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A B S T R A C T 
We report a new test of modified gravity theories using the large-scale structure of the Universe. This paper is the first attempt 
to (1) apply a joint analysis of the anisotropic components of galaxy two- and three-point correlation functions (2 and 3PCFs) 
to actual galaxy data and (2) constrain the non-linear effects of degenerate higher-order scalar-tensor (DHOST) theories on 
cosmological scales. Applying this analysis to the Baryon Oscillation Spectroscopic Surv e y (BOSS) data release 12, we obtain 
the lower bounds of −1.655 < ξ t and −0.504 < ξ s at the 95 per cent confidence level on the parameters characterizing the time 
evolution of the tidal and shift terms of the second-order velocity field. These constraints are consistent with GR predictions 
of ξ t = 15/1144 and ξ s = 0. Moreo v er, the y represent a 35-fold and 20-fold impro v ement, respectiv ely, o v er the joint analysis 
with only the isotropic 3PCF. We ensure the validity of our results by investigating various quantities, including theoretical 
models of the 3PCF, window function corrections, cumulative S/N, Fisher matrices, and statistical scattering effects of mock 
simulation data. We also find statistically significant discrepancies between the BOSS data and the Patchy mocks for the 3PCF 
measurement. Finally, we package all of our 3PCF analysis codes under the name HITOMI and make them publicly available so 
that readers can reproduce all the results of this paper and easily apply them to ongoing future galaxy surv e ys. 
Key words: dark matter – large-scale structure of Universe – cosmology: observations – cosmology: theory. 

1  I N T RO D U C T I O N  
1.1 Outline and summary 
This paper presents a comprehensive study of the joint analysis of 
galaxy two- and three-point correlation functions (2 and 3PCFs) 
with isotropic and anisotropic components to constrain the non-linear 
effects of modified gravity theories on a cosmological scale. Section 1 
outlines the theoretical development and the present constraints 
for scalar-tensor theories. We also outline the development of the 
measurement and analysis of the 3PCF of galaxies. We organize this 
paper such that readers unfamiliar with both or one of the two areas 
follow the recent developments and understand how they fit together. 

Readers interested in the theoretical aspects may read Sections 2 , 
3 , and 7 . Section 2 re vie ws the non-linear e volution of the large-scale 
structure (LSS) of the Universe in scalar-tensor theories. Section 3 
presents detailed calculations of the theoretical model of the 3PCF 
and, in particular, investigates the dependence of the parameters that 
characterize the effect of scalar-tensor theories on the 3PCF model. 
Finally, Section 7 discusses the extent to which the 3PCF contains 
information on the non-linear effects of scalar-tensor theories through 
Fisher analysis. 

Readers interested in the analysis method of the 3PCF may read 
Sections 4 , 5 , 6 , and 8 . Section 4 re vie ws ho w to measure the 3PCF 
from galaxy data and examines the effect of the window function on 
" E-mail: nao.s.sugiyama@gmail.com 

the measured 3PCFs. Section 5 presents the results of the 2 and 3PCFs 
covariance matrices computed from mock simulations. Section 6 
describes the setup for the data analysis in this paper. Finally, 
Section 8 discusses in detail whether the 3PCFs measured from 
the galaxy data in this paper can be fitted using the corresponding 
theoretical model in terms of p -values. 

For readers familiar with the two areas in the literature and 
interested in the final results, we suggest they jump directly to 
Section 9 . The no v el aspect of this paper is to focus on observationally 
constraining the second-order velocity field, which is a key to 
seeking a deviation from General Relativity (GR) in scalar-tensor 
theories. We also show that the second-order velocity field imprints 
a unique signature in the anisotropic 3PCF on large scales. Following 
Yamauchi & Sugiyama ( 2022 ) and Section 3.4 , we then parametrize 
the effects of scalar-tensor theories in the time evolution of the shift 
and tidal terms of the second-order velocity field using parameters ξ s 
and ξ t defined in equation ( 49 ). Constraining these parameters using 
Baryon Oscillation Spectroscopic Surv e y Data Release 12 (DR12) 
galaxies (Eisenstein et al. 2011 ; Bolton et al. 2012 ; Dawson et al. 
2013 ; Alam et al. 2015 ), we obtain the following lower bounds given 
in equations ( 114 ) and ( 116 ): 
− 1 . 655 < ξt and − 0 . 504 < ξs (95 per cent CL) . 
Since ξ t = 15/1144 and ξ s = 0 in GR, these results are consistent with 
GR. Finally, we summarize the final results and the various findings 
leading up to them in Section 10 , which concludes this paper. 

© 2023 The Author(s) 
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We package all the code used to complete this paper under the name 
HITOMI 1 and make it publicly available. Appendix A summarizes 
the structure and usage of HITOMI . 
1.2 General moti v ation 
The greatest mystery in current cosmology is the cause of the 
accelerated expansions that have presumably occurred twice in the 
cosmic expansion history: i.e. inflation and late-time acceleration. 

Scalar -tensor theories, modified gra vity theories that add a single 
scalar field degree of freedom to GR, have been actively studied as 
a promising candidate to explain these accelerated expansions (for 
re vie ws, see Langlois 2019 ; Kase & Tsujikawa 2019 ; Kobayashi 
2019 ; Amendola et al. 2020 ; Frusciante & Perenon 2020 ). 2 

The accelerated expansion in the very early Universe, called 
inflation (Starobinsky 1980 ; Guth 1981 ; Sato 1981 ; Linde 1982 ; 
Albrecht & Steinhardt 1982 ), is thought to be caused by a single 
scalar field in the simplest model, generating the seeds of the 
cosmic fluctuations currently observed. Furthermore, the statistical 
properties of these fluctuations are in excellent agreement with 
current observations of the cosmic microwave background (CMB; 
Aghanim et al. 2020 ) and the LSS (Alam et al. 2021a ). On the 
other hand, the cosmological constant may explain the late-time 
accelerated expansion (Riess et al. 1998 ; Perlmutter et al. 1999 ). 
Ho we ver, its smallness implies a serious fine-tuning problem in 
fundamental physics (Weinberg 1989 ; Martin 2012 ), and in order 
to a v oid this problem, it is preferable to adopt a scalar field that 
varies with time. 

In order to test scalar-tensor theories in the late-time Universe, 
it is crucial to follow the time evolution of the LSS in detail. 
Examples of already completed galaxy surv e ys are the Baryon 
Oscillation Spectroscopic Surv e y (BOSS; Eisenstein et al. 2011 ; 
Bolton et al. 2012 ; Dawson et al. 2013 ; Alam et al. 2015 ) 3 and the 
Extended BOSS (eBOSS; Dawson et al. 2016 ; Alam et al. 2021a ). 4 
Furthermore, next-generation galaxy surveys, such as the Dark 
Energy Spectroscopic Instrument (DESI; DESI Collaboration et al. 
2016 ), 5 Euclid (Laureijs et al. 2011 ), 6 and the Subaru Prime Focus 
Spectrograph (PFS; Takada et al. 2014 ), 7 will provide unprecedented 
accuracy in testing scalar-tensor theories. 
1.3 DHOST theories and their constraints 
In this paper, we pay particular attention to the behaviour in the late- 
time Universe of Degenerate Higher -Order Scalar -Tensor (DHOST) 
theory (for re vie ws, see Langlois 2019 ; Kobayashi 2019 ), which are 
a quite general theoretical framework of scalar-tensor theories that 
can e v ade the Ostrogradsky instability (Ostrogradsky 1850 ; Woodard 
2015 ; Ganz & Noui 2020 ). Scalar-tensor theories have been develop- 
ing rapidly o v er the last decade. In 2011, Deffayet et al. ( 2011 ) and 
Kobayashi, Yamaguchi & Yok o yama ( 2011 ) redisco v ered the most 
general theory with second-order equations of motion for metric 
1 ht tps://github.com/naonori/hit omi.git 
2 For re vie ws of modified gravity theories, including other theories than 
scalar-tensor theories, see Nojiri & Odintsov 2011 ; Sebastiani, Vagnozzi & 
Myrzakulo v 2017 ; Nojiri, Odintso v & Oikonomou 2017 ; Cataneo & Rapetti 
2018 ; Ishak 2019 ; Ferreira 2019 ; Baker et al. 2021 ; Arai et al. 2022 . 
3 https:// www.sdss3.org/ science/ boss publications.php 
4 https:// www.sdss.org/surveys/eboss/ 
5 http:// desi.lbl.gov/ 
6 www.euclid-ec.org 
7 https:// pfs.ipmu.jp/ index.html 

tensor and scalar fields, Horndeski theories (Horndeski 1974 ). To go 
be yond Horndeski theories, Gle yzes et al. ( 2015a , b ) found a class 
of healthy theories having higher-order field equations that reduce 
to a second-order system by combining different components (see 
also Zumalac ́arregui & Garc ́ıa-Bellido 2014 , for examples, beyond 
Horndeski). This disco v ery results from a de generac y between the 
kinetic terms of the scalar field and the metric. This class of theories 
has been extended to reach DHOST theories (Langlois & Noui 2016 ; 
Crisostomi, Koyama & Tasinato 2016 ; Ben Achour et al. 2016a ; Ben 
Achour, Langlois & Noui 2016b ; Langlois 2017 ; Langlois, Noui & 
Roussille 2020 ), encompassing Horndeski and Beyond Horndeski 
theories. 8 So far, DHOST theories have been constrained primarily 
by three observations 9 : gravitational waves (GW), celestial objects, 
and cosmological data that are the subject of this paper. 

Since GW170817 was observed by LIGO and Virgo (Abbott 
et al. 2017a ), the situation surrounding the observational constraints 
of modified gravity has changed dramatically. The simultaneous 
observation of GRB170817 (Abbott et al. 2017b ), a Gamma Ray 
burst, confirmed that the speed of GWs matches the speed of 
electromagnetic waves with high accuracy, ruling out various scalar- 
tensor theories that change the speed of GWs at low redshifts (Lom- 
briser & Taylor 2016 ; Baker et al. 2017 ; Creminelli & Vernizzi 
2017 ; Ezquiaga & Zumalac ́arregui 2017 ; Lombriser & Lima 2017 ; 
Sakstein & Jain 2017 ; Langlois et al. 2018 ). Creminelli et al. ( 2018 , 
2019 ) pointed out that a subset of DHOST theories leads to the 
decay of GWs, resulting in further tight constraints on DHOST 
theories. Ho we ver, the theory of gravity considered in that paper, the 
class I DHOST theory (Ben Achour et al. 2016b ; Crisostomi et al. 
2016 ; Langlois & Noui 2016 ), still survives and can modify gravity 
in cosmology without pathological instability (de Rham & Matas 
2016 ; Langlois et al. 2017 ; Amendola et al. 2018 ). Furthermore, 
de Rham & Melville ( 2018 ) showed that such cosmological scalar- 
tensor theories, which predict the speed of GWs to be different from 
the speed of light, break down on high energy scales ( ∼ 10 2 Hz ) 
seen in neutron star mergers, indicating that the constraints from 
GW observations may not necessarily apply to cosmological scales. 
Therefore, it is essential to test modified gravity theories indepen- 
dently at various energy scales, such as the GW and cosmological 
scales. 

DHOST theories generally have characteristic non-linear effects 
that violate the Vainshtein screening mechanism inside any gravita- 
tional source (Kobayashi, Watanabe & Yamauchi 2015 ; Koyama & 
Sakstein 2015 ; Crisostomi & Koyama 2018 ; Dima & Vernizzi 
2018 ; Langlois et al. 2018 ; Hirano, Kobayashi & Yamauchi 2019b ; 
Crisostomi, Le wando wski & Vernizzi 2019 ). As an alternative to 
the cosmological constant, scalar-tensor theories must give an O (1) 
modification from GR at cosmological scales, but at small scales, they 
must satisfy tests in weakly gravitational regions such as the solar sys- 
tem. The Vainshtein screening mechanism (for a re vie w, Babiche v & 
Def fayet 2013 ), uni versally found in scalar-tensor theories, is a typ- 
ical mechanism that satisfies these requirements, suppressing scalar 
interactions and restoring standard gravity through non-linear effects. 
8 Hereafter, we do not distinguish between Beyond Horndeski theories and 
DHOST theories. 
9 As other probes of DHOST theories, for example, Babichev & Leh ́ebel 
( 2018 ) shows that the scalar field in DHOST theories can significantly modify 
the speed of sound in the atmosphere of the Earth; Beltran Jimenez, Piazza & 
Velten ( 2016 ), Dima & Vernizzi ( 2018 ) strongly constrain DHOST models 
using Hulse-Taylor pulsar observations; Saltas & Lopes ( 2019 ) proposes 
helioseismology as a precise way to test DHOST theories on astrophysical 
scales. 
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While Horndeski theories allow for a natural implementation of 
the Vainshtein mechanism (Kimura, Kobayashi & Yamamoto 2012 ; 
Narikawa et al. 2013 ; Koyama 2016 ), DHOST theories partially 
violate it, allowing one to test DHOST theories by examining the 
internal structure of objects such as Newtonian stars (Saito et al. 
2015 ; Sakstein 2015a , b ; Jain, Kouvaris & Nielsen 2016 ; Sakstein, 
Kenna-Allison & Koyama 2017a ; Saltas, Sawicki & Lopes 2018 ; 
Saltas & Christensen-Dalsgaard 2022 ), Neutron stars (Babichev et al. 
2016 ; Sakstein et al. 2017b ), and galaxy clusters (Sakstein et al. 2016 ; 
Salzano et al. 2017 ). The Vainshtein radius, the maximum scale at 
which the Vainshtein mechanism works, is estimated to be O(100) pc 
for the Sun and O(1) Mpc for a galaxy cluster. 

DHOST theories predict a characteristic gravitational non-linear 
effect on even cosmological scales exceeding tens of Mpc. That is, 
DHOST theories violate the consistency relation for LSS (Crisos- 
tomi, Le wando wski & Vernizzi 2020 ; Le wando wski 2020 ; see 
also Hirano et al. 2018 ). The LSS consistency relation (Peloso & 
Pietroni 2013 ; Kehagias & Riotto 2013 ; Creminelli et al. 2013 ) is an 
analogue of the consistency relation originally proposed for single- 
field inflation models (Maldacena 2003 ; Creminelli & Zaldarriaga 
2004 ), which relates n -point statistics of cosmological fluctuations 
to ( n − 1)-point statistics in a non-perturbative matter. It is valid 
in the limit where the wavenumber of one of the n -points is hugely 
smaller than the others. This consistency relation is because the 
equations that the fluctuations obey are invariant under a Galilean 
transformation (Scoccimarro & Frieman 1996 ; Creminelli et al. 
2013 ). In particular, in the so-called equal-time consistency relation, 
the Galilean transformation eliminates the large-scale flow of matter 
and thus cancels all non-linear contributions when calculating the 
n -point statistics. This behaviour is also known as infrared (IR) 
cancellation (Jain & Bertschinger 1996 ; Scoccimarro & Frieman 
1996 ; Blas, Garny & Konstandin 2013 ; Kehagias & Riotto 2013 ; 
Peloso & Pietroni 2013 ; Sugiyama & Futamase 2013 ; Sugiyama & 
Spergel 2014 ; Blas et al. 2016b ; Le wando wski & Senatore 2017 ). 
On the other hand, the LSS consistency relation breaks down when 
considering multiple fluids (Tseliakhovich & Hirata 2010 ; Yoo, 
Dalal & Seljak 2011 ; Bernardeau, Van de Rijt & Vernizzi 2012 , 
2013 ; Peloso & Pietroni 2014 ; Creminelli et al. 2014a ; Le wando wski, 
Perko & Senatore 2015 ; Slepian & Eisenstein 2017 ) or primordial 
non-Gaussianities (Berezhiani & Khoury 2014 ; Valageas, Taruya & 
Nishimichi 2017 ; Esposito, Hui & Scoccimarro 2019 ; Goldstein 
et al. 2022 ), or when the equi v alence principle breaks (Creminelli 
et al. 2014b ). DHOST theories have a structure similar to that of 
multiple fluids, and on large scales, the Galilean transformation 
cannot make the relativ e v elocity between the scalar field and 
matter vanish (for details, see Crisostomi et al. 2020 ; Le wando wski 
2020 ). As a result, DHOST theories violate the LSS consistency 
relation. 

Our interest in this paper is to constrain DHOST theories 
on cosmological scales, i.e. O(10 − 100) Mpc scales. Ho we ver, 
studies using cosmological data to constrain DHOST theories 
are still limited (Hirano et al. 2019a ; Traykova, Bellini & Fer- 
reira 2019 ; Peirone et al. 2019 ; Hiramatsu 2022 ). On the other 
hand, many papers on Horndeski theories have used cosmolog- 
ical data to constrain the model (Okada, Totani & Tsujikawa 
2013 ; Barreira et al. 2014 ; Bellini et al. 2016 ; Arai & Nishizawa 
2018 ; Kreisch & Komatsu 2018 ; Mueller et al. 2018 ; Perenon 
et al. 2019 ; Melville & Noller 2020 ; Noller 2020 ; Noller & 
Nicola 2020 , 2019 ; Raveri 2020 ). Therefore, exploring new cos- 
mological methods for constraining DHOST theories is of great 
significance. 

1.4 Constraints on modified gravity theories using galaxy 
two-point statistics 
The logarithmic growth rate function f of dark matter fluctuations, 
measured using redshift-space distortions (RSD; Kaiser 1987 ), plays 
an important role in constraining modified gravity theories in the late- 
time Universe. In the power spectrum analysis, we cannot measure 
the growth rate function by itself, but usually, by the combination 
f σ 8 = d ln σ 8 / d ln a (Song & Perci v al 2009 ; Perci v al & White 2009 ) 
using σ 8 representing the rms of matter fluctuations on the 8 h −1 Mpc 
scale. F or e xample, the most recent observations, BOSS and eBOSS, 
measured f σ 8 with a precision of ∼ 5 per cent in the redshift range 
0.2 < z < 1.0 (Alam et al. 2021 a ). 

One concern is to test modified gravity theories directly using 
existing f σ 8 measurements. The standard practice is constructing a 
model of the non-linear galaxy power spectrum assuming GR, then 
using that model to measure f σ 8 from data up to the mildly non- 
linear region ( k ∼ 0 . 2 h Mpc −1 ) (for recent studies, e.g. d’Amico 
et al. 2020 ; Ivano v, Simono vi ́c & Zaldarriaga 2020 ; Lange et al. 
2022 ; Kobayashi et al. 2022 ; Yuan et al. 2022 ). Therefore, it is worth 
noting that many existing analysis results using galaxy data up to 
the non-linear region only verify the consistency of GR. Thus, to 
test the gravity theory by consistently considering both linear and 
non-linear ef fects, a po wer spectrum model that considers non-linear 
effects specific to the modified gravity theory of interest is necessary. 
Several studies have been done on this for various modified gravity 
theories (Koyama, Taruya & Hiramatsu 2009 ; Taruya et al. 2014a , b ; 
Takushima, Terukina & Yamamoto 2015 ; Bellini & Zumalacarregui 
2015 ; Barreira, S ́anchez & Schmidt 2016 ; Bose & Koyama 2016 ; 
Taruya 2016 ; Cusin, Le wando wski & Vernizzi 2018a , b ; Bose et al. 
2017 , 2018 ; Aviles et al. 2018 ; Cataneo et al. 2019 ; Hern ́andez- 
Aguayo et al. 2019 ; Valogiannis & Bean 2019 ; Valogiannis, Bean & 
Aviles 2020 ; Bose et al. 2020b ). Ho we ver, only one study constrained 
the theory from actual galaxy data using a galaxy power spectrum 
model that consistently includes the non-linear effects arising from 
modified gravity (Song et al. 2015a ), where the authors focused on 
f ( R ) gravity (Hu & Sawicki 2007 ). 

In particular, Hirano et al. ( 2020 ) pointed out that in DHOST 
theories, even the next-order solutions of the power spectrum in 
perturbation theory, the so-called one-loop solutions, are challenging 
to perform physically meaningful theoretical calculations due to the 
divergence of the wavenumber integral in the ultraviolet (UV) region. 
Therefore, the modelling of non-linear power spectra in DHOST 
theories is still highly uncertain. 
1.5 Developments in the study of galaxy three-point statistics 
A more straightforw ard w ay to investigate the non-linearity of 
scalar-tensor theories is to use three-point statistics of cosmological 
fluctuations, i.e. the 3PCF or the bispectrum. The reason is that, on 
large scales, the three-point statistics consist of a combination of 
second-order and linear-order dark matter fluctuations. The second- 
order fluctuations depend on two wave vectors in Fourier space 
and can be decomposed into three components using the angle 
between the three wave vectors: monopole (growth), dipole (shift), 
and quadrupole (tidal force; Schmittfull, Baldauf & Seljak 2015 ). 
F or e xample, Horndeski theories deviate only the coefficient of 
the tidal term from GR while keeping the shift term among these 
three components (Bernardeau & Brax 2011 ; Bartolo et al. 2013 ; 
Takushima, Terukina & Yamamoto 2014 ; Bellini, Jimenez & Verde 
2015 ; Burrage, Dombrowski & Saadeh 2019 ). On the other hand, 
DHOST theories change both the shift and tidal terms (Hirano 
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et al. 2018 ; Crisostomi et al. 2020 ; Le wando wski 2020 ), and this 
change in the shift term leads to a violation of the LSS consistency 
relation (Crisostomi et al. 2020 ; Le wando wski 2020 ). In addition 
to scalar-tensor theories, there has been much researches on higher- 
order statistics in, for example, f ( R ) gravity theory (Borisov & Jain 
2009 ; Gil-Mar ́ın et al. 2011 ; Hellwing et al. 2013 ; Bose & Taruya 
2018 ; Bose et al. 2020a ). Several observational proposals have been 
made to test modified gravity theories using cosmological three- 
point statistics, such as galaxy clustering (Yamauchi, Yok o yama & 
Tashiro 2017b ; Yamauchi & Sugiyama 2022 ), weak lensing (Dinda 
2018 ; Munshi et al. 2020b , a ; Munshi & McEwen 2020 ), and CMB 
lensing (Namikawa, Bouchet & Taruya 2018 ; Namikawa et al. 2019 ), 
but none have been applied to actual observational data yet. 

In the context of the galaxy three-point statistics, 3PCF resolves 
the de generac y between the linear bias b 1 and σ 8 and allows us 
to directly study the evolution of dark matter density fluctuations 
apart from the RSD effect (Fry 1994 ; Frieman & Gaztanaga 1994 ; 
Matarrese, Verde & Heavens 1997 ; Verde et al. 1998 ; Gazta ̃ naga & 
Scoccimarro 2005 ; Sefusatti et al. 2006 ; Greig, Komatsu & Wyithe 
2013 ; Hoffmann et al. 2015 ; Samushia, Slepian & Villaescusa- 
Navarro 2021 ). Furthermore, many previous studies have proposed to 
constrain primordial non-Gaussianities from the galaxy three-point 
statistics (Fry & Scherrer 1994 ; Verde et al. 2000 ; Scoccimarro, 
Sefusatti & Zaldarriaga 2004 ; Sefusatti & Komatsu 2007 ; Sefusatti 
2009 ; Liguori et al. 2010 ; Desjacques & Seljak 2010 ; Sefusatti, 
Crocce & Desjacques 2010 , 2012 ; Scoccimarro et al. 2012 ; Alvarez 
et al. 2014 ; Tellarini et al. 2015 , 2016 ; Welling, van der Woude & 
Pajer 2016 ; Yamauchi, Yok o yama & Takahashi 2017a ; Karagiannis 
et al. 2018 ; Bharadwaj, Mazumdar & Sarkar 2020 ; Moradinezhad 
Dizgah et al. 2021 ; Shirasaki et al. 2021 ; Coulton et al. 2023 ; 
Karagiannis, Maartens & Randrianjanahary 2022 ). Recently, as in the 
case of the galaxy two-point statistics (e.g. Matsubara 2004 ; Taruya, 
Saito & Nishimichi 2011 ), the anisotropic component of the galaxy 
three-point statistics induced by the RSD effect and the Alcock–
Paczy ́nski (AP) effect (Alcock & Paczy ́nski 1979 ) has attracted much 
attention, and its cosmological utility has been actively studied (Song, 
Taruya & Oka 2015b ; Gagrani & Samushia 2017 ; Yankelevich & 
Porciani 2019 ; Gualdi & Verde 2020 ; Mazumdar, Bharadwaj & 
Sarkar 2020 ; Agarwal et al. 2021 ; Sugiyama et al. 2021 ; Rizzo et al. 
2023 ; Tsedrik et al. 2023 ). 

Based on standard perturbation theory (SPT), many theoretical 
studies of the galaxy three-point statistics have been conducted 
to calculate higher-order non-linearities, RSDs, and bias effects, 
and the results of these calculations have been tested for valid- 
ity by comparing them with measurements from N -body simula- 
tions (Peebles 1980 ; Fry 1984 ; Goroff et al. 1986 ; Hivon et al. 
1995 ; Scoccimarro 1997 ; Jing & Boerner 1997 ; Scoccimarro et al. 
1998 ; Scoccimarro, Couchman & Frieman 1999 ; Scoccimarro 2000 ; 
Barrig a & Gazta ̃ nag a 2002 ; Barrig a & Gaztanag a 2002 ; Gazta ̃ nag a & 
Scoccimarro 2005 ; Pan, Coles & Szapudi 2007 ; Mar ́ın et al. 2008 ; 
Guo & Jing 2009 ; Pollack, Smith & Porciani 2012 ; Lazanu et al. 
2016 ; McCullagh, Jeong & Szalay 2016 ; Child, Slepian & Takada 
2018 ; Desjacques, Jeong & Schmidt 2018c ; Hoffmann et al. 2018 ; 
Lazanu & Liguori 2018 ; Eggemeier, Scoccimarro & Smith 2019 ; 
Oddo et al. 2020 ; Eggemeier et al. 2021 ; Oddo et al. 2021 ; Philcox 
et al. 2022 ). Other approaches have been widely used in research, 
such as the halo models (Ma & Fry 2000 ; Scoccimarro et al. 
2001b ; Takada & Jain 2003 ; F osalba, P an & Szapudi 2005 ; Smith, 
Sheth & Scoccimarro 2008 ; Yamamoto, Nan & Hikage 2017 ; Nan, 
Yamamoto & Hikage 2018 ) and fitting formulas (Scoccimarro & 
Frieman 1999 ; Scoccimarro & Couchman 2001 ; Gil-Mar ́ın et al. 
2012 , 2014 ; Takahashi et al. 2020 ). Beyond SPT, several improved 

perturbation theories have been proposed. Rampf & Wong ( 2012 ) 
used a resummation method based on Lagrangian perturbation 
theory. Baldauf et al. ( 2015b ), Munshi & Regan ( 2017 ), and Ivanov 
et al. ( 2022 ) discussed some correction terms for SPT based on the 
ef fecti ve field theory of LSS. Hashimoto, Rasera & Taruya ( 2017 ) 
applied a resummation method similar to the TNS model of the 
power spectrum (Taruya, Nishimichi & Saito 2010 ). Kuruvilla & 
Porciani ( 2020 ) generalised the so-called streaming model to higher- 
order statistics. Blas et al. ( 2016a ) and Ivanov & Sibiryakov ( 2018 ) 
developed the time-sliced perturbation theory (TSPT) to resum the 
IR modes of the bulk flow and describe the non-linear damping of 
Baryon acoustic oscillations (BAOs; Peebles & Yu 1970 ; Sunyaev & 
Zeldovich 1970 ). Sugiyama et al. ( 2021 ) constructed a new IR- 
resummed bispectrum model by adding a term to the model proposed 
by TSPT. 

The measurement of three-point statistics for g alaxies, g alaxy 
clusters, and quasars has a long history. As a simple method, 2D three- 
point angular statistics have been observed from the dawn of the study 
of cosmological three-point statistics to the present (Peebles 1975 ; 
Peebles & Groth 1975 ; Groth & Peebles 1977 ; Fry & Peebles 1980 ; 
Fry & Seldner 1982 ; Sharp, Bonometto & Lucchin 1984 ; Jing & 
Zhang 1989 ; Toth, Hollosi & Szalay 1989 ; Jing, Mo & Boerner 
1991 ; Frieman & Gazta ̃ naga 1999 ; Szapudi et al. 2001 ; de Carvalho 
et al. 2020 ). Eventually, with the development of spectroscopic 
observations of galaxies, 3D three-point statistics have become the 
primary targets observed in configuration space (Bean et al. 1983 ; 
Efstathiou & Jedrzejewski 1994 ; Hale-Sutton et al. 1989 ; Gott, Gao & 
Park 1991 ; Jing & Borner 1998 ; Jing & B ̈orner 2004 ; Kayo et al. 
2004 ; Wang et al. 2004 ; Gazta ̃ naga et al. 2005 ; Pan & Szapudi 2005 ; 
Nichol et al. 2006 ; Kulkarni et al. 2007 ; Gazta ̃ naga et al. 2009 ; Marin 
2011 ; McBride et al. 2011a , b ; Marin et al. 2013 ; Guo et al. 2014 ; 
Moresco et al. 2017a , b , 2021 ; Slepian et al. 2017a , b ) or in Fourier 
space (Baumgart & Fry 1991 ; Feldman et al. 2001 ; Scoccimarro 
et al. 2001a ; Verde et al. 2002 ; Nishimichi et al. 2007 ; Gil-Mar ́ın 
et al. 2015a , b , 2017a ; Pearson & Samushia 2018 ; Sugiyama et al. 
2019 ; Philcox & Ivanov 2022 ; Cabass et al. 2022a , b ; D’Amico et al. 
2022a , b ). As another approach, Chiang et al. ( 2015 ) measured the 
squeezed limit bispectrum by splitting the observing region and 
measuring the position-dependent power spectrum. Since the first 
measurement of the galaxy three-point statistics by Peebles & Groth 
( 1975 ), the three-point statistic measurement has long been limited to 
measuring only certain scale-dependence of the three-point statistics. 
Ho we ver, it is now possible to perform cosmological analysis using 
the information on the full shape of galaxy three-point statistics at 
cosmological scales ( ∼ 100 h −1 Mpc ). 

In recent years, cosmological analysis of the three-point statistics 
of galaxies has made remarkable progress, mostly focusing on the 
isotropic component, i.e. monopole , of the three-point statistics. 
Slepian et al. ( 2017b ) and Pearson & Samushia ( 2018 ) reported 
the detection of the BAO signal through the monopole 3PCF and 
the monopole bispectrum, respectively. Gil-Mar ́ın et al. ( 2017a ), 
d’Amico et al. ( 2020 ), and Philcox & Ivanov ( 2022 ) performed a 
joint analysis of the monopole and quadrupole power spectra and the 
monopole bispectrum to constrain the cosmological parameters of in- 
terest. Cabass et al. ( 2022a , b ) and D’Amico et al. ( 2022a ) constrained 
primordial non-Gaussianities using the monopole bispectrum. 

The anisotropic components, i.e. quadrupole and hexadecapole , of 
the galaxy three-point statistics have been the subject of pretty limited 
studies of measurements and cosmological analyses from actual 
galaxy data. Sugiyama et al. ( 2019 ) reported the first detection of the 
quadrupole bispectrum signal at the 14 σ level from the BOSS DR12 
galaxies. Sugiyama et al. ( 2021 ) performed an anisotropic BAO 
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analysis using the monopole and quadrupole components of the 2 and 
3PCFs for the MultiDark-Patchy mock catalogues (Patchy mocks; 
Kitaura et al. 2016 ) reproducing the BOSS galaxy distribution, 
showing the impro v ement of the Hubble parameter constraint by 
∼ 30 per cent compared to the 2PCF-only analysis result. D’Amico 
et al. ( 2022b ) performed the first joint analysis of the monopole and 
quadrupole components of the power and bispectra measured from 
the BOSS DR12 galaxy data. More recently, Ivanov et al. ( 2023 ) 
presented the results of an anisotropic bispectrum analysis, including 
quadrupole and hexadecapole components measured from the BOSS 
DR12 data. 
1.6 Goal of this paper 
The primary goal of this paper is to use the 3PCF of galaxies to 
perform a consistent cosmological analysis that constrains DHOST 
theories and their subclass, Horndeski theories, while accounting for 
linear and non-linear effects. To this end, Yamauchi & Sugiyama 
( 2022 ) pointed out that the parameters characterizing non-linear 
density fluctuations in DHOST theories degenerate with the non- 
linear bias parameter, so measuring the non-linear velocity field due 
to the RSD effect is essential. In addition, the authors proposed a 
simple parametrization scheme that characterizes the time evolution 
of the scale dependence of the non-linear velocity field to facilitate 
the combined analysis of galaxy samples at different redshifts. 
Specifically, the time evolution of the shift and tidal terms of the 
second-order velocity field is represented by ξ s and ξ t , respectively, 
where ξ s = 0 and ξ t = 15/1144 in GR. Following the suggestion of 
Yamauchi & Sugiyama ( 2022 ), we apply the joint analysis method 
of the anisotropic 2 and 3PCFs of galaxies established by Sugiyama 
et al. ( 2021 ) to BOSS DR12 galaxies (Eisenstein et al. 2011 ; Bolton 
et al. 2012 ; Dawson et al. 2013 ; Alam et al. 2015 ) to constrain these 
ξ s and ξ t parameters. 

