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ABSTRACT

We report a new test of modified gravity theories using the large-scale structure of the Universe. This paper is the first attempt
to (1) apply a joint analysis of the anisotropic components of galaxy two- and three-point correlation functions (2 and 3PCFs)
to actual galaxy data and (2) constrain the non-linear effects of degenerate higher-order scalar-tensor (DHOST) theories on
cosmological scales. Applying this analysis to the Baryon Oscillation Spectroscopic Survey (BOSS) data release 12, we obtain
the lower bounds of —1.655 < &, and —0.504 < & at the 95 per cent confidence level on the parameters characterizing the time
evolution of the tidal and shift terms of the second-order velocity field. These constraints are consistent with GR predictions
of &, = 15/1144 and &, = 0. Moreover, they represent a 35-fold and 20-fold improvement, respectively, over the joint analysis
with only the isotropic 3PCF. We ensure the validity of our results by investigating various quantities, including theoretical
models of the 3PCF, window function corrections, cumulative S/N, Fisher matrices, and statistical scattering effects of mock
simulation data. We also find statistically significant discrepancies between the BOSS data and the Patchy mocks for the 3PCF
measurement. Finally, we package all of our 3PCF analysis codes under the name HITOMI and make them publicly available so

that readers can reproduce all the results of this paper and easily apply them to ongoing future galaxy surveys.

Key words: dark matter —large-scale structure of Universe —cosmology: observations —cosmology: theory.

1 INTRODUCTION

1.1 Outline and summary

This paper presents a comprehensive study of the joint analysis of
galaxy two- and three-point correlation functions (2 and 3PCFs)
with isotropic and anisotropic components to constrain the non-linear
effects of modified gravity theories on a cosmological scale. Section 1
outlines the theoretical development and the present constraints
for scalar-tensor theories. We also outline the development of the
measurement and analysis of the 3PCF of galaxies. We organize this
paper such that readers unfamiliar with both or one of the two areas
follow the recent developments and understand how they fit together.

Readers interested in the theoretical aspects may read Sections 2,
3, and 7. Section 2 reviews the non-linear evolution of the large-scale
structure (LSS) of the Universe in scalar-tensor theories. Section 3
presents detailed calculations of the theoretical model of the 3PCF
and, in particular, investigates the dependence of the parameters that
characterize the effect of scalar-tensor theories on the 3PCF model.
Finally, Section 7 discusses the extent to which the 3PCF contains
information on the non-linear effects of scalar-tensor theories through
Fisher analysis.

Readers interested in the analysis method of the 3PCF may read
Sections 4, 5, 6, and 8. Section 4 reviews how to measure the 3PCF
from galaxy data and examines the effect of the window function on
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the measured 3PCFs. Section 5 presents the results of the 2 and 3PCFs
covariance matrices computed from mock simulations. Section 6
describes the setup for the data analysis in this paper. Finally,
Section 8 discusses in detail whether the 3PCFs measured from
the galaxy data in this paper can be fitted using the corresponding
theoretical model in terms of p-values.

For readers familiar with the two areas in the literature and
interested in the final results, we suggest they jump directly to
Section 9. The novel aspect of this paper is to focus on observationally
constraining the second-order velocity field, which is a key to
seeking a deviation from General Relativity (GR) in scalar-tensor
theories. We also show that the second-order velocity field imprints
aunique signature in the anisotropic 3PCF on large scales. Following
Yamauchi & Sugiyama (2022) and Section 3.4, we then parametrize
the effects of scalar-tensor theories in the time evolution of the shift
and tidal terms of the second-order velocity field using parameters &
and &, defined in equation (49). Constraining these parameters using
Baryon Oscillation Spectroscopic Survey Data Release 12 (DR12)
galaxies (Eisenstein et al. 2011; Bolton et al. 2012; Dawson et al.
2013; Alam et al. 2015), we obtain the following lower bounds given
in equations (114) and (116):

—1.655 <& and —0.504 < & (95 per centCL).

Since &, = 15/1144 and &5 = 0 in GR, these results are consistent with
GR. Finally, we summarize the final results and the various findings
leading up to them in Section 10, which concludes this paper.
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We package all the code used to complete this paper under the name
HITOMI' and make it publicly available. Appendix A summarizes
the structure and usage of HITOMI.

1.2 General motivation

The greatest mystery in current cosmology is the cause of the
accelerated expansions that have presumably occurred twice in the
cosmic expansion history: i.e. inflation and late-time acceleration.

Scalar-tensor theories, modified gravity theories that add a single
scalar field degree of freedom to GR, have been actively studied as
a promising candidate to explain these accelerated expansions (for
reviews, see Langlois 2019; Kase & Tsujikawa 2019; Kobayashi
2019; Amendola et al. 2020; Frusciante & Perenon 2020).2

The accelerated expansion in the very early Universe, called
inflation (Starobinsky 1980; Guth 1981; Sato 1981; Linde 1982;
Albrecht & Steinhardt 1982), is thought to be caused by a single
scalar field in the simplest model, generating the seeds of the
cosmic fluctuations currently observed. Furthermore, the statistical
properties of these fluctuations are in excellent agreement with
current observations of the cosmic microwave background (CMB;
Aghanim et al. 2020) and the LSS (Alam et al. 2021a). On the
other hand, the cosmological constant may explain the late-time
accelerated expansion (Riess et al. 1998; Perlmutter et al. 1999).
However, its smallness implies a serious fine-tuning problem in
fundamental physics (Weinberg 1989; Martin 2012), and in order
to avoid this problem, it is preferable to adopt a scalar field that
varies with time.

In order to test scalar-tensor theories in the late-time Universe,
it is crucial to follow the time evolution of the LSS in detail.
Examples of already completed galaxy surveys are the Baryon
Oscillation Spectroscopic Survey (BOSS; Eisenstein et al. 2011;
Bolton et al. 2012; Dawson et al. 2013; Alam et al. 2015)> and the
Extended BOSS (eBOSS; Dawson et al. 2016; Alam et al. 2021a).%
Furthermore, next-generation galaxy surveys, such as the Dark
Energy Spectroscopic Instrument (DESI; DESI Collaboration et al.
2016),> Euclid (Laureijs et al. 2011),° and the Subaru Prime Focus
Spectrograph (PFS; Takada et al. 2014),” will provide unprecedented
accuracy in testing scalar-tensor theories.

1.3 DHOST theories and their constraints

In this paper, we pay particular attention to the behaviour in the late-
time Universe of Degenerate Higher-Order Scalar-Tensor (DHOST)
theory (for reviews, see Langlois 2019; Kobayashi 2019), which are
a quite general theoretical framework of scalar-tensor theories that
can evade the Ostrogradsky instability (Ostrogradsky 1850; Woodard
2015; Ganz & Noui 2020). Scalar-tensor theories have been develop-
ing rapidly over the last decade. In 2011, Deftayet et al. (2011) and
Kobayashi, Yamaguchi & Yokoyama (2011) rediscovered the most
general theory with second-order equations of motion for metric

Thttps://github.com/naonori/hitomi.git

2For reviews of modified gravity theories, including other theories than
scalar-tensor theories, see Nojiri & Odintsov 2011; Sebastiani, Vagnozzi &
Myrzakulov 2017; Nojiri, Odintsov & Oikonomou 2017; Cataneo & Rapetti
2018; Ishak 2019; Ferreira 2019; Baker et al. 2021; Arai et al. 2022.
3https://www.sdss3.org/science/boss_publications.php
“https://www.sdss.org/surveys/eboss/

Shttp://desi.Ibl.gov/

Swww.euclid-ec.org

"https://pfs.ipmu.jp/index.html
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tensor and scalar fields, Horndeski theories (Horndeski 1974). To go
beyond Horndeski theories, Gleyzes et al. (2015a,b) found a class
of healthy theories having higher-order field equations that reduce
to a second-order system by combining different components (see
also Zumalacarregui & Garcia-Bellido 2014, for examples, beyond
Horndeski). This discovery results from a degeneracy between the
kinetic terms of the scalar field and the metric. This class of theories
has been extended to reach DHOST theories (Langlois & Noui 2016;
Crisostomi, Koyama & Tasinato 2016; Ben Achour et al. 2016a; Ben
Achour, Langlois & Noui 2016b; Langlois 2017; Langlois, Noui &
Roussille 2020), encompassing Horndeski and Beyond Horndeski
theories.® So far, DHOST theories have been constrained primarily
by three observations’: gravitational waves (GW), celestial objects,
and cosmological data that are the subject of this paper.

Since GW170817 was observed by LIGO and Virgo (Abbott
et al. 2017a), the situation surrounding the observational constraints
of modified gravity has changed dramatically. The simultaneous
observation of GRB170817 (Abbott et al. 2017b), a Gamma Ray
burst, confirmed that the speed of GWs matches the speed of
electromagnetic waves with high accuracy, ruling out various scalar-
tensor theories that change the speed of GWs at low redshifts (Lom-
briser & Taylor 2016; Baker et al. 2017; Creminelli & Vernizzi
2017; Ezquiaga & Zumalacdrregui 2017; Lombriser & Lima 2017;
Sakstein & Jain 2017; Langlois et al. 2018). Creminelli et al. (2018,
2019) pointed out that a subset of DHOST theories leads to the
decay of GWs, resulting in further tight constraints on DHOST
theories. However, the theory of gravity considered in that paper, the
class I DHOST theory (Ben Achour et al. 2016b; Crisostomi et al.
2016; Langlois & Noui 2016), still survives and can modify gravity
in cosmology without pathological instability (de Rham & Matas
2016; Langlois et al. 2017; Amendola et al. 2018). Furthermore,
de Rham & Melville (2018) showed that such cosmological scalar-
tensor theories, which predict the speed of GWs to be different from
the speed of light, break down on high energy scales (~ 10° Hz)
seen in neutron star mergers, indicating that the constraints from
GW observations may not necessarily apply to cosmological scales.
Therefore, it is essential to test modified gravity theories indepen-
dently at various energy scales, such as the GW and cosmological
scales.

DHOST theories generally have characteristic non-linear effects
that violate the Vainshtein screening mechanism inside any gravita-
tional source (Kobayashi, Watanabe & Yamauchi 2015; Koyama &
Sakstein 2015; Crisostomi & Koyama 2018; Dima & Vernizzi
2018; Langlois et al. 2018; Hirano, Kobayashi & Yamauchi 2019b;
Crisostomi, Lewandowski & Vernizzi 2019). As an alternative to
the cosmological constant, scalar-tensor theories must give an O(1)
modification from GR at cosmological scales, but at small scales, they
must satisfy tests in weakly gravitational regions such as the solar sys-
tem. The Vainshtein screening mechanism (for a review, Babichev &
Deffayet 2013), universally found in scalar-tensor theories, is a typ-
ical mechanism that satisfies these requirements, suppressing scalar
interactions and restoring standard gravity through non-linear effects.

8Hereafter, we do not distinguish between Beyond Horndeski theories and
DHOST theories.

9As other probes of DHOST theories, for example, Babichev & Lehébel
(2018) shows that the scalar field in DHOST theories can significantly modify
the speed of sound in the atmosphere of the Earth; Beltran Jimenez, Piazza &
Velten (2016), Dima & Vernizzi (2018) strongly constrain DHOST models
using Hulse-Taylor pulsar observations; Saltas & Lopes (2019) proposes
helioseismology as a precise way to test DHOST theories on astrophysical
scales.
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While Horndeski theories allow for a natural implementation of
the Vainshtein mechanism (Kimura, Kobayashi & Yamamoto 2012;
Narikawa et al. 2013; Koyama 2016), DHOST theories partially
violate it, allowing one to test DHOST theories by examining the
internal structure of objects such as Newtonian stars (Saito et al.
2015; Sakstein 2015a,b; Jain, Kouvaris & Nielsen 2016; Sakstein,
Kenna-Allison & Koyama 2017a; Saltas, Sawicki & Lopes 2018;
Saltas & Christensen-Dalsgaard 2022), Neutron stars (Babichev et al.
2016; Sakstein et al. 2017b), and galaxy clusters (Sakstein et al. 2016;
Salzano et al. 2017). The Vainshtein radius, the maximum scale at
which the Vainshtein mechanism works, is estimated to be O(100) pc
for the Sun and O(1) Mpc for a galaxy cluster.

DHOST theories predict a characteristic gravitational non-linear
effect on even cosmological scales exceeding tens of Mpc. That is,
DHOST theories violate the consistency relation for LSS (Crisos-
tomi, Lewandowski & Vernizzi 2020; Lewandowski 2020; see
also Hirano et al. 2018). The LSS consistency relation (Peloso &
Pietroni 2013; Kehagias & Riotto 2013; Creminelli et al. 2013) is an
analogue of the consistency relation originally proposed for single-
field inflation models (Maldacena 2003; Creminelli & Zaldarriaga
2004), which relates n-point statistics of cosmological fluctuations
to (n — 1)-point statistics in a non-perturbative matter. It is valid
in the limit where the wavenumber of one of the n-points is hugely
smaller than the others. This consistency relation is because the
equations that the fluctuations obey are invariant under a Galilean
transformation (Scoccimarro & Frieman 1996; Creminelli et al.
2013). In particular, in the so-called equal-time consistency relation,
the Galilean transformation eliminates the large-scale flow of matter
and thus cancels all non-linear contributions when calculating the
n-point statistics. This behaviour is also known as infrared (IR)
cancellation (Jain & Bertschinger 1996; Scoccimarro & Frieman
1996; Blas, Garny & Konstandin 2013; Kehagias & Riotto 2013;
Peloso & Pietroni 2013; Sugiyama & Futamase 2013; Sugiyama &
Spergel 2014; Blas et al. 2016b; Lewandowski & Senatore 2017).
On the other hand, the LSS consistency relation breaks down when
considering multiple fluids (Tseliakhovich & Hirata 2010; Yoo,
Dalal & Seljak 2011; Bernardeau, Van de Rijt & Vernizzi 2012,
2013; Peloso & Pietroni 2014; Creminelli et al. 2014a; Lewandowski,
Perko & Senatore 2015; Slepian & Eisenstein 2017) or primordial
non-Gaussianities (Berezhiani & Khoury 2014; Valageas, Taruya &
Nishimichi 2017; Esposito, Hui & Scoccimarro 2019; Goldstein
et al. 2022), or when the equivalence principle breaks (Creminelli
et al. 2014b). DHOST theories have a structure similar to that of
multiple fluids, and on large scales, the Galilean transformation
cannot make the relative velocity between the scalar field and
matter vanish (for details, see Crisostomi et al. 2020; Lewandowski
2020). As a result, DHOST theories violate the LSS consistency
relation.

Our interest in this paper is to constrain DHOST theories
on cosmological scales, i.e. O(10 — 100) Mpc scales. However,
studies using cosmological data to constrain DHOST theories
are still limited (Hirano et al. 2019a; Traykova, Bellini & Fer-
reira 2019; Peirone et al. 2019; Hiramatsu 2022). On the other
hand, many papers on Horndeski theories have used cosmolog-
ical data to constrain the model (Okada, Totani & Tsujikawa
2013; Barreira et al. 2014; Bellini et al. 2016; Arai & Nishizawa
2018; Kreisch & Komatsu 2018; Mueller et al. 2018; Perenon
et al. 2019; Melville & Noller 2020; Noller 2020; Noller &
Nicola 2020, 2019; Raveri 2020). Therefore, exploring new cos-
mological methods for constraining DHOST theories is of great
significance.

New constraints on modified gravity theories
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1.4 Constraints on modified gravity theories using galaxy
two-point statistics

The logarithmic growth rate function f of dark matter fluctuations,
measured using redshift-space distortions (RSD; Kaiser 1987), plays
an important role in constraining modified gravity theories in the late-
time Universe. In the power spectrum analysis, we cannot measure
the growth rate function by itself, but usually, by the combination
fos = dlnog/dina (Song & Percival 2009; Percival & White 2009)
using o g representing the rms of matter fluctuations on the 8 2~ Mpc
scale. For example, the most recent observations, BOSS and eBOSS,
measured fog with a precision of ~ 5 per cent in the redshift range
0.2 < z < 1.0 (Alam et al. 2021a).

One concern is to test modified gravity theories directly using
existing fos measurements. The standard practice is constructing a
model of the non-linear galaxy power spectrum assuming GR, then
using that model to measure fog from data up to the mildly non-
linear region (k ~ 0.2/hMpc™!) (for recent studies, e.g. d’Amico
et al. 2020; Ivanov, Simonovi¢ & Zaldarriaga 2020; Lange et al.
2022; Kobayashi et al. 2022; Yuan et al. 2022). Therefore, it is worth
noting that many existing analysis results using galaxy data up to
the non-linear region only verify the consistency of GR. Thus, to
test the gravity theory by consistently considering both linear and
non-linear effects, a power spectrum model that considers non-linear
effects specific to the modified gravity theory of interest is necessary.
Several studies have been done on this for various modified gravity
theories (Koyama, Taruya & Hiramatsu 2009; Taruya et al. 2014a,b;
Takushima, Terukina & Yamamoto 2015; Bellini & Zumalacarregui
2015; Barreira, Sanchez & Schmidt 2016; Bose & Koyama 2016;
Taruya 2016; Cusin, Lewandowski & Vernizzi 2018a,b; Bose et al.
2017, 2018; Aviles et al. 2018; Cataneo et al. 2019; Hernandez-
Aguayo et al. 2019; Valogiannis & Bean 2019; Valogiannis, Bean &
Aviles 2020; Bose et al. 2020b). However, only one study constrained
the theory from actual galaxy data using a galaxy power spectrum
model that consistently includes the non-linear effects arising from
modified gravity (Song et al. 2015a), where the authors focused on
f(R) gravity (Hu & Sawicki 2007).

In particular, Hirano et al. (2020) pointed out that in DHOST
theories, even the next-order solutions of the power spectrum in
perturbation theory, the so-called one-loop solutions, are challenging
to perform physically meaningful theoretical calculations due to the
divergence of the wavenumber integral in the ultraviolet (UV) region.
Therefore, the modelling of non-linear power spectra in DHOST
theories is still highly uncertain.

1.5 Developments in the study of galaxy three-point statistics

A more straightforward way to investigate the non-linearity of
scalar-tensor theories is to use three-point statistics of cosmological
fluctuations, i.e. the 3PCF or the bispectrum. The reason is that, on
large scales, the three-point statistics consist of a combination of
second-order and linear-order dark matter fluctuations. The second-
order fluctuations depend on two wave vectors in Fourier space
and can be decomposed into three components using the angle
between the three wave vectors: monopole (growth), dipole (shift),
and quadrupole (tidal force; Schmittfull, Baldauf & Seljak 2015).
For example, Horndeski theories deviate only the coefficient of
the tidal term from GR while keeping the shift term among these
three components (Bernardeau & Brax 2011; Bartolo et al. 2013;
Takushima, Terukina & Yamamoto 2014; Bellini, Jimenez & Verde
2015; Burrage, Dombrowski & Saadeh 2019). On the other hand,
DHOST theories change both the shift and tidal terms (Hirano
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et al. 2018; Crisostomi et al. 2020; Lewandowski 2020), and this
change in the shift term leads to a violation of the LSS consistency
relation (Crisostomi et al. 2020; Lewandowski 2020). In addition
to scalar-tensor theories, there has been much researches on higher-
order statistics in, for example, f(R) gravity theory (Borisov & Jain
2009; Gil-Marin et al. 2011; Hellwing et al. 2013; Bose & Taruya
2018; Bose et al. 2020a). Several observational proposals have been
made to test modified gravity theories using cosmological three-
point statistics, such as galaxy clustering (Yamauchi, Yokoyama &
Tashiro 2017b; Yamauchi & Sugiyama 2022), weak lensing (Dinda
2018; Munshi et al. 2020b, a; Munshi & McEwen 2020), and CMB
lensing (Namikawa, Bouchet & Taruya 2018; Namikawa et al. 2019),
but none have been applied to actual observational data yet.

In the context of the galaxy three-point statistics, 3PCF resolves
the degeneracy between the linear bias b; and og and allows us
to directly study the evolution of dark matter density fluctuations
apart from the RSD effect (Fry 1994; Frieman & Gaztanaga 1994;
Matarrese, Verde & Heavens 1997; Verde et al. 1998; Gaztanaga &
Scoccimarro 2005; Sefusatti et al. 2006; Greig, Komatsu & Wyithe
2013; Hoffmann et al. 2015; Samushia, Slepian & Villaescusa-
Navarro 2021). Furthermore, many previous studies have proposed to
constrain primordial non-Gaussianities from the galaxy three-point
statistics (Fry & Scherrer 1994; Verde et al. 2000; Scoccimarro,
Sefusatti & Zaldarriaga 2004; Sefusatti & Komatsu 2007; Sefusatti
2009; Liguori et al. 2010; Desjacques & Seljak 2010; Sefusatti,
Crocce & Desjacques 2010, 2012; Scoccimarro et al. 2012; Alvarez
et al. 2014; Tellarini et al. 2015, 2016; Welling, van der Woude &
Pajer 2016; Yamauchi, Yokoyama & Takahashi 2017a; Karagiannis
et al. 2018; Bharadwaj, Mazumdar & Sarkar 2020; Moradinezhad
Dizgah et al. 2021; Shirasaki et al. 2021; Coulton et al. 2023;
Karagiannis, Maartens & Randrianjanahary 2022). Recently, as in the
case of the galaxy two-point statistics (e.g. Matsubara 2004; Taruya,
Saito & Nishimichi 2011), the anisotropic component of the galaxy
three-point statistics induced by the RSD effect and the Alcock—
Paczynski (AP) effect (Alcock & Paczynski 1979) has attracted much
attention, and its cosmological utility has been actively studied (Song,
Taruya & Oka 2015b; Gagrani & Samushia 2017; Yankelevich &
Porciani 2019; Gualdi & Verde 2020; Mazumdar, Bharadwaj &
Sarkar 2020; Agarwal et al. 2021; Sugiyama et al. 2021; Rizzo et al.
2023; Tsedrik et al. 2023).

Based on standard perturbation theory (SPT), many theoretical
studies of the galaxy three-point statistics have been conducted
to calculate higher-order non-linearities, RSDs, and bias effects,
and the results of these calculations have been tested for valid-
ity by comparing them with measurements from N-body simula-
tions (Peebles 1980; Fry 1984; Goroff et al. 1986; Hivon et al.
1995; Scoccimarro 1997; Jing & Boerner 1997; Scoccimarro et al.
1998; Scoccimarro, Couchman & Frieman 1999; Scoccimarro 2000;
Barriga & Gaztanaga 2002; Barriga & Gaztanaga 2002; Gaztafiaga &
Scoccimarro 2005; Pan, Coles & Szapudi 2007; Marin et al. 2008;
Guo & Jing 2009; Pollack, Smith & Porciani 2012; Lazanu et al.
2016; McCullagh, Jeong & Szalay 2016; Child, Slepian & Takada
2018; Desjacques, Jeong & Schmidt 2018c; Hoffmann et al. 2018;
Lazanu & Liguori 2018; Eggemeier, Scoccimarro & Smith 2019;
Oddo et al. 2020; Eggemeier et al. 2021; Oddo et al. 2021; Philcox
et al. 2022). Other approaches have been widely used in research,
such as the halo models (Ma & Fry 2000; Scoccimarro et al.
2001b; Takada & Jain 2003; Fosalba, Pan & Szapudi 2005; Smith,
Sheth & Scoccimarro 2008; Yamamoto, Nan & Hikage 2017; Nan,
Yamamoto & Hikage 2018) and fitting formulas (Scoccimarro &
Frieman 1999; Scoccimarro & Couchman 2001; Gil-Marin et al.
2012, 2014; Takahashi et al. 2020). Beyond SPT, several improved
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perturbation theories have been proposed. Rampf & Wong (2012)
used a resummation method based on Lagrangian perturbation
theory. Baldauf et al. (2015b), Munshi & Regan (2017), and Ivanov
et al. (2022) discussed some correction terms for SPT based on the
effective field theory of LSS. Hashimoto, Rasera & Taruya (2017)
applied a resummation method similar to the TNS model of the
power spectrum (Taruya, Nishimichi & Saito 2010). Kuruvilla &
Porciani (2020) generalised the so-called streaming model to higher-
order statistics. Blas et al. (2016a) and Ivanov & Sibiryakov (2018)
developed the time-sliced perturbation theory (TSPT) to resum the
IR modes of the bulk flow and describe the non-linear damping of
Baryon acoustic oscillations (BAOs; Peebles & Yu 1970; Sunyaev &
Zeldovich 1970). Sugiyama et al. (2021) constructed a new IR-
resummed bispectrum model by adding a term to the model proposed
by TSPT.

The measurement of three-point statistics for galaxies, galaxy
clusters, and quasars has along history. As a simple method, 2D three-
point angular statistics have been observed from the dawn of the study
of cosmological three-point statistics to the present (Peebles 1975;
Peebles & Groth 1975; Groth & Peebles 1977; Fry & Peebles 1980;
Fry & Seldner 1982; Sharp, Bonometto & Lucchin 1984; Jing &
Zhang 1989; Toth, Hollosi & Szalay 1989; Jing, Mo & Boerner
1991; Frieman & Gaztafiaga 1999; Szapudi et al. 2001; de Carvalho
et al. 2020). Eventually, with the development of spectroscopic
observations of galaxies, 3D three-point statistics have become the
primary targets observed in configuration space (Bean et al. 1983;
Efstathiou & Jedrzejewski 1994; Hale-Sutton et al. 1989; Gott, Gao &
Park 1991; Jing & Borner 1998; Jing & Borner 2004; Kayo et al.
2004; Wang et al. 2004; Gaztanaga et al. 2005; Pan & Szapudi 2005;
Nichol et al. 2006; Kulkarni et al. 2007; Gaztafiaga et al. 2009; Marin
2011; McBride et al. 2011a,b; Marin et al. 2013; Guo et al. 2014;
Moresco et al. 2017a,b, 2021; Slepian et al. 2017a,b) or in Fourier
space (Baumgart & Fry 1991; Feldman et al. 2001; Scoccimarro
et al. 2001a; Verde et al. 2002; Nishimichi et al. 2007; Gil-Marin
et al. 2015a,b, 2017a; Pearson & Samushia 2018; Sugiyama et al.
2019; Philcox & Ivanov 2022; Cabass et al. 2022a,b; D’ Amico et al.
2022a,b). As another approach, Chiang et al. (2015) measured the
squeezed limit bispectrum by splitting the observing region and
measuring the position-dependent power spectrum. Since the first
measurement of the galaxy three-point statistics by Peebles & Groth
(1975), the three-point statistic measurement has long been limited to
measuring only certain scale-dependence of the three-point statistics.
However, it is now possible to perform cosmological analysis using
the information on the full shape of galaxy three-point statistics at
cosmological scales (~ 100 2~ Mpc).

