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ABSTRACT
This paper presents a learning- and scenario-based model predictive control (MPC) design approach for
systemsmodelled in the linear parameter-varying (LPV) framework. Using input-output data collected from
the system, a state-space LPVmodel with uncertainty quantification is first learned through the variational
Bayesian inference Neural Network (BNN) approach. The learned probabilisticmodel is assumed to contain
the true dynamics of the systemwith a high probability and is used to generate scenarios that ensure safety
for a scenario-based MPC. Moreover, to guarantee stability and enhance the performance of the closed-
loop system, a parameter-dependent terminal cost and controller, as well as a terminal robust positive
invariant set are designed. Numerical examples will be used to demonstrate that the proposed control
design approach can ensure safety and achieve desired control performance.
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1. Introduction

Model predictive control has beenwidely used to control a given
process while satisfying a set of constraints and found applica-
tions in various domains including vehicular technology (Luo
et al., 2021) and chemical processes (Ellis et al., 2017). Fur-
thermore, learning-based model predictive control (L-MPC)
has increasingly received interest for control of complex safety-
critical systems operating in uncertain and hard-to-model envi-
ronments (Aswani et al., 2013; Hewing et al., 2020; Koller
et al., 2018). Uncertainties and hard-to-model dynamics of the
environments are learned from data for L-MPC to improve
the control performance and guarantee constraints satisfac-
tion. However, the statistical nature of learning-based meth-
ods brings new challenges including the generalisability of the
learned models and the computational complexity involved in
the MPC design (Bonzanini et al., 2020; Mesbah, 2018).

Suitable and sufficiently accurate model representations of
the system dynamics are crucial to MPC performance, and
distributional information on the uncertainties reduces the con-
servativeness of compact uncertainty sets. Gaussian process
(GP) regression is a commonly used non-parametric learning
method to identify residual model uncertainty, which provides
a point-wise approximation of unknown errors with mean and
covariance characterisation. However, GP suffers from high
computational complexity which grows with the number of
recorded data points. Additionally, GP-basedMPC design faces
the challenge of uncertainty propagation (i.e. the propagation of
the resulting stochastic state distributions) over the MPC pre-
diction horizon. This problem becomes even more exacerbated
when the known nominal part of the systemmodel is nonlinear.

CONTACT Yajie Bao yb18054@uga.edu

To address this, Koller et al. (2019) linearised the nominal part
for uncertainty propagation.

Linear parameter-varying (LPV) models use a linear struc-
ture to capture time-varying and nonlinear dynamics of a sys-
tem with system matrices dependent on so-called scheduling
variable(s), and this allows developing computationally effi-
cient design methods (Hanema, 2018). Nonlinear systems can
be embedded in LPV representations (Abbas et al., 2021); as
an example, linear switching systems and Markov jump lin-
ear systems can be viewed as particular cases of LPV systems
with the scheduling variables being a switching sequence and a
Markov chain, respectively. Moreover, learning-based methods
for the global identification of state-space LPV (LPV-SS) mod-
els with arbitrary scheduling dependency using input-output
data have been developed (Bao, Velni et al., 2020), and a vari-
ational Bayesian inference Neural Network (BNN) approach
(Bao et al., 2021) has been proposed to quantify uncertainties
in state-space LPV model identification of nonlinear systems,
which provides a posterior density estimation of the system
model parameters given an input-output dataset.

Different LPV-MPC design schemes given system models
have been recently surveyed in Morato et al. (2020). One chal-
lenge with the MPC design in the LPV framework lies in
the unknown future evolution of the LPV scheduling vari-
ables over the prediction horizon. Two main approaches have
been considered in the literature to handle this difficulty: min-
max MPC formulation over all possible scheduling trajecto-
ries (Lee & Yu, 1997), and tube-based design, where possible
future trajectories are exploited to reduce the uncertainty in the
scheduling variables evolution. Hanema et al. (2020) proposed a
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heterogeneously parameterised tube-basedMPC approachwith
recursive feasibility and stability guarantees for LPV systems
without considering uncertainty in system models and dis-
turbance. Moreover, Calafiore and Fagiano (2013) proposed a
scenario-basedMPC for constrained discrete-time LPVmodels
with bounded scheduling dependency and stochastic schedul-
ing variables. However, Calafiore and Fagiano (2013) assumed
that the terminal control law associated with the terminal set
of the system model is given, which is not practical. Therefore,
the existing LPV-MPC approaches are not directly applicable
to learning-based LPV models, due to the high complexity of
the learned models with arbitrary scheduling dependency and
the complex joint uncertainty in the learned models and the
scheduling variables.

In this paper, we assume no true system model is avail-
able, but input-output data are given. For data-driven LPV-SS
model identification using only input-output data, the major-
ity of the current LPV identification methods, including direct
prediction-errorminimisation (PEM)methods, aswell as global
subspace and realisation-based techniques (SID), assume an
affine scheduling dependency with known basis functions,
which restricts the complexity of a representation (Cox, 2018).
Rizvi et al. (2018) used kernelized canonical correlation analysis
(KCCA) to estimate the state sequence and then a least-squares
support vector machine (LS-SVM) to capture the dependency
structure, which suffers from the kernel function selection and
computational complexity. The expectation-maximisation algo-
rithms estimate states and matrices alternatively (Wills & Nin-
ness, 2012). To simultaneously estimate states and explore LPV
model structural dependency, Bao, Velni et al. (2020) presented
an integrated architecture of artificial neural networks (ANNs).
However, the aforementioned methods focus on estimating a
set of deterministic parameters rather than characterising the
statistical properties of the estimation, which typically produce
goodmodels in the sense ofminimising the expected loss. How-
ever, the accuracy under a few operating points can be poor,
which can later result in a low-performing controller and safety
violation. Furthermore, robust control techniques cannot be
employed without quantifying the uncertainty of the estimated
model. Gaussian process (GP) has been used to quantify model
uncertainty but suffers from cubic complexity to data size and
assumes joint Gaussian distributions to describe uncertainties
(Liu et al., 2020). Instead, BNNs can provide a fast evaluation
of uncertainties after training and approximate arbitrary pos-
terior distributions. Bao et al. (2021) proposed a BNN training
approach based on Bao, Velni et al. (2020) to quantify the epis-
temic uncertainty in the ANN model. In this paper, we employ
the proposed BNN architecture to identify an LPV model with
uncertainty quantification for robust estimation and control
purposes.

Moreover, the quantified uncertainties in the learned LPV
model and the future scheduling trajectory will be consid-
ered simultaneously for L-MPC design. In particular, based
on the characterisation of the joint uncertainties, we construct
tubes of linear models that contain the true system dynam-
ics almost surely. To ensure safety, the system constraints are
enforced by considering the worst case in the model tube.
Additionally, chance constraints can be handled by adjust-
ing the tube based on the BNN model. Furthermore, we use

the expectation of the cost over the possible system trajec-
tories as the cost function. Scenario-based MPC (SMPC) is
adopted here to approximate analytically intractable evolution
of uncertainties and improve online computational efficiency.
Several methods of scenario generation for SMPC have been
proposed in the literature, including Monte Carlo (MC) sam-
pling methods (Shapiro, 2003), moment matching methods
(Høyland et al., 2003), and even machine learning techniques
(Defourny, 2010). Despite these efforts, the existing methods
are typically only applied to convex problems and assume
full recourse. Since BNNs are evaluated using MC methods,
a straightforward approach for scenario generation is to use
models drawn from the posterior distributions as scenarios.
However, the number of models required for safety guarantees
can be too large for online optimisation of the SMPC design.
To reduce the number of scenarios, Bao et al. (2022) used μ̂ŷ(k),
μ̂ŷ(k) + ajσ̂ŷ(k), μ̂ŷ(k) − ajσ̂ŷ(k), j = 1, . . . , ns−1

2 where μ̂ŷ(k) and
σ̂ŷ(k) are the sample mean and standard deviation of the predic-
tions ŷ(k) of uncertainties at time step k by BNNs, and aj’s are
the tuning multipliers and ns is the number of scenarios at each
node of a stage. However, Bao et al. (2022) used fixed aj’s for
each time step, which may not well represent the distributions
of uncertainties. In this work, we use K-means (Lloyd, 1982),
a popular clustering method in machine learning with conver-
gence guarantees, to quantize the sample models. In particular,
we apply K-means clustering to possible systemmatrices at each
time step to construct scenarios. Additionally, the distributions
of the system matrices are estimated using the identified LPV
model and the knowledge of the scheduling variables by Monte
Carlomethods.With the scenarios generated using K-means, to
maintain the original statistical properties of the system matri-
ces distributions, the probability of the scenarios is estimated by
amoment-matching optimisationmethod formatching the first
four central moments.