When we need to use values of fiducial cosmology parameters 
in our analysis, we adopt a flat $ CDM model with the following 
parameters: matter density %m0 = 0.31, Hubble constant h ≡
H 0 / (100 km s −1 Mpc −1 ) = 0 . 676, baryon density %b0 h 2 = 0.022, 
and spectral tilt n s = 0.97, which are the same as those used 
in the final cosmological analysis in the BOSS project (Alam 
et al. 2017 ) and consistent with the best-fitting values in Planck 
2018 (Aghanim et al. 2020 ). We adopt a value for the total neutrino 
mass of ∑ 

m ν = 0 . 06 eV close to the minimum allowed by neutrino 
oscillation experiments. We use these fiducial parameters to estimate 
the distance to galaxies from the observed redshift of each galaxy 
and to calculate the shape of the linear matter power spectrum at the 
redshifts of interest with CLASS (Blas, Lesgourgues & Tram 2011 ). 
2  D H O S T  T H E O R I E S  
In this section, we briefly re vie w the analytic expressions of DHOST 
theories. Section 2.1 introduces the class I DHOST theory and the 
perturbative solutions of the density and velocity fields of dark 
matter and galaxies solved up to the second-order in that theory. 
In equations ( 1 )–( 14 ) of this subsection, we adopt the expressions 
and notations given by Hirano et al. ( 2018 ). Section 2.2 discusses 
the limitation of the assumptions adopted to derive the perturbative 
solutions used in this paper. 
2.1 Density and velocity fluctuations in DHOST theories 
We begin by summarizing the theoretical models we will investigate 
in this paper and the assumptions used to derive those models. 

(i) Gravity theory is a subclass of quadratic DHOST theories, the 
class I DHOST theory (Crisostomi et al. 2016 ), which encompasses 
Horndeski and Beyond Horndeski theories and is free from the 
instabilities of a cosmological background (de Rham & Matas 2016 ; 
Langlois et al. 2017 ). 

(ii) Matter is cold dark matter (CDM) that can be described as a 
pressureless, perfect fluid without vorticity (Bernardeau et al. 2002 ). 

(iii) Matter is minimally coupled to gravity, and the effects of the 
DHOST gravity appear only through the gravitational potential. 

(iv) When solving the equations of motion of metric tensor and 
scalar fields in DHOST theories, the quasi-static approximation (e.g. 
Pace et al. 2021 ) is used. Then, the gravitational potential is 
determined by a modified Poisson equation (Hirano et al. 2018 ; 
Crisostomi et al. 2020 ; Hirano et al. 2020 ; Le wando wski 2020 ). 

(v) Statistical properties of the CDM fluctuations are those derived 
in the standard theory of inflation, which satisfy the following 
properties: adiabaticity, negligibly weak non-Gaussianity, nearly 
scale-free, statistical homogeneity, statistical isotropy, and statistical 
parity symmetry. 

(vi) Galaxy biases are assumed to be present only in the density 
field, and three biases are considered: linear bias b 1 , second-order 
local bias b 2 , and second-order non-local bias (tidal bias) b s 2 (for 
a re vie w, see e.g. Saito et al. 2014 ; Desjacques, Jeong & Schmidt 
2018b ). Any bias effects related to higher-order deri v ati ves and the 
velocity field of the galaxy are ignored. 

The action of quadratic DHOST theories is given by (Langlois & 
Noui 2016 ; Crisostomi et al. 2016 ) 
S DHOST = ∫ d 4 x √ 

−g [ G 2 ( φ, X) − G 3 ( φ, X) ! φ + F ( φ, X) R 
+ a 1 φµνφ

µν + a 2 ( ! φ) 2 + a 3 ( ! φ) φµφµνφ
ν

+ a 4 φµφµρφ
ρνφν + a 5 ( φµφµνφ

ν) 2 ] , (1) 
where φµ = ∇ µφ, φµν = ∇ µ∇ νφ, X = −φµφµ/2, and a i = a i ( φ, 
X ) for i = 1, . . . , 5. The functions a i ( i = 1, . . . , 5) satisfy the 
de generac y condition given by (Crisostomi et al. 2016 ) to a v oid the 
Ostrogradsky ghost (Ostrogradsky 1850 ; Woodard 2015 ). 

The density perturbation δ and velocity field v of dark matter follow 
the equations of a pressureless, perfect fluid without vorticity: 

δ̇( x ) + a −1 ∂ i ((1 + δ( x )) v i ( x ) ) = 0 , 
θ̇ ( x ) + H θ ( x ) + a −1 ∂ i (v j ( x ) ∂ j v i ( x ) ) = −a −1 ∂ 2 , ( x ) , (2) 
where a and H = ȧ /a, respectively, denote the scale factor and the 
Hubble parameter, and θ = ∂ i v i is the divergence of the velocity 
field. Because of no vorticity, the velocity field is represented as v i = 
( ∂ i / ∂ 2 ) θ . The gravitational potential , is determined by the following 
modified Poisson equation (Hirano et al. 2018 ): 
∂ 2 , ( x ) 
a 2 H 2 = κδ( x ) + ν δ̇( x ) 

H + µ δ̈( x ) 
H 2 + ∂ 2 S NL 

, ( x ) 
a 2 H 2 , (3) 

where κ , ν, and µ are functions that depend only on time, and S NL 
, 

is a non-linear source term obtained from the equation of motion of 
the scalar field. 

To solve the above equations, we expand all the fluctuations as 
follows: X = ∑ 

n X n , where X = { δ, θ, ,, S NL 
, } , and X n = O( δn 

1 ). 
Then, the non-linear source S NL 

, up to the second-order is given by 
∂ 2 S NL 

,, 1 ( x ) 
a 2 H 2 = 0 , 

∂ 2 S NL 
,, 2 ( x ) 

a 2 H 2 = ταW α( x ) − τγ W γ ( x ) , (4) 
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where 
W α( x ) = [ δ1 ( x ) ] 2 + [ ∂ i 

∂ 2 δ1 ( x ) ] [ ∂ i δ1 ( x ) ] , 
W γ ( x ) = [ δ1 ( x ) ] 2 − [

∂ i ∂ j 
∂ 2 δ1 ( x ) ]2 

. (5) 
The evolution of the density perturbation follows 
δ̈( x ) + (2 + ς ) H ̇δ( x ) − 3 

2 %m 2H 2 δ( x ) = H 2 S NL 
δ ( x ) , (6) 

where ς = (2 µ − ν)/(1 − µ), (3/2) %m 2 = κ/(1 − µ), and S NL 
δ is 

a non-linear source of the density perturbation, vanishing at linear 
order and given at second-order by 
S NL 

δ, 2 = S αW α( x ) − S γ W γ ( x ) (7) 
with 
(1 − µ) S α = 2 f 2 + 3 

2 %m 2 − ςf + τα, 
(1 − µ) S γ = f 2 + τγ . (8) 
Once the solution of δ is obtained, the solution of θ is also derived 
from the continuity equation in equation ( 2 ). In Fourier space, 10 
equations ( 2 ) and ( 3 ) determine δn ( k ) and θn ( k ) in terms of the linear 
density fluctuations to be: 
˜ δn ( k ) = ∫ d 3 p 1 

(2 π ) 3 · · ·
∫ 

d 3 p n 
(2 π ) 3 (2 π ) 3 δD ( k − p [1 n ] ) 

× F (m) 
n ( p 1 , . . . , p 2 ) δ1 ( p 1 ) · · · δ1 ( p n ) , 

˜ θn ( k ) = −aHf ∫ d 3 p 1 
(2 π ) 3 · · ·

∫ 
d 3 p n 
(2 π ) 3 (2 π ) 3 δD ( k − p [1 n ] ) 

× G (m) 
n ( p 1 , . . . , p 2 ) δ1 ( p 1 ) · · · δ1 ( p n ) , (9) 

where p [1 n ] = p 1 + · · · + p n , and δD is the delta function. The 
functions F (m) 

2 and G (m) 
2 are kernel functions that characterize the 

gravitational non-linear effects, and the superscript (m) stands for 
‘matter’. In the second-order, F (m) 

2 and G (m) 
2 are given by 

F (m) 
2 ( p 1 , p 2 ) = κδαs ( p 1 , p 2 ) − 2 

7 λδγ ( k 1 , k 2 ) 
G (m) 

2 ( p 1 , p 2 ) = κθαs ( p 1 , p 2 ) − 4 
7 λθγ ( k 1 , k 2 ) , (10) 

where 
αs ( k 1 , k 2 ) = 1 + ( ̂ k 1 · ˆ k 2 ) ( k 2 1 + k 2 2 ) 

2 k 1 k 2 , 
γ ( k 1 , k 2 ) = 1 − ( ̂ k 1 · ˆ k 2 ) 2 , (11) 
and 
κθ = 2 κδ

[
1 + 1 

2 f d ln κδ

d ln a 
]

− 1 , 
λθ = λδ

[
1 + 1 

2 f d ln λδ

d ln a 
]

. (12) 
The evolutions of κδ and λδ follow 

κ̈δ + [4 f + (2 + ς )] H ̇κδ + H 2 (2 f 2 + 3 
2 %m 2 ) κδ

= H 2 S α, (13) 
10 Our convention for the Fourier transform is 
˜ f ( k ) = ∫ d 3 xe −i k ·x f ( x ) . 

λ̈δ + [4 f + (2 + ς )] H ̇λδ + H 2 (2 f 2 + 3 
2 %m 2 )λδ

= 7 
2 H 2 S γ . (14) 

Since the galaxy density field is a biased quantity, we assume the 
linear bias b 1 , the second-order local bias b 2 , and the second-order 
tidal bias b s 2 as the bias parameters that describe the galaxy density 
fluctuation up to second order (e.g. Desjacques et al. 2018b ): 
δ(g) ( x ) = b 1 δ( x ) + b 2 

2 [ δ( x ) ] 2 + b s 2 [ s ij ] 2 , (15) 
where the superscript (g) stands for ‘galaxy’, and [ s ij ] 2 is given by 
[ s ij ] 2 = [∂ i ∂ j 

∂ 2 δ( x ) ]2 
− 1 

3 [ δ( x )] 2 . (16) 
Then, the second-order kernel functions for galaxies are given by 
F (g) 

2 = b 1 F (m) 
2 ( p 1 , p 2 ) + 1 

2 b 2 + b s 2 [( ̂  p 1 · ˆ p 2 ) 2 − 1 
3 
]

, 
G (g) 

2 = G (m) 
2 ( p 1 , p 2 ) . (17) 

The RSD effect shifts the observed position of galaxies x red from 
their real-space position x ′ due to the peculiar velocity of galaxies 
along the line-of-sight (LOS) direction: 
x red ( x ′ ) = x ′ + v ( x ′ ) · ˆ n 

aH ˆ n , (18) 
where ˆ n is a unit vector pointing to the galaxy from the origin. The 
observed galaxy density fluctuation is then distorted along the LOS 
direction as follows: 
δ(g) 

s ( x ) = ∫ d 3 x ′ (1 + δ(g) ( x ′ ) ) δD (x − x red ( x ′ ) ) − 1 . (19) 
In Fourier space, the n -th order solution of δ(g) 

s is represented as 
˜ δ(g) 

s , n ( k ) = ∫ d 3 p 1 
(2 π ) 3 · · ·

∫ 
d 3 p n 
(2 π ) 3 (2 π ) 3 δD ( k − p [1 n ] ) 

× Z n ( p 1 , . . . , p 2 ) δ1 ( p 1 ) · · · δ1 ( p n ) . (20) 
The first and second-order kernel functions are given by (Scocci- 
marro et al. 1999 ) 
Z 1 = b 1 + f ( ̂  p · ˆ n ) 2 , 
Z 2 = F ( g) 

2 ( p 1 , p 2 ) + f ( ̂ k · ˆ n ) 2 G ( g) 
2 ( p 1 , p 2 ) 

+ f ( k · ˆ n ) 
2 

[
( ̂  p 1 · ˆ n ) 

p 1 Z 1 ( p 2 ) + ( ̂  p 2 · ˆ n ) 
p 2 Z 1 ( p 1 ) ] , (21) 

where k = p 1 + p 2 . In the rest of this paper, we focus only 
on the galaxy density fluctuation with RSDs, so for simplic- 
ity of notation, we refer to it simply as δ instead of δ(g) 

s . We 
also omit the angle-dependence ˆ n of any function that includes 
RSDs. 

At the leading-order in perturbation theory, the redshift-space 
power spectrum and bispectrum are represented as 

P ( k ) = [ Z 1 ( k )] 2 P lin ( k) , 
B( k 1 , k 2 , k 3 ) = 2 Z 2 ( k 1 , k 2 ) Z 1 ( k 1 ) Z 1 ( k 2 ) P lin ( k 1 ) P lin ( k 2 ) 

+ 2 perms. , (22) 
where k 1 + k 2 + k 3 = 0, and P lin is the linear matter power spectrum. 
In what follows, we omit the k 3 -dependence of the bispectrum for 
notational simplicity: B( k 1 , k 2 ) = B( k 1 , k 2 , k 3 = −k 1 − k 2 ). 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

/5
2
3
/2

/3
1
3
3
/7

1
7
2
8
6
9
 b

y
 N

a
tio

n
a
l A

s
tro

n
o
m

ic
a
l O

b
s
e
rv

a
to

ry
 J

a
p
a
n
 u

s
e
r o

n
 2

5
 A

u
g
u
s
t 2

0
2
3



Ne w constr aints on modified gr avity theories 3139 

MNRAS 523, 3133–3191 (2023) 

Finally, we conclude this subsection by summarizing the key 
points about galaxy fluctuations from a theoretical point of view. 
First, in the case of ν = µ = τα = 0 in equations ( 3 ) and ( 4 ), 
Horndeski theories are reco v ered; a $ CDM model additionally 
has κ = (3/2) %m ( z) and τ γ = 0; in both Horndeski theories and 
$ CDM, κδ = κθ = 1 from equation ( 13 ), and λδ and λθ are 
still time-dependent from equation ( 14 ); for the approximation 
f 2 = %m in $ CDM, λδ = λθ = 1. Secondly, since the linear 
equation of the density fluctuation ( 6 ) omits space-dependence as in 
the $ CDM case, under the assumption that the scalar field becomes 
to pre v ail during the accelerated Universe, the shape of the linear 
matter power spectrum can be the usual $ CDM one determined 
in the matter-dominant era. In other words, the characteristic scale- 
dependence in δ and v due to scalar-tensor theories appear only 
through the non-linear kernel functions F ( m ) 

n ≥2 and G ( m ) 
n ≥2 . Thirdly, the 

non-linear terms that appear in the fluid equation in equation ( 2 ) 
and the Poisson equation in equation ( 3 ), such as ∂ i ( δv i ), ∂ i ( v j ∂ j v i ), 
W α and W γ , become zero when the v olume a verage or ensemble 
average is calculated. Therefore, the resulting non-linear solutions 
satisfy ∫ d 3 x δn = 〈 δn 〉 = 0 and ∫ d 3 x θn = 〈 θn 〉 = 0 for n ≥ 2, 
and the corresponding kernel functions satisfy F (m) 

n ≥2 = G (m) 
n ≥2 = 0 

when p 1 + · · · + p n = 0 as known in the case of $ CDM. This 
condition partially breaks when the non-linear bias effect is taken 
into account, resulting in F (g) 

2 ( p , −p ) += 0 and G (g) 
2 ( p , −p ) = 0 (see 

equation ( 17 )). 
2.2 Limitation of our assumptions 
This subsection discusses the possible cases where the assumptions 
adopted in building the theoretical model in the previous subsection 
are violated, introducing some previous studies. The following bullet 
labels correspond to those in Section 2.1 . 

(i) Besides scalar-tensor theories, two other examples of mod- 
ified gravity theories have been widely studied in cosmology: 
the Hu-Sawicki model (Hu & Sawicki 2007 ) of f ( R ) gravity (see 
Capozziello & Francaviglia 2008 ; Sotiriou & Faraoni 2010 , for 
re vie ws) and the normal branch of the 5D brane-world Dvali- 
Gabadadze-Porrati model (nDGP; Dvali, Gabadadze & Porrati 
2000 ). These two models have been investigated in detail by Alam 
et al. ( 2021b ) as representative targets in DESI. Focusing on the 
non-linear effects, the nDGP model generates a scale dependence of 
the same form as Horndeski theories, characterized by the function 
γ ( p 1 , p 2 ) ( 11 ). On the other hand, the Hu-Sawicki f ( R ) model 
produces a kernel function different from the one predicted by scalar- 
tensor theories. Specifically, in the modified Poisson equation of 
equation ( 3 ), κ is scale-dependent, resulting in the linear growth 
function that depends on the wavenumber. In addition, the non- 
linear source S NL 

, for the Hu-Sawicki model also appears as a 
form that cannot be described by W α and W γ , unlike equation ( 4 ). 
Such non-linearities in the density field specific to the Hu-Sawicki 
model have been studied by (Koyama et al. 2009 ; Taruya 2016 ) 
in the context of perturbation theory, and the model has been 
tested by applying the theory to BOSS galaxy data (Song et al. 
2015a ). 

(ii) The effect of the relative velocity of baryons and CDM 
enters the galaxy density fluctuation quadratically together with 
the corresponding bias parameter (Dalal, Pen & Seljak 2010 ), thus 
modifying the shape of the measured bispectrum. In particular, as in 
the case of the κδ parameter in DHOST theories, it corrects the term 
in F (g) 

2 ( p 1 , p 2 ) that depends on ( ̂  p 1 · ˆ p 2 ) called the shift term (Yoo 
et al. 2011 ). The relativ e v elocity effect on galaxy clustering has 

been measured using the galaxy power spectrum (Yoo & Seljak 
2013 ; Beutler et al. 2016 ) and 3PCF (Slepian et al. 2018 ), but any 
signature has not yet been detected. 
Although massive neutrinos can also change the shape of the 
bispectrum, the results of simulations performed by Ruggeri 
et al. ( 2018 ) confirm that the CDM component in the bispec- 
trum is dominant; Interestingly, Kamalinejad & Slepian ( 2020 ) 
has shown that the effect of neutrino corrections appears in the 
shift term as well as the growth and tidal terms in the second- 
order velocity field ( 38 ). Hence, the anisotropic 3PCF (or bispec- 
trum) may help to constrain the neutrino masses (see e.g. Saito, 
T akada & T aruya 2009 ; Levi & Vlah 2016 ; Yoshikawa et al. 
2020 ). 

(iii) The case of non-minimally coupled scalar fields with CDM 
has already been the subject of several studies in the con- 
text of cosmology (Kimura et al. 2018 ; Chibana et al. 2019 ; 
Kase & Tsujikawa 2020b ; Chiba, Chibana & Yamaguchi 2020 ; 
Kase & Tsujikawa 2020a ). For example, Kimura et al. ( 2018 ) 
and Chibana et al. ( 2019 ) have shown that in this case, the 
continuity equation ( 2 ) is modified, and thus the relation be- 
tween the density fluctuations in real and redshift spaces, i.e. 
the Kaiser formula in linear theory (Kaiser 1987 ), is also 
modified. 

(iv) The quasi-static approximation breaks when the scale of 
interest is close to the sound horizon scale. Even in GR, it is known 
that there are relativistic corrections to F (g) 

2 when approaching the 
horizon size (Tram et al. 2016 ; Jolicoeur et al. 2017 , 2018 ; Koyama 
et al. 2018 ; Castiblanco et al. 2019 ; Umeh et al. 2019 ; Calles et al. 
2020 ; de Weerd et al. 2020 ). 

(v) Various possibilities have been proposed for how the initial 
conditions of cosmic fluctuations predicted by inflation theory could 
af fect observ ables. One of the most critical examples rele v ant to this 
paper is the existence of primordial non-Gaussianity, which breaks 
the LSS consistency relation (Berezhiani & Khoury 2014 ; Valageas 
et al. 2017 ; Esposito et al. 2019 ). 

(vi) Fujita & Vlah ( 2020 ) proposed a bias expansion formalism 
dubbed ‘Monkey bias’ based on the LSS consistency relation and 
showed that it is equivalent to the existing bias expansion frame- 
work. In other words, in DHOST theories, which violate the LSS 
consistenc y relation, the e xisting bias e xpansion we adopted ( 15 ) 
may not be valid, and a new bias in the shift term of non- 
linear galaxy density fluctuations, i.e. the shift bias parameter, may 
appear. Moreo v er, the shift bias may also induce velocity bias 
effects. 
In Section 9.12 , we will discuss and clarify which parts of theories 
can be tested with the anisotropic 3PCF, even in the presence of the 
shift and velocity biases. 
3  T H E O R E T I C A L  M O D E L S  
This section describes how to calculate the theoretical models of 
multipole 2PCFs and 3PCFs. Section 3.1 summarizes the decompo- 
sition formalism for the anisotropic three-point statistics (bispectra 
and 3PCFs). Section 3.2 introduces the power and bispectrum 
models used to compute the 2 and 3PCFs. Section 3.3 discusses 
what parameters should be varied to perform the cosmological 
analysis and shows the specific parameter dependence of the bis- 
pectrum model we use. Section 3.4 re vie ws ne w parameters helpful 
in testing DHOST theories proposed by Yamauchi & Sugiyama 
( 2022 ) and their time evolution. Section 3.5 discusses the limits 
of applying our theoretical models of the 2 and 3PCFs to the data 
analysis. 
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3.1 Decomposition formalisms of the 2 and 3PCFs 
We follow the decomposition formalism of redshift-space bispectra 
proposed by Sugiyama et al. ( 2019 ) using the tri-polar spherical 
harmonics (TripoSH) as a basis function. In that formalism, under 
statistical homogeneity , isotropy , and parity-symmetry assumptions, 
we define the base function to expand the bispectrum using three 
spherical harmonics Y 5 m as 
S 5 1 5 2 5 ( ̂ k 1 , ̂  k 2 , ̂  n ) = 4 π

h 5 1 5 2 5 
∑ 

m 1 m 2 m 
(

5 1 5 2 5 
m 1 m 2 m 

)

× Y 5 1 m 1 ( ̂ k 1 ) Y 5 2 m 2 ( ̂ k 2 ) Y 5m ( ̂  n ) , (23) 
where 
h 5 1 5 2 5 = √ 

(2 5 1 + 1)(2 5 2 + 1)(2 5 + 1) 
4 π

(
5 1 5 2 5 
0 0 0 

)
, (24) 

and the circle bracket with 6 multipole indices, (. . . ), denotes the 
Wigner-3j symbol. The bispectrum is then expanded as 
B( k 1 , k 2 , ̂  n ) = ∑ 

5 1 + 5 2 + 5 = even B 5 1 5 2 5 ( k 1 , k 2 ) S 5 1 5 2 5 ( ̂ k 1 , ̂  k 2 , ̂  n ) , (25) 
and the corresponding multipole components are given by 
B 5 1 5 2 5 ( k 1 , k 2 ) = 4 πh 2 5 1 5 2 5 ∫ d 2 ̂  k 1 

4 π
∫ 

d 2 ̂  k 2 
4 π

∫ 
d 2 ̂  n 
4 π

× S ∗5 1 5 2 5 ( ̂ k 1 , ̂  k 2 ) B( k 1 , k 2 ) . (26) 
Since the bispectrum multipoles defined here are independent of 
the coordinate system in which they are calculated, it is possible 
to compare theoretical calculations with observations in different 
coordinate systems. Specifically, we use the following coordinate 
system with ˆ k 1 as the z-axis for theoretical calculations: 
ˆ k 1 = { 0 , 0 , 1 } 
ˆ k 2 = { sin θk 2 , 0 , cos θk 2 } 
ˆ n = { sin θ cos ϕ , sin θ sin ϕ , cos θ} . (27) 

On the other hand, when measuring the bispectrum from galaxy data, 
we use the Cartesian coordinate and take the north pole as our z-axis 
(see Section 4.2 ). 

We perform the expansion of the 3PCF in the same way as for 
the bispectrum. The resulting 3PCF multipoles are related to B 5 1 5 2 5 
through a 2D Hankel transform: 
ζ5 1 5 2 5 ( r 1 , r 2 ) = i 5 1 + 5 2 ∫ dk 1 k 2 1 

2 π2 ∫ 
dk 2 k 2 2 
2 π2 

× j 5 1 ( r 1 k 1 ) j 5 2 ( r 2 k 2 ) B 5 1 5 2 5 ( k 1 , k 2 ) , (28) 
where j 5 is the spherical Bessel function at the 5 -th order. This relation 
means that ζ5 1 5 2 5 have in principle the same information as B 5 1 5 2 5 , 
facilitating the comparison of the configuration-space and Fourier- 
space analyses. 

Note that B 5 1 5 2 5 ( k 1 , k 2 ) = B 5 2 5 1 5 ( k 2 , k 1 ) and ζ5 1 5 2 5 ( r 1 , r 2 ) = 
ζ5 2 5 1 5 ( r 2 , r 1 ). From this relation, when 5 1 = 5 2 , only k 1 ≥ k 2 and r 1 ≥
r 2 need to be computed for the bispectrum and 3PCF, respectively. 
Also, when 5 > 0, only 5 1 ≥ 5 2 should be considered. 

In the case of the power spectrum, it is common to expand 
the power spectrum using Legendre polynomial functions L 5 (e.g. 
Hamilton 1997 ): 
P ( k ) = ∑ 

5 P 5 ( k) L 5 ( ̂ k · ˆ n ) , (29) 

and the corresponding multipole components of the 2PCF are given 
by 
ξ5 ( r) = i 5 ∫ dk k 2 

2 π2 j 5 ( rk) P 5 ( k) . (30) 
This paper tests DHOST theories by measuring ξ5 and ζ5 1 5 2 5 from 

the BOSS galaxy data and comparing them with the corresponding 
theoretical models. The index 5 that is common for both ξ5 and ζ5 1 5 2 5 
represents the decomposition related to the RSD or AP effect, where 
5 = 0 means monopole, 5 = 2 quadrupole, and 5 = 4 hexadecapole. 
Relati vistic ef fects can generate 5 = odd components (e.g. McDonald 
2009 ; Desjacques, Jeong & Schmidt 2018a ; Clarkson et al. 2019 ), 
but we ignore them here. Furthermore, we also ignore the 5 = 4 
modes; although the signal of the 5 = 4 modes is too small to be 
detected in the BOSS data, it should be taken into account in the 
future as it helps to impro v e the constraints on the cosmological 
parameters (Beutler et al. 2017 ; Sugiyama et al. 2019 ). Therefore, 
in this paper, we focus on only two modes, 5 = 0 and 5 = 2. 
In particular, for the 3PCF, we consider the first two terms of the 
monopole ( ζ 000 and ζ 110 ) and the first two terms of the quadrupole 
( ζ 202 and ζ 112 ). 

Finally, we discuss the relation with the widely used decom- 
position formalism of the bispectrum proposed by Scoccimarro 
et al. ( 1999 ). As in equation ( 27 ), this formalism decomposes 
the bispectrum by choosing the coordinate system with k 1 as the 
z-axis and using the spherical harmonic function for the LOS 
direction: B( k 1 , k 2 , ̂  n ) = ∑ 

LM B LM ( k 1 , k 2 ) Y LM ( ̂  n ). The relation be- 
tween Scoccimarro et al. ( 1999 )’s decomposition formalism and our 
TripoSH decomposition has already been shown in equation ( 25 ) 
of Sugiyama et al. ( 2019 ). According to the relation, ζ 202 contains 
only M = 0 mode in Scoccimarro et al. ( 1999 )’s formalism, while 
ζ 112 further contains the M += 0 modes in addition to the M = 0 
mode. The ability to handle the M += 0 modes, including window 
function corrections (see Section 4.3 ), is one advantage of our 
TripoSH decomposition formalism. For example, studies of the 
quadrupole bispectrum using Scoccimarro et al. ( 1999 )’s method 
have mainly dealt only with the M = 0 mode (D’Amico et al. 
2022b ). One reason is that the correction formula for the window 
function effect is only given for the M = 0 case (Pardede et al. 
2022 ). Moreo v er, we show in Section 7 that ζ 112 gives additional 
cosmological information to ζ 202 , pointing out the importance of the 
M += 0 modes. 
3.2 IR-resummed power spectrum and bispectrum models 
In this paper, we focus on the 2 and 3PCFs at scales abo v e 
80 h −1 Mpc (Section 9 ), where we can ignore loop corrections 
arising from higher-order non-linear ef fects. The po wer spec- 
trum and bispectrum shapes can be described at those scales 
by their leading solutions, the so-called tree-level solutions ( 22 ). 
Ho we ver, we need to consider the non-linear damping effect 
of BAOs due to the linear gravity that shifts the position of 
galaxies. 

The non-linear damping of BAO can be described by a large- 
scale bulk flow that is position-independent in a given observed 
region (Eisenstein, Seo & White 2007a ; Crocce & Scoccimarro 
2008 ; Matsubara 2008 ; Sugiyama & Spergel 2014 ; Baldauf et al. 
2015a ), called the IR flow. In the limit where the IR flow does 
not correlate with small-scale density fluctuations, based on the 
Galilean invariance of the system of equations in the IR limit, all 
the effects of the IR flow are cancelled out in equal-time n -point 
statistics (Jain & Bertschinger 1996 ; Scoccimarro & Frieman 1996 ; 
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Kehagias & Riotto 2013 ; Peloso & Pietroni 2013 ; Sugiyama & 
Futamase 2013 ; Blas et al. 2013 , 2016b ; Sugiyama & Spergel 2014 ; 
Le wando wski & Senatore 2017 ). Ho we ver, when we deviate from 
such an extreme situation, we find a correlation between the IR 
flow and the small-scale density field. By extracting this correlation 
in the full perturbative order only for the BAO signal, it becomes 
possible to describe the non-linear effects of BAOs. This kind of 
construction of n -point statistics models is called the IR resummation 
method (Crocce & Scoccimarro 2008 ; Matsubara 2008 ; Sugiyama & 
Spergel 2014 ; Baldauf et al. 2015a ; Senatore & Zaldarriaga 2015 ; 
Blas et al. 2016a ; Ivanov & Sibiryakov 2018 ; Senatore & Trevisan 
2018 ; Le wando wski & Senatore 2020 ; Sugiyama et al. 2021 ). In this 
paper, we will use the IR resummed power and bispectrum models 
given in equations ( 31 ) and ( 34 ), even in DHOST theories that break 
the IR cancellation, but we will mention the issues that may arise in 
this case in Section 3.5 . 

For the power spectrum, we adopt the following IR-resummed 
model: 
P ( k ) = [ Z 1 ( k ) ] 2 [D 2 ( k ) P w ( k) + P nw ( k) ] , (31) 
where P lin is decomposed into two parts: the ‘no-wiggle (nw)’ 
part P nw that is a smooth version of P lin with the baryon oscil- 
lations remo v ed (Eisenstein & Hu 1998 ), and the ‘wiggle (w)’ 
part defined as P w = P lin − P nw . The non-linear BAO degrada- 
tion is represented by the 2D Gaussian damping factor derived 
from a differential motions of Lagrangian displacements (Eisen- 
stein et al. 2007a ; Crocce & Scoccimarro 2008 ; Matsubara 
2008 ): 
D( k ) = exp ( 

−
k 2 (1 − µ2 ) σ 2 

⊥ + k 2 µ2 σ 2 
‖ 

2 
) 

, (32) 
where µ = ˆ k · ˆ n . We compute the radial and transverse components 
of smoothing parameters, σ⊥ and σ ! , using the Zel’dovich approxi- 
mation (Zel’Dovich 1970 ; Crocce & Scoccimarro 2008 ; Matsubara 
2008 ): 
σ 2 

⊥ = 1 
3 
∫ 

dp 
2 π2 P lin ( p) , 

σ 2 
‖ = (1 + f ) 2 σ 2 

⊥ . (33) 
The power spectrum model in equation ( 31 ) was first proposed 
empirically by Eisenstein et al. ( 2007a ). Subsequently, the damping 
factor D 2 in front of P lin was derived in the context of perturbation 
theory by Crocce & Scoccimarro ( 2008 ) and Matsubara ( 2008 ); 
an additional term to reco v er a smooth linear power spectrum 
without BAOs, (1 − D 2 ) P nw , was derived using the IR resumma- 
tion method (Sugiyama & Spergel 2014 ; Baldauf et al. 2015a ; 
Blas et al. 2016a ; Ivanov & Sibiryakov 2018 ; Sugiyama et al. 
2021 ). 