In recent years, cosmological analysis of the three-point statistics
of galaxies has made remarkable progress, mostly focusing on the
isotropic component, i.e. monopole, of the three-point statistics.
Slepian et al. (2017b) and Pearson & Samushia (2018) reported
the detection of the BAO signal through the monopole 3PCF and
the monopole bispectrum, respectively. Gil-Marin et al. (2017a),
d’Amico et al. (2020), and Philcox & Ivanov (2022) performed a
joint analysis of the monopole and quadrupole power spectra and the
monopole bispectrum to constrain the cosmological parameters of in-
terest. Cabass et al. (2022a,b) and D’ Amico et al. (2022a) constrained
primordial non-Gaussianities using the monopole bispectrum.

The anisotropic components, i.e. quadrupole and hexadecapole, of
the galaxy three-point statistics have been the subject of pretty limited
studies of measurements and cosmological analyses from actual
galaxy data. Sugiyama et al. (2019) reported the first detection of the
quadrupole bispectrum signal at the 14¢ level from the BOSS DR12
galaxies. Sugiyama et al. (2021) performed an anisotropic BAO

€20z 1snBny Gz uo Jesn ueder A101eAIasSqQ [BOIWIOUO.SY [euoneN AQ 6982/ 1 2/SE 1 €/2/SZS/e1oNIB/SBIUW/WOD dNo-oIWwspeoe//:sdny WoJj papeojumoq



analysis using the monopole and quadrupole components of the 2 and
3PCFs for the MultiDark-Patchy mock catalogues (Patchy mocks;
Kitaura et al. 2016) reproducing the BOSS galaxy distribution,
showing the improvement of the Hubble parameter constraint by
~ 30 per cent compared to the 2PCF-only analysis result. D’Amico
et al. (2022b) performed the first joint analysis of the monopole and
quadrupole components of the power and bispectra measured from
the BOSS DRI12 galaxy data. More recently, Ivanov et al. (2023)
presented the results of an anisotropic bispectrum analysis, including
quadrupole and hexadecapole components measured from the BOSS
DRI12 data.

1.6 Goal of this paper

The primary goal of this paper is to use the 3PCF of galaxies to
perform a consistent cosmological analysis that constrains DHOST
theories and their subclass, Horndeski theories, while accounting for
linear and non-linear effects. To this end, Yamauchi & Sugiyama
(2022) pointed out that the parameters characterizing non-linear
density fluctuations in DHOST theories degenerate with the non-
linear bias parameter, so measuring the non-linear velocity field due
to the RSD effect is essential. In addition, the authors proposed a
simple parametrization scheme that characterizes the time evolution
of the scale dependence of the non-linear velocity field to facilitate
the combined analysis of galaxy samples at different redshifts.
Specifically, the time evolution of the shift and tidal terms of the
second-order velocity field is represented by & and &, respectively,
where £, = 0 and &, = 15/1144 in GR. Following the suggestion of
Yamauchi & Sugiyama (2022), we apply the joint analysis method
of the anisotropic 2 and 3PCFs of galaxies established by Sugiyama
et al. (2021) to BOSS DR12 galaxies (Eisenstein et al. 2011; Bolton
et al. 2012; Dawson et al. 2013; Alam et al. 2015) to constrain these
&, and &, parameters.

When we need to use values of fiducial cosmology parameters
in our analysis, we adopt a flat ACDM model with the following
parameters: matter density 2,0 = 0.31, Hubble constant i =
Hy/(100km s~ Mpc~!) = 0.676, baryon density Quoh®> = 0.022,
and spectral tilt ng = 0.97, which are the same as those used
in the final cosmological analysis in the BOSS project (Alam
et al. 2017) and consistent with the best-fitting values in Planck
2018 (Aghanim et al. 2020). We adopt a value for the total neutrino
mass of > m, = 0.06eV close to the minimum allowed by neutrino
oscillation experiments. We use these fiducial parameters to estimate
the distance to galaxies from the observed redshift of each galaxy
and to calculate the shape of the linear matter power spectrum at the
redshifts of interest with CLASS (Blas, Lesgourgues & Tram 2011).

2 DHOST THEORIES

In this section, we briefly review the analytic expressions of DHOST
theories. Section 2.1 introduces the class I DHOST theory and the
perturbative solutions of the density and velocity fields of dark
matter and galaxies solved up to the second-order in that theory.
In equations (1)-(14) of this subsection, we adopt the expressions
and notations given by Hirano et al. (2018). Section 2.2 discusses
the limitation of the assumptions adopted to derive the perturbative
solutions used in this paper.

2.1 Density and velocity fluctuations in DHOST theories

We begin by summarizing the theoretical models we will investigate
in this paper and the assumptions used to derive those models.
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(i) Gravity theory is a subclass of quadratic DHOST theories, the
class I DHOST theory (Crisostomi et al. 2016), which encompasses
Horndeski and Beyond Horndeski theories and is free from the
instabilities of a cosmological background (de Rham & Matas 2016;
Langlois et al. 2017).

(i) Matter is cold dark matter (CDM) that can be described as a
pressureless, perfect fluid without vorticity (Bernardeau et al. 2002).

(iii) Matter is minimally coupled to gravity, and the effects of the
DHOST gravity appear only through the gravitational potential.

(iv) When solving the equations of motion of metric tensor and
scalar fields in DHOST theories, the quasi-static approximation (e.g.
Pace et al. 2021) is used. Then, the gravitational potential is
determined by a modified Poisson equation (Hirano et al. 2018;
Crisostomi et al. 2020; Hirano et al. 2020; Lewandowski 2020).

(v) Statistical properties of the CDM fluctuations are those derived
in the standard theory of inflation, which satisfy the following
properties: adiabaticity, negligibly weak non-Gaussianity, nearly
scale-free, statistical homogeneity, statistical isotropy, and statistical
parity symmetry.

(vi) Galaxy biases are assumed to be present only in the density
field, and three biases are considered: linear bias b;, second-order
local bias b,, and second-order non-local bias (tidal bias) b2 (for
a review, see e.g. Saito et al. 2014; Desjacques, Jeong & Schmidt
2018b). Any bias effects related to higher-order derivatives and the
velocity field of the galaxy are ignored.

The action of quadratic DHOST theories is given by (Langlois &
Noui 2016; Crisostomi et al. 2016)

SpHOST = /d4xv—g [92(457 X) — Gi(¢, X)Oo + F(¢, X)R

+ 419, 0" + ax(09) + a3(0P)P" Py’

@i B @” B + as(@" B8 M
where ¢, = V.0, ¢y = V, Vi@, X = —¢,¢"/2, and a; = a;(¢,
X) fori =1, ..., 5. The functions a; (i = 1, ..., 5) satisfy the

degeneracy condition given by (Crisostomi et al. 2016) to avoid the
Ostrogradsky ghost (Ostrogradsky 1850; Woodard 2015).

The density perturbation § and velocity field v of dark matter follow
the equations of a pressureless, perfect fluid without vorticity:

3 +a '8 ((1+ 80 () =0,
0(x) + HOG) +a "9 (v/(x)9,v' (x)) = —a'9*D(x), ()

where a and H = a/a, respectively, denote the scale factor and the
Hubble parameter, and 6 = 9;v' is the divergence of the velocity
field. Because of no vorticity, the velocity field is represented as v’ =
(3;/8%)8. The gravitational potential ® is determined by the following
modified Poisson equation (Hirano et al. 2018):

?Ddx) 5(x) 5(x)

325NN (x)
ey TR T

a’H?

, 3

where «, v, and u are functions that depend only on time, and sgL
is a non-linear source term obtained from the equation of motion of
the scalar field.

To solve the above equations, we expand all the fluctuations as
follows: X = >_,X,, where X = {8, 6, ®, SJ}, and X, = O()).
Then, the non-linear source Sy- up to the second-order is given by

2Sphx) 0
a’H?
8ZSNL (x)
ﬁ = 7, W, (x) — 7, W, (x), 4)
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where

di
Wo(x) = [5i))* + |:¥51(x):| [9;8:(0)],

2 |99, ’
W, x) = [61(x)]" — ?51(«‘6) . )
The evolution of the density perturbation follows
5 : 36 =2 2 oNL
0x)+ 2+ ¢)Ho(x) — EQmDH 8(x) = H*S; (%), (6)

where ¢ = 2u — v)I(1 — ), 32)QLE = k/(1 — w), and S?L is
a non-linear source of the density perturbation, vanishing at linear
order and given at second-order by

Sy = SaWolx) — S, W, (x) (7
with
2 3 -
A=WSe =2f"+ B —cf + 7,
(1-ws, = f2+1,. ®)

Once the solution of § is obtained, the solution of 6 is also derived
from the continuity equation in equation (2). In Fourier space,'”
equations (2) and (3) determine 6, (k) and 6, (k) in terms of the linear
density fluctuations to be:

~ o [ &p d*p, 5
8, (k) = o) @y ) 8pk — p1,)
x Fém)(pl, < PSP - 8Py,

~ d? &’ p,
9,,(’() = —(le/ (27:,7)13 o / (2:)3 (277,’)38D(k _p[ln])

X G, - 8P 81P,), ©
where pp,;=p,+---+p,, and Sp is the delta function. The
functions F3™ and G$™ are kernel functions that characterize the

gravitational non-linear effects, and the superscript (m) stands for
‘matter’. In the second-order, F\™ and G\ are given by

m 2
F™ (1, py) = ksos(py, ps) — §)»a)’(k17kz)

G 01,2 = koopy, ) — 3 ha s, o), (10)
where
asky ko) = 1+ (k 'ﬁz)w,
2kiks
yki ko) = 1 — (ky - ko)., (11)
and
Ky = 2Ks [1 + %ddl;’:] -1,
Ao = As {1+i‘“n“}. (12)
2f dlna

The evolutions of k5 and As follow

2
= H’S,, (13)

3
ks +[4f + Q2+ o) Hks + H? (2]‘2 + —Qms) Ks

190ur convention for the Fourier transform is

flo) = / dxe™*F f(x).
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. . 3
Xs +[4f + @+ )Hhs + H? <2f2 + 5&2,,,3) As

7
= 5H2Sy.
Since the galaxy density field is a biased quantity, we assume the
linear bias by, the second-order local bias b,, and the second-order
tidal bias by» as the bias parameters that describe the galaxy density

fluctuation up to second order (e.g. Desjacques et al. 2018b):

(14)

b
890 = bi3) + 2 [BE)F + balsi T (15)
where the superscript (g) stands for ‘galaxy’, and [s;]* is given by

0;0;
o = [

Then, the second-order kernel functions for galaxies are given by

2 1 5
8| = I (16)

m 1 A 1
Fz(g) = b ;" (p,.py) + Ebz + by {(Pl - pa) — 3} ,

GY = G (p,.py). (17)

The RSD effect shifts the observed position of galaxies x.q from
their real-space position x’ due to the peculiar velocity of galaxies
along the line-of-sight (LOS) direction:

v(x') -7
i, 18

7" (18)

where 7i is a unit vector pointing to the galaxy from the origin. The

observed galaxy density fluctuation is then distorted along the LOS
direction as follows:

xred(x/) =x +

88 (x) = / &’x’ (1+89(x") 6p (¥ — xreax)) — 1. (19)
In Fourier space, the n-th order solution of 8 is represented as

d*p d*p,
ori | Gy @)’ sptk — pin)

X Zn@ys .- P2)81Py) - 81(py). (20)

The first and second-order kernel functions are given by (Scocci-
marro et al. 1999)

Zy=b + f(p-i),
Z, = EP (@, py) + k- 2)?*GE Py, ps)
LR [y i) (P2 )

—Zi(py) +
2 14 P2

where k =p, +p,. In the rest of this paper, we focus only
on the galaxy density fluctuation with RSDs, so for simplic-
ity of notation, we refer to it simply as & instead of §&. We
also omit the angle-dependence 7 of any function that includes
RSDs.

At the leading-order in perturbation theory, the redshift-space

power spectrum and bispectrum are represented as
P(k) = [Z1(k)T? Piin(K),
Bk, ko, k3) = 2Zs(ky, ko) Z (k1) Z 1 (k2) Piin (k1) Piin(k2)
+ 2 perms., (22)

5®

s, n

(k) =

Zipy)| . @n

wherek, + k, + k3 = 0, and Py, is the linear matter power spectrum.
In what follows, we omit the k3-dependence of the bispectrum for
notational 31mpllclty B(k] s kg) = B(k] ko ky = —ky — kz)
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Finally, we conclude this subsection by summarizing the key
points about galaxy fluctuations from a theoretical point of view.
First, in the case of v = u = t, = 0 in equations (3) and (4),
Horndeski theories are recovered; a ACDM model additionally
has ¥k = (3/2)Qm(z) and 7, = 0; in both Horndeski theories and
ACDM, k5 = k¢ = 1 from equation (13), and X; and XAy are
still time-dependent from equation (14); for the approximation
£ = Qnin ACDM, A5 = X = 1. Secondly, since the linear
equation of the density fluctuation (6) omits space-dependence as in
the ACDM case, under the assumption that the scalar field becomes
to prevail during the accelerated Universe, the shape of the linear
matter power spectrum can be the usual ACDM one determined
in the matter-dominant era. In other words, the characteristic scale-
dependence in § and v due to scalar-tensor theories appear only
through the non-linear kernel functions F,i;"; and Gi@z‘ Thirdly, the
non-linear terms that appear in the fluid equation in equation (2)
and the Poisson equation in equation (3), such as 9;(8v), 3,(v/9;v"),
W, and W,, become zero when the volume average or ensemble
average is calculated. Therefore, the resulting non-linear solutions
satisfy [d®x8, = (8,) = 0 and [d’x0, = (6,) = 0 for n > 2,
and the corresponding kernel functions satisfy F.") = G, =0
when p, +---+p, =0 as known in the case of ACDM. This
condition partially breaks when the non-linear bias effect is taken
into account, resulting in F\¥(p, —p) # 0 and G (p, —p) = 0 (see
equation (17)).

2.2 Limitation of our assumptions

This subsection discusses the possible cases where the assumptions
adopted in building the theoretical model in the previous subsection
are violated, introducing some previous studies. The following bullet
labels correspond to those in Section 2.1.

(i) Besides scalar-tensor theories, two other examples of mod-
ified gravity theories have been widely studied in cosmology:
the Hu-Sawicki model (Hu & Sawicki 2007) of flR) gravity (see
Capozziello & Francaviglia 2008; Sotiriou & Faraoni 2010, for
reviews) and the normal branch of the 5D brane-world Dvali-
Gabadadze-Porrati model (nDGP; Dvali, Gabadadze & Porrati
2000). These two models have been investigated in detail by Alam
et al. (2021b) as representative targets in DESI. Focusing on the
non-linear effects, the nDGP model generates a scale dependence of
the same form as Horndeski theories, characterized by the function
y(,,p,) (11). On the other hand, the Hu-Sawicki filR) model
produces a kernel function different from the one predicted by scalar-
tensor theories. Specifically, in the modified Poisson equation of
equation (3), k is scale-dependent, resulting in the linear growth
function that depends on the wavenumber. In addition, the non-
linear source SY- for the Hu-Sawicki model also appears as a
form that cannot be described by W, and W, unlike equation (4).
Such non-linearities in the density field specific to the Hu-Sawicki
model have been studied by (Koyama et al. 2009; Taruya 2016)
in the context of perturbation theory, and the model has been
tested by applying the theory to BOSS galaxy data (Song et al.
2015a).

(ii) The effect of the relative velocity of baryons and CDM
enters the galaxy density fluctuation quadratically together with
the corresponding bias parameter (Dalal, Pen & Seljak 2010), thus
modifying the shape of the measured bispectrum. In particular, as in
the case of the x5 parameter in DHOST theories, it corrects the term
in Fz(g) (p,,p,) that depends on (p; - p») called the shift term (Yoo
et al. 2011). The relative velocity effect on galaxy clustering has
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been measured using the galaxy power spectrum (Yoo & Seljak
2013; Beutler et al. 2016) and 3PCF (Slepian et al. 2018), but any
signature has not yet been detected.

Although massive neutrinos can also change the shape of the
bispectrum, the results of simulations performed by Ruggeri
et al. (2018) confirm that the CDM component in the bispec-
trum is dominant; Interestingly, Kamalinejad & Slepian (2020)
has shown that the effect of neutrino corrections appears in the
shift term as well as the growth and tidal terms in the second-
order velocity field (38). Hence, the anisotropic 3PCF (or bispec-
trum) may help to constrain the neutrino masses (see e.g. Saito,
Takada & Taruya 2009; Levi & VIah 2016; Yoshikawa et al.
2020).

(iii) The case of non-minimally coupled scalar fields with CDM
has already been the subject of several studies in the con-
text of cosmology (Kimura et al. 2018; Chibana et al. 2019;
Kase & Tsujikawa 2020b; Chiba, Chibana & Yamaguchi 2020;
Kase & Tsujikawa 2020a). For example, Kimura et al. (2018)
and Chibana et al. (2019) have shown that in this case, the
continuity equation (2) is modified, and thus the relation be-
tween the density fluctuations in real and redshift spaces, i.e.
the Kaiser formula in linear theory (Kaiser 1987), is also
modified.

(iv) The quasi-static approximation breaks when the scale of
interest is close to the sound horizon scale. Even in GR, it is known
that there are relativistic corrections to Fég) when approaching the
horizon size (Tram et al. 2016; Jolicoeur et al. 2017, 2018; Koyama
et al. 2018; Castiblanco et al. 2019; Umeh et al. 2019; Calles et al.
2020; de Weerd et al. 2020).

(v) Various possibilities have been proposed for how the initial
conditions of cosmic fluctuations predicted by inflation theory could
affect observables. One of the most critical examples relevant to this
paper is the existence of primordial non-Gaussianity, which breaks
the LSS consistency relation (Berezhiani & Khoury 2014; Valageas
et al. 2017; Esposito et al. 2019).

(vi) Fujita & Vlah (2020) proposed a bias expansion formalism
dubbed ‘Monkey bias’ based on the LSS consistency relation and
showed that it is equivalent to the existing bias expansion frame-
work. In other words, in DHOST theories, which violate the LSS
consistency relation, the existing bias expansion we adopted (15)
may not be valid, and a new bias in the shift term of non-
linear galaxy density fluctuations, i.e. the shift bias parameter, may
appear. Moreover, the shift bias may also induce velocity bias
effects.

In Section 9.12, we will discuss and clarify which parts of theories
can be tested with the anisotropic 3PCF, even in the presence of the
shift and velocity biases.

3 THEORETICAL MODELS

This section describes how to calculate the theoretical models of
multipole 2PCFs and 3PCFs. Section 3.1 summarizes the decompo-
sition formalism for the anisotropic three-point statistics (bispectra
and 3PCFs). Section 3.2 introduces the power and bispectrum
models used to compute the 2 and 3PCFs. Section 3.3 discusses
what parameters should be varied to perform the cosmological
analysis and shows the specific parameter dependence of the bis-
pectrum model we use. Section 3.4 reviews new parameters helpful
in testing DHOST theories proposed by Yamauchi & Sugiyama
(2022) and their time evolution. Section 3.5 discusses the limits
of applying our theoretical models of the 2 and 3PCFs to the data
analysis.
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3.1 Decomposition formalisms of the 2 and 3PCFs

We follow the decomposition formalism of redshift-space bispectra
proposed by Sugiyama et al. (2019) using the tri-polar spherical
harmonics (TripoSH) as a basis function. In that formalism, under
statistical homogeneity, isotropy, and parity-symmetry assumptions,
we define the base function to expand the bispectrum using three
spherical harmonics Y, as

4 Z by €y L
heyere my ma m

Sk, ko, ) =

mymym
X Yo, (k1) Yy (k2) Yo (), (23)
where
Q6 +DR6G+DRE+1) [0, £, 0
heyeye = ! 4271 ( 00 0) (24)

and the circle bracket with 6 multipole indices, (...), denotes the
Wigner-3j symbol. The bispectrum is then expanded as

Blki ko, i)=Y

L1+ +L=even

By, o,0(k1, kz)Selzzz(lgl, ka, 1), (25)

and the corresponding multipole components are given by

d*k d?k
Beyoye(kr, ko) = 477]14122[/ 1 / 2

x S} ki, ko) B(ky. k). (26)

Since the bispectrum multipoles defined here are independent of
the coordinate system in which they are calculated, it is possible
to compare theoretical calculations with observations in different
coordinate systems. Specifically, we use the following coordinate
system with 121 as the z-axis for theoretical calculations:

k= {0,0, 1}
k = {sin6,, 0, cos O, }

7 = {sinf cos ¢, sin O sin ¢, cos H}. 27)

On the other hand, when measuring the bispectrum from galaxy data,
we use the Cartesian coordinate and take the north pole as our z-axis
(see Section 4.2).

We perform the expansion of the 3PCF in the same way as for
the bispectrum. The resulting 3PCF multipoles are related to By, ¢
through a 2D Hankel transform:

dk k? dkok?
Q.zze(rl,rz)=i‘3‘”2/#/ 2K

272 2?2
X jo, (rik1) jo, (raka) B, g0 (ks k2), (28)

where j; is the spherical Bessel function at the £-th order. This relation
means that &, 4, have in principle the same information as By, ¢,¢,
facilitating the comparison of the configuration-space and Fourier-
space analyses.

Note that By ,e(ki, k2) = Beye,etha, k1) and  C ey0(r1, r2) =
Ceye,¢(r2, r1). From this relation, when £, = €, only k; > k; and | >
r, need to be computed for the bispectrum and 3PCF, respectively.
Also, when ¢ > 0, only ¢; > ¢, should be considered.

In the case of the power spectrum, it is common to expand
the power spectrum using Legendre polynomial functions £, (e.g.
Hamilton 1997):

Plky="> " Pu(k)Lo(k - ), (29)
4
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and the corresponding multipole components of the 2PCF are given
by

dkk?
E(r) =i / 53 Jerk Pk, (30)

This paper tests DHOST theories by measuring &, and &, ¢,¢ from
the BOSS galaxy data and comparing them with the corresponding
theoretical models. The index £ that is common for both &, and &;,¢,¢
represents the decomposition related to the RSD or AP effect, where
¢ = 0 means monopole, £ = 2 quadrupole, and £ = 4 hexadecapole.
Relativistic effects can generate £ = odd components (e.g. McDonald
2009; Desjacques, Jeong & Schmidt 2018a; Clarkson et al. 2019),
but we ignore them here. Furthermore, we also ignore the ¢ = 4
modes; although the signal of the £ = 4 modes is too small to be
detected in the BOSS data, it should be taken into account in the
future as it helps to improve the constraints on the cosmological
parameters (Beutler et al. 2017; Sugiyama et al. 2019). Therefore,
in this paper, we focus on only two modes, { = 0 and ¢ = 2.
In particular, for the 3PCF, we consider the first two terms of the
monopole (oo and ¢ 10) and the first two terms of the quadrupole
(¢202 and & 112).

Finally, we discuss the relation with the widely used decom-
position formalism of the bispectrum proposed by Scoccimarro
et al. (1999). As in equation (27), this formalism decomposes
the bispectrum by choosing the coordinate system with k; as the
z-axis and using the spherical harmonic function for the LOS
direction: B(ky, ko, i) = >, ,; Bim(ki, k2)Y (). The relation be-
tween Scoccimarro et al. (1999)’s decomposition formalism and our
TripoSH decomposition has already been shown in equation (25)
of Sugiyama et al. (2019). According to the relation, ¢, contains
only M = 0 mode in Scoccimarro et al. (1999)’s formalism, while
¢ 112 further contains the M # 0 modes in addition to the M = 0
mode. The ability to handle the M # 0 modes, including window
function corrections (see Section 4.3), is one advantage of our
TripoSH decomposition formalism. For example, studies of the
quadrupole bispectrum using Scoccimarro et al. (1999)’s method
have mainly dealt only with the M = 0 mode (D’Amico et al.
2022b). One reason is that the correction formula for the window
function effect is only given for the M = 0 case (Pardede et al.
2022). Moreover, we show in Section 7 that ¢, gives additional
cosmological information to ¢, pointing out the importance of the
M # 0 modes.

3.2 IR-resummed power spectrum and bispectrum models

In this paper, we focus on the 2 and 3PCFs at scales above
80h~! Mpc (Section 9), where we can ignore loop corrections
arising from higher-order non-linear effects. The power spec-
trum and bispectrum shapes can be described at those scales
by their leading solutions, the so-called tree-level solutions (22).
However, we need to consider the non-linear damping effect
of BAOs due to the linear gravity that shifts the position of
galaxies.

The non-linear damping of BAO can be described by a large-
scale bulk flow that is position-independent in a given observed
region (Eisenstein, Seo & White 2007a; Crocce & Scoccimarro
2008; Matsubara 2008; Sugiyama & Spergel 2014; Baldauf et al.
2015a), called the IR flow. In the limit where the IR flow does
not correlate with small-scale density fluctuations, based on the
Galilean invariance of the system of equations in the IR limit, all
the effects of the IR flow are cancelled out in equal-time n-point
statistics (Jain & Bertschinger 1996; Scoccimarro & Frieman 1996;
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Kehagias & Riotto 2013; Peloso & Pietroni 2013; Sugiyama &
Futamase 2013; Blas et al. 2013, 2016b; Sugiyama & Spergel 2014;
Lewandowski & Senatore 2017). However, when we deviate from
such an extreme situation, we find a correlation between the IR
flow and the small-scale density field. By extracting this correlation
in the full perturbative order only for the BAO signal, it becomes
possible to describe the non-linear effects of BAOs. This kind of
construction of n-point statistics models is called the IR resummation
method (Crocce & Scoccimarro 2008; Matsubara 2008; Sugiyama &
Spergel 2014; Baldauf et al. 2015a; Senatore & Zaldarriaga 2015;
Blas et al. 2016a; Ivanov & Sibiryakov 2018; Senatore & Trevisan
2018; Lewandowski & Senatore 2020; Sugiyama et al. 2021). In this
paper, we will use the IR resummed power and bispectrum models
given in equations (31) and (34), even in DHOST theories that break
the IR cancellation, but we will mention the issues that may arise in
this case in Section 3.5.

