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Abstract—This letter presents a hybrid neural network
(NN) approach for adaptive scenario-based model
predictive control (SMPC) design of nonlinear systems in
the linear parameter-varying (LPV) framework. In particular,
a deterministic artificial neural network (ANN)-based LPV
model is learned from data as the nominal model. Then,
a Bayesian NN (BNN) is used to describe the mismatch
between the plant and the LPV-ANN model. Adaptive
scenarios are generated online based on the BNN model
to reduce the conservativeness of scenario generation.
Moreover, a probabilistic safety certificate is incorporated
into the scenario generation by ensuring that the trajec-
tories of scenarios contain the trajectory of the system
and that all the scenarios satisfy the constraints with a
high probability. Furthermore, conditions for the recursive
feasibility of the SMPC are given. Experiments on the
closed-loop simulations of a two-tank system demonstrate
that the proposed approach can better model the behaviors
of nonlinear systems than sole ANN/BNN models can,
and the SMPC based on the hybrid NN (HyNN) model can
improve the control performance compared to the SMPC
with a fixed scenario tree.

Index Terms—Hybrid neural network, adaptive scenario-
based model predictive control, learning-based model
predictive control, linear parameter-varying framework.

I. INTRODUCTION

L
INEAR parameter-varying (LPV) framework has

attracted increasing attention for data-driven modeling

and learning-based control of complex systems by virtue of

modeling nonlinear and/or time-varying dynamics in the linear

structure [1]. While learning-based control approaches have

been developed using data-driven models [2], identification

and controller design are generally separated in the current

LPV literature [3]. In particular, the data-driven models are

learned by minimizing the prediction errors and validated on
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a testing set without considering the control performance.

Therefore, the identified models with high prediction accuracy

are not necessarily good for control design. Moreover, the

problem of describing the mismatch between the plant and

the learned models has not been investigated, which hinders

robust control design and safety guarantee establishment.

Data-driven modeling of nonlinear systems in the LPV

framework has been discussed in [3], [4]. Among determinis-

tic approaches, artificial neural networks (ANNs) have proven

advantageous in using large amounts of data to learn non-

linear parametric models for fast online evaluation, compared

to kernel-based methods with cubic computational complex-

ity to the data size. Moreover, [4] proposed a Bayesian neural

network (BNN)-based approach to quantify uncertainties in the

data-driven models. While several techniques (e.g., restricting

model complexity and transfer learning) have been developed

to address such problems as the high computational cost and

convergence failure of training BNN, LPV-BNN models still

pose challenges to be employed for control design due to

the increased complexity compared with deterministic (ANN)

models. The authors in [2] reduced the computational burden

of online SMPC optimization by quantizing the scenarios gen-

erated by BNN but may still need offline evaluations of BNN

to further reduce the computational cost. Instead, in this letter,

we propose using an LPV-ANN model learned from data as

the nominal model and then employing BNN to model the mis-

match between the nominal model and the plant to facilitate

control design without compromising the control performance.

The plant-model mismatch is a common problem for model-

based control design and is typically assumed to be bounded.

Recently, data-driven approaches have been employed to

obtain accurate state- and/or input-dependent descriptions of

the possibly time-varying plant-model mismatch such that the

conservativeness of the mismatch estimation is reduced and

the control performance is improved [5], [6]. In particular,

Gaussian process (GP) regression and BNN are two widely

used probabilistic approaches to model mismatch. Specifically,

BNNs treat the model weights of deterministic neural networks

(NNs) as random variables with given prior distributions and

provide the estimation of the posterior distributions condi-

tioned on a dataset using variational inference. Compared with

GP regression, BNNs can model both epistemic and aleatoric

uncertainties with arbitrary distributions, be trained efficiently

using Bayes by Backprop [7] and be fast evaluated without
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using the dataset. Therefore, this letter employs BNNs to

model the mismatch.

