiza-
tions. It is noted that a larger S improves the representativeness
of the scenario tree but also increases the computational cost
of the SMPC. To maintain the original statistical proper-
ties, the probabilities of scenarios are calculated using the
moment matching method [16]. Additionally, the first four

central moments are matched.

Remark 1: 1t is noted that the computational cost of the
proposed scenario generation approach and moment matching
method is high when Nyc is large. However, the computations
can be done offline via a uniform-grid approach. Specifically,
we discretize X x U using uniform grids, evaluate the BNN
model at the grid points for Nyc times such that Lemma 1
is fulfilled, and solve the moment matching optimization
problem. The grid size is determined such that the estimation
of i, and 6, is stable. Thus, the scenarios and the probability
of scenarios at (x, u) can be retrieved online from the offline
computation results by finding the results at the grid point that
is closest to (x, u).

To save computational cost, we only update the uncer-
tainty estimation every time instant and fix the scenarios
over the prediction horizon. In particular, we use the solu-
tion u*(1lk — 1) to (10) at k — 1 and the state x(k) to estimate
uncertainty g(k) at k, and g(ilk) = g(k),i = 0,...,N — 1
for (10) at k. Using the uncertainties estimated at time instant
k is more tractable than considering time-varying uncertainties
and adaptive scenarios in the prediction horizon, as the uncer-
tainties are input-dependent and the control input sequence
in the prediction horizon are decision variables of the SMPC

+111)(0“: +1)= u*(1|k):&j(1 D

Fig. 1.

Recursive feasibility.

problem. When the uncertainties do not change significantly in
the prediction horizon, fixing the uncertainty estimation over
the prediction horizon is reasonable and still less conservative
than using the worst-case error bounds.

B. Recursive Feasibility

Next, we establish the recursive feasibility of the proposed
SMPC scheme, which requires a robust controlled invariant
terminal set associated with a terminal controller [8], [17].

Assumption 2: There exists a robust controlled invariant
terminal set Xy for the original nonlinear system (1) under
the terminal controller kr(x) € U such that for Vx € A, we
have f(x, kr(x)) € &;.

The terminal set can be under-approximated as the com-
mon terminal region Xy [18] of the generated scenarios whose
behaviors contain the behaviors of the system, which has been
developed in [2].

Assumption 3: For Vk € N, Vi = 0,...',N -1, VI =
1, ..., n, we have |g(ilk)| < max{|flg,w +m gl | igw —
méamlli=1,.... 555

Assumption 3 ensures that the uncertainties over the
prediction horizon are bounded by the uncertainty estimates
using the current state and the optimal control input from the
last step. It is noted that Assumption 3 can be fulfilled by
tuning m/. A larger m/ can ensure Assumption 3 holds but
increases the conservativeness of the SMPC.

Assumption 4: Given the set X, of the i-th step predictions
of the states at time instant k, applying u(i|k) results in Xjqq.
Then, for a subset Xl’lk C conv(Xjk), applying u(ilk) results
in X/, |, S conv(Xipipp).

Lemma 2: Suppose Assumption 3 & 4 are fulfilled, given
u*(ilk) € UV, then Xik+1 € conv(Xipk) €S & with the
control input sequence u(i — 1|k +1) =u*(ilk),i=1,...,N.

Proof: Lemma 2 states that the sets of the states over the
prediction horizon at k + 1 are contained in the convex hull
of the corresponding sets at k. At time instant k, since u*(i|k)
is the solution to (10), X;; 1k € X and thus conv(X;1ik) €
X. Using the scenario generation approach in Section III-A,
x(k+ 1) € conv(Xyy) after applying u*(0]k) to the system at
k. Furthermore, for Vx(1lk) € A, applying u*(1]k) results
in x(2lk) € Ao. Hence, X1 € conv(Xyx) with u(0lk +
1) = u*(1|k) by Assumption 4. Similarly, we have X1 C

conv(Xjpp) S X,i=1,...,N—1. [ |
Theorem 1 (Recursive Feasibility): Consider system (1)
under the control law (11) by solving (10) fulfills

Assumptions 1-4. If optimization problem (10) is feasible for
x(0), then it is feasible for all time instants k € N, i.e., it is
recursively feasible.