For the bispectrum, we adopt the following IR-resummed 
model (Sugiyama et al. 2021 ): 
B( k 1 , k 2 ) = 2 Z 2 ( k 1 , k 2 ) Z 1 ( k 1 ) Z 1 ( k 2 ) 

×
{ 

D ( k 1 ) D ( k 2 ) D ( k 3 ) P w ( k 1 ) P w ( k 2 ) 
+ D 2 ( k 1 ) P w ( k 1 ) P nw ( k 2 ) + D 2 ( k 2 ) P nw ( k 1 ) P w ( k 2 ) 
+ P nw ( k 1 ) P nw ( k 2 ) } 

+ 2 perms. , (34) 
where k 1 + k 2 + k 3 = 0. As in the case of the power spectrum, this 
bispectrum model restores the tree-level solution ( 22 ) consisting of 

a smooth version (without BAOs) of the linear power spectrum after 
degrading the BAO signature . 11 
3.3 Parametrization method for the bispectrum 
The non-linear kernel functions F (m) 

2 and G (m) 
2 can be decomposed 

into three terms using Legendre polynomial functions L 5 ( ̂  p 1 · ˆ p 2 ): 
i.e. monopole, dipole, and quadrupole components (Schmittfull et al. 
2015 ). They are called the growth, shift, and tidal terms, and are 
understood in $ CDM as follows: the growth term represents the 
spherical collapse of density fluctuations (Fosalba & Gaztanaga 
1998 ); the shift term appears in the form 8 i 1 ∂ i δ1 or 8 i 1 ∂ i θ1 as a 
coordinate transformation of δ or θ by the displacement vector 
!; the last term represents the tidal force ( 16 ). Then, F (m) 

2 and 
G (m) 

2 ( 10 ) are rewritten as (e.g. Bouchet et al. 1992 ; Baldauf 
et al. 2012 ; Sherwin & Zaldarriaga 2012 ; Schmittfull et al. 
2015 ) 
F (m) 

2 = (κδ − 4 
21 λδ

)
+ κδS( k 1 , k 2 ) + 2 

7 λδT ( k 1 , k 2 ) , 
G (m) 

2 = (κθ − 8 
21 λθ

)
+ κθS( k 1 , k 2 ) + 4 

7 λθT ( k 1 , k 2 ) , (35) 
where S and T are the scale-dependent functions characterizing the 
shift and tidal terms: 
S( k 1 , k 2 ) = 1 

2 ( ̂ k 1 · ˆ k 2 ) (k 1 
k 2 + k 2 

k 1 
)

, 
T ( k 1 , k 2 ) = ( ̂ k 1 · ˆ k 2 ) 2 − 1 

3 . (36) 
As mentioned in Section 2.1 , the coefficients of the growth, shift, 
and tidal terms are not independent of each other but are related to 
under the condition that F (m) 

2 ( p , −p ) = G (m) 
2 ( p , −p ) = 0. Therefore, 

the coefficient of the growth term is determined from the coefficients 
of the shift and tidal terms. 

Considering the linear and non-linear bias effects, that the second- 
order fluctuations are proportional to σ 2 

8 , and that G (m) 
2 al w ays 

appears with f , we introduce the following parametrization, 
F (g) 

2 σ 2 
8 = ( b 1 σ8 ) [( F g σ8 ) + ( F s σ8 ) S + ( F t σ8 ) T ] , 

f G (g) 
2 σ 2 

8 = ( f σ8 ) [( G g σ8 ) + ( G s σ8 ) S + ( G t σ8 ) T ] . (37) 
DHOST theories have G g = G s − (2/3) G t from the condition 
G (g) 

2 ( p , −p ) = 0; Horndeski theories further have F s = G s = 1. The 
specific form of each coefficient in DHOST theories is given by 
F g = κδ − 4 

21 λδ + 1 
2 b 2 b 1 , 

F s = κδ, 
F t = 2 

7 λδ + b s 2 
b 1 , 

G g = κθ − 8 
21 λθ , 

G s = κθ , 
G t = 4 

7 λθ . (38) 
11 Blas et al. ( 2016a ), Ivanov & Sibiryakov ( 2018 ) proposed a bis- 
pectrum model similar to equation ( 34 ). Ho we ver, the authors ignore 
the O( P 2 w /P 2 nw ) term, so their model does not include the second line 
term, D ( k 1 ) D ( k 2 ) D ( k 3 ) P w ( k 1 ) P w ( k 2 ), in equation ( 34 ). This term added 
by Sugiyama et al. ( 2021 ) contains the full tree-level solution. 
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In equation ( 38 ), F g and F t do not contain any cosmological 
information because they are degenerate with the non-linear bias 
parameters, and G g is determined from G t and G s . Thus, cosmologi- 
cally meaningful parameters are F s , G s , and G t . 

Following the method proposed by Sugiyama et al. ( 2021 ), we 
decompose the IR-resummed bispectrum model into 

B( k 1 , k 2 ) = 22 ∑ 
p= 1 X ( p) B ( p) ( k 1 , k 2 ) , (39) 

with 
B ( p) ( k 1 , k 2 ) = 2 H ( p) ( k 1 , k 2 ) 

×
{ 

D ( k 1 ) D ( k 2 ) D ( k 3 ) P (n) 
w ( k 1 ) P (n) 

w ( k 2 ) 
+ D 2 ( k 1 ) P (n) 

w ( k 1 ) P (n) 
nw ( k 2 ) 

+ D 2 ( k 2 ) P (n) 
nw ( k 1 ) P (n) 

w ( k 2 ) 
+ P (n) 

nw ( k 1 ) P (n) 
nw ( k 2 ) } 

+ 2 perms. , (40) 
where P (n) 

w and P (n) 
nw are, respectively, the wiggle and no-wiggle linear 

matter power spectra normalized by σ 2 
8 : P (n) 

w = P w /σ 2 
8 and P (n) 

nw = 
P nw /σ 2 

8 . The functions X ( p ) ( p = 1 − 22) represent the combinations 
of the parameters of interest and are given by 
X (1) = ( F g σ8 )( b 1 σ8 ) 3 , 
X (2) = ( F s σ8 )( b 1 σ8 ) 3 , 
X (3) = ( F t σ8 )( b 1 σ8 ) 3 , 
X (4) = ( F g σ8 )( b 1 σ8 ) 2 ( f σ8 ) , 
X (5) = ( F s σ8 )( b 1 σ8 ) 2 ( f σ8 ) , 
X (6) = ( F t σ8 )( b 1 σ8 ) 2 ( f σ8 ) , 
X (7) = ( F g σ8 )( b 1 σ8 )( f σ8 ) 2 , 
X (8) = ( F s σ8 )( b 1 σ8 )( f σ8 ) 2 , 
X (9) = ( F t σ8 )( b 1 σ8 )( f σ8 ) 2 , 

X (10) = ( G g σ8 )( b 1 σ8 ) 2 ( f σ8 ) , 
X (11) = ( G s σ8 )( b 1 σ8 ) 2 ( f σ8 ) , 
X (12) = ( G t σ8 )( b 1 σ8 ) 2 ( f σ8 ) , 
X (13) = ( G g σ8 )( b 1 σ8 )( f σ8 ) 2 , 
X (14) = ( G s σ8 )( b 1 σ8 )( f σ8 ) 2 , 
X (15) = ( G t σ8 )( b 1 σ8 )( f σ8 ) 2 , 
X (16) = ( G g σ8 )( f σ8 ) 3 , 
X (17) = ( G s σ8 )( f σ8 ) 3 , 
X (18) = ( G t σ8 )( f σ8 ) 3 , 
X (19) = ( b 1 σ8 ) 3 ( f σ8 ) , 
X (20) = ( b 1 σ8 ) 2 ( f σ8 ) 2 , 
X (21) = ( b 1 σ8 )( f σ8 ) 3 , 
X (22) = ( f σ8 ) 4 . (41) 
The scale-dependent functions H ( p ) ( p = 1 − 22) are derived by 
decomposing the non-linear kernel functions Z 1 Z 1 Z 2 in terms of the 

parameters, given by 
H (1) = 1 , 
H (2) = S( k 1 , k 2 ) , 
H (3) = T ( k 1 , k 2 ) , 
H (4) = ( µ2 

1 + µ2 
2 ) , 

H (5) = S( k 1 , k 2 )( µ2 
1 + µ2 

2 ) , 
H (6) = T ( k 1 , k 2 )( µ2 

1 + µ2 
2 ) , 

H (7) = ( µ2 
1 µ2 

2 ) , 
H (8) = S( k 1 , k 2 )( µ2 

1 µ2 
2 ) , 

H (9) = T ( k 1 , k 2 )( µ2 
1 µ2 

2 ) , 
H (10) = ( µ2 ) , 
H (11) = S( k 1 , k 2 )( µ2 ) , 
H (12) = T ( k 1 , k 2 )( µ2 ) , 
H (13) = ( µ2 )( µ2 

1 + µ2 
2 ) , 

H (14) = S( k 1 , k 2 )( µ2 )( µ2 
1 + µ2 

2 ) , 
H (15) = T ( k 1 , k 2 )( µ2 )( µ2 

1 + µ2 
2 ) , 

H (16) = ( µ2 )( µ2 
1 µ2 

2 ) , 
H (17) = S( k 1 , k 2 )( µ2 )( µ2 

1 µ2 
2 ) , 

H (18) = T ( k 1 , k 2 )( µ2 )( µ2 
1 µ2 

2 ) , 
H (19) = DV ( k 1 , k 2 ) , 
H (20) = DV ( k 1 , k 2 )( µ2 

1 + µ2 
2 ) + V ( k 1 , k 2 ) , 

H (21) = DV ( k 1 , k 2 )( µ2 
1 µ2 

2 ) + V ( k 1 , k 2 )( µ2 
1 + µ2 

2 ) , 
H (22) = V ( k 1 , k 2 )( µ2 

1 µ2 
2 ) , (42) 

where k = k 1 + k 2 , µ = ˆ k · ˆ n , µ1 = ˆ k 1 · ˆ n , µ2 = ˆ k 2 · ˆ n , and 
V ( k 1 , k 2 ) = 1 

2 k 2 
k 1 k 2 µ2 µ1 µ2 , 

DV ( k 1 , k 2 ) = 1 
2 k µ

[
µ1 
k 1 + µ2 

k 2 
]

. (43) 
We pre-compute B ( p) ( k 1 , k 2 ) using the fiducial cosmology intro- 
duced in Section 1 and save the resulting data in a file. In this 
way, when constraining X ( p ) from the BOSS data, we can quickly 
calculate the bispectrum by loading the data file containing B ( p ) and 
substituting them into equation ( 39 ) along with X ( p ) . 

Here we demonstrate how the growth, shift, and tidal terms of 
the second-order density and velocity fields affect the multipole 
components of the 3PCF. To do so, we consider the following seven 
bispectra: 
B FG ( k 1 , k 2 ) = ∑ 

p= 1 , 4 , 7 X ( p) B ( p) ( k 1 , k 2 ) , 
B FS ( k 1 , k 2 ) = ∑ 

p= 2 , 5 , 8 X ( p) B ( p) ( k 1 , k 2 ) , 
B FT ( k 1 , k 2 ) = ∑ 

p= 3 , 6 , 9 X ( p) B ( p) ( k 1 , k 2 ) , 
B GG ( k 1 , k 2 ) = ∑ 

p= 10 , 13 , 16 X ( p) B ( p) ( k 1 , k 2 ) , 
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B GS ( k 1 , k 2 ) = ∑ 
p= 11 , 14 , 17 X ( p) B ( p) ( k 1 , k 2 ) , 

B GT ( k 1 , k 2 ) = ∑ 
p= 12 , 15 , 18 X ( p) B ( p) ( k 1 , k 2 ) , 

B BF ( k 1 , k 2 ) = ∑ 
p= 19 , 20 , 21 , 22 X ( p) B ( p) ( k 1 , k 2 ) . (44) 

where B FG , B FS , B FT , B GG , B GS , and B GT are proportional to ( F g σ 8 ), 
( F s σ 8 ), ( F t σ 8 ), ( G g σ 8 ), ( G s σ 8 ), and ( G t σ 8 ), respectively, and B BF 
depends only on ( b 1 σ 8 ) and ( f σ 8 ). When computing the abo v e sev en 
bispectra, we assume the cosmological parameters in $ CDM given 
in Section 1 , the linear bias parameter b 1 = 2, no non-linear bias, 
i.e. b 2 = b s 2 = 0, and the redshift z = 0.61. Next, we decompose 
the seven bispectra using TripoSHs according to Section 3.1 and 
compute the 3PCF multipoles via the 2D Hankel transform ( 28 ). We 
plot the resulting 3PCF multipoles in Figs 1 and 2 as a function of r 2 
after fixing r 1 to 50, 80, 90, 100, and 130 h −1 Mpc . 

As shown in Sugiyama et al. ( 2021 ), in the monopole component 
(Fig. 1 ), the growth term (‘FG’) is positive for scales smaller than 
∼ 130 h −1 Mpc and has a peak at r 1 = r 2 , while it goes from 
positive to negative and behaves like a trough for scales above 
∼ 130 h −1 Mpc . On the other hand, the shift (‘FS’) and tidal (‘FT’) 
terms have troughs for any scale. Depending on the scale of interest, 
the shift term dominates for scales abo v e ∼ 30 h −1 Mpc , and the total 
3PCF (‘total’), which is the sum of all components, is found to have 
a trough. To illustrate the trough-like behaviour of the 3PCF at r 1 = 
r 2 , we hav e dra wn v ertical black lines representing r 1 = r 2 in Figs 1 
and 2 . It can be seen that the bottom of the trough of the black curve 
representing the total 3PCF is al w ays on the line r 1 = r 2 . Around 
r 1 ∼ 100 h −1 Mpc , the BAO peak appears and has a wavy shape as it 
cancels out the trough due to non-linear gravity effects (e.g. see the 
middle panels). At r 1 = 130 h −1 Mpc (the bottom panels), almost all 
the components have troughs, so the 3PCF has a more significant 
trough at r 1 = r 2 . 

The quadrupole component (Fig. 2 ) of the 3PCF only shows an 
o v erall trough behaviour because the BAO signal is sufficiently non- 
linearly damped. The most dominant term in the quadrupole 3PCF is 
the ‘BF’ term, which does not depend on any non-linear coefficients 
such as F g or G g . This ‘BF’ term consists of two effects: first, a 
term expressed as the product of a linear density field and a linear 
velocity field, and second, a term expressed as the square of the linear 
velocity field. In particular, the former can be interpreted as a new 
shift term resulting from the coordinate transformation from real 
to redshift space ( 18 ), and it dominates the ‘BF’ term. Therefore, 
it behaves similarly to the shift term in the monopole 3PCF and 
explains most of the trough structure in the quadrupole 3PCF. The 
growth (‘GG’), shift (‘GS’), and tidal (‘GT’) terms in the non-linear 
velocity field contribute to the quadrupole 3PCF comparably to those 
in the non-linear density field, and thus we can use the quadrupole 
3PCF to determine the ‘GG’, ‘GS’, and ‘GT’ terms. In contrast to the 
monopole case, the growth terms (‘FG’ and ‘GG’) are ne gativ e and 
behave as troughs, while the shift terms (‘FS’ and ‘GS’) are positive. 
3.4 Time dependences of parameters 
We re vie w the discussion by Yamauchi & Sugiyama ( 2022 ) on 
introducing new parameters to test DHOST theories and their time 
dependences. 

Note that some previous works predict that constraining σ 8 alone 
from the 3PCF can break the de generac y between f σ 8 and σ 8 , but 

this no longer happens in the framework of DHOST theories. To 
illustrate this fact in the context of our parametrization, we can see 
from equation ( 37 ) that the coefficient of the shift term in the second- 
order density fluctuation in $ CDM ( F s = 1) determines σ 8 because 
both the growth and tidal terms are degenerate with the non-linear 
bias parameters (Schmittfull et al. 2015 ). Ho we ver, in the case of 
DHOST theories, there appears the parameter κδ in the coefficient 
of the shift term, which makes it impossible to measure σ 8 alone. 
Therefore, we introduce three new parameters that are not degenerate 
with σ 8 following Yamauchi & Sugiyama ( 2022 ): 
E f = f 

κδ

= f σ8 
F s σ8 , 

E s = κθ

κδ

= G s σ8 
F s σ8 , 

E t = λθ

κδ

= 7 
4 G t σ8 

F s σ8 . (45) 
In GR or Horndeski theories, E f = f , E s = 1 and E t = λθ , because 
κδ = κθ = 1. Horndeski theories differ from $ CDM only in f and 
E t while keeping E s = 1. If E s += 1, then the signal is specific 
to DHOST theories; E s += 1 is a sufficient condition for detecting 
DHOST theories because there can be DHOST theories satisfying 
E s = 1. 

It has been known for a long time that the coefficient of the 
tidal term in the non-linear density field, λδ , is time-dependent in 
GR (e.g. Bouchet et al. 1992 ), and in the case of $ CDM, the 
following approximation holds well with an precision better than 
0 . 6 per cent (Bouchet et al. 1995 ; Yamauchi et al. 2017b ) 12 : 
λδ ∼ %3 / 572 

m . (47) 
Through equation ( 12 ), the coefficient of the tidal term in the non- 
linear velocity field, λθ , is also given by (Yamauchi & Sugiyama 
2022 ) 
λθ ∼ %15 / 1144 

m . (48) 
Yamauchi et al. ( 2017b ) extended the abo v e discussion to Horn- 

deski theories and showed that λδ is parametrized as a power of %m 
in Horndeski theories. In addition, Yamauchi & Sugiyama ( 2022 ) 
performed similar calculations for DHOST theories and showed that 
the coefficient of the shift term, κδ , is also described by a power of 
%m . The coefficients of the shift and tidal terms in the non-linear 
velocity field can be calculated through equation ( 12 ), and they also 
follo w the po wers of %m . Therefore, we can parametrize the time 
dependences of E f , E s , and E t as follows: 
E f ∼ %

ξf 
m , E s ∼ %ξs 

m , E t ∼ %ξt 
m . (49) 

In GR, we have 
ξf = 6 

11 , ξs = 0 , ξt = 15 
1144 . (50) 

In summary, we parametrize the second-order kernel function of the 
velocity field ( 37 ) as 
f G (g) 

2 σ 2 
8 = %ξf 

m ( F s σ8 ) 2 [ (G g ) + %ξs 
m S + 4 

7 %ξt 
m T ], (51) 

12 The original deri v ation of the equation was calculated in the Lagrangian 
picture and is given in the form (Bouchet et al. 1995 ) 
2 
7 λδ = 1 

2 
[

1 − 3 
7 %−1 / 143 

m ]
. (46) 

This equation can be rewritten to equation ( 47 ) under the condition (1 −
%m ) / 1. 
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Figure 1. The monopole 3PCFs, ζ 000 (left) and ζ 110 (right), calculated from the decomposed bispectra ( 44 ) according to the parameter dependence, are shown 
as a function of r 2 after fixing r 1 to 50, 80, 90, 100, and 130 h −1 Mpc . The ‘FG’, ‘FS’, and ‘FT’ terms arise from the growth, shift and tidal effects of the 
non-linear density fluctuation; the ‘GG’, ‘GS’, and ‘GT’ terms arise from those of the non-linear velocity field; the ‘BF’ term consists only of linear density and 
linear velocity fields; the ‘total’ term is the sum of all the decomposed components. For these calculations, the $ CDM model at z = 0.61, the linear bias b 1 = 
2.0, and no non-linear bias are assumed. 
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Figure 2. Same as Fig. 1 , except that the quadrupole 3PCFs, ζ 202 and ζ 112 , are shown. 
where ( G g ) = %ξs 

m − (8 / 21) %ξt 
m , and the functions S and T are given 

in equation ( 36 ). We will test the theory of gravity by measuring 
the abo v e three parameters, ξ f , ξ s , and ξ t , from the BOSS data in 
Section 9 . 

In DHOST theories, the Planck mass is time-varying, and the 
time variation of the Hubble parameter is different from GR. 
Therefore, one may be concerned that the time dependence of 

%m is different from %GR 
m that is calculated assuming GR. How- 

ever, Appendix C in Yamauchi & Sugiyama ( 2022 ) showed that 
the difference between DHOST theories and GR is suppressed 
by (1 − %GR 

m ). Hence, we can replace %m in equation ( 49 ) with 
%GR 

m as an approximation and perform the analysis to constrain 
ξ f , ξ s , and ξ t . 
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3.5 Limitations of our theoretical approach to the 2 and 3PCFs 
In this subsection, we discuss the validity of the calculation methods 
of the 2 and 3PCFs models described so far and the limitations of 
their application. 

First, we can use the TripoSH decomposed 3PCF ( 28 ) to constrain 
all the scale dependencies in the 3PCF, such as the shift and 
tidal terms, as shown Figs 1 and 2 , because it does not focus 
only on specific scale dependencies such as the squeezed limit. 
Ho we ver, our analysis that uses only some multipoles of the TripoSH 
decomposition does not fully utilize the information on the scale 
dependence of the 3PCF. The reason for restricting the multipole 
components used in this work is to keep the number of data bins 
much smaller than the number of mock simulations used to compute 
the covariance matrix (Section 5 ). Therefore, increasing the number 
of multipoles in the 3PCF to be considered will impro v e the results 
of this work when more mock catalogues are created in the future. 

Secondly, note that the power spectrum and bispectrum models 
in equations ( 31 ) and ( 34 ) are valid for any theory in which the IR 
cancellation occurs based on the Galilean invariance of the system 
of equations in the IR limit: i.e. these models hold not only for 
$ CDM but also for Horndeski theories (Crisostomi et al. 2020 ). 
On the other hand, as Le wando wski ( 2020 ) pointed out in the 
power spectrum case, additional terms arise when performing the 
IR resummation in DHOST theories because of the violation of 
the IR cancellation. Specifically, when one applies the IR limit to 
the one-loop solution of the power spectrum in DHOST theories, 
a term proportional to k 2 P lin ( k ) appears, changing the shape of 
the power spectrum (Crisostomi et al. 2020 ; Le wando wski 2020 ; 
Hirano et al. 2020 ). Note also that this additional term is degenerate 
with the higher-order deri v ati ve bias, which is ignored in this paper. 
Ho we ver, since this additional term in the IR limit is proportional 
to k 2 P lin ( k ), it is considered to be negligible at the large scales 
of interest in this paper ( ≥ 80 h −1 Mpc ). Assuming that the same 
should happen in the bispectrum, we directly use the power and 
bispectrum models in equations ( 31 ) and ( 34 ) in the present analysis. 
In addition, it should be noted that Hirano et al. ( 2020 ) showed 
that in DHOST theories, a term consisting of the product of 
first- and third-order fluctuations in the one-loop power spectrum 
causes UV divergence. Further model development is thus needed 
to take advantage of smaller-scale information by solving these 
problems. 

Thirdly, since the linear equation for density fluctuations is scale- 
independent ( 6 ), we assume that we can use the shape of the linear 
matter power spectrum determined in the high- z region, where the 
scalar field is expected to be sub-dominant. Thus, we can pre- 
compute the σ 2 

8 -normalized wiggle and no-wiggle power spectra, 
P (n) 

w and P (n) 
nw , appearing in the B ( p ) terms ( 40 ), using a $ CDM 

model. 
Fourthly, there is a concern about the pre-computation of D( k ) 

( 32 ) appearing in the B ( p ) terms ( 40 ). It is known that σ⊥ and σ ! , 
which characterize D( k ), can be calculated successfully using linear 
displacement vectors (e.g. Matsubara 2008 ), and we adopt the same 
calculation in this paper ( 33 ). Since σ⊥ and σ ! in the linear theory 
depend on f and σ 8 , their values should differ for different gravity 
theories. For this reason, it is desirable to vary σ⊥ and σ ! as free 
parameters in the data analysis. Ho we ver, to do so, the bispectrum 
decomposition method in equation ( 39 ) cannot be applied, and the 
computation time of the bispectrum model increases significantly, 
making it challenging to perform cosmological analysis. Fortunately, 
the BAO signal does not significantly impact the shape of the 3PCF. 
The reason is that the BAO signal is maximized when r 1 ∼ r 2 ∼
100 h −1 Mpc , while r 1 and r 2 can take various combinations in the 

3PCF (Sugiyama et al. 2021 ). Therefore, in this paper, we ignore 
the concern about D( k ) and pre-compute σ⊥ and σ ! using the linear 
theory in $ CDM. Furthermore, to keep consistency with the 3PCF 
calculation, we fix σ⊥ and σ ! to those calculated using the $ CDM 
model in the 2PCF calculation as well. 

Finally, to simplify the analysis, we ignore the AP effect (Alcock & 
Paczy ́nski 1979 ), which can directly measure the Hubble parameter 
and angular radial distance at the redshift of the galaxy distribution 
of interest. Ignoring the AP effect means that the values of the 
angular diameter distance and the Hubble parameter, which should 
be constrained by the AP effect, are given by the fiducial $ CDM. In 
this sense, this paper assumes the fiducial $ CDM for the expansion 
of the Universe in the background spacetime. Ho we ver, the AP ef fect 
can be determined by the 2PCF by a few per cent and is not expected 
to significantly affect the constraint results for the parameters that 
characterize the non-linear fluctuations of interest in this paper, 
such as ξ t and ξ s . Since DHOST theories vary these parameter 
v alues, the AP ef fect is expected to provide further information 
into the constraint on DHOST theories. Sugiyama et al. ( 2021 ) have 
performed a joint analysis of the anisotropic 2 and 3PCFs to constrain 
the AP parameters under the GR assumption. Combining that method 
with the analysis method developed in this paper allows for consistent 
DHOST theory constraints that simultaneously account for the AP 
and non-linear gravity effects, which is left as future work. 
4  MEASUREMENTS  
This section summarizes how to measure multipole 2PCFs and 
3PCFs from BOSS galaxy data according to the method proposed 
by Sugiyama et al. ( 2021 ). First, Section 4.1 introduces the BOSS 
galaxy data used in this paper and the mock simulation data designed 
to reproduce it. Then, Section 4.2 describes the measurements of the 
multipole 2PCFs and 3PCFs. Finally, Section 4.3 explains how to 
correct for the window function effects on the measured 2 and 3PCFs. 
4.1 Data 
We use the final galaxy clustering data set, DR12 (Alam et al. 2015 ), 
from the BOSS (Dawson et al. 2013 ). The BOSS surv e y is part of 
the Sloan Digital Sk y Surv e y III (SDSS III; Eisenstein et al. 2011 ), 
selected galaxies from multicolour SDSS imaging (Fukugita et al. 
1996 ; Gunn et al. 1998 ; Smith et al. 2002 ; Gunn et al. 2006 ; Doi 
et al. 2010 ) and used the SDSS multi-fiber spectrograph (Bolton 
et al. 2012 ; Smee et al. 2013 ) to measure spectroscopic redshifts of 
the galaxies. As detailed in Reid et al. ( 2016 ), the BOSS surv e y has 
four samples, CMASS, LOWZ, LOWZ2, and LOWZ3, and those four 
samples are combined into one sample. In brief, the surv e y footprint, 
veto masks and survey-related systematics (such as fiber collisions 
and redshift failures) are considered to construct data and random 
catalogues for the DR12 BOSS galaxies. This DR12 combined 
sample comprises 1.2 million massive galaxies o v er an ef fecti ve area 
of 9329 deg 2 and co v ers a redshift range of 0.20.75. In our analysis, 
we split this redshift range into two redshift bins defined by 0.2 < 
z < 0.5 and 0.5 < z < 0.75 with the ef fecti ve redshifts z eff = 0.38 
and 0.61, respectively, where the effective redshifts are calculated 
as the weighted av erage o v er all galaxies (see e.g. equation ( 67 ) 
in Beutler et al. 2014 ). The DR12 combined sample is observed 
across the two Galactic hemispheres, referred to as the Northern and 
Southern galactic caps (NGC and SGC, respectively), and the NGC 
and SGC samples probe slightly different galaxy populations in the 
low-redshift part of the combined sample (see appendix A of Alam 
et al. 2015 ). 
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To derive the covariance matrices of the 2 and 3PCFs and test 
the validity of the 2 and 3PCFs models given in equations ( 31 ) and 
( 34 ), we use the MultiDark–Patchy mock catalogues (Patchy mocks; 
Kitaura et al. 2016 ). The Patchy mocks have been calibrated to an N - 
body simulation-based reference sample using approximate galaxy 
solvers and analytical-statistical biasing models and incorporate 
observ ational ef fects including the surv e y geometry, v eto mask, 
and fiber collisions. The reference catalogue is extracted from one 
of the BigMultiDark simulations (Klypin et al. 2016 ), which was 
performed using GADGET-2 (Springel 2005 ) with 3840 3 particles 
on a volume of (2 . 5 h −1 Mpc ) 3 . Halo abundance matching is used 
to reproduce the observed BOSS two and three-point clustering 
measurements (Rodr ́ıguez-Torres et al. 2016 ). There are 2048 cata- 
logues available for each the NGC and SGC o v er the redshift range 
z = 0.2–0.75. The fiducial cosmology for these mocks assumes a 
$ CDM cosmology with ( %$ , %m , %b , σ 8 , and h ) = (0.692885, 
0.307115, 0.048206, 0.8288, and 0.6777). These fiducial parameters 
are slightly different from those used in our analysis of the BOSS 
galaxy data introduced in the introduction (Section 1 ), but we expect 
that such differences do not significantly affect the covariance matrix 
estimations of the 2 and 3PCFs. 

We include three different incompleteness weights to account for 
shortcomings of the BOSS data set: a fiber collision weight, w cp , a 
redshift failure weight, w noz , and a systematics weight, w sys , which 
is a combination of a stellar density weight and a seeing condition 
weight. Each galaxy observed at position x is counted with the follow- 
ing weight (Ross et al. 2012 ; Anderson et al. 2014 ; Reid et al. 2016 ): 
w c ( x ) = w sys ( x ) (w cp ( x ) + w noz ( x ) − 1 ) . (52) 
In addition, we use a signal-to-noise (S/N) weight, the so-called 
FKP weight, proposed by Feldman, Kaiser & Peacock ( 1994 ), 
w FKP ( x ) = 1 / [1 + n̄ 0 ( x ) P̄ ], where P̄ = 10 4 ( h −1 Mpc ) 3 . The FKP 
weight function is ef fecti ve not only for the power spectrum but also 
for the bispectrum when assuming Gaussian errors (Scoccimarro 
2000 ), and bispectrum measurements from the Patchy mock 
catalogue confirm that the FKP weight impro v es the bispectrum S/N 
ratio even when including non-Gaussian errors (see Appendix D in 
Sugiyama et al. 2019 ). We expect the validity of the FKP weight to 
hold for the 2 and 3PCFs in configuration space because we measure 
the 2 and 3PCFs as Fourier transforms of the power spectrum 
and bispectrum, respectively (Section 4.2 ). For the galaxy data, 
multiplying the completeness weights by the FKP weights yields the 
local weight function that is used in our analysis, while the random 
catalogues have only the FKP weights: 
w (gal) ( x ) = w c ( x ) w FKP ( x ) , 
w (ran) ( x ) = w FKP ( x ) , (53) 
where the superscripts, ‘(gal)’ and ‘(ran)’, stand for ‘galaxy’ and 
‘random’. 
4.2 Estimators of the 2 and 3PCFs 
We measure the number densities of both real and random galaxies 
weighted by the spherical harmonic function Y 5 m : 
D 5m ( x ) = N gal ∑ 

i w (gal) ( x i ) Y ∗5m ( ˆ x (gal) 
i )

δD (x − x (gal) 
i )

, 
R 5m ( x ) = N ran ∑ 

j w (ran) ( x j ) Y ∗5m ( ˆ x (ran) 
j )

δD (x − x (ran) 
j )

, (54) 
where N gal and N ran are the total number of real and random galaxies, 
respectively, and the normal number densities are given by D( x ) = 

√ 
4 πD 00 ( x ) and R( x ) = √ 

4 πR 00 ( x ). Defining N ′ gal ≡ ∫ 
d 3 xD( x ) 

and N ′ ran ≡ ∫ 
d 3 xR( x ), we can estimate the surv e y volume as 

V = N ′ 2 ran ∫ 
d 3 x [ R( x )] 2 . (55) 

Then, the observed density fluctuation weighted by Y 5 m is 
δobs ,5 m ( x ) = V [ D 5m ( x ) /N ′ gal − R 5m ( x ) /N ′ ran ] , (56) 
and 
δobs ( x ) = √ 

4 πδobs , 00 ( x ) . (57) 
We use the fast Fourier transform (FFT) algorithm 13 to calculate 
˜ δobs ,5 m ( k ) = 1 

W mass ( k ) 
∫ 

d 3 xe −i k ·x δobs ,5 m ( x ) , (58) 
where the Fourier transform of the normal density fluctuation is given 
by ˜ δobs ( k ) = √ 

4 π ˜ δobs , 00 ( k ), and W mass ( k ) is the mass assignment 
function that corrects for the effect when arising assign particles on 
a regular grid in position space (Jing 2005 ). The most popular mass 
assignment function is given by (Hockney & Eastwood 1981 ) 
W mass ( k ) = ∏ 

i = x ,y ,z 
[

sinc ( πk i 
2 k N , i 

)]p 
, (59) 

where k N, i is the Nyquist frequency of i -axis with the grid spacing 
H i on the axis. The inde x es p = 1, p = 2, and p = 3 correspond to the 
nearest grid point, cloud-in-cell, and triangular-shaped cloud (TSC) 
assignment functions, respectively. 