Furthermore, to guarantee the stability of the closed-loop
system and the recursive feasibility of the associated MPC opti-
misation problem, we present a learning-based approach for
terminal ingredients design. In particular, we transform the
BNN model with nonlinear scheduling dependency into an
LPV form with affine scheduling dependency and compute a
terminal constraint as a robust positive invariant set and a ter-
minal cost as a parameter-dependent poly-quadratic Lyapunov
function using related LPV tools (Pandey & de Oliveira, 2017)
based on the transformed model. The latter is computed by
solving a linear matrix inequality (LMI) problem correspond-
ing to the extreme realisations of the scenarios, which provide
a parameter-dependent terminal controller based on the gen-
erated scenarios that can improve the control performance. To
the best of the authors’ knowledge, this is the first work on
learning-based terminal control design in the LPV framework
that is applicable to general nonlinear systems using only the
input-output data. Additionally, the BNNmodel can be updated
online using the framework developed in Bao,Mohammadpour
Velni et al. (2020) with new observations collected by apply-
ing the MPC law to the real system. The updated model is
anticipated to better characterise the uncertainty of the system,
which in turn reduces the conservativeness required to ensure
safety and hence improve the control performance. Figure 1
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Figure 1. The flow chart of the overall learning-based MPC design procedure.

shows the flow chart of the overall learning-based SMPC design
procedure.

The contributions of this paper are three-fold:

(1) We present a learning- and scenario-based robust MPC
design approach. The proposed approach learns an LPV
model with generally nonlinear scheduling dependency
from data and thus is applicable to a broader class of non-
linear systems than the existing works that assume a given
LPV model with affine scheduling dependency. The pro-
posed approach tackles the challenges of model bias for
learning-based control by uncertainty quantification using
BNNs and robust control using scenario optimisation. The
proposed approach can also handle the joint uncertainties
of thematrix functions and scheduling variables in the LPV
model while most existing LPV-MPC works only consider
the uncertainty of scheduling variables.

(2) We present a learning-based terminal ingredient design
for scenario-based MPC using BNN models in the LPV
framework. The proposed design reduces conservativeness
by considering parameter-dependent terminal ingredients
while most existing works consider static terminal ingre-
dients. The proposed design is applicable to LPV models
with nonlinear scheduling dependency while most existing
works only assume affine scheduling dependency.

(3) We provide safety and stability guarantees for the proposed
MPC scheme.

The challenges of the proposed approach lie in learning a
sufficiently accurate model from data and reducing the con-
servativeness of uncertainty quantification and scenario gen-
eration for control design purposes. The remainder of the
paper is organised as follows: Section 2 describes the prob-
lem formulation and preliminaries. Scenario-basedMPCdesign
approach using identifiedBNNmodels is presented in Section 3.
Section 4 then presents numerical results to validate the
proposed learning-based control design method. Concluding
remarks are finally made in Section 5.

2. Preliminaries

2.1 Basic definitions

A set with a non-empty interior that contains the origin is called
a proper set, and a proper set that is also compact and convex is
called a PC-set. In data-driven methods, a dataset is randomly
split into a training set for training a model and a testing set for
testing the generalisation of the trained model. In probability
theory, an event is said to happen almost surely if it happens with
probability 1 (or Lebesgue measure 1). A function f : R+ −→

R+ is of class K∞ if it is continuous, strictly increasing, f (0) =
0, and limξ−→∞ f (ξ) = ∞. A variable θ is said to evolve accord-
ing to a bounded rate-of-variation (ROV) if for all time samples
k ∈ N, there exists a δ such that |θ(k + 1) − θ(k)| ≤ δ.

2.2 Problem formulation

We consider a constrained discrete-time nonlinear system rep-
resented by

x(k + 1) = f (x(k), u(k)) (1a)

x(k) ∈ X, u(k) ∈ U, k ∈ N, (1b)

where f (·) is an unknown nonlinear function, x(k) and u(k)
denote the states and control inputs at time sample k, respec-
tively. X ⊆ R

nx and U ⊆ R
nu are the input and state constraint

sets. We can embed the nonlinear representation (1) into the
following discrete-time state-space LPV representation

x(k + 1) = A (θ(k)) x(k) + B (θ(k)) u(k), (2)

x(k) ∈ X, u(k) ∈ U, k ∈ N, (3)

where θ(k) ∈ � ⊆ R
nθ denotes the scheduling variables at time

sample k. The scheduling variables are (nonlinear) functions
of inputs/states, but are converted into an exogenous signal by
confining the values of θ to some suitable set � such that the
associated set of admissible trajectories (i.e. the set of input and
output signals that are compatible with the dynamics) of (2) is
a superset of the set of trajectories of the original nonlinear sys-
tem (1a) (Hanema, 2018). Furthermore, A and B are smooth
nonlinear matrix functions of θ(k). x(k) and θ(k) can be mea-
sured at every time instant k.X andU are assumed to be PC-sets.
Additionally, it is assumed that the future behaviour of θ is not
known exactly at time instant k and that the matrix functions
A(·) and B(·) are unknown.

Given an initial state x0, a scheduling signal θ : N → �, and
a control law κ : X × � × N → U, the closed-loop system can
be described by

x(k + 1) = A(θ(k))x(k) + B(θ(k))κ(x(k), θ(k), k)

� �κ(x(k), θ(k), k). (4)

Additionally, we use x(k|θ , x0) (resp. x̂(k|θ , x0)) to denote the
solution x(k) (resp. x̂(k)) to (4) with the representation (2) (resp.
a data-driven model).
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Definition 2.1: Given an initial state x0 ∈ X, the system (2) is
said to be safe under a control law κ if

∀k ∈ N : �κ(x(k), θ(k), k) ∈ X, κ(x(k), θ(k), k) ∈ U. (5)

Moreover, the system (2) is said to be δ-safe under the control
law κ if

Pr [∀k ∈ N : �κ(x(k), θ(k), k) ∈ X, κ(x(k), θ(k), k) ∈ U] ≥ δ

(6)
where 0 ≤ δ ≤ 1, and Pr[·] denotes the probability of an event.

In general, (5) cannot be enforced without additional
assumptions (Koller et al., 2018) especially when (2) is
unknown. Furthermore, δ-safety relaxes the requirements of
safety to safety with a high probability. The problem addressed
in this paper is to design a learning-based model pre-
dictive controller κ : X × � × N −→ U using a dataset D =
{(θ(k), x(k), u(k)), x(k + 1)}ND

k=1 collected from the system,
which yields x(k) −→ 0 as k −→ ∞ with the constraints (6) to
be satisfied. First, we briefly describe the proposed probabilis-
tic approach to identify the state-space LPV (LPV-SS) model of
the system using the available datasetD.

2.3 LPV-SSmodel identification using BNN

The data-driven LPV model identification problem is to learn
matrix functions A(·) and B(·) from the dataset D. To model
arbitrary scheduling dependency and have parametric repre-
sentations of the system, Bao, Velni et al. (2020) used fully-
connected ANNs to represent A(·) and B(·), and learned the
parameters of the ANNs by minimising the mean squared error
(MSE) of the predictions of the ANN model. To quantify the
epistemic uncertainty in the ANN model for robust estima-
tion and control, Bao et al. (2021) treated the parameters of the
matrix functions represented by ANNs as random variables and
learned the posterior distributions of the parameters by BNNs
(Blundell et al., 2015) composed of DenseVariational layers to
represent the matrix functions.

A BNN approximates the posterior density of the parame-
ters by variational inference given a prior density. In particular,
a scaledmixture of twoGaussian densities (Blundell et al., 2015)

p(wj) = ρmix,jN (wj|0, σ 2
j,1) + (1 − ρmix,j)N (wj|0, σ 2

j,2), (7)

with the tuning parameter ρmix,j, is used as the prior density
of the parameters wj (including the weights and bias if exists)
in the jth layer. Equation (7) can represent both a heavy tail
by a large σj,1 and concentration by a small σj,2. Furthermore,
ρmix,j,σj,1, andσj,2 are determined using cross validation (Hastie
et al., 2009). Variational inference (VI) approximates difficult-
to-compute probability density functions by finding a member
from a family of densities that is closest to the target in the sense
of Kullback–Leibler (KL) divergence (Blei et al., 2017Feb). To
approximate the posterior p(wj|D), VI solves

min
ϑj

KL
(
q(wj;ϑj)‖p(wj|D)

)
(8)

⇔ min
ϑj

KL
(
q(wj;ϑj)‖p(wj)

)− Eq(wj;ϑj)
[
log p(D|wj)

]

⇔ min
ϑj

(
Eq(wj;ϑj)

[
log q(wj;ϑj)

]− Eq(wj;ϑj)
[
log p(wj)

]
− Eq(wj;ϑj)

[
log p(D|wj)

])
, (9)

where q(wj;ϑj) denotes a family of densities with parameters
ϑj. The function in (9) is known as the evidence lower bound
(ELBO) (Blei et al., 2017Feb). To solve (9) byMonte Carlo (MC)
methods and backpropagation, a reparameterisation trick is
used to parameterise q(wj;ϑj), i.e.wj = μwj + σwj

⊙
εwj where⊙

denotes the element-wise multiplication, εwj ∼ N (0, I), and
thus ϑj = (μwj , σwj) here. Compared with a Dense layer (i.e. a
fully-connected layer with parameters wj), a DenseVariational
layer (with parameters μwj and σwj) doubles the number of
parameters and requires minimising ELBO in (9) for uncer-
tainty quantification of wj. Similar to ANNs, a BNN can be
composed of multiple fully-connected DenseVariational layers.