MPC is commonly used for model-based control of a pro-

cess while satisfying constraints. For MPC design using LPV

model descriptions of nonlinear systems, one challenge lies

in the uncertainty of the future evolution of the scheduling

variable(s) [8]. One practical solution to address this chal-

lenge is to assume fixed scheduling variables in the prediction

horizons, which may result in large prediction errors and

thus degrade the control performance. Therefore, the uncer-

tainty of the scheduling variables must be considered for

MPC design. The authors in [2] proposed to generate sce-

narios that can represent the joint uncertainty of models and

scheduling variables based on pure BNN model descriptions

for SMPC design. Additionally, using BNNs to model mis-

match for SMPC design has been studied in [9]. The BNN was

used to model state- and input-dependent uncertainties, and the

statistics (including mean and standard deviation) of the BNN

predictions were used to generate scenarios. However, [9]

assumed a given general nonlinear nominal model and did

not establish the recursive feasibility for the proposed SMPC

scheme due to the high model complexity of BNN. This letter

uses hybrid and pure data-driven models to take advantage

of the LPV-MPC approach and establish recursive feasibility

for the proposed LPV-SMPC scheme based on a reasonably

accurate characterization of the BNN model.

The main contribution of this letter lies in presenting a

hybrid NN (HyNN) approach in the LPV framework for

adaptive SMPC design and providing a set of conditions for

recursive feasibility and probabilistic safety guarantees of the

proposed approach. Remainder of this letter is organized as

follows: Section II describes the problem formulation and

the HyNN approach for data-driven modeling. The SMPC

design using the HyNN model is explained in Section III.

Section IV presents the experimental results, and finally

concluding remarks are provided in Section V.

II. PROBLEM FORMULATION

Consider a constrained, discrete-time nonlinear system

x(k + 1) = f (x(k), u(k)), (1a)

x ∈ X , u ∈ U , (1b)

where x denotes the states, u denotes the control inputs, and

k ∈ N denotes the time instant. X ⊆ R
nx and U ⊆ R

nu in (1b)

are the constraint sets of the states and inputs, respectively.

Additionally, X is assumed to be convex. Assuming that (1a)

is unknown but a sufficient dataset D = {(x(i), u(i), θ(i)), x(i+
1)}

ND

i=1 over X × U × � can be collected from the system,

a data-driven model needs to be learned from D for MPC

design. In particular, we learn a HyNN model composed of

a deterministic LPV-ANN nominal model to take advantage

of the LPV framework and a stochastic BNN-based residual

model to take care of the plant-model mismatch for robust

MPC design, as discussed in Section I. SMPC has proven

to be efficient for employing a BNN-based mismatch model

for control design. This letter aims to design SMPC for the

system (1) using the HyNN model and provide the recursive

feasibility and probabilistic safety guarantees.

The LPV-ANN nominal model is in the form of

x̂(k + 1) = A(θ(k))x(k) + B(θ(k))u(k) � f̂ (x(k), u(k)), (2)

where A :Rnθ �→ R
nx×nx and B:Rnθ �→ R

nx×nu are matrix

functions represented by ANNs; θ denote the scheduling vari-

ables which can be (nonlinear) functions of inputs/states, but

are converted into an exogenous signal by confining the val-

ues of θ to some suitable set � such that the associated set of

admissible trajectories (i.e., the set of input and output signals

that are compatible with the dynamics) of (2) is a superset of

the set of trajectories of the original nonlinear system (1) [8].

