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ABSTRACT

We present, for the first time, an observational test of the consistency relation for the large-scale structure (LSS) of the
Universe through a joint analysis of the anisotropic two- and three-point correlation functions (2PCF and 3PCF) of galaxies.
We parameterize the breakdown of the LSS consistency relation in the squeezed limit by E,, which represents the ratio of the
coefficients of the shift terms in the second-order density and velocity fluctuations. Es # 1 is a sufficient condition under which
the LSS consistency relation is violated. A novel aspect of this work is that we constrain Eg by obtaining information about
the non-linear velocity field from the quadrupole component of the 3PCF without taking the squeezed limit. Using the galaxy
catalogues in the Baryon Oscillation Spectroscopic Survey (BOSS) Data Release 12, we obtain E; = —O.92f§j£, indicating that
there is no violation of the LSS consistency relation in our analysis within the statistical errors. Our parameterization is general
enough that our constraint can be applied to a wide range of theories, such as multicomponent fluids, modified gravity theories,
and their associated galaxy bias effects. Our analysis opens a new observational window to test the fundamental physics using
the anisotropic higher-order correlation functions of galaxy clustering.

Key words: large-scale structure of Universe —dark matter —cosmology: observations —cosmology: theory.

1 INTRODUCTION

The consistency relation of multipoint statistics in cosmology is a
relation that non-perturbatively relates an n-point statistic of cosmic
fluctuations to an (n — 1)-point statistic. This relation holds in
the limit that one of the n > 3 wavenumbers is much smaller
than the others, the so-called squeezed limit. Originally proposed
for single-field inflationary models (Maldacena 2003; Creminelli &
Zaldarriaga 2004), a similar consistency relation was later invented
in the large-scale structure (LSS) of the Universe (Creminelli et al.
2013; Kehagias & Riotto 2013; Peloso & Pietroni 2013).

The LSS consistency relation is due to the fact that the equations for
cosmic fluctuations are invariant under the Galilean transformation
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(Scoccimarro & Frieman 1996; Creminelli et al. 2013). In particular,
the Galilean transformation eliminates the large-scale flow of matter
at equal times, so that all higher-order non-linear contributions
beyond the leading order in perturbation theory are cancelled out
when computing n-point statistics. This behaviour is called the
equal-time consistency relation or infrared (IR) cancellation (Jain &
Bertschinger 1996; Scoccimarro & Frieman 1996; Blas, Garny &
Konstandin 2013; Kehagias & Riotto 2013; Peloso & Pietroni 2013;
Sugiyama & Futamase 2013; Sugiyama & Spergel 2014; Blas et al.
2016; Lewandowski & Senatore 2017). On the other hand, various
conditions have been proposed to violate this consistency relation,
such as multicomponent fluids (Tseliakhovich & Hirata 2010; Yoo,
Dalal & Seljak 2011; Bernardeau, Van de Rijt & Vernizzi 2012, 2013;
Creminelli et al. 2014b; Peloso & Pietroni 2014; Lewandowski,
Perko & Senatore 2015; Slepian & FEisenstein 2017), primordial
non-Gaussianity (Berezhiani & Khoury 2014; Valageas, Taruya &

€20z 1snbny Gz uo Jesn ueder AlojeAlasqQ [BoIWOUO.SY [euoneN Aq G06602./1S91/2/yZS/e1onie/Seiuw/woo dno-oiwspese//:sdny woJj papeojumoq


http://orcid.org/0000-0002-6186-5476
http://orcid.org/0000-0003-0467-5438
http://orcid.org/0000-0002-6588-3508
mailto:nao.s.sugiyama@gmail.com

1652  N. S. Sugiyama et al.

Nishimichi 2017; Esposito, Hui & Scoccimarro 2019; Goldstein et al.
2022), and violation of the equivalence principle (Creminelli et al.
2014a; Inomata, Lee & Hu 2023). It is therefore fundamental to test
whether our Universe has a simple structure that satisfies the LSS
consistency relation.

Crisostomi, Lewandowski & Vernizzi (2020) and Lewandowski
(2020) pointed out that the Degenerate Higher-Order Scalar-Tensor
(DHOST) theories (for reviews, see Kobayashi 2019; Langlois
2019), a type of modified gravity, also violate the LSS consistency
relation. The reason is that when the second-order dark matter density
fluctuations are decomposed into two independent components, the
shift term and the tidal force term,! DHOST theories change both
terms from the values of general relativity (GR; Hirano et al. 2018).
On the other hand, Horndeski theories (Horndeski 1974; Deffayet
et al. 2011; Kobayashi, Yamaguchi & Yokoyama 2011), a subclass
of DHOST theories, change only the tidal term from GR, leaving
the shift term unchanged (Bernardeau & Brax 2011; Bartolo et al.
2013; Takushima, Terukina & Yamamoto 2014; Bellini, Jimenez &
Verde 2015; Burrage, Dombrowski & Saadeh 2019). Focusing on
the LSS consistency relation is equivalent to extracting only the
shift term, which is dominant in the squeezed limit, from the dark
matter density fluctuations. Therefore, DHOST theories with the
modified shift term violate the LSS consistency relation. In other
words, the structure of DHOST theories resembles the structure
of multicomponent fluids, and the Galilean transformation cannot
eliminate the relative velocities of a scalar field and dark matter on
large scales, thus violating the LSS consistency relation.

However, observables that trace the LSS consistency relation are
not straightforwardly constructed. For example, Crisostomi et al.
(2020) pointed out in Section V that taking the squeezed limit of
the galaxy bispectrum does not directly test the violation of the
LSS consistency relation in DHOST theories. The reason is that the
bispectrum, which depends on the three wavenumbers k1, &, and k3,
is symmetric with respect to these variables; taking the squeezed limit
cancels out any change in the shift term that violates the consistency
relation. Therefore, the authors proposed to measure the cross-
bispectrum with other cosmic fluctuations, such as gravitational
lensing effects, or to measure the trispectrum of galaxies, so that
the effects of DHOST theories are not cancelled when the squeezed
limit is taken.

Recent rapid developments in the analysis of galaxy three-point
statistics, i.e. bispectra and three-point correlation functions (3PCFs),
have allowed us to test the consistency relation. In principle, the three-
point statistics (not restricted to the squeezed limit) are sensitive to
the coefficient of the shift term of the galaxy density fluctuation.
However, a critical problem remains to be solved: Most previous
studies deal only with the isotropic, i.e. monopole, component of
the three-point statistics (Gil-Marin et al. 2017; Slepian et al. 2017;
Pearson & Samushia 2018; Sugiyama et al. 2019; d’Amico et al.
2020; Cabass et al. 2022a, b; D’ Amico et al. 2022a; Philcox & Ivanov
2022), and these analyses cannot efficiently constrain the coefficient
of the non-linear density field shift term. The reason is that in the
monopole-only analysis, the coefficient of the density fluctuation

!The scale dependence of the second-order density fluctuation of dark matter
is generally decomposed into the growth, shift, and tidal terms (Schmittfull,
Baldauf & Seljak 2015). However, due to the condition that the ensemble
average (infinite space integral) of the dark matter density fluctuation is
zero, the coefficients of the three terms are related, and there are only two
independent components. This relation is known to break down when galaxy
bias effects are taken into account, in which case these three independent
components must be considered (e.g. Desjacques, Jeong & Schmidt 2018).
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shift term degenerates with the parameter og, which represents
the amplitude of the dark matter fluctuations (Sugiyama et al.
2023).