Figure 2 shows how a BNN is used to represent A(θ); B(θ)

is represented similarly by another BNN. Using f wA and f wB to
denote the BNNs representing A and B respectively, the BNN
model of the system is described by

x̂(k + 1) = f w(θ(k), x(k), u(k))

= f wA (θ(k))x(k) + f wB (θ(k))u(k), (10)

where f w can be learned by minimising

1
NBNN

NBNN∑
i=1

[
log q(w(i);ϑ) − log p(w(i)) − log p(D|w(i))

]
,

(11)
overϑ using the datasetDwherew(i) is the ith sample generated
by MC for approximating the ELBO, and NBNN is the MC sam-
ple size determined such that (10) is convergent. Furthermore,
as the discussion of the trade-off between bias and variance (Bao
et al., 2021), using BNNs to represent bothA andB increases not
only the expressiveness of the LPV model but also the compu-
tational cost and compromises the convergence efficiency of the
BNN training. It is hence reasonable to only represent A with
BNNs and still represent B with ANNs, as A has a larger impact
on the system description than other matrix functions. There-
fore, in this paper, we consider using BNNs only to represent the
matrix A, but the proposed approaches can be easily extended
to the case where both A and B are represented by BNNs.

Using the trained BNNs, the density of the matrix functions
at a given scheduling variable can be evaluated by drawing sam-
ples from the posteriors of weights and calculating the possible
matrices with each set of sampled weights. Rather than directly
estimating the density from samples, we calculate the statistics
such as the mean and standard deviation of each element of the
matrices, which is efficient and sufficient for constructing a con-
fidence interval of x(k + 1) to check (6). The number of samples
is determined to guarantee a stable estimation. To provide safety
guarantees, we need reliable estimates of the state x inside the
operating region X × U, which is similar to Bao and Moham-
madpour Velni (2022) and formally described in the following
assumption:



INTERNATIONAL JOURNAL OF CONTROL 5

Figure 2. Using a BNN composed of multiple (here, two) DenseVariational layers to represent A(·)with reparameterisation trick. Here, the input to the BNN is θ and the
output is the vectorised A(θ), which once reshaped, provides the full matrix A. BNNs use data to learn the parametersμw and σw of the posterior density function.

Assumption 2.2: For a confidence level δp ∈ (0, 1], there exists
a scaling factor β such that with probability greater than 1 − δp,

∀k ∈ N : |xj(k + 1) − μ̂xj(k+1)| ≤ βjσ̂xj(k+1) < |Xj|,
j = 1, 2, . . . , nx, (12)

given (x(k), θ(k), u(k)) where μ̂xj(k+1) and σ̂xj(k+1) respectively
denote the estimated mean and standard deviation of the jth
entry of x(k + 1) using the learned BNNmodel withMonte Carlo
methods, and |Xj| is used to denote the range of valid xj.

By Assumption 2.2, the learned model is sufficiently accu-
rate such that the values of x(k + 1) of the system are contained
in the confidence intervals of our statistical model. It is noted
that a larger βjσ̂xj(k+1) means larger uncertainties of the model
and gives a more conservative estimate of xj(k + 1)which over-
estimates the probability of constraints violation, reduces the
feasible region of control inputs, and thus degrades control
performance. If βjσ̂xj(k+1) ≥ |Xj|, the estimate is worse than
random guess of xj(k + 1), which is not useful for control. The
above assumption can be enforced by a well-designed BNN
trained on a sufficient dataset and empirically verified on the
testing set aftermodel training.Moreover, δp can be estimated as
the relative frequency of the testing data that violates (12) given
β . If Assumption 2.2 does not hold, the architecture of the BNN
should be adjusted or more data should be collected for train-
ing to improve the accuracy of the BNN until the hypotheses of
Assumption 2.2 are satisfied.

Lemma 2.3: Given x0, a scheduling signal θ , a BNN model that
satisfies Assumption 2.2, and a confidence level δc, there exists a
scalar NMC such that

Pr
[∀k ∈ N : xj(k|θ , x0)

∈
[
min
i

x̂(i)
j (k|θ , x0), max

i
x̂(i)
j (k|θ , x0)

]]
≥ 1 − δc,

i = 1, . . . ,NMC, j = 1, 2, . . . , nx, (13)

where NMC is the number of models drawn from the BNN model
using MC methods.

Proof: Let k = 0, x̂0 = x0, as x0 and θ(0) are known. Then,
usingAssumption 2.2, there exists anNMC(0) at time step 0 such

that

xj(1|x0, θ(0)) ∈
[

min
1≤i≤NMC(0)

x̂(i)
j (1|x0, θ(0)),

max
1≤i≤NMC(0)

x̂(i)
j (1|x0, θ(0))

]

almost surely, j = 1, . . . , nx. Using induction, (13) is obtained as
NMC = maxk NMC(k). �

It is noted that almost surely is used in the proof to avoid
the analysis of Pr in (13) which involves the analysis of the
closed-loop system and the BNN models and is unnecessary
for the proposed approach, although using confidence level can
decreaseNMC. Lemma 2.3 guarantees that, with a high probabil-
ity, the system state trajectory is always contained in themultiple
trajectories simulated by the BNN model. The uncertainties
in the evolution of scheduling variables will be addressed in
Section 3.

2.4 Scenario-basedMPC design approach

Given the distribution of the uncertainties described by the
BNN model, stochastic MPC can be used to stabilise the sys-
tem at the origin. In particular, the objective of the stochastic
MPC problem is to minimise

E

{N−1∑
i=0


(x(i|k), u(i|k)) + Vf (x(N|k))
}
, (14)

where E denotes the expected value operator over the random
matrix functions and scheduling variables, 
(·) is the stage cost
function, andVf (·) is the terminal cost function. It is noted that
the joint uncertainties of matrix functions and scheduling sig-
nals are propagated forward through the prediction model (10)
over the prediction horizon and thus the closed-form probabil-
ity density function of x is hard to derive. Therefore, the problem
of optimising (14) with the BNNmodel is not directly solvable.

Scenario-based MPC (SMPC) assumes that the uncertainty
of a system may be represented by a tree of discrete scenar-
ios which facilitates multi-step ahead predictions and feasibil-
ity guarantees. As a sufficiently large number of independent
uncertainty realisation paths by sampling and simulation can
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represent system uncertainty, applying reduction techniques to
the paths can obtain representative scenarios while preserving
statistical properties (Xu et al., 2012) and reduce the computa-
tional complexity of SMPC. Any particular branch stemming
from a node represents a particular scenario of an unknown,
uncertain influence (e.g. from a disturbance or model error)
(Lucia et al., 2013). To represent the trajectories generated by
some number C scenarios, we adopt the notation (xj(i), uj(i)),
where the addition of the superscript j indicates the particular
scenario j ∈ {1, . . . ,C}.

The scenario-based optimal control problem for an uncer-
tain system at time step k can then be formulated as follows

min
xj,uj

C∑
j=1

pj
[N−1∑

i=0


(
xj(i|k), uj(i|k))+ Vf

(
xj(N|k))

]
(15a)

s.t. xj(i + 1|k) = f wA (θ j(i|k))xj(i|k) + f wB (θ j(i|k))uj(i|k),
(15b)(

xj(i|k), uj(i|k)) ∈ X × U, (15c)

xj(0|k) = x(k), (15d)

uj(i|k) = ul(i|k) ifxp(j)(i|k) = xp(l)(i|k), (15e)

where pj is the probability of the jth scenario, 
(xj(i|k), uj(i|k))
is the stage cost, andVf (xj(N|k)) is the terminal cost for the tra-
jectory of the jth scenario,N is the prediction horizon, and (15e)
enforces a non-anticipativity constraint, which represents the
fact that each control input that branches from the same parent
node must be equal (xp(j)(i|k) is the parent state of xj(i + 1|k)).
The non-anticipativity constraint is crucial to accurately model
the real-time decision-making problem such that the control
inputs do not anticipate the future (i.e. decisions cannot realise
the uncertainty). The solution to this optimisation problem is
used to generate the control law

κ (x(k)) = u0∗(0|k). (16)

Given the structure of the scenario tree, it is crucial to gen-
erate appropriate scenarios at each stage of the optimisation
to accurately represent the uncertainty of the system under
consideration. Additionally, the computational cost of SMPC
is proportional to the number of scenarios which is positively
correlated with the coverage of the uncertainty space. Hence,
the objective of constructing a scenario tree is to accurately
approximate (14) with a relatively small number of scenarios.

To express the joint uncertainties of matrix functions and
scheduling signals by scenario trees, we generate model paths
by sampling the scheduling signals and simulating the BNN
model and apply reduction techniques to the model paths for
generating representative scenarios while preserving the statis-
tical properties of uncertainty quantified by the BNN model.
In particular, we use MC sampling methods and K-means, a
clustering method in machine learning, to generate scenar-
ios, as the uncertainties are described by a BNN model such
that the propagation of uncertainties is intractable to analyse.
In particular, MC methods are employed to sample models
from the BNNmodel for selected scheduling trajectories.While

Lemma 2.3 claims there exists a scalarNMC such that the trajec-
tories of the sampledNMC models contain the system trajectory,
NMC can be too large for online optimisation of the SMPC
problems. Instead, we apply K-means clustering to the NMC
models to reduce the number of scenarios. K-means clustering
is a vector quantisation method which partitions Ns observa-
tions/samples {x(i)}Ns

i=1 into C disjoint clusters {Sc}Cc=1 by min-
imising the within-cluster sum-of-squares variances (squared
Euclidean distances)

∑C
c=1
∑

x∈Sc ‖x − μc‖2, and each cluster
is described by the mean (a.k.a. centroid) of the samples in
the cluster. We use the cluster centroids of the models sam-
pled from the BNNmodel as the models of scenarios. However,
the C scenarios may lose the property of the NMC models in
Lemma 2.3.