For the power spectrum, we adopt the following IR-resummed
model:

P(k) = [Z,(])) [D*(k) Py (k) + Poy (k)] , 31

where Py, is decomposed into two parts: the ‘no-wiggle (nw)’
part P, that is a smooth version of Py, with the baryon oscil-
lations removed (Eisenstein & Hu 1998), and the ‘wiggle (w)’
part defined as Py, = Py, — Ppy. The non-linear BAO degrada-
tion is represented by the 2D Gaussian damping factor derived
from a differential motions of Lagrangian displacements (Eisen-
stein et al. 2007a; Crocce & Scoccimarro 2008; Matsubara
2008):

(32)

k21_ 20'2+k2 20.2
D(k):exp(— ( u); a |>,

where . = £ - 4. We compute the radial and transverse components
of smoothing parameters, o | and o, using the Zel’dovich approxi-
mation (Zel’Dovich 1970; Crocce & Scoccimarro 2008; Matsubara
2008):

1 dp
Oi = g/ﬁplin([’)y

of = (L+ f) ol (33)

The power spectrum model in equation (31) was first proposed
empirically by Eisenstein et al. (2007a). Subsequently, the damping
factor D? in front of Py, was derived in the context of perturbation
theory by Crocce & Scoccimarro (2008) and Matsubara (2008);
an additional term to recover a smooth linear power spectrum
without BAOs, (1 — D?)P,,,, was derived using the IR resumma-
tion method (Sugiyama & Spergel 2014; Baldauf et al. 2015a;
Blas et al. 2016a; Ivanov & Sibiryakov 2018; Sugiyama et al.
2021).

For the bispectrum, we adopt the following IR-resummed
model (Sugiyama et al. 2021):

Bk, ko) = 2 Zy(ky, k) Z1 (k) Z, (k2)
X {D(kl)D(kZ)D(k3)Pw(kl)Pw(kZ)
+ D?(ky) Py (k1) Pa (ka) + D*(k2) Py (k1) Py (k2)
+ in(kl)in(kz)} + 2 perms., (34)

where k; + k; + k3 = 0. As in the case of the power spectrum, this
bispectrum model restores the tree-level solution (22) consisting of
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a smooth version (without BAOs) of the linear power spectrum after
degrading the BAO signature .!!

3.3 Parametrization method for the bispectrum

The non-linear kernel functions Fz(m) and Ggm) can be decomposed
into three terms using Legendre polynomial functions £,(p; - p2):
i.e. monopole, dipole, and quadrupole components (Schmittfull et al.
2015). They are called the growth, shift, and tidal terms, and are
understood in ACDM as follows: the growth term represents the
spherical collapse of density fluctuations (Fosalba & Gaztanaga
1998); the shift term appears in the form \IJfaiSI or \y;aiel as a
coordinate transformation of § or 6 by the displacement vector
W; the last term represents the tidal force (16). Then, Fz(m) and
G;m) (10) are rewritten as (e.g. Bouchet et al. 1992; Baldauf
et al. 2012; Sherwin & Zaldarriaga 2012; Schmittfull et al.
2015)

m 4 2
Fz( )= (Ks - ﬁM) + x5Sk, k) + 5)»5T(k1sk2)s

. 8 4
Gg ) = (Ka - iM) + ko Sk, k) + §AeT(k1,k2), (35)

where S and T are the scale-dependent functions characterizing the
shift and tidal terms:

1 ~ 4 k k
Sthi. ko) = o (ky - ko) (k—; + ki) :
1

PN 1
Tk, ko) = (ky - ko)* — 3 (36)

As mentioned in Section 2.1, the coefficients of the growth, shift,
and tidal terms are not independent of each other but are related to
under the condition that F\™ (p, —p) = G\ (p, —p) = 0. Therefore,
the coefficient of the growth term is determined from the coefficients
of the shift and tidal terms.

Considering the linear and non-linear bias effects, that the second-
order fluctuations are proportional to 082, and that GS"“ always
appears with f, we introduce the following parametrization,

F202 = (bi0oy) [(Fe03) + (Fy03)S + (Foy)T]
G0 = (foy) [(Gyow) + (Gy0w)S + (Go)T] . (37)

DHOST theories have G, = Gy — (2/3)G; from the condition

G;g) , —p) = 0; Horndeski theories further have F; = G, = 1. The
specific form of each coefficient in DHOST theories is given by

F, =« —ik —I—lﬁ
SRR TR Y
FSZK(;,
E=%M+bj7

7 b,
GgZKo—E)»ey

21

Gs:Ké)a
G[:;)\g. (38)

""Blas et al. (2016a), Ivanov & Sibiryakov (2018) proposed a bis-
pectrum model similar to equation (34). However, the authors ignore
the O(P2/P2,) term, so their model does not include the second line
term, D(k1)D(ky)D(k3)Py (k1) Py(k2), in equation (34). This term added
by Sugiyama et al. (2021) contains the full tree-level solution.
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In equation (38), F, and F; do not contain any cosmological
information because they are degenerate with the non-linear bias
parameters, and G is determined from G; and G;. Thus, cosmologi-
cally meaningful parameters are Fi, G, and G;.

Following the method proposed by Sugiyama et al. (2021), we
decompose the IR-resummed bispectrum model into

22
B(ki ko) =Y  XPBP (ki ky), 39

=1
with

BV (K, ko) = 2 HP(k, ko)
x { D)D) D) P (ki) P ()

+ D*(k) P (k1) PR (k»)
+ D*(ky) P (k1) P (k»)

n P,E{,‘,)(kl)P,f;‘V)(kg)} +2 perms., (40)

where PV and P are, respectively, the wiggle and no-wiggle linear
matter power spectra normalized by o2: P = P, /o and PV =
Po/0g. The functions X (p = 1 — 22) represent the combinations
of the parameters of interest and are given by

XY = (Fy08)(b103)’,

X® = (Fyo3)(biog)’,

X = (Fog)(bi0s)’,

X = (Fy03)(b103)*(fo3),
X©® = (Fyo3)(b10g)*(fo3),
X© = (Fog)(b10s)*(foy),
X7 = (Fyos)(bios)(fos)°,
X® = (F08)(b10s)(fo3)*,
X = (Fog)(b10os)(fo3)’,
X1 = (G,03)(b105)*(fo3),
XY = (G03)(b108)*(fo3),
X2 = (Go5)(b103)*(fo3),
X1 = (G,y03)(b103)(fo3)°,
XM = (G03)(b103)(f03)°,
X" = (Giog)(biog)(fo3)*,
X9 = (G,03)(fos)’,

X" = (Go)(fos)’,

X" = (Gios)(fo3)’,

X" = (b1og)’ (fos),

X0 = (b1og)*(fo3)’,

XY = (biog)(foy)’,

X® = (foy)*. (A1)

The scale-dependent functions H? (p = 1 — 22) are derived by
decomposing the non-linear kernel functions Z,Z,Z, in terms of the
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parameters, given by

HY =1,

H® = S(ky, ky),

HY = T(k, ky).

HY = (0] + 13),

H® = Sk, ka)(B] + 13),

HO = Tk, k)17 + 13),

H? = (1)),

H® = Stky, ka)(u13),

HO = Tk, ka)(u713),

HY = (u?),

HY = S(ky, ko) (1),

H T(kl,kz)(uz),

HY = (2)(u] + 1),

HY = Sk, k) (W)(1] + 183),

HY = T(ky, ko)(W)(1] + 183),

H'O = (W)(uind),

H' = S(ky, k) (1) (i),

H = T(ky, k)0 (i),

HY = DV(ky, k),

H® = DV (ki ko)(1; 4 13) + V (k1. ko),
H®D = DV (ky, kp)(u713) + V (k1. k) (U] + 13),
H® = V(ki, k)(ui13), (42)

Wherek:k|+k2,p:lg~ﬁ,ul :l€1~ﬁ,u22122~ﬁ,and

1 k2
Viki ko) = = —— 1 1y,

2 kiks
1
DV (ki ko) = Jkp [% + %} : (43)
1 2

We pre-compute B”(ky, k) using the fiducial cosmology intro-
duced in Section 1 and save the resulting data in a file. In this
way, when constraining X from the BOSS data, we can quickly
calculate the bispectrum by loading the data file containing B® and
substituting them into equation (39) along with X,

Here we demonstrate how the growth, shift, and tidal terms of
the second-order density and velocity fields affect the multipole
components of the 3PCF. To do so, we consider the following seven
bispectra:

Brg(ky, ky) = Z XPBP(ky, k),

p=1,4,7

Brs(k, k) = Z XPBP(ky, k),

p=2.5.8

Brr(ky, ky) = Z XPBP(ky, k),

p=3,6,9

Z X(p)B(”)(kl, k),

p=10,13,16

Bgg(ki, ky) =
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Bostki, ko) = Y XV BP(ky, ky),
p=11,14,17

Bgr(ky, ko) = Z XPBP(ky, k),
p=12,15,18

Bypki ko) = Y XPBV(ki k). (44)
p=19,20,21,22

where Brg, Brs, Brr, Bgg, Bgs, and Bgr are proportional to (Fy0'g),
(Fso3), (Fiog), (Ggog), (Gsos), and (Giog), respectively, and Bg
depends only on (b,0) and (fos). When computing the above seven
bispectra, we assume the cosmological parameters in ACDM given
in Section 1, the linear bias parameter b; = 2, no non-linear bias,
i.e. by = b = 0, and the redshift z = 0.61. Next, we decompose
the seven bispectra using TripoSHs according to Section 3.1 and
compute the 3PCF multipoles via the 2D Hankel transform (28). We
plot the resulting 3PCF multipoles in Figs 1 and 2 as a function of r,
after fixing | to 50, 80, 90, 100, and 130 ~~! Mpc.

As shown in Sugiyama et al. (2021), in the monopole component
(Fig. 1), the growth term (‘FG’) is positive for scales smaller than
~ 130h~"Mpc and has a peak at r; = rp, while it goes from
positive to negative and behaves like a trough for scales above
~ 130 2! Mpc. On the other hand, the shift (‘FS’) and tidal (‘FT")
terms have troughs for any scale. Depending on the scale of interest,
the shift term dominates for scales above ~ 30 2~! Mpc, and the total
3PCF (‘total’), which is the sum of all components, is found to have
a trough. To illustrate the trough-like behaviour of the 3PCF at r; =
2, we have drawn vertical black lines representing ; = r; in Figs 1
and 2. It can be seen that the bottom of the trough of the black curve
representing the total 3PCF is always on the line r; = r,. Around
ri ~ 100 A~! Mpc, the BAO peak appears and has a wavy shape as it
cancels out the trough due to non-linear gravity effects (e.g. see the
middle panels). Atr; = 130 h~! Mpc (the bottom panels), almost all
the components have troughs, so the 3PCF has a more significant
trough at r; = r;.

The quadrupole component (Fig. 2) of the 3PCF only shows an
overall trough behaviour because the BAO signal is sufficiently non-
linearly damped. The most dominant term in the quadrupole 3PCF is
the ‘BF’ term, which does not depend on any non-linear coefficients
such as F, or G,. This ‘BF’ term consists of two effects: first, a
term expressed as the product of a linear density field and a linear
velocity field, and second, a term expressed as the square of the linear
velocity field. In particular, the former can be interpreted as a new
shift term resulting from the coordinate transformation from real
to redshift space (18), and it dominates the ‘BF’ term. Therefore,
it behaves similarly to the shift term in the monopole 3PCF and
explains most of the trough structure in the quadrupole 3PCF. The
growth (‘GG’), shift (‘GS’), and tidal (‘GT’) terms in the non-linear
velocity field contribute to the quadrupole 3PCF comparably to those
in the non-linear density field, and thus we can use the quadrupole
3PCF to determine the ‘GG’, ‘GS’, and ‘GT’ terms. In contrast to the
monopole case, the growth terms (‘FG’ and ‘GG’) are negative and
behave as troughs, while the shift terms (‘FS’ and ‘GS’) are positive.

3.4 Time dependences of parameters

We review the discussion by Yamauchi & Sugiyama (2022) on
introducing new parameters to test DHOST theories and their time
dependences.

Note that some previous works predict that constraining o'g alone
from the 3PCF can break the degeneracy between fog and og, but
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this no longer happens in the framework of DHOST theories. To
illustrate this fact in the context of our parametrization, we can see
from equation (37) that the coefficient of the shift term in the second-
order density fluctuation in ACDM (F = 1) determines o' because
both the growth and tidal terms are degenerate with the non-linear
bias parameters (Schmittfull et al. 2015). However, in the case of
DHOST theories, there appears the parameter « s in the coefficient
of the shift term, which makes it impossible to measure og alone.
Therefore, we introduce three new parameters that are not degenerate
with og following Yamauchi & Sugiyama (2022):

E; = I ;"8 i
Ks sO8
G
E = X0 %
ks Fyog
A 7G
E =20 - L% (45)

Ks - 4 Fso'g ’
In GR or Horndeski theories, Ef = f, E; = 1 and E; = A4, because
ks = kp = 1. Horndeski theories differ from ACDM only in f and
E, while keeping E; = 1. If E; # 1, then the signal is specific
to DHOST theories; Es # 1 is a sufficient condition for detecting
DHOST theories because there can be DHOST theories satisfying
E,=1.

It has been known for a long time that the coefficient of the
tidal term in the non-linear density field, As, is time-dependent in
GR (e.g. Bouchet et al. 1992), and in the case of ACDM, the
following approximation holds well with an precision better than
0.6 per cent (Bouchet et al. 1995; Yamauchi et al. 2017b)'2:

2 ~ QT2 @7)

Through equation (12), the coefficient of the tidal term in the non-
linear velocity field, A4, is also given by (Yamauchi & Sugiyama
2022)

ho ~ QU (48)

Yamauchi et al. (2017b) extended the above discussion to Horn-
deski theories and showed that A is parametrized as a power of 2y,
in Horndeski theories. In addition, Yamauchi & Sugiyama (2022)
performed similar calculations for DHOST theories and showed that
the coefficient of the shift term, «, is also described by a power of
Qm. The coefficients of the shift and tidal terms in the non-linear
velocity field can be calculated through equation (12), and they also
follow the powers of . Therefore, we can parametrize the time
dependences of Er, E, and E, as follows:

E;~Qif, E~Q% E ~Qb. (49)
In GR, we have
6 15
= — S :0, = —_— 50
&r TR & &t 142 (50)

In summary, we parametrize the second-order kernel function of the
velocity field (37) as

4
fG0 =l (Fooy)? [ (Ge) + R S+ T, 1)

12The original derivation of the equation was calculated in the Lagrangian
picture and is given in the form (Bouchet et al. 1995)

2 1 3
Za=g[1-3e0m9). (46)

This equation can be rewritten to equation (47) under the condition (1 —
Qm) K 1.
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73 Cooo(r1,72) [(h™! Mpc)?]
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r = 130 h~! Mpc
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ro [h_l Mpc] ro [h‘lMpc]

Figure 1. The monopole 3PCFs, ¢ooo (left) and ¢ ;¢ (right), calculated from the decomposed bispectra (44) according to the parameter dependence, are shown
as a function of r, after fixing r; to 50, 80, 90, 100, and 130 hl Mpc. The ‘FG’, ‘FS’, and ‘FT’ terms arise from the growth, shift and tidal effects of the
non-linear density fluctuation; the ‘GG’, ‘GS’, and ‘GT’ terms arise from those of the non-linear velocity field; the ‘BF’ term consists only of linear density and
linear velocity fields; the ‘total’ term is the sum of all the decomposed components. For these calculations, the ACDM model at z = 0.61, the linear bias b; =
2.0, and no non-linear bias are assumed.
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Figure 2. Same as Fig. 1, except that the quadrupole 3PCFs, {202 and ¢ 112, are shown.

where (G,) = Q& — (8/21)2%, and the functions S and T are given
in equation (36). We will test the theory of gravity by measuring
the above three parameters, &y, &, and &, from the BOSS data in
Section 9.

In DHOST theories, the Planck mass is time-varying, and the
time variation of the Hubble parameter is different from GR.
Therefore, one may be concerned that the time dependence of

Q is different from QSR that is calculated assuming GR. How-
ever, Appendix C in Yamauchi & Sugiyama (2022) showed that
the difference between DHOST theories and GR is suppressed
by (1 — Qﬁk). Hence, we can replace 2, in equation (49) with
QSR as an approximation and perform the analysis to constrain
§r, &5, and &
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3.5 Limitations of our theoretical approach to the 2 and 3PCFs

In this subsection, we discuss the validity of the calculation methods
of the 2 and 3PCFs models described so far and the limitations of
their application.

First, we can use the TripoSH decomposed 3PCF (28) to constrain
all the scale dependencies in the 3PCE, such as the shift and
tidal terms, as shown Figs 1 and 2, because it does not focus
only on specific scale dependencies such as the squeezed limit.
However, our analysis that uses only some multipoles of the TripoSH
decomposition does not fully utilize the information on the scale
dependence of the 3PCFE. The reason for restricting the multipole
components used in this work is to keep the number of data bins
much smaller than the number of mock simulations used to compute
the covariance matrix (Section 5). Therefore, increasing the number
of multipoles in the 3PCF to be considered will improve the results
of this work when more mock catalogues are created in the future.

Secondly, note that the power spectrum and bispectrum models
in equations (31) and (34) are valid for any theory in which the IR
cancellation occurs based on the Galilean invariance of the system
of equations in the IR limit: i.e. these models hold not only for
ACDM but also for Horndeski theories (Crisostomi et al. 2020).
On the other hand, as Lewandowski (2020) pointed out in the
power spectrum case, additional terms arise when performing the
IR resummation in DHOST theories because of the violation of
the IR cancellation. Specifically, when one applies the IR limit to
the one-loop solution of the power spectrum in DHOST theories,
a term proportional to k*Py,(k) appears, changing the shape of
the power spectrum (Crisostomi et al. 2020; Lewandowski 2020;
Hirano et al. 2020). Note also that this additional term is degenerate
with the higher-order derivative bias, which is ignored in this paper.
However, since this additional term in the IR limit is proportional
to k>Pj,(k), it is considered to be negligible at the large scales
of interest in this paper (> 80! Mpc). Assuming that the same
should happen in the bispectrum, we directly use the power and
bispectrum models in equations (31) and (34) in the present analysis.
In addition, it should be noted that Hirano et al. (2020) showed
that in DHOST theories, a term consisting of the product of
first- and third-order fluctuations in the one-loop power spectrum
causes UV divergence. Further model development is thus needed
to take advantage of smaller-scale information by solving these
problems.

Thirdly, since the linear equation for density fluctuations is scale-
independent (6), we assume that we can use the shape of the linear
matter power spectrum determined in the high-z region, where the
scalar field is expected to be sub-dominant. Thus, we can pre-
compute the oZ-normalized wiggle and no-wiggle power spectra,
P™ and PM, appearing in the B® terms (40), using a ACDM
model.

Fourthly, there is a concern about the pre-computation of D(k)
(32) appearing in the B® terms (40). It is known that 0| and o,
which characterize D(k), can be calculated successfully using linear
displacement vectors (e.g. Matsubara 2008), and we adopt the same
calculation in this paper (33). Since o | and o in the linear theory
depend on f and og, their values should differ for different gravity
theories. For this reason, it is desirable to vary o ; and o as free
parameters in the data analysis. However, to do so, the bispectrum
decomposition method in equation (39) cannot be applied, and the
computation time of the bispectrum model increases significantly,
making it challenging to perform cosmological analysis. Fortunately,
the BAO signal does not significantly impact the shape of the 3PCF.
The reason is that the BAO signal is maximized when r; ~ ry ~
100 2~! Mpc, while r, and r, can take various combinations in the
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3PCF (Sugiyama et al. 2021). Therefore, in this paper, we ignore
the concern about D(k) and pre-compute o ; and o using the linear
theory in ACDM. Furthermore, to keep consistency with the 3PCF
calculation, we fix o, and o to those calculated using the ACDM
model in the 2PCF calculation as well.

Finally, to simplify the analysis, we ignore the AP effect (Alcock &
Paczyniski 1979), which can directly measure the Hubble parameter
and angular radial distance at the redshift of the galaxy distribution
of interest. Ignoring the AP effect means that the values of the
angular diameter distance and the Hubble parameter, which should
be constrained by the AP effect, are given by the fiducial ACDM. In
this sense, this paper assumes the fiducial ACDM for the expansion
of the Universe in the background spacetime. However, the AP effect
can be determined by the 2PCF by a few per cent and is not expected
to significantly affect the constraint results for the parameters that
characterize the non-linear fluctuations of interest in this paper,
such as & and &,. Since DHOST theories vary these parameter
values, the AP effect is expected to provide further information
into the constraint on DHOST theories. Sugiyama et al. (2021) have
performed a joint analysis of the anisotropic 2 and 3PCFs to constrain
the AP parameters under the GR assumption. Combining that method
with the analysis method developed in this paper allows for consistent
DHOST theory constraints that simultaneously account for the AP
and non-linear gravity effects, which is left as future work.

4 MEASUREMENTS

This section summarizes how to measure multipole 2PCFs and
3PCFs from BOSS galaxy data according to the method proposed
by Sugiyama et al. (2021). First, Section 4.1 introduces the BOSS
galaxy data used in this paper and the mock simulation data designed
to reproduce it. Then, Section 4.2 describes the measurements of the
multipole 2PCFs and 3PCFs. Finally, Section 4.3 explains how to
correct for the window function effects on the measured 2 and 3PCFs.

4.1 Data

We use the final galaxy clustering data set, DR12 (Alam et al. 2015),
from the BOSS (Dawson et al. 2013). The BOSS survey is part of
the Sloan Digital Sky Survey III (SDSS III; Eisenstein et al. 2011),
selected galaxies from multicolour SDSS imaging (Fukugita et al.
1996; Gunn et al. 1998; Smith et al. 2002; Gunn et al. 2006; Doi
et al. 2010) and used the SDSS multi-fiber spectrograph (Bolton
et al. 2012; Smee et al. 2013) to measure spectroscopic redshifts of
the galaxies. As detailed in Reid et al. (2016), the BOSS survey has
four samples, CMASS, LOWZ, LOWZ2, and LOWZ3, and those four
samples are combined into one sample. In brief, the survey footprint,
veto masks and survey-related systematics (such as fiber collisions
and redshift failures) are considered to construct data and random
catalogues for the DR12 BOSS galaxies. This DR12 combined
sample comprises 1.2 million massive galaxies over an effective area
of 9329 deg? and covers a redshift range of 0.20.75. In our analysis,
we split this redshift range into two redshift bins defined by 0.2 <
z < 0.5 and 0.5 < z < 0.75 with the effective redshifts z.; = 0.38
and 0.61, respectively, where the effective redshifts are calculated
as the weighted average over all galaxies (see e.g. equation (67)
in Beutler et al. 2014). The DR12 combined sample is observed
across the two Galactic hemispheres, referred to as the Northern and
Southern galactic caps (NGC and SGC, respectively), and the NGC
and SGC samples probe slightly different galaxy populations in the
low-redshift part of the combined sample (see appendix A of Alam
et al. 2015).
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To derive the covariance matrices of the 2 and 3PCFs and test
the validity of the 2 and 3PCFs models given in equations (31) and
(34), we use the MultiDark—Patchy mock catalogues (Patchy mocks;
Kitaura et al. 2016). The Patchy mocks have been calibrated to an N-
body simulation-based reference sample using approximate galaxy
solvers and analytical-statistical biasing models and incorporate
observational effects including the survey geometry, veto mask,
and fiber collisions. The reference catalogue is extracted from one
of the BigMultiDark simulations (Klypin et al. 2016), which was
performed using GADGET-2 (Springel 2005) with 38403 particles
on a volume of (2.5/4~! Mpc)?. Halo abundance matching is used
to reproduce the observed BOSS two and three-point clustering
measurements (Rodriguez-Torres et al. 2016). There are 2048 cata-
logues available for each the NGC and SGC over the redshift range
z = 0.2-0.75. The fiducial cosmology for these mocks assumes a
ACDM cosmology with (25, Qn, Qb, 0, and h) = (0.692885,
0.307115, 0.048206, 0.8288, and 0.6777). These fiducial parameters
are slightly different from those used in our analysis of the BOSS
galaxy data introduced in the introduction (Section 1), but we expect
that such differences do not significantly affect the covariance matrix
estimations of the 2 and 3PCFs.

We include three different incompleteness weights to account for
shortcomings of the BOSS data set: a fiber collision weight, wep, a
redshift failure weight, wy,,, and a systematics weight, wgy,, which
is a combination of a stellar density weight and a seeing condition
weight. Each galaxy observed at position x is counted with the follow-
ing weight (Ross et al. 2012; Anderson et al. 2014; Reid et al. 2016):

We(X) = Wys(X) (Wep(X) + Wiy (¥) — 1) . (52)

In addition, we use a signal-to-noise (S/N) weight, the so-called
FKP weight, proposed by Feldman, Kaiser & Peacock (1994),
wekp(®) = 1/[1 4+ fip(x) P], where P = 10* (h~! Mpc)®. The FKP
weight function is effective not only for the power spectrum but also
for the bispectrum when assuming Gaussian errors (Scoccimarro
2000), and bispectrum measurements from the Patchy mock
catalogue confirm that the FKP weight improves the bispectrum S/N
ratio even when including non-Gaussian errors (see Appendix D in
Sugiyama et al. 2019). We expect the validity of the FKP weight to
hold for the 2 and 3PCFs in configuration space because we measure
the 2 and 3PCFs as Fourier transforms of the power spectrum
and bispectrum, respectively (Section 4.2). For the galaxy data,
multiplying the completeness weights by the FKP weights yields the
local weight function that is used in our analysis, while the random
catalogues have only the FKP weights:

w () = we(x) wekp(x),
w(ran)(x) — wFKP(x)v (53)

where the superscripts, ‘(gal)’ and ‘(ran)’,
‘random’.

stand for ‘galaxy’ and

4.2 Estimators of the 2 and 3PCFs

We measure the number densities of both real and random galaxies
weighted by the spherical harmonic function Yy,,:

Ngal
. A(gal al
Don@) = - w0y, (35) op (v — "),
i

Nran

Rum(x) = Z W)Y, (A‘(ran)) (x x(]ran)) , (54)

where Ny, and Ny, are the total number of real and random galaxies,
respectively, and the normal number densities are given by D(x) =
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VA1 Dyo(x) and R(x) = /47 Ryo(x). Defining N w = [ d*xDx)

and N/, = [ d*xR(x), we can estimate the survey volume as
2
= 7f Tx [mR?(x)]zl (55)
Then, the observed density fluctuation weighted by Y, is
Sovsem(®) = V[ Den(®)/ Npy = Ren(®)/ Ny (56)
and
Bobs(x) = /470 S0t 00(%)- (57)
We use the fast Fourier transform (FFT) algorithm '3 to calculate
B ) = ———— / dxe " S om(X). (58)
Winass (k)

where the Fourier transform of the normal density fluctuation is given
by gobs(k) = Jar Eobs,oo(k), and Wi(k) is the mass assignment
function that corrects for the effect when arising assign particles on
a regular grid in position space (Jing 2005). The most popular mass
assignment function is given by (Hockney & Eastwood 1981)

Wmass(k) = H l:SinC (2

ki \ 17 (59)
i=x,y,2 kN’i ’

where ky_; is the Nyquist frequency of i-axis with the grid spacing
H; on the axis. The indexes p = 1, p =2, and p = 3 correspond to the
nearest grid point, cloud-in-cell, and triangular-shaped cloud (TSC)
assignment functions, respectively.