Then, a BNN will be used to model the mismatch between

the plant and the LPV-ANN model. In particular, we evalu-

ate the mismatch g(i) := x(i + 1) − x̂(i + 1) where x̂(i + 1)

is computed by (2) on the dataset D, to obtain the dataset

Dg = {(x(i), u(i), θ(i)), g(i)}N
i=1 for training the BNN-based

mismatch model. The training and evaluation procedures of

BNN can be found in [4]. In this letter, we use a multi-layer,

fully-connected BNN to model the unknown vector-valued

function g. The BNN is trained by minimizing

1

NBNN

NBNN
∑

i=1

[

log q(w(i); ζ ) − log p(w(i)) − log p(D|w(i))

]

(3)

over ζ via stochastic gradient descent where w(i) are the i-th

sample generated by Monte Carlo (MC) for approximating the

evidence lower bound (ELBO), and NBNN is the MC sample

size determined such that (3) is convergent. Using the trained

BNN model, the density of ĝ at given (x(k), u(k)) can be eval-

uated by drawing samples from the posteriors of weights and

calculating the possible ĝ’s with each set of sampled weights.

To provide safety guarantees, we need reliable estimates of g

inside the operating region X ×U , which is similar to [6] and

formally described in the following assumption:

Assumption 1: For a confidence level δp ∈ (0, 1], there

exists a scaling factor β such that with a probability greater

than 1 − δp,

∀k ∈ N, |gj(k) − µ̂gj(k)| ≤ βjσ̂gj(k) < |Gj|,

j = 1, 2, . . . , nx, (4)

given (x(k), u(k)) ∈ X × U , where µ̂gj(k) and σ̂gj(k) denote

the estimated mean and standard deviation of the j-th entry

of g(k), respectively, using the learned BNN model with MC

methods, and |Gj| denotes the maximum value of valid gj.

By Assumption 1, the learned model is sufficiently accu-

rate such that the values of g are contained in the credible

intervals of our probabilistic model. If Assumption 1 does not

hold for the trained model, then the model accuracy should be

improved by adjusting the model architecture and optimization

or collecting more data for training until the hypotheses of

Assumption 1 are satisfied.

Next, we introduce the definition of safety. Using κ:X ×
N −→ U to denote the SMPC law, the closed-loop system can

be described by

x(k + 1) = f̂ (x(k), κ(x(k))) + g(x(k), κ(x(k)))

� 	κ(x(k)). (5)

Additionally, we use x(k|x(0)) to denote the solution

{x(i)|i = 1, . . . , k} to (5) given the initial state x(0).
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Definition 1: Given x(0) ∈ X , the system (1a) is said to be

safe under a control law κ if for ∀k ∈ N,

	κ(x(k)) ∈ X , κ(x(k)) ∈ U . (6)

Moreover, the system (1a) is said to be δ-safe under the

control law κ if ∀k ∈ N,

Pr[	κ(x(k)) ∈ X , κ(x(k)) ∈ U ] ≥ δ, (7)

where Pr[·] denotes the probability of an event.

In general, the hard constraints (6) cannot be enforced

without additional assumptions [10], especially when (1a)

is unknown. However, δ-safety relaxes the requirements of

safety to safety with a high probability. Furthermore, an input

sequence u is said to be valid for a system with initial state

x(0) if applying the input sequence to the system is safe.

Lemma 1: Given x(0), a valid control input sequence u, a

BNN model that fulfills Assumption 1, and a confidence level

δc ∈ (0, 1], there exists an N̄MC such that for ∀k ∈ N and

j = 1, . . . , nx,

Pr
[

xj(k|x(0)) ∈
[

x̂j,min(k|x(0)), x̂j,max(k|x(0))
]]

≥ 1 − δc, (8)

where x̂j,min(k|x(0)) = mini x̂
(i)
j (k|x(0)) and x̂j,max(k|x(0)) =

maxi x̂
(i)
j (k|x(0)) with x̂

(i)
j (k|x(0)) = f̂ (x̂

(l)
j (k − 1|x(0)),

u(k−1))+ ĝ(i)(x̂
(l)
j (k−1|x(0)), u(k−1)); ĝ(i) is the prediction

of g using the i-th sampled model from the BNN model,

i = 1, . . . , NMC(k), l = 1, . . . , NMC(k − 1); NMC(k) is the

number of models drawn from the BNN model using MC

methods at the time instant k; N̄MC = maxk NMC(k).