Yamauchi & Sugiyama (2022) pointed out that the use of non-
linear velocity fields in addition to non-linear density fields is helpful
in studying non-linear gravitational effects. The non-linear velocity
field can be directly constrained by analysing the anisotropic, e.g.
quadrupole, component of the galaxy three-point statistics. Although
the analysis of the anisotropic component of the galaxy three-point
statistic is much less mature than the monopole-only analysis, some
of us have successfully initiated such efforts. For example, Sugiyama
et al. (2019) proposed a new basis for measuring the anisotropic
bispectra and reported the significant detection of the anisotropic
component from the galaxy catalogue from the Baryon Oscillation
Spectroscopic Survey Data Release 12 (BOSS DR12; Eisenstein
etal.2011; Bolton et al. 2012; Dawson et al. 2013; Alam et al. 2015).
Sugiyamaetal. (2021) analysed the anisotropic component of Baryon
Acoustic Oscillations (BAOs; Peebles & Yu 1970; Sunyaev & Zel-
dovich 1970) using the anisotropic 2PCF and 3PCF on MultiDark-
Patchy mock simulations (Patchy mock; Kitaura et al. 2016; Klypin
et al. 2016) that reproduce the BOSS DR12 galaxy data. D’ Amico
et al. (2022b) performed the first joint analysis of the monopole and
quadrupole components of the power and bispectra measured from
BOSS DR12 and constrained the standard cosmological parameters
in the context of A cold dark matter (ACDM). Ivanov et al. (2023)
presented the results of an anisotropic bispectrum analysis including
quadrupole and hexadecapole components measured from the BOSS
DR12 data. In particular, Sugiyama et al. (2023) applied the analysis
method of Sugiyama et al. (2021) to the BOSS galaxy data, based on
the idea proposed by Yamauchi & Sugiyama (2022) to constrain the
effects of gravitational non-linearities arising from DHOST theories
in a o'g-independent manner.

The aim of this paper is to present, for the first time, an obser-
vational test of the LSS consistency relation in galaxy clustering
in BOSS. We mostly follow the analysis method used in Sugiyama
et al. (2023; hereafter referred to as S23). In order to ensure that
the obtained results are applicable to as many different situations
as possible, we propose a general parameterization that includes
modified gravity theories, multicomponent fluids, and galaxy bias
effects in the description of non-linear density and velocity fields,
thus constraining the LSS consistency relation in a broad framework.
Conversely, when a violation of the LSS consistency relation is
detected, a more specific model is required to provide a physical
interpretation of the violation. We also present some specific ex-
amples of models that are and are not part of the parameterization
framework used in this paper.

Our analysis uses a flat ACDM model as the fiducial cosmo-
logical model with the following parameters: matter density Q2,0 =
0.31, Hubble constant 2 = Hy/(100km s~ Mpc~!) = 0.676, baryon
density Quoh®> = 0.022, and spectral tilt n, = 0.97, which are
the same as those used in the final cosmological analysis in the
BOSS project (Alam et al. 2017) and close to the best-fitting
values given by Planck2018 (Aghanim et al. 2020). In addition,
we adopt a value for the total neutrino mass of Y m, = 0.06eV,
which is close to the minimum allowed by neutrino oscillation
experiments. We use the following publicly available libraries to
perform theoretical calculations, measure 2PCF and 3PCF from
galaxy data, and estimate parameter likelihoods using Markov chain
Monte Carlo (MCMC) methods: MONTE PYTHON (Brinckmann &
Lesgourgues 2019), CLASS (Blas, Lesgourgues & Tram 2011),
CUBA (Hahn 2005), FFTW (Frigo & Johnson 2005), and FFTLOG
(Hamilton 2000).
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The structure of this paper is as follows. Section 2 describes
the theoretical model used in this paper and the parameters to be
constrained; Section 3 briefly summarizes the data analysis methods;
Section 4 presents the results of the parameter constraints; Section 5
concludes the paper; Appendix A summarizes the results of other
parameters not presented in the main text.

2 THEORETICAL BACKGROUND

2.1 Parameterization of non-linear fluctuations

In this paper, we consider non-linear effects up to the second order
in perturbation theory since, in Section 2.4, we compute the 2PCF
and 3PCF models based on the tree-level, taking into account non-
linear damping of the BAO. In Fourier space, the redshift-space
density fluctuations of galaxies are expressed as (e.g, Bernardeau
et al. 2002)

§1(k) = Z1(k)dm1(K),

d3 d3
b = [ G 7f)'3 o giap(k—pl -p>)
X Z(p1. P31 (P1)5m 1 (7). )

where the numbers in the subscripts mean that the solution is of the
first and second order in perturbation theory. The §,, appearing on
the right-hand side represents the dark matter density fluctuation.

The first and second-order kernel functions Z; and Z, are given by
(Kaiser 1987; Scoccimarro, Couchman & Frieman 1999)

Zik) = by + f(k- ),
Zy(ki, k) = Pk, ko) + f(k - 72)* Galky, ko)

flk-a) | (k- 7) (ko - 1)

+ 2 ki

Z (k) +

Zy(ky)| (@3]

where b is the linear bias parameter, f is the linear growth rate
function, 7 is the unit vector that indicates the direction of the line
of sight, and k = ky + k,.

The kernel functions F, and G,, which represent the second-order
non-linearity of the galaxy density fluctuation and the divergence of
the galaxy velocity field, are decomposed into monopole, dipole, and
quadrupole via the angle between k; and k, and are called the growth,
shift, and tidal terms, respectively (Schmittfull et al. 2015). We then
introduce the following parameterization for each coefficient of these
terms:

Fy(ki, ky) = by [Fy + F Stky, ko) + F, Tk, ko)),
fGalki k) = f [Gy+ G Sthy ko) + G Ty, k)] (3)

[P R

where the subscripts ‘g’, ‘s’, and ‘t’ stand for ‘growth’, ‘shift’, and
‘tidal’, respectively. The scale-dependent functions characterizing
the shift and tidal terms are given by

1 .~ 4 k k
Skt ko) = - (ks - o) (k—‘ + k—z) ,
2 1

A A 1
Tk, ko) = (ki - ko) — 3 “

Since the linear and non-linear fluctuations are proportional to
o and o, respectively, the parameters we focus on will appear in
a degenerate form with o, such as (bi03), (fog), (Fg03), (Fs0),
(Fio3g), (Ggog), (Gs0g), and (Giog). Therefore, we introduce the
following parameter to remove the dependence of o'g and express the
violation of the LSS consistency relation (Yamauchi & Sugiyama
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2022; Sugiyama et al. 2023):
E = (Gsds)_ )
(Fso3)

This E parameter satisfies £, = 1 when Fy = G;. For example, in
GR, E; = 1 since Fy = G, = 1. On the other hand, E; # 1 is satisfied
if either F or G or both are different from 1, while keeping F # G;.
This means that the condition E # 1 indicates a violation of the LSS
consistency relation. This is because taking the squeezed limit of
the bispectrum corresponds to the operation of extracting only these
shift terms. Note that Eg # 1 is a sufficient condition for proving the
violation of the LSS consistency relation, not a necessary condition,
since a particular theory may satisfy Fy = G, # 1.

2.2 Consistency relation for the LSS

In this subsection, we show that the E parameter is useful for testing
the violation of the LSS consistency relation. To do this, we focus on
the bispectrum produced by the galaxy density fluctuations at three
different redshifts, i.e.

(8(k1; 21)8(k23 22)8(k3; 23))
= (2n)*8p (k1 + ko + k3) By, k23 21, 22, 23), (©6)

and take its squeezed limit k; — 0. Note that this subsection is the
only one in this paper that explicitly denotes the redshift dependence
in the functions.

Satisfying the LSS consistency relation means that when taking
the squeezed limit of the n-point statistics, the effect is described
only by the contribution of the dark matter displacement vector
evaluated at the origin. In real space, the linear displacement vector
is Wy, (k) = (ik/k*)81m,1(k), and in redshift space, it is computed by
a linear transformation as

s 1(k;2) = R(2) - WU, 1 (k3 2), N
where the transformation matrix R is given by (Matsubara 2008)
[R(2));; = Lij + f(2) i, (®)

where I is the 3D identity matrix, and i,j = 1, 2, 3.

For simplicity, we consider only the tree-level bispectrum. From
equation (1), the non-linear contribution from a wavenumber k; or
k, sufficiently smaller than the wavenumber k of interest is given by
the limit k > k; — 0 or k > k, — 0 and can be written as follows:

d3

8a(k; z) — 20m1(k; z)/lZz(P,k;Z)IﬁoSm,l(P;Z) )
(2m)

If Fy = G; = 1, then

82(k; 2) — (—ik - Wy 1(2))81(k; 2), (10)

where

— d3p

Y1(2) = / W‘Ps,l(lh 2). (11)

The above equation represents the inverse Fourier transform, and W |
is the displacement vector at the origin x = 0 and is independent of
positions. In other words, W, ; can be interpreted as a large-scale
flow of dark matter through the entire observation region.

