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a b s t r a c t 

In this study, we investigate a two-dimensional lattice model for crowd evacuation dy- 

namics by using a dynamic Monte Carlo (DMC) method. This model is built on the mi- 

croscopic Arrhenius dynamics along with the exclusion rule in which stochastic processes 

govern the individual movements depending on the relative distance to the room exit. 

Even though individual decision-making procedures can be complicated during the evacu- 

ation in an emergency, our model can quantitatively estimate the time for them to evacu- 

ate and predict the emerging patterns of the crowds during the process. The results exhibit 

the phenomena such that pedestrians spontaneously gather at the exit and form an arched 

shape close to the door. The DMC simulations and observations agree with the correspond- 

ing study in the literature. The DMC algorithm is computationally efficient due to its major 

property —“rejection-free”, which makes it a suitable tool to simulate evacuation dynamics 

for a large group of pedestrians. 

© 2023 Elsevier Inc. All rights reserved. 

 

1. Introduction 

With the growth in urban population, there are increasing numbers of gathering events for living, working, studying, or 

entertainment. There have been incidents where overcrowded groups of people tried to evacuate in case of emergencies 

leading to injuries and casualties [1–3] . Despite the massive fatalities caused by these circumstances in the community, the 

dynamics of urgent evacuation are not comprehensively explored and investigated [4] . Emergency evacuation experiments in 

real life are challenging to conduct, in particular with humans, due to possible ethical and legal controversy. Therefore, the 

numerical study of pedestrian dynamics, especially evacuation processes, can provide valuable information for architectural 

design, facilities optimization, crowd management, and emergency planning, which can help to improve crowd safety. Re- 

searchers observe a number of self-organized phenomena and collective effects emerged in the pedestrian flow, for example, 

lane formation, jamming, clogging, zigzag, and faster-is-slower effect [5–10] . 

The models for describing pedestrian flows can be categorized into two major classes: macroscopic and microscopic 

models. The macroscopic ones treat crowds as a homogeneous mass that behaves like a compressible fluid flow. The density 

and the flux of pedestrians are related by using partial differential equations, specifically, in the theory of fluid dynamics 

and the conservation laws [11–14] . On the other hand, the microscopic models describe the dynamics of each pedestrian

by incorporating the interactions between pedestrians and individual heterogeneity, such as age, gender, physical condition, 

and preference in moving directions. 
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The microscopic representations could be roughly divided further into continuous and discrete models. One popular 

example on the continuous microscopic level is the social-force model, which describes the motion of each pedestrian with 

their interactions based on the distances between them by using the ordinary differential equations (ODEs) [4,15–18] . The 

social-force model involves solving a high-dimensional system of ODEs for a large number of pedestrians. Although the 

system of equations can be solved with standard numerical integration schemes, the numerical solutions may highly oscillate 

and be unstable even by taking very small time steps [18] . In the discrete models, space is partitioned into small cells or

lattice sites that the pedestrians stay in. At each step, an individual moves to one empty neighboring cell or site with certain

probabilities. An example of the discrete models is the cellular automaton (CA) model [19–21] , in which the movements of

pedestrians are described by a number of rules that may depend on the exit location, the exit width, the distance to the

exit and inherent characteristics such as gender and movement speed, and interactions with other pedestrians [22–27] . It is

difficult to claim which class of models is more accurate than the other because the individuals neither act together as rigid

bodies with regular shapes, nor behave in a uniform manner [28] . Both macroscopic and microscopic models can simulate 

typical patterns during the evacuation dynamics, including clogging and arching of pedestrians around an exit. 

The update strategies for the CA models include two types: graph-based and field-based. In the graph-based models, 

pedestrians move towards one orientation point, steering towards the final target in a randomly determined sequence of 

events. The field-based models take account of other influences, such as the distance to an exit and infrastructure/obstacles 

in the room. These influences can be reflected as a static floor field, which does not change throughout a simulation. In

[22,23] , the so-called floor field model was introduced by Schadschneider and collaborators, which has become a standard 

CA approach to pedestrian dynamics. 

Recently, the CA models have been widely applied to simulate the evacuation dynamics due to their conceptual simplic- 

ity, and numerical efficiency [29] . Song et al. [30] and Cao et al. [31] developed a multi-grid model that takes finer lattice

and each individual occupies several cells instead of one. Ren et al. [32] proposed a pedestrian evacuation model with

multi-exits based on a force-driven CA. In [33] , Lu et al. took an extended floor field CA model to study pedestrian group

behaviors in crowd evacuation. Li et al. [34] proposed a CA model of pedestrian movements with a visibility function de-

fined to describe the visual effect. Henein and White [35] took crowd forces and associated injuries into account in their CA

evacuation model. Wang et al. [36] and Zheng et al. [37] included a panic factor in the CA model to study the psychological

effect of pedestrians on the evacuation process. Yi et al. [38] simulated evacuation of crowds in case of stampedes, in which

individuals choose to follow the majority or stay away from the stampedes. Kim et al. [39] and Zheng et al. [40] studied the

effect of fire and smoke on evacuations by taking a fire and smoke floor field in the CA model. Tanimoto et al. [41] , Bouzat

and Kuperman [26] , and Chen et al. [28] applied the game theory in the CA model to resolve the situations when several

individuals try to occupy the same target cell. 