The FFT-based estimator of the multipole 2PCFs is given by (Hand 
et al. 2017 ; Sugiyama, Shiraishi & Okumura 2018 ; see also Bianchi 
et al. 2015 ; Scoccimarro 2015 ) 
̂ ξ5 ( r) = (4 π ) 

V ∑ 
m 

∫ 
d 2 ̂  r 
4 π Y 5m ( ̂ r ) ∫ d 3 k 

(2 π ) 3 e i k ·r 
×

[
˜ δobs ,5 m ( k ) ̃  δ∗

obs ( k ) − S 5m ( k ) ]. (60) 
The shot-noise term S 5m ( k ) is given by 
S 5m ( k ) = C shot ( k ) 

W 2 mass ( k ) 
( 

V 
N ′ gal 

) 2 

×
[ N gal ∑ 

i 
[
w (gal) ( x i ) ]2 

Y ∗5m ( ˆ x (gal) 
i )

+ (N ′ gal 
N ′ ran 

)2 N ran ∑ 
j 

[
w (ran) ( x j ) ]2 

Y ∗5m ( ˆ x (ran) 
j )]

. (61) 
where C shot ( k ) represents the correction for the assignment effect to 
the shot-noise term, given by (equation ( 20 ) in Jing ( 2005 ) 

C shot ( k ) 
= 

 
   
   

1 , NGP ; 
∏ 

i [ 1 − 2 
3 sin 2 ( πk i 

2 k N , i )] , CIC ; 
∏ 

i [ 1 − sin 2 ( πk i 
2 k N , i ) + 2 

15 sin 4 ( πk i 
2 k N , i )] , TSC . (62) 

The angle integral ∫ d 2 ̂  r / (4 π ) in equation ( 60 ) can be rewritten as 
∫ 

d 2 ̂  r 
4 π = 1 

N r ( r) ∑ 
r −9r / 2 <r <r + 9r / 2 , (63) 

13 http:// fftw.org/ 
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Table 1. The length of each side of the cube containing the observed galaxies, defined for performing FFTs, and the number of grids on which 
the cube is delimited are shown for the four BOSS samples (Section 4.1 ). Also shown are the surv e y volume ( 55 ) and the mean galaxy number 
density ( 64 ), calculated using the values of these parameters. 

( L x , L y , L z ) [ h −1 Mpc ] ( N x , N y , N z ) V [( h −1 Gpc ) 3 ] n̄ / 10 −4 [( h −1 Mpc ) −3 ] 
NGC at z eff = 0.38 (0.2 < z < 0.5) (1350, 2450, 1400) (250, 460, 260) 1.51 2.65 
SGC at z eff = 0.38 (0.2 < z < 0.5) (1000, 1900, 1100) (190, 360, 210) 0.56 2.88 
NGC at z eff = 0.61 (0.5 < z < 0.75) (1800, 3400, 1900) (340, 650, 360) 2.35 1.37 
SGC at z eff = 0.61 (0.5 < z < 0.75) (1000, 2600, 1500) (190, 500, 280) 0.87 1.29 

where 9 r is the width of the r -bins and N r ( r ) is the number of 3D data 
contained in each r -bin width. From the expression of the shot noise 
term in the 2PCF given in equation ( 61 ), we compute the weighted 
mean number density as 
n̄ = 

 
 
 V 

N ′ 2 gal 
N gal ∑ 

i 
[
w (gal) ( x i ) ]2  

 
 

−1 
. (64) 

The FFT-based estimator of the multipole 3PCFs is given 
by (Sugiyama et al. 2019 ) (see also Scoccimarro 2015 ; Slepian & 
Eisenstein 2016 ) 
̂ ζ5 1 5 2 5 ( r 1 , r 2 ) = (4 π ) 2 h 5 1 5 2 5 

V ∑ 
m 1 m 2 m 

(
5 1 5 2 5 
m 1 m 2 m 

)

×
[∫ 

d 3 xF 5 1 m 1 ( x ; r 1 ) F 5 2 m 2 ( x ; r 2 ) G 5m ( x ) 
− δ(K) 

r 1 r 2 S 5 1 m 1 ; 5 2 m 2 ; 5m ( r 1 ) ], (65) 
where 
F 5m ( x ; r) = i 5 ∫ d 3 k 

(2 π ) 3 e i k ·x j 5 ( rk) Y ∗5m ( ̂ k ) ̃  δobs ( k ) , 
G 5m ( x ) = ∫ d 3 k 

(2 π ) 3 e i k ·x ̃  δobs ,5m ( k ) . (66) 
Note that the shot-noise term only contributes to the 3PCF measure- 
ment for the r 1 = r 2 bins, represented by the Kronecker delta δ(K) 

r 1 r 2 
in equation ( 65 ). To specifically calculate the shot-noise term in the 
3PCF, we first measure the following density field 
N ( x ) = N gal ∑ 

i 
[ 
w (gal) 

i ( x i ) ] 2 δD (x − x (gal) 
i )

+ (N ′ gal 
N ′ ran 

)2 N ran ∑ 
i 

[ 
w (ran) 

i ( x i ) ] 2 δD (x − x (ran) 
i )

, (67) 
and divide it by ( N ′ gal /V ) to have 
δN ( x ) = ( V /N ′ gal ) N ( x ) . (68) 
Then, we calculate the Fourier transform of δN ( x ) in the same 
manner as in equation ( 58 ) and denote it as ̃  δN ( k ). Finally, we derive 
S 5 1 m 1 ; 5 2 m 2 ; 5m ( r) by substituting ̃  δN ( k ) into the following equation 
S 5 1 m 1 ; 5 2 m 2 ; 5m ( r) = ( 1 

4 πr 2 9r 
)( 

V 
N ′ gal 

) 
( −1) 5 1 + 5 2 

×
∫ 

d 2 ̂  r 
4 π Y ∗5 1 m 1 ( ̂ r ) Y ∗5 2 m 2 ( ̂ r ) ∫ d 3 k 

(2 π ) 3 e i k ·r 
×

[ ̃  δ5m ( k ) ̃  δ∗
N ( k ) − S (3PCF) 

5m ( k ) ] , (69) 

where 
S (3PCF) 

5m ( k ) = C shot ( k ) 
W 2 mass ( k ) 

( 
V 

N ′ gal 
) 2 

×
[ N gal ∑ 

i 
[
w (gal) ( x i ) ]3 

Y ∗5m ( ˆ x (gal) 
i )

−
(

N ′ gal 
N ′ ran 

)3 N ran ∑ 
j 

[
w (ran) ( x j ) ]3 

Y ∗5m ( ˆ x (ran) 
j )]

. (70) 
The factor (1/(4 πr 2 9 r )) can be rewritten as 

1 
4 πr 2 9r = 1 

N r ( r) N grid 
V FFT , (71) 

where V FFT is the volume of the Cartesian box in which the galaxies 
are placed before the FFT is performed, and N grid is the number of 
FFT grid cells. 

In the scale range of 80 ≤ r ≤ 150 h −1 Mpc , we choose 9r = 
5 h −1 Mpc for the 2PCF and 9r = 10 h −1 Mpc for the 3PCF. Con- 
sidering ζ5 1 5 2 5 ( r 1 , r 2 ) = ζ5 2 5 1 5 ( r 2 , r 1 ), the numbers of data bins for 
the 2 and 3PCFs multipoles are 15, 15, 36, 36, 64, and 36 for ξ 0 , ξ 2 , 
ζ 000 , ζ 110 , ζ 202 , and ζ 112 , respectively. 

We use the Cartesian coordinates x = { x , y , z} with the z- 
axis pointing to the north pole to define a cuboid of dimension 
L [ h −1 Mpc ] = ( L x , L y , L z ) containing the galaxy sample; to per- 
form the FFT, each axis of this cuboid is delimited into N = 
( N x , N y , N z ) grids. We then distribute the galaxies on the FFT grid 
using the TSC assignment function. We adopt the same values for L 
and N that were used by the Fourier space analysis of the two-point 
statistics performed by Beutler et al. ( 2017 ). They are chosen so 
that the width of each grid is ∼ 5 h −1 Mpc , which is well below the 
scales r ≥ 80 h −1 Mpc that we are interested in. We summarize the 
specific values of L and N , as well as the surv e y volume ( 55 ) and the 
weighted mean number density ( 64 ) computed using these values of 
L and N in Table 1 . 
4.3 Window function corrections 
When measuring 2PCFs and 3PCFs in configuration space from 
galaxy data, if we directly measure their angle-averaged multipole 
components, we can not eliminate the effect of the window func- 
tion (appendix A of Sugiyama et al. 2021 ). The FFT-based estimators 
introduced in Section ( 4.2 ) are a typical example of this, but even 
when measuring multipole 3PCFs without using the FFT, we need to 
be aware of the window function effect (Slepian & Eisenstein 2015 , 
2018 ). Since the window function W ( x ) characterizing the geometry 
of the observ ed re gion can be estimated as W ( x ) = ( V /N ′ ran ) R( x ), 
we can quantitatively estimate the corrections due to the window 
function by measuring the multipole 2PCFs and 3PCFs from the 
random catalogue. 
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For the 2PCF, we compute 
Q 5 ( r) = (4 π ) 

V ∑ 
m 

∫ 
d 2 ̂  r 
4 π Y 5m ( ̂ r ) ∫ d 3 k 

(2 π ) 3 e i k ·r 
×

[
˜ W 5m ( k ) ̃  W ∗( k ) − S (w) 

5m ( k ) ]. (72) 
where ˜ W 5m ( k ) is the Fourier transform of ( V /N ′ ran ) R 5m ( x ) computed 
in the same manner as in equation ( 58 ), ˜ W ( k ) = √ 

4 π ˜ W 00 ( k ), and 
the shot-noise term is given by 
S (w) 

5m ( k ) = C shot ( k ) 
W 2 mass ( k ) 

(
V 

N ′ ran 
)2 

×
[ N ran ∑ 

i 
[
w (ran) ( x i ) ]2 

Y ∗5m ( ˆ x (ran) 
i )]

. (73) 
Then, we have the theoretical model of ξ5 ( r ) taking the survey 
windo w ef fect into account as follo ws (Wilson et al. 2017 ; Beutler 
et al. 2017 ): 
ξ

(w) 
5 ( r) = (2 5 + 1) ∑ 

5 1 5 2 
(

5 1 5 2 5 
0 0 0 

)2 
Q 5 1 ( r) ξ5 2 ( r) . (74) 

For the 3PCF, we compute 
Q 5 1 5 2 5 ( r 1 , r 2 ) = (4 π ) 2 h 5 1 5 2 5 

V ∑ 
m 1 m 2 m 

(
5 1 5 2 5 
m 1 m 2 m 

)

×
[ ∫ 

d 3 xF (w) 
5 1 m 1 ( x ; r 1 ) F (w) 

5 2 m 2 ( x ; r 2 ) G (w) 
5m ( x ) 

−δ(K) 
r 1 r 2 S (w) 

5 1 m 1 ; 5 2 m 2 ; 5m ( r 1 ) ], (75) 
where 
F (w) 

5m ( x ; r) = i 5 ∫ d 3 k 
(2 π ) 3 e i k ·x j 5 ( rk) Y ∗5m ( ̂ k ) ̃  W ( k ) , 

G (w) 
5m ( x ) = ∫ d 3 k 

(2 π ) 3 e i k ·x ˜ W 5m ( k ) . (76) 
The shot-noise term is given by 
S (w) 

5 1 m 1 ; 5 2 m 2 ; 5m ( r) = ( 1 
4 πr 2 9r 

)(
V 

N ′ ran 
)

( −1) 5 1 + 5 2 
×

∫ 
d 2 ̂  r 
4 π Y ∗5 1 m 1 ( ̂ r ) Y ∗5 2 m 2 ( ̂ r ) ∫ d 3 k 

(2 π ) 3 e i k ·r 
×

[ ̃  W 5m ( k ) ̃  δ
(w) ∗
N ( k ) − S (3PCF , w) 

5m ( k ) ] , (77) 
where 
S (3PCF , w) 

5m ( k ) = C shot ( k ) 
W 2 mass ( k ) 

(
V 

N ′ ran 
)2 

×
[ N ran ∑ 

i 
[
w (ran) ( x i ) ]3 

Y ∗5m ( ˆ x (ran) 
i )]

, (78) 
and ̃  δ

(w) 
N ( k ) is the Fourier transform of 

δ
(w) 
N ( x ) = ( V 

N ′ ran 
) N ran ∑ 

i 
[ 
w (ran) 

i ] 2 
δD (x − x (ran) 

i )
. (79) 

Then, we have the theoretical model of ζ5 1 5 2 5 ( r 1 , r 2 ) taking the 
surv e y windo w ef fect into account as follo ws (Sugiyama et al. 2019 ; 

Sugiyama et al. 2021 ): 

ζ
(w) 
5 1 5 2 5 ( r 1 , r 2 ) = (4 π ) ∑ 

5 ′ 1 + 5 ′ 2 + 5 ′ = even 
∑ 

5 ′′ 1 + 5 ′′ 2 + 5 ′′ = even 
×

 
 
 

5 ′′ 1 5 ′′ 2 5 ′′ 
5 ′ 1 5 ′ 2 5 ′ 
5 1 5 2 5 

 
 
 

[ 
h 5 1 5 2 5 h 5 1 5 ′ 1 5 ′′ 1 h 5 2 5 ′ 2 5 ′′ 2 h 55 ′ 5 ′′ 

h 5 ′ 1 5 ′ 2 5 ′ h 5 ′′ 1 5 ′′ 2 5 ′′ 
] 

× Q 5 ′′ 1 5 ′′ 2 5 ′′ ( r 1 , r 2 ) ζ5 ′ 1 5 ′ 2 5 ′ ( r 1 , r 2 ) , (80) 

where the bracket with 9 multipole indices, { . . . } , denotes the 
Wigner-9j symbol. In the likelihood fitting performed in Section 9 , 
we use ξ (w) 

5 and ζ (w) 
5 1 5 2 5 to compare the measured multipole 2 and 

3PCFs estimators with the theoretical models given in equations ( 31 ) 
and ( 34 ). In this paper, we ignore the contribution from the integral 
constraint (Peacock & Nicholson 1991 ) for both the 2PCF and the 
3PCF. 

In the 2PCF case, the correction equation for the window function 
ef fect sho wn in equation ( 74 ) calculates only the three multipole 
components for both Q 5 1 and ξ5 2 , i.e. 5 1 , 5 2 = 0, 2, 4. The reason 
is that our analysis focuses only on large scales abo v e 80 h −1 Mpc , 
where the linear theory is dominant, and the linear Kaiser effect gives 
only up to the hexadecapole 5 = 4. For the window correction formula 
of the 3PCF ( 80 ), Sugiyama et al. ( 2021 ) examined in detail which 
multipole components contribute to the observed estimator ( 65 ) and 
to what extent, for the NGC sample at 0.4 < z < 0.6, and showed that 
a finite number of multipole components can correct for the window 
effect on the 3PCF with sufficiently good accuracy. Assuming that 
this result is not significantly different for the other BOSS samples, 
we calculate a total of 14 multipole components for both Q 5 ′′ 1 5 ′′ 2 5 ′′ and 
ζ5 ′ 1 5 ′ 2 5 ′ as follows: ( 5 1 , 5 2 , 5 ) = (0, 0, 0), (1,1,0), (2,2,0), (3,3,0), and 
(4,4,0) for the monopole 3PCF ( 5 = 0), and ( 5 1 , 5 2 , 5 ) = (0, 2, 2), 
(1,1,2), (2,0,2), (1,3,2), (2,2,2), (3,1,2), (2,4,2), (3,3,2), and (4,2,2) 
for the quadrupole 3PCF ( 5 = 2). 

Figs 3 and 4 plot the 13 window 3PCF multipoles normalized by 
Q 000 as a function of r 2 after fixing r 1 to 60 and 120 h −1 Mpc . For 
the monopole components ( Q 110 , Q 220 , Q 330 , and Q 440 ), we find 
that the window 3PCF multipoles measured at different redshift 
bins in each sk y re gion (NGC or SGC) behav e similarly (see, for 
example, the solid blue and dashed orange lines). On the other hand, 
for the quadrupole component, we see that the four BOSS samples 
may behave differently. The first few terms of the monopole and 
quadrupole components, such as Q 110 , Q 220 , Q 202 , Q 112 , and Q 022 , 
have values of O(0 . 01) − O(0 . 1), while the higher-order terms have 
values of O(0 . 01) or less. Therefore, we can conclude that the higher- 
order window 3PCF multipoles have no significant effect on the 
final ζ (w) 

5 1 5 2 5 ( r 1 , r 2 ), as long as we measure the first few terms of the 
monopole and quadrupole components, i.e. ζ (w) 

000 ( r 1 , r 2 ), ζ (w) 
110 ( r 1 , r 2 ), 

ζ
(w) 
202 ( r 1 , r 2 ), and ζ (w) 

112 ( r 1 , r 2 ). 
Figs 5 and 6 plot the theoretical predictions for the 3PCF multi- 

poles, including window function effects, corresponding to the four 
BOSS samples. These calculations assume the $ CDM and linear 
bias as in Figs 1 and 2 , with redshifts of 0.38 and 0.61. As the value 
of r 1 increases, the difference between NGC and SGC due to the 
window function effect becomes more considerable. 

To quantitatively estimate the extent to which the multipole 
component of interest, ζ (w) 

5 1 5 2 5 , is affected by the other multipole 
components, ζ5 ′ 1 5 ′ 2 5 ′ , through window function effects, we compute 
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Figure 3. The monopole and quadrupole components of the window 3PCF ( 75 ), Q 000 , Q 110 , Q 220 , Q 330 , Q 440 , Q 202 , Q 112 , and Q 022 , measured from the four 
BOSS samples are shown as a function of r 2 after fixing r 1 to 60 h −1 Mpc (left) and 120 h −1 Mpc (right). 
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Figure 4. Same as Fig. 3 , except that the higher-order quadrupole components of the window 3PCF, Q 312 , Q 222 , Q 132 , Q 422 , Q 332 , and Q 242 , are shown. 
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Figure 5. The monopole 3PCFs, ζ 000 (left) and ζ 110 (right), that include the window function effect ( 80 ) are shown for the four BOSS samples. The results are 
plotted as a function of r 2 after fixing r 1 to 50, 80, 90, 100, 130 h −1 Mpc from top to bottom panels. For these calculations, the $ CDM model at z = 0.61, the 
linear bias b 1 = 2.0, and no non-linear bias are assumed. 
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Figure 6. Same as Fig. 5 , except that the quadrupole 3PCFs, ζ 202 (left) and ζ 112 (right), are shown. 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

/5
2
3
/2

/3
1
3
3
/7

1
7
2
8
6
9
 b

y
 N

a
tio

n
a
l A

s
tro

n
o
m

ic
a
l O

b
s
e
rv

a
to

ry
 J

a
p
a
n
 u

s
e
r o

n
 2

5
 A

u
g
u
s
t 2

0
2
3

art/stad1505_f6.eps


3154 N. S. Sugiyama et al. 

MNRAS 523, 3133–3191 (2023) 

Table 2. Contributions of other 3PCF multipole components to the observed 3PCF multipole components, as manifested through the effect of the 
window function, are shown for the four BOSS samples. When the contribution to the final result exceeds 0 . 5 per cent , it is written in bold. The value 
of the same multipole component 9 ̄ζ5 1 5 2 5 ( 81 ) as the measured ζ (w) 

5 1 5 2 5 ( 80 ) is larger (smaller) than 100 per cent , when the total contribution from all the 
other multipole components is ne gativ e (positiv e). 

z eff = 0.38 (0.2 < z < 0.5) 
NGC SGC 

9 ̄ζ5 ′ 1 5 ′ 2 5 ′ [ per cent ] ζ (w) 
000 ζ

(w) 
110 ζ

(w) 
202 ζ

(w) 
112 ζ

(w) 
000 ζ

(w) 
110 ζ

(w) 
202 ζ

(w) 
112 

monopole ( 5 = 0) 9 ̄ζ000 95 .34 1 .59 − 1 .18 0 .97 86 .41 2 .43 − 0 .15 0 .19 
9 ̄ζ110 9 .39 102 .60 1 .41 − 3 .77 13 .66 98 .60 0 .25 − 0 .50 
9 ̄ζ220 − 0 .09 − 0 .53 1 .14 0 .09 − 0 .12 − 0 .79 0 .13 0 .01 
9 ̄ζ330 0 .26 0 .21 0 .08 − 0 .01 0 .41 0 .35 0 .02 − 0 .02 
9 ̄ζ440 0 .06 0 .00 0 .06 − 0 .00 0 .09 0 .01 − 0 .00 − 0 .00 

quadrupole ( 5 = 2) 9 ̄ζ202 − 3 .75 0 .59 90 .14 2 .07 − 0 .43 0 .10 89 .28 2 .38 
9 ̄ζ112 4 .36 − 2 .89 4 .21 96 .78 0 .86 − 0 .38 5 .06 92 .64 
9 ̄ζ022 − 4 .57 0 .81 0 .50 2 .75 − 0 .48 0 .14 0 .51 3 .16 
9 ̄ζ312 − 0 .10 − 0 .38 1 .95 0 .13 − 0 .05 − 0 .05 2 .87 0 .26 
9 ̄ζ222 0 .04 0 .04 0 .38 0 .07 − 0 .02 − 0 .01 − 0 .04 0 .12 
9 ̄ζ132 − 0 .56 − 1 .54 0 .14 0 .23 − 0 .19 − 0 .19 0 .18 0 .66 
9 ̄ζ422 − 0 .21 − 0 .23 1 .02 0 .21 − 0 .02 − 0 .08 1 .53 0 .31 
9 ̄ζ332 0 .10 0 .08 0 .02 0 .10 − 0 .03 − 0 .02 0 .10 0 .24 
9 ̄ζ242 − 0 .29 − 0 .34 0 .12 0 .38 − 0 .08 − 0 .14 0 .26 0 .55 

z eff = 0.61 (0.5 < z < 0.75) 
NGC SGC 

9 ̄ζ5 ′ 1 5 ′ 2 5 ′ [ per cent ] ζ (w) 
000 ζ

(w) 
110 ζ

(w) 
202 ζ

(w) 
112 ζ

(w) 
000 ζ

(w) 
110 ζ

(w) 
202 ζ

(w) 
112 

monopole ( 5 = 0) 9 ̄ζ000 96 .00 1 .77 − 2 .00 1 .78 89 .49 2 .40 − 1 .29 1 .19 
9 ̄ζ110 10 .43 104 .18 2 .92 − 6 .81 13 .59 101 .41 2 .10 − 4 .36 
9 ̄ζ220 − 0 .08 − 0 .60 1 .99 0 .01 − 0 .06 − 0 .80 1 .33 − 0 .04 
9 ̄ζ330 0 .25 0 .21 0 .04 0 .01 0 .35 0 .31 0 .00 − 0 .01 
9 ̄ζ440 0 .06 0 .01 0 .05 − 0 .00 0 .08 0 .01 0 .02 − 0 .00 

quadrupole ( 5 = 2) 9 ̄ζ202 − 6 .26 1 .21 86 .94 2 .72 − 3 .73 0 .84 86 .45 2 .94 
9 ̄ζ112 7 .84 − 5 .12 5 .36 97 .84 5 .09 − 3 .31 5 .98 94 .88 
9 ̄ζ022 − 7 .65 1 .65 0 .48 3 .64 − 4 .54 1 .14 0 .44 3 .93 
9 ̄ζ312 − 0 .01 − 0 .54 2 .25 0 .09 0 .01 − 0 .30 2 .89 0 .17 
9 ̄ζ222 0 .04 0 .04 0 .69 0 .07 − 0 .00 0 .01 0 .42 0 .11 
9 ̄ζ132 − 0 .28 − 2 .63 0 .13 − 0 .02 − 0 .06 − 1 .66 0 .15 0 .25 
9 ̄ζ422 − 0 .18 − 0 .13 0 .98 0 .20 − 0 .07 − 0 .03 1 .21 0 .27 
9 ̄ζ332 0 .08 0 .09 0 .03 0 .10 − 0 .02 0 .01 0 .09 0 .19 
9 ̄ζ242 − 0 .24 − 0 .15 0 .13 0 .37 − 0 .12 − 0 .03 0 .21 0 .48 

the following quantities (Sugiyama et al. 2021 ): 
9 ̄ζ5 ′ 1 5 ′ 2 5 ′ = Sum [ 9ζ

5 1 5 2 5 
5 ′ 1 5 ′ 2 5 ′ /Q 000 ] 

Sum [ ζ (w) 
5 1 5 2 5 /Q 000 ] 

(81) 
with 
9ζ

5 1 5 2 5 
5 ′ 1 5 ′ 2 5 ′ ( r 1 , r 2 ) = (4 π ) ∑ 

5 ′′ 1 + 5 ′′ 2 + 5 ′′ = even 
 
 
 

5 ′′ 1 5 ′′ 2 5 ′′ 
5 ′ 1 5 ′ 2 5 ′ 
5 1 5 2 5 

 
 
 

×
[ 

h 5 1 5 2 5 h 5 1 5 ′ 1 5 ′′ 1 h 5 2 5 ′ 2 5 ′′ 2 h 55 ′ 5 ′′ 
h 5 ′ 1 5 ′ 2 5 ′ h 5 ′′ 1 5 ′′ 2 5 ′′ 

] 
× Q 5 ′′ 1 5 ′′ 2 5 ′′ ( r 1 , r 2 ) ζ5 ′ 1 5 ′ 2 5 ′ ( r 1 , r 2 ) (82) 

and 
Sum [ζ5 1 5 2 5 ] = {∑ 

r 1 ≥r 2 ζ5 1 5 2 5 ( r 1 , r 2 ) for 5 1 = 5 2 ; ∑ 
r 1 ,r 2 ζ5 1 5 2 5 ( r 1 , r 2 ) for 5 1 += 5 2 , (83) 

where 9 ̄ζ5 ′ 1 5 ′ 2 5 ′ satisfies ∑ 
5 ′ 1 5 ′ 2 5 ′ 9 ̄ζ5 ′ 1 5 ′ 2 5 ′ = 1, and the summation is 

performed in the range of 80 ≤ r ≤ 150 h −1 Mpc , which we use for 
our data analysis. 

Table 2 summarizes the 9 ̄ζ5 ′ 1 5 ′ 2 5 ′ results calculated from equa- 
tion ( 81 ) for the four BOSS samples. Naturally, the multipole com- 
ponent that is the same as the target one has the largest contribution. 
F or e xample, for ζ (w) 

000 at z eff = 0.38 in NGC, 95 . 34 per cent of 
the contribution comes from ζ 000 . For all four samples, multipole 
components other than the measured one have positive or negative 
values, and their o v erall contribution is about 5 − 10 per cent . 
As expected, the contributions of higher-order components such 
as ζ 330 , ζ 440 , and ζ 332 are mostly below 0 . 5 per cent . Therefore, 
we conclude that the window function correction equation in 
equation ( 80 ) can account for the window function effect on the 
3PCF in BOSS with sufficient accurac y, ev en if it is truncated 
at a finite number of 14 multipole components used in this 
work. 

We note here the importance of 9 ̄ζ112 , which includes the M += 
0 modes of Scoccimarro et al. ( 1999 )’s decomposition method in 
the correction for window function effects: it gives a contribution 
comparable to 9 ̄ζ202 and 9 ̄ζ022 , which include only the M = 0 
mode, and tends to have the opposite sign to that of 9 ̄ζ202 and 9 ̄ζ022 . 
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Therefore, failure to properly account for effects such as 9 ̄ζ112 that 
include the M += 0 modes may result in an error of ∼ 5 per cent in 
the correction for the window function effect. 
5  C OVA R I A N C E  MATRIX  
We estimate the covariance matrix from the 2048 Patchy mock 
catalogues described in Section 4.1 . Let d ( r) be the data vector 
measured from the r -th catalogue, and d = (1 /N s ) ∑ N s 

r= 1 d ( r) be its 
mean value, then the covariance matrix of the data vector is given 
by 
C = 1 

N s − 1 
N s ∑ 
r= 1 

(
d ( r) − d ) (d ( r) − d )T 

. (84) 
where N s = 2048 is the number of the Patchy mock catalogues. 
5.1 Effects of a finite number of mocks 
The covariance matrix C inferred from the mock catalogues suffers 
from noise due to the finite number of mocks, which directly leads to 
an increase in the uncertainty of the cosmological parameters (Hart- 
lap, Simon & Schneider 2007 ; Taylor, Joachimi & Kitching 2013 ; 
Dodelson & Schneider 2013 ; Perci v al et al. 2014 ; Taylor & Joachimi 
2014 ). This effect is decomposed into two factors. First, the inverse 
co variance matrix, C −1 , pro vides a biased estimate of the true 
inv erse co variance matrix. To correct this bias, we rescale the inverse 
covariance matrix as (Hartlap et al. 2007 ) 
C −1 

Hartlap = (N s − N b − 2 
N s − 1 

)
C −1 , (85) 

where the pre-factor on the right-hand side, ( N s − N b − 2)/( N s −
1), is the so-called ‘Hartlap’ factor, and N b is the number of data 
bins. Secondly, we need to consider the propagation of the error in 
the covariance matrix to the error on the estimated parameters. This 
effect is corrected by multiplying the final result of the parameter 
errors by the following factor (Percival et al. 2014 ) 
M 1 = √ 

1 + B( N b − N p ) 
1 + A + B( N p + 1) (86) 

with 
A = 2 

( N s − N b − 1)( N s − N b − 4) 
B = N s − N b − 2 

( N s − N b − 1)( N s − N b − 4) , (87) 
where N p is the number of parameters. 

The deri v ation of the Hartlap factor ( 85 ) assumes that the data 
vector follows a Gaussian distribution. On the other hand, Sellentin & 
Heavens ( 2016 ) shows that in covariance matrix estimates from simu- 
lations, the data vector follows a multivariate t -distribution. When the 
number of simulations is sufficiently larger than the number of data 
bins, this t -distribution approaches a Gaussian distribution (Heavens 
et al. 2017 ), and the present analysis satisfies this condition. The 
reason is that the number of the Patchy mocks we use to estimate the 
covariance matrix is 2048, while the maximum number of data in our 
analysis is 202 (Section 6.2 ). In addition, the deri v ation of the M 1 
factor ( 86 ) also assumes the Gaussian distribution of the data vector, 
but there is no known value for the correction factor that corresponds 
to M 1 in the Sellentin & Heavens ( 2016 )’s method. Therefore, in 
this paper, we have decided to use equations ( 85 ) and ( 86 ) to correct 

Table 3. A summary of the M 1 ( 86 ) and M 2 ( 88 ) factor values used in our 
analysis. These values are calculated from the number of the Patchy mock 
simulations, 2048 (Section 4.1 ), the number of data bins, 30 for the 2PCF 
only and 202 for the 2 + 3PCF (Section 6.2 ), and the number of parameters 
summarized in the rightmost column (Section 6.3 ). 