Taking the squeezed limit k; — O in the bispectrum of equation
(6), 8(ky; z1) is only correlated with Wy 1(z2) or W, 1(z3). Therefore,

(815 21)8(k2; 22)8(k3; 23))
=, ((=iky - (Ws1(22) — Ws1(23))) 81(k1321))

ki—

X (81(k2; z2)81(K35 23)), (12)
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leading to the LSS consistency relation

Bk, k221, 22, 23)
o Zy (k13 20)Z1 (ko3 22) Z1 (ko 23) Prin (k) Pin (k2)

ki -R -k ki -R -k
x o g R R (3
1 1
where
(31K 2931 K5 2)) = 28k + K) Pk 2) (14)

gives the linear matter power spectrum, and Py, and Z, are defined as
Piin(k) = Pin(k; 2)/02(z) and Z,(k; ) = Z,(k; 7)03(2), respectively.

On the other hand, if F # 1 and G, # 1 are allowed, the tree-level
bispectrum in the squeezed limit can be calculated as

Bk, k2321, 22, 23)
o Zy (k13 20)Z1 (ko3 22) Zy (ko 23) Prin (k1) Pin (k2)

ki k;
x { < 2 ) [(Fso3)(z3) — (F508)(22)]
i

ki i)k, 7
+ <(‘"2#> [(fos)(z3) — (fos)(22)] }
1
n - ki -k - -
+ (k2~ﬁ)zzl<k1;zl)< L 2) Pin(ky) Prn(ky)
1
X {(fUB)(Z3)(F%US)(ZS) (Es(z3) — 1) Z(ky; 22)

(fos)(22)(Fy08)(22) (Es(22) — 1) Z, (ks Z3)}~ (15)

Substituting Fy = E; = 1 into the above equation gives equation
(13). In other words, the LSS consistency relation is broken when
Fs # 1 or Eg # 1. Also, as expected, Fs only appears in the form
(Fso), indicating that the E parameter, which does not depend on
o, is the most appropriate for investigating the breakdown of the
LSS consistency relation. However, since g > 0 by definition, (Fsog
< 0) also implies the breakdown of the LSS consistency relation.

In actual observations, measuring correlators between galaxy
density fluctuations at different redshifts is challenging. This is
because the galaxy density fields at different redshifts are so far
apart in the radial direction that they cannot be correlated. Therefore,
it is common to measure the correlators of the galaxy density fields
at equal time, so that z; = z, = z3. In this case, the right-hand
side of equation (15) is always zero, because the remaining k
and k3 dependencies are exchangeable when the squeezed limit
k; — 0 is taken between ki, k», and k3, on which the bispectrum
is symmetrically dependent. This cancellation occurs even if Fg
and G, are scale-dependent functions with exchange symmetry (see
Section 2.3.9 for an example). Therefore, we propose to constrain
(Fsog) and E; directly from the equal-time bispectrum (or 3PCF)
without taking the squeezed limit. In this case, we simultaneously
vary (Fy03), (Fi03),(Gy03), and (Giog) as free parameters so that the
results are valid in as general a situation as possible. More details on
the physical meaning of these parameters are given in the following
subsection.

We will focus only on the results for E in the main text, but the
constraint results for the other non-linear parameters, i.e. (Fy03),
(Fso3), (Fiog), (Gyo3), (Gsog), and (G,og), are summarized in
Appendix A.
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2.3 Specific examples

In this subsection, we discuss specific examples of models that are
and are not covered by the parameterization introduced in equation

Q).

2.3.1 ACDM

In the ACDM model assuming £ = Qm, the dark matter density and
velocity fluctuations give (e.g. Bernardeau et al. 2002)

& 21’ s ’ ! 7,
G, = —1 Gi=1, G,=- (16)
g 217 S ) t .

More generally, f ~ Q8! is a better approximation in a ACDM
model. Then, the coefficients of the growth and tidal terms are also
time-dependent (e.g. Fasiello, Fujita & Vlah 2022). In particular,
the following approximate formulae are given in the case where
f= an/” (Bouchet et al. 1992; Bouchet et al. 1995; Yamauchi,
Yokoyama & Tashiro 2017; Yamauchi & Sugiyama 2022):

2 2

Fy = FS—EF[, F,=1, F = 5sz?n/m,
2 4 15/1144
G, = Gs—th, Gy=1, G = 5Qm . (17

Note that the growth terms are not independent but are given by
the shift and tidal terms. The reason is that the second-order kernel
functions satisty F,(k, —k) = 0 and G,(k, —k) = 0. This condition
corresponds to the second-order density fluctuation smoothly ap-
proaching zero on large scales, i.e. §;(k — 0) — 0, which represents
the natural behaviour as a non-linear effect.

2.3.2 Horndeski theories

Horndeski gravity theories are the most general scalar-tensor theory
with second-order equations of motion for metric tensor and scalar
fields (Horndeski 1974; Deffayet et al. 2011; Kobayashi et al. 2011).
In the Horndeski family of theories, the dark matter second-order
density and velocity fields have time-dependent tidal terms, which
are found to have a different time evolution than in the ACDM case
(e.g. Takushima et al. 2014),

2 2

FgZFS—gF[, Fs:L F;=5Ms
2 4
GgIGS—gG[, Gszl, G[:?)x@, (18)

where As and Xy are time-dependent functions, and they are related
to each other as

19)

o= |14 1 dlnks
o 2f dna
with a being the scale factor.
Compared to equation (17), Yamauchi et al. (2017) proposed to test
the non-linearity of Horndeski theories by using the parameterization

ro = Q5. (20)

While it is widely used in linear theory to test modified gravity
theories by constraining y = logg, (f), this parameterization is an
extension to non-linear effects. The authors also showed that &
contains new information compared to y in the test of Horndeski
theories by giving a specific model that satisfies y = 6/11 and & #
3/573.
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2.3.3 DHOST theories

Going beyond Horndeski theories, DHOST theories have been
recently discovered (for reviews, Kobayashi 2019; Langlois 2019).
Even though DHOST theories have higher-order equations of motion,
they reduce in the end to a second-order system thanks to the
degeneracy between the kinetic terms of the scalar and metric fields,
leading to healthy scalar-tensor theories. In the dark matter second-
order density and velocity fields in these theories, in addition to the
tidal terms, the shift terms also become time-dependent and deviate
from the ACDM prediction of 1 (e.g. Hirano et al. 2018),

2 2
ngFs_gFlv Fs = «s, Flz?)\&
2 4
Gg = Gs_thy Gs=K9’ Gt= 5)\03 (21)

where ks and k4 are time-dependent functions, and they are related
via

1 dlnfqg} B )

=2k |1+ —
o= { T2 dina

Yamauchi & Sugiyama (2022) proposed the following parameter-
ization for observationally testing DHOST theories,
f & Ko Ag
N , 729&7 729&, 23
p me m B (23)
and pointed out that any non-vanishing value of & can be treated as
a clear signal of the existence of a gravity theory beyond Horndeski
theories. S23 constrained these index parameters using the BOSS
DR12 galaxies and the results are

—0.907 < &/ < 2.447,
—1.655 < &,
—0.504 < &, (24)

at the 95 per cent confidence level. Note that the upper bounds on
&, and & are not given because (Ag/ks) and (k4/ks) are consistent
with zero within the 95 per cent error, and &, and & can each take
infinitely large values as (Ag/ks) and (/K s) approach zero.

The middle equation in equation (23) corresponds to the E
parameter introduced in equation (5), i.e. E; = kg¢/k5. However,
while this paper follows the analysis approach of S23, it is no longer
restricted to DHOST theories and assumes a more general situation
that includes effects other than those of modified gravity theories.
Even if the results of this paper are used to constrain DHOST theories,
there are two obvious differences with S23. First, while S23 assumes
the standard bias theory given in Section 2.3.8, this paper assumes
the existence of more general bias parameters in Section 2.3.10 and
varies all non-linear parameters F,, Fs, Fi, G4, Gs, and G; as free
parameters. Secondly, the parameterization given in equation (23)
implicitly assumes Eg > 0, whereas this paper allows negative Ej.