Our main goal in this work is to present a CA model on two-dimensional (2D) lattices to simulate the evacuation process

in a scenario where crowds try to escape from a room with one or two exits. In our model, a pedestrian moves into a

vacant neighboring cell with a probability that depends on his/her surrounding neighborhood at the moment. The proba- 

bility is governed by stochastic processes built on the microscopic Arrhenius law and the exclusion principle. These rules 

reflect the pedestrians’ decisions of action that an individual avoids collisions with other pedestrians, and pedestrians choose 

scholastically to move towards the exit, stop to wait, and back step. With this model, we simulate the evacuation dynamics

on 2D lattices with the individual preference to leave a room via the shortest path possible for minimum effort. The pro-

posed model and many CA models for pedestrian and traffic dynamics are close to the Ising model for equilibrium systems.

In fact, these models can be seen as the Ising model’s extension to the non-equilibrium dynamics for pedestrian and traffic

flows. 

To evolve the dynamics of pedestrians on a microscopic level more efficiently, we employ the kinetic/dynamic Monte 

Carlo (DMC) method [42,43] because of its major property —“rejection-free”. When starting a DMC simulation, we put all 

of pedestrians’ possible moving events into a list. Then in each time step, we randomly choose an event from the list with

a probability proportional to the rate of the event by using a fast search. After performing the configurational change for

this event, we update the event list. No event will be rejected in this way so as to save computational cost compared with

the Metropolis Monte Carlo (MMC) algorithm [44] . Currently, a lot of CA models for simulating pedestrian and vehicular

dynamics employ the MMC method. However, it sometimes rejects trial steps due to small acceptance probability rates, for 

instance, when a system is close to the equilibrium. Based on this reason, we adopt the DMC method instead of the MMC

to evolve the evacuation dynamics. We have recently applied the DMC method to simulate 1D/2D traffic and bi-direction 

pedestrian flows [45–49] . 

We note that DMC is usually used in the study of material sciences such as simulating chemical deposition, crystal sur-

face growth, and surface diffusion. To our knowledge, this is the first study that uses DMC for efficient uncertainty prediction

for the crowd evacuation process within the literature. The DMC method can be a good choice to the current models for

studying evacuation dynamics. 

The structure of the paper is as follows. We introduce the CA model and the pedestrian evacuation strategies in Section 2 .

Then, in Section 3 , the DMC algorithm and the implementation is outlined. In Section 4 we demonstrate several sets of

numerical results with different parameters of the model. Finally, Section 5 summarizes our work and suggests future ex- 

tensions. 
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Fig. 1. (a) Schematic illustration of the M × M room with one exit of w cells wide on the east side (here, M = 11 , w = 1 . The exit is at the cell (12,6); 

pedestrians in three different cells (11,5), (11,6), (11,7) can exit the room; (b) The movement field of a pedestrian at the center, who can stay there or 

migrate into one of the neighboring sites. 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. A cellular automaton model 

In this section, we present the 2D lattice (cellular automaton) model for evacuation dynamics, in which pedestrians try 

to reach their destination (i.e., the exit) while avoiding collisions with other individuals. A pedestrian chooses one of the 

empty neighboring lattice sites to move into based on the distance from the site to the destination. This distance determines

the transition probability of the moving event. For simplicity, we consider a square room with one exit located at the center

of one side of the square. The domain is divided into M × M cells or lattice sites, and M denotes the system size. One

pedestrian can occupy only one site, and vice versa. The door width has w cells so that no more than w individuals could

exit the room simultaneously ( Fig. 1 (a)). A pedestrian is considered as having exited the room when he/she moves into one

of the exit cells. We characterize the state at every site (x, y ) with an index φ(x,y ) ( 1 ≤ x, y ≤ M): 

φ(x,y ) = 

{
1 if there is one person in the site (x, y ) , 
0 if the site is vacant . 