M 1 M 2 # of params. 
2PCF only ( z eff = 0.38) 1.006 1.013 3 
2PCF only ( z eff = 0.61) 1.006 1.013 3 
GR ( z eff = 0.38) 1.049 1.105 8 
GR ( z eff = 0.61) 1.049 1.105 8 
Horndeski ( z eff = 0.38) 1.048 1.104 9 
Horndeski ( z eff = 0.61) 1.048 1.104 9 
Horndeski ( z eff = 0 . 38 , 0 . 61) 1.044 1.100 16 
DHOST ( z eff = 0.38) 1.048 1.104 10 
DHOST ( z eff = 0.61) 1.048 1.104 10 
DHOST ( z eff = 0 . 38 , 0 . 61) 1.044 1.100 17 
the uncertainty in parameter estimation due to a finite number of 
simulations (see also e.g. Perci v al et al. 2022 ). 

We can therefore e v aluate the effect of a finite number of mocks on 
the final error estimation using the square root of the Hartlap factor 
multiplied by the M 1 factor (Perci v al et al. 2014 ), 
M 2 = 

√ 
N s − 1 

N s − N b − 2 M 1 . (88) 
Note that this M 2 factor is not used in the actual analysis. It is essential 
to increase the number of simulations and reduce the number of data 
bins to keep the value of M 2 as close to 1 as possible for a conserv ati ve 
analysis. The reason is that the Hartlap and M 1 factors cannot be 
al w ays accurately correct for parameter errors for any number of 
simulations. F or e xample, using both monopole and quadrupole 
components of the 2 and 3PCFs, as in this paper, Sugiyama et al. 
( 2021 ) performed an anisotropic BAO analysis with the AP effect. 
The result showed that the error in the angular diameter distance for 
M 2 = 1.32 is underestimated by about 10 per cent compared to the 
case for M 2 = 1.06 by changing the number of simulations. We will 
calculate the M 2 factor in Section 6.4 and summarize the results in 
Table 3 , where M 2 ∼ 1.1, indicating that our analysis achieves M 2 
v alues suf ficiently close to 1. 
5.2 Correlation matrix 
The ( i , j ) elements of the correlation matrix is computed from the 
covariance matrix as 
r ij = C ij √ 

C ii C jj . (89) 
Considering the data vector d = { ξ0 , ξ2 , ζ000 , ζ110 , ζ202 , ζ112 } , we 
show the results of the correlation matrix for the four BOSS samples 
in Fig. 7 . To simplify the figure, we only plot the results for the 
diagonal component of the 3PCF multipoles, i.e. ζ5 1 5 2 5 ( r 1 , r 2 = r 1 ). 
The range of scales shown in the figure is 80 ≤ r ≤ 150 h −1 Mpc , 
and the width of the r -bin is 9r = 10 h −1 Mpc . The four samples 
show similar results, and we summarize the o v erall features below. 
First, the monopole 2PCF and the monopole 3PCFs have a moderate 
correlation (0.25 < r ij < 0.5); the same is true for the quadrupole 
2PCF and the quadrupole 3PCFs. Next, the first two terms of the 
monopole 3PCFs ( ζ 000 and ζ 110 ) are strongly correlated with each 
other (0.5 < r ij < 0.75); on the other hand, the first two quadrupole 
3PCFs ( ζ 202 and ζ 112 ) are weakly correlated (0.0 < r ij < 0.25). 
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Figure 7. The correlation matrices of the monopole and quadrupole 2PCFs ( ξ0 and ξ2 ), the first two monopole 3PCFs ( ζ 000 and ζ 110 ), and the first two 
quadrupole 3PCFs ( ζ 202 and ζ 112 ) are shown for the four BOSS samples. For simplicity of the figure, only the results for the r 1 = r 2 case multipole 3PCFs, i.e. 
ζ ( r 1 , r 2 = r 1 ), are plotted, but in the actual analysis (Section 9 ), the data bins for the r 1 += r 2 case are also used. The plotted scale range is 80 ≤ r ≤ 150 h −1 Mpc , 
and the r -bin width is 9r = 10 h −1 Mpc . 
This result indicates that ζ 202 and ζ 112 have independent information 
from each other. These results are consistent with the results in the 
bispectrum presented by Sugiyama et al. ( 2019 ). 
5.3 Standard deviation 
The standard deviation is given by the square root of the diagonal 
components of the covariance matrix: i.e. √ 

C ii . Fig. 8 shows the 
mean and standard deviation of ξ5 ( r ) and ζ5 1 5 2 5 ( r 1 , r 2 ) calculated 
from the 2048 Patchy mock simulations. The mock data used are the 
NGC samples at z = 0.38 and 0.61. For ζ5 1 5 2 5 ( r 1 , r 2 ), the measured 
values and the standard deviations are plotted as a function of the 
scale variable r 1 = r 2 = r to simplify the figure. 

From this figure, it can be seen that the mean values of ξ5 and 
ζ5 1 5 2 5 do not differ much for the different redshifts, i.e. z = 0.38 

and 0.61 (compare the magenta and blue lines). One may expect the 
amplitudes of ξ5 and ζ5 1 5 2 5 to be larger at lower redshifts because the 
tree-level solutions ( 22 ) of ξ5 and ζ5 1 5 2 5 are proportional to D 2 and 
D 4 , respectively, with D being the linear growth function. However, 
this is not the case in Fig. 8 . There are two possible reasons for 
this. The first is the bias effect. For haloes with similar mass, the 
lower the redshift, the smaller the value of the linear bias b 1 tends 
to be. Therefore, b 1 D ( z) is less time-dependent and does not show 
significant differences at the different redshifts, especially for the 
monopole components of ξ5 and ζ5 1 5 2 5 . A similar effect to the linear 
bias is likely to occur for the non-linear bias included in the 3PCF. 
Second, the product of the linear growth rate f and the linear growth 
function D is also a less time-dependent function. Therefore, the 
redshift dependence of ξ5 and ζ5 1 5 2 5 is not pronounced, even for the 
quadrupole component. 
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Figure 8. The mean values and standard deviations of ξ0 , ξ2 , ζ 000 , ζ 110 , ζ 202 , and ζ 112 calculated from the 2048 Patchy mock catalogues. The results are 
plotted at the two redshifts, z = 0.38 (magenta) and 0.61 (blue), for the NGC sample. The magenta dashed lines are the standard deviation at z = 0.61 multiplied 
by √ 

V z= 0 . 61 /V z= 0 . 38 and normalized to have the same surv e y volume as the sample at z = 0.38, where the surv e y volumes at z = 0.38 and z = 0.61, V z = 0.38 
and V z = 0.61 , respectively, are given in Table 1 . For simplicity of the figure, only the results in the r 1 = r 2 case for the 3PCF are plotted. 
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On the other hand, the standard deviations of ξ5 and ζ5 1 5 2 5 are 
significantly different for the different redshifts. In general, the so- 
called Gaussian terms in the covariance matrix depend only on the 
two-point statistic, while higher-order statistics such as the three- 
point statistic appear in the non-Gaussian terms. It is also known that 
the covariance matrix is inversely proportional to the survey volume, 
and that the higher the number density of observed galaxies, the 
smaller the covariance matrix. Therefore, the fact that the ξ5 and ζ5 1 5 2 5 
signals measured from the Patchy mock do not differ significantly 
at the different redshifts suggests that the redshift dependence in 
the standard deviation may be due to the surv e y volume and galaxy 
number density. 

In Fig. 8 , the standard deviation at z = 0.61 (blue) multiplied 
by √ 

V z= 0 . 61 /V z= 0 . 38 is plotted as magenta dashed lines, with the 
surv e y volumes at z = 0.38 and z = 0.61 denoted as V z = 0.38 and 
V z = 0.61 , respectively. In the case of the 2PCF, the magenta dashed 
line is similar to the result at z = 0.38 (magenta), indicating that the 
difference in the standard deviation of the 2PCF due to differences 
in redshift can be explained mainly by differences in the surv e y 
volume. Ho we ver, this is not the case for the 3PCF, where the standard 
deviation of the 3PCF at z = 0.38 is smaller than the magenta dashed 
line. This fact suggests that the effect of the galaxy number density 
on the covariance matrix is more significant for the 3PCF than for 
the 2PCF. In other words, as can be seen from Table 1 , the sample 
at z = 0.38 has a higher galaxy number density than the sample at 
z = 0.61, even though the survey volume is smaller. Therefore, the 
standard deviation at z = 0.38 is smaller than the standard deviation 
at z = 0.61 normalized to the surv e y volume at z = 0.38. This result is 
consistent with the finding of Sugiyama et al. ( 2020 ) that the galaxy 
number density plays an essential role in the covariance matrix of 
the bispectrum, even on large scales. 
5.4 Cumulati v e signal-to-noise ratio 
The covariance matrix is a 2D quantity in the 2PCF case and a 4D 
quantity in the 3PCF case. Therefore, a useful way compressing 
and quantifying this multidimensional information in the covariance 
matrix is to estimate the cumulative S/N ratios, given by 
(

S 
N 
)

= (d T · C −1 
Hartlap · d )1 / 2 

. (90) 
We calculate the cumulative S/N for each multipole component of the 
2 and 3PCFs: i.e. d = ξ0 , ξ 2 , ζ 000 , ζ 110 , ζ 202 , or ζ 112 . We also fix the 
maximum scale r max = 150 h −1 Mpc , vary the minimum scale r min 
from 150 h −1 Mpc to 30 h −1 Mpc , and calculate the S/N as a function 
of r min . In Fig. 9 , we plot the S/N for the four BOSS samples, NGC 
and SGC at z = 0.38 and 0.61. Note that we do not consider cross- 
covariance matrices between different multipole components, e.g. 
between ξ 0 and ζ 000 . How the information in the covariance matrix, 
including all cross-covariance matrices, ultimately propagates to the 
errors in the cosmological parameters of interest will be discussed 
through the Fisher analysis in Section 7 . 

The top two panels of Fig. 9 show the S/N of ξ 0 and ξ 2 . In all cases 
shown in the panels, the S/N at z = 0.61 (blue line) is larger than the 
S/N at z = 0.38 (magenta line). The difference is because the S/N of 
the 2PCF is proportional to the square root of the surv e y volume V , 
and the surv e y volume at z = 0.61, denoted V z = 0.61 , is larger than 
the surv e y volume at z = 0.38, V z = 0.38 . Therefore, multiplying the 
S/N at z = 0.61 by √ 

V z = 0 . 38 /V z = 0 . 61 approximately reproduces the 
S/N at z = 0.38 (see magenta dashed lines). This result is consistent 
with the findings in the signal and standard deviation of the 2PCF in 
Fig. 8 . 

The middle and bottom results are for ζ 000 , ζ 110 , ζ 202 , and ζ 112 . 
These results show that, in contrast to the 2PCF case, the S/N at z = 
0.38 is comparable to the S/N at z = 0.61. The difference in the S/N 
at z = 0.38 and z = 0.61 in the 3PCF case cannot be explained by the 
difference in the surv e y volumes (see magenta dashed lines). This 
behaviour of the S/N of the 3PCF can be explained by the finding 
shown in Fig. 8 that the galaxy number density strongly influences 
the standard deviation of the 3PCF. In particular, in the present case, 
the effect of the galaxy number density is more pronounced when 
considering correlations between different scales, resulting in the 
S/N at z = 0.38 that is comparable to the S/N at z = 0.61. This 
result shows that a higher galaxy number density is as important for 
obtaining cosmological information from the 3PCF as increasing the 
surv e y volume. 
6  ANALYSI S  SETTI NGS  
6.1 Likelihoods 
We assume that the likelihood of the data compared to the model 
predictions follows a multivariate Gaussian distribution: 
ln L ( d | θ ) = −1 

2 [ d − t ( θ) ] C −1 
Hartlap [ d − t ( θ ) ] T , (91) 

where d is the data vector, t is the model prediction of the data 
v ector giv en the model parameters θ , and C −1 

Hartlap is the inverse of the 
covariance matrix after correction by the Hartlap factor ( 85 ). We can 
then obtain the posterior distribution of the model parameters given 
the data by performing Bayesian inference: 
P( θ | d ) ∝ L ( d | θ ) : ( θ) (92) 
where P( θ | d ) is the posterior distribution of θ given the data vector, 
d , and : ( θ) is the prior distribution. 

We assume that the four BOSS galaxy samples (Table 1 ) 
are far enough apart that they each have independent cosmo- 
logical information. Then, when constraining the model param- 
eters common to each galaxy sample, we add up the likeli- 
hood functions of each galaxy sample. For example, when using 
all four galaxy samples, the total likelihood function is given 
by 
ln L total = ln L NGC at z= 0 . 38 + ln L SGC at z= 0 . 38 

+ ln L NGC at z= 0 . 61 + ln L SGC at z= 0 . 61 . (93) 
6.2 Multipoles used, scale range, and number of bins 
To repeat what was explained in Section 4.2 , the scale range 
used for parameter estimation in Section 9 is 80 h −1 Mpc ≤ r ≤
150 h −1 Mpc , and we choose 9r = 5 h −1 Mpc and 10 h −1 Mpc for 
the 2 and 3PCFs bin widths, respectively. The 2 and 3PCFs multipoles 
used are the monopole and quadrupole 2PCFs ( ξ 0 and ξ 2 ), the 
two monopole 3PCFs ( ζ 000 and ζ 202 ), and the two quadrupole 
3PCFs ( ζ 202 and ζ 112 ). Considering ζ5 1 5 2 5 ( r 1 , r 2 ) = ζ5 2 5 1 5 ( r 2 , r 1 ), 
the numbers of data bins for the 2 and 3PCFs multipoles are 
15, 15, 36, 36, 64, and 36 for ξ 0 , ξ 2 , ζ 000 , ζ 110 , ζ 202 , and ζ 112 , 
respectively. The reason why the bin width for the 3PCF is wider 
than for the 2PCF is to reduce the number of data bins and to 
conserv ati vely estimate the inverse covariance matrix for the 2 
and 3PCFs. The total number of data bins is then 202, which 
is small enough compared to the 2048 Patchy mock simulations 
(Section 5 ). 
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Figure 9. Cumulative S/N ratios for the multipole components of the 2 and 3PCFs, where both signal and noise (covariance matrix) are computed from the 
2048 Patchy mock catalogues. The maximum scale used for the S/N calculation is fixed at r max = 150 h −1 Mpc and the S/N s are plotted as a function of the 
minimum scale r min . The blue and magenta solid lines show the results for the samples at z = 0.61 and z = 0.38, respectively. The magenta dashed lines are the 
S/N values in the sample at z = 0.61 multiplied by √ 

V z= 0 . 38 /V z= 0 . 61 . 
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6.3 Parameter setting 
The parameters we constrain are as follows: 
θ = θphys + θbias , (94) 
where 
θbias = { ( b 1 σ8 ) , ( F g σ8 ) , ( F t σ8 ) } , (95) 
and 
θphys = 

 
 
 

{ f σ8 , σ8 } , GR ; 
{ σ8 , ξf , ξt } , Horndeski ; 
{ F s σ8 , ξf , ξs , ξt } , DHOST . (96) 

The parameters F g, s, t and ξf , s , t are given in equation ( 37 ) and ( 49 ), 
respectively; the reason F s does not appear in GR and Horndeski 
theories is that F s = 1 in those theories. We assume that the bias pa- 
rameters θbias take different values in all four BOSS samples. f σ 8 , σ 8 , 
and F s σ 8 have common values in NGC and SGC. ξ f , s, t are common to 
all four BOSS samples. For the 2PCF analysis, we only consider b 1 σ 8 
and f σ 8 . F or e xample, if all four BOSS samples are used to constrain 
DHOST theories, the total number of parameters is 17. Once again, 
note that the AP parameters are not varied in this analysis. 
6.4 M 1 and M 2 factors 
As mentioned in Section 5 , the number of the Patchy mock simula- 
tions used to calculate the covariance matrices for the 2 and 3PCFs 
is finite, so the inverse of the covariance matrix must be multiplied 
by the Hartlap factor and the final parameter error by M 1 . 

The M 1 factor ( 86 ) is derived assuming that all parameters are 
constrained from a single data set. Ho we ver, when constraining the 
common parameters ξ f , ξ s , and ξ t ( 49 ) from the four independent 
BOSS samples, as in the present analysis, the M 1 factor is expected to 
take a different form, but we do not know the correct correction factor 
corresponding to the M 1 factor in such as case. Therefore, when we 
use different galaxy samples simultaneously, we first count up all 
common and non-common parameters in the galaxy samples. Then, 
we calculate the M 1 factor using the number of data bins computed 
from a single galaxy sample and the number of the Patchy mocks, 
2048, corresponding to that galaxy sample, and multiply it by the final 
parameter error. Specifically, the multipole components of the 2 and 
3PCFs measured from a single galaxy sample are ξ 0 , ξ 2 , ζ 000 , ζ 110 , 
ζ 202 , and ζ 112 , for a total data bin number of 202 (Section 6.2 ). The 
number of parameters depends on the type of analysis; for example, 
we need 17 parameters to test DHOST theories using all four galaxy 
samples (Section 6.3 ). 

Table 3 summarizes the values of the M 1 and M 2 factors calculated 
in our analysis, leading to M 2 ∼ 1.1 for all the 2 + 3PCF joint 
analyses. Thus, even without considering the Hartlap and M 1 factors 
in our analysis, the effect of finite mocks is at most 10 per cent . In 
other words, since our analysis correctly considers these factors, the 
error due to the finite mock effect in the estimated parameter error is 
guaranteed to be ! 10 per cent . 
6.5 MCMC 
We apply the Metropolis–Hastings algorithm, an Markov Chain 
Monte Carlo (MCMC) method, implemented in the publicly avail- 
able software package MONTE PYTHON (Audren et al. 2013 ; Brinck- 
mann & Lesgourgues 2019 ) to estimate the posterior distribution of 
parameters in a multidimensional parameter space. In doing so, we set 
the super-update parameter to 20, as recommended by the developers. 
In order to impro v e the conv ergence of the posterior distributions 

obtained by MCMC, we first perform an MCMC analysis with 
the number of steps set to N step = 200 000 and calculate the best- 
fitting values and covariance matrix of the parameters. Then, we add 
the information of the best-fitting values and covariance matrix and 
perform an MCMC analysis again with the same number of steps. 

We ensure convergence of each MCMC chain, imposing R − 1 ! 
O(10 −4 ) where R is the standard Gelman–Rubin criteria (Gelman & 
Rubin 1992 ). Furthermore, the convergence of the results is also 
checked through the following method. First, we create eight inde- 
pendent MCMC chains and compute the mean and standard deviation 
of the parameters from each chain. Then, from the eight means and 
standard deviations, we compute the standard deviation of the mean 
and the mean of the standard deviation and check that the ratio of 
them is less than about 20 per cent for all the results. 
6.6 Mock tests 
We perform MCMC analyses on 100 Patchy mock catalogues (Ki- 
taura et al. 2016 ) using the same set of cosmological and nuisance 
parameters as in the actual BOSS galaxy data analysis. We then verify 
that our analysis can correctly return the values of the non-linear 
parameters predicted by GR for the Patchy mock catalogues designed 
under the assumption of a $ CDM model. We also discuss the 
statistical scatter of the 100 values of the parameters to be estimated. 
7  FISHER  ANALYSI S  
Before proceeding to the MCMC analysis using actual galaxies in 
Sections 8 and 9 , in this section, we will understand how the 3PCF 
contains cosmological information through the Fisher analysis. 

There are several reasons for performing the Fisher analysis 
before the MCMC analysis. First, calculating the Fisher matrix in 
Section 7.1 is less computationally intensive than performing the 
MCMC analysis, making it easier to compare the analysis results 
in various settings that take too much time in the MCMC analysis. 
Taking advantage of this, Section 7.2 examines how the constraints 
on the parameters of interest change for various combinations of the 
multipole components of the 3PCF; in doing so, we focus only on the 
NGC sample at z = 0.38 as a representative example. Section 7.3 also 
discusses the relation among the values of the predicted parameter 
errors for the four BOSS samples, NGC and SGC at z = 0 . 38 , 0 . 61, 
and how the combination of the four BOSS samples affects the final 
results. Finally, in Section 9.11 , we compare the results obtained 
from the abo v e Fisher analysis with those obtained from the MCMC 
parameter estimation and check their consistency to confirm the 
validity of the final results in this paper. 

In Section 7.4 , the Fisher analysis also allows us to estimate 
cosmological information at scales smaller than the scale range used 
in the MCMC analysis. The results are expected to moti v ate the 
construction of theoretical models applicable to smaller scales. 

Finally, in Section 7.5 , we use the results of the Fisher analysis to 
determine the range of a flat prior used when performing the MCMC 
analysis. 
7.1 Fisher matrix 
From the likelihood function given in equation ( 91 ), we calculate the 
Fisher matrix as 
F ij = −〈

∂ 
∂θi ∂ 

∂θj ln L 〉
= ∂ t ( θ ) 

∂θi C −1 
Hartlap ∂ t T ( θ) 

∂θj , (97) 
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where we assumed that the covariance matrix C is independent of 
the parameters. The indices i and j run o v er parameters of interest. 
In the limit of the Gaussian likelihood surface, the Cramer–Rao 
inequality shows that the Fisher matrix provides the minimum 
standard deviation on parameters, marginalized o v er all the other 
parameters: σ ( θi ) ≥ σfisher ( θi ) = (F −1 )1 / 2 

ii . We note that we adopt 
the inverse covariance matrix, C −1 

Hartlap , that is non-Gaussian estimated 
from the Patchy mock simulations. 

We consider three parameter vectors, depending on the gravity 
theory of interest: 
θ = { ( b 1 σ8 ) , ( f σ8 ) } + θ3PCF , (98) 
with 

θ3PCF 
= 
 
 
 

{ ( F g σ8 ) , ( F s σ8 ) , ( F t σ8 ) } , GR ; 
{ ( F g σ8 ) , ( F s σ8 ) , ( F t σ8 ) , ( G t σ8 ) } , Horndeski ; 
{ ( F g σ8 ) , ( F s σ8 ) , ( F t σ8 ) , ( G s σ8 ) , ( G t σ8 ) } , DHOST , (99) 

where F s σ 8 = σ 8 for GR and Horndeski theories. We obtain the 
results for E f , s , t and ξf , s , t using the variable transformations in 
equations ( 45 ) and ( 49 ). In particular, the results including ξf , s , t 
correspond to the parameter set ( 96 ) used in the MCMC analysis 
performed in Section 9 . 

The fiducial values of the cosmological parameters needed to 
compute the Fisher matrix are the values in the $ CDM model 
presented in Section 1 . In doing so, we assume that the linear bias 
is b 1 = 2, and the values of the non-linear biases are zero: i.e. 
b 2 = b s 2 = 0. 
7.2 Information contained in 3PCF multipoles 
For the NGC sample at z = 0.38, we perform Fisher analyses on the 
following eight data vectors consisting of combinations of the 2 and 
3PCFs multipole components, using the same settings as the MCMC 
analysis performed in Section 9 to investigate which components and 
how they affect parameter estimates. 

Case 1 d = { ξ0 , ξ2 } ; 
Case 2 d = { ξ0 , ξ2 , ζ000 , ζ110 } ; 
Case 3 d = { ξ0 , ξ2 , ζ202 , ζ112 } ; 
Case 4 d = { ξ0 , ξ2 , ζ000 , ζ202 } ; 
Case 5 d = { ξ0 , ξ2 , ζ000 , ζ202 , ζ110 } ; 
Case 6 d = { ξ0 , ξ2 , ζ000 , ζ202 , ζ112 } ; 
Case 7 d = { ξ0 , ξ2 , ζ000 , ζ202 , ζ110 , ζ112 } ; 
Case 8 d = { ξ0 , ξ2 , ζ110 , ζ112 } . (100) 

Case 1 constrains f σ 8 using only the monopole and quadrupole 
2PCFs. Cases 2, 3, and 4 add to Case 1 the two monopole 3PCFs 
( ζ 000 and ζ 110 ), the two quadrupole 3PCFs ( ζ 202 and ζ 112 ), and 
the first terms of the monopole and quadrupole 3PCFs ( ζ 000 and 
ζ 202 ), respectively. These three cases will highlight the importance 
of simultaneously considering both monopoles and quadrupoles 
in the 3PCF. Moreo v er, Cases 5, 6, and 7 reveal the extent to 
which the final results can be impro v ed by adding higher-order 
multipole components to Case 4. Finally, Case 8 only uses the higher- 
order multipoles, ζ 110 and ζ 112 , for the monopole and quadrupole 
components. 

We summarize the results of the Fisher analysis in Table 4 . In 
Horndeski and DHOST theories, the case 2 results show that using 
only the monopole 3PCFs very weakly constrains the non-linear 

velocity parameters G s σ 8 and G t σ 8 . On the other hand, in Case 3, 
using only the quadrupole 3PCFs, we can mildly constrain the non- 
linear coefficients of both the density field and the velocity field. 
The reason is that the density and velocity fluctuations contribute 
to the quadrupole 3PCFs to the same extent (Fig. 2 ). Moreover, 
Cases 4, 5, 6, 7, and 8, using both the monopole and quadrupole 
components, can constrain the non-linear coefficients more strongly 
than Cases 2 and 3. In particular, for the G s σ 8 and G t σ 8 constraints 
in DHOST theories, Case 7 is ∼20 and ∼40 times better than Case 
2, respectively: 
σfisher ( G s σ8 ) = 35 . 22 for Case 2 , 
σfisher ( G t σ8 ) = 38 . 88 for Case 2 , 
σfisher ( G s σ8 ) = 1 . 519 for Case 7 , 
σfisher ( G t σ8 ) = 0 . 953 for Case 7 . (101) 
These results support the argument of this paper that we should use 
both monopole and quadrupole 3PCFs to study the non-linearity of 
the velocity field. 

Case 7, which uses all components of ζ 000 , ζ 110 , ζ 202 , and ζ 112 , 
provides the best constraints on F s σ 8 , G s σ 8 , and G t σ 8 , as expected. 
Therefore, we can conclude that all these multipole components 
should be used in the MCMC analysis in Section 9 . 

Case 7 yields results that are about 10 per cent better than Case 
5, which uses ζ 000 , ζ 110 , and ζ 202 . This result indicates that while 
ζ 202 contains the main cosmological information, ζ 112 contains other 
information in addition to ζ 202 . Existing studies using Scoccimarro 
et al. ( 1999 )’s decomposition method of the bispectrum tend to ignore 
the M += 0 mode of the quadrupole component as not containing 
much cosmological information (e.g. Gagrani & Samushia 2017 ; 
Rizzo et al. 2023 ; D’Amico et al. 2022b ). Ho we ver, our results show 
the importance of the M += 0 modes because ζ 202 contains only the 
M = 0 mode, while ζ 112 further contains the M += 0 modes in addition 
to the M = 0 mode (see also Section 3.1 ). 

By comparing the results of Case 4, consisting of ζ 000 and ζ 202 , 
with those of Case 8, consisting of ζ 110 and ζ 112 , we can find another 
viewpoint on the importance of higher-order multipole components. 
F or e xample, the ( F s σ 8 ) constraint is better in Case 8, and the ( G s σ 8 ) 
and ( G t σ 8 ) constraints are better in Case 4. Also, the ( G s, t σ 8 ) result 
in Case 4 is only about 30 per cent better than Case 8. Thus, although 
ζ 202 is more informative than ζ 112 , we interpret the information on 
both sides as o v erlapping to some extent. 

We further calculate σfisher ( θ) for θ = E f , E s , E t , ξ f , ξ s , and ξ t 
through the variable transformations in equations ( 45 ) and ( 49 ), 
summarizing the results in Table 5 . We find that both the monopole 
and quadrupole components of the 3PCF are needed to constrain E s , 
E t , ξ s , and ξ t better. In Case 7, the standard deviations of E s and E t 
are more than twice larger than the fiducial values of E s and E t , i.e. 
σ fisher ( E s, t )/( E s, t ) fid > 2, indicating that it is impossible to detect the 
E s and E t signals in the BOSS data. We can also confirm that for each 
of the ξ s and ξ t constraints in DHOST theories, the results of Case 7 
are ∼25 and ∼40 times stronger than those of Case 2, respectively: 
σfisher ( ξs ) = 93 . 85 for Case 2 , 
σfisher ( ξt ) = 171 . 3 for Case 2 , 
σfisher ( ξs ) = 3 . 701 for Case 7 , 
σfisher ( ξt ) = 4 . 172 for Case 7 . (102) 

In GR, adding any multipole component of the 3PCF can 
only impro v e the b 1 σ 8 and f σ 8 constraints by a few per cent. 
This result is consistent with the MCMC analysis of Sugiyama 
et al. ( 2021 ) on the Patchy mock catalogues. Furthermore, the 
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Table 4. The standard deviations of the parameters as predicted by the Fisher analysis, denoted as σfisher ( θ), are shown. These results 
are for the NGC at z eff = 0.38. The parameter vectors of interest, θ , are different for each of the three gravity theories, GR, Horndeski, 
and DHOST theories (equation 99 ). The classification of the data vectors used is as shown in equation ( 100 ). The fiducial values of 
the parameters are calculated under the assumption of GR and are denoted as ( θ) fid . The scale range used for this Fisher analysis is 
80 h −1 Mpc ≤ r ≤ 150 h −1 Mpc . 

( b 1 σ 8 ) fid ( f σ 8 ) fid ( F g σ 8 ) fid ( F s σ 8 ) fid ( F t σ 8 ) fid ( G s σ 8 ) fid ( G t σ 8 ) fid 
1.362 0.485 0.552 0.681 0.194 0.681 0.386 

σ fisher ( b 1 σ 8 ) σ fisher ( f σ 8 ) σ fisher ( F g σ 8 ) σ fisher ( F s σ 8 ) σ fisher ( F t σ 8 ) σ fisher ( G s σ 8 ) σ fisher ( G t σ 8 ) 
GR 

Case 1 0.159 0.093 − − − − −
Case 2 0.154 0.093 0.418 0.472 0.312 − −
Case 3 0.159 0.092 0.802 1.170 2.387 − −
Case 4 0.155 0.091 0.420 0.643 0.426 − −
Case 5 0.151 0.090 0.330 0.450 0.291 − −
Case 6 0.155 0.089 0.396 0.619 0.411 − −
Case 7 0.151 0.089 0.315 0.442 0.283 − −
Case 8 0.153 0.091 0.363 0.492 0.324 − −

Horndeski 
Case 2 0.154 0.093 2.361 0.479 3.156 − 29.25 
Case 3 0.159 0.092 0.816 2.433 2.633 − 1.312 
Case 4 0.155 0.092 0.430 0.726 0.431 − 1.111 
Case 5 0.151 0.091 0.331 0.463 0.295 − 1.044 
Case 6 0.155 0.091 0.409 0.715 0.419 − 1.015 
Case 7 0.151 0.091 0.316 0.459 0.285 − 0.946 
Case 8 0.153 0.091 0.366 0.498 0.344 − 1.383 

DHOST 
Case 2 0.154 0.093 3.100 3.840 4.774 35.22 38.88 
Case 3 0.159 0.093 2.211 3.652 2.633 2.976 1.981 
Case 4 0.157 0.092 0.726 0.748 0.446 1.896 1.112 
Case 5 0.153 0.092 0.499 0.476 0.303 1.636 1.051 
Case 6 0.156 0.091 0.710 0.739 0.431 1.757 1.017 
Case 7 0.153 0.091 0.487 0.468 0.293 1.519 0.953 
Case 8 0.154 0.092 0.595 0.528 0.344 2.292 1.580 

Table 5. Same as Table 4 , but the standard deviations of the parameters defined in equations ( 45 ) and ( 49 ), calculated through variable 
transformations, are shown. 