2.3.4 5D brane-world model

The normal branch of the 5D Dvali—-Gabadadze—Porrati brane-world
model (nDGP; Dvali, Gabadadze & Porrati 2000), which is a kind
of modified gravity theories with extra dimensions, has been well
studied. However, since the effects of the extra dimension can be
described effectively as a scalar field, this brane-world model can be
subsumed into scalar-tensor theories.

The nDGP model is characterized by a non-linear function that
modifies the Poisson equation (e.g. Koyama, Taruya & Hiramatsu
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2009; Bose & Koyama 2016),
S 2
patkr k) o (1= (- k)) = 5 = T .k, (25)

varying the tidal term from GR. Once the tidal term is determined,
the growth term is also determined by y,(k, —k) = 0. Thus, the
nDGP model can be described by a parameterization similar to the
Horndeski theories in Section 2.3.2.

2.3.5 f(R) gravity

In this subsection, we discuss the Hu—Sawicki model (Hu & Saw-
icki 2007) of fiR) gravity (see Capozziello & Francaviglia 2008;
Sotiriou & Faraoni 2010, for reviews), which is widely used in
cosmology. The Hu—-Sawicki model predicts non-linear functions
that modify the Poisson equation as follows (e.g, Koyama et al.
2009; Bose & Koyama 2016):

ko \? !
Ky k aH ) TG OGOk
va(ki, ko) (aH) TT(ky2)TT (k1 )T (k2)

2 H2 (o — 4a® Qo — 1)’
n(k)=(5)+ ¢ (oo — 4" (2o — D)
a 2| frola® (3S2mo — 4)

where ki, =k, + k,, Hy and €, are the Hubble parameter and
the current matter density fraction, respectively, and |fgo| is a free
parameter of the theory. Note that in this model, unlike the other
models presented in this paper, even linear density fluctuations cannot
separate the time dependence from the wavenumber dependence.

The relationship between f(R) gravity and scalar-tensor gravity,
and their possible equivalence, has been extensively studied (e.g.
Sotiriou 2006). In particular, the gravitational non-linear effects
that are the focus of this paper have been discussed in relation
to Horndeski theories in Appendix B of Bose & Koyama (2016).
However, the gravitational non-linearities obtained from the Hu-
Sawicki model differ from those of the Horndeski type discussed
in Section 2.3.2. We suspect that this difference is due to the fact
that the non-linear effects given in Section 2.3.2 focus only on the
terms for which the spatial derivative is most active in the quasi-
static approximation, and neglect the terms corresponding to the
mass terms of the scalar field, while the f{R) gravity model retains
such terms. Since a detailed proof of this is beyond the scope of this
paper, we limit ourselves to pointing out that the non-linear effect of
the Hu—Sawicki model given by equation (26) does not fit into the
parameterization framework used in this paper.

: (26)

2.3.6 Nearly horizon scales

This paper focuses on the LSS consistency relation in the sub-horizon
limit. Thus, even in the GR case, at large scales close to the horizon
scale, there are additional correction terms for the non-linear effects
given in Section 2.3.1, which are derived in the Newtonian limit. For
example, following Tram et al. (2016), a correction term proportional
to (aH/k)? arises for F, ¢, Fs and Fi, respectively, and a new scale
dependence emerges as follows:

aH 2 kl k2 2
’C("""”"‘<E) (z‘a) ' @7

Therefore, the parameterization used in this paper is only valid at
the sub-horizon scale. See also Creminelli et al. (2013) for a fully
relativistic consistency relation. Inomata et al. (2023) also provide a
detailed study of squeezed n-point functions in synchronous gauge.
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2.3.7 Massive neutrinos

In the remainder of this section, we denote the non-linear parameters
for dark matter in a gravity theory described in Sections 2.3.1-2.3.4
as Fg(fz?[ and Gg_"s),l and the additional correction terms for them as

(m) (m) .
AF, i and AG,:ie.
Fg,s.t = Fg(,r:)t + AF‘g,s,ta

Gosi = GV + AGgs.. (28)

Massive neutrinos can modify the second-order kernel functions,
in which case the following correction terms are added to the non-
linear parameters (Kamalinejad & Slepian 2020):

4 6

AF, = — f, AF; =0, AF = —— 1),

¢ = 2457 0 t= )

83 3 96

AGy=———f,, AG=--f,, AG=—-——_1f, 29

2= 5] 5/ =) @9
where the neutrino density fraction f,, is given by
fi= (30)

v — Qm

with ©, and Q,, being the neutrino and matter energy densities in
units of the critical density, respectively. It is important to note that
the massive neutrinos do not change the shift term of the density
fluctuation but correct the shift term of the velocity fluctuation.

Finally, we estimate the extent to which E deviates from 1 in the
presence of massive neutrinos. The neutrino density fraction is given
by (e.g. Takada, Komatsu & Futamase 2006)

B Sm, 0.14
fo =005 <0.658ev> <th2) ‘ SR

According to current observations, the upper limit for the total
neutrino mass is > m, < 0.1eV at 95 percent confidence level
(CL) (e.g. Di Valentino, Gariazzo & Mena 2021). Consequently,
substituting > m, = 0.1 eV into equation (31), the expected value

of E; — 1 = —(3/5)f, is then

E.— 1= 00046 (2= ) (014 (32)
: - 0.1eV /) \ Quh? /)’

Thus, the impact of the neutrino masses in E; would be minimal,
since the lo error for Eg obtained from the current BOSS data is
about 3 in Section 4.2. Put differently, it would be challenging to
strongly constrain neutrino masses in the future using only E.

2.3.8 Standard bias effects

In standard bias theory, the non-linear bias parameters connecting
the galaxy density field and the dark matter density field appear in
the growth and tidal terms of the density fluctuations. Thus, they are
added to F, and F; as follows (for a review, see Desjacques et al.
2018):
1 b, by

AF, = by AF = —, (33)
where b, and b, denote the local non-linear bias parameter and
the tidal bias parameter, respectively. In this case, the condition
F,(k, —k) = 0, which is satisfied in the absence of the bias effect,
does not hold, and F, should be treated as an independent parameter,
while G, remains dependent.
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2.3.9 Relative velocities

The relative velocity effects of baryons and cold dark matter, together
with a corresponding bias parameter, enter the galaxy density
fluctuation with a quadratic form (Dalal, Pen & Seljak 2010). The
resulting shift term is modified in the second-order density fluctuation
(Yoo et al. 2011),

by Try(k)Trv(k2)

AF, = ——r -7l
by Tin (k1) Tin(k2)

(34)
where b, denotes the relative velocity bias parameter, T}, is the
relative velocity transfer function, and Ty, is the dark matter transfer
function. This relative velocity effect on galaxy clustering has been
measured using galaxy power spectra and 3PCFs, but its signature
has not yet been detected (Yoo & Seljak 2013; Beutler et al. 2016;
Slepian et al. 2018).

The relative velocity effect is obtained by the ratio of the rel-
ative velocity to the dark matter transfer functions T, (k)/Tny(k),
which is scale-dependent and therefore does not fit into the pa-
rameterization framework of this paper. However, if a signal with
E; # 1 is detected, a correct physical interpretation would re-
quire a reanalysis to account for this possible relative velocity
effect.

2.3.10 Extended bias effects

In this paper, we discuss the possibility of extended bias theories. For
example, in specific gravity theories, such as DHOST theories, the
coefficient of the density fluctuation shift term F; deviates from 1,
violating the LSS consistency relation. On the other hand, Fujita &
Vlah (2020) showed that the standard bias theory is reproduced in
theories that satisty the LSS consistency relation. In other words,
for DHOST theories with Fy # 1, there may be an additional bias
effect in Fi. Since the shift term is described by the product of the
displacement vector and the density fluctuation, the bias of the shift
term may be related to the bias effect of the displacement vector.
Furthermore, since the time derivative of the displacement vector
is a velocity field, the bias effect of the displacement vector may
induce the bias effect of linear and non-linear velocity fields (see
also section 9.12 in S23).