(1) 

Then the system configuration is described by { φ(x,y ) } M 

x,y =1 in the space { 0 , 1 } M 
2 
. Pedestrians’ movements are described by

the transitions between the system configurations. The pedestrians lie in the Moore neighborhood composed of eight nearest 

neighboring sites, as shown in Fig. 1 (b). In each step, one individual is chosen to migrate into one of the eight neighboring

sites if that site is empty [19] . These movements follow the spin-exchange dynamics [50] : the pedestrian’s current site and

the chosen neighboring site exchange their index numbers in each transition. For example, if a pedestrian occupying a site 

(x, y ) migrates to a neighboring site (x ′ , y ′ ) , the configuration is updated as follows: 

{ φ(x,y ) = 1 , φ(x ′ ,y ′ ) = 0 } → { φ(x,y ) = 0 , φ(x ′ ,y ′ ) = 1 } . 
In each step, a pedestrian selects his/her desirable site out of the eight neighboring sites based on the distances from

these sites to the exit. In particular, the pedestrian is more likely to choose one of the vacant sites that is the closest to the

exit. The pedestrians’ movements are governed by the transition probabilities that depend on spatial one-sided interactions 

and the surrounding neighborhood. Here, we take an Arrhenius type interaction relation [51] and perform an individual 

movement with the transition rate defined by: 

r = ω 0 exp (−E) . (2) 

Specifically, a likelihood that a pedestrian occupying the site (x, y ) moves to a neighboring site (x ′ , y ′ ) follows 

r (x 
′ ,y ′ ) 

(x,y ) 
= ω 0 exp 

(
− �d (x 

′ ,y ′ ) 
(x,y ) 

−
√ 

2 
)
, (3) 

where the parameter ω 0 = 1 /τ0 denotes the pedestrian moving speed or frequency with τ0 as the characteristic time. The

term �d 
(x ′ ,y ′ ) 
(x,y ) 

is given by 

�d (x 
′ ,y ′ ) 

(x,y ) 
= 

√ 

(x ′ − x ex ) 2 + (y ′ − y ex ) 2 −
√ 

(x − x ex ) 2 + (y − y ex ) 2 , (4) 

where (x ex , y ex ) denotes the coordinates at the middle of the exit. The first term on the right hand side of Eq. (4) stands

for the shortest distance from the neighboring site (x ′ , y ′ ) to the exit, and the second term is the distance from the current
3 
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location (x, y ) to the exit. As the values of �d for all pedestrians’ possible movements in one step are in the range of

−√ 

2 to 
√ 

2 , we normalize the exponent by subtracting with 
√ 

2 so that the exponent is below or equal to 0 and the rate

r is at most ω 0 . The transition probability for each pedestrian is computed according to his/her proximity to the exit and

the Eq. (4) is inspired from Chen et al. [52] . Based on the Eqs. (3) - (4) , we can see that among the eight neighboring sites

around a pedestrian, the closer is the distance from the neighboring site (x ′ , y ′ ) to the exit, the greater is the transition
value r. If another agent already occupies the neighboring cell (x ′ , y ′ ) , the rate r (x ′ ,y ′ ) 

(x,y ) 
= 0 due to the assumption that only

one pedestrian can occupy one cell. 

3. The dynamic Monte Carlo method 

We evolve the CA model discussed above by using the dynamic Monte Carlo (DMC) algorithm since it has several ad-

vantages over the Metropolis Monte Carlo (MMC) method [44] . The first reason is that the selected events in the MMC

method can sometimes be rejected if the acceptance rate is low, especially when the pedestrian density is large or the sys-

tem is close to the equilibrium. The DMC algorithm with the key feature of being “rejection-free” was originally developed 

in [42] to speed up the MMC simulation of Ising models. Another reason to use the DMC method is its suitability and ef-

ficiency for simulating the non-equilibrium system due to the way how the transition rates are updated locally. For every 

time step, as the transition probabilities for all possible changes from the current state have been computed and stored in

a list, we can select a transition event from the list by using a probability proportional to the corresponding event rate. To

perform the event, only the information from two adjacent sites is swapped. Therefore, only a small number of individuals 

(if there are any) in the nearby neighboring sites need to be updated with their possible moving events in the list affected

by the preceding event. 

When applying the DMC algorithm, we usually assume that the system takes N independent processes (i.e., the pedes- 

trian moving events) associated with the rates r i given in Eq. (3) , and these processes/events are of the Poisson process type.

Then the DMC algorithm can give the correct time scale for the evolution of the system, which depends on the total rate

given by the sum of all transition rates: R = 

∑ N 
i =1 r i . In each round of the DMC algorithm, we perform the following steps: 

The DMC algorithm 

1. Generate a random number ξ1 ∈ (0 , 1) from a uniform distribution. Decide which event will happen (i.e. which pedes-

trian and his/her moving direction) by selecting the event s such that 

s −1 ∑ 

i =1 

r i 
R 

< ξ1 ≤
s ∑ 

l=1 

r i 
R 

(5) 

2. Update the configuration by executing the chosen event s . 

3. Determine the time duration for the chosen event to take place (i.e., the transition time) by using R and another uniform

random number ξ2 ∈ (0 , 1) to compute the nonuniform time step �t = − ln (ξ2 ) /R . 
4. Update any transition rates r i and the total rate R that may have changed caused by the event, such as a pedestrian

reaches the exit and leaves the room, a neighboring site changes from occupied to empty due to a pedestrian moving

out of it, or vice verse. 