( E f ) fid ( E s ) fid ( E t ) fid ( ξ f ) fid ( ξ s ) fid ( ξ t ) fid 
0.713 1.000 0.992 0.545 0.000 0.013 

σ fisher ( E f ) σ fisher ( E s ) σ fisher ( E t ) σ fisher ( ξ f ) σ fisher ( ξ s ) σ fisher ( ξ t ) 
Horndeski 

Case 2 0.502 − 75.28 1.146 − 124.3 
Case 3 2.558 − 6.018 5.844 − 9.934 
Case 4 0.760 − 3.189 1.737 − 5.264 
Case 5 0.488 − 2.767 1.114 − 4.567 
Case 6 0.750 − 2.969 1.714 − 4.901 
Case 7 0.483 − 2.522 1.103 − 4.163 
Case 8 0.523 − 3.597 1.194 − 5.938 

DHOST 
Case 2 4.018 57.31 103.8 9.180 93.85 171.3 
Case 3 3.824 6.519 9.837 8.737 10.68 16.24 
Case 4 0.785 2.835 3.213 1.794 4.642 5.304 
Case 5 0.503 2.460 2.771 1.150 4.029 4.574 
Case 6 0.777 2.633 2.998 1.776 4.311 4.950 
Case 7 0.495 2.260 2.527 1.130 3.701 4.172 
Case 8 0.558 3.542 3.981 1.274 5.801 6.572 
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Table 6. The standard deviations computed by the Fisher analysis of Case 7 in DHOST the- 
ories divided by the fiducial values of the parameters, σfisher ( θ) / ( θ) fid , are shown, where θ = 
{ ( b 1 σ8 ) , ( f σ8 ) , ( F g σ8 ) , ( F s σ8 ) , ( F t σ8 ) , ( G s σ8 ) , ( G t σ8 ) } . These results are for the NGC and SGC at 
z = 0 . 38 , 0 . 61. 

DHOST 
σ fisher ( θ )/( θ ) fid ( b 1 σ 8 ) ( f σ 8 ) ( F g σ 8 ) ( F s σ 8 ) ( F t σ 8 ) ( G s σ 8 ) ( G t σ 8 ) 
NGC at z = 0.38 0.112 0.188 0.883 0.687 1.511 2.231 2.469 
NGC at z = 0.61 0.110 0.181 1.201 0.880 2.077 2.789 3.265 
SGC at z = 0.38 0.188 0.311 1.446 1.142 2.609 3.642 4.123 
SGC at z = 0.61 0.188 0.304 2.055 1.444 3.609 4.721 5.460 

Table 7. Same as Fig. 6 , but σfisher ( θ) / ( θ) fid for θ = { E f , E s , E t } and σfisher ( θ) for θ = { ξf , ξs , ξt } . 
DHOST 

σ fisher ( E f )/( E f ) fid σ fisher ( E s )/( E s ) fid σ fisher ( E t )/( E t ) fid σ fisher ( ξ f ) σ fisher ( ξ s ) σ fisher ( ξ t ) 
NGC at z = 0.38 0.626 2.260 2.541 1.130 3.701 4.172 
NGC at z = 0.61 0.890 2.931 3.384 2.084 6.890 7.955 
SGC at z = 0.38 1.035 3.653 4.234 1.867 5.983 6.950 
SGC at z = 0.61 1.469 4.878 5.677 3.439 11.468 13.345 

3PCF-specific information, σ 8 , is also uninformative compared 
to f σ 8 . Specifically, f σ 8 can be determined with a precision of 
∼ 20 per cent , while σ 8 can only reach a precision of ∼ 60 per cent . 
These results are for large scales ( r ≥ 80 h −1 Mpc ); what hap- 
pens when even smaller scales are used will be discussed in 
Section 7.4 . 
7.3 Fisher forecasts with all four BOSS samples 
In this subsection, we repeat the analysis of Case 7 in DHOST 
theories, performed in Section 7.2 , for the other three BOSS samples, 
NGC at z = 0.61 and SGC at z = 0 . 38 , 0 . 61, and summarize the 
results in Tables 6 and 7 . 

Table 6 shows that the results for ( b 1 σ 8 ) and ( f σ 8 ), which are 
mainly determined by the 2PCF, are slightly better for the sample at 
z = 0.61 than for the sample at z = 0.38 for both NGC and SGC. 
On the other hand, for the 3PCF-specific parameters, ( F g, s, t σ 8 ) and 
( G s, t σ 8 ), the error is smaller for the z = 0.38 sample than for the 
z = 0.61 sample. This result reflects the different characteristics of 
the cumulative S/N between the 2PCF and the 3PCF, as discussed in 
Section 5.4 . In other words, it suggests that higher number densities 
are more fa v ourable than larger surv e y volumes for constraining 
the non-linear parameters, ( F g, s, t σ 8 ) and ( G s, t σ 8 ), using 3PCF 
measurements. 

Table 7 summarizes the results of E f , s, t and ξ f , s, t . As expected, the 
z = 0.38 sample gives a smaller error than the z = 0.61 sample for 
both E f , s, t and ξ f , s, t . Ho we ver, in the case of ξ f , s, t , the error at z = 
0.38 is almost twice as small as that at z = 0.61, which is extremely 
fa v ourable for the z = 0.38 sample. For example, the ξ s results for 
the NGC samples are 
σfisher ( ξs ) = 3 . 701 for NGC at z = 0 . 38 , 
σfisher ( ξs ) = 6 . 890 for NGC at z = 0 . 61 . (103) 
This is because we parametrize the time evolution of E f , s, t as 
E f , s , t = %ξf , s , t 

m . That is, because d ξ f , s, t = d ln E f , s, t /(ln %m ), the errors 
in ξ f , s, t are smaller for lower redshifts with smaller values of %m . 
Specifically, in the LCDM model introduced in Section 1 , %m ( z = 
0.38) = 0.54 and %m ( z = 0.61) = 0.65, so 1/ln %m ( z = 0.38) = 1.62 

and 1/ln %m ( z = 0.61) = 2.32. Even if σfisher ( E f , s , t ) / ( E f , s , t ) fid has 
the same value at the two redshifts of z = 0.38 and z = 0.61, the 
value of σfisher ( ξf , s , t ) at z = 0.38 is 2.32/1.62 = 1.42 times smaller 
than at z = 0.61. 
7.4 Fisher forecasts using smaller scales 
So far, we have performed the Fisher analysis in the same setting 
as the MCMC analysis that will be performed in Section 9 . There, 
we have dealt with the behaviour of only large scales, 80 h −1 Mpc ≤
r ≤ 150 h −1 Mpc . Ho we ver, seeing ho w the parameter constraints 
impro v e when the minimum scale used, r min , is varied should be 
an excellent moti v ation for the future de velopment of theoretical 
models. 

Fig. 10 plots σ fisher ( θ )/( θ ) fid as a function of r min for the three 
gravity theories, GR, Horndeski, and DHOST, at two redshifts of 
z = 0.38 (magenta lines) and z = 0.61 (blue lines). The multipole 
components of the 2 and 3PCFs used here are Case 7 [equation ( 100 )]. 
First, even on the smaller scale, adding the 3PCF hardly impro v es 
the f σ 8 constraint compared to the case where only the 2PCF 
is used (compare solid and dashed lines in the top-left panel of 
Fig. 10 .). On the other hand, at r min = 30 h −1 Mpc , the σ 8 constraint 
reaches a precision of ∼ 10 per cent , from which useful cosmological 
information may be extracted: e.g. f = ( f σ 8 )/ σ 8 can be determined 
with a precision of ∼ 10 per cent . 

In addition, the non-linear velocity parameters, G s σ 8 and G t σ 8 , can 
be determined with 30-50 per cent precision at r min = 30 h −1 Mpc . 
Thus, future galaxy surv e ys with even larger volumes than the BOSS 
surv e y, such as DESI, Euclid, and PFS, may detect such non-linear 
coefficients of the velocity field. 

Note that we obtained the Fisher analysis results using the IR- 
resumed tree-level solutions of the 2 and 3PCFs given in equa- 
tions ( 31 ) and ( 34 ). Although these models accurately describe 
the non-linear damping behaviour of BAO on large scales, they 
cannot predict the 2 and 3PCFs on small scales with high accuracy. 
Therefore, to apply these models to smaller scales, it is necessary to 
account for non-linear effects, called loop correction terms. We leave 
to investigate how the results change when such a loop correction is 
added for future research. 
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Figure 10. The standard deviations computed by the Fisher analysis divided by the fiducial values of the parameter, σ fisher ( θ )/( θ ) fid , are shown as a function of 
the minimum scale used, r min . These results are for the NGC at z eff = 0 . 38 , 0 . 61. The solid lines show the results using the multipole components of the 2 and 
3PCFs given in Case 7 ( 100 ), and the dashed lines are for the 2PCF-only analysis, Case 1. The points at r min = 80 h −1 Mpc in the right-hand panels correspond 
to the results in Table 6 . 
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7.5 Flat priors 
As shown by the results of the Fisher analysis in Section 7 , the 
constraints on the non-linear parameters ξf , s , t constrained by the 
3PCF measured from BOSS are weak. Therefore, we need to set 
appropriate priors to efficiently perform the MCMC analysis. 

We use the Fisher analysis results of Case 7 in DHOST theories 
for the four BOSS galaxy samples, performed in Section 7.3 . Then, 
we adopt a flat prior of θfid ± 5 σ fisher ( θ ) as the base setting 
for all parameters. If using several samples to constrain common 
parameters, we adopt a narrower range of priors for those samples. 
F or e xample, at z eff = 0.38, when constraining f σ 8 using both NGC 
and SGC samples, we adopt the prior computed in NGC. After 
this basic setting, we set a stronger prior based on further physical 
considerations below. 

The linear bias b 1 , the linear growth rate f , and σ 8 are al w ays 
positive by definition: i.e. b 1 σ 8 ≥ 0 and f σ 8 ≥ 0. 

In the case of GR, the non-linear parameters to be constrained 
are F g σ 8 , σ 8 , and F t σ 8 . The non-linear local bias parameter 
(1/2)( b 2 / b 1 ) appearing in F g is calculated to be −0.02 for b 1 = 
2.0 using the fitting formula given by Lazeyras et al. ( 2016 ), which 
is sufficiently small compared to 17/21. The tidal bias parameter 
( b s 2 /b 1 ) appearing in F t is also calculated to be b s 2 /b 1 = ( −2 / 7)(1 −
1 /b 1 ) = −0 . 14 for the linear Lagrangian bias model (e.g. Des- 
jacques et al. 2018b ), and its value is also smaller than 2/7. 
Therefore, even if the non-linear bias parameter is present, F g σ 8 
and F t σ 8 are expected to be larger than zero: i.e. F g σ 8 ≥ 0 and 
F t σ 8 ≥ 0. We will discuss the validity of the analysis results 
when these conditions are imposed in Section 9.5 by comparing 
them with the results when F g σ 8 and F t σ 8 can take ne gativ e 
values. 

In the cases of Horndeski and DHOST theories, the parametriza- 
tion we adopt describes the time evolution of the coefficients of 
the tidal and shift terms as powers of %m (Section 3.4 ), implicitly 
assuming that these coefficients are al w ays positive: i.e. F s σ 8 ≥ 0, 
G s σ 8 ≥ 0, and G t σ 8 ≥ 0. For F g σ 8 and F t σ 8 , assuming that Horndeski 
and DHOST theories are not far from GR, we adopt F g σ 8 ≥ 0 and 
F t σ 8 ≥ 0, just like GR. 

The Fisher analysis shows that the BOSS data cannot detect the 
E s, t signals and only give them an upper limit (Section 7 ). This fact 
means that as E s, t approach zero, the parameters ξs , t = log %m E s , t can 
be as large as desired because of %m < 1. Therefore, in this analysis, 
we set the upper limit of ξ s, t to ( ξ s, t ) fid + 3 σ fisher ( ξ s, t ), which is 
narrower than the basic setting. If ξ s, t reach their upper bounds set 
here, we report only the lower bounds for those parameters as the 
final results. 

We summarize the results of the abo v e discussion in Table 8 . 
8  G O O D N E S S  O F  FIT  
In this section, we examine the extent to which our analysis can 
give good fits to the 2 and 3PCF measurements from the BOSS data 
or Patchy mocks for a variety of cases, before presenting specific 
parameter constraint values in Section 9 . 

For this purpose, we calculate the minimum of χ2 = −2 ln L ( 91 ), 
denoted χ2 

min , from the best-fitting parameter values obtained from 
the joint analysis of the 2 and 3PCFs. We use two multipole 2PCFs ( ξ 0 
and ξ 2 ), two monopole 3PCFs ( ζ 000 and ζ 110 ), and two quadrupole 
3PCFs ( ζ 202 and ζ 112 ) in this analysis; the assumed gravity theories 
are GR, Horndeski, and DHOST theories. Tables 9 –14 show the χ2 

min 
divided by the degrees of freedom (DoF), i.e. the reduced χ2 

min , and 
the corresponding one-tailed p -values. At two redshift bins, z = 0.38 

Table 8. The flat priors for the parameters that we employ in our MCMC 
analysis are shown. The results are calculated from Case 7 in equation ( 100 ) 
assuming DHOST theories. 

Prior range 
( b 1 σ8 ) NGC , z = 0 . 38 [0.60, 2.13] 
( b 1 σ8 ) SGC , z = 0 . 38 [0.08, 2.64] 
( b 1 σ8 ) NGC , z = 0 . 61 [0.54, 1.88] 
( b 1 σ8 ) SGC , z = 0 . 61 [0.07, 2.36] 
( f σ8 ) NGC , z = 0 . 38 [0.03, 0.94] 
( f σ8 ) SGC , z = 0 . 38 [0.00, 1.24] 
( f σ8 ) NGC , z = 0 . 61 [0.05, 0.91] 
( f σ8 ) SGC , z = 0 . 61 [0.00, 1.21] 
( F g σ8 ) NGC , z = 0 . 38 [0.00, 2.99] 
( F g σ8 ) SGC , z = 0 . 38 [0.00, 4.54] 
( F g σ8 ) NGC , z = 0 . 61 [0.00, 3.44] 
( F g σ8 ) SGC , z = 0 . 61 [0.00, 5.54] 
( F s σ8 ) NGC , z = 0 . 38 [0.00, 3.02] 
( F s σ8 ) SGC , z = 0 . 38 [0.00, 4.57] 
( F s σ8 ) NGC , z = 0 . 61 [0.00, 3.27] 
( F s σ8 ) SGC , z = 0 . 61 [0.00, 4.99] 
( F t σ8 ) NGC , z = 0 . 38 [0.00, 1.66] 
( F t σ8 ) SGC , z = 0 . 38 [0.00, 2.72] 
( F t σ8 ) NGC , z = 0 . 61 [0.00, 1.97] 
( F t σ8 ) SGC , z = 0 . 61 [0.00, 3.29] 
( ξf ) NGC , z = 0 . 38 [ − 5.11, 6.20] 
( ξf ) SGC , z = 0 . 38 [ − 8.79, 9.88] 
( ξf ) NGC , z = 0 . 61 [ − 9.88, 10.97] 
( ξf ) SGC , z = 0 . 61 [ − 16.65, 17.74] 
( ξs ) NGC , z = 0 . 38 [ − 18.51, 11.10] 
( ξs ) SGC , z = 0 . 38 [ − 29.91, 17.95] 
( ξs ) NGC , z = 0 . 61 [ − 34.45, 20.67] 
( ξs ) SGC , z = 0 . 61 [ − 57.34, 34.40] 
( ξt ) NGC , z = 0 . 38 [ − 20.84, 12.53] 
( ξt ) SGC , z = 0 . 38 [ − 34.74, 20.86] 
( ξt ) NGC , z = 0 . 61 [ − 39.76, 23.88] 
( ξt ) SGC , z = 0 . 61 [ − 66.71, 40.05] 
and z = 0.61, results are presented for NGC only, SGC only, and both 
NGC and SGC. In Horndeski and DHOST theories, we constrain the 
common parameters ξ f , s, t among different redshift bins using the 
samples at both the redshift bins. Finally, we also include the results 
of the analysis using only 2PCF. 

If the theoretical model fits the measurements well, the p -value 
should be close to 0.5. A p -value close to 1 does not mean that the 
theoretical model is correct, but that the theoretical model can explain 
the measurements within the error range, thanks to too large statistical 
errors in the measurements. On the other hand, a p -value close to 0 
indicates that the theoretical model cannot explain the measurements. 
In this paper, we decide that if p < 0.05, attention should be paid to 
the consistency between the theoretical model and the measurements, 
and if p < 0.01, there is an apparent discrepancy between them. We 
write in bold the χ2 and p values shown in Tables 9 –14 if p < 0.01. 
Finally, we comment on the behaviour of p -values when combining 
different galaxy samples. For example, suppose that the reduced χ2 

min 
is larger than 1: i.e. χ2 

min / DoF > 1. In this case, if we increase the 
values of χ2 

min and DoF by an equal factor while keeping the value 
of the reduced χ2 

min , the resulting p -value will be smaller than the 
original value, and conversely, if χ2 

min / DoF < 1, it will be larger 
than the original value. Since we treat the different galaxy samples 
as statistically independent, a similar situation occurs in analyses 
with multiple galaxy samples. Thus, if the p -value obtained from 
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Table 9. The reduced χ2 and p -values (in round brackets) obtained from the joint analysis of the 2 and 3PCFs are shown. These 
values are written in bold if p < 0.01. The minimum χ2 , denoted χ2 

min , is calculated from the best-fitting parameters. The data 
used are the BOSS DR12 galaxy, split into two sky regions, NGC and SGC, and two redshift bins, z = 0.38 and z = 0.61. The 
joint analysis shows the results for three gravity theories, i.e. GR, Horndeski, and DHOST theories; for Horndeski and DHOST 
theories, also shown are the results using the two redshift bins to constrain the parameters ξ f , s, t , which characterizes the time 
evolution of the linear and non-linear effects of the velocity field. Furthermore, the results for the 2PCF-only analysis are shown. 
The combinations of the 2 and 3PCF multipole components used in this analysis correspond to Case 1 and Case 7 in equation 100 . 

BOSS DR12 
χ2 

min / DoF ( p -value) 
NGC + SGC NGC SGC 

2PCF only ( z eff = 0.38) 56.04/57 (0.511) 32.18/28 (0.267) 23.36/28 (0.715) 
2PCF only ( z eff = 0.61) 80.24/57 (0.023) 42.08/28 (0.043) 36.94/28 (0.120) 
GR ( z eff = 0.38) 488.38/396 (0.001) 238.22/197 (0.024) 248.72/197 (0.007) 
GR ( z eff = 0.61) 428.60/396 (0.125) 218.48/197 (0.140) 209.24/197 (0.262) 
Horndeski ( z eff = 0.38) 488.24/395 (0.001) 236.38/196 (0.026) 251.62/196 (0.004) 
Horndeski ( z eff = 0.61) 427.56/395 (0.125) 218.06/196 (0.134) 209.16/196 (0.247) 
Horndeski ( z eff = 0 . 38 , 0 . 61) 918.76/792 (0.001) 456.50/394 (0.016) 458.94/394 (0.013) 
DHOST ( z eff = 0.38) 487.48/394 (0.001) 235.80/195 (0.024) 248.36/195 (0.006) 
DHOST ( z eff = 0.61) 427.62/394 (0.117) 217.94/195 (0.125) 209.06/195 (0.233) 
DHOST ( z eff = 0 . 38 , 0 . 61) 918.04/791 (0.001) 455.96/393 (0.015) 458.88/393 (0.012) 
Table 10. Same as Table 9 , except that only the monopole component of the 3PCF is used in the joint analysis of the 2 and 
3PCFs. The combination of the 2 and 3PCF multipole components used in this analysis corresponds to Case 2 in equation ( 100 ). 

Joint analysis with monopole 3PCFs ( ζ 000 and ζ 110 ) only 
χ2 

min / DoF ( p -value) 
NGC + SGC NGC SGC 

GR ( z eff = 0.38) 252.08/196 (0.004) 122.56/97 (0.041) 127.32/97 (0.021) 
GR ( z eff = 0.61) 216.54/196 (0.150) 109.00/97 (0.191) 106.94/97 (0.230) 
Horndeski ( z eff = 0.38) 252.02/195 (0.004) 122.54/96 (0.035) 127.30/96 (0.018) 
Horndeski ( z eff = 0.61) 216.40/195 (0.140) 109.02/96 (0.172) 106.90/96 (0.210) 
Horndeski ( z eff = 0 . 38 , 0 . 61) 469.58/392 (0.004) 231.70/194 (0.033) 234.68/194 (0.024) 
DHOST ( z eff = 0.38) 251.78/194 (0.003) 122.48/95 (0.030) 127.28/95 (0.015) 
DHOST ( z eff = 0.61) 216.40/194 (0.129) 108.96/95 (0.155) 106.90/95 (0.190) 
DHOST ( z eff = 0 . 38 , 0 . 61) 469.86/391 (0.004) 231.78/193 (0.029) 234.94/193 (0.021) 
Table 11. Same as Table 9 , except that only the quadrupole component of the 3PCF is used in the joint analysis of the 2 and 
3PCFs. The combination of the 2 and 3PCF multipole components used in this analysis corresponds to Case 3 in equation ( 100 ). 

Joint analysis with quadrupole 3PCFs ( ζ 202 and ζ 112 ) only 
χ2 

min / DoF ( p -value) 
NGC + SGC NGC SGC 

GR ( z eff = 0.38) 280.18/252 (0.107) 146.56/125 (0.091) 132.68/125 (0.302) 
GR ( z eff = 0.61) 281.58/252 (0.097) 148.04/125 (0.078) 132.48/125 (0.306) 
Horndeski ( z eff = 0.38) 279.66/251 (0.103) 144.68/124 (0.099) 132.38/124 (0.287) 
Horndeski ( z eff = 0.61) 281.68/251 (0.089) 148.14/124 (0.069) 132.48/124 (0.285) 
Horndeski ( z eff = 0 . 38 , 0 . 61) 563.66/504 (0.034) 294.48/250 (0.028) 265.08/250 (0.245) 
DHOST ( z eff = 0.38) 279.18/250 (0.099) 144.52/123 (0.090) 132.28/123 (0.268) 
DHOST ( z eff = 0.61) 281.68/250 (0.082) 148.04/123 (0.062) 132.50/123 (0.263) 
DHOST ( z eff = 0 . 38 , 0 . 61) 563.26/503 (0.032) 294.66/249 (0.025) 265.24/249 (0.229) 

each galaxy sample is small, combining galaxy samples will yield a 
smaller p -value. 

Section 8.1 reports an unexplained discrepancy between the 3PCF 
measured from the BOSS galaxy data at z = 0.38 and our theoretical 
model on large scales, even considering DHOST theories, which is 
beyond GR. Section 8.2 shows that this discrepancy between the 
data and the theoretical model appears from the monopole 3PCF. 

Section 8.3 shows that the discrepancy still appears even when the 
parameter prior set introduced in Section 7.5 is remo v ed. Section 8.4 
confirms that the discrepancy does not appear in the analysis using 
the Patchy mock. Finally, as a temporary measure, we rescale the 
covariance matrix of the 3PCF at z = 0.38 to generate acceptable p - 
values in Section 8.5 . Section 9 will report the parameter estimation 
results with and without rescaling the covariance matrix. 
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Table 12. The analysis is repeated as in Table 9 , except that the prior is remo v ed for all parameters related to non-linear effects 
in DHOST theories, F g σ 8 , F s σ 8 , F t σ 8 , ξ f , ξ s , and ξ t , allowing them to vary from −∞ to +∞ . 

No prior in DHOST 
χ2 

min / DoF ( p -value) 
NGC + SGC NGC SGC 

DHOST ( z eff = 0.38) 486.14/394 (0.001) 235.80/195 (0.024) 246.28/195 (0.008) 
DHOST ( z eff = 0.61) 428.16/394 (0.114) 218.58/195 (0.119) 209.58/195 (0.225) 
DHOST ( z eff = 0 . 38 , 0 . 61) 916.04/791 (0.001) 458.02/393 (0.013) 456.78/393 (0.014) 

Table 13. Same as Table 9 , except that the χ2 
min is calculated from each of 100 Patchy mocks, showing their mean values and standard deviations, and the 

means and 1 σ errors of the corresponding p -values. 
MultiDark–Patchy mocks 

χ2 
min / DoF ( p -value) 

NGC + SGC NGC SGC 
2PCF only ( z eff = 0.38) (57.76 ± 12.25)/57 (0 . 447 + 0 . 416 

−0 . 331 ) (28.84 ± 7.92)/28 (0 . 421 + 0 . 408 
−0 . 297 ) (27.75 ± 8.15)/28 (0 . 478 + 0 . 401 

−0 . 332 ) 
2PCF only ( z eff = 0.61) (56.50 ± 9.54)/57 (0 . 494 + 0 . 332 

−0 . 301 ) (27.99 ± 6.79)/28 (0 . 465 + 0 . 352 
−0 . 289 ) (27.52 ± 6.76)/28 (0 . 490 + 0 . 345 

−0 . 298 ) 
GR ( z eff = 0.38) (364.08 ± 29.31)/396 (0 . 873 + 0 . 115 

−0 . 346 ) (181.04 ± 20.14)/197 (0 . 786 + 0 . 186 
−0 . 382 ) (180.91 ± 21.55)/197 (0 . 788 + 0 . 189 

−0 . 408 ) 
GR ( z eff = 0.61) (362.41 ± 24.97)/396 (0 . 886 + 0 . 099 

−0 . 274 ) (179.10 ± 18.41)/197 (0 . 815 + 0 . 158 
−0 . 339 ) (181.45 ± 18.02)/197 (0 . 780 + 0 . 181 

−0 . 342 ) 
Horndeski ( z eff = 0.38) (363.90 ± 29.45)/395 (0 . 867 + 0 . 121 

−0 . 353 ) (180.68 ± 20.20)/196 (0 . 777 + 0 . 193 
−0 . 386 ) (180.62 ± 21.48)/196 (0 . 778 + 0 . 197 

−0 . 410 ) 
Horndeski ( z eff = 0.61) (361.99 ± 25.00)/395 (0 . 882 + 0 . 102 

−0 . 278 ) (178.48 ± 18.49)/196 (0 . 810 + 0 . 162 
−0 . 343 ) (181.21 ± 17.92)/196 (0 . 768 + 0 . 189 

−0 . 344 ) 
Horndeski ( z eff = 0 . 38 , 0 . 61) (728.47 ± 36.96)/792 (0 . 948 + 0 . 048 

−0 . 203 ) (360.88 ± 25.46)/394 (0 . 883 + 0 . 102 
−0 . 284 ) (363.77 ± 26.65)/394 (0 . 860 + 0 . 122 

−0 . 319 ) 
DHOST ( z eff = 0.38) (363.26 ± 29.37)/394 (0 . 865 + 0 . 123 

−0 . 355 ) (180.14 ± 20.18)/195 (0 . 770 + 0 . 199 
−0 . 388 ) (180.39 ± 21.43)/195 (0 . 766 + 0 . 207 

−0 . 412 ) 
DHOST ( z eff = 0.61) (361.46 ± 25.03)/394 (0 . 879 + 0 . 105 

−0 . 282 ) (178.00 ± 18.40)/195 (0 . 803 + 0 . 167 
−0 . 345 ) (180.95 ± 17.98)/195 (0 . 757 + 0 . 197 

−0 . 348 ) 
DHOST ( z eff = 0 . 38 , 0 . 61) (728.23 ± 37.03)/791 (0 . 946 + 0 . 050 

−0 . 208 ) (360.45 ± 25.33)/393 (0 . 879 + 0 . 105 
−0 . 286 ) (363.47 ± 26.59)/393 (0 . 855 + 0 . 127 

−0 . 322 ) 
Table 14. Same as Table 9 , except that the covariance matrix of the 3PCF at z = 0.38 is rescaled as in equation ( 106 ). 

χ2 
min / DoF ( p -value) 
NGC + SGC NGC SGC 

GR ( z eff = 0 . 38 [ rescaled ]) 413.86/396 (0.258) 209.98/197 (0.250) 202.56/197 (0.378) 
Horndeski ( z eff = 0 . 38 [ rescaled ]) 413.66/395 (0.249) 208.24/196 (0.261) 202.36/196 (0.363) 
Horndeski ( z eff = 0 . 38 [ rescaled ] , 0 . 61) 844.18/792 (0.097) 428.14/394 (0.114) 412.46/394 (0.251) 
DHOST ( z eff = 0 . 38 [ rescaled ]) 412.88/394 (0.246) 207.82/195 (0.252) 202.34/195 (0.344) 
DHOST ( z eff = 0 . 38 [ rescaled ] , 0 . 61) 843.66/791 (0.095) 428.00/393 (0.108) 412.36/393 (0.241) 

8.1 BOSS galaxies 
Table 9 shows the results from the analysis method described in this 
paper. We have performed the MCMC analysis (Section 6 ) using 
ξ 0 , ξ 2 , ζ 000 , ζ 110 , ζ 202 , and ζ 112 measured from the BOSS galaxy 
data (Section 4 ), the covariance matrix computed from the 2048 
Patchy mocks (Section 5 ), and the flat prior of the parameter range 
(Section 7.5 ). 

First, we focus on the analysis case using only the 2PCF. For the 
NGC + SGC sample, the obtained p -values are p = 0.511 at z = 
0.38 and p = 0.023 at z = 0.61. This p = 0.023 indicates a small 
amount of a poor fit between the model and the measurements, but 
we consider it not problematic. 

Next, turning to the joint analysis results of the 2 and 3PCFs 
assuming GR, we find that the p -value at z = 0.38 obtained for the 
NGC + SGC sample is extremely small, 0.001. At z = 0.38, the 
results for only NGC and only SGC are p = 0.024 and p = 0.007, 
indicating that the SGC sample is more problematic than the NGC. 
On the other hand, the p -value at z = 0.61 for the NGC + SGC sample 
is p = 0.125, indicating that our model explains the measured values 
without problems. 

Finally, for Horndeski and DHOST theories, we find results similar 
to the GR case: the p -value is 0.001 at z = 0.38 and p ∼ 0.1 at z = 
0.61 for the NGC + SGC sample. 

Thus, we conclude that there is an unexplained discrepancy 
between the 3PCF measurement from the BOSS sample at z = 
0.38 and the theoretical model we are using. Even Horndeski and 
DHOST theories, which are modified gravity theories beyond GR, 
cannot explain this discrepancy. 
8.2 Monopole- or quadrupole-only 3PCF 
We investigate whether the discrepancy between the 3PCF mea- 
surement from the galaxy sample at z = 0.38 and the theoretical 
model, shown in Table 9 , originates from the monopole or quadrupole 
component. 

For this purpose, Tables 10 and 11 show the joint analysis results 
using only monopole 3PCFs or only quadrupole 3PCFs in addition 
to the monopole and quadrupole 2PCFs. For a fair comparison with 
Table 9 , the prior distributions of the parameters used here are those 
given in Table 8 . For the NGC + SGC at z = 0.38, the p -value 
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obtained using the monopole 3PCFs is less than 0.01 in all three 
gravity theories, whereas the p -value obtained using the quadrupole 
3PCFs is p ∼ 0.1. Therefore, we can conclude that the monopole 
component of the 3PCF measurement at z = 0.38 is inconsistent 
with the theoretical model. 
8.3 No prior in DHOST theories 
As an attempt to explain the discrepancy between the 3PCF measure- 
ment from the galaxy sample at z = 0.38 and the theoretical model, 
we remo v e all flat prior for the non-linear parameters, F g σ 8 , F s σ 8 , 
F t σ 8 , ξ f , ξ s , and ξ t , set in Table 8 and perform parameter fitting with- 
out imposing any prior. In particular, we investigate the possibility 
that imposing the conditions F g ≥ 0 and F t ≥ 0 on the parameters 
with the non-linear bias may have caused some problems fitting 
the monopole 3PCF. This subsection focuses on DHOST theories 
because they have the largest number of parameters to be varied. 

Table 12 summarizes the results of the calculations and confirms 
that the p -value obtained from the NGC + SGC sample at z = 0.38 
is 0.001, even if we assume no prior for the non-linear parameters. 
Therefore, we can conclude that the discrepancy between the galaxy 
data and the theoretical model at z = 0.38 is not due to the prior 
imposed in Table 8 . 
8.4 Patchy mocks 
Table 13 shows the means and standard deviations of the χ2 

min and the 
corresponding means and 1 σ errors of the p -values obtained from 
the 100 Patchy mock catalogues. The setup for the data analysis is 
the same as that performed in Table 9 . 