The FFT-based estimator of the multipole 2PCFs is given by (Hand
et al. 2017; Sugiyama, Shiraishi & Okumura 2018; see also Bianchi
et al. 2015; Scoccimarro 2015)

(4m) d*r Jikr
a<>——§:/ em(>/(2 et

X [ obs, Zm(k)éobs(k) - Sém(k):| . (60)

The shot-noise term Sy, (k) is given by

2
shol (k)
mai% (k ) gal

Nga]

% [Z [w(g"‘”(xi)]ng‘m (ﬁgm))

i

N, g/al ? Y 2 (ran)
= (32) S e v (5) | oD
J

ran

Slm (k)

where Cyo (k) represents the correction for the assignment effect to
the shot-noise term, given by (equation (20) in Jing (2005)

Cshot(k)
1, NGP;
: ki .
JIL|1- _%smz (ZkN,i)] , CIC; (62)

IL |1 = sin? (;;';"i) + & sin’ (2k )] TSC.

The angle integral [ d*#/(47) in equation (60) can be rewritten as

&?r 1 6
/E‘N,m 2 (©3)

r—=Ar/2<r<r+Ar/2

Bhttp://fftw.org/
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Table 1. The length of each side of the cube containing the observed galaxies, defined for performing FFTs, and the number of grids on which
the cube is delimited are shown for the four BOSS samples (Section 4.1). Also shown are the survey volume (55) and the mean galaxy number
density (64), calculated using the values of these parameters.

(Ly, Ly, L) A" 'Mpel  (Noy Ny, N2)  VI(h™' Gpe)'l /1074 [(h~" Mpe) ]
NGC at z¢f = 0.38 (0.2 < z < 0.5) (1350, 2450, 1400) (250, 460, 260) 1.51 2.65
SGC at zeff = 0.38 (0.2 < z < 0.5) (1000, 1900, 1100) (190, 360, 210) 0.56 2.88
NGC at zesf = 0.61 (0.5 < z < 0.75) (1800, 3400, 1900) (340, 650, 360) 2.35 1.37
SGC at zefr = 0.61 (0.5 < z < 0.75) (1000, 2600, 1500) (190, 500, 280) 0.87 1.29
where Ar is the width of the -bins and N,(r) is the number of 3D data where
contained in each r-bin width. From the expression of the shot noise 2
term in the 2PCF given in equation (61), we compute the weighted SfPCF) k) = Canor(k)
mean number density as " mass(k) gal
-1 Ngal

Ng\l

S
Il

[wedeen]® b . (64)

N2
gdl i
The FFT-based estimator of the multipole 3PCFs is given
by (Sugiyama et al. 2019) (see also Scoccimarro 2015; Slepian &
Eisenstein 2016)

~ 4 2h
Corepe(ry, r) = @) hee Z (Zl & Z)

\%4 my mym
mymym

X |:/d3XFK|m|(x;rl)Flzmz(X;FZ)Glm(x)

- 8£1y2 SZ])nl 3lomo; Zln(rl ):| (65)
where
Fin(x;7) 'f/ Eh_ ks 0 (rk)Y 5, (K)Sobs (k)
m(X;7) =1 e r obs s
[ 2n) Je tm b
Sk o~
Gm - lk.xSos mk 66
) = [ 55 e Bl (66)

Note that the shot-noise term only contributes to the 3PCF measure-
ment for the r; = r, bins, represented by the Kronecker delta 855)2
in equation (65). To specifically calculate the shot-noise term in the
3PCF, we first measure the following density field

Ngml

ey = 3 [ ] oo (x -2

i

+ (j&‘)”z [ ] 8o (x—x) (©7)

ran i

and divide it by (N, /V) to have
3n@) = (V/Ngy) N(x). (68)

Then, we calculate the Fourier transform~ of Sn(x) in the same
manner as in equation (58) and denote it as n(k). Finally, we derive
Se,my:tama:em (1) by substituting dn (k) into the following equation

1 \%4
(et ()
TrAr Nga
d*r d*k ik
e Y5 o, (DY, (F) ey’

[Bon 03300 = S k)] (69)

Sllml;fzmz;[m(r) =

X

X
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> {Z [w(gal)(xi)]3 Yy, (fi(gal))

i

N?;“] ? (ran) 3k ~(ran)
- <N/ ) Z [w (x.f)} Ylm (xj ):| (70)

ran ‘/

The factor (1/(47 7% Ar)) can be rewritten as
1 1 Ngi
drr2Ar ~ No(r) Veer

QY

where Vgpr is the volume of the Cartesian box in which the galaxies
are placed before the FFT is performed, and Ng;iq is the number of
FFT grid cells.

In the scale range of 80 <r < 150 h! Mpc, we choose Ar =
5h~! Mpc for the 2PCF and Ar = 102~ Mpc for the 3PCF. Con-
sidering &g, 0,¢(r1, 72) = Lp0,¢(r2, 1), the numbers of data bins for
the 2 and 3PCFs multipoles are 15, 15, 36, 36, 64, and 36 for &, &,
000> £ 1105 £ 202, and ¢ 112, Tespectively.

We use the Cartesian coordinates x = {x, y, z} with the z-
axis pointing to the north pole to define a cuboid of dimension
L[ h~'Mpc] = (L,, Ly, L) containing the galaxy sample; to per-
form the FFT, each axis of this cuboid is delimited into N =
(Ny, Ny, N.) grids. We then distribute the galaxies on the FFT grid
using the TSC assignment function. We adopt the same values for L
and N that were used by the Fourier space analysis of the two-point
statistics performed by Beutler et al. (2017). They are chosen so
that the width of each grid is ~ 5/ ~! Mpc, which is well below the
scales r > 80 h~! Mpc that we are interested in. We summarize the
specific values of L and NV, as well as the survey volume (55) and the
weighted mean number density (64) computed using these values of
L and N in Table 1.

4.3 Window function corrections

When measuring 2PCFs and 3PCFs in configuration space from
galaxy data, if we directly measure their angle-averaged multipole
components, we can not eliminate the effect of the window func-
tion (appendix A of Sugiyama et al. 2021). The FFT-based estimators
introduced in Section (4.2) are a typical example of this, but even
when measuring multipole 3PCFs without using the FFT, we need to
be aware of the window function effect (Slepian & Eisenstein 2015,
2018). Since the window function W (x) characterizing the geometry
of the observed region can be estimated as W(x) = (V/N/,,) R(x),
we can quantitatively estimate the corrections due to the window
function by measuring the multipole 2PCFs and 3PCFs from the
random catalogue.
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For the 2PCF, we compute

4m) / d*# . / &k
— =~ Yim ikr
Qi) == ; i o ® | e
x [Wemac)v?*(k) - Séif(k)} : (72)
where VT/M (k) is the Fourier transform of (V /N, ) R¢n (x) computed

in the same manner as in equation (58), VT/(k) = /4r VT/OO(k), and
the shot-noise term is given by

CShOl (k) 14 ?
- 2 ()
‘ Wr%lass (k ) N r/

an

Nran
% |:Z [w(ran)(xi)} 2 Yg*m (x,\i(ran)) :| ) (73)

i
Then, we have the theoretical model of &,(r) taking the survey

window effect into account as follows (Wilson et al. 2017; Beutler
etal. 2017):

2
V=Y (%‘ IS f;) 04,1 &,(r). (74)

L1y

For the 3PCF, we compute

(A7) ese 4t
Qu02e(r1,72) = —v Z my my m
mymym

X {/deFZ(;’f,)”(x;rl)Fg',;Z(x; )G (x)
(w)
_6511?2 Selml;KZVnz;lfm(rl):| ’ (75)
where

w . &Pk s L~
FM e r) =it / me’k Jerk)Y;, ()W k),

Pk g~
Ginx) = / P e Wy, (k). (76)

The shot-noise term is given by

| 1%
(W) _ 1+
Seymy:tamyzem (") = (m) <N/ >(_1)' :

ran

dzf * N * A d3k ik-r
X EY{lml(r)mez(r) (27)36

X [ Wen 080" ) = Sk an
where

Caalk) [V \?
GOPCEW) gy
o 0= a0 N

Nr:m
x [Z ] vy, (£7) ] (78)

i

and 83" (k) is the Fourier transform of

507 (x) = (NV ) NZ [w}“‘“)]zaD (x —xf.”““) . (79)

ran

Then, we have the theoretical model of & ¢,e(r1, 72) taking the
survey window effect into account as follows (Sugiyama et al. 2019;
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Sugiyama et al. 2021):

G rm) = () > >

O+, +0=even  £{+€)+L"=even

"opn pn

e e e

!’ ’ !/

x Ut
€y L

X Qereger(ri, r2) e eye(ri, r2), (80)

heyerehe e erheyenesheeer

he e heyeer

where the bracket with 9 multipole indices, {...}, denotes the
Wigner-9j symbol. In the likelihood fitting performed in Section 9,
we use Séw) and Q(l“?zz to compare the measured multipole 2 and
3PCFs estimators with the theoretical models given in equations (31)
and (34). In this paper, we ignore the contribution from the integral
constraint (Peacock & Nicholson 1991) for both the 2PCF and the
3PCE.

In the 2PCF case, the correction equation for the window function
effect shown in equation (74) calculates only the three multipole
components for both Q;, and &, i.e. £, £, = 0, 2, 4. The reason
is that our analysis focuses only on large scales above 80 42~! Mpc,
where the linear theory is dominant, and the linear Kaiser effect gives
only up to the hexadecapole £ = 4. For the window correction formula
of the 3PCF (80), Sugiyama et al. (2021) examined in detail which
multipole components contribute to the observed estimator (65) and
to what extent, for the NGC sample at 0.4 < z < 0.6, and showed that
a finite number of multipole components can correct for the window
effect on the 3PCF with sufficiently good accuracy. Assuming that
this result is not significantly different for the other BOSS samples,
we calculate a total of 14 multipole components for both Q ereyer and
Sereyer as follows: (44, £z, £) = (0, 0, 0), (1,1,0), (2,2,0), (3,3,0), and
(4,4,0) for the monopole 3PCF (¢ = 0), and (¢4, €5, £) = (0, 2, 2),
(1,1,2), (2,0,2), (1,3,2), (2,2,2), (3,1,2), (2,4,2), (3,3,2), and (4,2,2)
for the quadrupole 3PCF (¢ = 2).

Figs 3 and 4 plot the 13 window 3PCF multipoles normalized by
Qooo as a function of r, after fixing r; to 60 and 120 h~! Mpc. For
the monopole components (Q119, 020, O330, and Quq0), We find
that the window 3PCF multipoles measured at different redshift
bins in each sky region (NGC or SGC) behave similarly (see, for
example, the solid blue and dashed orange lines). On the other hand,
for the quadrupole component, we see that the four BOSS samples
may behave differently. The first few terms of the monopole and
quadrupole components, such as Q119, 020, O202, Q112, and Qua,
have values of (0(0.01) — O(0.1), while the higher-order terms have
values of O(0.01) or less. Therefore, we can conclude that the higher-
order window 3PCF multipoles have no significant effect on the
final Q(:N()z ((r1, r2), as long as we measure the first few terms of the
monopole and quadrupole components, i.e. {égo) (ry, 1), {1(‘1”0) (r1, r2),
30 (r1. r2), and ¢33 (r1, 7).

Figs 5 and 6 plot the theoretical predictions for the 3PCF multi-
poles, including window function effects, corresponding to the four
BOSS samples. These calculations assume the ACDM and linear
bias as in Figs 1 and 2, with redshifts of 0.38 and 0.61. As the value
of r; increases, the difference between NGC and SGC due to the
window function effect becomes more considerable.

To quantitatively estimate the extent to which the multipole
component of interest, {é;’?ﬂ, is affected by the other multipole
components, Zy ¢, through window function effects, we compute
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Figure 3. The monopole and quadrupole components of the window 3PCF (75), Qoo0, Q110, 9220, 0330, Q440, Q202, Q112, and Qpzz, measured from the four
BOSS samples are shown as a function of r, after fixing r| to 60 A~! Mpc (left) and 120 2~ Mpc (right).
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Figure 4. Same as Fig. 3, except that the higher-order quadrupole components of the window 3PCF, 0312, 0222, Q132, Q422, 0332, and Qa42, are shown.
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Figure 5. The monopole 3PCFs, ¢ (left) and ¢ 119 (right), that include the window function effect (80) are shown for the four BOSS samples. The results are
plotted as a function of r, after fixing ry to 50, 80, 90, 100, 130 2! Mpc from top to bottom panels. For these calculations, the ACDM model at z = 0.61, the
linear bias b; = 2.0, and no non-linear bias are assumed.
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Figure 6. Same as Fig. 5, except that the quadrupole 3PCFs, {202 (left) and ¢ 117 (right), are shown.
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Table 2. Contributions of other 3PCF multipole components to the observed 3PCF multipole components, as manifested through the effect of the
window function, are shown for the four BOSS samples. When the contribution to the final result exceeds 0.5 per cent, it is written in bold. The value

(W)

of the same multipole component AEglbz (81) as the measured ;,51[2@ (80) is larger (smaller) than 100 per cent, when the total contribution from all the

other multipole components is negative (positive).

Zetf = 0.38 (0.2 < 2 < 0.5)

MNRAS 523, 3133-3191 (2023)

NGC SGC
) £o00 o o) & Zo00 o GG
AQ/] o [ per cent]
monopole (£ = 0) Aooo 95.34 1.59 — 118 0.97 86.41 2.43 —0.15 0.19
Atiio 9.39 102.60 141 - 3.77 13.66 98.60 025 - 0.50
Ao —0.09 - 053 1.14 0.09 —-0.12 - 0.79 0.13 0.01
NGEN 0.26 0.21 0.08 —0.01 0.41 0.35 0.02 —0.02
Alago 0.06 0.00 0.06 —0.00 0.09 0.01 —0.00 —0.00
quadrupole (¢ = 2) AL - 375 0.59 90.14 2.07 —043 0.10 89.28 2.38
NI 4.36 - 289 4.21 96.78 0.86 —0.38 5.06 92.64
Ao — 4.57 0.81 0.50 2.75 —0.48 0.14 0.51 3.16
Abin —0.10 —0.38 1.95 0.13 —0.05 —0.05 2.87 0.26
Al 0.04 0.04 0.38 0.07 —0.02 —0.01 —0.04 0.12
A1z — 0.56 - 154 0.14 0.23 —-0.19 —-0.19 0.18 0.66
Asr —0.21 —-0.23 1.02 0.21 —0.02 —0.08 1.53 0.31
NGES 0.10 0.08 0.02 0.10 —0.03 —0.02 0.10 0.24
Aby —-0.29 —0.34 0.12 0.38 —0.08 —-0.14 0.26 0.55
zeff = 0.61 (0.5 < 7 < 0.75)
NGC SGC
) £300 tho &0 o £300 tho &0 o
AQ/IZ’ZZ’ [ per cent]
monopole (£ = 0) Aooo 96.00 1.77 - 2.00 1.78 89.49 2.40 - 1.29 1.19
Aliio 10.43 104.18 2.92 - 6.81 13.59 101.41 2.10 — 4.36
Ao —0.08 — 0.60 1.99 0.01 —0.06 — 0.80 1.33 —0.04
A3 0.25 0.21 0.04 0.01 0.35 0.31 0.00 —0.01
Alago 0.06 0.01 0.05 —0.00 0.08 0.01 0.02 —0.00
quadrupole (¢ = 2) Abn — 6.26 1.21 86.94 2.72 - 3.73 0.84 86.45 2.94
Alinn 7.84 - 512 5.36 97.84 5.09 - 331 5.98 94.88
Ao — 7.65 1.65 0.48 3.64 — 4.54 1.14 0.44 3.93
Ab31n —0.01 - 0.54 2.25 0.09 0.01 —0.30 2.89 0.17
Aom 0.04 0.04 0.69 0.07 —0.00 0.01 0.42 0.11
A3 —0.28 — 2.63 0.13 —0.02 —0.06 — 1.66 0.15 0.25
Al —0.18 —0.13 0.98 0.20 —0.07 —0.03 1.21 0.27
A3 0.08 0.09 0.03 0.10 —0.02 0.01 0.09 0.19
Abgy —0.24 —0.15 0.13 0.37 —-0.12 —0.03 0.21 0.48
the following quantities (Sugiyama et al. 2021): where AZ‘E oo satisfies > Y AE@; e =1, and the summation is
performed in the range of 80 < r < 150 h! Mpc, which we use for
) Sum [Aff/lffzf//Qooo] our data analysis. . )
Ay = (vl«)z Table 2 summarizes the Agpy, results calculated from equa-
Sum [Q,ezz/ Qooo} tion (81) for the four BOSS samples. Naturally, the multipole com-
81 ponent that is the same as the target one has the largest contribution.
For example, for £ at zer = 0.38 in NGC, 95.34 per cent of
. the contribution comes from ¢gg. For all four samples, multipole
with components other than the measured one have positive or negative
o g values, and their overall contribution is about 5 — 10 per cent.
e 152 As expected, the contributions of higher-order components such
Ag@’le’zz’(”l’ r2) = (47) Z 66t as £330, {440, and ¢33 are mostly below 0.5 per cent. Therefore,
tier=even Ly 6o L we conclude that the window function correction equation in
he,eyehe, ¢ @i'h ot Reprer equation (80) can account for the window function effect on the
X iy oo horerer 3PCF in BOSS with sufficient accuracy, even if it is truncated
L at a finite number of 14 multipole components used in this
X Qereger(ri, 12) So ey (ri, r2) (82) work.
We note here the importance of AZjj», which includes the M #
and 0 modes of Scoccimarro et al. (1999)’s decomposition method in
the correction for window function effects: it gives a contribution
e S ) for €y = 3 comparable to Al and AZy,, which include only the M = 0
Sum [Qlfzf] = Zr, ;2 Co,ee(rr, ) for &y # £y, (83) mode, and tends to have the opposite sign to that of A&yp; and Aoz,
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Therefore, failure to properly account for effects such as AZy1» that
include the M # 0 modes may result in an error of ~ 5 per cent in
the correction for the window function effect.

5 COVARIANCE MATRIX

We estimate the covariance matrix from the 2048 Patchy mock
catalogues described in Section 4.1. Let d” be the data vector
measured from the r-th catalogue, and d = (1/N) Zﬁvil d" be its
mean value, then the covariance matrix of the data vector is given
by

Ny

S (@ —d) @ -a)’. (84)

r=1

1
TN -1

C

where Ny = 2048 is the number of the Patchy mock catalogues.

5.1 Effects of a finite number of mocks

The covariance matrix C inferred from the mock catalogues suffers
from noise due to the finite number of mocks, which directly leads to
an increase in the uncertainty of the cosmological parameters (Hart-
lap, Simon & Schneider 2007; Taylor, Joachimi & Kitching 2013;
Dodelson & Schneider 2013; Percival et al. 2014; Taylor & Joachimi
2014). This effect is decomposed into two factors. First, the inverse
covariance matrix, C~', provides a biased estimate of the true
inverse covariance matrix. To correct this bias, we rescale the inverse
covariance matrix as (Hartlap et al. 2007)

— NS_N _2 —
Q@w=<—7757—>02 (85)

where the pre-factor on the right-hand side, (Ny — Ny — 2)/(Ns —
1), is the so-called ‘Hartlap’ factor, and N, is the number of data
bins. Secondly, we need to consider the propagation of the error in
the covariance matrix to the error on the estimated parameters. This
effect is corrected by multiplying the final result of the parameter
errors by the following factor (Percival et al. 2014)

M, = L+ BNy — Np) (86)
1+A+B(N,+ 1)

with
2
A=
(Ns — Ny — )(Ny — Ny, — 4)
5 Ny — Ny —2
(Ng — Ny — )(Ng — N, —4)’

87)

where N, is the number of parameters.

The derivation of the Hartlap factor (85) assumes that the data
vector follows a Gaussian distribution. On the other hand, Sellentin &
Heavens (2016) shows that in covariance matrix estimates from simu-
lations, the data vector follows a multivariate #-distribution. When the
number of simulations is sufficiently larger than the number of data
bins, this #-distribution approaches a Gaussian distribution (Heavens
et al. 2017), and the present analysis satisfies this condition. The
reason is that the number of the Patchy mocks we use to estimate the
covariance matrix is 2048, while the maximum number of data in our
analysis is 202 (Section 6.2). In addition, the derivation of the M,
factor (86) also assumes the Gaussian distribution of the data vector,
but there is no known value for the correction factor that corresponds
to M; in the Sellentin & Heavens (2016)’s method. Therefore, in
this paper, we have decided to use equations (85) and (86) to correct
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Table 3. A summary of the M; (86) and M, (88) factor values used in our
analysis. These values are calculated from the number of the Patchy mock
simulations, 2048 (Section 4.1), the number of data bins, 30 for the 2PCF
only and 202 for the 2 4+ 3PCF (Section 6.2), and the number of parameters
summarized in the rightmost column (Section 6.3).

M, M, # of params.
2PCF only (zeff = 0.38) 1.006 1.013 3
2PCF only (zeff = 0.61) 1.006 1.013 3
GR (zeff = 0.38) 1.049 1.105 8
GR (zeff = 0.61) 1.049 1.105 8
Horndeski (zeff = 0.38) 1.048 1.104 9
Horndeski (zeff = 0.61) 1.048 1.104 9
Horndeski (zesf = 0.38, 0.61) 1.044 1.100 16
DHOST (zefr = 0.38) 1.048 1.104 10
DHOST (zefr = 0.61) 1.048 1.104 10
DHOST (zef = 0.38, 0.61) 1.044 1.100 17

the uncertainty in parameter estimation due to a finite number of
simulations (see also e.g. Percival et al. 2022).

We can therefore evaluate the effect of a finite number of mocks on
the final error estimation using the square root of the Hartlap factor
multiplied by the M factor (Percival et al. 2014),

My= [y (88)
VNN 2T

Note that this M, factor is not used in the actual analysis. It is essential
to increase the number of simulations and reduce the number of data
bins to keep the value of M, as close to 1 as possible for a conservative
analysis. The reason is that the Hartlap and M, factors cannot be
always accurately correct for parameter errors for any number of
simulations. For example, using both monopole and quadrupole
components of the 2 and 3PCFs, as in this paper, Sugiyama et al.
(2021) performed an anisotropic BAO analysis with the AP effect.
The result showed that the error in the angular diameter distance for
M, = 1.32 is underestimated by about 10 per cent compared to the
case for M, = 1.06 by changing the number of simulations. We will
calculate the M, factor in Section 6.4 and summarize the results in
Table 3, where M, ~ 1.1, indicating that our analysis achieves M,
values sufficiently close to 1.

5.2 Correlation matrix

The (i, j) elements of the correlation matrix is computed from the
covariance matrix as
Considering the data vector d = {&, &, o0, 1105 $2025 112}, We
show the results of the correlation matrix for the four BOSS samples
in Fig. 7. To simplify the figure, we only plot the results for the
diagonal component of the 3PCF multipoles, i.e. & ¢,e(r1, 12 = r1).
The range of scales shown in the figure is 80 < r < 150 h! Mpc,
and the width of the r-bin is Ar = 102~ Mpc. The four samples
show similar results, and we summarize the overall features below.
First, the monopole 2PCF and the monopole 3PCFs have a moderate
correlation (0.25 < r; < 0.5); the same is true for the quadrupole
2PCF and the quadrupole 3PCFs. Next, the first two terms of the
monopole 3PCFs (£ and ¢119) are strongly correlated with each
other (0.5 < r;; < 0.75); on the other hand, the first two quadrupole
3PCFs (£202 and £112) are weakly correlated (0.0 < r; < 0.25).

(89)

rij =
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Figure 7. The correlation matrices of the monopole and quadrupole 2PCFs (£¢ and &), the first two monopole 3PCFs ({opo and ¢119), and the first two
quadrupole 3PCFs (£ 202 and ¢ 112) are shown for the four BOSS samples. For simplicity of the figure, only the results for the r; = r, case multipole 3PCFs, i.e.
¢(r1, r2 = rp), are plotted, but in the actual analysis (Section 9), the data bins for the r| # r, case are also used. The plotted scale range is 80 < r < 150 ! Mpc,

and the r-bin width is Ar = 102~ Mpc.

This result indicates that ¢, and ¢, have independent information
from each other. These results are consistent with the results in the
bispectrum presented by Sugiyama et al. (2019).

5.3 Standard deviation

The standard deviation is given by the square root of the diagonal
components of the covariance matrix: i.e. »/C;;. Fig. 8 shows the
mean and standard deviation of &¢(r) and &g, ¢,¢(r1, r2) calculated
from the 2048 Patchy mock simulations. The mock data used are the
NGC samples at z = 0.38 and 0.61. For &,¢,¢(r1, r2), the measured
values and the standard deviations are plotted as a function of the
scale variable r; = r, = r to simplify the figure.