Remark 1. When we select an event in Step 1, instead of doing a naive linear search with O (N) operations, we should use

a binary search that can bring down the searching cost to O ( log 2 N) operations. 

Remark 2. We repeat the above Steps 1 to 4 until the last pedestrian leaves the room as the DMC simulation procedure is

finished. The total time that it takes for all pedestrians to exit the room is referred as the evacuation time. 

4. Numerical experiments 

In this section, we investigate the evacuation dynamics with various parameters using the DMC algorithm presented 

in the previous section. Following [8,46,53,54] , we take the actual physical cell-size as 0 . 4 × 0 . 4 m 
2 in order to allocate

enough space for everyone to maintain a safe distance to others and avoid bumping into them. This assumption agrees 

with the observation that the highest density in dense crowds is roughly 6 peds/m 
2 . We first focus on the situation that

the evacuation is performed in a square room with an exit located in the middle of the east side, as shown in Fig. 1 (a).

At the beginning, total N p pedestrians are randomly distributed in the room, hence the initial population density (i.e., the 

occupancy rate) ρ = N p /M 
2 with 0 ≤ ρ ≤ 1 . As the evacuation starts, all pedestrians move towards the exit at the desired

velocity of 1.2 meters per second (i.e., 3 cells per second). This speed can be set by imposing the characteristic time τ0 =
1 / 3 s, and then ω 0 = 3 s −1 . Actually, pedestrians sometimes might move slower or faster than the average speed because of

the inherent stochasticity in the system. 

4.1. Comparisons between different population densities 

Our first set of experiments aim to compare the results of different densities ρ with a fixed room size M = 30 cells

( = 12 m) and an exit of the width w = 1 cell ( = 0 . 4 m). Figure 2 illustrates six typical snapshots at different times of a
4 
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Fig. 2. Six snapshots of a DMC simulation for the pedestrian evacuation from a room of size M = 30 . The initial density ρ = 0 . 1 , so the initial number of 

pedestrians N p = 90 . 

 

 

 

 

 

 

DMC simulation. Initially, N p = 90 pedestrians (as ρ = 0 . 1 ) are distributed randomly inside the room with the exit at the

site (31,15) ( Fig. 2 (a)). Once the evacuation starts, all pedestrians move by trying to follow their shortest paths to the exit

( Fig. 2 (b)–(d)). At t = 13 s ( Fig. 2 (e)), more than 1 / 3 of total pedestrians have already moved out of the room while most

of the remaining pedestrians are clogging in front of the door. At t = 24 s ( Fig. 2 (f)), about 1 / 4 of total pedestrians are still

inside the room. By the time t ≈ 33 s, all of pedestrians have evacuated from the room (the configuration not shown). 

Figure 3 shows another DMC simulation for the evacuation process of total N p = 360 pedestrians (as ρ = 0 . 4 ) from the

same room with the same exit location. It takes much longer time for all pedestrians to leave the room; however, similar
5 
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Fig. 3. Six snapshots of a DMC simulation for the pedestrian evacuation from a room of size M = 30 . The initial density ρ = 0 . 4 , so the initial number of 

pedestrians N p = 360 . 

 

 

 

 

 

 

 

behaviors and patterns can be observed here. Many pedestrians gather in front of the exit due to its limited width. In

particular, at time t = 46 s ( Fig. 3 (e)), the remaining pedestrians form a semi-elliptic shape (an arching) in front of the door.

The update rule in Eqs. (3) - (4) implies that the pedestrians during an evacuation process will perform a biased random

walk as they will choose the direction towards the exit with the highest probability. The typical patterns of the evacuation

dynamics have been observed in Figs. 2 and 3 , and other simulations. In summary, the typical patterns are the following:

(i) At the beginning, individuals are randomly distributed. (ii) As individuals move to the exit, the crowd gathers around the

exit and becomes denser and denser, which forms an arching and clogging due to the inefficient and irregular outflow. (iii)
6 
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Fig. 4. (a) Comparison of the number of remaining pedestrians in the room versus time with four different initial density ρ from 0.1 to 0.4. (b) The 

averaged outgoing flux versus time. We take the same room size M = 30 cells and the same exit width w = 1 site in all DMC simulations. For each initial 

density ρ , we present the averaged result over ten simulations with different random number seeds. The shaded area depicts the mean ± the standard 

deviation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As more pedestrians exit the room, the size of the dense crowd decreases. (iv) Finally, the crowd disappears, and it reaches

the end stage of the evacuation. 