To incorporate a probabilistic safety certificate into the sce-
nario generation, we add extra scenarios corresponding to the
worst cases based on the NMC models. Then, the system is safe
under (16) if (15), where all the scenarios are subject to the con-
straints, is feasible. Details of the scenario generationwith safety
guarantees will be provided in the next section.

3. Scenario-basedMPC design using the learned BNN
models

In this section, we present the techniques employed to design
learning-based SMPC for nonlinear systems in the LPV frame-
work with safety and stability guarantees. First, K-means clus-
tering for scenario generation based on the BNN model is
presented. Then, the use of the moment-matching method to
compute the probability of scenarios is described. Next, the
SMPC problem and terminal ingredients are presented, and
finally, conditions for the stability and safety guarantees are
provided.

3.1 Proposedmethod for scenario generation

In this work, we consider both the uncertainty in the evolu-
tion of θ and the epistemic uncertainty from the learning-based
modelling. The scenario tree is designed to cover the joint
uncertainty space while considering the computational cost.
Considering that the matrix functions given a θ are evaluated
using MC methods, we generate multi-stage scenario trees by
applying K-means to the models drawn from the BNN model,
which is summarised by the following procedure.
1: procedure Scenarios Generation Using K-means
2: Generate L scheduling trajectories {θ(l)(k), k = 1, . . . ,

K}Ll=1 with K time steps using the knowledge of θ .
3: Evaluate A(θ(l)(k)), l = 1, . . . , L, k = 1, . . . ,K for each

time instant and each scheduling trajectory.
4: For each time instant k, apply K-means to {vec(A(θ(l)

(k)))}Ll=1 to cluster the L evaluations of the matrix function
A at time instant k into C clusters.

5: Use the cluster centres as scenarios at time instant k.
6: end procedure
It is noted that any knowledge of the scheduling variable can

be easily incorporated into the scheduling trajectory generation
(line 2 of the above procedure) to reduce the conservativeness
of the generated scenarios.When no knowledge except� exists,
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the future θ (within a prediction horizon) is assumed to be uni-
formly distributed over � for scheduling trajectory generation.
Additionally, the number of clusters is related to the number
of scenarios. Using a larger number C of clusters can better
describe the distribution of the matrices and thus improve the
control performance but also increases the computational cost
of multi-stage MPC (Lucia et al., 2013).

Moreover, to ensure safety with a given confidence level δ, we
add 2 extra scenarios which correspond to the worst cases and
thus have C+ 2 scenarios at each branching node. Specifically,
we estimate the mean μM and standard deviation σM for each
element of the identified systemmatricesA(θ) andB(θ) over the
range of the scheduling variables and determine βM,M = A,B
such that P(x(k + 1) ∈ X) ≥ 1 − δ when using μ̂M ± βMσ̂M as
the worst-case scenarios. Since the elements in the matrices are
bounded and the trained BNN is assumed to contain the true
dynamics of the system by Assumption 2.2, there must exist a
βM such that the behaviours of the scenarios contain those of
the system. A larger βM indicates a more conservative estima-
tion of the uncertainty and can degrade control performance,
which is verified by our experiments. Specifically, βM can be
determined using probabilistic safety methods for BNNs (Bao
et al., 2023;Wicker et al., 2020). In particular, using f ω to denote
the BNN, probabilistic safety calculates the lower bound of the
probability Psafe(T, S) = Pω∼q(ω;θ)(∀x ∈ T, f ω(x) ∈ S) guaran-
teeing that for all inputs in T, the output of the BNN is in
the safety set S by estimating the maximal safe sets of weights
H = {ω| ∀x ∈ T, f ω(x) ∈ S}. Additionally, H is approximated
by continuously combining safe sets of weights for a given
number of iterations using Interval Bound Propagation (IBP)
(Gowal et al., 2018) or Linear Bound Propagation (LBP) (Zhang
et al., 2018). In particular, IBP or LBP propagates the input inter-
val, i.e. T = [xL, xU], through the first layer, to find values z(1),L

and z(1),U such that z(1) ∈ [z(1),L, z(1),U], and then iteratively
propagate the bound through each consecutive layer to obtain
an interval in the output, which is guaranteed to contain the net-
work output. In our case, we findH = {βM| ∀θ ∈ �, x ∈ X, u ∈
U, f βM(θ , x, u) ∈ X} such that Psafe([�;X;U];X) ≥ 1 − δ.

Additionally, given the number of clusters at each time
instant, the number of scenarios grows exponentially with
respect to the horizon. Tomaintain the computational tractabil-
ity, branching is only applied for the first Nb < N steps (aka the
robust horizon (Lucia et al., 2013)), and the realisation of the
uncertainty at step Nb is used for the remaining N − Nb steps,
which results in CNb scenarios and C is the number of clusters.
Figure 3 shows an illustrative example of the scenarios in the
robust horizon and prediction horizon. It is noted that the num-
ber of scenarios |r(j)| and the matrices A·

k at time k reflect the
joint uncertainty of epistemic uncertainty in the matrix func-
tions from the system identification and the unknown evolution
of the scheduling variables.

3.2 Probability of scenarios

After generating the scenario tree, the probability of each sce-
nario is calculated using the moment-matching method (Høy-
land & Wallace, 2001) to maintain the original statistical prop-
erties. Generally, it is sufficient to use the first four moments
as the statistical features to be matched in scenario generation

(Ji et al., 2005). Specifically, the first four central moments are
matched by solving the following optimisation problem

min
p

m∑
i

(
w1
i
(
M−

i + M+
i
)+ w3

i
(
S−
i + S+

i
)+ w4

i
(
Q−
i + Q+

i
))

+
m∑

i,j=1
w1
i,j

(
�−

i,j + �+
i,j

)
, (17a)

s.t. Xp + M− − M+ = M (17b)
C+2∑
s=1

(Xs − Xp)(Xs − Xp)Tps + �− − �+ = �, (17c)

C+2∑
s=1

(Xs − Xp)3ps + S− − S+ = S, (17d)

C+2∑
s=1

(Xs − Xp)4ps + Q− − Q+ = Q, (17e)

C+2∑
s=1

ps = 1, ps ≥ 0, s = 1, . . . ,C,C + 1,C + 2, (17f)

M+
i ,M

−
i , S

+
i , S

−
i ,Q

+
i ,Q

−
i ≥ 0, i = 1, . . . ,m, (17g)

�+
ij ,�

−
ij ≥ 0, i, j = 1, . . . ,m. (17h)

where the third- and fourth-power operations in (17d)
and (17e) are defined on the elements of the vector (Xs − Xp),
M,�, S, andQ are the first four centralmoments estimated from
samples with superscripts +, − denoting the positive and neg-
ative parts of the associated variables, and w0

i ,w
1
ij,w

3
i ,w

4
i in the

objective function are weighting coefficients. Furthermore, p =
(p1, . . . , pC, pC+1, pC+2)T and ps is the probability of the sth sce-
nario, X = (X1, . . . ,XC,XC+1,XC+2) ∈ R

m×(C+2) where Xs =
(Xs

1, . . . ,X
s
m) denotes the realisation of the uncertainty in the

sth scenario andm is the dimension of the realisation. For exam-
ple,m = n2x when clustering vectorisedmatrix function valueA.
The optimal value of the cost function is greater than 0 and indi-
cates the degree to which the generated scenarios preserve the
statistical properties of uncertainty quantified by BNNs. There-
fore, we choose C such that the optimal value is close to 0 while
satisfying the computational resource limitations of multi-stage
MPC.

3.3 Scenario-basedMPC problem

Given the constructed tree, theMPCproblem can be formulated
at every time instant as

min
xj(i|k),uj(i|k)

CNb∑
j=1

pjJj
(
xj(0 : N|k),uj(0 : N − 1|k)) (18a)

s.t. xj(i + 1|k) = Ar(j)
i xp(j)(i|k) + Br(j)i uj(i|k), (18b)

xj(i|k) ∈ X, uj(i|k) ∈ U,∀(j, i) ∈ I, (18c)

uj(i|k) = ul(i|k) if xp(j)(i|k) = xp(l)(i|k),
∀(j, i), (l, i) ∈ I, (18d)
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Figure 3. Scenario tree representation of the joint uncertainty evolution for MPC. In the figure, Ar(j)k refers to the matrix at time k in the r(j)th scenario.

xj(N|k) ∈ Xf ,∀(j,N) ∈ I, (18e)

where the weight pj is the probability of the jth scenario com-
puted using the method described in Section 3.2, the function
p(j) refers to the index of the parent node (the parent of the node
indexed by j), and r(j) gives the considered realisation of the
joint uncertainty via Ar(j)

i and Br(j)i . Furthermore, I denotes the
set of all occurring index pairs (j, i). The constraints in (18d) are
non-anticipativity constraints to guarantee that control inputs
from the same parent node are identical, and Xf is the termi-
nal set. Since each realisation of the joint uncertainty gives a
linear system model at time instant i in the prediction horizon,
the constraint satisfaction can be guaranteed by only consider-
ing the extreme scenarios, which is employed to establish safety
guarantees. The objective function in (18a) is the weighted sum
of the cost for each scenario Jj which is defined as

Jj = Vf (xj(N|k)) +
N−1∑
i=0


(xp(j)(i|k), uj(i|k)), (19)

in whichVf (·) is the terminal cost and 
(·) is the stage cost. The
terminal cost Vf (·) will be discussed in the next subsection. In
this paper, we consider


(x, u) = xTQx + uTRu (20)

where Q,R 
 0 are tuning parameters.