Proof: Let k = 0, x̂(0|x(0)) = x(0). Since |gj(x(0),

u(0)) − µ̂gj(x(0),u(0))| ≤ βjσ̂gj(x(0),u(0)) by Assumption 1, there

exists an NMC(0) such that

xj(1|x(0)) = f̂j(x(0), u(0)) + gj(x(0), u(0))

∈
[

x̂j,min(1|x(0)), x̂j,max(1|x(0))
]

,

holds almost surely, i.e., δc → 0. Then, at time instant

k + 1, NMC(1) can be found such that xj(2|x(0)) ∈
[x̂j,min(2|x(0)), x̂j,max(2|x(0))], as

xj(1|x(0)) ∈
[

x̂j,min(1|x(0)), x̂j,max(1|x(0))
]

,

|gj(x̂
(l)
j (1|x(0)), u(1)) − µ̂

gj(x̂
(l)
j (1|x(0)),u(1))

|

≤ βjσ̂gj(x̂
(l)
j (1|x(0)),u(1))

, l = 1, . . . , NMC(0),

and the support of the weights as random variables in the BNN

model is unbounded. Through induction, (8) is obtained using

N̄MC = maxk NMC(k).

Lemma 1 guarantees that, with a high probability, the state

trajectory of the system is always contained in the multiple

trajectories simulated by the BNN model, which is used later

to establish safety guarantees.

A. Scenario-Based MPC Design

Given probability distribution of uncertainties, the objective

of stochastic MPC at the time instant k is

minE

{

N−1
∑

i=0


(x(i|k), u(i|k)) + VN(x(N|k))

}

(9)

where E is the expected value operator over the random vec-

tor sequence g = {g(0), . . . , g(N − 1)} with g denoting the

plant-model mismatch. It is noted that the uncertainties of g

are propagated forward through the prediction model (1a) and

thus the closed-form probability density function of ĝ is hard

to derive. Moreover, (9) is not directly solvable over generic

feedback control law u(k) = κ(x(k)).

To evaluate (9), SMPC represents the uncertainty of a

system using a tree of discrete scenarios. Each particular

branch stemming from a node represents a scenario/realization

of uncertainty [11]. Then, the scenario-based optimal con-

trol problem for an uncertain system at time instant k can

be formulated as

min
xj,uj

S
∑

j=1

pj

[

N−1
∑

i=0



(

xj(i|k), uj(i|k)
)

+ VN

(

xj(N|k)
)

]

(10a)

s.t. xj(i + 1|k) = f̂
(

xj(i|k), uj(i|k)
)

+ ĝj(i|k), (10b)
(

xj(i|k), uj(i|k)
)

∈ X × U , (10c)

xj(0|k) = x(k), (10d)

uj(i|k) = ul(i|k) if xp(j)(i|k) = xp(l)(i|k), (10e)

where the superscript j indicates the particular scenario j ∈
{1, . . . , S}; pj denotes the probability of the j-th scenario;


(xj(i|k), uj(i|k)) and VN(xj(N|k)) are the stage cost and

terminal cost for the trajectory of the j-th scenario, respec-

tively; N is the prediction horizon; ĝj denotes the mismatch

realization based on the BNN model; and (10e) enforces a non-

anticipativity constraint, which represents the fact that each

control input that branches from the same parent node must

be equal (xp(j)(i) is the parent state of xj(i + 1)). The non-

anticipativity constraint is crucial in order to accurately model

the real-time decision problem such that the control inputs

do not anticipate the future (i.e., decisions cannot realize the

uncertainty). The solution to this optimization problem is used

to generate the control law,

κ(x(k)) = u�(0|k). (11)

A potential challenge to the scenario-based optimal con-

trol problem is the exponential nature of the scenario tree

formulation. To combat this, we utilize a method described

in [11], in which a robust horizon Nr < N is defined. The sce-

nario tree stops branching beyond the robust horizon, and the

uncertainty realizations are assumed to be constant thereafter.