From this figure, it can be seen that the mean values of &, and
e,e,¢ do not differ much for the different redshifts, i.e. z = 0.38

MNRAS 523, 3133-3191 (2023)

and 0.61 (compare the magenta and blue lines). One may expect the
amplitudes of &, and &, (,, to be larger at lower redshifts because the
tree-level solutions (22) of &, and ¢, are proportional to D? and
D*, respectively, with D being the linear growth function. However,
this is not the case in Fig. 8. There are two possible reasons for
this. The first is the bias effect. For haloes with similar mass, the
lower the redshift, the smaller the value of the linear bias b, tends
to be. Therefore, b; D(z) is less time-dependent and does not show
significant differences at the different redshifts, especially for the
monopole components of &, and ¢, ¢,¢. A similar effect to the linear
bias is likely to occur for the non-linear bias included in the 3PCF.
Second, the product of the linear growth rate f and the linear growth
function D is also a less time-dependent function. Therefore, the
redshift dependence of &£, and &, ¢,, is not pronounced, even for the
quadrupole component.
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Figure 8. The mean values and standard deviations of &o, &2, {000, ¢ 110, {202, and ¢ 112 calculated from the 2048 Patchy mock catalogues. The results are
plotted at the two redshifts, z = 0.38 (magenta) and 0.61 (blue), for the NGC sample. The magenta dashed lines are the standard deviation at z = 0.61 multiplied

V.—0.61/V-=0.3s and normalized to have the same survey volume as the sample at z = 0.38, where the survey volumes at z = 0.38 and z = 0.61, V_ _ 33
and V_ — o1, respectively, are given in Table 1. For simplicity of the figure, only the results in the | = r, case for the 3PCF are plotted.
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On the other hand, the standard deviations of &, and &, are
significantly different for the different redshifts. In general, the so-
called Gaussian terms in the covariance matrix depend only on the
two-point statistic, while higher-order statistics such as the three-
point statistic appear in the non-Gaussian terms. It is also known that
the covariance matrix is inversely proportional to the survey volume,
and that the higher the number density of observed galaxies, the
smaller the covariance matrix. Therefore, the fact that the £, and £, ¢, ¢
signals measured from the Patchy mock do not differ significantly
at the different redshifts suggests that the redshift dependence in
the standard deviation may be due to the survey volume and galaxy
number density.

In Fig. 8, the standard deviation at z = 0.61 (blue) multiplied
by /V.—061/V.—o3s is plotted as magenta dashed lines, with the
survey volumes at z = 0.38 and z = 0.61 denoted as V, _3s and
V. — o061, respectively. In the case of the 2PCF, the magenta dashed
line is similar to the result at z = 0.38 (magenta), indicating that the
difference in the standard deviation of the 2PCF due to differences
in redshift can be explained mainly by differences in the survey
volume. However, this is not the case for the 3PCF, where the standard
deviation of the 3PCF at z = 0.38 is smaller than the magenta dashed
line. This fact suggests that the effect of the galaxy number density
on the covariance matrix is more significant for the 3PCF than for
the 2PCF. In other words, as can be seen from Table 1, the sample
at z = 0.38 has a higher galaxy number density than the sample at
z = 0.61, even though the survey volume is smaller. Therefore, the
standard deviation at z = 0.38 is smaller than the standard deviation
at z =0.61 normalized to the survey volume at z = 0.38. This result is
consistent with the finding of Sugiyama et al. (2020) that the galaxy
number density plays an essential role in the covariance matrix of
the bispectrum, even on large scales.

5.4 Cumulative signal-to-noise ratio

The covariance matrix is a 2D quantity in the 2PCF case and a 4D
quantity in the 3PCF case. Therefore, a useful way compressing
and quantifying this multidimensional information in the covariance
matrix is to estimate the cumulative S/N ratios, given by

S . 12
<ﬁ> = (dT ! Cﬁ:rllap ! d) . (90)

We calculate the cumulative S/N for each multipole component of the
2 and 3PCFs: i.e. g = 50, Sz, {000, ; 1105 Czoz, or {1]2. ‘We also fix the
maximum scale rpa = 150h7! Mpc, vary the minimum scale 7y,
from 150 2~! Mpc to 30 h~' Mpc, and calculate the S/N as a function
of rmin. In Fig. 9, we plot the S/N for the four BOSS samples, NGC
and SGC at z = 0.38 and 0.61. Note that we do not consider cross-
covariance matrices between different multipole components, e.g.
between & and ¢ ogo. How the information in the covariance matrix,
including all cross-covariance matrices, ultimately propagates to the
errors in the cosmological parameters of interest will be discussed
through the Fisher analysis in Section 7.

The top two panels of Fig. 9 show the S/N of £ and &,. In all cases
shown in the panels, the S/N at z = 0.61 (blue line) is larger than the
S/N at z = 0.38 (magenta line). The difference is because the S/N of
the 2PCF is proportional to the square root of the survey volume V,
and the survey volume at z = 0.61, denoted V, _ ¢, is larger than
the survey volume at z = 0.38, V, _ o 3s. Therefore, multiplying the
S/N at z = 0.61 by +/V,—038/V2—0.61 approximately reproduces the
S/N at z = 0.38 (see magenta dashed lines). This result is consistent
with the findings in the signal and standard deviation of the 2PCF in
Fig. 8.

MNRAS 523, 3133-3191 (2023)

The middle and bottom results are for ¢ o, £ 110, 202, and &qpz.
These results show that, in contrast to the 2PCF case, the S/N at z =
0.38 is comparable to the S/N at z = 0.61. The difference in the S/N
at z =0.38 and z = 0.61 in the 3PCF case cannot be explained by the
difference in the survey volumes (see magenta dashed lines). This
behaviour of the S/N of the 3PCF can be explained by the finding
shown in Fig. 8 that the galaxy number density strongly influences
the standard deviation of the 3PCF. In particular, in the present case,
the effect of the galaxy number density is more pronounced when
considering correlations between different scales, resulting in the
S/N at z = 0.38 that is comparable to the S/N at z = 0.61. This
result shows that a higher galaxy number density is as important for
obtaining cosmological information from the 3PCF as increasing the
survey volume.

6 ANALYSIS SETTINGS

6.1 Likelihoods
We assume that the likelihood of the data compared to the model
predictions follows a multivariate Gaussian distribution:

[d—1o)", (C)

Hartlap

In £(d|0) = —% [d —16)]C}

where d is the data vector, ¢ is the model prediction of the data
vector given the model parameters 6, and Cﬁ;map is the inverse of the
covariance matrix after correction by the Hartlap factor (85). We can
then obtain the posterior distribution of the model parameters given
the data by performing Bayesian inference:

P6|d) xx L(d|0)I1(9) (92)

where P(0]|d) is the posterior distribution of # given the data vector,
d, and T1(0) is the prior distribution.

We assume that the four BOSS galaxy samples (Table 1)
are far enough apart that they each have independent cosmo-
logical information. Then, when constraining the model param-
eters common to each galaxy sample, we add up the likeli-
hood functions of each galaxy sample. For example, when using
all four galaxy samples, the total likelihood function is given
by

In Lioar = In LnGCacz=0.38 + In Lsgatz=0.38
+ In LxGeacz=0.61 + In Lsgeaiz=0.61- 93)

6.2 Multipoles used, scale range, and number of bins

To repeat what was explained in Section 4.2, the scale range
used for parameter estimation in Section 9 is 804~ Mpc < r <
150 A~ Mpc, and we choose Ar = 5h~!' Mpc and 10 2~ Mpc for
the 2 and 3PCFs bin widths, respectively. The 2 and 3PCFs multipoles
used are the monopole and quadrupole 2PCFs (& and £&,), the
two monopole 3PCFs ({gp and ¢»p2), and the two quadrupole
3PCFs (§202 and ¢112). Considering ey e,e(r1, 72) = Sepey0(ra, 11),
the numbers of data bins for the 2 and 3PCFs multipoles are
15, 15, 36, 36, 64, and 36 for &g, &2, o000, C110» 202, and &yqy2,
respectively. The reason why the bin width for the 3PCF is wider
than for the 2PCF is to reduce the number of data bins and to
conservatively estimate the inverse covariance matrix for the 2
and 3PCFs. The total number of data bins is then 202, which
is small enough compared to the 2048 Patchy mock simulations
(Section 5).
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Figure 9. Cumulative S/N ratios for the multipole components of the 2 and 3PCFs, where both signal and noise (covariance matrix) are computed from the
2048 Patchy mock catalogues. The maximum scale used for the S/N calculation is fixed at rma = 150 =" Mpc and the S/Nis are plotted as a function of the
minimum scale ryin. The blue and magenta solid lines show the results for the samples at z = 0.61 and z = 0.38, respectively. The magenta dashed lines are the
S/N values in the sample at z = 0.61 multiplied by +/V;—0.38/Vz=0.61-
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6.3 Parameter setting

The parameters we constrain are as follows:

0 = 0phys + Opias, (94)
where
Obias = {(b103), (Fgo3), (Fi03)}, 95
and

{fos. o8},  GR;
Opnys = {08, &7, &), Horndeski; 96)

{Fio3, &, &, &), DHOST.

The parameters F, s and & s are given in equation (37) and (49),
respectively; the reason F does not appear in GR and Horndeski
theories is that F; = 1 in those theories. We assume that the bias pa-
rameters 6y, take different values in all four BOSS samples. fog, og,
and F;0 g have common values in NGC and SGC. & ; ; are common to
all four BOSS samples. For the 2PCF analysis, we only consider bjo'g
and fog. For example, if all four BOSS samples are used to constrain
DHOST theories, the total number of parameters is 17. Once again,
note that the AP parameters are not varied in this analysis.

6.4 M, and M, factors

As mentioned in Section 5, the number of the Patchy mock simula-
tions used to calculate the covariance matrices for the 2 and 3PCFs
is finite, so the inverse of the covariance matrix must be multiplied
by the Hartlap factor and the final parameter error by M.

The M, factor (86) is derived assuming that all parameters are
constrained from a single data set. However, when constraining the
common parameters &g, &, and &, (49) from the four independent
BOSS samples, as in the present analysis, the M factor is expected to
take a different form, but we do not know the correct correction factor
corresponding to the M, factor in such as case. Therefore, when we
use different galaxy samples simultaneously, we first count up all
common and non-common parameters in the galaxy samples. Then,
we calculate the M, factor using the number of data bins computed
from a single galaxy sample and the number of the Patchy mocks,
2048, corresponding to that galaxy sample, and multiply it by the final
parameter error. Specifically, the multipole components of the 2 and
3PCFs measured from a single galaxy sample are &g, &2, {000, {1105
C202, and 112, for a total data bin number of 202 (Section 6.2). The
number of parameters depends on the type of analysis; for example,
we need 17 parameters to test DHOST theories using all four galaxy
samples (Section 6.3).

Table 3 summarizes the values of the M; and M, factors calculated
in our analysis, leading to M, ~ 1.1 for all the 2 4+ 3PCF joint
analyses. Thus, even without considering the Hartlap and M, factors
in our analysis, the effect of finite mocks is at most 10 per cent. In
other words, since our analysis correctly considers these factors, the
error due to the finite mock effect in the estimated parameter error is
guaranteed to be < 10 per cent.

6.5 MCMC

We apply the Metropolis—Hastings algorithm, an Markov Chain
Monte Carlo (MCMC) method, implemented in the publicly avail-
able software package MONTE PYTHON (Audren et al. 2013; Brinck-
mann & Lesgourgues 2019) to estimate the posterior distribution of
parameters in a multidimensional parameter space. In doing so, we set
the super-update parameter to 20, as recommended by the developers.
In order to improve the convergence of the posterior distributions
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obtained by MCMC, we first perform an MCMC analysis with
the number of steps set to Ny, = 200000 and calculate the best-
fitting values and covariance matrix of the parameters. Then, we add
the information of the best-fitting values and covariance matrix and
perform an MCMC analysis again with the same number of steps.

We ensure convergence of each MCMC chain, imposing R — 1 <
O(10~%) where R is the standard Gelman—Rubin criteria (Gelman &
Rubin 1992). Furthermore, the convergence of the results is also
checked through the following method. First, we create eight inde-
pendent MCMC chains and compute the mean and standard deviation
of the parameters from each chain. Then, from the eight means and
standard deviations, we compute the standard deviation of the mean
and the mean of the standard deviation and check that the ratio of
them is less than about 20 per cent for all the results.

6.6 Mock tests

We perform MCMC analyses on 100 Patchy mock catalogues (Ki-
taura et al. 2016) using the same set of cosmological and nuisance
parameters as in the actual BOSS galaxy data analysis. We then verify
that our analysis can correctly return the values of the non-linear
parameters predicted by GR for the Patchy mock catalogues designed
under the assumption of a ACDM model. We also discuss the
statistical scatter of the 100 values of the parameters to be estimated.

7 FISHER ANALYSIS

Before proceeding to the MCMC analysis using actual galaxies in
Sections 8 and 9, in this section, we will understand how the 3PCF
contains cosmological information through the Fisher analysis.

There are several reasons for performing the Fisher analysis
before the MCMC analysis. First, calculating the Fisher matrix in
Section 7.1 is less computationally intensive than performing the
MCMC analysis, making it easier to compare the analysis results
in various settings that take too much time in the MCMC analysis.
Taking advantage of this, Section 7.2 examines how the constraints
on the parameters of interest change for various combinations of the
multipole components of the 3PCF; in doing so, we focus only on the
NGC sample at z = 0.38 as a representative example. Section 7.3 also
discusses the relation among the values of the predicted parameter
errors for the four BOSS samples, NGC and SGC at z = 0.38, 0.61,
and how the combination of the four BOSS samples affects the final
results. Finally, in Section 9.11, we compare the results obtained
from the above Fisher analysis with those obtained from the MCMC
parameter estimation and check their consistency to confirm the
validity of the final results in this paper.

In Section 7.4, the Fisher analysis also allows us to estimate
cosmological information at scales smaller than the scale range used
in the MCMC analysis. The results are expected to motivate the
construction of theoretical models applicable to smaller scales.

Finally, in Section 7.5, we use the results of the Fisher analysis to
determine the range of a flat prior used when performing the MCMC
analysis.

7.1 Fisher matrix

From the likelihood function given in equation (91), we calculate the
Fisher matrix as

a 0
F,'j = — ——lnL’
36; 36,

EELOPSEEI()

59, CHarip 55— ()
1 J
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where we assumed that the covariance matrix C is independent of
the parameters. The indices i and j run over parameters of interest.
In the limit of the Gaussian likelihood surface, the Cramer—Rao
inequality shows that the Fisher matrix provides the minimum
standard deviation on parameters, marginalized over all the other
parameters: o (6;) > Ogsher(6;) = (F _1)31,/2. We note that we adopt
the inverse covariance matrix, C;[;rtlap’
from the Patchy mock simulations.

We consider three parameter vectors, depending on the gravity
theory of interest:

0 = {(b103), (fo3)} + O3pcF, (98)

with

that is non-Gaussian estimated

03PCF
{(F¢o3), (Fs03), (Fio3)}, GR;
={(Fy03), (Fy03), (Fi03), (G.03)}, Horndeski; 99)
{(Fy03), (Fs03), (Fi03), (Gs03), (Giog)}, DHOST,

where F,o3 = og for GR and Horndeski theories. We obtain the
results for E;; and &/ using the variable transformations in
equations (45) and (49). In particular, the results including &
correspond to the parameter set (96) used in the MCMC analysis
performed in Section 9.

The fiducial values of the cosmological parameters needed to
compute the Fisher matrix are the values in the ACDM model
presented in Section 1. In doing so, we assume that the linear bias
is by = 2, and the values of the non-linear biases are zero: i.e.
by =byp =0.

7.2 Information contained in 3PCF multipoles

For the NGC sample at z = 0.38, we perform Fisher analyses on the
following eight data vectors consisting of combinations of the 2 and
3PCFs multipole components, using the same settings as the MCMC
analysis performed in Section 9 to investigate which components and
how they affect parameter estimates.

Case 1 d={%,&);

Case 2 d = {&, &, Lo, S110};

Case 3 d = {&, &, L2, S112}s

Case 4 d = {&, &, Sooo, L2020}

Case 5 d = {&, &, Sooos G202, C110}5
Case 6 d = {&, &, ooo, $202, S112)5
Case 7 d = {&o, &, oo, £2025 C110, C112)s
Case 8 d = {&o, &, L1105 Ci12}

Case 1 constrains fog using only the monopole and quadrupole
2PCFs. Cases 2, 3, and 4 add to Case 1 the two monopole 3PCFs
(€ooo and ¢&110), the two quadrupole 3PCFs (¢20; and ¢q12), and
the first terms of the monopole and quadrupole 3PCFs (g and
£202), respectively. These three cases will highlight the importance
of simultaneously considering both monopoles and quadrupoles
in the 3PCF. Moreover, Cases 5, 6, and 7 reveal the extent to
which the final results can be improved by adding higher-order
multipole components to Case 4. Finally, Case 8 only uses the higher-
order multipoles, ¢ 159 and ¢y, for the monopole and quadrupole
components.

We summarize the results of the Fisher analysis in Table 4. In
Horndeski and DHOST theories, the case 2 results show that using
only the monopole 3PCFs very weakly constrains the non-linear

(100)
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velocity parameters Gsog and G,og. On the other hand, in Case 3,
using only the quadrupole 3PCFs, we can mildly constrain the non-
linear coefficients of both the density field and the velocity field.
The reason is that the density and velocity fluctuations contribute
to the quadrupole 3PCFs to the same extent (Fig. 2). Moreover,
Cases 4, 5, 6, 7, and 8, using both the monopole and quadrupole
components, can constrain the non-linear coefficients more strongly
than Cases 2 and 3. In particular, for the Gyog and G,og constraints
in DHOST theories, Case 7 is ~20 and ~40 times better than Case
2, respectively:

Ofisher(Gs0g) = 35.22 for Case 2,
Ofisher(Grog) = 38.88 for Case 2,
Ofisher(Gs0g) = 1.519  for Case 7,
Ofisher(Grog) = 0.953  for Case 7. (101)

These results support the argument of this paper that we should use
both monopole and quadrupole 3PCFs to study the non-linearity of
the velocity field.

Case 7, which uses all components of £oo0, {110, {202, and 112,
provides the best constraints on Fsog, Gog, and Gog, as expected.
Therefore, we can conclude that all these multipole components
should be used in the MCMC analysis in Section 9.

Case 7 yields results that are about 10 per cent better than Case
5, which uses Zggo, {110, and 0. This result indicates that while
202 contains the main cosmological information, ¢, contains other
information in addition to ¢,¢,. Existing studies using Scoccimarro
etal. (1999)’s decomposition method of the bispectrum tend to ignore
the M # 0 mode of the quadrupole component as not containing
much cosmological information (e.g. Gagrani & Samushia 2017;
Rizzo et al. 2023; D’ Amico et al. 2022b). However, our results show
the importance of the M ## 0 modes because {50, contains only the
M = 0 mode, while ¢ 11, further contains the M # 0 modes in addition
to the M = 0 mode (see also Section 3.1).

By comparing the results of Case 4, consisting of ¢gop and 202,
with those of Case 8, consisting of ¢ 19 and ¢ 112, we can find another
viewpoint on the importance of higher-order multipole components.
For example, the (F;og) constraint is better in Case 8, and the (Gs0'3)
and (Go'g) constraints are better in Case 4. Also, the (G, (0g) result
in Case 4 is only about 30 per cent better than Case 8. Thus, although
£202 1s more informative than ¢ ;,, we interpret the information on
both sides as overlapping to some extent.

We further calculate ogspe(0) for 6 = Ey, E, E;, &y, &, and &;
through the variable transformations in equations (45) and (49),
summarizing the results in Table 5. We find that both the monopole
and quadrupole components of the 3PCF are needed to constrain E,
E, &, and & better. In Case 7, the standard deviations of Es and E,
are more than twice larger than the fiducial values of E and E, i.e.
O fisher(Es, )/(Es, )ra > 2, indicating that it is impossible to detect the
E, and E; signals in the BOSS data. We can also confirm that for each
of the &, and & constraints in DHOST theories, the results of Case 7
are ~25 and ~40 times stronger than those of Case 2, respectively:

isher(&5) = 93.85  for Case 2,
osher(§) = 171.3  for Case 2,
Osher(&s) = 3.701  for Case 7,
Ofisher(§) = 4.172  for Case 7. (102)

In GR, adding any multipole component of the 3PCF can
only improve the bjog and fog constraints by a few percent.
This result is consistent with the MCMC analysis of Sugiyama
et al. (2021) on the Patchy mock catalogues. Furthermore, the
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Table 4. The standard deviations of the parameters as predicted by the Fisher analysis, denoted as ofisher(@), are shown. These results
are for the NGC at zesr = 0.38. The parameter vectors of interest, 8, are different for each of the three gravity theories, GR, Horndeski,
and DHOST theories (equation 99). The classification of the data vectors used is as shown in equation (100). The fiducial values of
the parameters are calculated under the assumption of GR and are denoted as (6)54. The scale range used for this Fisher analysis is
8041 Mpc <r < 150 A1 Mpc.

(b108)fid (fo8)d (Fgo8)fid (Fso8)fid (Fio8)fid (Gso8)6d (Gio8)hid
1.362 0.485 0.552 0.681 0.194 0.681 0.386
O fisher(D108) O fisher(fo'8) O fisher(Fig08) O fisher(Fs0'8) O fisher(Ft0'8) O fisher(Gs0'8) O fisher(Gt0'8)
GR
Case 1 0.159 0.093 - - — - -
Case 2 0.154 0.093 0.418 0.472 0.312 - -
Case 3 0.159 0.092 0.802 1.170 2.387 - -
Case 4 0.155 0.091 0.420 0.643 0.426 - -
Case 5 0.151 0.090 0.330 0.450 0.291 - —
Case 6 0.155 0.089 0.396 0.619 0.411 - -
Case 7 0.151 0.089 0.315 0.442 0.283 - —
Case 8 0.153 0.091 0.363 0.492 0.324 - -
Horndeski
Case 2 0.154 0.093 2.361 0.479 3.156 - 29.25
Case 3 0.159 0.092 0.816 2.433 2.633 - 1.312
Case 4 0.155 0.092 0.430 0.726 0.431 - 1.111
Case 5 0.151 0.091 0.331 0.463 0.295 - 1.044
Case 6 0.155 0.091 0.409 0.715 0.419 - 1.015
Case 7 0.151 0.091 0.316 0.459 0.285 - 0.946
Case 8 0.153 0.091 0.366 0.498 0.344 - 1.383
DHOST

Case 2 0.154 0.093 3.100 3.840 4.774 35.22 38.88
Case 3 0.159 0.093 2211 3.652 2.633 2.976 1.981
Case 4 0.157 0.092 0.726 0.748 0.446 1.896 1.112
Case 5 0.153 0.092 0.499 0.476 0.303 1.636 1.051
Case 6 0.156 0.091 0.710 0.739 0.431 1.757 1.017
Case 7 0.153 0.091 0.487 0.468 0.293 1.519 0.953
Case 8 0.154 0.092 0.595 0.528 0.344 2.292 1.580

Table 5. Same as Table 4, but the standard deviations of the parameters defined in equations (45) and (49), calculated through variable
transformations, are shown.

(Epiia (E)fia (Ev)fia (€Pifia (€5 (€0na
0.713 1.000 0.992 0.545 0.000 0.013
Uﬁsher(Ef) O fisher(Es) O fisher(Et) Uﬁsher(ff) O fisher(§s) O fisher(§1)
Horndeski
Case 2 0.502 — 75.28 1.146 — 124.3
Case 3 2.558 — 6.018 5.844 — 9.934
Case 4 0.760 — 3.189 1.737 — 5.264
Case 5 0.488 — 2.767 1.114 — 4.567
Case 6 0.750 — 2.969 1.714 — 4.901
Case 7 0.483 — 2.522 1.103 — 4.163
Case 8 0.523 — 3.597 1.194 — 5.938
DHOST

Case 2 4.018 57.31 103.8 9.180 93.85 171.3
Case 3 3.824 6.519 9.837 8.737 10.68 16.24
Case 4 0.785 2.835 3.213 1.794 4.642 5.304
Case 5 0.503 2.460 2.771 1.150 4.029 4.574
Case 6 0.777 2.633 2.998 1.776 4311 4.950
Case 7 0.495 2.260 2.527 1.130 3.701 4.172
Case 8 0.558 3.542 3.981 1.274 5.801 6.572
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Table 6. The standard deviations computed by the Fisher analysis of Case 7 in DHOST the-
ories divided by the fiducial values of the parameters, ofigher(@)/(0)5d, are shown, where 6 =
{(b10g), (fos), (Fgo3), (Fs03), (Fi03), (Gs03), (Giog)}. These results are for the NGC and SGC at

z=10.38, 0.61.
DHOST
0 fisher (6)/(0)fid (bios) (fos) (Fgog)  (Fsog)  (Fiog)  (Gsog)  (Gog)
NGCatz=0.38 0.112 0.188 0.883 0.687 1.511 2.231 2.469
NGC at z = 0.61 0.110 0.181 1.201 0.880 2.077 2.789 3.265
SGCatz =0.38 0.188 0.311 1.446 1.142 2.609 3.642 4.123
SGC at z = 0.61 0.188 0.304 2.055 1.444 3.609 4.721 5.460
Table 7. Same as Fig. 6, but ofigher(6)/(0)a for @ = {E ¢, E, E¢} and ofisher(f) for 0 = (&7, &, &}.
DHOST
Uﬁsher(Ef)/(Ef)ﬁd O fisher (Es)/(Es)fid 0 fisher (E)/(Et)fid Uﬁsher(éf) O fisher(§s) O fisher(§1)
NGCatz=0.38 0.626 2.260 2.541 1.130 3.701 4.172
NGC at z = 0.61 0.890 2.931 3.384 2.084 6.890 7.955
SGCatz =0.38 1.035 3.653 4.234 1.867 5.983 6.950
SGC at z = 0.61 1.469 4.878 5.677 3.439 11.468 13.345

3PCF-specific information, og, is also uninformative compared
to fog. Specifically, fog can be determined with a precision of
~ 20 per cent, while o' can only reach a precision of ~ 60 per cent.
These results are for large scales (r > 80h~! Mpc); what hap-
pens when even smaller scales are used will be discussed in

Section 7.4.

7.3 Fisher forecasts with all four BOSS samples

In this subsection, we repeat the analysis of Case 7 in DHOST
theories, performed in Section 7.2, for the other three BOSS samples,
NGC at z = 0.61 and SGC at z = 0.38, 0.61, and summarize the
results in Tables 6 and 7.

Table 6 shows that the results for (byog) and (fog), which are
mainly determined by the 2PCEF, are slightly better for the sample at
z = 0.61 than for the sample at z = 0.38 for both NGC and SGC.
On the other hand, for the 3PCF-specific parameters, (Fg, s 0'g) and
(Gs,10g), the error is smaller for the z = 0.38 sample than for the
z = 0.61 sample. This result reflects the different characteristics of
the cumulative S/N between the 2PCF and the 3PCEF, as discussed in
Section 5.4. In other words, it suggests that higher number densities
are more favourable than larger survey volumes for constraining
the non-linear parameters, (Fg s 0g) and (Gs 0g), using 3PCF
measurements.