3.3.1 Terminal ingredients
In this section, we show how to compute the three terminal
ingredients (Mayne et al., 2000), i.e. a terminal cost, a termi-
nal controller, and a terminal invariant set, that are required to
achieve stability of the closed-loop system with the proposed
MPC scheme.

First, we transform the BNN model into an LPV form with
affine scheduling dependency described as

Â(θ̂ (k)) =
q∑

i=1
θ̂i(k)Âi, B̂(θ̂ (k)) =

q∑
i=1

θ̂i(k)B̂i,

q∑
i=1

θ̂i(k) = 1, θ̂i(k) ≥ 0, (21)

where Âi and B̂i are extreme realisations of A(θ) and B(θ)

in (2), respectively, and θ̂ is the new scheduling variable such
that (2) and (21) are equivalent. Additionally, Theorem 2.1 in
Nguyen (2014) shows that the LPV models with different num-
bers of extreme realisations ofAi andBi can be transformed into
the form of (21). In particular, we use the scenarios including
the worst-case scenarios in Section 3.1 to obtain the extreme
realisations of matrix functions Âi and B̂i. It is noted that the
conservativeness of the extreme realisations is related to the
accuracy of the learned BNN model. Additionally, the number
of extreme realisations Âi is 2|A| where |A| denotes the number
of elements in matrix A, and that number for B̂i is 2|B|. How-
ever, we can only measure θ of the system but not θ̂ . Moreover,
we assume only input-output data exist without a true system
model. Therefore, we learn a coordinate transformation T from
θ in (2) to θ̂ in (21) from data, which can be formulated as
a regression problem. While lots of regression algorithms can
be used to learn the transformation, ANN can approximate
arbitrary nonlinear functions and learn features automatically
from data, and thus we use a fully-connected ANN to param-
eterise θ̂ (k) = T (θ) and build the ANN model of x̂(k + 1) =
(
∑q

i=1 θ̂i(k)Âi)x(k) + (
∑q

i=1 θ̂i(k)B̂i)u(k) where Âi, B̂i are esti-
mated extreme realisations. Then, the optimal transformation
T � is obtained by minimising the Mean Squared Error (MSE)
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loss function 1
ND−1

∑ND−1
k=1 (x(k + 1) − x̂(k + 1))2 via stochas-

tic gradient descent (SGD) with respect to the parameters of
T on the dataset D. Additionally, the softmax activation func-
tion is used in the last layer to satisfy the constraints of θ̂ . The
advantage of this approach for coordinate transformation is to
further moderate the negative effect of the scenario generation
by constraining the scenarios to be compatible with the exist-
ing dataset. It is noted that the performance of the proposed
approach depends on the sufficiency of the dataset, as well as
the architecture design and training of ANNs.

Based on the above formulation, we show how to compute
the terminal cost and the related terminal controller. We con-
sider parameter-dependent poly-quadratic terminal cost func-
tions in the form of

V(x(k), θ̂ (k)) = x(k)TP(θ̂(k))x(k),

P(θ̂(k)) =
q∑

i=1
θ̂i(k)Pi 
 0. (22)

Note that using such a parameter-dependent formulation can
reduce conservativeness significantly in comparison with the
parameter-independent counterpart. In general, the closed-
loop system can be asymptotically stabilised by the MPC law if
there exists a terminal feedback controller uk = Kf (x(k)) such
that the following sufficient conditions are satisfied (Mayne
et al., 2000):

(1) Vf (·) is a Lyapunov function on a terminal setXf under the
terminal controller Kf (·) and

Vf (x(k + 1)) − Vf (x(k)) ≤ −
(x(k),Kf (xk)) < 0,

∀x(k) ∈ Xf . (23)

(2) If x(k) ∈ Xf , then x(k + 1) = Â(θ̂ (k))x(k) + B̂(θ̂(k))Kf

(x(k)) ∈ Xf ,∀θ̂ (k) ∈ �̂, i.e. Xf is positively invariant
under Kf .

(3) Kf (x) ∈ U,∀x ∈ Xf ⊆ X, i.e. the input and state con-
straints are satisfied under the control law.

To enlarge the terminal region, we consider the following
parameter-dependent state-feedback terminal controller

Kf (x(k); θ̂ (k)) =
( q∑

i=1
θ̂i(k)Ki

)
x(k). (24)

Based on the condition for the stability of discrete-time LPV sys-
tems (Pandey & de Oliveira, 2017), we compute the terminal
cost function and controller by the following proposition:

Proposition 3.1: For the discrete-time LPV systems described
by (21), condition (23) is satisfied if there exist matrices Qi 

0,Xi ∈ R

nx×nx , Li ∈ R
nu×nx ,Yi ∈ R

nu×nx ,Zi ∈ R
nu×nx , i = 1,

. . . , q such that⎡
⎢⎢⎢⎢⎣
Xi + XT

i − Qi XT
i Â

T
i −LTi

� Qj − Ri,j B̂iZj − YT
j

� � Zj + ZT
j

� � �

� � �

(Q1/2Xi)
T (R1/2Li)T

0 0
0 0
I 0
� I

⎤
⎥⎥⎥⎥⎦ 
 0

for ∀i, j = 1, . . . q, (25)

where � represents the symmetric blocks omitted for brevity, and
Ri,j = B̂iYj + (B̂iYj)

T, Pi = Q−1
i , using the terminal controller

with gain in the form of (24) and Ki = LiX−1
i .

Proof: The proof is based on the proof of Theorem 2 in Pandey
and de Oliveira (2017). Since Xi + XT

i 
 Qi 
 0, XT
i Q

−1
i Xi �

Xi + XT
i − Qi. Additionally, substituting Ki = LiX−1

i into (25),
we have

⎡
⎢⎢⎢⎢⎣
XT
i Q

−1
i Xi XT

i Â
T
i −(KiXi)

T

� Qj − Ri,j B̂iZj − YT
j

� � Zj + ZT
j

� � �

� � �

(Q1/2Xi)
T (R1/2KiXi)

T

0 0
0 0
I 0
� I

⎤
⎥⎥⎥⎥⎦ 
 0. (26)

Applying the following congruent transformation

STi =

⎡
⎢⎢⎢⎢⎣
X−T
i 0 0 0 0
0 I 0 0 0
0 0 I 0 0
0 0 0 I 0
0 0 0 0 I

⎤
⎥⎥⎥⎥⎦

to (26) gives

⎡
⎢⎢⎢⎢⎣
Q−1
i ÂT

i −KT
i (Q1/2)T (R1/2Ki)

T

� Qj − Ri,j B̂iZj − YT
j 0 0

� � Zj + ZT
j 0 0

� � � I 0
� � � � I

⎤
⎥⎥⎥⎥⎦ 
 0

(27)
which can be rewritten as⎡

⎢⎢⎢⎢⎢⎣

Pi ÂT
i −KT

i
� P−1

j + Mi,j B̂iH−T
j − P−T

j FjH−1
j

� � H−T
j + H−1

j
� � �

� � �

(Q1/2)T (R1/2Ki)
T

0 0
0 0
I 0
� I

⎤
⎥⎥⎥⎥⎦ 
 0 (28)



10 Y. BAO ET AL.

by defining Pi = Q−1
i ,Hi = Z−T

i , Fi = PiYT
i Hi and Mi,j = −B̂i

H−T
j FTj P

−1
j − (B̂iH−T

j FTj P
−1
j )T. Then, applying another con-

gruent transformation

STj =

⎡
⎢⎢⎢⎢⎣
I 0 0 0 0
0 0 Hj 0 0
0 Pj Fj 0 0
0 0 0 I 0
0 0 0 0 I

⎤
⎥⎥⎥⎥⎦

to (28) produces
⎡
⎢⎢⎢⎢⎣
Pi −(HjKi)

T (PjÂi − FjKi)
T

� Hj + HT
j (PjB̂i + Fj)T

� � Pj
� � �

� � �

(Q1/2)T (R1/2Ki)
T

0 0
0 0
I 0
� I

⎤
⎥⎥⎥⎥⎦ 
 0. (29)

Taking convex combinations of (29) over i and j gives
⎡
⎢⎢⎢⎢⎣
P(θ̂(k)) −(H(θ̂ (k + 1))K(θ̂ (k)))T

� H(θ̂ (k + 1)) + H(θ̂ (k + 1))T
� �

� �

� �

(P(θ̂(k + 1))Â(θ̂(k)))
−F(θ̂(k + 1))
K(θ̂(k))))T

(Q1/2)T (R1/2K(θ̂(k)))T

(P(θ̂(k + 1))B̂(θ̂(k))
+F(θ̂(k + 1)))T

0 0

P(θ̂(k + 1)) 0 0
� I 0
� � I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦


 0.