Consequently, considering a fixed number of scenarios s at

each node, the total number of scenarios is S = sNr . To further

save computational cost, we should accurately approximate (9)

with a relatively small number of scenarios.

Given the structure of the scenario tree, it is crucial to gen-

erate appropriate scenarios at each stage of the optimization

to accurately represent the uncertainty of the system. As such,

several methods of scenario generation have been proposed in

the literature, including Monte Carlo sampling methods [12],

moment matching methods [13], and even machine learn-

ing techniques [14]. Despite those efforts, the methods are

typically only applied to convex problems and assume full

recourse. In this letter, we propose an efficient online sce-

nario generation approach and incorporate a probabilistic

safety certificate into the scenario generation. In particular,

we generate representative scenarios whose behaviors contain

the system behaviors. Then, the system is safe under (11)

if (10) where all the scenarios are subject to the constraints
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is feasible. Moreover, the uncertainties considered are state-

and input-dependent, which provides the opportunity to adapt

the uncertainty estimation and thus the scenarios at each time

instant.

III. LEARNING-BASED SMPC DESIGN USING BNNS

In this section, we formulate the SMPC using the HyNN

model learned from the data. In particular, the scenario

generation method is presented, and the probabilistic safety

guarantee is provided.

A. Learning-Based Scenario Generation

At each time instant k, we draw N̄MC samples from normal

distributions and calculate weights w(i) by applying the repa-

rameterization trick [7] to the i-th sample. While Lemma 1

claims that the trajectories of the N̄MC sampled models con-

tain the system trajectory, N̄MC can be too large for online

optimization of the SMPC problems. Specifically, N̄MC ≥
2
δ
((nx − 1) ln(2) − ln(β)) to guarantee confidence level δ with

probability 1 − β [15]. To reduce the number of scenarios,

instead, we estimate g(i) using w(i)

µ̂g(k) =
1

N̄MC

N̄MC
∑

i=1

ĝ(i), (12)

σ̂g(k) =

√

√

√

√

√

1

N̄MC

N̄MC
∑

i=1

(ĝ(i) − µ̂g(k))

(ĝ(i) − µ̂g(k)), (13)

and use µ̂g(k), µ̂g(k) + mjσ̂g(k), µ̂g(k) − mjσ̂g(k), j = 1, . . . , S−1
2

where mj are the tuning multipliers for S uncertainty realiza-

tions. It is noted that a larger S improves the representativeness

of the scenario tree but also increases the computational cost

of the SMPC. To maintain the original statistical proper-

ties, the probabilities of scenarios are calculated using the

moment matching method [16]. Additionally, the first four

central moments are matched.

Remark 1: It is noted that the computational cost of the

proposed scenario generation approach and moment matching

method is high when N̄MC is large. However, the computations

can be done offline via a uniform-grid approach. Specifically,

we discretize X × U using uniform grids, evaluate the BNN

model at the grid points for N̄MC times such that Lemma 1

is fulfilled, and solve the moment matching optimization

problem. The grid size is determined such that the estimation

of µ̂g and σ̂g is stable. Thus, the scenarios and the probability

of scenarios at (x, u) can be retrieved online from the offline

computation results by finding the results at the grid point that

is closest to (x, u).

To save computational cost, we only update the uncer-

tainty estimation every time instant and fix the scenarios

over the prediction horizon. In particular, we use the solu-

tion u∗(1|k − 1) to (10) at k − 1 and the state x(k) to estimate

uncertainty ĝ(k) at k, and ĝ(i|k) = ĝ(k), i = 0, . . . , N − 1

for (10) at k. Using the uncertainties estimated at time instant

k is more tractable than considering time-varying uncertainties

and adaptive scenarios in the prediction horizon, as the uncer-

tainties are input-dependent and the control input sequence

in the prediction horizon are decision variables of the SMPC

Fig. 1. Recursive feasibility.

problem. When the uncertainties do not change significantly in

the prediction horizon, fixing the uncertainty estimation over

the prediction horizon is reasonable and still less conservative

than using the worst-case error bounds.