In all 30 cases shown in Table 13 , the mean p -values obtained are 
almost al w ays p " 0.5, both in the analysis using only the 2PCF and 
in the joint analysis with the 3PCF. This result means that our 2 and 
3PCFs theoretical templates fit well with the Patchy mock simulation 
data, indicating that the small p -values found in Table 9 are a peculiar 
property of the BOSS galaxies. 

As two representative examples, the rest of this subsection focuses 
on the DHOST theory analyses using only the SGC sample at z = 
0.38 and all four galaxy samples (NGC + SGC at z = 0.38, 0.61). 
The reasons are as follows: (1) our primary goal is to test DHOST 
theories; (2) the analysis of the SGC at z = 0.38 in the BOSS data 
gi ves a p-v alue of 0.006, which is the most significant discrepancy 
from the theoretical model among the four galaxy samples; (3) the 
analysis using all four BOSS galaxy samples gives our final results 
in Section 9 . 

For the SGC sample at z = 0.38, the χ2 
min values for the BOSS 

samples and the Patchy mocks are 
χ2 

min ( BOSS ) = 248 . 36 , 
χ2 

min ( Patchy mocks ) = 180 . 39 ± 21 . 43 , (104) 
where DoF = 195. The abo v e result means that assuming that the χ2 

min 
follows a Gaussian distribution, the BOSS galaxy sample deviates 
from the Patchy mocks at the 3.2 σ significance level. 

For the NGC + SGC sample at z = 0.38, 0.61, we have 
χ2 

min ( BOSS ) = 918 . 04 , 
χ2 

min ( Patchy mocks ) = 728 . 23 ± 37 . 03 (105) 
where DoF = 791. This result implies a discrepancy between the 
BOSS galaxy sample and the Patchy mocks at the 5.1 σ level. Thus, 
we conclude that the discrepancy with the theoretical model in the 
BOSS galaxies cannot be explained by the statistical scatter of the 
Patchy mocks. 

Although Table 13 has shown the results obtained from 100 Patchy 
mocks, for a more detailed exploration, we perform MCMC analysis 
on all 2048 publicly available Patchy mocks for the two examples 
abo v e to see if it is possible to find realizations that return the similar 
p -values to the BOSS galaxy sample. For the SGC sample of z = 
0.38, only one Patchy mock catalogue gives p = 0.005, close to the 
BOSS result. In this case, the Patchy mocks have a probability of 
100 × (1 / 2048) = 0 . 0488 per cent to reproduce the BOSS galaxy 
results. On the other hand, using all four galaxy samples, not a 
single catalogue among the 2048 Patchy mocks reproduced the 
BOSS results. This result means that the BOSS result has less than a 
0 . 0488 per cent probability of appearing in the Patchy mocks. These 
results are consistent with the 3.2 σ and 5.1 σ discrepancies between 
the BOSS and Patchy mock data presented in equations ( 104 ) and 
( 105 ). 

Fig. 11 visualizes the results for the DHOST theory analysis in 
Tables 9 and 13 . As expected, the histogram of χ2 

min computed from 
the Patchy mocks (blue bars) can be well approximated by a Gaussian 
function (orange line) with input values for the mean and standard 
deviation of χ2 

min computed from the Patchy mocks. In the cases of 
SGC at z = 0.38 (top-right panel) and NGC + SGC at z = 0.38, 0.61 
(bottom-left panel), we compute the histograms from the 2048 Patchy 
mocks; otherwise, we compute them from 100 Patchy mocks. Also, 
we plot the χ2 

min values obtained from the BOSS data in magenta. 
8.5 Rescaling of the co v ariance matrix 
We have discussed the discrepancy between the 3PCF measured from 
the BOSS data at z = 0.38 and the corresponding theoretical model. 
Unfortunately, this paper cannot provide a definitive answer to this 
question. 

There are three possible reasons for this discrepancy. The first 
concern is about the calculation of the covariance matrix. There may 
be physical effects that the Patchy mock used to calculate the covari- 
ance matrix needs to account for fully. F or e xample, it is necessary to 
verify to what extent non-linear galaxy bias effects (Desjacques et al. 
2018b ) and super-sample covariance effects (Takada & Hu 2013 ) are 
correctly included in the Patchy mock. The second concern is about 
the theoretical model. For example, the theoretical model may have 
new physical effects dominating large scales at low redshifts. If so, 
we also need to account for that effect in the covariance matrix 
simultaneously . Finally , we are concerned with the observed galaxy 
data. There may be unknown observational effects that the weight 
function in equation ( 52 ) cannot explain. In any case, the findings 
in this section indicate the importance of discussing the validity of 
cosmological analyses that consider the 2 and 3PCFs simultaneously. 

This paper assumes that the discrepancy between the BOSS galaxy 
sample and the theoretical model is due to an improper covariance 
matrix for the 3PCF calculated with the Patchy mock. Therefore, as 
a temporary measure, we decided to rescale the 3PCF covariance 
matrix at z = 0.38 to increase the obtained p -value to an acceptable 
value. Specifically, we rescale the 3PCF covariance matrix at z = 
0.38 as follows: 
Cov [ 3PCF ] rescaled = A Cov [ 3PCF ] . (106) 
where the rescaling factor A is A = 1.15 and A = 1.25 for NGC 
and SGC, respectively. The values of A are determined so that the 
resulting p -values at z = 0.38 become similar to those at z = 0.61. 

Table 14 summarizes the results of repeating the same analysis as 
Table 9 using the rescaled covariance matrix; Fig. 11 visualizes the 
results for the DHOST theory analysis in Tables 14 . As expected, 
p " 0.1 for the NGC + SGC sample at z = 0.38. Thus, if the 
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Figure 11. Visualizations of the DHOST theory analysis results in Tables 9 , 13 , and 14 . The histograms of χ2 
min computed from the Patchy mocks are shown. 

In the cases of SGC at z = 0.38 (top-right panel) and NGC + SGC at z = 0.38, 0.61 (bottom-left panel), the histograms are computed from 2048 Patchy mocks; 
otherwise, they are computed from 100 Patchy mocks. Also, Gaussian functions (orange lines) with input values for the mean and standard deviation of χ2 

min 
computed from the Patchy mocks are sho wn. The χ2 

min v alues obtained from the BOSS data are plotted in magenta. Also shown are the results for the BOSS 
data using the rescaled 3PCF covariance matrix at z = 0.38 (Section 8.5 ) in dashed red lines. 
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discrepancy between the galaxy data and the theoretical model in the 
3PCF measurement is due to the covariance matrix computed by the 
Patchy mocks, we find that we can solve this problem by increasing 
the resulting covariance matrix by 15 − 25 per cent . We will give the 
results using this rescaled covariance matrix as the final result of this 
paper when we perform parameter estimation in Section 9 using the 
galaxy data at z = 0.38. 
9  RESU LTS  
This section calculates the mean, standard deviation, ±1 σ errors, and 
95 per cent upper and lower bounds for the parameters computed 
from the likelihoods, where we perform parameter estimation for 
each BOSS DR12 galaxy and Patchy mock data. When using the 
Patchy mock data, we compute the mean, standard deviation, ±1 σ
errors, and 95 per cent limits for the parameters from each of the 100 
Patchy mocks; then, we calculate the means and standard deviations 
of them. All results here take into account both the NGC and SGC 
samples. We have already given the χ2 

min and p -values calculated 
from the best-fitting values of the parameters in the NGC + SGC 
columns of Tables 9 , 13 , and 14 . 

The main results of this paper are equations ( 113 )–( 116 ), which 
provide constraints in ξ t and ξ s . In Fig. 21 , we plot the 1D and 
2D likelihood distributions corresponding to these results. Finally, 
we summarize the measurement results for the 3PCF multipole 
components ( ζ 000 , ζ 110 , ζ 202 , and ζ 112 ) from the BOSS galaxies 
used in this analysis in Figs 12 –19 . 

The combination of the 2 and 3PCFs multipoles used in the 
joint analysis performed in this section corresponds to Case 7 in 
equation ( 100 ); the analysis using only the 2PCF corresponds to 
Case 1. In Section 9.10 , the results of the joint analysis with only 
the monopole 3PCF, which corresponds to Case 2, are also presented 
and compared with the final results obtained from Case 7. 
9.1 Measurements 
Figs 12 –19 plot the measurement results of the monopole 3PCFs 
( ζ 000 and ζ 110 ) and the quadrupole 3PCFs ( ζ 202 and ζ 112 ) from the 
BOSS galaxies as a function of r 2 with r 1 fixed at 50 h −1 Mpc , 
80 h −1 Mpc , 90 h −1 Mpc , 100 h −1 Mpc , and 130 h −1 Mpc from top 
to bottom; they are shown by blue circled points with 1 σ error 
bars. Also plotted are the 3PCF measurements from 100 Patchy 
mocks (grey) and the mean from the 3PCF measurements from 2048 
Patchy mocks (black). Finally, the theoretical models computed from 
the best-fitting parameter values obtained from the DHOST theory 
analysis using all four BOSS samples are plotted with magenta lines; 
they are shown as solid lines on the scales r 1 , r 2 ≥ 80 h −1 Mpc used 
in the MCMC analysis and as dashed lines on smaller scales. Note 
that the theoretical model shown by the magenta dashed line does 
not need to explain the measurements from the galaxy data. 

As can be seen from the lower left of Fig. 14 , the ζ 000 measured 
from the SGC sample at z = 0.38 shows a significant discrepancy 
with the theoretical model on large scales, which is to be expected 
from the results presented in Section 8.2 . 

Theoretical predictions from Figs 1 and 2 indicate that the 
monopole and quadrupole 3PCFs have trough-shaped signals at r 1 = 
r 2 . F or e xample, this characteristic trough signal is seen in the blue 
data points for ζ 112 measured in the NGC sample at z = 0.38, shown 
in the first and second panels from the top in the right-hand panel of 
Fig. 13 . Ho we ver, due to the significant statistical scattering in the 
galaxy data, the trough signal is not necessarily found in the blue 
points of all panels in Figs 12 - 19 . 

In particular, for the monopole 3PCF, the BAO peak appears at 
r 1 3 r 2 3 100 h −1 Mpc . Therefore, it is expected to cancel out the 
trough signal, resulting in a smooth line with no irregularities when 
plotting the 3PCF as a function of r 2 after fixing r 1 = 100 h −1 Mpc . 
F or e xample, as seen from the second panel from the bottom in the 
right-hand panel of Fig. 12 , the ζ 110 measured from the NGC sample 
at z = 0.38 shows that the trough-shaped signal disappears from 
the data points. Conversely, this is evidence of a BAO signal in the 
monopole 3PCF. Although plotting the 3PCF as a function of r 1 = 
r 2 = r makes it easier to see the BAO signal from the galaxy data 
points (e.g. see figs 8 and 11 of Sugiyama et al. 2021 ), we do not plot 
such a figure because the subject of this paper is not the BAO signal. 
9.2 f σ 8 constraints from the Patchy mocks in GR 
Table 15 shows the f σ 8 results obtained from the analysis of 100 
Patchy mocks, assuming GR. 

The standard deviations of f σ 8 from the 2PCF-only analysis are 
almost identical to those obtained from the joint analysis with the 
3PCF. This result is consistent with the results of the Fisher analysis 
in Section 7 . Therefore, we can conclude that neither monopole 
3PCF nor quadrupole 3PCF contributes to reducing the f σ 8 error. 
Nevertheless, note that we can constrain the growth rate function 
f using the joint analysis with the 3PCF by combining the σ 8 
constraint in Section 9.6 . Furthermore, in the context of modified 
gravity theories, f is extended to E f , and Section 9.7 will constrain 
the parameter ξ f characterizing its time evolution. 

Looking at the mean of f σ 8 , the results obtained in the joint analysis 
with the 3PCF (0.498 at z = 0.38 and 0.504 at z = 0.61) are slightly 
closer to the values input to the Patchy mock (0.491 and 0.485) than 
those obtained with the 2PCF alone (0.445 and 0.457). Thus, the 
3PCF information helps reduce the bias in the f σ 8 mean values. 
9.3 f σ 8 constraints from the BOSS DR12 galaxies in GR 
Table 16 summarizes the results of the f σ 8 constraints obtained from 
the BOSS galaxy under the assumption of GR. ‘GR ( z = 0.38) 
[rescaled]’ means the results using the rescaled covariance matrix 
(Section 8.5 ). 

Note that the standard deviation result of f σ 8 does not change with 
and without rescaling the 3PCF covariance matrix at z = 0.38: i.e. 
( f σ 8 ) std = 0.108 in both cases. Thus, the 15 − 25 per cent difference 
in the 3PCF covariance matrix due to rescaling (Section 8.5 ) does 
not propagate significantly to the final f σ 8 error. The reason for this 
may be mainly due to the effect of parameter de generac y and other 
factors. Ho we ver, due to the decisi vely dif ferent p -v alues obtained 
(see Tables 9 and 14 ), we adopt the rescaled result at z = 0.38 as the 
final result. 

Comparing the results of the joint analysis with the 3PCF and the 
2PCF-only analysis, the former has a larger f σ 8 error: i.e. ( f σ8 ) std = 
0 . 108 , 0 . 091 at z = 0 . 38 , 0 . 61 for the joint analysis with the 3PCF, 
and ( f σ8 ) std = 0 . 086 , 0 . 086 at z = 0 . 38 , 0 . 61 for the 2PCF-only 
analysis. Therefore, one may think that adding the 3PCF information 
has weakened the constraint on f σ 8 . Ho we ver, since Table 15 shows 
that the statistical uncertainty of ( f σ 8 ) std is ∼0.01, the both results 
are statistically consistent at the " 2 σ level. 

Our final results for the f σ 8 constraints are as follows. The 2PCF- 
only analysis gives, at the 1 σ level, 
f σ8 = 0 . 446 + 0 . 084 

−0 . 096 at z = 0 . 38 
f σ8 = 0 . 408 + 0 . 084 

−0 . 095 at z = 0 . 61 , (107) 
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Figure 12. Monopole 3PCFs ( ζ 000 and ζ 110 ) measured from the NGC sample at z = 0.38 (blue points). These plots are shown as a function of r 2 , with r 1 fixed 
from the top to 50 h −1 Mpc , 80 h −1 Mpc , 90 h −1 Mpc , 100 h −1 Mpc , and 130 h −1 Mpc . The error bars are the standard deviation of the 3PCF measurements 
computed from 2048 Patchy mocks. Also plotted are the 3PCF measurements from 100 Patchy mocks (grey) and the mean from the 3PCF measurements from 
2048 Patchy mocks (black). Finally, the results of the theoretical model calculated from the best-fitting parameter values obtained from the DHOST theory 
analysis using all four BOSS samples (Sections 9.7 –9.9 ) are shown by the magenta lines; they are shown as solid lines on the scales r 1 , r 2 ≥ 80 h −1 Mpc used 
in the analysis and as dashed lines on smaller scales. 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

/5
2
3
/2

/3
1
3
3
/7

1
7
2
8
6
9
 b

y
 N

a
tio

n
a
l A

s
tro

n
o
m

ic
a
l O

b
s
e
rv

a
to

ry
 J

a
p
a
n
 u

s
e
r o

n
 2

5
 A

u
g
u
s
t 2

0
2
3

art/stad1505_f12.eps


3172 N. S. Sugiyama et al. 

MNRAS 523, 3133–3191 (2023) 

Figure 13. Same as Fig. 12 , except that the quadrupole 3PCF results ( ζ 202 and ζ 112 ) measured from the NGC sample at z = 0.38 are shown. 
and the joint analysis with the 3PCF presents 
f σ8 = 0 . 549 + 0 . 097 

−0 . 122 at z = 0 . 38 
f σ8 = 0 . 394 + 0 . 088 

−0 . 099 at z = 0 . 61 . (108) 
These f σ 8 constraints are consistent with the f σ 8 values ( f σ8 = 
0 . 485 , 0 . 479 at z = 0 . 38 , 0 . 61) calculated from the cosmological 
parameters in a flat $ CDM model (Section 1 ) given by Planck 
2018 (Aghanim et al. 2020 ). Ho we ver, the f σ 8 result in this analysis, 
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Figure 14. Same as Fig. 12 , except that the monopole 3PCF results ( ζ 000 and ζ 110 ) measured from the SGC sample at z = 0.38 are shown. 
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Figure 15. Same as Fig. 12 , except that the quadrupole 3PCF results ( ζ 202 and ζ 112 ) measured from the SGC sample at z = 0.38 are shown. 
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Figure 16. Same as Fig. 12 , except that the monopole 3PCF results ( ζ 000 and ζ 110 ) measured from the NGC sample at z = 0.61 are shown. 
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Figure 17. Same as Fig. 12 , except that the quadrupole 3PCF results ( ζ 202 and ζ 112 ) measured from the NGC sample at z = 0.61 are shown. 
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Figure 18. Same as Fig. 12 , except that the monopole 3PCF results ( ζ 000 and ζ 110 ) measured from the SGC sample at z = 0.61 are shown. 
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Figure 19. Same as Fig. 12 , except that the quadrupole 3PCF results ( ζ 202 and ζ 112 ) measured from the SGC sample at z = 0.61 are shown. 
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Figur e 20. Mar ginalized 2D and 1D posteriors of f σ 8 and σ 8 for BOSS DR12. The contours indicate 68 . 27 per cent and 95 . 45 per cent confidence levels. 
Asterisks indicate predictions by Planck. The left- and right-hand panels show the cases at z = 0.38 and z = 0.61. The NGC and SGC samples are al w ays 
combined to obtain this result. The rescaled 3PCF covariance matrix (Section 8.5 ) at z = 0.38 is used. 

Figur e 21. Mar ginalized 2D and 1D posteriors of ξ f , ξ t , and ξ s for BOSS DR12. DHOST theories (red) vary these all three parameters, while Horndeski 
theories (blue) fix ξ s to ξ s = 0. The contours indicate 68 . 27 per cent and 95 . 45 per cent confidence levels. Asterisks indicate predictions by GR: ξ f = 6/11, ξ t = 
15/1144, and ξ s = 0. The NGC and SGC samples at z = 0.38 and 0.61 are combined to obtain this result. The rescaled 3PCF covariance matrix (Section 8.5 ) at 
z = 0.38 is used. 
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Table 15. Constraint results for f σ 8 obtained from the 100 Patchy mocks. One hundred means, standard deviations, ±1 σ errors, and 95 per cent upper and 
lower bounds are computed from the 100 Patchy mocks; then, the means and standard deviations of them are shown. Values in parentheses are the input values 
for the Patchy mocks. Results are shown for two redshift bins at z = 0.38 and 0.61 in combination with the NGC and SGC samples. Also shown are the results 
for the 2PCF only analysis and the joint analysis with the 3PCF assuming GR. The χ2 

min and p values corresponding to this table are shown in the NGC + SGC 
column of Table 13 . 

MultiDark–Patchy mocks 
〈 f σ 8 〉 mean 〈 f σ 8 〉 std 〈 f σ 8 〉 −1 σ 〈 f σ 8 〉 + 1 σ 〈 f σ8 〉 > 95 per cent 〈 f σ8 〉 < 95 per cent 

2PCF only ( z eff = 0.38) 0 . 445 (0 . 491) ± 0 . 078 0.094 ± 0.010 −0.106 ± 0.013 0.091 ± 0.009 0.256 ± 0.074 0.635 ± 0.090 
2PCF only ( z eff = 0.61) 0 . 457 (0 . 485) ± 0 . 068 0.083 ± 0.009 −0.091 ± 0.011 0.082 ± 0.008 0.291 ± 0.066 0.624 ± 0.077 
GR ( z eff = 0.38) 0.498(0.491) ± 0.085 0.107 ± 0.008 −0.118 ± 0.009 0.105 ± 0.012 0.283 ± 0.082 0.718 ± 0.093 
GR ( z eff = 0.61) 0.504(0.485) ± 0.070 0.095 ± 0.010 −0.104 ± 0.010 0.092 ± 0.011 0.314 ± 0.065 0.698 ± 0.082 

Table 16. Means, standard deviations, ±1 σ errors, and 95 per cent upper and lower bounds for f σ 8 obtained in the 2PCF-only 
analysis and the joint analysis with the 3PCF using the BOSS DR12 galaxies, assuming GR for the joint analysis with the 3PCF. 
Results are shown for two redshifts at z = 0.38 and 0.61 using the NGC and SGC samples. Also shown are the results at z = 0.38 
for the analysis using the rescaled covariance matrix ( 106 ) to give an acceptable p -value. The χ2 

min and p values corresponding to 
this table are shown in the NGC + SGC column of Tables 9 and 14 . 

BOSS DR12 
( f σ 8 ) mean ( f σ 8 ) std ( f σ 8 ) −1 σ ( f σ 8 ) + 1 σ ( f σ8 ) > 95 per cent ( f σ8 ) < 95 per cent 

2PCF only ( z eff = 0.38) 0.446 0.086 −0.096 0.084 0.273 0.620 
2PCF only ( z eff = 0.61) 0.408 0.086 −0.095 0.084 0.236 0.580 
GR ( z eff = 0.38) 0.561 0.108 −0.122 0.098 0.348 0.785 
GR ( z eff = 0.61) 0.394 0.091 −0.099 0.088 0.208 0.580 
GR ( z eff = 0 . 38 [ rescaled ]) 0.549 0.108 −0.122 0.097 0.337 0.776 

which constrains f σ 8 with a ∼ 20 per cent precision, is not as 
competitiv e as e xisting constraints (e.g. Alam et al. 2017 ; Ivanov 
et al. 2020 ; Lange et al. 2022 ; Kobayashi et al. 2022 ) because we 
only use large-scale information ( r ≥ 80 h −1 Mpc ). 
9.4 σ 8 constraints from the Patchy mocks in GR 
Table 17 summarizes the results for σ 8 from 100 Patchy mocks. 

The mean values for σ 8 are 0.741 and 0.612 for z = 0.38 and 
z = 0.61, respectively, in good agreement with the mock input 
values (0.691 and 0.615). Specifically, they agree to an accuracy 
of 7 per cent and 0 . 5 per cent , respectively. Since σ 8 is the only 
physical parameter unique to the 3PCF in GR, the fact that we can 
estimate the σ 8 value with high accuracy guarantees the validity of 
our analysis. 

On the other hand, the 95 per cent lower limit of σ 8 is consistent 
with zero, so we cannot detect a statistically significant signal for σ 8 
in our analysis. 
9.5 σ 8 constraints from the Patchy mocks in GR with negative 
F g σ 8 and F t σ 8 allowed 
This subsection discusses the validity of the priors set in Section 7.5 
for the parameters F g σ 8 and F t σ 8 , which include non-linear bias 
parameters. We impose the assumption that F g and F t are positive, 
but there is no theoretical requirement that this assumption is correct 
since the values of the non-linear biases are uncertain. Therefore, 
as a test, we perform parameter estimation for σ 8 using a prior with 
ne gativ e F g and F t allowed to check if it returns the input values of the 
Patchy mocks. Specifically, the upper bounds of F g σ 8 and F t σ 8 given 
in Table 8 are multiplied by ( −1) to set the lower bounds of F g σ 8 
and F t σ 8 . For example, we set −2 . 99 ≤ ( F g σ8 ) NGC , z = 0 . 38 ≤ 2 . 99. 

We summarize the results of this analysis in Table 18 . This table 
shows that the mean values for σ 8 are 1.204 at z = 0.38 and 1.004 
at z = 0.61, which are about 1.5 times larger than the input values, 
0.691 at z = 0.38 and 0.615 at z = 0.61, in the Patchy mocks. Thus, 
if we allow ne gativ e values of F g and F t , we cannot estimate the 
correct value of σ 8 . We have no theoretical basis for explaining this 
fact, but as a result of numerical experiments, we conclude that it 
is reasonable to impose the conditions F g ≥ 0 and F t ≥ 0 in our 
analysis. 

9.6 σ 8 constraints from the BOSS DR12 galaxies in GR 
Table 19 summarizes the results for the σ 8 constraints obtained from 
the BOSS galaxies under the GR assumption. The ‘GR ( z = 0.38) 
[rescaled]’ refers to the results obtained using the rescaled covariance 
matrix (Section 8.5 ). Fig. 20 plots the marginalized one- and 2D 
posteriors of f σ 8 and σ 8 . 

Similar to the results for the f σ 8 constraint in Section 9.3 , the 
results for the σ 8 constraint remain almost the same whether the 
covariance matrix is rescaled or not. Adopting the result using the 
rescaled covariance matrix as the final result, the σ 8 constraints at 
the 1 σ level are 
σ8 = 0 . 692 + 0 . 209 

−0 . 591 at z = 0 . 38 , 
σ8 = 0 . 568 + 0 . 144 

−0 . 547 at z = 0 . 61 , (109) 
Also, as expected from the results of the Patchy mocks, the 
95 per cent lower bounds for σ 8 reach 0, so at the 95 per cent level, 
we get only the upper bounds: 
σ8 < 1 . 568 (95 per cent CL ) at z = 0 . 38 , 
σ8 < 1 . 323 (95 per cent CL ) at z = 0 . 61 . (110) 
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Table 17. Constraint results for σ 8 obtained from the 100 Patchy mocks. One hundred means, standard deviations, ±1 σ errors, and 95 per cent 
upper and lower bounds are computed from the 100 Patchy mocks; then, the means and standard deviations of them are shown. Values in 
parentheses are the input values for the Patchy mocks. Results are shown for two redshift bins at z = 0.38 and 0.61 in combination with the 
NGC and SGC samples. Also shown are the results for the joint analysis with the 3PCF assuming GR. The χ2 

min and p values corresponding 
to this table are shown in the NGC + SGC column of Table 13 . 

MultiDark–Patchy mocks 
〈 σ 8 〉 mean 〈 σ 8 〉 std 〈 σ 8 〉 −1 σ 〈 σ 8 〉 + 1 σ 〈 σ8 〉 > 95 per cent 〈 σ8 〉 < 95 per cent 

GR ( z eff = 0.38) 0 . 741 (0 . 691) ± 0 . 347 0.476 ± 0.142 −0.626 ± 0.184 0.235 ± 0.191 0.024 ± 0.097 1.668 ± 0.617 
GR ( z eff = 0.61) 0 . 612 (0 . 615) ± 0 . 319 0.415 ± 0.165 −0.550 ± 0.220 0.176 ± 0.156 0.003 ± 0.023 1.410 ± 0.636 
Table 18. Same as Table 17 , except that a prior with negative F g and F t allowed is adopted. 

MultiDark–Patchy mocks 
Ne gativ e F g and F t allowed 

〈 σ 8 〉 mean 〈 σ 8 〉 std 〈 σ 8 〉 −1 σ 〈 σ 8 〉 + 1 σ 〈 σ8 〉 > 95 per cent 〈 σ8 〉 < 95 per cent 
GR ( z eff = 0.38) 1 . 204 (0 . 691) ± 0 . 429 0.628 ± 0.109 −0.771 ± 0.184 0.499 ± 0.263 0.151 ± 0.269 2.409 ± 0.568 
GR ( z eff = 0.61) 1 . 004 (0 . 615) ± 0 . 441 0.584 ± 0.156 −0.750 ± 0.198 0.374 ± 0.260 0.072 ± 0.176 2.140 ± 0.719 

Table 19. Means, standard deviations, ±1 σ errors, and 95 per cent upper and lower bounds for σ 8 obtained in the 
joint analysis of the 2 and 3PCFs using the BOSS DR12 galaxies, assuming GR. Results are shown for two redshifts 
at z = 0.38 and 0.61 using the NGC and SGC samples. Also shown are the results at z = 0.38 for the analysis using 
the rescaled covariance matrix ( 106 ) to give an acceptable p -value. The χ2 

min and p values corresponding to this table 
are shown in the NGC + SGC column of Tables 9 and 14 . 

BOSS DR12 
( σ 8 ) mean ( σ 8 ) std ( σ 8 ) −1 σ ( σ 8 ) + 1 σ ( σ8 ) > 95 per cent ( σ8 ) < 95 per cent 

GR ( z eff = 0.38) 0.702 0.451 −0.576 0.221 0.000 1.563 
GR ( z eff = 0.61) 0.568 0.404 −0.547 0.144 0.000 1.323 
GR ( z eff = 0 . 38 [ rescaled ]) 0.692 0.459 −0.591 0.209 0.000 1.568 

These results are consistent with the σ 8 values, ( σ8 = 0 . 681 , 0 . 606 
at z = 0 . 38 , 0 . 61), calculated from the cosmological parameters in 
a flat $ CDM model given by Planck 2018 (Section 1 ). 

The ratio of the standard deviation to the mean for σ 8 is 
( σ 8 ) std /( σ 8 ) mean = 0.66 at z = 0.38 and 0.71 at z = 0.61, indicating 
that the galaxy sample at z = 0.38 provides a better constraint on σ 8 . 
This result is consistent with the Fisher analysis in Section 7.3 . 
9.7 ξ f constraints from the BOSS DR12 galaxies in Horndeski 
and DHOST theories 
Table 20 summarizes the constraint results for the parameter ξ f , 
defined as ξf = ln %m (E f ) = ln %m ( f /κδ) ( 49 ), characterizing the 
time evolution of the amplitude of the linear velocity field. In GR 
and Horndeski theories, ξ f corresponds to the well-known parameter 
γ since κδ = 1; in GR, ξ f = γ = 6/11 ( 50 ). 

Using all the four galaxy samples, at the 1 σ level, we obtain 
γ = 0 . 485 + 0 . 967 

−0 . 708 in Horndeski , 
ξf = 0 . 791 + 0 . 963 

−0 . 691 in DHOST , (111) 
and at the 95 per cent confidence level, we have 
−1 . 216 < γ < 2 . 175 (95 per cent CL ) in Horndeski , 
−0 . 907 < ξf < 2 . 447 (95 per cent CL ) in DHOST . (112) 

All results in Table 20 are consistent with GR within the 1 σ level. 
Note that the γ constraints in Horndeski theories obtained here are 

not directly comparable to those obtained from existing studies by, 
e.g. Gil-Mar ́ın et al. ( 2017b ). The reason is that we simultaneously 

vary the ξ t parameter characterizing the tidal term in the non-linear 
velocity field in Horndeski theories, while Gil-Mar ́ın et al. ( 2017b ) 
use the bispectrum model assuming GR. 
9.8 ξ t constraints from the BOSS DR12 galaxies in Horndeski 
and DHOST theories 
Table 21 summarizes the constraint results for the ξ t parameter, 
defined as ξt = ln %m ( E t ) = ln %m ( λθ/κδ) ( 49 ), characterizing the 
time evolution of the tidal term in the second-order velocity field. In 
GR, ξ t = 15/1144 ( 50 ), and if ξ t deviates from the GR value, it is 
evidence for Horndeski or DHOST theories. 

Using all the four galaxy samples, at the 1 σ level, we obtain 
ξt = 5 . 151 + 6 . 112 

−4 . 016 in Horndeski , 
ξt = 5 . 414 + 6 . 007 

−3 . 734 in DHOST , (113) 
and at the 95 per cent confidence level, we have 
−2 . 098 < ξt (95 per cent CL ) in Horndeski , 
−1 . 655 < ξt (95 per cent CL ) in DHOST . (114) 

equations ( 113 ) and ( 114 ) are one of the main results in this paper. 
Since the 95 per cent upper bounds of ξ t obtained in this analysis 
reach the upper bounds set by the flat prior distribution (Section 7.5 ), 
we present only the 95 per cent lower bounds here. 

All results in Table 21 are consistent with GR within the 
95 per cent level. 
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Table 20. Means, standard deviations, ±1 σ errors, and 95 per cent upper and lower bounds for ξ f obtained in the joint analysis of 
the 2 and 3PCFs using the BOSS DR12 galaxies, assuming Horndeski or DHOST theories. The results for the two redshifts, z = 0.38 
and 0.61, and their combined case are shown. Both NGC and SGC samples are used for all cases. Also shown are the results at z = 
0.38 for the analysis using the rescaled covariance matrix ( 106 ) to give acceptable p -values. The χ2 

min and p values corresponding to 
this table are shown in the NGC + SGC column of Tables 9 and 14 . 