Figure 4 (a) shows the evolution of the number of individuals remaining in the room and the comparison between the

results of different initial population density ρ from 0.1 to 0.4. Here we set the same room size ( M = 30 ) and the same exit

width ( w = 1 ) in all DMC simulations. Furthermore, for each initial density ρ , we run ten simulations with different random

number seeds and show the averaged results. For a given value of ρ , all pedestrians are able to successfully evacuate from

the room, and the number of remaining pedestrians decays almost linearly in time. The average evacuation time for the 

initial density ρ from 0.1 to 0.4 is approximately 33s, 68s, 101s, and 135s, respectively. We observe that the evacuation time

increases almost linearly as ρ increases. 

Meanwhile, Fig. 4 (b) shows another quantity of interest, the outgoing flux over time, i.e., the average number of indi-

viduals exiting the room per unit of time [57] . At the beginning, the outgoing fluxes of ρ = 0 . 1 (red) and ρ = 0 . 2 (cyan)

increase while the ones of ρ = 0 . 3 (pink) and ρ = 0 . 4 (green) decrease. After certain transient periods, all outgoing fluxes

become uniform over time and approach to about 3 . 6 ∼ 3 . 7 pedestrians per second. One possible cause for these transients

is that the individuals initially close to the door can exit the room before the rest pedestrians start clogging and form an

arching by the exit. If the initial density is low, it takes time for individuals to walk to the door before they exit, therefore

the initial outgoing flux is small. On the other hand, if the initial density is high, more individuals are close to the exit so

that more people can exit the room within the same time frame at the beginning. After the transient period, the outgoing

flux becomes essentially uniform over time regardless of the initial density because the width of the exit limits the flow of

pedestrians. 

4.2. Comparisons between different exit widths 

Next, in the second set of experiments, we study the effect of the exit width w on the evacuation time in Fig. 5 . Here

we generate random initial distributions with the population density increasing from ρ = 0 . 05 to ρ = 0 . 95 and compare the

evacuation times for four different exit widths from w = 1 cell ( = 0 . 4 m) to w = 4 cells ( = 1 . 6 m). But we keep the same

room size M = 30 cells ( = 12 m) in all DMC simulations. Again, we show the averaged result for each value of ρ over ten

different simulations. In Fig. 5 , we observe that the average evacuation time for a given door width increases linearly with

the initial density ρ . The pedestrians gather around the exit after the evacuation process starts; however, the rate at which

the pedestrians evacuate is limited by the size of the door. Furthermore, for each density ρ , we observe that the time it

takes for all pedestrians to evacuate is the longest for the case with the door width w = 1 , and the average evacuation time

decreases when we widen the exit as expected. In particular, the fitting lines in Fig. 5 show that the case with w = 1 has

the largest slope, which is much steeper than the other three cases. Indeed, for the simulations with w = 1 , we observe that

the pedestrians always gather around the door and clog the exit in the majority of the simulations, which produces a much

longer evacuation time. Therefore, by having a larger exit, multiple pedestrians are able to exit the room at the same time,

which can reduce the evacuation time. 
7 
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Fig. 5. Comparison of the evacuation time versus the initial density ρ with four different exit widths w from 1 to 4 sites. We take the same room 

size M = 30 in all DMC simulations. For each initial density ρ , we present the averaged result over ten different simulations. The error bars are the 

mean ± the standard deviation. The solid lines from top to bottom are (1) t ev = 1 . 54 + 346 . 31 ρ , (2) t ev = 5 . 03 + 206 . 39 ρ , (3) t ev = 5 . 55 + 154 . 98 ρ , and (4) 

t ev = 5 . 70 + 123 . 93 ρ , respectively, where t ev represents the evacuation time and ρ is the initial population density. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To understand the intermediate stage during the evacuation, we also consider the distribution of time intervals between 

successive pedestrians passing through the door. Figure 6 shows the histogram of time intervals �t between successive 

exit times, collected from ten simulations of evacuations at the initial density of ρ = 0 . 5 from a room of size M = 50 with

a door width of w = 1 to 4 cells, respectively. The histograms shown in Fig. 6 (a)-(d) are right-skewed, and increasing the

door width can reduce the median of the time intervals �t . The appearance of events with larger �t indicates that there

are temporary cloggings during the evacuation process. In the histograms, the range of possible clogged time of the case 

with w = 1 is much broader than those of the other three cases. Figure 6 (e) compares the distributions of �t collected

from ten simulations with four different door widths on a semi-log scale. Although these distributions are not identical, the 

frequency appears to be an exponential decay with �t across the four different sizes of the door shown by linear behavior

on a semi-log plot. 