B. Recursive Feasibility

Next, we establish the recursive feasibility of the proposed

SMPC scheme, which requires a robust controlled invariant

terminal set associated with a terminal controller [8], [17].

Assumption 2: There exists a robust controlled invariant

terminal set Xf for the original nonlinear system (1) under

the terminal controller κf (x) ∈ U such that for ∀x ∈ Xf , we

have f (x, κf (x)) ∈ Xf .

The terminal set can be under-approximated as the com-

mon terminal region X̂f [18] of the generated scenarios whose

behaviors contain the behaviors of the system, which has been

developed in [2].

Assumption 3: For ∀k ∈ N, ∀i = 0, . . . , N − 1, ∀l =
1, . . . , nx, we have |gl(i|k)| ≤ max{|µ̂gl(k) +mjσ̂gl(k)|, |µ̂gl(k) −

mjσ̂gl(k)||j = 1, . . . , S−1
2

}.
Assumption 3 ensures that the uncertainties over the

prediction horizon are bounded by the uncertainty estimates

using the current state and the optimal control input from the

last step. It is noted that Assumption 3 can be fulfilled by

tuning mj. A larger mj can ensure Assumption 3 holds but

increases the conservativeness of the SMPC.

Assumption 4: Given the set Xi|k of the i-th step predictions

of the states at time instant k, applying u(i|k) results in Xi+1|k.

Then, for a subset X ′
i|k ⊆ conv(Xi|k), applying u(i|k) results

in X ′
i+1|k ⊆ conv(Xi+1|k).

Lemma 2: Suppose Assumption 3 & 4 are fulfilled, given

u∗(i|k) ∈ UN , then Xi|k+1 ⊆ conv(Xi+1|k) ⊆ X with the

control input sequence u(i − 1|k + 1) = u∗(i|k), i = 1, . . . , N.

Proof: Lemma 2 states that the sets of the states over the

prediction horizon at k + 1 are contained in the convex hull

of the corresponding sets at k. At time instant k, since u∗(i|k)
is the solution to (10), Xi+1|k ∈ X and thus conv(Xi+1|k) ∈
X . Using the scenario generation approach in Section III-A,

x(k + 1) ∈ conv(X1|k) after applying u∗(0|k) to the system at

k. Furthermore, for ∀x(1|k) ∈ X1|k, applying u∗(1|k) results

in x(2|k) ∈ X2|k. Hence, X1|k+1 ∈ conv(X2|k) with u(0|k +
1) = u∗(1|k) by Assumption 4. Similarly, we have Xi|k+1 ⊆
conv(Xi+1|k) ⊆ X , i = 1, . . . , N − 1.

Theorem 1 (Recursive Feasibility): Consider system (1)

under the control law (11) by solving (10) fulfills

Assumptions 1-4. If optimization problem (10) is feasible for

x(0), then it is feasible for all time instants k ∈ N, i.e., it is

recursively feasible.

Proof: The proof is done by constructing a candidate solu-

tion for each k, which is illustrated in Fig. 1. Let {u∗(i|k)}N−1
i=0
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be the minimizer to (10) at k. Applying control input (11)

results in the state x(k+1) ∈ [ minj xj(1|k), maxj xj(1|k)] ⊆ X .

Then, we consider the candidate solution {u∗(1|k), . . . , u∗(N−
1|k), κf (x

1(N|k), . . . , xS(N|k))} which satisfies the input con-

straints and results in xj(i|k + 1), i = 0, . . . , N, j = 1, . . . , S.