Based on the above considerations, we assume that bias effects
occur for all non-linear parameters,

1 b2 bs bl
AF,= -2 AF,=-, AF=-,
2 b b b
1
AGg = Ebvb AGs = by, AG = by, (35)

where by is the shift bias in the second-order density fluctuation,
and b,,, b, and b,, are the non-linear local bias, shift bias, and
tidal bias in the velocity fluctuation. In such an extended bias theory,
the condition G;(k, —k) = 0 no longer holds, and G, should also
be treated as an independent parameter. Since the assumption of a
linear velocity bias does not change the form of equation (2), but only
multiplies the velocity bias parameter b, by f, we implicitly assume a
linear velocity bias and use fas itis. Of course, numerical experiments
such as N-body simulations of dark matter, including effects such
as DHOST theories, are needed to verify this consideration. Such
studies are left as future work.
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2.4 Bispectrum and 3PCF models

The leading order galaxy power spectrum and bispectrum in pertur-
bation theory are given by

P(k) = [Z1()] Piin(k),
Bk, ky) = 2Z5(ky, k) Z1 (k1) Z1 (k) Piin (k1) Prin(k2)
+ (ky < k3) + (ky < k3), (36)

where k1 + k2 =+ k3 =0.

The theoretical models in equation (36) work well in principle on
large scales around and above 100 2~! Mpc, but they cannot describe
the non-linear decay of the signal of the Baryon Acoustic Oscillations
(BAOs; Peebles & Yu 1970; Sunyaev & Zeldovich 1970) that occurs
around 100 2~! Mpc. In order to include the effects of the non-linear
decay of the BAO, while preserving the form of the leading-order
solutions of the power spectrum and the bispectrum, we use the
following theoretical models, which are obtained by re-summing
the IR modes appearing in the expansion via perturbation theory
(Eisenstein, Seo & White 2007; Sugiyama et al. 2021),

P(k) = [Zi(K)]* [D*(k) Py (k) + Poy(K)] ,
B(ky, ky) = 2 Zs(ky, ko) Z1 (k1) Z, (k)

x { D)D) D(ks) Pyt Putho)

+ D?(ky) Py (k1) P (k2) + D? (k) Pa (k1) Py (k)

+ Panlk) Postho) } + (k1 o k) + (ks o k), (3T)
where Py, is decomposed into two parts: the ‘no-wiggle (nw)’ part
P.w, which is a smooth version of Py, with the baryon oscillations
removed (Eisenstein & Hu 1998), and the ‘wiggle (w)’ part defined as
Py, = Py, — Ppy. The non-linear BAO degradation is represented by
the 2D Gaussian damping factor derived from a differential motion

of Lagrangian displacements (Eisenstein et al. 2007; Crocce &
Scoccimarro 2008; Matsubara 2008):

k(1 — p*o3 + k2u20_|2>

(33)

D(k) = exp <— 2

where 1t = k - 7. We compute the radial and transverse components
of the smoothing parameters, o, and o, using the Zel’dovich
approximation (Zel’Dovich 1970; Crocce & Scoccimarro 2008;
Matsubara 2008):

1 dp
O'f_ = g/ﬁplin(p)v
of =1+ f)Yol. (39)

We decompose the power spectrum into multipole components
using Legendre polynomial functions £, (e.g. Hamilton 1997),

P(k)y="> " Pu(k)Lo(k - 7). (40)
4

The multipole components of the power spectrum are then related to
those of the 2PCF by a 1D Hankel transformation,

2
E(r) =it / dzkkz Jerk) P(k), (41)
us

where j, is the £-th order spherical Bessel function. The multipole
index ¢ refers to the expansion with respect to the line-of-sight
dependence due to the Redshift Space Distortion effect (RSD; Kaiser
1987) and the Alcock—Paczyriski effect (AP; Alcock & Paczynski
1979). The components with £ = 0, 2, and 4 are called monopole,
quadrupole, and hexadecapole, respectively; the components with £
> (0 are caused only by the RSD effect and the AP effect.
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We adopt the decomposition formalism of the bispectrum into
multipole components using tri-polar spherical harmonic (TripoSH)
base functions (Sugiyama et al. 2019),

Bk k)= >

{14+ +L=even

By o,k k2) 34,524(721, ka, 1), 42)

where the TripoSH base functions are given by

4 Z <€1 12 f)
h[](ﬂ nmyp mym

mymom

X Y(Z]ml (121 )Ylgmz (IEZ)YZm (fl),

Silfzi(élv ko, ) =

with

heyere = (43)

Q26U+ D2L+1D)2C+1) (£, £, ¢
4 000/

The multipole components of the bispectrum are then related to those
of the 3PCF by a 2D Hankel transformation,

dkik? [ dkyk?
Coree(ri, ) = l‘51+@z/ 1K] / 2k3

2m? 2m?
X jo, (r1k) je, (raka) B, gye(ky, k2). (44)
The multipole index £ appearing in By, ¢,¢ OF &g, ¢,¢ is associated with

the multipole expansion w.r.t. the line of sight, just as the index ¢ in
the power spectrum, P,.

2.5 Theoretical predictions

Fig. 1 shows how the multipole components of the 3PCF are affected
when the coefficients of the shift terms for density and velocity
fluctuations, i.e. F and G, are changed from 1. Since Section 4.2
will show that the 1o error for Ej is about 3, we add =£3 to the E; =
1 value in ACDM to compute the cases where E; = —2 and Es = 4.
In other words, we compute the four cases for (Fy = 0.25, Gy = 1.0),
(Fs = —0.5, Gy = 1.0), (Fs = 1.0, Gy = 4.0), and (F, = 1.0, G, =
—2.0).

Focusing on the monopole components, i.e. {go and 19, the
effect of changing the value of F; is more significant than when G,
is changed. This result suggests that the monopole component can
constrain F well. Next, we look at the quadrupole components, i.e.
¢202 and ¢ 112. Again, the change in F can affect them more than in
G;, but the difference is less than for the monopole component. This
fact means that G; or E; is determined in the quadrupole component
after F has been determined in the monopole component.

Of course, in the actual MCMC analysis, not only Fy and G
are varied, but also F,, F, G,, and G;. The influence of all these
parameters on the 3PCF multipole can be seen in figs 1-2 of S23.

3 DATA ANALYSIS METHODOLOGY
Our data analysis methods are summarized below. See S23 for details.

(i) To simplify the correction for window function effects, the
2PCF and the 3PCF are used instead of the power spectrum and the
bispectrum in Fourier space, following Sugiyama et al. (2021, 2023).

(ii) Only large scales in the range 80 2~ Mpc < r < 150 h~! Mpc
are used, where the 2PCF and 3PCF models (37) are expected to work
well. This expectation has been confirmed in the context of GR by
Sugiyama et al. (2021). Hirano et al. (2020) has shown that when
the shift term deviates from 1, ultra-violet divergence appears in
the non-linear correction term in the power spectrum, i.e. referred
to as the one-loop term, leading to unattainable converged values.
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Figure 1. Multipole components of the 3PCF, i.e. {000, {110, £202, and ¢ 112,
at z = 0.61, calculated from the theoretical model in equation (37), when the
coefficients of the shift terms of the density or velocity fluctuations, i.e. Fs or
Gs, vary from 1. The results are shown for Fy = Gs = 1 (black solid), Fs =
0.25 and G5 = 1 (blue solid), Fs = —0.5 and G5 = 1 (magenta solid), Fs =
1 and G; = 4.0 (blue dashed), Fs = 1 and Gy = —2.0 (magenta dashed). For
the sake of simplicity, the plot is made as a function of r; = r, = r. The
cosmological parameters used to draw this plot are given in Section 1, and
the assumed linear bias is b; = 2, and the assumed non-linear biases are zero,
ie.by =b=0.
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Therefore, we expect similar behavior in the bispectrum and focus
only on scales larger than 80/2~! Mpc, where the loop correction
term will not make a significant contribution.

(iii) The bin widths are 5 h~! Mpc for the 2PCF and 102~ Mpc
for the 3PCF; the 3PCF has a wider bin width than the 2PCF to reduce
the number of data bins. These bin widths are the same as those used
in Sugiyama et al. (2021) for the anisotropic BAO analysis using the
2PCF and 3PCF.

(iv) The multipole components of the 2PCF and 3PCF used in
the analysis are £, §2, §000» { 110> {202, and ¢ 12 In particular, ¢ goo,
110, and 112 are only considered for r; > r, since &g ¢y e(r1, 12) =
Core,6(r2, 11). In this case, the total number of data bins is 202.