4.3. Comparisons between different room sizes 

Emergency evacuation could arise in various spatial sizes, from a number of customers in a bar to a large crowd in a

packed concert hall. Here, the third set of experiments aim to the effect of the room size M on the evacuation dynamics.

In Fig. 7 , we run five sets of DMC simulations to compare the evacuation times for different room sizes from M = 10 cells

( = 4 m) to 50 cells ( = 20 m). But we keep the same exit width w = 1 cell ( = 0 . 4 m) in all simulations. Similar to the previous

discussion in Sections 4.1 and 4.2 , we observe that for each room size M, the evacuation time is approximately a linear

function of the initial density ρ . For the same initial density ρ , the evacuation time for the larger room size M is longer as

there are more pedestrians than in the smaller room. For these almost linear functions, the slope of the one for the larger

room appears to be steeper since the initial number of pedestrians is proportional to the square of the room size, i.e., M 
2 . 

4.4. Comparisons to relevant previous work 

Here, in the fourth set of experiments, we show the comparison between our DMC simulations and the ones from 

other models reported in Refs. [15,55] in three scenarios with different room sizes, door sizes, initial numbers of pedes- 

trians, and velocities. In the typical scenario when pedestrians evacuate from a single-door room, all of the simulations 

and the reported results demonstrate a clogging effect and an arching effect near the exit due to the limitation of the

door width. Table 1 shows the evacuation times obtained from our models with the ones from the social force model [15]

and the lattice gas model [55] . The reported evacuation time is approximated from the figures shown in the references, and

the DMC results are the averaged evacuation times over ten simulations with their standard deviations. The table indicates 

the agreement between the predicted evacuation time using the DMC method and the ones reported in the previous studies. 
8 
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Fig. 6. Histograms of time intervals ( �t) between successive exit times from a room with a single exit of the width w of (a) 1, (b) 2, (c) 3, and (d) 4 cells, 

respectively. The bin size of the histogram takes 0.1s. The panel (e) plots the frequency of the four sets of data in a semi-log scale. Each set of data is 

accumulated from ten simulations with M = 50 and ρ = 0 . 5 . 

Table 1 

Comparison results of the evacuation times in different scenarios obtained by our models with the results from 

other models in the literature. Note that the sign “≈” is used for the results by other models since these data 

are extracted from the figures shown in Refs. [15,55] . Our results are the averaged evacuation times over ten 

simulations with their standard deviations. 

Room size (cell 2 ) Door width Initial number Velocity (m/s) Evacuation time (s) 

Ref. [55] 30 × 30 0.8 m 100 peds. 1.0 ≈ 27 . 4 

DMC results 30 × 30 2 cells 100 peds. 1.0 27 . 42 ± 1 . 18 

Ref. [55] 30 × 30 0.8 m 100 peds. 1.33 ≈ 25 . 2 

DMC results 30 × 30 2 cells 100 peds. 1.33 24 . 73 ± 1 . 07 

Ref. [15] 50 × 50 1.2 m 225 peds. 1.0 ≈ 48 . 4 

DMC results 50 × 50 3 cells 225 peds. 1.0 52 . 37 ± 2 . 73 

9 
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Fig. 7. Comparison of the evacuation time versus the initial density ρ with five different room sizes M from 10 to 50. We set the exit width w = 1 cell 

in all DMC simulations. The results are averaged over ten different simulations for each value of ρ and M. The error bars are the mean ± the standard 

deviation. The solid lines from top to bottom are (1) t ev = 1 . 54 + 951 . 42 ρ , (2) t ev = 2 . 26 + 608 . 74 ρ , (3) t ev = 3 . 29 + 345 . 31 ρ , (4) t ev = 3 . 55 + 154 . 98 ρ , and 

(5) t ev = 3 . 79 + 36 . 04 ρ , where t ev represents the evacuation time and ρ is the initial population density. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.5. Numerical simulation of evacuation with two exits 

In the fifth set of experiments, we extend the evacuation model to a room with two exits. Once the evacuation starts,

every pedestrian chooses his/her desired exit based on the shortest distance from his/her location to the exit. Then all 

pedestrians move towards their chosen exits. 

Figure 8 shows six typical snapshots at different times of a DMC simulation. Initially, N p = 360 pedestrians (as ρ = 0 . 4 )

are distributed randomly inside the room with one exit of the width w = 1 cell placed at the center of the west side, (0,15),

and the other exit located at the center of the east side, (31,15) ( Fig. 8 (a)). Since pedestrians choose the closest exit based on

their proximity to the door, the room is divided into two sub-areas. The pedestrians represented by blue ( � ) in the left part

prefer to take the west exit, while the others denoted by red ( � ) in the right part choose the east exit. Each group has about

180 individuals. After the evacuation starts, all pedestrians move by trying to follow their shortest paths to their preferred 

exits ( Fig. 8 (b)–(d)). As only one person can exit through the door at any time, pedestrians start to form an arching at each

exit ( Fig. 8 (d)). The size of the arching declines as more pedestrians exit the room ( Fig. 8 (e)–(f)). By the time t ≈ 28 s, all of

pedestrians have evacuated from the room (the configuration not shown). 