(30)

Finally, multiplying (30) by

S(θ̂ (k)) =

⎡
⎢⎢⎣
I K(θ̂(k))T 0 0 0
0 0 I 0 0
0 0 0 I 0
0 0 0 0 I

⎤
⎥⎥⎦

from the left and by its transpose from the right yields
⎡
⎢⎢⎣
P(θ̂(k)) P(θ̂(k + 1))Âc(θ̂ (k))T

� P(θ̂(k + 1))
� �

� �

(Q1/2)T (R1/2K(θ̂(k)))T
0 0
I 0
0 I

⎤
⎥⎥⎦ 
 0,

for ∀θ̂ (k), θ̂ (k + 1) ∈ �̂ (31)

where Âc(θ̂ (k)) = Â(θ̂ (k)) + B̂(θ̂(k))K(θ̂ (k)). Finally, it can be
shown that (31) is equivalent to (23) by applying the Schur
complement, and this concludes the proof. �

Next, using the controller determined by solving (25), we can
compute a terminal set as a maximal polyhedral robust posi-
tively invariant (RPI) set (Nguyen, 2014). The considered input
and state constraints are in the form of

X = {x ∈ R
nx |Fxx ≤ gx},U = {u ∈ R

nu |Fux ≤ gu}. (32)

Different from the Procedure 2.1 in Nguyen (2014), the state
constraints of the system (21) are

xc ∈ Xc,Xc = {x ∈ R
nx |Fcx ≤ gc} (33)

where Fc = [FTx (FuK1)
T · · · (FuKq)

T]T and gc = [gTx gTu
· · · gTu ]T, as a parameter-dependent controller is used. There-
fore, the number of constraints is increased by (q − 1)qnu, com-
pared against a parameter-independent controller. Then, using
Algorithm 1, we can compute a maximal polyhedral RPI set
�max as the terminal set �f .

Algorithm 1 (Gilbert and Tan (1991), Procedure 2.1) Robustly
controlled positively invariant set computation

Input: {Âci}qi=1, Xc defined in (33).
Output: The maximal RPI set �max.

1: Set i = 0, F0 = Fc, g0 = gc and X0 = {x ∈ R
nx : F0x ≤ g0}.

2: Set X1 = X0.
3: Eliminate redundant inequalities of the following polytope,

P =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
x ∈ R

nx :

⎡
⎢⎢⎢⎣

F0
F0Âc1

...
F0Âcq

⎤
⎥⎥⎥⎦ x ≤

⎡
⎢⎢⎢⎣
g0
g0
...
g0

⎤
⎥⎥⎥⎦
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

4: Set X0 = P and update consequently the matrices F0 and
g0.

5: If X0 = X1 then stop and set � = X0. Else continue.
6: Set i = i + 1 and go to step 2.

Furthermore, we can compute the robustlyN-step controlled
positively invariant sets based on the maximal RPI set as the
domain of attraction (DOA) using Algorithm 2. Different from
Procedure 2.3 in Nguyen (2014), we allow control inputs to be
different in Step 2 of Algorithm 2 for different (Ai,Bi) when
computing the expanded set, to enlarge the DOA in Step 2
of Algorithm 2. Therefore, the number of decision variables is
increased by q−1 compared to the parameter-independent case.
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Algorithm 2 (Gilbert and Tan (1991), Procedure 2.3) Robustly
N-step controlled invariant set computation

Input: {Â}qi=1, {B̂}qi=1 and the sets X, U and �max.
Output: The N-step robustly controlled invariant set CN .

1: Set i = 0 and C0 = �max and let the matrices F0, g0 be the
half-space representation of C0, i.e. C0 = {x ∈ R

n : F0x ≤
g0}.

2: Compute the expanded set Pi ⊂ R
nx+nu

Pi =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(x, u) ∈ R
nx+nu :

⎡
⎢⎢⎢⎣
Fi(Â1x + B̂1u1)
Fi(Â2x + B̂2u2)

...
Fi(Âqx + B̂quq)

⎤
⎥⎥⎥⎦ x ≤

⎡
⎢⎢⎢⎣
gi
gi
...
gi

⎤
⎥⎥⎥⎦
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

3: Compute the projection P(n)
i of Pi on R

nx

P(n)
i = {x ∈ R

nx : ∃u ∈ U s.t. (x, u) ∈ Pi}.

4: Set Ci+1 = P(n)
i ∩ X and let Fi+1, gi+1 be the half-space

representation of Ci+1, i.e.

Ci+1 = {x ∈ R
nx : Fi+1x ≤ gi+1}.

5: If Ci+1 = Ci, then stop and set CN = Ci. Else continue.
6: If i = N, then stop else continue.
7: Set i = i + 1 and go to step 2.

3.3.2 Recursive feasibility, stability and safety
In this section, we establish the recursive feasibility, stability, and
safety of the proposed learning-based SMPC scheme.

In particular, the recursive feasibility and stability are estab-
lished by adopting the work (Maiworm et al., 2015) which
considers a nonlinear discrete-time system represented by

x(k + 1) = f (x(k), u(k), p(k)), s.t. x(k) ∈ X, u(k) ∈ U,

p(k) ∈ P (34)

where p ∈ R
np denotes the uncertain parameters and P is a dis-

crete set of s parameter values, under the following assumptions:

Assumption 3.2: (Continuity) The functions f (x, u, p), 
(x, u)
and Vf are continuous, with f (0, 0, p) = 0 ∀p ∈ P, 
(0, 0) = 0
and Vf (0) = 0.

Assumption 3.3: (Constraints) The sets X and Xf ⊆ X are
closed, and U is compact. Each set contains the origin.

Establishing recursive feasibility for SMPC is equivalent to
requiring that the terminal state xj(N) of each scenario ends in
a common control invariant terminal region �f which ensures
that the state stays in �f for all system instances when x(N) ∈
�f .

Assumption 3.4: (Common terminal region) There exists a
common terminal region �f that is control invariant for x(k +
1) = f j(x(k), u(k)),∀j ∈ {1, . . . , s} with u ∈ U.

Proposition 3.5: Suppose that Assumptions 3.2, 3.3 and 3.4
hold. Then, the SMPC is recursively feasible.

Proof: The proof is similar to that of Proposition 4 inMaiworm
et al. (2015) and hence omitted here. �

To establish stability, the following assumptions on the stage
and terminal costs are made.

Assumption 3.6: (Basic stability assumption) For ∀x ∈ �f
and ∀j ∈ {1, . . . ,Ns},

min
ũ(k)∈U

{Vj
f
(
f (x, u, p)

)+ 
(x, u)|f (x, u, p) ∈ �f } ≤ Vj
f (x),

(35)
where Ns = sNb denotes the number of scenarios and Vj

f denotes
an individual terminal cost function to the jth scenario, holds for
all p ∈ P .

Assumption 3.6 ensures the descent property of Vj
f and

implies Assumption 3.4 ifVj
f (x) is a control Lyapunov function.

Assumption 3.7: (Bounds on stage and terminal costs) The
stage cost 
(x, u) and the terminal costs Vj

f (x) satisfy


(x, u) ≥ α1(|x|) ∀x ∈ �N ,∀u ∈ U

Vj
f (x) ≤ α

j
2(|x|) ∀x ∈ �f and ∀j ∈ {1, . . . ,Ns},

in which α1(·) and α
j
2(·) are K∞ functions.

Assumptions 3.6 and 3.7 ensure that the value function
is a Lyapunov function for x(k + 1) = f j(x(k), κN(x(k))), ∀j ∈
{1, . . . , s} on the domainCN . The following lemma and theorem
are then given.

Lemma 3.8: (SMPC stability (Maiworm et al., 2015)) Suppose
that Assumptions 3.2–3.7 hold and that �f contains the origin in
its interior. Then, the origin is asymptotically stable with a region
of attraction CN for the system x(k + 1) = f j(x(k), κN(x(k))) for
all j ∈ {1, . . . , s}.

Furthermore, the above Lemma 3.8, which holds for gen-
eral nonlinear systems with discrete sets of uncertain parameter
values, can be adopted for systems in the LPV form (21) with
affine scheduling dependency and continuous set of scheduling
variables, resulting from the following lemma.

Lemma 3.9: ∀k ∈ N, if a control input u(k) is feasible for all
the extreme realisations of (21) given x(k), then u(k) is feasible
∀θ̂ (k) ∈ {θ̂ |∑q

i=1 θ̂i = 1 and θ̂i ≥ 0} in (21).

Proof: Since Âix(k) + B̂iu(k) � xi(k + 1) ∈ X, i = 1, . . . , q,
and X is assumed to be a PC-set, then ∀θ̂ (k) ∈ {θ̂ |∑q

i=1
θ̂i = 1 and θ̂i ≥ 0}, x(k + 1) = Â(θ̂(k))x(k) + B̂(θ̂(k))u(k) =
(
∑q

i=1 θ̂i(k)Âi)x(k) + (
∑q

i=1 θ̂i(k)B̂i)u(k) =∑q
i=1 θ̂i(k)(Âix

(k) + B̂iu(k)) =∑q
i=1 θ̂i(k)xi(k + 1) ∈ X. �
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Lemma 3.9 shows that the feasibility of a control input for all
the possible values of scheduling variables can be established by
only considering the finite extreme realisations of (21).