(v) The multipole components of the 2PCF and 3PCF are mea-
sured using an FFT2-based estimator (Sugiyama et al. 2019). The
theoretical models for the 2PCF and 3PCF are then computed
according to section 4 in S23, taking into account the window
function effect.

(vi) The eight parameters constrained in this analysis are (b;073),
(fog), (Fg0g), (Fs03), (Fio3), (G03g), E, and (G03); the constraint
on the E; parameter is the main result in this paper.

(vii) The AP effect (Alcock & Paczynski 1979) is ignored in our
analysis. However, the AP effect can be determined by the 2PCF at a
few per cent and is not expected to significantly affect the constraint
results for the parameters that characterize the non-linear fluctuations
of interest in this paper, such as E;.

(viii) The galaxy data used in the analysis is the final galaxy
clustering dataset, Data Release 12 (DR12; Alam et al. 2015) from
the Baryon Oscillation Spectroscopic Survey (BOSS; Eisenstein
et al. 2011; Bolton et al. 2012; Dawson et al. 2013). The BOSS
survey includes four galaxy samples, CMASS, LOWZ, LOWZ2,
and LOWZ3, which are combined into a single sample (Reid et al.
2016). This combined DR12 sample covers the redshift range z =
0.2-0.75 and is divided into the two redshift bins, 0.2 < z < 0.5 and
0.5 < z < 0.75, which have the mean redshifts z = 0.38 and z =
0.61, respectively. Furthermore, the DR12 sample is observed across
two galactic hemispheres, the Northern and Southern Galactic Caps,
called NGC and SGC respectively. Thus, the four galaxy samples
considered in our analysis are NGC at z = 0.38, SGC at z = 0.38,
NGC at z = 0.61, and SGC at z = 0.61.

(ix) The 2PCF and 3PCF covariance matrices are computed by
measuring the 2PCF and 3PCF from the publicly available 2048
MultiDark-Patchy mock catalogues (Patchy mocks; Kitaura et al.
2016; Klypin et al. 2016).

(x) For the NGC and SGC galaxy samples at z = 0.38, the p-
values calculated from the best parameter values obtained by our
analysis are less than 0.05, indicating that the theoretical 3PCF model
does not fit the measurements well. The fact that such discrepancies
between the data and the model occur even in a general parameter
space suggests that this is likely to be an indication of systematics.
Unfortunately, the reason for this cannot be identified in this paper.
Therefore, following section 8 in S23, we multiplied the 3PCF
covariance matrices measured from the NGC and SGC at z = 0.38
by a phenomenological pre-factor of 1.15 and 1.25, respectively,
to increase the final p-value obtained. However, we found that this
manipulation had little effect on the final Eg-constraint. This suggests
that the degeneracy between the parameters is the main limitation
of our analysis, rather than the 15-25 per cent changes in the 3PCF
covariance matrices.

2Fast Fourier Transform
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Figure 2. Multipole components of the 3PCF, i.e. {000, {110, {202, and £ 112, measured from the NGC and SGC samples at z = 0.38 (blue points). For the sake
of simplicity, these plots are shown as a function of r| = r, = r, even though the actual MCMC analysis also uses the case r; # r,. The error bars are the
standard deviation of the 3PCF measurements computed from 2048 Patchy mocks. The orange error bars are the rescaled ones described in (x) of Section 3,
which are used in the MCMC analysis. Also plotted are the theoretical models computed from the best-fitting parameter values obtained from the MCMC
analysis (magenta lines); they are shown as solid lines at the scales > 80 2~! Mpc used in the analysis, and as dashed lines at smaller scales.
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Figure 3. Same as Fig. 2, except that the results at z = 0.61 are shown.

(xi) The Hartlap [equation (17) in Hartlap, Simon & Schneider
2007] and M, [square root of equation (18) in Percival et al. 2014]
factors are used to correct for the effect of errors in the covariance
matrix, computed from a finite number of mock catalogues, on the

MNRAS 524, 1651-1667 (2023)

final parameter errors. The M, factor [square root of equation (22)
in Percival et al. 2014], obtained by combining the Hartlap and
M, factors, is M, = 1.105 in our analysis, close enough to 1 for
conservative data analysis.
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(xii) The flat prior distribution of the parameter of interest is
determined based on the error from a Fisher analysis, performed in
the same setting as the main analysis. The fiducial parameter value
04, assumed in performing the Fisher analysis, is calculated from
the cosmological parameters introduced in Section 1 and the linear
bias parameter b; = 2. With the standard deviation of the parameters
obtained by the Fisher analysis being o gsher(9), then 049 £ 5 054(6)
is used as the flat prior distribution.

(xiii) The likelihood of the parameters is computed using the

MCMC algorithm implemented in MONTE PYTHON (Brinckmann &
Lesgourgues 2019). We ensure the convergence of each MCMC chain
by imposing R — 1 < O(107*), where R is the standard Gelman—
Rubin criteria (Gelman & Rubin 1992).
The convergence of the results is also checked through the following
method. First, eight independent MCMC chains are generated, and
the mean and standard deviation of the Eg parameter, (Eg)mean and
(E4)ga, are calculated from each chain. Next, the standard deviation
of the mean, ((Es)mean)si, and the mean of the standard deviation,
((Es)std)mean» are calculated from the eight mean values and standard
deviations. Finally, the ratio ((E)mean)sta/((Es)std)mean 1S checked to be
less than 10 per cent. Our final E constraint is obtained by combining
all eight chains into a single chain.

4 RESULTS

4.1 Measurements

Figs 2 and 3 show the multipole components of the 3PCF measured
from the BOSS DR12 galaxies and the corresponding theoretical
models calculated with the best-fitting parameters in Table Al. For
the monopole components (¢ o and ¢ 119), a BAO peak is expected
to appear around 100 2~! Mpc. For example, £ o and ¢ ;19 measured
from NGC at z = 0.38 show a relatively clear BAO signal (see Fig. 2,
upper left two panels), but the BAO signal is not seen in some galaxy
samples. Also, as noted by S23 and discussed in (x) of Section 3,
Zooo measured from SGC at z = 0.38 shows statistically significant
differences from the theoretical model on large scales (see Fig. 2,
upper right-hand panel).

Although the 3PCF multipole, ¢, ¢,¢, is a function of r; and r,, only
the case r; = r, is plotted here to simplify the figure; see figs 12-19
in S23 for the results for r| # r;.

4.2 Constraints on E

Fig. 4 shows the 1D marginalized posterior probability distributions
for E;, and Table 1 summarizes the results of constraining E;
computed from the posteriors. The results presented in this table
show the results of constraining E separately for the four BOSS
samples and a combination of these results.

The E; constraint results from each sample of BOSS galaxies are
helpful, for example, in constraining models that vary the coefficient
of the shift term from 1, as presented in Sections 2.3.3, 2.3.7, 2.3.9,
and 2.3.10.

On the other hand, from the point of view of examining the
violation of the LSS consistency relation, it is also useful to combine
all four galaxy samples to see if Ej is consistent with E; = 1. Such an
analysis is possible because the predicted E value for any sample of
galaxies and at any redshift is always E; = 1 if the LSS consistency
relation is satisfied. The E value obtained in this analysis is no longer
meaningful as a physical parameter, but is interpreted as a parameter
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Figure 4. 1D marginalized posterior probability distributions for E;. Results
are shown for NGC at z = 0.38 (blue), SGC at z = 0.38 (orange), NGC at
z = 0.61 (green), SGC at z = 0.61 (red), and the four samples combined
(magenta). A vertical line with E; = 1 (black dashed line) is also plotted,
indicating that the consistency relation is satisfied.

for testing the LSS consistency relation. As a result, we obtain
E,=—0.9273} (45)

at the 1o level. This result indicates that the present analysis using
the BOSS galaxy data does not violate the LSS consistency relation
within the statistical error of the data.

4.3 Comparison with the results of the Fisher analysis

Table 1 shows that the errors obtained for each galaxy sample are
larger than those predicted by the Fisher analysis, while the combined
sample yields a constraint close to the Fisher estimate. This is because
the tail of the posterior distribution function obtained for each galaxy
sample is more widely spread out than the Gaussian function assumed
in the Fisher analysis. On the other hand, when the four galaxy
samples are combined, the posterior distribution function approaches
the Gaussian function due to the central limit theorem; see Fig. 5 for
a comparison of the posterior distribution function of E and the
Gaussian distribution function.