Using Lemma 2, we have xj(i|k + 1) ∈ X when i < N and

xj(N|k + 1) ∈ Xf , which proves recursive feasibility.

C. Probabilistic Safety Guarantee

Using the scenario generation approach in Section III-A, the

safety certificate can be formalized into our main result.

Theorem 2: Let Assumptions 1-4 hold. Then, the system

under the scenario-based MPC law is δ-safe if (10) is feasible

for x(0).

Proof: By Lemma 1, (8) holds using N̄MC samples.

Consequently, at time instant k, there exist mj’s for the sce-

nario generation using µ̂g(k) and σ̂g(k) estimated from the

N̄MC samples such that the predictions x̂(k + 1) by the gener-

ated scenarios contain the real x(k + 1) of the system under

Assumption 1. Furthermore, (10) is recursively feasible by

Theorem 1, and thus (7) holds for all k, which proves the

system is δ-safe by Definition 1.

IV. CLOSED-LOOP SIMULATIONS AND VALIDATION

In this section, we validate the proposed HyNN-based

control design approach using simulations of a cascaded

two-tank system [19]. The system is described by

ρS1ḣ1 = −ρA1

√

2gh1 + u, (14a)

ρS2ḣ2 = ρA1

√

2gh1 − ρA2

√

2gh2, (14b)

where ρ = 0.001 kg · cm−3 is the liquid density; S1 =
2500 cm2, S2 = 1600 cm2, A1 = 9 cm2, and A2 = 4 cm2 are

the cross-sectional areas of the upper tank, the lower tank, the

pipe through which the liquid flows into the lower tank, and the

pipe through which the liquid flows out, respectively; h1 and h2

denote the liquid levels of the upper and lower tanks, respec-

tively; u denotes the flow of liquid pumped into the upper

tank. The control objective is to regulate the levels h1 and h2

at given set points. u is available as a control input and sub-

ject to the constraint U = {u|0 kg.s−1 ≤ u ≤ 4 kg.s−1}. The

liquid levels satisfy the bounds X = {x = [h1, h2]T|1 cm ≤
h1 ≤ 35 cm, 10 cm ≤ h2 ≤ 200 cm}. The system model (14)

is assumed to be unknown for control design and only used

for simulations. In the simulations, the goal is to reach a ref-

erence value h∗
2 = 115 cm of the lower tank. Moreover, the

translated state and input variables x̃ = x − [22.72, 115]T and

ũ = u − 1.90 are introduced to convert the problem into a

stabilization problem.

1) Data-Driven Modeling: We apply a random input signal

drawn from uniform distribution U[0, 4] to collect obser-

vations for model identification. The sampling time is 0.9

seconds. Furthermore, 1000 samples are collected and split

into training and testing sets with a ratio of 65%/35%. Since

we assume (14) is unknown, we cannot choose the schedul-

ing variables and transform (14) into an exact LPV embedding

as [19], and thus we cannot use the approach in [19] for control

design. Instead, we simply use the states as the schedul-

ing variables to learn the LPV-ANN nominal model (2), and

then treat the scheduling variables as free variables in the

Fig. 2. Validation of the nominal LPV-ANN model.

Fig. 3. Validation of the BNN-based mismatch model.

prediction horizon of SMPC. In particular, we use a five-layer

fully-connected ANN to represent A(·). All the hidden lay-

ers of the ANN have 32 hidden units. Moreover, we use one

dense layer with 2 hidden units to represent B(·), and the

dense layer does not use bias terms. Furthermore, we use a

five-layer BNN to model the mismatch between the plant and

the nominal model. All the hidden layers of the BNN are dense

layers with 16 hidden units while the output layer of the BNN

is a DenseVariational layer [4]. Additionally, all the hidden

layers in the experiments use exponential linear unit (ELU)

activation functions while the output layers do not use any

activation function. Adam optimizer is used with a learning

rate set to 0.001 and other hyper-parameters as default. Fig. 2

shows the validation of the nominal model, and Fig. 3 shows

that the mismatches are contained in the bounds of the BNN

predictions, which indicates Assumption 1 was fulfilled.