Table 7 summarizes the results of Ef ; ( and &/ 5 . As expected, the
z = 0.38 sample gives a smaller error than the z = 0.61 sample for
both Ef;  and &; s ;. However, in the case of & (, the error at z =
0.38 is almost twice as small as that at z = 0.61, which is extremely
favourable for the z = 0.38 sample. For example, the &; results for
the NGC samples are

Ofisher(§s) = 3.701  for NGC at z = 0.38,

Ofisher(§s) = 6.890 for NGC at z = 0.61. (103)

This is because we parametrize the time evolution of Ef; as
Efsi= Qf,{'s". Thatis, because dé s s = dIn E;  /(In Qy,), the errors
in &5 5 ¢ are smaller for lower redshifts with smaller values of .
Specifically, in the LCDM model introduced in Section 1, Q,,(z =
0.38) = 0.54 and 2,,(z = 0.61) = 0.65, so 1/In Q,(z = 0.38) = 1.62

and 1/In Q,(z = 0.61) = 2.32. Even if ofsher(Ef51)/(E s s,0a has
the same value at the two redshifts of z = 0.38 and z = 0.61, the
value of ofsner(§75,) at z = 0.38 is 2.32/1.62 = 1.42 times smaller
than at z = 0.61.

7.4 Fisher forecasts using smaller scales

So far, we have performed the Fisher analysis in the same setting
as the MCMC analysis that will be performed in Section 9. There,
we have dealt with the behaviour of only large scales, 80 /~! Mpc <
r < 150 h~! Mpc. However, seeing how the parameter constraints
improve when the minimum scale used, 7y, is varied should be
an excellent motivation for the future development of theoretical
models.

Fig. 10 plots o sner(6)/(0)a as a function of ry,;, for the three
gravity theories, GR, Horndeski, and DHOST, at two redshifts of
z = 0.38 (magenta lines) and z = 0.61 (blue lines). The multipole
components of the 2 and 3PCFs used here are Case 7 [equation (100)].
First, even on the smaller scale, adding the 3PCF hardly improves
the fog constraint compared to the case where only the 2PCF
is used (compare solid and dashed lines in the top-left panel of
Fig. 10.). On the other hand, at r,, = 30 2~! Mpc, the o5 constraint
reaches a precision of ~ 10 per cent, from which useful cosmological
information may be extracted: e.g. f = (fog)/og can be determined
with a precision of ~ 10 per cent.

In addition, the non-linear velocity parameters, Gyo'g and Gyo'g, can
be determined with 30-50 per cent precision at 7y, = 30 h! Mpec.
Thus, future galaxy surveys with even larger volumes than the BOSS
survey, such as DESI, Euclid, and PFS, may detect such non-linear
coefficients of the velocity field.

Note that we obtained the Fisher analysis results using the IR-
resumed tree-level solutions of the 2 and 3PCFs given in equa-
tions (31) and (34). Although these models accurately describe
the non-linear damping behaviour of BAO on large scales, they
cannot predict the 2 and 3PCFs on small scales with high accuracy.
Therefore, to apply these models to smaller scales, it is necessary to
account for non-linear effects, called loop correction terms. We leave
to investigate how the results change when such a loop correction is
added for future research.
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Figure 10. The standard deviations computed by the Fisher analysis divided by the fiducial values of the parameter, o fsher(6)/(0)sid, are shown as a function of
the minimum scale used, rmin. These results are for the NGC at zess = 0.38, 0.61. The solid lines show the results using the multipole components of the 2 and
3PCFs given in Case 7 (100), and the dashed lines are for the 2PCF-only analysis, Case 1. The points at 7y, = 80 A~! Mpc in the right-hand panels correspond
to the results in Table 6.
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7.5 Flat priors

As shown by the results of the Fisher analysis in Section 7, the
constraints on the non-linear parameters &y constrained by the
3PCF measured from BOSS are weak. Therefore, we need to set
appropriate priors to efficiently perform the MCMC analysis.

We use the Fisher analysis results of Case 7 in DHOST theories
for the four BOSS galaxy samples, performed in Section 7.3. Then,
we adopt a flat prior of Ogq £ Sogsner(8) as the base setting
for all parameters. If using several samples to constrain common
parameters, we adopt a narrower range of priors for those samples.
For example, at zeir = 0.38, when constraining fo g using both NGC
and SGC samples, we adopt the prior computed in NGC. After
this basic setting, we set a stronger prior based on further physical
considerations below.

The linear bias by, the linear growth rate f, and og are always
positive by definition: i.e. bjog > 0 and fog > 0.

In the case of GR, the non-linear parameters to be constrained
are Fyog, og, and Fiog. The non-linear local bias parameter
(1/2)(b2/by) appearing in F, is calculated to be —0.02 for b; =
2.0 using the fitting formula given by Lazeyras et al. (2016), which
is sufficiently small compared to 17/21. The tidal bias parameter
(by2 /b)) appearing in F\ is also calculated tobe b2 /by = (—2/7)(1 —
1/by) = —0.14 for the linear Lagrangian bias model (e.g. Des-
jacques et al. 2018b), and its value is also smaller than 2/7.
Therefore, even if the non-linear bias parameter is present, Fyog
and Fiog are expected to be larger than zero: i.e. Fyog > 0 and
Fiog > 0. We will discuss the validity of the analysis results
when these conditions are imposed in Section 9.5 by comparing
them with the results when Fyog and Fiog can take negative
values.

In the cases of Horndeski and DHOST theories, the parametriza-
tion we adopt describes the time evolution of the coefficients of
the tidal and shift terms as powers of 2, (Section 3.4), implicitly
assuming that these coefficients are always positive: i.e. Fsog > 0,
Gy03>0,and Giog > 0. For F,03 and F;0'g, assuming that Horndeski
and DHOST theories are not far from GR, we adopt Fyog > 0 and
Fo3 > 0, just like GR.

The Fisher analysis shows that the BOSS data cannot detect the
E; . signals and only give them an upper limit (Section 7). This fact
means that as E  approach zero, the parameters & = logg  E; (can
be as large as desired because of 2, < 1. Therefore, in this analysis,
we set the upper limit of & ( to (£ 0)fa + 30 fsher(§s,1), Which is
narrower than the basic setting. If & ; reach their upper bounds set
here, we report only the lower bounds for those parameters as the
final results.

We summarize the results of the above discussion in Table 8.

8 GOODNESS OF FIT

In this section, we examine the extent to which our analysis can
give good fits to the 2 and 3PCF measurements from the BOSS data
or Patchy mocks for a variety of cases, before presenting specific
parameter constraint values in Section 9.

For this purpose, we calculate the minimum of x2 = —21n £ (91),
denoted x2,,, from the best-fitting parameter values obtained from
the joint analysis of the 2 and 3PCFs. We use two multipole 2PCFs (&
and &;), two monopole 3PCFs (£op and ¢119), and two quadrupole
3PCFs ({202 and ¢ 112) in this analysis; the assumed gravity theories
are GR, Horndeski, and DHOST theories. Tables 9-14 show the x2;,
divided by the degrees of freedom (DoF), i.e. the reduced x>, and
the corresponding one-tailed p-values. At two redshift bins, z = 0.38
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Table 8. The flat priors for the parameters that we employ in our MCMC
analysis are shown. The results are calculated from Case 7 in equation (100)
assuming DHOST theories.

Prior range

(b1o3)NGC, 2=0.38 [0.60, 2.13]
(b108)sGC, 2=0.38 [0.08, 2.64]
(b1o3)NGC, 2=0.61 [0.54, 1.88]
(b1038)sGc, 2=0.61 [0.07, 2.36]
(fo8)NGC, 2=0.38 [0.03, 0.94]
(fo8)sGe, 2=0.38 [0.00, 1.24]
(fo8)NGC, 2=0.61 [0.05, 0.91]
(fo8)sGe, 2=0.61 [0.00, 1.21]
(Fg08)NGC, 2=0.38 [0.00, 2.99]
(Fg08)sGC, 2=0.38 [0.00, 4.54]
(Fg08)NGC, z=0.61 [0.00, 3.44]
(Fg08)sGC, z=0.61 [0.00, 5.54]
(F508)NGC, 2=0.38 [0.00, 3.02]
(F508)sGC, =038 [0.00, 4.57]
(Fs08)NGC, 2=0.61 [0.00, 3.27]
(F508)sGC, z=0.61 [0.00, 4.99]
(F108)NGC, 2=0.38 [0.00, 1.66]
(F108)sGC, z=0.38 [0.00, 2.72]
(Fto8)NGC, 2=0.61 [0.00, 1.97]
(F108)sGC, 2=0.61 [0.00, 3.29]
(¢ £INGC, 2=0.38 [—5.11, 6.20]
(§5)sGC, z=0.38 [— 8.79, 9.88]
(& £INGC, 2=0.61 [—9.88, 10.97]

[—16.65, 17.74]

[—18.51, 11.10]
[—29.91, 17.95]
[—34.45,20.67]
[— 57.34, 34.40]

[—20.84, 12.53]
[—34.74,20.86]
[—39.76, 23.88]
[— 66.71, 40.05]

(5)sce, z=0.61

(§s)NGe, 2=0.38
(&5)sGe, 2=0.38
(&s)NGC, z=0.61
(&5)sGe, 2=0.61

(60NGC, 2=0.38
(§)sce, =038
(60NGC, z=0.61
(§)sce, z=0.61

and z = 0.61, results are presented for NGC only, SGC only, and both
NGC and SGC. In Horndeski and DHOST theories, we constrain the
common parameters & among different redshift bins using the
samples at both the redshift bins. Finally, we also include the results
of the analysis using only 2PCF.

If the theoretical model fits the measurements well, the p-value
should be close to 0.5. A p-value close to 1 does not mean that the
theoretical model is correct, but that the theoretical model can explain
the measurements within the error range, thanks to too large statistical
errors in the measurements. On the other hand, a p-value close to 0
indicates that the theoretical model cannot explain the measurements.
In this paper, we decide that if p < 0.05, attention should be paid to
the consistency between the theoretical model and the measurements,
and if p < 0.01, there is an apparent discrepancy between them. We
write in bold the x? and p values shown in Tables 9-14 if p < 0.01.
Finally, we comment on the behaviour of p-values when combining
different galaxy samples. For example, suppose that the reduced 2.,
is larger than 1: i.e. x2;,/DoF > 1. In this case, if we increase the
values of x2, and DoF by an equal factor while keeping the value
of the reduced x2;,, the resulting p-value will be smaller than the
original value, and conversely, if x2,,/DoF < 1, it will be larger
than the original value. Since we treat the different galaxy samples
as statistically independent, a similar situation occurs in analyses
with multiple galaxy samples. Thus, if the p-value obtained from
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Table 9. The reduced x 2 and p-values (in round brackets) obtained from the joint analysis of the 2 and 3PCFs are shown. These
values are written in bold if p < 0.01. The minimum x2, denoted x2;,, is calculated from the best-fitting parameters. The data
used are the BOSS DR12 galaxy, split into two sky regions, NGC and SGC, and two redshift bins, z = 0.38 and z = 0.61. The
joint analysis shows the results for three gravity theories, i.e. GR, Horndeski, and DHOST theories; for Horndeski and DHOST
theories, also shown are the results using the two redshift bins to constrain the parameters &y, s, which characterizes the time
evolution of the linear and non-linear effects of the velocity field. Furthermore, the results for the 2PCF-only analysis are shown.
The combinations of the 2 and 3PCF multipole components used in this analysis correspond to Case 1 and Case 7 in equation 100.

BOSS DR12
%2, /DoF (p-value)
NGC + SGC

NGC

SGC

2PCF only (zeff = 0.38)
2PCF only (zeff = 0.61)

56.04/57 (0.511)
80.24/57 (0.023)

GR (zefr = 0.38) 488.38/396 (0.001)
GR (zefr = 0.61) 428.60/396 (0.125)
Horndeski (zefr = 0.38) 488.24/395 (0.001)
Horndeski (zeff = 0.61) 427.56/395 (0.125)
Horndeski (zetr = 0.38, 0.61) 918.76/792 (0.001)
DHOST (zeff = 0.38) 487.48/394 (0.001)

DHOST (zefr = 0.61)
DHOST (zfr = 0.38, 0.61)

427.62/394 (0.117)
918.04/791 (0.001)

32.18/28 (0.267)
42.08/28 (0.043)

238.22/197 (0.024)
218.48/197 (0.140)

236.38/196 (0.026)
218.06/196 (0.134)
456.50/394 (0.016)

235.80/195 (0.024)
217.94/195 (0.125)
455.96/393 (0.015)

23.36/28 (0.715)
36.94/28 (0.120)

248.72/197 (0.007)
209.24/197 (0.262)

251.62/196 (0.004)
209.16/196 (0.247)
458.94/394 (0.013)

248.36/195 (0.006)
209.06/195 (0.233)
458.88/393 (0.012)

Table 10. Same as Table 9, except that only the monopole component of the 3PCF is used in the joint analysis of the 2 and
3PCFs. The combination of the 2 and 3PCF multipole components used in this analysis corresponds to Case 2 in equation (100).

Joint analysis with monopole 3PCFs ({000 and ¢ 119) only

%2,/ DOF (p-value)

NGC + SGC NGC SGC
GR (zefr = 0.38) 252.08/196 (0.004) 122.56/97 (0.041) 127.32/97 (0.021)
GR (zefr = 0.61) 216.54/196 (0.150) 109.00/97 (0.191) 106.94/97 (0.230)
Horndeski (zefr = 0.38) 252.02/195 (0.004) 122.54/96 (0.035) 127.30/96 (0.018)
Horndeski (zefr = 0.61) 216.40/195 (0.140) 109.02/96 (0.172) 106.90/96 (0.210)
Horndeski (zeff = 0.38, 0.61) 469.58/392 (0.004) 231.70/194 (0.033) 234.68/194 (0.024)
DHOST (zefr = 0.38) 251.78/194 (0.003) 122.48/95 (0.030) 127.28/95 (0.015)

DHOST (zeff = 0.61)
DHOST (zefr = 0.38, 0.61)

216.40/194 (0.129)
469.86/391 (0.004)

108.96/95 (0.155)
231.78/193 (0.029)

106.90/95 (0.190)
234.94/193 (0.021)

Table 11. Same as Table 9, except that only the quadrupole component of the 3PCF is used in the joint analysis of the 2 and
3PCFs. The combination of the 2 and 3PCF multipole components used in this analysis corresponds to Case 3 in equation (100).

Joint analysis with quadrupole 3PCFs (£ 202 and ¢112) only

%2/ DOF (p-value)
NGC + SGC

NGC

SGC

GR (zefr = 0.38)

GR (zeff = 0.61)

Horndeski (zeff = 0.38)
Horndeski (zegf = 0.61)
Horndeski (zeff = 0.38, 0.61)

DHOST (zeft = 0.38)
DHOST (zeff = 0.61)
DHOST (zeff = 0.38, 0.61)

280.18/252 (0.107)
281.58/252 (0.097)

279.66/251 (0.103)
281.68/251 (0.089)
563.66/504 (0.034)

279.18/250 (0.099)
281.68/250 (0.082)
563.26/503 (0.032)

146.56/125 (0.091)
148.04/125 (0.078)

144.68/124 (0.099)
148.14/124 (0.069)
294.48/250 (0.028)

144.52/123 (0.090)
148.04/123 (0.062)
294.66/249 (0.025)

132.68/125 (0.302)
132.48/125 (0.306)

132.38/124 (0.287)
132.48/124 (0.285)
265.08/250 (0.245)

132.28/123 (0.268)
132.50/123 (0.263)
265.24/249 (0.229)

each galaxy sample is small, combining galaxy samples will yield a
smaller p-value.

Section 8.1 reports an unexplained discrepancy between the 3PCF
measured from the BOSS galaxy data at z = 0.38 and our theoretical
model on large scales, even considering DHOST theories, which is
beyond GR. Section 8.2 shows that this discrepancy between the
data and the theoretical model appears from the monopole 3PCE.
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Section 8.3 shows that the discrepancy still appears even when the
parameter prior set introduced in Section 7.5 is removed. Section 8.4
confirms that the discrepancy does not appear in the analysis using
the Patchy mock. Finally, as a temporary measure, we rescale the
covariance matrix of the 3PCF at z = 0.38 to generate acceptable p-
values in Section 8.5. Section 9 will report the parameter estimation
results with and without rescaling the covariance matrix.
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Table 12. The analysis is repeated as in Table 9, except that the prior is removed for all parameters related to non-linear effects
in DHOST theories, Fyo3, Fsog, Fios, &7, &, and &, allowing them to vary from —oo to +o0.

No prior in DHOST
XZin/DOF (p-value)
NGC + SGC NGC SGC
DHOST (zefr = 0.38) 486.14/394 (0.001) 235.80/195 (0.024) 246.28/195 (0.008)
DHOST (zeff = 0.61) 428.16/394 (0.114) 218.58/195 (0.119) 209.58/195 (0.225)

DHOST (zerr = 0.38, 0.61)

916.04/791 (0.001)

458.02/393 (0.013)

456.78/393 (0.014)

Table 13. Same as Table 9, except that the x2;, is calculated from each of 100 Patchy mocks, showing their mean values and standard deviations, and the

means and lo errors of the corresponding p-values.
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MultiDark—Patchy mocks
Xl%lin /DoF (p-value)

NGC + SGC

NGC

SGC

(57.76 + 12.25)/57 (0.447+3:416)
(56.50 + 9.54)/57 (0.49419332)
(364.08 + 29.31)/396 (0.873011%)
(362.41 £ 24.97)/396 (0.886709%)
(363.90 £ 29.45)/395 (0.867*0121)
(361.99 % 25.00)/395 (0.88275392)
(728.47 % 36.96)/792 (0.9487094%)
(363.26 + 29.37)/394 (0.8650123)
(361.46 + 25.03)/394 (0.8797910%)

(728.23 £ 37.03)/791 (0.9467950)

2PCF only (zefs = 0.38)
2PCF only (zeff = 0.61)

GR (zefr = 0.38)

GR (zefr = 0.61)

Horndeski (zegf = 0.38)
Horndeski (zeff = 0.61)
Horndeski (zef = 0.38, 0.61)
DHOST (zeft = 0.38)
DHOST (zeft = 0.61)
DHOST (zefs = 0.38, 0.61)

(28.84 £ 7.92)/28 (0.4217555%)
(27.99 % 6.79)/28 (0.46510:337)
(181.04 £ 20.14)/197 (0.78675:159)
(179.10 £ 18.41)/197 (0.81575:13%)
(180.68 £ 20.20)/196 (0.77775:393)
(178.48 £ 18.49)/196 (0.8107536%)
(360.88 & 25.46)/394 (0.88375:192)
(180.14 £ 20.18)/195 (0.770F5:159

(178.00 % 18.40)/195 (0.80375357)

(27.75 £ 8.15)/28 (0.478753%)
(27.52 £ 6.76)/28 (0.4907036%)
(180.91 % 21.55)/197 (0.7887518)
(181.45 £ 18.02)/197 (0.7807038))
(180.62 % 21.48)/196 (0.7787 0170
(181.21 £ 17.92)/196 (0.76875:35%)
(363.77 % 26.65)/394 (0.86075332)
(180.39 + 21.43)/195 (0.7661037)

(180.95 £ 17.98)/195 (0.7575:39%)

(360.45 £ 25.33)/393 (0.879702%)  (363.47 £ 26.59)/393 (0.85570137)

Table 14. Same as Table 9, except that the covariance matrix of the 3PCF at z = 0.38 is rescaled as in equation (106).

XZin/DOF (p-value)

GR (zefr = 0.38 [rescaled])
Horndeski (zegr = 0.38 [rescaled])

413.86/396 (0.258)
413.66/395 (0.249)

NGC + SGC NGC SGC
209.98/197 (0.250) 202.56/197 (0.378)
208.24/196 (0.261) 202.36/196 (0.363)
428.14/394 (0.114) 412.46/394 (0.251)

Horndeski (zeff = 0.38 [rescaled], 0.61)

DHOST (zeff = 0.38 [rescaled])
DHOST (zegr = 0.38 [rescaled], 0.61)

844.18/792 (0.097)

412.88/394 (0.246)
843.66/791 (0.095)

207.82/195 (0.252)
428.00/393 (0.108)

202.34/195 (0.344)
412.36/393 (0.241)

8.1 BOSS galaxies

Table 9 shows the results from the analysis method described in this
paper. We have performed the MCMC analysis (Section 6) using
&0, €2, C000s C1105 €202, and 11 measured from the BOSS galaxy
data (Section 4), the covariance matrix computed from the 2048
Patchy mocks (Section 5), and the flat prior of the parameter range
(Section 7.5).

First, we focus on the analysis case using only the 2PCF. For the
NGC + SGC sample, the obtained p-values are p = 0.511 at z =
0.38 and p = 0.023 at z = 0.61. This p = 0.023 indicates a small
amount of a poor fit between the model and the measurements, but
we consider it not problematic.

Next, turning to the joint analysis results of the 2 and 3PCFs
assuming GR, we find that the p-value at z = 0.38 obtained for the
NGC + SGC sample is extremely small, 0.001. At z = 0.38, the
results for only NGC and only SGC are p = 0.024 and p = 0.007,
indicating that the SGC sample is more problematic than the NGC.
On the other hand, the p-value at z = 0.61 for the NGC + SGC sample
is p = 0.125, indicating that our model explains the measured values
without problems.

Finally, for Horndeski and DHOST theories, we find results similar
to the GR case: the p-value is 0.001 at z = 0.38 and p ~ 0.1 at 7 =
0.61 for the NGC + SGC sample.

Thus, we conclude that there is an unexplained discrepancy
between the 3PCF measurement from the BOSS sample at z =
0.38 and the theoretical model we are using. Even Horndeski and
DHOST theories, which are modified gravity theories beyond GR,
cannot explain this discrepancy.

8.2 Monopole- or quadrupole-only 3PCF

We investigate whether the discrepancy between the 3PCF mea-
surement from the galaxy sample at z = 0.38 and the theoretical
model, shown in Table 9, originates from the monopole or quadrupole
component.

For this purpose, Tables 10 and 11 show the joint analysis results
using only monopole 3PCFs or only quadrupole 3PCFs in addition
to the monopole and quadrupole 2PCFs. For a fair comparison with
Table 9, the prior distributions of the parameters used here are those
given in Table 8. For the NGC + SGC at z = 0.38, the p-value
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obtained using the monopole 3PCFs is less than 0.01 in all three
gravity theories, whereas the p-value obtained using the quadrupole
3PCFs is p ~ 0.1. Therefore, we can conclude that the monopole
component of the 3PCF measurement at z = 0.38 is inconsistent
with the theoretical model.

8.3 No prior in DHOST theories

As an attempt to explain the discrepancy between the 3PCF measure-
ment from the galaxy sample at z = 0.38 and the theoretical model,
we remove all flat prior for the non-linear parameters, Fq05, Fiog,
Fios,§y, &, and &, setin Table 8 and perform parameter fitting with-
out imposing any prior. In particular, we investigate the possibility
that imposing the conditions F; > 0 and F; > 0 on the parameters
with the non-linear bias may have caused some problems fitting
the monopole 3PCF. This subsection focuses on DHOST theories
because they have the largest number of parameters to be varied.

Table 12 summarizes the results of the calculations and confirms
that the p-value obtained from the NGC 4 SGC sample at z = 0.38
is 0.001, even if we assume no prior for the non-linear parameters.
Therefore, we can conclude that the discrepancy between the galaxy
data and the theoretical model at z = 0.38 is not due to the prior
imposed in Table 8.

8.4 Patchy mocks

Table 13 shows the means and standard deviations of the x 2, and the
corresponding means and 1o errors of the p-values obtained from
the 100 Patchy mock catalogues. The setup for the data analysis is
the same as that performed in Table 9.

In all 30 cases shown in Table 13, the mean p-values obtained are
almost always p = 0.5, both in the analysis using only the 2PCF and
in the joint analysis with the 3PCF. This result means that our 2 and
3PCFs theoretical templates fit well with the Patchy mock simulation
data, indicating that the small p-values found in Table 9 are a peculiar
property of the BOSS galaxies.

As two representative examples, the rest of this subsection focuses
on the DHOST theory analyses using only the SGC sample at z =
0.38 and all four galaxy samples (NGC + SGC at z = 0.38, 0.61).
The reasons are as follows: (1) our primary goal is to test DHOST
theories; (2) the analysis of the SGC at z = 0.38 in the BOSS data
gives a p-value of 0.006, which is the most significant discrepancy
from the theoretical model among the four galaxy samples; (3) the
analysis using all four BOSS galaxy samples gives our final results
in Section 9.

For the SGC sample at z = 0.38, the x2,, values for the BOSS
samples and the Patchy mocks are

%2, (BOSS) = 248.36,
X‘im (Patchy mocks) = 180.39 4 21.43, (104)
where DoF = 195. The above result means that assuming that the x2,,
follows a Gaussian distribution, the BOSS galaxy sample deviates
from the Patchy mocks at the 3.20 significance level.

For the NGC + SGC sample at z = 0.38, 0.61, we have

x2. (BOSS) = 918.04,
anﬁn (Patchy mocks) = 728.23 4+ 37.03 (105)
where DoF = 791. This result implies a discrepancy between the
BOSS galaxy sample and the Patchy mocks at the 5.10 level. Thus,
we conclude that the discrepancy with the theoretical model in the

BOSS galaxies cannot be explained by the statistical scatter of the
Patchy mocks.
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Although Table 13 has shown the results obtained from 100 Patchy
mocks, for a more detailed exploration, we perform MCMC analysis
on all 2048 publicly available Patchy mocks for the two examples
above to see if it is possible to find realizations that return the similar
p-values to the BOSS galaxy sample. For the SGC sample of z =
0.38, only one Patchy mock catalogue gives p = 0.005, close to the
BOSS result. In this case, the Patchy mocks have a probability of
100 x (1/2048) = 0.0488 per cent to reproduce the BOSS galaxy
results. On the other hand, using all four galaxy samples, not a
single catalogue among the 2048 Patchy mocks reproduced the
BOSS results. This result means that the BOSS result has less than a
0.0488 per cent probability of appearing in the Patchy mocks. These
results are consistent with the 3.2¢ and 5.1¢ discrepancies between
the BOSS and Patchy mock data presented in equations (104) and
(105).