4.4 Discussions for future research

In anticipation of future surveys, it is important to note that the
magnitude of statistical errors is inversely proportional to the square
root of the survey volume. Thus, it naturally follows that the larger the
survey volume, the smaller the resulting errors. Currently, the volume
of the BOSS data being used in this paper is roughly 4 (h~! Gpc)>.
By comparison, the survey volume of the Dark Energy Spectroscopic
Instrument (DESI; DESI Collaboration 2016)* is expected to reach
~ 40 (h~' Gpc)?, which is ten times that of BOSS. Moreover, it is
projected that by combining various galaxy surveys, such as Euclid
(Laureijs et al. 2011)* and the Subaru Prime Focus Spectrograph
(PFS; Takada et al. 2014),% we can anticipate an improvement in the
current constraint results by a factor of 3-4.

3http://desi.1bl.gov/
4www.euclid-ec.org
Shttps://pfs.ipmu.jp/index.html
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Table 1. Means, standard deviations, and 1o errors (68.27 per cent CL) calculated from the Eg posteriors

shown in Fig. 4.

(Es)mean (Es)std (ﬁSher) (Es)—la (ES)+1(7 sznin/DOF (P'Vﬁlue)
NGC atz =0.38 0.44 9.85(5.40) —8.93 8.32 207.2/194 (0.245)
SGCatz =0.38 —1.69 16.08 (8.80) —12.21 15.13 199.3/194 (0.382)
NGC at z =0.61 —1.42 11.89 (6.95) —9.77 9.93 216.6/194 (0.128)
SGC at z =0.61 —7.32 23.93(11.6) —19.44 24.78 203.9/194 (0.299)
Combined four samples —0.92 3.72(3.64) —3.26 3.13 -

Results are shown for each galaxy sample and for the four samples combined. The standard deviations of
the parameters predicted by the Fisher analysis are given in round brackets. The rightmost column shows
the reduced x2 computed from the best-fitting parameter values, and the corresponding p-values, where the

degrees of freedom (DoF) are 202 — 8 = 194.

0.14 1 —— NGC at z = 0.38

Combined
==+ Gaussian (Fisher)

0.12

0.10
—~ 0.08
< 0.06

0.04 1

Figure 5. Same as Fig. 4, except that the Gaussian distribution functions
assumed in the Fisher analysis are also plotted simultaneously as dashed
lines. For clarity of display, only two cases are plotted, NGC at z = 0.38 and
the combined sample. The Gaussian distributions are plotted with the mean
value given in the (Es)mean column of Table 1 and the standard deviation
predicted by the Fisher analysis input.

Furthermore, as demonstrated by Sugiyama et al. (2020), the shot
noise effect determined by the galaxy number density is crucial in
assessing statistical errors in the galaxy bispectrum and 3PCF. For
example, in the BOSS case, it was shown in sections 5 and 7 of
S23 that a smaller volume but high-density sample at z = 0.38
can impose stronger constraints on the non-linear parameters (3)
using the 3PCF measurement compared to a larger volume but low-
density sample at z = 0.61. Indeed, in this paper, the E results
obtained in Table 1 show smaller errors for the z = 0.38 sample
than for the z = 0.61 case. Although the galaxy number density
for BOSS is ~ 3 x 107 (h~! Mpc)~3, for DESI it can reach up to
~ 7 x 107*(h~'Mpc)~3, depending on the redshift bin, enabling
us to anticipate better constraints on Eg, beyond the actual volume
differences.

The prediction of the constraint results for the non-linear pa-
rameters using information on smaller scales than those used in
this paper was carried out by the Fisher analysis in section 7 of
S23 in the context of DHOST theories. In that case, for example,
the coefficient Gsog of the shift term in the non-linear velocity
field is expected to have ~6 times better error improvement when
using up to 304~ Mpc, compared to our current analysis using
scales greater than 80/h~' Mpc. This dramatic improvement in
parameter constraints through the use of small scales serves as a
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strong motivation to further develop theoretical bispectrum models
applicable to smaller scales.

The use of more multipole components than the four multipole
components (&0, ¢ 110, $202, and ¢112) of the 3PCF used in this
paper is also expected to improve the constraint results for £ and
the other non-linear parameters.

Finally, note that although all six non-linear parameters (3) are
varied in this paper to consider as general a situation as possible, the
number of free parameters to be varied is reduced in many cases when
actually constraining the specific models presented in Section 2.3.
For example, for the constraints on neutrino masses in Section 2.3.7,
assuming the standard bias effects in Section 2.3.8, all the growth,
shift, and tidal terms of the non-linear velocity field can be used to
constrain the neutrino mass. The results will therefore be better than
the constraint results in this paper, which use only E.

5 CONCLUSIONS

This paper is the first work to test the consistency relation for the
LSS from actual galaxy clustering data. We have made this analysis
possible through a joint analysis of anisotropic 2PCFs and 3PCFs
measured from the BOSS DR12 galaxy data. While the anisotropic
component of the 3PCF (or bispectrum) has mainly been used to
improve the results of the 2PCF-only analysis (e.g. Sugiyama et al.
2021; D’Amico et al. 2022b; Ivanov et al. 2023), the results of
this paper open a new observational window for anisotropic 3PCF
analysis.

The LSS consistency relation relates the three-point statistics
in the squeezed limit to the two-point statistics. The squeezed
limit corresponds to extracting only the shift terms that appear in
the second-order density and velocity fluctuations, and the LSS
consistency relation is satisfied when the coefficients of the shift
terms, denoted F; and G; (3), are F; = G, = 1. Conversely, the LSS
consistency relation breaks down when F; and G, deviate from 1, e.g.
due to multicomponent fluids, modified gravity, and their associated
bias effects. However, among the three symmetric wavenumbers, i,
ky, and k3, on which the bispectrum depends, taking the squeezed
limit k&, — 0, the dependence of the remaining k, and k3 becomes
exchange symmetric, cancelling the coefficient modifications of the
shift terms and behaving as if the LSS consistency relation were
satisfied (Crisostomi et al. 2020). Furthermore, we pointed out in
Section 2.1 that the coefficients of the shift terms are degenerate
with the parameter og and appear in the form of (Fsog) and (G,0s),
so we cannot directly constrain F and G;.

Two crucial ideas for solving the problems in the above paragraph
are presented in Sections 2.1 and 2.2. The first idea is to test the
LSS consistency relation independently of og by defining the E
parameter (5) as the ratio of (Go3) to (Fso3) and checking whether
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E deviates from 1. Note that E # 1 is a sufficient but not a necessary
condition for showing a violation of the LSS consistency relation,
since there may be theories that satisfy F; = Gy # 1. The second
idea is to ensure that our results hold in as many different situations
as possible, we constrain Es in a general parameter space framework
with the coefficients of the growth, tidal, and shift terms as free
parameters. Section 2.3 provides examples of models that are and
are not included in our proposed parameterization.

This analysis requires information about the non-linearity of the
velocity field, which requires dealing with the anisotropic component
of the galaxy three-point statistic caused by the RSD effect. In this
paper, we adopt a method of decomposing the anisotropic 3PCF using
the TripoSH basis function in Section 2.4. This analysis method has
been established in a series of papers by Sugiyama et al. (2019,
2021, 2023). In particular, our analysis method is similar to the one
used in Sugiyama et al. (2023) to test DHOST theories from BOSS
galaxies, except for the different parameters treated. Therefore, those
interested in learning more about the analysis methods discussed in
Section 3 are referred to that paper.

We have constrained E; from two perspectives using the four
galaxy samples from BOSS DR12. The first is a constraint on Ej
from each galaxy sample that allows a physical interpretation by a
specific model, as presented in Section 2.3. The second focuses on
the violation of the LSS consistency relation and examines whether
E deviates from 1 using the combined four samples. In this case, E
is no longer interpreted as a physical parameter but as a parameter
for testing the LSS consistency relation. In both cases, the results
are consistent with E; = 1 within the 1o error, as shown in Table 1.
In particular, in the second case we obtained E, = —0.92F313 The
results of this paper indicate that the LSS consistency relation is not
violated within the statistical errors of the data in this analysis using
the BOSS galaxy data.