Proof: The proof is done by constructing a candidate solu-
tion for each k, which is illustrated in Fig. 1. Let {u*(ilk)}} '
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be the minimizer to (10) at k. Applying control input (11)
results in the state x(k+1) € [ min; ¥ (1]k), max; ¥ (1]k)] € X.
Then, we consider the candidate solution {u*(1|k), ..., u™*(N—
11k), kr (x' (N1k), ..., xS(N|k))} which satisfies the input con-
straints and results in ¥(ilk+1),i =0,...,N,j=1,...,S.
Using Lemma 2, we have ¥(ilk+1) € X when i < N and
HF(Nk+1) e Xy, which proves recursive feasibility. |

C. Probabilistic Safety Guarantee

Using the scenario generation approach in Section III-A, the
safety certificate can be formalized into our main result.

Theorem 2: Let Assumptions 1-4 hold. Then, the system
under the scenario-based MPC law is §-safe if (10) is feasible
for x(0).

Proof: By Lemma 1, (8) holds using Nyc samples.
Consequently, at time instant k, there exist 7/’s for the sce-
nario generation using f[lg) and G, estimated from the
Nvc samples such that the predictions x(k + 1) by the gener-
ated scenarios contain the real x(k + 1) of the system under
Assumption 1. Furthermore, (10) is recursively feasible by
Theorem 1, and thus (7) holds for all k, which proves the
system is §-safe by Definition 1. |

IV. CLOSED-LOOP SIMULATIONS AND VALIDATION

In this section, we validate the proposed HyNN-based
control design approach using simulations of a cascaded
two-tank system [19]. The system is described by

pS1hy = —pA1y/2gh + u, (14a)
pSahy = pA1y/2ght — pAary/2gho, (14b)

where p = 0.001 kg - cm™> is the liquid density; S; =
2500 cm?, §» = 1600 cm?, A| = 9 cm?, and A, = 4 cm? are
the cross-sectional areas of the upper tank, the lower tank, the
pipe through which the liquid flows into the lower tank, and the
pipe through which the liquid flows out, respectively; 41 and h;
denote the liquid levels of the upper and lower tanks, respec-
tively; u denotes the flow of liquid pumped into the upper
tank. The control objective is to regulate the levels i1 and hy
at given set points. u is available as a control input and sub-
ject to the constraint U = {u|0 kg.s_1 <u<4 kg.s_l}. The
liquid levels satisfy the bounds X = {x = [Ay, ho]T|1 em <
h1 <35 cm, 10 cm < hy < 200 cm}. The system model (14)
is assumed to be unknown for control design and only used
for simulations. In the simulations, the goal is to reach a ref-
erence value h; = 115 cm of the lower tank. Moreover, the
translated state and input variables x = x — [22.72, 115]T and
u = u — 1.90 are introduced to convert the problem into a
stabilization problem.

1) Data-Driven Modeling: We apply a random input signal
drawn from uniform distribution U[O0, 4] to collect obser-
vations for model identification. The sampling time is 0.9
seconds. Furthermore, 1000 samples are collected and split
into training and testing sets with a ratio of 65%/35%. Since
we assume (14) is unknown, we cannot choose the schedul-
ing variables and transform (14) into an exact LPV embedding
as [19], and thus we cannot use the approach in [19] for control
design. Instead, we simply use the states as the schedul-
ing variables to learn the LPV-ANN nominal model (2), and
then treat the scheduling variables as free variables in the

140
120
100

80

60 —

L L ! 40 L L
0 100 200 300 400 0 100 200 300 400

Sample [#] Sample [#]

(a) BFR,, = 92.82%. (b) BFR,, = 97.77%.

Fig. 2. Validation of the nominal LPV-ANN model.