In Fig. 9 (a), we show the average and variance of the number of individuals remaining in the room over time from ten

simulations and compare the results of different initial population density ρ from 0.1 to 0.4. Here we set the same room

size ( M = 30 ) and the same exit width ( w = 1 ) in all DMC simulations. The number of remaining pedestrians decays almost

linearly in time. The average evacuation time for the initial density ρ from 0.1 to 0.4 is approximately 7.5s, 15s, 22s, and

28s, respectively. We observe that the evacuation time increases almost linearly as ρ increases. Comparing to Fig. 4 (a) of

the results with only one door, the evacuation time in Fig. 9 (a) is reduced by more than a factor of four. This might result

from the additional exit and the reduction of the maximum distance that an individual has to travel to the exit. 

Figure 9 (b) shows the outgoing rate at which individuals exit from the two doors over time. At the beginning, the out-

going fluxes increase for all cases of ρ = 0 . 1 to 0.4. After certain transient periods, all outgoing fluxes become essentially

uniform over time and approach to the values between 10 . 0 ∼ 10 . 5 pedestrians per second. 

4.6. Comparisons between different exit locations 

In the last set of experiments, we consider the effects of the exit locations on the evacuation process. In one case, there

are two exits located in the middle of the north and east sides of a square room. In the other case of a rectangular room,

two exits are located on the north and east sides, but the one on the north side is off-centered. 

Figure 10 shows six typical snapshots at different times of a DMC simulation for the first case. Initially, N p = 360 pedes-

trians (as ρ = 0 . 4 ) are distributed randomly inside the room with one exit of the width w = 1 cell placed at the center of

the north side, (15,31), and the other exit located at the center of the east side, (31,15) ( Fig. 10 (a)). Similar to the case in

the previous section, the pedestrians are separated into two groups based on their proximity to the exits. The pedestrians 
10 
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Fig. 8. Six snapshots of a DMC simulation for the pedestrian evacuation from a room of size M = 30 . The initial density ρ = 0 . 4 , so the number of 

pedestrians N p = 360 . The two doors are located in the middle of the west and east sides of the room, i.e. (0,15) and (31,15). 

 

 

 

 

 

represented by black ( � ) prefer to take the north exit, while the others denoted by red ( � ) choose the east exit. Each group

has about 180 individuals. As all pedestrians move towards their preferred exits, the crowds gather around the exits waiting 

to escape from the room. The crowds decrease in size as pedestrians continuously exit the room ( Fig. 10 (b)-(f)). By the time

t ≈ 30 s, all of pedestrians have evacuated from the room (the configuration not shown). 

The second case simulates an evacuation from a rectangular room with the size of 50 × 30 cells. Two doors of the width

w = 1 cell are located at (6,31) on the north side and (51,15) on the east side, respectively. Figure 11 shows six typical

snapshots at different times of a DMC simulation for the second case. Initially, there are N p = 600 pedestrians (as ρ = 0 . 4 )
11 



N. Tamang and Y. Sun Applied Mathematics and Computation 445 (2023) 127876 

Fig. 9. (a) Comparison of the number of remaining pedestrians in the room versus time with four different initial density ρ from 0.1 to 0.4. (b) The 

averaged outgoing flux versus time. In all DMC simulations, we take the same room size M = 30 cells, and there are two doors with the width ( w = 1 cell) 

located in the middle of the east and west sides of the room. For each initial density ρ , we present the averaged value over ten different simulations. The 

shaded area depicts the mean ± the standard deviation. The inset in (b) zooms in the results to show the standard deviation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

distributed randomly inside the room ( Fig. 11 (a)). Again, the pedestrians are separated into two groups based on their

preference of the exits. Each group has about 300 individuals. Once the evacuation starts, they move towards the closer exit 

and form an arching around each exit ( Fig. 11 (d)). By the time t ≈ 63 s, all of pedestrians have evacuated from the room (the

configuration not shown). 

Figure 12 shows the evolution of the number of individuals remaining in the room for the two cases. For each case, we

run ten simulations with different random number seeds and show the averaged results. The black and red lines correspond 

to the number of individuals who choose the north and east exits, respectively. In Fig. 12 (a) of the first case with the square

room, we observed that the black and red lines almost overlap with each other due to the symmetry of the locations of the

two exits. 

On the other hand, Fig. 12 (b) of the second case with the rectangular room shows some difference between two groups.