Fig. 11 visualizes the results for the DHOST theory analysis in
Tables 9 and 13. As expected, the histogram of x2;, computed from
the Patchy mocks (blue bars) can be well approximated by a Gaussian
function (orange line) with input values for the mean and standard
deviation of x2, computed from the Patchy mocks. In the cases of
SGC at z = 0.38 (top-right panel) and NGC + SGC at z = 0.38, 0.61
(bottom-left panel), we compute the histograms from the 2048 Patchy
mocks; otherwise, we compute them from 100 Patchy mocks. Also,
we plot the x2,, values obtained from the BOSS data in magenta.

8.5 Rescaling of the covariance matrix

We have discussed the discrepancy between the 3PCF measured from
the BOSS data at z = 0.38 and the corresponding theoretical model.
Unfortunately, this paper cannot provide a definitive answer to this
question.

There are three possible reasons for this discrepancy. The first
concern is about the calculation of the covariance matrix. There may
be physical effects that the Patchy mock used to calculate the covari-
ance matrix needs to account for fully. For example, it is necessary to
verify to what extent non-linear galaxy bias effects (Desjacques et al.
2018b) and super-sample covariance effects (Takada & Hu 2013) are
correctly included in the Patchy mock. The second concern is about
the theoretical model. For example, the theoretical model may have
new physical effects dominating large scales at low redshifts. If so,
we also need to account for that effect in the covariance matrix
simultaneously. Finally, we are concerned with the observed galaxy
data. There may be unknown observational effects that the weight
function in equation (52) cannot explain. In any case, the findings
in this section indicate the importance of discussing the validity of
cosmological analyses that consider the 2 and 3PCFs simultaneously.

This paper assumes that the discrepancy between the BOSS galaxy
sample and the theoretical model is due to an improper covariance
matrix for the 3PCF calculated with the Patchy mock. Therefore, as
a temporary measure, we decided to rescale the 3PCF covariance
matrix at z = 0.38 to increase the obtained p-value to an acceptable
value. Specifically, we rescale the 3PCF covariance matrix at z =
0.38 as follows:

CoV[3PCFlrescatea = A Cov[3PCF]. (106)

where the rescaling factor A is A = 1.15 and A = 1.25 for NGC
and SGC, respectively. The values of A are determined so that the
resulting p-values at z = 0.38 become similar to those at z = 0.61.
Table 14 summarizes the results of repeating the same analysis as
Table 9 using the rescaled covariance matrix; Fig. 11 visualizes the
results for the DHOST theory analysis in Tables 14. As expected,
p 2 0.1 for the NGC + SGC sample at z = 0.38. Thus, if the
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Figure 11. Visualizations of the DHOST theory analysis results in Tables 9, 13, and 14. The histograms of Xém computed from the Patchy mocks are shown.
In the cases of SGC at z = 0.38 (top-right panel) and NGC 4 SGC at z = 0.38, 0.61 (bottom-left panel), the histograms are computed from 2048 Patchy mocks;
otherwise, they are computed from 100 Patchy mocks. Also, Gaussian functions (orange lines) with input values for the mean and standard deviation of Xr%lin
computed from the Patchy mocks are shown. The XI%lin values obtained from the BOSS data are plotted in magenta. Also shown are the results for the BOSS
data using the rescaled 3PCF covariance matrix at z = 0.38 (Section 8.5) in dashed red lines.
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discrepancy between the galaxy data and the theoretical model in the
3PCF measurement is due to the covariance matrix computed by the
Patchy mocks, we find that we can solve this problem by increasing
the resulting covariance matrix by 15 — 25 per cent. We will give the
results using this rescaled covariance matrix as the final result of this
paper when we perform parameter estimation in Section 9 using the
galaxy data at z = 0.38.

9 RESULTS

This section calculates the mean, standard deviation, &=1¢ errors, and
95 per cent upper and lower bounds for the parameters computed
from the likelihoods, where we perform parameter estimation for
each BOSS DRI12 galaxy and Patchy mock data. When using the
Patchy mock data, we compute the mean, standard deviation, 1o
errors, and 95 per cent limits for the parameters from each of the 100
Patchy mocks; then, we calculate the means and standard deviations
of them. All results here take into account both the NGC and SGC
samples. We have already given the x2, and p-values calculated
from the best-fitting values of the parameters in the NGC + SGC
columns of Tables 9, 13, and 14.

The main results of this paper are equations (113)—(116), which
provide constraints in &; and &,. In Fig. 21, we plot the 1D and
2D likelihood distributions corresponding to these results. Finally,
we summarize the measurement results for the 3PCF multipole
components (£ooo0, {110, {202, and ¢112) from the BOSS galaxies
used in this analysis in Figs 12-19.

The combination of the 2 and 3PCFs multipoles used in the
joint analysis performed in this section corresponds to Case 7 in
equation (100); the analysis using only the 2PCF corresponds to
Case 1. In Section 9.10, the results of the joint analysis with only
the monopole 3PCF, which corresponds to Case 2, are also presented
and compared with the final results obtained from Case 7.

9.1 Measurements

Figs 12-19 plot the measurement results of the monopole 3PCFs
(000 and ¢110) and the quadrupole 3PCFs ({20, and ¢1;2) from the
BOSS galaxies as a function of r, with r; fixed at 50 h! Mpc,
80/~ Mpc, 90 2~ Mpc, 100 h~! Mpc, and 130 ~~! Mpc from top
to bottom; they are shown by blue circled points with 1o error
bars. Also plotted are the 3PCF measurements from 100 Patchy
mocks (grey) and the mean from the 3PCF measurements from 2048
Patchy mocks (black). Finally, the theoretical models computed from
the best-fitting parameter values obtained from the DHOST theory
analysis using all four BOSS samples are plotted with magenta lines;
they are shown as solid lines on the scales 1, r, > 80 h! Mpc used
in the MCMC analysis and as dashed lines on smaller scales. Note
that the theoretical model shown by the magenta dashed line does
not need to explain the measurements from the galaxy data.

As can be seen from the lower left of Fig. 14, the ¢ oo measured
from the SGC sample at z = 0.38 shows a significant discrepancy
with the theoretical model on large scales, which is to be expected
from the results presented in Section 8.2.

Theoretical predictions from Figs 1 and 2 indicate that the
monopole and quadrupole 3PCFs have trough-shaped signals at r; =
ry. For example, this characteristic trough signal is seen in the blue
data points for ¢ 1, measured in the NGC sample at z = 0.38, shown
in the first and second panels from the top in the right-hand panel of
Fig. 13. However, due to the significant statistical scattering in the
galaxy data, the trough signal is not necessarily found in the blue
points of all panels in Figs 12-19.

MNRAS 523, 3133-3191 (2023)

In particular, for the monopole 3PCF, the BAO peak appears at
r~r,>~1004"" Mpc. Therefore, it is expected to cancel out the
trough signal, resulting in a smooth line with no irregularities when
plotting the 3PCF as a function of r, after fixing r; = 100 4~! Mpc.
For example, as seen from the second panel from the bottom in the
right-hand panel of Fig. 12, the ¢ ;19 measured from the NGC sample
at z = 0.38 shows that the trough-shaped signal disappears from
the data points. Conversely, this is evidence of a BAO signal in the
monopole 3PCFE. Although plotting the 3PCF as a function of r; =
r, = r makes it easier to see the BAO signal from the galaxy data
points (e.g. see figs 8 and 11 of Sugiyama et al. 2021), we do not plot
such a figure because the subject of this paper is not the BAO signal.

9.2 fog constraints from the Patchy mocks in GR

Table 15 shows the fog results obtained from the analysis of 100
Patchy mocks, assuming GR.

The standard deviations of fog from the 2PCF-only analysis are
almost identical to those obtained from the joint analysis with the
3PCF. This result is consistent with the results of the Fisher analysis
in Section 7. Therefore, we can conclude that neither monopole
3PCF nor quadrupole 3PCF contributes to reducing the fog error.
Nevertheless, note that we can constrain the growth rate function
f using the joint analysis with the 3PCF by combining the og
constraint in Section 9.6. Furthermore, in the context of modified
gravity theories, fis extended to Ef, and Section 9.7 will constrain
the parameter & characterizing its time evolution.

Looking at the mean of fo g, the results obtained in the joint analysis
with the 3PCF (0.498 at z = 0.38 and 0.504 at z = 0.61) are slightly
closer to the values input to the Patchy mock (0.491 and 0.485) than
those obtained with the 2PCF alone (0.445 and 0.457). Thus, the
3PCF information helps reduce the bias in the fog mean values.

9.3 fos constraints from the BOSS DR12 galaxies in GR

Table 16 summarizes the results of the fog constraints obtained from
the BOSS galaxy under the assumption of GR. ‘GR (z = 0.38)
[rescaled]” means the results using the rescaled covariance matrix
(Section 8.5).

Note that the standard deviation result of fo'g does not change with
and without rescaling the 3PCF covariance matrix at z = 0.38: i.e.
(fog)sua = 0.108 in both cases. Thus, the 15 — 25 per cent difference
in the 3PCF covariance matrix due to rescaling (Section 8.5) does
not propagate significantly to the final fog error. The reason for this
may be mainly due to the effect of parameter degeneracy and other
factors. However, due to the decisively different p-values obtained
(see Tables 9 and 14), we adopt the rescaled result at z = 0.38 as the
final result.

Comparing the results of the joint analysis with the 3PCF and the
2PCF-only analysis, the former has a larger fog error: i.e. (f0g)sua =
0.108, 0.091 at z = 0.38, 0.61 for the joint analysis with the 3PCF,
and (fog)sa = 0.086, 0.086 at z = 0.38, 0.61 for the 2PCF-only
analysis. Therefore, one may think that adding the 3PCF information
has weakened the constraint on fog. However, since Table 15 shows
that the statistical uncertainty of (fog)ga is ~0.01, the both results
are statistically consistent at the < 20 level.

Our final results for the fog constraints are as follows. The 2PCF-
only analysis gives, at the 1o level,

foy = 044670088 atz =0.38
fos = 0.408%008: atz = 0.61, (107)
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Figure 12. Monopole 3PCFs (£ oo and ¢ 119) measured from the NGC sample at z = 0.38 (blue points). These plots are shown as a function of r,, with r; fixed
from the top to 50 ~~! Mpc, 80 h~! Mpc, 90 h~! Mpc, 100 2~! Mpc, and 130 2~! Mpc. The error bars are the standard deviation of the 3PCF measurements
computed from 2048 Patchy mocks. Also plotted are the 3PCF measurements from 100 Patchy mocks (grey) and the mean from the 3PCF measurements from
2048 Patchy mocks (black). Finally, the results of the theoretical model calculated from the best-fitting parameter values obtained from the DHOST theory
analysis using all four BOSS samples (Sections 9.7-9.9) are shown by the magenta lines; they are shown as solid lines on the scales 1, r» > 80 A~! Mpc used
in the analysis and as dashed lines on smaller scales.
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Figure 13. Same as Fig. 12, except that the quadrupole 3PCF results (£202 and ¢ 112) measured from the NGC sample at z = 0.38 are shown.

and the joint analysis with the 3PCF presents These fog constraints are consistent with the fog values (fos =

0.485, 0.479 at z = 0.38, 0.61) calculated from the cosmological
fos = 0-549f83?g; atz =0.38 parameters in a flat ACDM model (Section 1) given by Planck
fog = 039470088 atz = 0.61. (108) 2018 (Aghanim et al. 2020). However, the fo'g result in this analysis,
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Figure 14. Same as Fig. 12, except that the monopole 3PCF results (¢ooo and ¢ 119) measured from the SGC sample at z = 0.38 are shown.
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Figure 15. Same as Fig. 12, except that the quadrupole 3PCF results (£ 202 and ¢ 112) measured from the SGC sample at z = 0.38 are shown.
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Figure 16. Same as Fig. 12, except that the monopole 3PCF results (£ooo and ¢ 119) measured from the NGC sample at z = 0.61 are shown.
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Figure 17. Same as Fig. 12, except that the quadrupole 3PCF results ({202 and ¢ 112) measured from the NGC sample at z = 0.61 are shown.
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Figure 18. Same as Fig. 12, except that the monopole 3PCF results (£ooo and ¢ 119) measured from the SGC sample at z = 0.61 are shown.
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Figure 19. Same as Fig. 12, except that the quadrupole 3PCF results (£ 202 and ¢ 112) measured from the SGC sample at z = 0.61 are shown.
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Figure 20. Marginalized 2D and 1D posteriors of fog and og for BOSS DR12. The contours indicate 68.27 per cent and 95.45 per cent confidence levels.
Asterisks indicate predictions by Planck. The left- and right-hand panels show the cases at z = 0.38 and z = 0.61. The NGC and SGC samples are always
combined to obtain this result. The rescaled 3PCF covariance matrix (Section 8.5) at z = 0.38 is used.
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Figure 21. Marginalized 2D and 1D posteriors of &y, &, and &5 for BOSS DR12. DHOST theories (red) vary these all three parameters, while Horndeski
theories (blue) fix &5 to &5 = 0. The contours indicate 68.27 per cent and 95.45 per cent confidence levels. Asterisks indicate predictions by GR: &y = 6/11, & =
15/1144, and &5 = 0. The NGC and SGC samples at z = 0.38 and 0.61 are combined to obtain this result. The rescaled 3PCF covariance matrix (Section 8.5) at
z =0.38 is used.
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Table 15. Constraint results for fog obtained from the 100 Patchy mocks. One hundred means, standard deviations, 1o errors, and 95 per cent upper and
lower bounds are computed from the 100 Patchy mocks; then, the means and standard deviations of them are shown. Values in parentheses are the input values
for the Patchy mocks. Results are shown for two redshift bins at z = 0.38 and 0.61 in combination with the NGC and SGC samples. Also shown are the results
for the 2PCF only analysis and the joint analysis with the 3PCF assuming GR. The X%m and p values corresponding to this table are shown in the NGC + SGC

column of Table 13.

MultiDark—Patchy mocks

(fo8>mean U‘US)sld (fUS)—la OCUS)Jrla <f08)>95 per cent (f68)<95 per cent
2PCF only (zefr = 0.38) 0.445(0.491) £ 0.078 0.094 £ 0.010 —0.106 £ 0.013 0.091 £ 0.009 0.256 £ 0.074 0.635 £ 0.090
2PCF only (zefsf = 0.61) 0.457 (0.485) + 0.068 0.083 £ 0.009 —0.091 £0.011 0.082 £ 0.008 0.291 +£ 0.066 0.624 £ 0.077
GR (zef = 0.38) 0.498(0.491) + 0.085 0.107 £ 0.008 —0.118 £ 0.009 0.105 £ 0.012 0.283 £ 0.082 0.718 £ 0.093
GR (zeff = 0.61) 0.504(0.485) + 0.070 0.095 £ 0.010 —0.104 £ 0.010 0.092 £ 0.011 0.314 £ 0.065 0.698 £ 0.082

Table 16. Means, standard deviations, 1o errors, and 95 per cent upper and lower bounds for fog obtained in the 2PCF-only
analysis and the joint analysis with the 3PCF using the BOSS DR 12 galaxies, assuming GR for the joint analysis with the 3PCF.
Results are shown for two redshifts at z = 0.38 and 0.61 using the NGC and SGC samples. Also shown are the results at z = 0.38
for the analysis using the rescaled covariance matrix (106) to give an acceptable p-value. The Xr%lin and p values corresponding to
this table are shown in the NGC + SGC column of Tables 9 and 14.

BOSS DR12
(fUS)mean (fUS)sld (fo'S)fla (ﬁ78)+la (f08)>95 per cerﬁfa8)<95 per cent
2PCF only (zefr = 0.38) 0.446 0.086 —0.096 0.084 0.273 0.620
2PCF only (zer = 0.61) 0.408 0.086 —0.095 0.084 0.236 0.580
GR (zefr = 0.38) 0.561 0.108 —0.122 0.098 0.348 0.785
GR (zefr = 0.61) 0.394 0.091 —0.099 0.088 0.208 0.580
GR (zefr = 0.38 [rescaled]) 0.549 0.108 —0.122 0.097 0.337 0.776

which constrains fog with a ~ 20 per cent precision, is not as
competitive as existing constraints (e.g. Alam et al. 2017; Ivanov
et al. 2020; Lange et al. 2022; Kobayashi et al. 2022) because we
only use large-scale information (+ > 80 ! Mpc).

9.4 o3 constraints from the Patchy mocks in GR

Table 17 summarizes the results for og from 100 Patchy mocks.

The mean values for og are 0.741 and 0.612 for z = 0.38 and
z = 0.61, respectively, in good agreement with the mock input
values (0.691 and 0.615). Specifically, they agree to an accuracy
of 7 per cent and 0.5 per cent, respectively. Since oy is the only
physical parameter unique to the 3PCF in GR, the fact that we can
estimate the og value with high accuracy guarantees the validity of
our analysis.

On the other hand, the 95 per cent lower limit of o is consistent
with zero, so we cannot detect a statistically significant signal for o'g
in our analysis.

9.5 o3 constraints from the Patchy mocks in GR with negative
Fg035 and Fiog allowed

This subsection discusses the validity of the priors set in Section 7.5
for the parameters Fyo3 and Fiog, which include non-linear bias
parameters. We impose the assumption that F, and F; are positive,
but there is no theoretical requirement that this assumption is correct
since the values of the non-linear biases are uncertain. Therefore,
as a test, we perform parameter estimation for o'g using a prior with
negative Fy and F allowed to check if it returns the input values of the
Patchy mocks. Specifically, the upper bounds of F,0'3 and Fio'g given
in Table 8 are multiplied by (—1) to set the lower bounds of Fyo'g
and Fiog. For example, we set —2.99 < (Fy08)NGe, 2=0.38 < 2.99.
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We summarize the results of this analysis in Table 18. This table
shows that the mean values for og are 1.204 at z = 0.38 and 1.004
at z = 0.61, which are about 1.5 times larger than the input values,
0.691 at z = 0.38 and 0.615 at z = 0.61, in the Patchy mocks. Thus,
if we allow negative values of Fy; and F}, we cannot estimate the
correct value of og. We have no theoretical basis for explaining this
fact, but as a result of numerical experiments, we conclude that it
is reasonable to impose the conditions Fy > 0 and F; > 0 in our
analysis.

9.6 o3 constraints from the BOSS DR12 galaxies in GR

Table 19 summarizes the results for the og constraints obtained from
the BOSS galaxies under the GR assumption. The ‘GR (z = 0.38)
[rescaled]’ refers to the results obtained using the rescaled covariance
matrix (Section 8.5). Fig. 20 plots the marginalized one- and 2D
posteriors of fog and 0.

Similar to the results for the fog constraint in Section 9.3, the
results for the og constraint remain almost the same whether the
covariance matrix is rescaled or not. Adopting the result using the
rescaled covariance matrix as the final result, the og constraints at
the 1o level are

o = 0.6927030

oy = 0.56810 141

atz = 0.38,

atz = 0.61, (109)

Also, as expected from the results of the Patchy mocks, the
95 per cent lower bounds for og reach 0, so at the 95 per cent level,
we get only the upper bounds:

og < 1.568 (95 per centCL) atz = 0.38,

og < 1.323 (95 percentCL) atz = 0.61. (110)
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Table 17. Constraint results for og obtained from the 100 Patchy mocks. One hundred means, standard deviations, £ 1o errors, and 95 per cent
upper and lower bounds are computed from the 100 Patchy mocks; then, the means and standard deviations of them are shown. Values in
parentheses are the input values for the Patchy mocks. Results are shown for two redshift bins at z = 0.38 and 0.61 in combination with the
NGC and SGC samples. Also shown are the results for the joint analysis with the 3PCF assuming GR. The x%m and p values corresponding

to this table are shown in the NGC + SGC column of Table 13.

MultiDark—Patchy mocks

<08>1nean <08>sld (US)fla <08>+la <U8>>95 per cent <U8><95 per cent
GR (zesf = 0.38)  0.741(0.691) £0.347 0476 £0.142 —0.626 +£0.184  0.235 £ 0.191 0.024 £ 0.097 1.668 + 0.617
GR (zesr = 0.61)  0.612(0.615) £0.319  0.415£0.165 —0.550+=0.220  0.176 & 0.156 0.003 £ 0.023 1.410 £ 0.636

Table 18. Same as Table 17, except that a prior with negative F; and F\ allowed is adopted.

MultiDark—Patchy mocks
Negative F; and F allowed

(08 ) mean (08)std (08)-10 (08)+10 (08)>95 per cent (08) <95 per cent
GR (zefr = 0.38) 1.204 (0.691) £ 0.429 0.628 £+ 0.109 —0.771 £0.184  0.499 £+ 0.263 0.151 £ 0.269 2.409 £ 0.568
GR (zefr = 0.61) 1.004 (0.615) £ 0.441 0.584 £ 0.156 —0.750 £ 0.198  0.374 4+ 0.260 0.072 £ 0.176 2.140 £ 0.719

Table 19. Means, standard deviations, 1o errors, and 95 per cent upper and lower bounds for og obtained in the
joint analysis of the 2 and 3PCFs using the BOSS DR12 galaxies, assuming GR. Results are shown for two redshifts
at z = 0.38 and 0.61 using the NGC and SGC samples. Also shown are the results at z = 0.38 for the analysis using
the rescaled covariance matrix (106) to give an acceptable p-value. The xém and p values corresponding to this table

are shown in the NGC + SGC column of Tables 9 and 14.

BOSS DR12
(0°8)mean (08)std (08)-10 (08)+16  (08)>95 per cent (08)<95 per cent
GR (zefr = 0.38) 0.702 0.451 —0.576 0.221 0.000 1.563
GR (zeff = 0.61) 0.568 0.404 —0.547 0.144 0.000 1.323
GR (zefr = 0.38 [rescaled]) 0.692 0.459 —0.591 0.209 0.000 1.568

These results are consistent with the og values, (og = 0.681, 0.606
at z = 0.38, 0.61), calculated from the cosmological parameters in
a flat ACDM model given by Planck 2018 (Section 1).

The ratio of the standard deviation to the mean for og is
(08)sta/(0°8)mean = 0.66 at z = 0.38 and 0.71 at z = 0.61, indicating
that the galaxy sample at z = 0.38 provides a better constraint on o'g.
This result is consistent with the Fisher analysis in Section 7.3.

9.7 & constraints from the BOSS DR12 galaxies in Horndeski
and DHOST theories

Table 20 summarizes the constraint results for the parameter &,
defined as &; = Ing,, (E f) =Ing,, (f/«s) (49), characterizing the
time evolution of the amplitude of the linear velocity field. In GR
and Horndeski theories, & corresponds to the well-known parameter
y since ks = 1;in GR, &, = y = 6/11 (50).

Using all the four galaxy samples, at the 1o level, we obtain

y = 0.48579957  in Horndeski,

g = 0.79170%; in DHOST, (111)
and at the 95 per cent confidence level, we have

—1.216 < y < 2.175(95 per centCL)  in Horndeski,

—0.907 < &; < 2.447 (95 per centCL)  in DHOST. (112)

All results in Table 20 are consistent with GR within the 1o level.
Note that the y constraints in Horndeski theories obtained here are
not directly comparable to those obtained from existing studies by,
e.g. Gil-Marin et al. (2017b). The reason is that we simultaneously

vary the &, parameter characterizing the tidal term in the non-linear
velocity field in Horndeski theories, while Gil-Marin et al. (2017b)
use the bispectrum model assuming GR.

9.8 & constraints from the BOSS DR12 galaxies in Horndeski
and DHOST theories

Table 21 summarizes the constraint results for the &, parameter,
defined as & =Ing, (E) = Ing, (Ao/ks) (49), characterizing the
time evolution of the tidal term in the second-order velocity field. In
GR, & = 15/1144 (50), and if &, deviates from the GR value, it is
evidence for Horndeski or DHOST theories.

Using all the four galaxy samples, at the 1o level, we obtain

& = 5.1517$012  in Horndeski,

& = 5.4147$9%  in DHOST, (113)
and at the 95 per cent confidence level, we have

—2.098 < & (95 per centCL)  in Horndeski,

—1.655 < & (95 per centCL)  in DHOST. (114)

equations (113) and (114) are one of the main results in this paper.
Since the 95 per cent upper bounds of &; obtained in this analysis
reach the upper bounds set by the flat prior distribution (Section 7.5),
we present only the 95 per cent lower bounds here.

All results in Table 21 are consistent with GR within the
95 per cent level.
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Table 20. Means, standard deviations, =10 errors, and 95 per cent upper and lower bounds for &/ obtained in the joint analysis of
the 2 and 3PCFs using the BOSS DR12 galaxies, assuming Horndeski or DHOST theories. The results for the two redshifts, z = 0.38
and 0.61, and their combined case are shown. Both NGC and SGC samples are used for all cases. Also shown are the results at z =
0.38 for the analysis using the rescaled covariance matrix (106) to give acceptable p-values. The X%m and p values corresponding to

this table are shown in the NGC + SGC column of Tables 9 and 14.

BOSS DR12
(%__f)mcan (Sf)std (Sf)—lrr (%_f)-%—lrr (%-f)>95 per cem(sf)<95 per cent
Horndeski (zefr = 0.38) 0.206 1.016 —-0.777 1.176 —1.906 2.201
Horndeski (zeff = 0.61) 1.142 1.671 —1.431 1.862 —2.302 4.480
Horndeski (zeff = 0.38, 0.61) 0.562 0.818 —0.703 0.913 —1.079 2.226
Horndeski (zefr = 0.38 [rescaled]) 0.202 1.043 —0.833 1.201 —1.921 2.287
Horndeski (zeff = 0.38 [rescaled], 0.61) 0.485 0.839 —0.708 0.967 —1.216 2.175
DHOST (zefr = 0.38) 0.458 1.013 —0.790 1.188 —1.564 2.474
DHOST (zefr = 0.61) 1.248 1.722 —1.372 1.981 —2.318 4.630
DHOST (zefr = 0.38, 0.61) 0.834 0.829 —0.686 0.963 —0.814 2.484
DHOST (zefr = 0.38 [rescaled]) 0.129 1.131 —0.895 1.078 —2.096 2.473
DHOST (zefr = 0.38 [rescaled], 0.61) 0.791 0.830 —0.691 0.963 —0.907 2.447
Table 21. Same as Table 20, except that the results for &; are shown.
BOSS DR12
(& Omean (E0su E0-10 (Sl)-%—la (60)>95 per cent (60 <95 per cent

Horndeski (zeff = 0.38) 4.221 4.693 —5.982 5.710 —3.380 -
Horndeski (zeff = 0.61) 11.118 7.354 —7.204 9.639 —1.256 -
Horndeski (zesf = 0.38, 0.61) 5.298 4.257 —4.023 6.092 —1.865 -
Horndeski (zefr = 0.38 [rescaled]) 4.129 4.704 —5.968 5.268 —3.485 -
Horndeski (zeff = 0.38 [rescaled], 0.61) 5.151 4.300 —4.016 6.112 —2.098 -
DHOST (zefr = 0.38) 4.288 4.589 —6.002 5.348 —3.103 -
DHOST (zeft = 0.61) 11.361 7.387 —6.785 10.112 —1.183 -
DHOST (zef = 0.38, 0.61) 5.349 4.217 —3.980 5.915 —1.688 -
DHOST (zegr = 0.38 [rescaled]) 3.745 4.732 —6.165 5.262 —-3.921 -
DHOST (zefr = 0.38 [rescaled], 0.61) 5414 4211 —3.734 6.007 —1.655 -

9.9 &, constraints from the BOSS DR12 galaxies in DHOST
theories

Table 22 summarizes the constraint results for &g, defined as & =
Ing,, (Es) = Ing,, (ko/Ks) (49), characterizing the time evolution of
the shift term in the second-order velocity field. In GR or Horndeski
theories, £, = 0 (50) because ks = kg = 1. If & £ 0, then it is the
specific signal appearing in DHOST theories. Note that &5 # 0 is a
sufficient condition for detecting DHOST theories because there can
be DHOST theories satisfying ks = k¢ (see Section 3.4).
Using all the four galaxy samples, at the 1o level, we obtain

& = 5.378739%, (115)
and at the 95 per cent confidence level, we have
—0.504 < & (95 per centCL), (116)

where we show only the lower limit of & for the same reason as for
&,. equations (115) and (116) are the other main results of this paper
in addition to equations (113) and (114).