In the future, several extensions can be made. First, it should be
possible to include more 3PCF multipole components in the analysis.
Secondly, the AP effect should be included in the analysis, and
degeneracy relations between parameters with the AP effect should
be considered. Finally, an attempt should be also made to improve
the theoretical model of the 3PCF to include information at smaller
scales. While attempting these improvements, the present analysis
can be directly applied to upcoming spectroscopic galaxy surveys,
such as DESI, Euclid, and PFS.
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APPENDIX A: OTHER NON-LINEAR
PARAMETERS

While the main text focuses only on the results for E, this ap-
pendix summarizes the results for the other parameters [see (vi) in
Section 3] that were varied simultaneously in the MCMC analysis.
Results for Gsog are also reported as G o3 = (F,03) Es. Table Al
shows the best-fitting values, means, and standard deviations ob-
tained from the four BOSS samples for the two parameters appearing
in linear theory (b;03 and fog) and for the six non-linear parameters
(Fgo3, Fso3, Fiog, Ggog, G0, Giog). The covariance matrices
for these parameters are shown in Table A2. For illustration, the
marginalized 1D and 2D posteriors of the parameters are plotted for
NGC at z = 0.38. The results presented in Tables Al and A2 should
not only be used to test the LSS consistency relation, which is the
subject of this paper but can also be used directly to constrain the
various specific models presented in Section 2.3.

In addition to the E; # 1 condition, it can also be argued that a
signal Fio3 <0 is a violation of the LSS consistency relation if it is
found (see Section 2.2). Therefore, the results on Fyo g from Table A1l
are summarized as follows:

0.715+£0.685 (NGCat z = 0.38)
0.656 £1.62 (SGC atz = 0.38)
0.883+£0.845 (NGCatz=0.61)"
0.612+£1.18 (SGCatz = 0.61)

Foog = (A1)

As shown above, since Fyog < 0 cannot be statistically significant,
it can be concluded that no violation of the LSS consistency relation
was found in the current analysis.
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Table Al. Best-fitting values, means, and standard deviations for (b1 0'3), (fo'g), (Fg03), (F503), (Fio3), (Gy03), (Gs08),
and (Gog) obtained in the joint analysis of the 2PCF and the 3PCF using the four BOSS samples.

NGC atz =0.38
biog fosg Fgog Fiog Fiog Ggog Gsog Giog
Best- 1.35 0.469 1.20 0.753 —0.109 —1.80 —0.0987 2.00
fitting
Mean 1.23 0.433 1.32 0.715 —0.0191 —2.47 0.53 2.75
Std. 0.18 0.107 0.715 0.685 0.452 2.54 4.43 2.08
SGC at z = 0.38
biog fos Fgog Fiog Fiog Ggog Gsog Giog
Best- 1.19 0.569 0.142 1.65 —1.25 5.58 2.12 —0.613
fitting
Mean 0.627 0.681 0.907 0.656 —-0.47 4.35 493 —1.36
Std. 0.316 0.263 2.38 1.62 1.37 4.71 12.7 5.34
NGC atz =0.61
biog fosg Fgog Fiog Fiog Ggog Gsog Giog
Best- 1.27 0.366 0.107 0911 —0.191 3.24 —0.882 0.00682
fitting
Mean 1.08 0.361 —0.0782 0.883 0.0875 291 —0.633 0.393
Std. 0.158 0.109 0.868 0.845 0.574 3.05 7.85 2.7
SGC at z = 0.61
biog fosg Fgog Fiog Fog Gyog Gsog Gog
Best- 1.27 0.266 1.45 —0.294 1.37 5.34 5.96 —-9.76
fitting
Mean 0.943 0.312 141 0.612 1.73 3.8 0.0212 —6.57
Std. 0.235 0.168 1.93 1.18 1.12 6.81 25.3 4.24

The results for (Gsog) = (Fsog)Es have been obtained from the MCMC chain of Eg and (Fog).
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Table A2. Covariance matrices for (byog), (fog), (Fgog), (Fso3), (Fios), (Ggos), (Gsog), and
(G(og) obtained in the joint analysis of the 2PCF and the 3PCF using the four BOSS samples.

NGC at z =0.38
biog fos Fgog Fog Fiog Gyog Gsog Giog
biog 0.0318 —0.0109 —-0.0192 —0.028 0.00321 —0.0864 —0.161 —0.0477
fosg —0.0109 0.0112 0.00192 0.00325 —0.000899 0.0823 —0.0241 —0.0288
Fgog —0.0192  0.00192  0.521 0.0496 0.151 —0.968 —0.425 —0.103
Fsog —0.028  0.00325 0.0496 0.593 —-0.236 0.155 —1.02  0.404
Fiog 0.00321 0.151 —-0.236 0.22 —0.313 0.0416 —0.327
—0.000899
Gyog —0.0864 0.0823 —0.968 0.155 —0.313 6.26 3.64 —1.58
G0 —0.161 —0.0241 —0.425 —1.02 0.0416 3.64 20.4 —4.52
Giog —0.0477 —0.0288 —0.103 0.404 —0.327 —1.58 —4.52 4.09
SGCatz =0.38
biog fos Fgyog Fog Fiog Gyog Gso3 Gog
biog 0.0865 —0.0422 0.0464 0.0969 —0.0934 —-0.0671 —0.279 0.0788
fos —0.0422  0.0631 —0.0558 —0.0621 0.0296  0.00688 —0.404 —0.202
Fyog 0.0464  —0.0558 4.51 0.296 0.435 —-35 —0.245 0.0227
Fsog 0.0969  —0.0621  0.296 3.31 —-0.516 0.433 —3.37 —0.0595
Fiog —0.0934  0.0296 0.435 -0.516 1.99 —-0.549 —-0.63 —1.27
Gyo —0.0671  0.00688 -3.5 0.433 —0.549 22.5 12.6 —11.5
Gog —-0.279 —0.404 —0.245 —3.37 —0.63 12.6 171 —17.9
Giog 0.0788 —0.202 0.0227 —0.0595 —-1.27 —11.5 =179 27.6
NGC at z = 0.61
biog fosg Fgog Fsog Fiog Gyog Gsog Giog
biog 0.024  —0.00748 0.0309 —0.0267 —0.018 —0.0598 —0.0707 —0.0294
fos —0.00748 0.0117 —0.0141 —-0.00346  0.00278  0.0298 0.0602 0.00315
Fgog 0.0309 —-0.0141 0.806 0.0312 0.204 —149 -0.814 -0.332
Fsog —0.0267 —0.00346 0.0312 0.894 —0.311 0.00472 —-2.62 0.776
Fiog —0.018 0.00278  0.204 —-0.311 0.37 —-0.317 0.347 —0.705
Gyo —0.0598  0.0298 —1.49 0.00472 —-0.317 9.46 6.37 —2.09
Gsog —0.0707 0.0602 —0.814 —2.62 0.347 6.37 43.3 —10.1
Giog —0.0294 0.00315 —0.332 0.776 —0.705 -2.09 -10.1 7.75
SGC at z =0.61
biog fosg Fgog Fsog Fiog Gyog Gsog Giog
biog 0.0576  —0.0196 0.0903  —0.0844 —0.0668 —0.116 —-0.625 —0.171
fos —0.0196  0.0298 —0.0581 —0.0324 0.0214 0.135 1.19  —0.0697
Fgog 0.0903  —0.0581 3.99 0.155 0.508 —-536 —429 —0.585
Fsog —0.0844 —0.0324 0.155 2.6 —0.453 —-0.126 —13.3 1.39
Fiog —0.0668  0.0214 0.508 —0.453 1.14 —0.607 —-0467 —1.1
Gyo —0.116 0.135 —5.36 —0.126 —0.607 449 24.5 —6.81
Ggog —0.625 1.19 —4.29 —13.3 —0.467 24.5 651 —33.1
Giog —0.171 —0.0697 —0.585 1.39 —1.1 —6.81 —33.1 26.6
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Figure A1. Marginalized 2D and 1D posteriors of the parameters (b103), (fog), (Fg03), (Fs03), (Fi03), (Gg0g), (Gso), and (Giog). The contours indicate
68.27 per cent and 95.45 per cent confidence levels. The result is for NGC at z = 0.38.
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