Based on the stability theorem of SMPC and Lemma 3.9, we
present the following theorem on the learning-based SMPC.

Theorem 3.10: (Learning-based SMPC stability and feasibil-
ity) Suppose that Lemma 1 is fulfilled, and the terminal set �f
computed by Algorithm 1 contains the origin in its interior. Then,
the SMPC with the terminal cost (22) and the terminal con-
troller (24) is recursively feasible and the origin is asymptotically
stable for (21) with a region of attraction CN. Moreover, the orig-
inal system (2) is stable with a high probability that is at least
1 − δc.

Proof: Obviously, the LPV model with (21), the considered
stage cost (20), and the terminal cost (22) fulfill Assumption 3.2.
Assumption 3.3 also holds, as the terminal set �f computed in
Section 3.3.1 is polyhedral and thus closed while X and U are
assumed to be PC-sets. Moreover, �f by Algorithm 1 is control
invariant for arbitrary scheduling variables under the terminal
controller (24) and thus Assumption 3.4 holds. Furthermore,
Assumption 3.6 holds, as the designed terminal controller sat-
isfies the sufficient conditions in Section 3.3.1. Additionally,
the quadratic stage cost (20) and the poly-quadratic termi-
nal cost function (22) satisfy Assumption 3.7 with α1(|x|) =
λmin(Q)‖x‖2 and α

j
2(|x|) = λmax(Pj)‖x‖2 where λ denotes the

eigenvalue of amatrix. Hence, the origin is asymptotically stable
with a region of attraction CN for the LPV model with (21) by
Lemma 3.8. Moreover, the LPV model with (21) is transformed
from the BNNmodel whose behaviours contain the behaviours
of the system by Lemma 2.3. Therefore, the system is stabilised
with a high probability that Lemma 2.3 is fulfilled. �

Furthermore, using the scenario generation approach
described in Sections 3.1 and 3.2, the certificate of safety under
the SMPC law can be formalised as follows.

Theorem3.11: (Learning-based SMPCsafety) Let the hypothe-
ses of Assumption 2.2 and Lemma 2.3 be satisfied. Then, the
system under the SMPC law (16) is δ-safe.

Proof: By Assumption 2.2 and Lemma 2.3, the behaviours of
the generated scenarios based on theNMC sampledmodels from
the BNN model contain the behaviours of the system. Fur-
thermore, by Proposition 3.5, the SMPC is recursively feasible,
which proves the system is δ-safe by Definition 2.1. �

Additionally, Figure 4 shows the block diagramof the closed-
loop learning-based SMPC scheme.

4. Numerical results

In this section, the proposed methods of this work are vali-
dated on a parameter-varying double integrator system model
(Hanema et al., 2020), as well as a parameter-varying multiple-
input multiple-output (MIMO) system with complex nonlinear
scheduling dependency.

4.1 Parameter-varying double integrator

The LPV-SS representation of the system is assumed to be

x(k + 1) =
([

1 1
0 1

]
+
[
0.1 0
0 0.1

]
θ1(k) +

[
0.5 0.5
0 0

]
θ2(k)

+
[
0 0
0 0.2

]
θ3(k)

)
x(k) +

[
0.5
1

]
u(k), (36)

with constraints and scheduling sets as

X = {x ∈ R
2|‖x‖∞ ≤ 6},U = {u ∈ R| |u| ≤ 1}

� = {θ ∈ R
3|‖θ‖∞ ≤ 1}.

In (36),A(·) is an affine function of the scheduling variables and
B is constant.

4.1.1 System identification
We use slowly-varying trajectories for the scheduling variables
in Figure 5(a) to collect observations D = {(θ(t), x(t), u(t)), x
(t + 1)} for model identification. Pseudo random binary
sequences (PRBS) input signal with a scale of 0.01 as shown
in Figure 5(b) is used to excite the system, and the gener-
ated state sequence with initial state x(0) = [2.7; 0] is shown in
Figure 5(c, d). Furthermore, 500 samples are collected and split
into training and testing sets with a ratio of 80%/20%.

We use one DenseVariational layer with 4 hidden units to
represent A(·) and one Dense layer with 2 hidden units to rep-
resent B. Neither of the layers uses activation functions and the
Dense layer further does not use bias, which aims to exactly rep-
resent the class of models to which (36) belongs. The tuning
parameters in (7) are determined as σ1 = 0.3, σ2 = 0.1. Adam
optimiser is used with a learning rate set to 0.01 and other
hyper-parameters as default. Moreover, using the transfer learn-
ing approach (Bao et al., 2021), we first trained an ANN model
with the same architecture as the BNN model, used the trained
ANN weights to initialise the BNNmodel, and then trained the
BNNmodel for 1, 000 epochs. The validation results are shown
in Figure 6.

It is noted that the best fit ratio BFR = 100% · max(1 −
‖x−x̂‖2
‖x−x̄‖2 , 0) = [96.70%; 87.04%] using the estimatedmean as pre-
dictions for outputs. None of the samples are out of 2σx. By
increasing βσx, the true states are guaranteed to lie in the
interval [μx − βσx,μx + βσx] almost surely.

4.1.2 Validation of the proposed approach
Without extra knowledge on the evolution of the scheduling
variables beyond the scheduling sets, we randomly sample 500
θ ’s from the uniform distribution over � and evaluate A(·) for
NMC = 500 times using the dynamic functions sampled from
the BNNmodel for each θ . Then, we apply K-means to the eval-
uated A’s to generate the scenarios. The number of clusters is
assumed to be 3. Also, βM = 1,M = A,B is considered here for
the estimation of extreme realisations. Therefore, 5 scenarios
were used including μM ± βMσM. It is worth noting that the
scenarios are fixed within the robust horizon of the tree gener-
ation in this case due to the limited time-invariant knowledge
of θ . When further information (e.g. a bounded ROV (Casavola
et al., 2008)) is known, we can generate time-varying scenar-
ios for each step within the robust horizon. The probability
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Figure 4. The block diagram of the closed-loop learning-based SMPC scheme.

Figure 5. Data generated for model identification purposes. (a) Scheduling trajectories. (b) Inputs to the system. (c) Sequence of x1. (d) Sequence of x2.

of the 5 scenarios is p = [0.3560; 0.3383; 0.3037; 0.0010; 0.0010]
using themomentmatchingmethod.Additionally, in our exper-
iments, Q = I2×2,R = 1 for the stage cost 
 in (20). The pre-
diction horizon is set to 10 and the robust horizon to 1. We
computed RPI sets and 10-step robustly controlled positively
invariant (RCPI) sets based on the system model (2) and the
BNN model (21), respectively.

Results and discussion: As shown in Figure 7, the estimated
sets are smaller than the system sets due to the conservative-
ness introduced to guarantee safety. The sets can be enlarged
by numerical methods, which will be investigated in the future
work.

The scheduling signals for control are shown in Figure 8(a),
which vary faster than the signals used for model identifica-
tion in Figure 5(a). The control results are shown in Figure 8,
where Figure 8(b–c) demonstrate that using the terminal cost
and terminal set can increase the convergence rate.

Figure 9 shows that the designed MPC can achieve high
control performance even when the initial states are at the
vertices of the state constraint set; this is something that was
not demonstrated using the approach developed in Hanema
et al. (2020).

Additionally, Figure 10 shows that the designed MPC is
robust against the evolution of the scheduling variables in

Figure 6. Validation results for the identified BNNmodel. The area between the two dashed lines is within 2 estimated standard deviations of the estimatedmean, which
is about 95% confidence interval.
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Figure 7. RPI sets: �f for system and �̂f for BNN model; 10-step RCPI sets: CN for
system and ĈN for BNNmodel.

Figure 10(a) and the real state trajectory is contained among the
trajectories of the scenarios (See Figure 10(b, c)).

4.2 Parameter-varyingMIMO system

The LPV-SS representation of the system is assumed to be

x(k + 1) =
[
sin(θ1) θ21 + θ1θ2

θ32 cos(θ1 + θ2)

]
x(k)

+
[

θ42 cos(θ2)
sin(θ1 + θ2) θ31

]
u(k), (37)

with constraints and scheduling sets as

X = {x ∈ R
2|‖x‖∞ ≤ 6},U = {u ∈ R

2| |u|∞ ≤ 1}
� = {θ ∈ R

2|‖θ‖∞ ≤ 1}.

Here, bothA(·) and B(·) are nonlinear functions of the schedul-
ing variables.

4.2.1 Model identification
We use θ1(k) = sin(0.3k) and θ2(k) = sin(0.7k) in Figure 11(a)
to collect observations D = {(θ(k), x(k), u(k)), x(k + 1)} for
model identification purposes. Input signals in Figure 11(b)
drawn from the uniform distribution U(−0.45, 0.45) are used
to excite the system, and the generated state sequence with ini-
tial state x(0) = [0; 0] is shown in Figure 11(c). Additionally,
1100 samples are collected and split into 800 and 300 samples
as training and testing sets, respectively.