L L . 1 I h
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Fig. 3. Validation of the BNN-based mismatch model.

prediction horizon of SMPC. In particular, we use a five-layer
fully-connected ANN to represent A(-). All the hidden lay-
ers of the ANN have 32 hidden units. Moreover, we use one
dense layer with 2 hidden units to represent B(-), and the
dense layer does not use bias terms. Furthermore, we use a
five-layer BNN to model the mismatch between the plant and
the nominal model. All the hidden layers of the BNN are dense
layers with 16 hidden units while the output layer of the BNN
is a DenseVariational layer [4]. Additionally, all the hidden
layers in the experiments use exponential linear unit (ELU)
activation functions while the output layers do not use any
activation function. Adam optimizer is used with a learning
rate set to 0.001 and other hyper-parameters as default. Fig. 2
shows the validation of the nominal model, and Fig. 3 shows
that the mismatches are contained in the bounds of the BNN
predictions, which indicates Assumption 1 was fulfilled.

2) Validation of the Proposed SMPC Scheme: To demon-
strate the efficiency of the proposed approach, we examine
the performance of variants of LPV-MPC. In the first case, we
examine the MPC only using the LPV-ANN nominal model.
In the second case, we examine the performance of SMPC
using an LPV-BNN model [2] of the original system. The
LPV-BNN model was composed of the same number of hid-
den layers and units as the LPV-ANN nominal model and
was directly learned from D. In the final case, we consider
the proposed SMPC approach using the HyNN model. In
our comparison, we used the prediction horizon of N = 4
and the robust horizon of N, = 1 for the SMPC. The
stage cost was £ = Y N ' x(ilk) Tx(ilk) + 10Au?(ilk) where
Au(ilk) = u(ilk) — u(i — 1|k). The terminal set and terminal
controller were designed using the approach in [2]. The con-
servativeness of the LPV-BNN model affects the volume of
the terminal set and thus the SMPC performance. For the
SMPC using HyNN, we sampled Nyic = 10 models to esti-
mate the mean (i, and standard deviation &, of the mismatch
g. Increasing the number of sampled models can improve
control performance but also increase the computational cost.
Subsequently, at each node of the scenario tree, we used /i,
fig + 0.60,, and fig — 0.66, as three discrete scenarios of
the plant-model mismatch. Furthermore, we set |g1| < 0.8
and |g2| < 3.0 based on max; |g;l)|,j = 1,2 in the dataset
D,. When the predictions of the scenarios are out of the
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Fig. 4. Validation of the proposed SMPC scheme.

bounds of g due to the limited generalization of the BNN
model, we use the bounds instead of the predictions and
uniform distribution as the probability of scenarios to avoid
too conservative uncertainty estimation. In our simulation,
the bounds were only used for 0.4% of the time instants,
which demonstrates the usefulness of the BNN-based mis-
match model. The system remained in the terminal set under
the terminal control law after entering the terminal set at
time instant k = 400, which indicates Assumption 2 was
fulfilled. Moreover, the trajectory of the plant was bounded
by the trajectories of the scenarios which demonstrates that
Assumptions 3 & 4 were fulfilled. Increasing 7 can increase
the probability of safety but reduce the feasible domain of
the optimization problem (10) and thus decrease the con-
trol performance. Furthermore, the SMPC was indeed feasible
throughout the simulations. Fig. 4(b) shows the designed MPC
can bring the liquid level A, of the lower tank to the reference
value while satisfying the system constraints. The proposed
SMPC approach with HyNN (green line) achieved better con-
trol performance than the other LPV-MPC approaches. While
the performance of SMPC-BNN is close to that of SMPC-
HyNN, SMPC-BNN used a more complex BNN and was more
computationally intensive than SMPC-HyNN.

V. CONCLUDING REMARKS

In this letter, a hybrid NN approach was proposed for adap-
tive SMPC of nonlinear systems in the LPV framework with
recursive feasibility and probabilistic safety guarantees. In par-
ticular, an LPV-ANN model was first learned from data as the
nominal model, and then a BNN was used to model the mis-
match between the original system and the nominal model.
The BNN-based mismatch model was later used to generate
scenarios online for SMPC. To ensure safety, the behaviors
of the generated scenarios contained the system behavior
with high probability, and the constraints were enforced for
all the scenarios. Moreover, a robust controlled invariant set
was employed to establish recursive feasibility. The closed-
loop simulations on a two-tank model demonstrated that the
proposed approach could improve model accuracy and con-
trol performance compared with SMPC only using ANNs and
BNNE.
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