All results in Table 22 are consistent with GR within the
95 per cent level.

For all the results obtained from Tables 20, 21, and 22, the standard
deviations of & ¢ | obtained by combining the samples z = 0.38 and
z = 0.61 are smaller than those obtained at z = 0.38 and z = 0.61,
respectively. Therefore, future galaxy surveys with more redshift bins
should improve our &  ; constraints.
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Similar to the fog and o results in GR, we confirm that the con-
straints of £/,  ( are hardly affected by rescaling the covariance matrix
by 15 per cent — 25 per cent at z = 0.38. This finding indicates that
the results for &/ ;  presented here will not change significantly even
if future re-analysis from a better mock simulation gives acceptable
p-values.

9.10 Joint analysis with the monopole 3PCF only

This subsection presents the results of a joint analysis of the
monopole and quadrupole 2PCFs (£ and &,) with only the monopole
3PCFs (Zgo0 and ¢110) and compares them with our main results,
revealing the importance of the information in the quadrupole 3PCFs
(¢ 202 and ¢ 12). In other words, we compare the results corresponding
to Case 2 and Case 7 in equation 100. For simplicity, we focus here
on the case where all four BOSS galaxy samples are used assuming
DHOST theories and present a comparison of the results for &/, &,
and &,. For Case 2, as in Case 7, we determine the parameter priors
according to the method described in Section 7.5, based on the results
of the Fisher analysis.

The results of the joint analysis with the monopole 3PCFs are as
follows:

(Sl)mean =+ (ét)sld = 257.451 £ 145.68,
(mean £ (E)wa = 137.396 £ 79.215. (117)
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Table 22. Same as Table 20, except the results for &4 that varies in DHOST theories are shown.

BOSS DR12
(&5)mean (&s)std Es)-10 (Ss)-%—la (&s)>95 per cent (5)<95 per cent
DHOST (zefr = 0.38) 5.232 3.495 —2.948 4.904 —0.744 -
DHOST (zefr = 0.61) 8.791 6.841 —6.984 8.889 —2.653 -
DHOST (zefr = 0.38, 0.61) 5.407 3.360 —2.988 4.664 —0.275 -
DHOST (zefr = 0.38 [rescaled]) 5.307 3.519 —2.854 5.063 —0.740 -
DHOST (zeff = 0.38 [rescaled], 0.61) 5.378 3.438 =2.771 4.993 —0.504 -

Table 23. Comparison of the standard deviations, o fisher(0) and (0)gq,
obtained from the Fisher analysis and MCMC for 6 = &, &, &;. The results
are shown for each redshift of z = 0.38 and z = 0.61 and the combined case
of the two redshifts. In all cases shown here, the NGC and SGC samples
are used; the MCMC results at z = 0.38 use the rescaled covariance matrix
(Section 8.5). All the values summarized here are those already given in
Tables 7 and 20-22. When combining the results for the different galaxy
samples in Table 7, we use the standard error composition formula, assuming
that each galaxy sample is independent.

DHOST

(&p)sud O fisher(§1)
zeff = 0.38 1.131 0.967
Zeff = 0.61 1.722 1.782
Zeff = 0.38, 0.61 0.830 0.850

(%‘l)sld Uﬁsher(sl)
zeff = 0.38 4732 3.577
Zeff = 0.61 7.387 6.834
zeff = 0.38, 0.61 4211 3.169

(Ss)std O'ﬁsher(és)
zeff = 0.38 3.519 3.147
Zeff = 0.61 6.841 5.906
zeff = 0.38, 0.61 3.438 2.778

On the other hand, adding the quadrupole 3PCFs presents (§\)ga =
4.211 (Table 21) and (£4)sa = 3.438 (Table 22).

The addition of the quadrupole 3PCFs reduces the values of
(€)sa and (&5)sq by a factor of ~35 and ~20, respectively. This
improvement is consistent with the Fisher analysis result in Section 7
(see equation (102) and Table 5). Therefore, we conclude that
the quadrupole component of the 3PCF should always be used to
constrain &, and &. Finally, the same should hold for testing other
modified gravity theories through non-linear velocity fields.

9.11 Consistency check with the Fisher analysis

This subsection discusses the consistency between the Fisher analysis
results in Section 7 and our final results from MCMC in this
section. For this purpose, We compare the standard deviation of
a parameter 0 computed from the Fisher analysis, o fsher(6), With that
estimated from MCMC, (0)s4, Where the parameters of interest are
0 =&y, &, &, which are the main target of this paper.

Table 23 summarizes the cases for each redshift bin of z = 0.38
and z = 0.61 and for using both redshift bins, assuming DHOST
theories. The values shown in this table are given from Tables 7 and
20-22. When combining the results for the different galaxy samples
in Table 7, we use the standard error combination formula, assuming
that each galaxy sample is independent.

Table 23 shows that the MCMC results satisfy (0)sq = 0 fisher(0),
indicating that the MCMC results are consistent with the Fisher
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analysis results, as expected. This result reinforces the validity of
our main results shown in Tables 20-22.

9.12 Comments on bias effects on shift terms

DHOST theories change the shift term of the non-linear density
fluctuation from GR, which may introduce a new bias effect in the
shift term, i.e. the shift bias parameter. Since E ; ; ; are the parameters
that cancel the o g-dependence using the coefficients of the shift term
of the density fluctuation, when the shift bias appears, E 7 s ; will also
be contaminated by the bias effect. Furthermore, the shift bias may
induce bias effects in linear and non-linear velocity fields. In such
cases, we cannot use the parametrization Ey , = Qi{'s" adopted in
this paper to characterize the time dependence of Ey s  because the
time dependence of the bias parameter is uncertain.

If we assume the presence of the shift bias effect, we propose
simultaneously constraining all the six parameters (Fy03), (Fs03),
(Fi03), (G403), (Gso3), and (G,073) (37) that characterize the growth,
shift, and tidal terms in the density and velocity fields in each galaxy
sample as a more general test of modified gravity theories. In such an
analysis, we should remove the relation G, = G — (2/3)G, imposed
in DHOST theories. In particular, the E parameter, which represents
the ratio of the coefficients of the shift terms of the non-linear density
and velocity fields: Es = (Gso3)/(F03), is always E; = 1 in GR and
Horndeski theories. Therefore, testing whether £ = 1 in each galaxy
sample verifies the theory of varying the shift term, such as DHOST-
like theories. In other words, it should provide a means to test the LSS
consistency relation, which DHOST-like theories violate (Section 1),
using the galaxy 3PCF (or bispectrum).

10 CONCLUSIONS

This paper presents a joint analysis of the anisotropic 2 and 3PCFs
measured from the publicly available BOSS DR12 galaxy data to test
cosmological modified gravity theories. This paper has two important
implications. First, it is the first work to extract cosmological
information from actual galaxy data using the anisotropic component
of the galaxy 3PCF induced by the RSD effect. Secondly, this analysis
is the first attempt to constrain the non-linear effects of modified
gravity theories from the galaxy three-point statistics.

We consider DHOST theories and their subclass, Horndeski
theories, which are the candidates for modified gravity theories
(see Section 2.1). They are quite general theoretical frameworks
of scalar-tensor theories. Since the time evolution equation of the
linear density fluctuations in these theories is scale-independent (6),
the difference with GR appears only in the linear growth rate fin the
linear theory (Hirano et al. 2019a). On the other hand, the non-linear
gravitational effect causes a difference in the scale-dependence of the
density fluctuation, which allows us to examine the deviation from
GR more clearly. Specifically, Horndeski theories change the tidal
term of the second-order density fluctuation from GR, while DHOST
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theories change both the shift and tidal terms (10 and 38; Hirano et al.
2018). However, since non-linear bias parameters contaminate the
density fluctuations, Yamauchi & Sugiyama (2022) have pointed out
that one should investigate supposedly unbiased non-linear velocity
fields induced by the RSD effect (see Section 3.4 for a review).
Specifically, they have suggested that one should constrain the
parameters &, and &, which characterize the time evolution of the
tidal and shift terms of the second-order velocity field: &, = 15/1144
in GR and &; = 0 in GR and Horndeski theories. Therefore, if &5 #
0, then it is the signal specific to DHOST theories; they have also
pointed out that in DHOST theories, the parameter y = Ing, (f),
which characterizes the time dependence of the linear growth rate
/» is extended to &§; = Ing,, (f/«) with « being the time-dependent
function appearing in the shift term of the density fluctuation. To
this end, we test DHOST and Horndeski theories by constraining
these parameters &, &, and & using the joint analysis method of the
anisotropic 2 and 3PCEF, established by Sugiyama et al. (2021).

The following is a summary of the details of the analysis method-
ology and the findings obtained.

(1) Following Sugiyama et al. (2019), we apply the TripoSH
decomposition method to the 3PCF to extract information about
the anisotropic, i.e. quadrupole, component of the 3PCF (see
Sections 3.1 and 4.2). To simplify the data analysis, we then use
only two monopole components (¢ goo and ¢ 119) and two quadrupole
components ({202 and ¢1j2) from the decomposed 3PCF. For the
2PCF, we adopt the commonly used Legendre decomposition method
and use the monopole and quadrupole components: i.e. £y and &,.
It is worth noting that £, includes only the M = 0 mode that
appears in Scoccimarro et al. (1999)’s decomposition formalism,
while ¢, includes M # 0 modes in addition to the M = 0 mode.
Furthermore, the TripoSH-decomposed 3PCF allows a quantitative
evaluation and detailed study of the survey window effect present in
the measured 3PCFs (see Section 4.3). Thus, this work is the first
to extract information on the M # 0 modes from actual galaxy data,
taking into account the window effect.

(ii) We only use data at large scales of 80h~!'Mpc <r <
150 h~! Mpc, where higher-order non-linear corrections, called loop
corrections, are not expected to contribute much to the 2 and
3PCF. In order to test modified gravity theories consistently using
smaller scales, it is necessary to construct a model that includes
the non-linear effects of modified gravity theories so that they are
also included in the loop corrections. To our knowledge, only one
such analysis has been performed so far for the case of the power
spectrum in f{R) gravity (Song et al. 2015a). However, it is known
that various uncertainties arise in the non-linear power spectrum in
DHOST theories, such as IR cancellation breaking (Crisostomi et al.
2020; Lewandowski 2020) and UV divergence (Hirano et al. 2020).
These theoretical uncertainties should also appear in the bispectrum.
Therefore, focusing only on large scales is necessary to remove the
theoretical uncertainties and safely constrain the non-linear effects of
modified gravity theories. Our analysis is thus the second example of
a consistent analysis incorporating the non-linear effects of modified
gravity from spectroscopic galaxy surveys, and the first to use the
galaxy three-point statistic.

(iii) As a theoretical model for the 3PCF, we use the IR-resummed
model (34) proposed by Sugiyama et al. (2021; see Section 3.2).
This model can describe the BAO damping effect while keeping the
shape of the 3PCF in the tree-level solution. For this model, we have
investigated how the three decomposed non-linear effects, i.e. the
growth, shift, and tidal terms, affect the 3PCF multipoles (see Figs 1
and 2 in Section 3.3). For example, in the quadrupole components
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(¢202 and ¢q12), the dominant term is the product of the linear
density fluctuation and the linear velocity field that appears during
the coordinate transformation from real space to redshift space;
otherwise, the non-linear effects of the density and velocity fields
contribute to the quadrupole component to the same extent. Figs 12—
19 in Section 9.1 show the ¢o00, {1105 {202, and ¢ 11> measured from
the four BOSS galaxy samples and the corresponding theoretical
models calculated using the best-fitting parameters.

(iv) We have used the 2048 publicly available Patchy mocks to
compute the covariance matrices of the 2 and 3PCFs in Section 5.
In our analysis, we ensure that the number of data bins in the 2 and
3PCFs is sufficiently smaller than the number of the 2048 mocks. In
particular, the parameter M, (88), which represents the impact of a
finite number of mocks on the final parameter error, is at most M, ~
1.1 (see Section 6.4).

(v) To understand the nature of the covariance matrix, we have
calculated the cumulative S/N of the 2 and 3PCFs in Section 5.4.
The results show that the cumulative S/N of the 3PCF has different
characteristics from that of the 2PCF. In the case of the 2PCF,
the galaxy sample at z = 0.61 with a larger volume has a smaller
covariance matrix than the sample at z = 0.38, resulting in a larger
S/N at z = 0.61. On the other hand, for the 3PCF, the S/N at z =
0.38 is comparable to the S/N at z = 0.61. Therefore, the difference
in survey volume cannot explain the relationship between the S/N of
the 3PCF at z = 0.38 and 0.61. A possible explanation for this 3PCF
S/N behaviour is that the covariance matrix of the 3PCF depends
strongly on the number density of the galaxies (see Sugiyama et al.
2020): the BOSS sample at z = 0.38 has a higher number density
than the sample at z = 0.61, even with a smaller survey volume
(Table 1). We interpret this higher number density as why the S/N at
z = 0.38 is as high as that at 7 = 0.61.

(vi) We have investigated the extent to which higher-order terms
in the TripoSH decomposition of the 3PCF contain cosmological
information by Fisher analysis (see Section 7.2). The results show
that ¢,0, is the main cosmological information in the quadrupole
3PCF, while other information is contained in the higher-order term
C112 in addition to ¢yp. Since ¢ 11, contains the M # 0 modes in
Scoccimarro et al. (1999)’s decomposition formalism but not in ¢ 5g;,
this result indicates the importance of the M # 0 modes.

(vii) In Section 8, we have reported that at large scales (>
80 2~ Mpc), there can be statistically significant differences between
the 3PCFs measured from the BOSS galaxies and the corresponding
theoretical models, regardless of whether we assume GR, Horndeski
or DHOST theories. For example, the p-value obtained from the
SGC sample at z = 0.38 is less than 0.01, and the p-value obtained
from the combined sample of the four BOSS samples is 0.001 (see
Section 8.1). This result means that the discrepancies between the
galaxy data and the theoretical models cannot be explained within the
framework of scalar-tensor theory, even if they are due to unknown
physical effects. Other results show that the discrepancy is mainly due
to the monopole component of the 3PCF rather than the quadrupole
component (see Section 8.2), and that this discrepancy cannot be
explained even if the prior distribution of the parameters is changed
(see Section 8.3). Finally, we have repeated the same analysis for the
100 Patchy mocks as for the BOSS sample in Section 8.4. The results
show a statistically significant difference of more than 5o between
the p-values of the Patchy mocks and the BOSS galaxies. Therefore,
the statistical variability of the Patchy mock galaxies cannot explain
the low p-values (p ~ 0.001) obtained from the BOSS galaxies.

(viii) In this paper, we assume that the discrepancy between the
BOSS galaxy sample and the theoretical model is due to an inappro-
priate 3PCF covariance matrix computed from the Patch mocks. We
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then take a conservative approach by artificially rescaling the 3PCF
covariance matrix at z = 0.38 by 15 per cent for NGC and 25 per cent
for SGC, resulting in acceptable p-values (see Section 8.5). To
confirm the validity of this method, we have presented in Section 9
the results of constraining the parameters of interest with and without
rescaling the covariance matrix and have confirmed that there is no
significant difference in the final results obtained in these two cases.
We interpret this result as being due to a more significant degeneracy
effect between the parameters than the ~ 20 per cent difference in the
3PCF covariance matrix. Therefore, we do not expect that calculating
the covariance matrix from simulation data that better reproduce the
distribution of the BOSS galaxies will significantly change the results
of the present paper.

(ix) We have constrained fog from the BOSS galaxies assuming

GR in Section 9.3. There, we have shown that adding isotropic
and anisotropic 3PCF components (£ o0, ¢ 110, {202, and ¢ 12) does
little to improve the results compared to the 2PCF-only analysis.
Nevertheless, the analysis using the Patchy mocks shows that the
3PCF information does help to reduce the bias of the mean value of
fos (see Section 9.2). Finally, we obtain foy = 0.54970% at z =
0.38 and foy = 0.39470055 at z = 0.61 in the joint analysis of the
anisotropic 2 and 3PCFs assuming GR (108). These fog results are
not as competitive as existing constraints (e.g. Alam et al. 2017;
Ivanov et al. 2020; Lange et al. 2022; Kobayashi et al. 2022) because
we only use large-scale information (+ > 80 h~! Mpc).
One may think that adding the 3PCF information does not improve
the fog results due to the focus on large scales only (+ > 80 4~! Mpc).
To test this concern, we have performed a Fisher analysis that
includes small scales (302! Mpc < r < 150! Mpc) and find
that even if we extend the used scales to 30 /47! Mpc, there is no
improvement in the fo g results (see Section 7.4). However, note that
we use the IR-resummed tree-level model of the 3PCF in this Fisher
analysis. Therefore, if we use a theoretical model with various loop
corrections applicable down to small scales, parameter degeneracy
may break, and it may still be possible to obtain improved fog
constraints through a joint analysis of the 2 and 3PCFs.

(x) We have constrained og from the BOSS galaxies assuming
GR in Section 9.6. Thus, while the 3PCF information does not
improve the fo g constraints, it helps to break the degeneracy between
parameters by providing information on og: e.g. it allows us to
constrain f. We have obtained og = 0.692702) at z = 0.38 and
oy = 0.56870147 at z = 0.61 at the lo level. These results are
consistent with og = 0.681, 0.606 at z = 0.38, 0.61 calculated from
the cosmological parameters in a flat ACDM model given by Planck
2018. The ratio of the standard deviation to the mean for oy is
(08)sta/(0°8)mean = 0.66 at z = 0.38 and 0.71 at z = 0.61, indicating
that the galaxy sample at z = 0.38 provides a better constraint on
og. This result can be attributed to the higher number density of
the sample at z = 0.38 compared to that at z = 0.61, similar to the
argument of the cumulative S/N in Section 5.4.

(xi) Our main results, the constraints on the &, & and &
parameters in DHOST theories, are summarized in Sections 9.7, 9.8,
and 9.9. There, we obtain £, = 0.791%)¢6; (111), & = 5.41475%]
(113), and & = 5.378739%3 (115) at the 1o level; we also have
—0.907 < & < 2.447 (112), —1.655 < & (114), and —0.504 <
& (116) at the 95 per cent confidence level. Since we cannot detect
the signal of the tidal and shift terms in the second-order velocity
field in the present analysis, we can only present the 95 per cent lower
bounds of the &, and & parameters. These results are consistent with
the GR predictions §; = y = 6/11, § = 15/1144, and &5 = O (see
Fig. 21). Moreover, we have checked the consistency of the estimated
results from the BOSS galaxy sample with the Fisher analysis
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for the constraints on the &, parameters in DHOST theories in
Section 9.11.

In Horndeski theories, we obtain &y =y = 0.4851027 and & =
515175412 at the 1o level, and —1.216 < y < 2.175 and —2.098 <
& at the 95 per cent confidence level. The y constraint in Horndeski
theories obtained here is not directly comparable to those obtained
from existing studies by, e.g. Gil-Marin et al. (2017b) because we
simultaneously vary the &, parameter in Horndeski theories.

(xii) We have shown that the anisotropic component of the 3PCF
contributes significantly to the constraints on the shape of the non-
linear velocity field in Section 9.10. In particular, the constraints
on the parameters &, and & are ~35 and ~20 times better when
the anisotropic component is added than when only the isotropic
component is considered. This result strongly supports the main
claim of this paper that the anisotropic three-point statistics should
be considered to test the non-linearity of modified gravity theories.

Below is a summary of some of the concerns and future enhance-
ments to the results of this paper.

(i) In order to encourage the future development of the anisotropic
3PCF analysis, we comment on the situation beyond the assumptions
used to derive the non-linear effects of DHOST theories that we
focus on in this paper (see Section 2.2). First, our analysis can
be applied to other modified gravity theories, such as f{R) gravity
models and brane-world models. In addition, it should also be
possible to constrain effects such as the CDM-baryon relative
velocity and massive neutrinos, which give rise to characteristic
non-linear behaviour. The calculations of DHOST theories in this
paper assume minimal coupling between the metric field and the
scalar field, Gaussianity of the initial conditions, and the quasi-static
limit, but we need additional correction terms if these assumptions
are removed. In addition, since DHOST theories modify the shift
term from GR, we cannot exclude the possibility of shift bias, which
we do not consider in a ACDM model. In the presence of shift bias,
we cannot use the & and &, parameters to constrain DHOST theories,
but we expect the E; and E, parameters constrained at each redshift
to remain valid (Section 9.12).

(i) We also comment on some improvements in our analysis of the
anisotropic 3PCF (see Section 3.5). First, as more mock catalogues
are created in the future, increasing the number of multipoles in the
3PCF to be considered should improve the results of this work (e.g.
Byun & Krause 2022). Secondly, as shown in Fig. 10, we can
dramatically improve the current parameter constraints by using the
theoretical model of the 3PCF, which is applicable to small scales
(see Section 7.4). Thirdly, although we have used the shape of the
linear power spectrum calculated by an ACDM model in a high-z
region in this work, it needs to be calculated in the framework of
DHOST theories in the future (e.g. Hiramatsu & Yamauchi 2020).
Fourthly, we have calculated the Gaussian function describing the
damping effect of the BAO signal for a ACDM model, but we also
need to constrain this function itself. Finally, we have neglected
the AP effect in this work; the analysis method of the anisotropic
3PCF that includes the AP effect has been established by Sugiyama
et al. (2021) using the Patchy mock and should be straightforward
to apply to actual galaxy data. We hope that addressing these issues
will further improve our results.

Finally, in Section A, we provide the software package that can
reproduce all the results obtained in this paper, HITOMI. The aim
of HITOMI is to make available all the programmes we have used to
complete the anisotropic 3PCF analysis, from downloading the SDSS
DR12 galaxy data, measuring the 2PCFs and 3PCFs, computing the
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theoretical models, calculating the covariance matrices, the window
function corrections, MCMC analysis, and producing figures and
tables. This makes it easier for any user to see how partial im-
provements to HITOMI, e.g. improved 3PCF model calculations, feed
through to the final parameter constraints. Furthermore, by replacing
the BOSS galaxy data used in HITOMI, our analysis can be easily
applied to future galaxy surveys such as DESI (DESI Collaboration
et al. 2016), Euclid (Laureijs et al. 2011), and PFS (Takada et al.
2014).
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APPENDIX A: HITOMI

In order to improve the reproducibility of the results of this paper,
we publish the complete set of program codes we used under the
name HITOMI. The languages used in it are C+ 4 and PYTHON.
Users can download the source files from the following link: ht
tps://github.com/naonori/hitomi.git. In particular, to reproduce the
results of this paper, refer to the DEMO section of the linked page.
There, it explains how to measure the 2 and 3PCFs from the BOSS
DRI12 data, compute the theoretical model including the window
function correction, compute the covariance matrix from the Patchy
mocks, combine them to perform the Fisher and MCMC analyses,
and finally summarize the obtained results in figures and tables.
To illustrate these things, we recorded a video of us running the
program and uploaded it to YouTube. The text editor used for this
is vim.

HITOMI requires several external programs such as MON-
TEPYTHON (Brinckmann & Lesgourgues 2019), CLASS (Blas et al.
2011), CUBA (Hahn 2005), GSL,"* FFTW (Frigo & Johnson 2005),
and FFTLOG (Hamilton 2000). We have written a script with the
code to install the external programs needed to run HITOMI on
the Cray XC50 at the Center for Computational Astrophysics of
the National Astronomical Observatory of Japan. A video record-
ing of the use of this script is available at the following link:
https://www.youtube.com/watch?v = vIP7XIXZsUM. Of course,
users of other PC clusters will have to install HITOMI according
to their environment. Nevertheless, our installation instructions will
be helpful to users as a demonstration.

HITOMI not only reproduces the results of this paper but also
offers various options. For example, it can measure both the power
spectrum and the bispectrum. HITOMI also provides the codes to
simplify the 3PCF and bispectrum measurements for simulations
with periodic boundary conditions with a global LOS direction. It
is also possible to measure the 2 and 3PCFs (power spectrum and
bispectrum) after the reconstruction of the galaxy distribution and
compute the corresponding reconstructed models (Eisenstein et al.
2007b; Shirasaki et al. 2021). Although not yet implemented, in
the future, we plan to release a code to compute the bispectrum
covariance matrix of galaxies based on perturbation theory, as was
done by Sugiyama et al. (2020). We also plan to release a code that
performs an anisotropic BAO analysis using the anisotropic 3PCF,
as in Sugiyama et al. (2021).

It is possible to modify parts of the HITOMI code, e.g., the
theoretical calculation of the 3PCF, to investigate how the results
propagate to the final parameter constraint results. It is also possible
to replace the BOSS DR12 galaxy data with data from other galaxies
or galaxy clusters, e.g., PFES (Takada et al. 2014), DESI (DESI
Collaboration 2016), Euclid (Laureijs et al. 2011), SPHEREx (Doré
et al. 2014), CMB-S4 (Carlstrom et al. 2019), and eROSITA (Pre-
dehl et al. 2021), to perform data analysis of the 3PCF or
bispectrum.

Yhttp://www.gnu.org/software/gsl/
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