CHANGES IN KINEMATICS AND MUSCLE ACTIVITY WHEN LEARNING TO USE A WHOLE-BODY POWERED EXOSKELETON FOR STATIONARY LOAD HANDLING

Hanjun Park¹, Sunwook Kim¹, Maury A. Nussbaum¹, Divya Srinivasan^{2*}

¹Vi..rginia Tech, Blacksburg, VA, USA, ²Clemson University, Clemson, SC, USA

Corresponding Author. Email: sriniv5@clemson.edu

Powered/active exoskeletons (EXOs) are emerging as potential ergonomic interventions to control exposures to physical risk factors for work-related musculoskeletal disorders and enhance work performance. However, little is known about how users react to such EXO systems over time and develop expertise (e.g., motor adaptation). This knowledge gap is important, since task-specific expetiise can have substantial effects in the context of industrial manual material handling strategies and their resulting biomechanical effects (e.g., Authier et al., 1996; Gagnon, 2003; Goubault et al., 2020; Lee et al., 2014; Plamondon et al., 2014). To our knowledge, though, no previous studies have examined motor adaptations to EXO use during manual material handling.

We explored how novice users adapted to operating a whole-body powered exoskeleton (WB-PEXO) prototype (GuardianTM XO, www.sarcos.com) when performing one-hand stationary load handling task over multiple sessions. During the task, we monitored upper limb kinematics and muscle activity from the novice users, which were compared to the same measures obta.ined from experts perfo1ming the same task using the same EXO. We hypothesized that there would be significant initial differences between novices and expetis in: 1) shoulder and back kinematics; and 2) muscle activation levels. We futiher hypothesized that such differences would decrease as novice users adapted over time to WB-PEXO use.

Eleven healthy male pallicipants (six novices and five expetis) completed the study. Prior to the experiment, informed consent was obtained from all pallicipants following procedures approved by the Virginia Tech Institutional Review Board. The load-handling task required participants to lift/lower a bag with mass = 11.3 kg, and do so three times between three levels of a storage rack. The task was done using the dominant ann (right, for 10/11 pallicipants). A repeated-measures design was used that involved three load-handling sessions with the WB-PEXO and one session without the WB-PEXO.

Surface electromyography (EMG) signals from the anterior deltoid, upper trapezius, and the back (thoracic + lumbar) of the dominant side were measured at 1.5 kHz using a telemetered system (Ultium, Noraxon, AZ, USA). Muscle activity was measured during sessions 1, 3, and No-EXO sessions for novices, and EXO and No-EXO sessions for expetis. EMGs were normalized to values from maximal constraction. Whole body kinematics were measured at 60 Hz using an inertial motion capture system (Xsens Technologies B.V., Enschede, The Netherlands).

Task completion time, median and peak (95th o/oile) shoulder and torso flex.ion angles on the dominant side were extra.cted as dependent measures. Additionally, empirical cumulative distribution futtctions (ECDFs) were obtained for

muscle activity, from which median and peak values were detennined. Independent-sample *!-tests* were perfonned separately in the four phases of the stationary load handling task (1 = lift from the middle to the top shelf, 2 = lower from the top to the middle shelf, 3 = lower from the middle to the bottom shelf, 4 = lift from the bottom to the middle shelf). Statistical significance was detelmined whenp<0.05.

Novices had significantly longer completion times in all four load-handling phases, though these differences between novices and expetis decreased over time. Both novices and expetis exhibited similar median and peak flexion angles at both the shoulder and torso when using the EXO. Novices had significantly lower peak shoulder flex.ion in phases 1 and 2, which persisted in session 3.

Novices generally exhibited higher median back muscle activity compared to the experts in all load handling phases. However, peak back muscle activity was mostly similar between novices and experts. For the upper trapezius, novices had significantly lower median muscle activation levels in all sessions. However, they had higher peak upper trapezius muscle activity in session 1 and lower peak muscle activity in session 3.

Our results from this preliminaly investigation indicate that novices and expetis employed similar load-handling kinematics using the WB-PEXO, but that novices had a much slower pace (up to -2.5x longer completion time) and they did not completely adapt to the EXO over the three sessions studied. Our hypotheses - that novices will initially employ significantly different upper limb and back kinematics, but that such differences will decrease with EXO use - were not suppotied. consistent with our earlier This outcome, though, is investigation of motor adaptation in a powered exoskeleton in the context of walking (Park et al., 2022). However, unlike that prior study, where we observed significant initial differences between novices and expetis in all kinematic variables, we did not observe significant initial differences here in shoulder and torso flexion angles.

Results regarding back muscle activity, however, generally suppotied our other hypothesis: despite similar kinematics, back muscle activity was higher among novices and they exhibited differences in the relative contributions of the trapezius vs. anterior deltoid muscles. Future research in this direction will help better understand the motor control and adaptation strategies exhibited by individuals perfotming industt-ial tasks using WB-PEXOs, and help to detennine what adaptation periods or training approaches are needed for safe and effective EXOuse.

Acknowledgements

This research was suppolted by NSF grant #1839946. We would like to acknowledge Sarcos Robotics for providing the exoskeleton testbed for the study.

REFERENCES

- Authier, M., Lo1tie, M., & Gagnon, M. (1996). Manual handling techniques: Comparing novices and expe1ts. *International Journal of Industrial Ergonomics*, *I* 7(5), 419--429.
- Gagnon, M. (2003). The efficacy of training for three manual handling strategies based on the observation of expelt and novice workers. *Clinical Biomechanics*, 18(7), 601-611.
- Goubault, E., Ma1tinez, R., Assila, N., Monga-Dubreuil, E., Dowling-Medley, J., Dal Maso, F., & Begon, M. (2020). Effect of Expeltise on Shoulder and Upper Limb Kinematics, Electromyography, and Estimated Muscle Forces During a Lifting Task. *Human Factors*, 1, 1-20.
- Lee, J., Nussbaum, M.A., & Kyung, G. (2014). Effects of work experience on fatigue-induced biomechanical changes during repetitive asymmetric lifts/lowers. *Ergonomics*, 57(12), 1875-1885.
- Park, H., Kim, S., Nussbaum, M.A., & Srinivasan, D. (2022). Effects of using a whole-body powered exoskeleton during simulated occupational load-handling tasks: A pilot study. Applied Ergonomics, 98(September 2021), 103589.
- Plamondon, A., Delisle, A., Bellefeuille, S., Denis, D., Gagnon, D., & Lariviere, C. (2014). Lifting strategies of expelt and novice workers during a repetitive palletizing task. *Applied Ergonomics*, 45(3), 471-481.