2) Validation of the Proposed SMPC Scheme: To demon-

strate the efficiency of the proposed approach, we examine

the performance of variants of LPV-MPC. In the first case, we

examine the MPC only using the LPV-ANN nominal model.

In the second case, we examine the performance of SMPC

using an LPV-BNN model [2] of the original system. The

LPV-BNN model was composed of the same number of hid-

den layers and units as the LPV-ANN nominal model and

was directly learned from D. In the final case, we consider

the proposed SMPC approach using the HyNN model. In

our comparison, we used the prediction horizon of N = 4

and the robust horizon of Nr = 1 for the SMPC. The

stage cost was 
 =
∑N−1

i=1 x(i|k)
x(i|k) + 10
u2(i|k) where


u(i|k) = u(i|k) − u(i − 1|k). The terminal set and terminal

controller were designed using the approach in [2]. The con-

servativeness of the LPV-BNN model affects the volume of

the terminal set and thus the SMPC performance. For the

SMPC using HyNN, we sampled N̄MC = 10 models to esti-

mate the mean µ̂g and standard deviation σ̂g of the mismatch

g. Increasing the number of sampled models can improve

control performance but also increase the computational cost.

Subsequently, at each node of the scenario tree, we used µ̂g,

µ̂g + 0.6σ̂g, and µ̂g − 0.6σ̂g as three discrete scenarios of

the plant-model mismatch. Furthermore, we set |g1| ≤ 0.8

and |g2| ≤ 3.0 based on maxi |g
(i)
j |, j = 1, 2 in the dataset

Dg. When the predictions of the scenarios are out of the
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Fig. 4. Validation of the proposed SMPC scheme.

bounds of g due to the limited generalization of the BNN

model, we use the bounds instead of the predictions and

uniform distribution as the probability of scenarios to avoid

too conservative uncertainty estimation. In our simulation,

the bounds were only used for 0.4% of the time instants,

which demonstrates the usefulness of the BNN-based mis-

match model. The system remained in the terminal set under

the terminal control law after entering the terminal set at

time instant k = 400, which indicates Assumption 2 was

fulfilled. Moreover, the trajectory of the plant was bounded

by the trajectories of the scenarios which demonstrates that

Assumptions 3 & 4 were fulfilled. Increasing mj can increase

the probability of safety but reduce the feasible domain of

the optimization problem (10) and thus decrease the con-

trol performance. Furthermore, the SMPC was indeed feasible

throughout the simulations. Fig. 4(b) shows the designed MPC

can bring the liquid level h2 of the lower tank to the reference

value while satisfying the system constraints. The proposed

SMPC approach with HyNN (green line) achieved better con-

trol performance than the other LPV-MPC approaches. While

the performance of SMPC-BNN is close to that of SMPC-

HyNN, SMPC-BNN used a more complex BNN and was more

computationally intensive than SMPC-HyNN.

V. CONCLUDING REMARKS

In this letter, a hybrid NN approach was proposed for adap-

tive SMPC of nonlinear systems in the LPV framework with

recursive feasibility and probabilistic safety guarantees. In par-

ticular, an LPV-ANN model was first learned from data as the

nominal model, and then a BNN was used to model the mis-

match between the original system and the nominal model.

The BNN-based mismatch model was later used to generate

scenarios online for SMPC. To ensure safety, the behaviors

of the generated scenarios contained the system behavior

with high probability, and the constraints were enforced for

all the scenarios. Moreover, a robust controlled invariant set

was employed to establish recursive feasibility. The closed-

loop simulations on a two-tank model demonstrated that the

proposed approach could improve model accuracy and con-

trol performance compared with SMPC only using ANNs and

BNNs.
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