We use a DenseVariational layer connected to a three-layer
fully-connected ANN to representA(·) and another DenseVari-
ational layer connected to another three-layer fully-connected
ANN to represent B(·). All the hidden layers have 32 hidden
units with the Exponential Linear Unit (ELU) activation func-
tions (Clevert et al., 2015) while the output layers have 4 hidden
units without activation functions. The tuning parameters in (7)
are determined as σ1 = 0.3, σ2 = 0.1. Adam optimiser is used
with a learning rate set to 0.001 and other hyper-parameters as
default.Moreover, we first trained anANNmodel with the same
architecture as the BNN model, used the trained ANN weights
to initialise the BNN model, and then trained the BNN model
for 10, 000 epochs. The validation results are shown in Figure 12.

4.2.2 Validation of the proposed approach
Without assuming extra knowledge on the evolution of the
scheduling variables beyond the scheduling sets, we randomly
sample 100 θ ’s from the uniform distribution over � and then
evaluate both A(·) and B(·) for NMC = 500 times using the
dynamic functions sampled from the BNN model for each θ .
Then, we apply K-means to the concatenations of the vectorised
A’s and B’s to generate the scenarios. The number of clusters
is assumed to be 3. Also, βM = 2,M = A,B is considered here
for the worst-case scenarios. Therefore, 5 scenarios were used

Figure 8. Control results using K-means to generate scenarios. (a) Scheduling signals used for control. (b) Control results without using terminal cost and terminal set. (c)
Control results using terminal cost and terminal set.
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Figure 9. Control results using K-means to generate scenarios and terminal cost control when the initial states x0 are at the vertices of the constraint setX.

Figure 10. Control results using terminal cost controlwhen x0 = [2.7;−1.8] anda randomscheduling trajectory. (a) Randomscheduling trajectories. (b) State x1 trajectory
of systems and scenarios. (c) State x2 trajectory of systems and scenarios. (d) Control inputs.

including μM ± βMσM. Additionally, the scenarios are fixed
within the robust horizon of the tree generation in this case
due to the limited time-invariant knowledge of θ . The proba-
bility of the 5 scenarios is p = [0.26; 0.30; 0.26; 0.09; 0.09] using
the moment matching method. Moreover, in our experiments,
Q = I2×2,R = I2×2 for the stage cost 
 in (20). The prediction
horizon is set to 10 and the robust horizon to 1. The RPI set was
computed based on the BNN model.

Results and discussion: The computed RPI set based on the
BNNmodel is shown in Figure 13(a). The scheduling signal for
control is random, as shown in Figure 13(b), which varies faster
than the signal for identification in Figure 11(a), to demonstrate
that the designed MPC is robust against the evolution of the
scheduling variable. The control results in Figure 13(c–f) show

that the designed MPC can achieve good control performance
even when the initial states are at the vertices of the state
constraint set.

4.3 Two-tank system

The cascaded two-tank system (Hanema et al., 2021) can be
described by

ρS1ḣ1 = −ρA1
√
2gh1 + u, (38a)

ρS2ḣ2 = ρA1
√
2gh1 − ρA2

√
2gh2, (38b)

where u is the flow of liquid with density ρ = 0.001 kgcm−3

pumped into the upper tank. S1 = 2500 cm2, S2 = 1600 cm2,
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Figure 11. Data generated for model identification purposes. For the sake of clarity, only the first 300 training data points are shown here. (a) Scheduling trajectories. (b)
Inputs to the system. (c) Sequence of x.

Figure 12. Validation results for the identified BNN model. The BFR = [93.14%; 92.47%] using the estimated mean as predictions for outputs. None of the samples are
out of 2σx .

A1 = 9 cm2, and A2 = 4 cm2 denote the cross-sectional areas
of the upper tank, the lower tank, the pipe through which
the liquid flows into the lower tank, and the pipe through
which the liquid flows out, respectively. The control objec-
tive is to regulate the levels h1 and h2 at a given set
point. u is available as a control input and subject to the
constraint U = {u|0 kgs−1 ≤ u ≤ 4 kgs−1}. Additionally, the
liquid levels satisfy the bounds X = {x = [h1, h2]T|1 cm ≤
h1 ≤ 35 cm, 10 cm ≤ h2 ≤ 200 cm}. The system model (38) is
assumed to be unknown for control design and only used for
simulation. In the simulation, the goal is to reach a reference
value h∗

2 = 115 cm of the lower tank. Moreover, the translated
state and input variables x̃ = x − [22.72, 115]T and ũ = u −
1.90 are introduced to convert the problem into a stabilisation
problem.

4.3.1 System identification
We apply a random input signal drawn from uniform distribu-
tion U[0, 4] to collect observations D = {(x(t), u(t)), x(t + 1)}
for model identification. The sampling time is 0.9 seconds. The
input and the collected state sequences are shown in Figure 14.
Furthermore, 1000 samples are collected and split into training
and testing sets with a ratio of 65%/35%.

Since we assume (38) is unknown, we cannot choose the
scheduling variables and transform (38) into an exact LPV
embedding as Hanema et al. (2021), and thus we cannot use the
approach in Hanema et al. (2021) for control design. Instead,
we simply use the states as the scheduling variables to learn a
model in the form of (10) but treat the scheduling variables as
free variables in the prediction horizon of SMPC. In particu-
lar, we use a DenseVariational layer connected to a three-layer
fully-connected ANN to represent A(·). All the hidden lay-
ers have 32 hidden units with ELU activation functions while
the output layers have 4 hidden units without activation func-
tions. Moreover, we use one Dense layer with 2 hidden units
to represent B(·) and the dense layer does not use bias. The
tuning parameters in (7) are determined as σ1 = 1.5, σ2 = 0.1.
Adam optimiser is used with a learning rate set to 0.001 and
other hyper-parameters as default. Moreover, we first trained
an ANN model with the same architecture as the BNN model,
used the trained ANNweights to initialise the BNNmodel, and
then trained the BNNmodel for 50, 000 epochs. The validation
results are shown in Figure 15.

4.3.2 Validation of the proposed approach
Without assuming extra knowledge on the evolution of the
scheduling variables beyond the scheduling sets, we randomly
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Figure 13. Control results using the proposed approach. (a) RPI set based on the BNNmodel. (b) Random scheduling signals for control.

Figure 14. Data generated for system identification purposes. (a) Inputs to the system. (b) Sequences of x1 = h1. (c) Sequences of x2 = h2.

sample 1000 θ ’s from the uniform distribution over� = X and
then evaluate A(·) for NMC = 5000 times using the dynamic
functions sampled from the BNN model for each θ . Then, we
apply K-means to the vectorised A’s to generate the scenarios.
The number of clusters is assumed to be 3.Also,βA = 0.1 is con-
sidered here for the worst-case scenarios. Therefore, 5 scenarios
were used includingμA ± βAσA. Additionally, the scenarios are

fixedwithin the robust horizon of the tree generation in this case
due to the limited time-invariant knowledge of θ . The proba-
bility of the 5 scenarios is p = [0.12; 0.81; 0.07; 0.00; 0.00] using
the moment matching method. Moreover, in our experiments,
Q = I2×2,R = 10 for the stage cost 
 in (20). The prediction
horizon is set to 4 and the robust horizon to 1. Additionally, We
use a 4-layer fully-connected NN with 4 and 8 units in the 2
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Figure 15. Validation results for the identified BNNmodel. The BFR = [92.04%; 97.52%] using the estimatedmean as predictions for outputs. 96%of the states arewithin
0.1 standard deviations of the average predictions.

Figure 16. Control results using the proposed approach. (a) RPI set based on the BNNmodel. (b) x1 profile. (c) x2 profile. (d) Control inputs.

hidden layers to model the coordinate transformation from the
scheduling variable in (10) to the scheduling variable in (21).
The RPI set shown in Figure 16 (a) was computed based on the
BNN model.

The control results in Figure 16(c) show that the designed
SMPC can bring the liquid level h2 of the lower tank to the
reference valuewhile satisfying the system constraints. The con-
trol inputs in Figure 16(d) fluctuate between the limits in the
early stages of the control process, which may result from the
conservatives of the BNN model and the generated scenar-
ios. Moreover, it is noted that the proposed approach reached
the set point slower than the approach that assumes a known
system model and uses the exact LPV embedding in Hanema
et al. (2021), as the data-drivenmodel can be conservative, com-
pared with the exact LPV model of the system. However, the
data-driven model can be refined using the closed-loop data to
improve the control performance, which will be investigated in
the future work.

5. Concluding remarks

In this paper, a learning-based MPC design approach was pro-
posed for systems described in the LPV framework. BNNs
were used to learn from input-output data an LPV-SS model

with epistemic uncertainty quantification. Then, the epis-
temic uncertainty from the system identification and impre-
cise knowledge of the future scheduling variables were jointly
considered for control design with safety guarantees. SMPC
was proposed to consider safety when generating scenarios.
K-means clustering and moment matching were used to gen-
erate scenarios with probabilities that can retain the stochastic
properties of the joint uncertainty of themodel and the schedul-
ing variables. To guarantee closed-loop stability, parameter-
dependent terminal cost, and controller were designed, which
can improve the control performance, together with a terminal
RPI set. Numerical experiments and simulations were used to
show that the proposed approach can ensure safety and achieve
the desired control performance.

In our future work, we plan to consider the effects of
measurement noise of scheduling variables on the proposed
approach, as exact measurements of these parameters can be
impractical in real applications. Moreover, we will improve the
proposed approaches to evaluate the probabilistic safety of BNN
models and develop online adaptation approaches to reduce the
conservativeness of BNN models using closed-loop data.
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