Although each group initially has about the same of 300 individuals, the group of pedestrians walking to the north door

take more time (about 3 s) to exit the room. One possible reason may be due to the location of the north exit at (6,31),

which is very close to the wall x = 0 ( Fig. 11 (a)). Therefore, the majority of pedestrians in this group (black � ) are initially

distributed to the east of the line x = 6 . Once this group of pedestrians are clogging to form an arching ( Fig. 11 (d)), it is not

centered at (6,31). Due to this biased distribution, they need to wait more time to exit. When the other group of pedestrians

(red � ) are clogging, the formed arching is centered at (51,15), which is in the middle of the east side. Due to the symmetric

distribution, this group may take relatively less time to exit. 

4.7. Limitations and future improvements 

Overall, the CA model with the DMC method presented in this study describes the movements of pedestrians well. The 

model can reproduce some collective phenomena like clogging at exit doors. While the DMC method can be viewed as a

promising alternative to existing stochastic simulation tools for CA models of pedestrian or vehicular flows, there are some 

issues about our CA model that need to be considered. 

The model contains free parameters such as the speed of individuals that can be calibrated to fit different quantitative

descriptions of pedestrians. However, the parameters depend on the scenario and geometry of the domain, like long corri- 

dors, bottlenecks, and outflow from a room. The DMC transition rates can also be time-dependent and location-dependent 

instead of a constant. Therefore, they need to be calibrated with specific applications to make the prediction more reliable. 

In this study, we restrict the simulations to some simple scenarios, i.e., evacuation from a square or rectangular room with

one or two exits. Here, our model uses the proximity to the exit to compute the transition rates for pedestrians’ move-

ments. The model can be improved further by considering pedestrians with different characteristics such as walking speeds 

and competitiveness. 
12 
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Fig. 10. Six snapshots of a DMC simulation for the pedestrian evacuation from a room of size M = 30 . The initial density ρ = 0 . 4 , so the number of 

pedestrians N p = 360 . The two doors are located in the middle of the north and east sides of the room, i.e. (15,31) and (31,15). 
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Fig. 11. Six snapshots of a DMC simulation for the pedestrian evacuation from a room of size 50 × 30 . The initial density ρ = 0 . 4 , so the number of 

pedestrians N p = 600 . The two doors are located at (6,31) on the north side and (51,15) on the east side. 
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Fig. 12. Comparison of the number of remaining pedestrians in the room versus time with the initial density ρ = 0 . 4 . (a) The case of the square room; 

(b) The case of the rectangular room. For each case, we present the averaged result over ten simulations with different random number seeds. The shaded 

area depicts the mean ± the standard deviation. The black and red lines correspond to the number of individuals who choose the north and east exits, 

respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

5. Conclusions 

In this paper, we have presented a 2D cellular automaton (CA) model with the dynamic Monte Carlo (DMC) method 

to investigate the crowd evacuation dynamics. This study is driven by the rising need on understanding the mechanisms 

of how pedestrians exit a building. So we can develop a quantitative method to help to design pedestrian facilities and

control pedestrian flow in case of emergency to reduce the injuries and casualties during evacuation. The proposed CA 

model incorporates stochastic rules to describe pedestrians’ movements and their interactions. 

We implemented an efficient DMC method with fast searching for selecting transition events to simulate the evacuation 

process. In the DMC algorithm, the movements and interactions of individuals are characterized by the transition rates 

depending on the distance from each individual to the exit and the distances from their neighboring sites to the exit. Then,

the corresponding time it takes to evolve the dynamics can be determined by using these rates. Therefore, we can apply the

DMC method to predict the evacuation time quantitatively. We also note that the Metropolis Monte Carlo (MMC) algorithm 

could be used to reproduce an equilibrium state of a system, but the DMC algorithm is more appropriate to simulate the

evacuation dynamics. Furthermore, because the DMC method is “rejection-free”, it can be taken as one contribution with 

regard to the computational efficiency. 

With the DMC method, we established and validated our CA model, which can illustrate the characteristics of pedestrian 

dynamics during the evacuation and estimate the evacuation time for different room sizes, exit widths, and initial densities. 

In our results, we find that the evacuation time increases almost linearly with the initial density of pedestrians. When the

exit width gets bigger, the evacuation time decreases. The simulations also show some observed patterns of the evacuating 

crowds, for example, the pedestrian arch formation and clogging around an exit. 

In this paper, we propose the model in a square or rectangular room with one or two exits, and all the pedestrians

behave in the same way with the same walking speed. We have not included more complex components into the model, for

instance, obstacles in the room, different individual behaviors (e.g., unequal moving speeds), limited visibility of the room, 

and the herding effect [56,57] . In the future, we plan to explore how to modify our model and adapt the DMC algorithm for

these aspects. 
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Data will be made available on request. 
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