BOSS DR12 
( ξ f ) mean ( ξ f ) std ( ξ f ) −1 σ ( ξ f ) + 1 σ ( ξf ) > 95 per cent ( ξf ) < 95 per cent 

Horndeski ( z eff = 0.38) 0.206 1.016 −0.777 1.176 −1.906 2.201 
Horndeski ( z eff = 0.61) 1.142 1.671 −1.431 1.862 −2.302 4.480 
Horndeski ( z eff = 0 . 38 , 0 . 61) 0.562 0.818 −0.703 0.913 −1.079 2.226 
Horndeski ( z eff = 0 . 38 [ rescaled ]) 0.202 1.043 −0.833 1.201 −1.921 2.287 
Horndeski ( z eff = 0 . 38 [ rescaled ] , 0 . 61) 0.485 0.839 −0.708 0.967 −1.216 2.175 
DHOST ( z eff = 0.38) 0.458 1.013 −0.790 1.188 −1.564 2.474 
DHOST ( z eff = 0.61) 1.248 1.722 −1.372 1.981 −2.318 4.630 
DHOST ( z eff = 0 . 38 , 0 . 61) 0.834 0.829 −0.686 0.963 −0.814 2.484 
DHOST ( z eff = 0 . 38 [ rescaled ]) 0.129 1.131 −0.895 1.078 −2.096 2.473 
DHOST ( z eff = 0 . 38 [ rescaled ] , 0 . 61) 0.791 0.830 −0.691 0.963 −0.907 2.447 
Table 21. Same as Table 20 , except that the results for ξ t are shown. 

BOSS DR12 
( ξ t ) mean ( ξ t ) std ( ξ t ) −1 σ ( ξ t ) + 1 σ ( ξt ) > 95 per cent ( ξt ) < 95 per cent 

Horndeski ( z eff = 0.38) 4.221 4.693 −5.982 5.710 −3.380 - 
Horndeski ( z eff = 0.61) 11.118 7.354 −7.204 9.639 −1.256 - 
Horndeski ( z eff = 0 . 38 , 0 . 61) 5.298 4.257 −4.023 6.092 −1.865 - 
Horndeski ( z eff = 0 . 38 [ rescaled ]) 4.129 4.704 −5.968 5.268 −3.485 - 
Horndeski ( z eff = 0 . 38 [ rescaled ] , 0 . 61) 5.151 4.300 −4.016 6.112 −2.098 - 
DHOST ( z eff = 0.38) 4.288 4.589 −6.002 5.348 −3.103 - 
DHOST ( z eff = 0.61) 11.361 7.387 −6.785 10.112 −1.183 - 
DHOST ( z eff = 0 . 38 , 0 . 61) 5.349 4.217 −3.980 5.915 −1.688 - 
DHOST ( z eff = 0 . 38 [ rescaled ]) 3.745 4.732 −6.165 5.262 −3.921 - 
DHOST ( z eff = 0 . 38 [ rescaled ] , 0 . 61) 5.414 4.211 −3.734 6.007 −1.655 - 

9.9 ξ s constraints from the BOSS DR12 galaxies in DHOST 
theories 
Table 22 summarizes the constraint results for ξ s , defined as ξs = 
ln %m ( E s ) = ln %m ( κθ/κδ) ( 49 ), characterizing the time evolution of 
the shift term in the second-order velocity field. In GR or Horndeski 
theories, ξ s = 0 ( 50 ) because κδ = κθ = 1. If ξ s += 0, then it is the 
specific signal appearing in DHOST theories. Note that ξ s += 0 is a 
sufficient condition for detecting DHOST theories because there can 
be DHOST theories satisfying κδ = κθ (see Section 3.4 ). 

Using all the four galaxy samples, at the 1 σ level, we obtain 
ξs = 5 . 378 + 4 . 993 

−2 . 777 , (115) 
and at the 95 per cent confidence level, we have 
− 0 . 504 < ξs (95 per cent CL ) , (116) 
where we show only the lower limit of ξ s for the same reason as for 
ξ t . equations ( 115 ) and ( 116 ) are the other main results of this paper 
in addition to equations ( 113 ) and ( 114 ). 

All results in Table 22 are consistent with GR within the 
95 per cent level. 

For all the results obtained from Tables 20 , 21 , and 22 , the standard 
deviations of ξ f , s, t obtained by combining the samples z = 0.38 and 
z = 0.61 are smaller than those obtained at z = 0.38 and z = 0.61, 
respectiv ely. Therefore, future galaxy surv e ys with more redshift bins 
should impro v e our ξ f , s, t constraints. 

Similar to the f σ 8 and σ 8 results in GR, we confirm that the con- 
straints of ξ f , s, t are hardly affected by rescaling the covariance matrix 
by 15 per cent − 25 per cent at z = 0.38. This finding indicates that 
the results for ξ f , s, t presented here will not change significantly even 
if future re-analysis from a better mock simulation gives acceptable 
p -values. 
9.10 Joint analysis with the monopole 3PCF only 
This subsection presents the results of a joint analysis of the 
monopole and quadrupole 2PCFs ( ξ 0 and ξ 2 ) with only the monopole 
3PCFs ( ζ 000 and ζ 110 ) and compares them with our main results, 
revealing the importance of the information in the quadrupole 3PCFs 
( ζ 202 and ζ 112 ). In other words, we compare the results corresponding 
to Case 2 and Case 7 in equation 100 . For simplicity, we focus here 
on the case where all four BOSS galaxy samples are used assuming 
DHOST theories and present a comparison of the results for ξ f , ξ t , 
and ξ s . For Case 2, as in Case 7, we determine the parameter priors 
according to the method described in Section 7.5 , based on the results 
of the Fisher analysis. 

The results of the joint analysis with the monopole 3PCFs are as 
follows: 
( ξt ) mean ± ( ξt ) std = 257 . 451 ± 145 . 68 , 
( ξs ) mean ± ( ξs ) std = 137 . 396 ± 79 . 215 . (117) 
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Table 22. Same as Table 20 , except the results for ξ s that varies in DHOST theories are shown. 
BOSS DR12 

( ξ s ) mean ( ξ s ) std ( ξ s ) −1 σ ( ξ s ) + 1 σ ( ξs ) > 95 per cent ( ξs ) < 95 per cent 
DHOST ( z eff = 0.38) 5.232 3.495 −2.948 4.904 −0.744 - 
DHOST ( z eff = 0.61) 8.791 6.841 −6.984 8.889 −2.653 - 
DHOST ( z eff = 0 . 38 , 0 . 61) 5.407 3.360 −2.988 4.664 −0.275 - 
DHOST ( z eff = 0 . 38 [ rescaled ]) 5.307 3.519 −2.854 5.063 −0.740 - 
DHOST ( z eff = 0 . 38 [ rescaled ] , 0 . 61) 5.378 3.438 −2.777 4.993 −0.504 - 

Table 23. Comparison of the standard deviations, σ fisher ( θ ) and ( θ ) std , 
obtained from the Fisher analysis and MCMC for θ = ξf , ξt , ξs . The results 
are shown for each redshift of z = 0.38 and z = 0.61 and the combined case 
of the two redshifts. In all cases shown here, the NGC and SGC samples 
are used; the MCMC results at z = 0.38 use the rescaled covariance matrix 
(Section 8.5 ). All the values summarized here are those already given in 
Tables 7 and 20 –22 . When combining the results for the different galaxy 
samples in Table 7 , we use the standard error composition formula, assuming 
that each galaxy sample is independent. 

DHOST 
( ξ f ) std σ fisher ( ξ f ) 

z eff = 0.38 1.131 0.967 
z eff = 0.61 1.722 1.782 
z eff = 0 . 38 , 0 . 61 0.830 0.850 

( ξ t ) std σ fisher ( ξ t ) 
z eff = 0.38 4.732 3.577 
z eff = 0.61 7.387 6.834 
z eff = 0 . 38 , 0 . 61 4.211 3.169 

( ξ s ) std σ fisher ( ξ s ) 
z eff = 0.38 3.519 3.147 
z eff = 0.61 6.841 5.906 
z eff = 0 . 38 , 0 . 61 3.438 2.778 
On the other hand, adding the quadrupole 3PCFs presents ( ξ t ) std = 
4.211 (Table 21 ) and ( ξ s ) std = 3.438 (Table 22 ). 

The addition of the quadrupole 3PCFs reduces the values of 
( ξ t ) std and ( ξ s ) std by a factor of ∼35 and ∼20, respectively. This 
impro v ement is consistent with the Fisher analysis result in Section 7 
(see equation ( 102 ) and Table 5 ). Therefore, we conclude that 
the quadrupole component of the 3PCF should al w ays be used to 
constrain ξ t and ξ s . Finally, the same should hold for testing other 
modified gravity theories through non-linear velocity fields. 
9.11 Consistency check with the Fisher analysis 
This subsection discusses the consistency between the Fisher analysis 
results in Section 7 and our final results from MCMC in this 
section. For this purpose, We compare the standard deviation of 
a parameter θ computed from the Fisher analysis, σ fisher ( θ ), with that 
estimated from MCMC, ( θ ) std , where the parameters of interest are 
θ = ξf , ξt , ξt , which are the main target of this paper. 

Table 23 summarizes the cases for each redshift bin of z = 0.38 
and z = 0.61 and for using both redshift bins, assuming DHOST 
theories. The v alues sho wn in this table are given from Tables 7 and 
20 –22 . When combining the results for the different galaxy samples 
in Table 7 , we use the standard error combination formula, assuming 
that each galaxy sample is independent. 

Table 23 shows that the MCMC results satisfy ( θ ) std " σ fisher ( θ ), 
indicating that the MCMC results are consistent with the Fisher 

analysis results, as expected. This result reinforces the validity of 
our main results shown in Tables 20 –22 . 
9.12 Comments on bias effects on shift terms 
DHOST theories change the shift term of the non-linear density 
fluctuation from GR, which may introduce a new bias effect in the 
shift term, i.e. the shift bias parameter. Since E f , s , t are the parameters 
that cancel the σ 8 -dependence using the coefficients of the shift term 
of the density fluctuation, when the shift bias appears, E f , s , t will also 
be contaminated by the bias effect. Furthermore, the shift bias may 
induce bias effects in linear and non-linear velocity fields. In such 
cases, we cannot use the parametrization E f , s , t = %ξf , s , t 

m adopted in 
this paper to characterize the time dependence of E f , s, t because the 
time dependence of the bias parameter is uncertain. 

If we assume the presence of the shift bias effect, we propose 
simultaneously constraining all the six parameters ( F g σ 8 ), ( F s σ 8 ), 
( F t σ 8 ), ( G g σ 8 ), ( G s σ 8 ), and ( G t σ 8 ) ( 37 ) that characterize the growth, 
shift, and tidal terms in the density and velocity fields in each galaxy 
sample as a more general test of modified gravity theories. In such an 
analysis, we should remo v e the relation G g = G s − (2/3) G t imposed 
in DHOST theories. In particular, the E s parameter, which represents 
the ratio of the coefficients of the shift terms of the non-linear density 
and velocity fields: E s = ( G s σ 8 )/( F s σ 8 ), is al w ays E s = 1 in GR and 
Horndeski theories. Therefore, testing whether E s = 1 in each galaxy 
sample verifies the theory of varying the shift term, such as DHOST- 
like theories. In other words, it should provide a means to test the LSS 
consistency relation, which DHOST-like theories violate (Section 1 ), 
using the galaxy 3PCF (or bispectrum). 
1 0  C O N C L U S I O N S  
This paper presents a joint analysis of the anisotropic 2 and 3PCFs 
measured from the publicly available BOSS DR12 galaxy data to test 
cosmological modified gravity theories. This paper has two important 
implications. First, it is the first work to extract cosmological 
information from actual galaxy data using the anisotropic component 
of the galaxy 3PCF induced by the RSD effect. Secondly, this analysis 
is the first attempt to constrain the non-linear effects of modified 
gravity theories from the galaxy three-point statistics. 

We consider DHOST theories and their subclass, Horndeski 
theories, which are the candidates for modified gravity theories 
(see Section 2.1 ). They are quite general theoretical frameworks 
of scalar-tensor theories. Since the time evolution equation of the 
linear density fluctuations in these theories is scale-independent ( 6 ), 
the difference with GR appears only in the linear growth rate f in the 
linear theory (Hirano et al. 2019a ). On the other hand, the non-linear 
gravitational effect causes a difference in the scale-dependence of the 
density fluctuation, which allows us to examine the deviation from 
GR more clearly . Specifically , Horndeski theories change the tidal 
term of the second-order density fluctuation from GR, while DHOST 
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theories change both the shift and tidal terms ( 10 and 38 ; Hirano et al. 
2018 ). Ho we ver, since non-linear bias parameters contaminate the 
density fluctuations, Yamauchi & Sugiyama ( 2022 ) have pointed out 
that one should investigate supposedly unbiased non-linear velocity 
fields induced by the RSD effect (see Section 3.4 for a re vie w). 
Specifically, the y hav e suggested that one should constrain the 
parameters ξ t and ξ s , which characterize the time evolution of the 
tidal and shift terms of the second-order velocity field: ξ t = 15/1144 
in GR and ξ s = 0 in GR and Horndeski theories. Therefore, if ξ s += 
0, then it is the signal specific to DHOST theories; they have also 
pointed out that in DHOST theories, the parameter γ = ln %m ( f ), 
which characterizes the time dependence of the linear growth rate 
f , is extended to ξf = ln %m ( f /κ) with κ being the time-dependent 
function appearing in the shift term of the density fluctuation. To 
this end, we test DHOST and Horndeski theories by constraining 
these parameters ξ f , ξ t , and ξ s using the joint analysis method of the 
anisotropic 2 and 3PCF, established by Sugiyama et al. ( 2021 ). 

The following is a summary of the details of the analysis method- 
ology and the findings obtained. 

(i) Following Sugiyama et al. ( 2019 ), we apply the TripoSH 
decomposition method to the 3PCF to extract information about 
the anisotropic, i.e. quadrupole , component of the 3PCF (see 
Sections 3.1 and 4.2 ). To simplify the data analysis, we then use 
only two monopole components ( ζ 000 and ζ 110 ) and two quadrupole 
components ( ζ 202 and ζ 112 ) from the decomposed 3PCF. For the 
2PCF, we adopt the commonly used Legendre decomposition method 
and use the monopole and quadrupole components: i.e. ξ 0 and ξ 2 . 
It is worth noting that ζ 202 includes only the M = 0 mode that 
appears in Scoccimarro et al. ( 1999 )’s decomposition formalism, 
while ζ 112 includes M += 0 modes in addition to the M = 0 mode. 
Furthermore, the TripoSH-decomposed 3PCF allows a quantitative 
e v aluation and detailed study of the surv e y windo w ef fect present in 
the measured 3PCFs (see Section 4.3 ). Thus, this work is the first 
to extract information on the M += 0 modes from actual galaxy data, 
taking into account the window effect. 

(ii) We only use data at large scales of 80 h −1 Mpc ≤ r ≤
150 h −1 Mpc , where higher-order non-linear corrections, called loop 
corrections, are not expected to contribute much to the 2 and 
3PCF. In order to test modified gravity theories consistently using 
smaller scales, it is necessary to construct a model that includes 
the non-linear effects of modified gravity theories so that they are 
also included in the loop corrections. To our knowledge, only one 
such analysis has been performed so far for the case of the power 
spectrum in f ( R ) gravity (Song et al. 2015a ). Ho we ver, it is known 
that various uncertainties arise in the non-linear power spectrum in 
DHOST theories, such as IR cancellation breaking (Crisostomi et al. 
2020 ; Le wando wski 2020 ) and UV divergence (Hirano et al. 2020 ). 
These theoretical uncertainties should also appear in the bispectrum. 
Therefore, focusing only on large scales is necessary to remo v e the 
theoretical uncertainties and safely constrain the non-linear effects of 
modified gravity theories. Our analysis is thus the second example of 
a consistent analysis incorporating the non-linear effects of modified 
gravity from spectroscopic galaxy surv e ys, and the first to use the 
galaxy three-point statistic. 

(iii) As a theoretical model for the 3PCF, we use the IR-resummed 
model ( 34 ) proposed by Sugiyama et al. ( 2021 ; see Section 3.2 ). 
This model can describe the BAO damping effect while keeping the 
shape of the 3PCF in the tree-lev el solution. F or this model, we have 
investigated how the three decomposed non-linear effects, i.e. the 
growth, shift, and tidal terms, affect the 3PCF multipoles (see Figs 1 
and 2 in Section 3.3 ). For example, in the quadrupole components 

( ζ 202 and ζ 112 ), the dominant term is the product of the linear 
density fluctuation and the linear velocity field that appears during 
the coordinate transformation from real space to redshift space; 
otherwise, the non-linear effects of the density and velocity fields 
contribute to the quadrupole component to the same extent. Figs 12 –
19 in Section 9.1 show the ζ 000 , ζ 110 , ζ 202 , and ζ 112 measured from 
the four BOSS galaxy samples and the corresponding theoretical 
models calculated using the best-fitting parameters. 

(iv) We have used the 2048 publicly available Patchy mocks to 
compute the covariance matrices of the 2 and 3PCFs in Section 5 . 
In our analysis, we ensure that the number of data bins in the 2 and 
3PCFs is sufficiently smaller than the number of the 2048 mocks. In 
particular, the parameter M 2 ( 88 ), which represents the impact of a 
finite number of mocks on the final parameter error, is at most M 2 ∼
1.1 (see Section 6.4 ). 

(v) To understand the nature of the covariance matrix, we have 
calculated the cumulative S/N of the 2 and 3PCFs in Section 5.4 . 
The results show that the cumulative S/N of the 3PCF has different 
characteristics from that of the 2PCF. In the case of the 2PCF, 
the galaxy sample at z = 0.61 with a larger volume has a smaller 
covariance matrix than the sample at z = 0.38, resulting in a larger 
S/N at z = 0.61. On the other hand, for the 3PCF, the S/N at z = 
0.38 is comparable to the S/N at z = 0.61. Therefore, the difference 
in surv e y volume cannot e xplain the relationship between the S/N of 
the 3PCF at z = 0.38 and 0.61. A possible explanation for this 3PCF 
S/N behaviour is that the covariance matrix of the 3PCF depends 
strongly on the number density of the galaxies (see Sugiyama et al. 
2020 ): the BOSS sample at z = 0.38 has a higher number density 
than the sample at z = 0.61, even with a smaller surv e y volume 
(T able 1 ). W e interpret this higher number density as why the S/N at 
z = 0.38 is as high as that at z = 0.61. 

(vi) We hav e inv estigated the e xtent to which higher-order terms 
in the TripoSH decomposition of the 3PCF contain cosmological 
information by Fisher analysis (see Section 7.2 ). The results show 
that ζ 202 is the main cosmological information in the quadrupole 
3PCF, while other information is contained in the higher-order term 
ζ 112 in addition to ζ 202 . Since ζ 112 contains the M += 0 modes in 
Scoccimarro et al. ( 1999 )’s decomposition formalism but not in ζ 202 , 
this result indicates the importance of the M += 0 modes. 

(vii) In Section 8 , we have reported that at large scales ( ≥
80 h −1 Mpc ), there can be statistically significant differences between 
the 3PCFs measured from the BOSS galaxies and the corresponding 
theoretical models, regardless of whether we assume GR, Horndeski 
or DHOST theories. F or e xample, the p -value obtained from the 
SGC sample at z = 0.38 is less than 0.01, and the p -value obtained 
from the combined sample of the four BOSS samples is 0.001 (see 
Section 8.1 ). This result means that the discrepancies between the 
galaxy data and the theoretical models cannot be explained within the 
framework of scalar-tensor theory, even if they are due to unknown 
physical effects. Other results show that the discrepancy is mainly due 
to the monopole component of the 3PCF rather than the quadrupole 
component (see Section 8.2 ), and that this discrepancy cannot be 
e xplained ev en if the prior distribution of the parameters is changed 
(see Section 8.3 ). Finally, we have repeated the same analysis for the 
100 Patchy mocks as for the BOSS sample in Section 8.4 . The results 
show a statistically significant difference of more than 5 σ between 
the p -values of the Patchy mocks and the BOSS galaxies. Therefore, 
the statistical variability of the Patchy mock galaxies cannot explain 
the low p -values ( p ∼ 0.001) obtained from the BOSS galaxies. 

(viii) In this paper, we assume that the discrepancy between the 
BOSS galaxy sample and the theoretical model is due to an inappro- 
priate 3PCF covariance matrix computed from the Patch mocks. We 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

/5
2
3
/2

/3
1
3
3
/7

1
7
2
8
6
9
 b

y
 N

a
tio

n
a
l A

s
tro

n
o
m

ic
a
l O

b
s
e
rv

a
to

ry
 J

a
p
a
n
 u

s
e
r o

n
 2

5
 A

u
g
u
s
t 2

0
2
3



Ne w constr aints on modified gr avity theories 3185 

MNRAS 523, 3133–3191 (2023) 

then take a conserv ati ve approach by artificially rescaling the 3PCF 
covariance matrix at z = 0.38 by 15 per cent for NGC and 25 per cent 
for SGC, resulting in acceptable p -values (see Section 8.5 ). To 
confirm the validity of this method, we have presented in Section 9 
the results of constraining the parameters of interest with and without 
rescaling the covariance matrix and have confirmed that there is no 
significant difference in the final results obtained in these two cases. 
We interpret this result as being due to a more significant de generac y 
effect between the parameters than the ∼ 20 per cent difference in the 
3PCF covariance matrix. Therefore, we do not expect that calculating 
the covariance matrix from simulation data that better reproduce the 
distribution of the BOSS galaxies will significantly change the results 
of the present paper. 

(ix) We have constrained f σ 8 from the BOSS galaxies assuming 
GR in Section 9.3 . There, we have shown that adding isotropic 
and anisotropic 3PCF components ( ζ 000 , ζ 110 , ζ 202 , and ζ 112 ) does 
little to impro v e the results compared to the 2PCF-only analysis. 
Nevertheless, the analysis using the Patchy mocks shows that the 
3PCF information does help to reduce the bias of the mean value of 
f σ 8 (see Section 9.2 ). Finally, we obtain f σ8 = 0 . 549 + 0 . 097 

−0 . 122 at z = 
0.38 and f σ8 = 0 . 394 + 0 . 088 

−0 . 099 at z = 0.61 in the joint analysis of the 
anisotropic 2 and 3PCFs assuming GR ( 108 ). These f σ 8 results are 
not as competitive as existing constraints (e.g. Alam et al. 2017 ; 
Ivanov et al. 2020 ; Lange et al. 2022 ; Kobayashi et al. 2022 ) because 
we only use large-scale information ( r ≥ 80 h −1 Mpc ). 
One may think that adding the 3PCF information does not impro v e 
the f σ 8 results due to the focus on large scales only ( r ≥ 80 h −1 Mpc ). 
To test this concern, we have performed a Fisher analysis that 
includes small scales (30 h −1 Mpc ≤ r ≤ 150 h −1 Mpc ) and find 
that even if we extend the used scales to 30 h −1 Mpc , there is no 
impro v ement in the f σ 8 results (see Section 7.4 ). Ho we ver, note that 
we use the IR-resummed tree-level model of the 3PCF in this Fisher 
analysis. Therefore, if we use a theoretical model with various loop 
corrections applicable down to small scales, parameter de generac y 
may break, and it may still be possible to obtain impro v ed f σ 8 
constraints through a joint analysis of the 2 and 3PCFs. 

(x) We have constrained σ 8 from the BOSS galaxies assuming 
GR in Section 9.6 . Thus, while the 3PCF information does not 
impro v e the f σ 8 constraints, it helps to break the de generac y between 
parameters by providing information on σ 8 : e.g. it allows us to 
constrain f . We have obtained σ8 = 0 . 692 + 0 . 209 

−0 . 591 at z = 0.38 and 
σ8 = 0 . 568 + 0 . 144 

−0 . 547 at z = 0.61 at the 1 σ level. These results are 
consistent with σ8 = 0 . 681 , 0 . 606 at z = 0 . 38 , 0 . 61 calculated from 
the cosmological parameters in a flat $ CDM model given by Planck 
2018. The ratio of the standard deviation to the mean for σ 8 is 
( σ 8 ) std /( σ 8 ) mean = 0.66 at z = 0.38 and 0.71 at z = 0.61, indicating 
that the galaxy sample at z = 0.38 provides a better constraint on 
σ 8 . This result can be attributed to the higher number density of 
the sample at z = 0.38 compared to that at z = 0.61, similar to the 
argument of the cumulative S/N in Section 5.4 . 

(xi) Our main results, the constraints on the ξ f , ξ t , and ξ s 
parameters in DHOST theories, are summarized in Sections 9.7 , 9.8 , 
and 9.9 . There, we obtain ξf = 0 . 791 + 0 . 963 

−0 . 691 ( 111 ), ξt = 5 . 414 + 6 . 007 
−3 . 734 

( 113 ), and ξs = 5 . 378 + 4 . 993 
−2 . 777 ( 115 ) at the 1 σ level; we also have 

−0.907 < ξ f < 2.447 ( 112 ), −1.655 < ξ t ( 114 ), and −0.504 < 
ξ s ( 116 ) at the 95 per cent confidence level. Since we cannot detect 
the signal of the tidal and shift terms in the second-order velocity 
field in the present analysis, we can only present the 95 per cent lower 
bounds of the ξ t and ξ s parameters. These results are consistent with 
the GR predictions ξ f = γ = 6/11, ξ t = 15/1144, and ξ s = 0 (see 
Fig. 21 ). Moreo v er, we hav e checked the consistenc y of the estimated 
results from the BOSS galaxy sample with the Fisher analysis 

for the constraints on the ξf , t, s parameters in DHOST theories in 
Section 9.11 . 
In Horndeski theories, we obtain ξf = γ = 0 . 485 + 0 . 967 

−0 . 708 and ξt = 
5 . 151 + 6 . 112 

−4 . 016 at the 1 σ level, and −1.216 < γ < 2.175 and −2.098 < 
ξ t at the 95 per cent confidence level. The γ constraint in Horndeski 
theories obtained here is not directly comparable to those obtained 
from existing studies by, e.g. Gil-Mar ́ın et al. ( 2017b ) because we 
simultaneously vary the ξ t parameter in Horndeski theories. 

(xii) We have shown that the anisotropic component of the 3PCF 
contributes significantly to the constraints on the shape of the non- 
linear velocity field in Section 9.10 . In particular, the constraints 
on the parameters ξ t and ξ s are ∼35 and ∼20 times better when 
the anisotropic component is added than when only the isotropic 
component is considered. This result strongly supports the main 
claim of this paper that the anisotropic three-point statistics should 
be considered to test the non-linearity of modified gravity theories. 

Below is a summary of some of the concerns and future enhance- 
ments to the results of this paper. 

(i) In order to encourage the future development of the anisotropic 
3PCF analysis, we comment on the situation beyond the assumptions 
used to derive the non-linear effects of DHOST theories that we 
focus on in this paper (see Section 2.2 ). First, our analysis can 
be applied to other modified gravity theories, such as f ( R ) gravity 
models and brane-world models. In addition, it should also be 
possible to constrain effects such as the CDM-baryon relative 
v elocity and massiv e neutrinos, which giv e rise to characteristic 
non-linear behaviour. The calculations of DHOST theories in this 
paper assume minimal coupling between the metric field and the 
scalar field, Gaussianity of the initial conditions, and the quasi-static 
limit, but we need additional correction terms if these assumptions 
are remo v ed. In addition, since DHOST theories modify the shift 
term from GR, we cannot exclude the possibility of shift bias, which 
we do not consider in a $ CDM model. In the presence of shift bias, 
we cannot use the ξ s and ξ t parameters to constrain DHOST theories, 
but we expect the E s and E t parameters constrained at each redshift 
to remain valid (Section 9.12 ). 

(ii) We also comment on some impro v ements in our analysis of the 
anisotropic 3PCF (see Section 3.5 ). First, as more mock catalogues 
are created in the future, increasing the number of multipoles in the 
3PCF to be considered should impro v e the results of this work (e.g. 
Byun & Krause 2022 ). Secondly, as shown in Fig. 10 , we can 
dramatically impro v e the current parameter constraints by using the 
theoretical model of the 3PCF, which is applicable to small scales 
(see Section 7.4 ). Thirdly, although we have used the shape of the 
linear power spectrum calculated by an $ CDM model in a high- z 
region in this work, it needs to be calculated in the framework of 
DHOST theories in the future (e.g. Hiramatsu & Yamauchi 2020 ). 
F ourthly, we hav e calculated the Gaussian function describing the 
damping effect of the BAO signal for a $ CDM model, but we also 
need to constrain this function itself. Finally, we have neglected 
the AP effect in this work; the analysis method of the anisotropic 
3PCF that includes the AP effect has been established by Sugiyama 
et al. ( 2021 ) using the Patchy mock and should be straightforward 
to apply to actual galaxy data. We hope that addressing these issues 
will further impro v e our results. 

Finally, in Section A , we provide the software package that can 
reproduce all the results obtained in this paper, HITOMI . The aim 
of HITOMI is to make available all the programmes we have used to 
complete the anisotropic 3PCF analysis, from downloading the SDSS 
DR12 galaxy data, measuring the 2PCFs and 3PCFs, computing the 
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theoretical models, calculating the covariance matrices, the window 
function corrections, MCMC analysis, and producing figures and 
tables. This makes it easier for any user to see how partial im- 
pro v ements to HITOMI , e.g. impro v ed 3PCF model calculations, feed 
through to the final parameter constraints. Furthermore, by replacing 
the BOSS galaxy data used in HITOMI , our analysis can be easily 
applied to future galaxy surv e ys such as DESI (DESI Collaboration 
et al. 2016 ), Euclid (Laureijs et al. 2011 ), and PFS (Takada et al. 
2014 ). 
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APPENDI X  A :  H I TO M I  
In order to impro v e the reproducibility of the results of this paper, 
we publish the complete set of program codes we used under the 
name HITOMI . The languages used in it are C + + and PYTHON . 
Users can download the source files from the following link: ht 
tps://github.com/naonori/hit omi.git . In particular, to reproduce the 
results of this paper, refer to the DEMO section of the linked page. 
There, it explains how to measure the 2 and 3PCFs from the BOSS 
DR12 data, compute the theoretical model including the window 
function correction, compute the covariance matrix from the Patchy 
mocks, combine them to perform the Fisher and MCMC analyses, 
and finally summarize the obtained results in figures and tables. 
To illustrate these things, we recorded a video of us running the 
program and uploaded it to YouTube . The text editor used for this 
is vim . 

HITOMI requires several external programs such as MON- 
TEPYTHON (Brinckmann & Lesgourgues 2019 ), CLASS (Blas et al. 
2011 ), CUBA (Hahn 2005 ), GSL , 14 FFTW (Frigo & Johnson 2005 ), 
and FFTLOG (Hamilton 2000 ). We have written a script with the 
code to install the external programs needed to run HITOMI on 
the Cray XC50 at the Center for Computational Astrophysics of 
the National Astronomical Observatory of Japan. A video record- 
ing of the use of this script is available at the following link: 
ht tps://www.yout ube.com/watch?v = vlP7XIXZsUM . Of course, 
users of other PC clusters will have to install HITOMI according 
to their environment. Nevertheless, our installation instructions will 
be helpful to users as a demonstration. 

HITOMI not only reproduces the results of this paper but also 
of fers v arious options. F or e xample, it can measure both the power 
spectrum and the bispectrum. HITOMI also provides the codes to 
simplify the 3PCF and bispectrum measurements for simulations 
with periodic boundary conditions with a global LOS direction. It 
is also possible to measure the 2 and 3PCFs (power spectrum and 
bispectrum) after the reconstruction of the galaxy distribution and 
compute the corresponding reconstructed models (Eisenstein et al. 
2007b ; Shirasaki et al. 2021 ). Although not yet implemented, in 
the future, we plan to release a code to compute the bispectrum 
covariance matrix of galaxies based on perturbation theory, as was 
done by Sugiyama et al. ( 2020 ). We also plan to release a code that 
performs an anisotropic BAO analysis using the anisotropic 3PCF, 
as in Sugiyama et al. ( 2021 ). 

It is possible to modify parts of the HITOMI code, e.g., the 
theoretical calculation of the 3PCF, to investigate how the results 
propagate to the final parameter constraint results. It is also possible 
to replace the BOSS DR12 galaxy data with data from other galaxies 
or galaxy clusters, e.g., PFS (Takada et al. 2014 ), DESI (DESI 
Collaboration 2016 ), Euclid (Laureijs et al. 2011 ), SPHEREx (Dor ́e 
et al. 2014 ), CMB-S4 (Carlstrom et al. 2019 ), and eROSITA (Pre- 
dehl et al. 2021 ), to perform data analysis of the 3PCF or 
bispectrum. 

14 http:// www.gnu.org/ software/gsl/ 
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