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A B S T R A C T 
We present, for the first time, an observational test of the consistency relation for the large-scale structure (LSS) of the 
Universe through a joint analysis of the anisotropic two- and three-point correlation functions (2PCF and 3PCF) of galaxies. 
We parameterize the breakdown of the LSS consistency relation in the squeezed limit by E s , which represents the ratio of the 
coefficients of the shift terms in the second-order density and velocity fluctuations. E s != 1 is a sufficient condition under which 
the LSS consistency relation is violated. A no v el aspect of this work is that we constrain E s by obtaining information about 
the non-linear velocity field from the quadrupole component of the 3PCF without taking the squeezed limit. Using the galaxy 
catalogues in the Baryon Oscillation Spectroscopic Surv e y (BOSS) Data Release 12, we obtain E s = −0 . 92 + 3 . 13 

−3 . 26 , indicating that 
there is no violation of the LSS consistency relation in our analysis within the statistical errors. Our parameterization is general 
enough that our constraint can be applied to a wide range of theories, such as multicomponent fluids, modified gravity theories, 
and their associated galaxy bias effects. Our analysis opens a new observational window to test the fundamental physics using 
the anisotropic higher-order correlation functions of galaxy clustering. 
Key words: large-scale structure of Universe – dark matter – cosmology: observations – cosmology: theory. 

1  I N T RO D U C T I O N  
The consistency relation of multipoint statistics in cosmology is a 
relation that non-perturbatively relates an n -point statistic of cosmic 
fluctuations to an ( n − 1)-point statistic. This relation holds in 
the limit that one of the n ≥ 3 wavenumbers is much smaller 
than the others, the so-called squeezed limit . Originally proposed 
for single-field inflationary models (Maldacena 2003 ; Creminelli & 
Zaldarriaga 2004 ), a similar consistency relation was later invented 
in the large-scale structure (LSS) of the Universe (Creminelli et al. 
2013 ; Kehagias & Riotto 2013 ; Peloso & Pietroni 2013 ). 

The LSS consistency relation is due to the fact that the equations for 
cosmic fluctuations are invariant under the Galilean transformation 
! E-mail: nao.s.sugiyama@gmail.com 

(Scoccimarro & Frieman 1996 ; Creminelli et al. 2013 ). In particular, 
the Galilean transformation eliminates the large-scale flow of matter 
at equal times, so that all higher-order non-linear contributions 
beyond the leading order in perturbation theory are cancelled out 
when computing n -point statistics. This behaviour is called the 
equal-time consistency relation or infrared (IR) cancellation (Jain & 
Bertschinger 1996 ; Scoccimarro & Frieman 1996 ; Blas, Garny & 
Konstandin 2013 ; Kehagias & Riotto 2013 ; Peloso & Pietroni 2013 ; 
Sugiyama & Futamase 2013 ; Sugiyama & Spergel 2014 ; Blas et al. 
2016 ; Le wando wski & Senatore 2017 ). On the other hand, various 
conditions have been proposed to violate this consistency relation, 
such as multicomponent fluids (Tseliakhovich & Hirata 2010 ; Yoo, 
Dalal & Seljak 2011 ; Bernardeau, Van de Rijt & Vernizzi 2012 , 2013 ; 
Creminelli et al. 2014b ; Peloso & Pietroni 2014 ; Le wando wski, 
Perko & Senatore 2015 ; Slepian & Eisenstein 2017 ), primordial 
non-Gaussianity (Berezhiani & Khoury 2014 ; Valageas, Taruya & 
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Nishimichi 2017 ; Esposito, Hui & Scoccimarro 2019 ; Goldstein et al. 
2022 ), and violation of the equi v alence principle (Creminelli et al. 
2014a ; Inomata, Lee & Hu 2023 ). It is therefore fundamental to test 
whether our Universe has a simple structure that satisfies the LSS 
consistency relation. 

Crisostomi, Le wando wski & Vernizzi ( 2020 ) and Le wando wski 
( 2020 ) pointed out that the Degenerate Higher-Order Scalar-Tensor 
(DHOST) theories (for re vie ws, see Kobayashi 2019 ; Langlois 
2019 ), a type of modified gravity, also violate the LSS consistency 
relation. The reason is that when the second-order dark matter density 
fluctuations are decomposed into two independent components, the 
shift term and the tidal force term, 1 DHOST theories change both 
terms from the values of general relativity (GR; Hirano et al. 2018 ). 
On the other hand, Horndeski theories (Horndeski 1974 ; Deffayet 
et al. 2011 ; Kobayashi, Yamaguchi & Yok o yama 2011 ), a subclass 
of DHOST theories, change only the tidal term from GR, leaving 
the shift term unchanged (Bernardeau & Brax 2011 ; Bartolo et al. 
2013 ; Takushima, Terukina & Yamamoto 2014 ; Bellini, Jimenez & 
Verde 2015 ; Burrage, Dombrowski & Saadeh 2019 ). Focusing on 
the LSS consistency relation is equi v alent to extracting only the 
shift term, which is dominant in the squeezed limit, from the dark 
matter density fluctuations. Therefore, DHOST theories with the 
modified shift term violate the LSS consistency relation. In other 
words, the structure of DHOST theories resembles the structure 
of multicomponent fluids, and the Galilean transformation cannot 
eliminate the relativ e v elocities of a scalar field and dark matter on 
large scales, thus violating the LSS consistency relation. 

Ho we ver, observ ables that trace the LSS consistency relation are 
not straightforwardly constructed. F or e xample, Crisostomi et al. 
( 2020 ) pointed out in Section V that taking the squeezed limit of 
the galaxy bispectrum does not directly test the violation of the 
LSS consistency relation in DHOST theories. The reason is that the 
bispectrum, which depends on the three wavenumbers k 1 , k 2 , and k 3 , 
is symmetric with respect to these variables; taking the squeezed limit 
cancels out any change in the shift term that violates the consistency 
relation. Therefore, the authors proposed to measure the cross- 
bispectrum with other cosmic fluctuations, such as gravitational 
lensing effects, or to measure the trispectrum of galaxies, so that 
the effects of DHOST theories are not cancelled when the squeezed 
limit is taken. 

Recent rapid developments in the analysis of galaxy three-point 
statistics, i.e. bispectra and three-point correlation functions (3PCFs), 
have allowed us to test the consistency relation. In principle, the three- 
point statistics (not restricted to the squeezed limit) are sensitive to 
the coefficient of the shift term of the galaxy density fluctuation. 
Ho we ver, a critical problem remains to be solved: Most previous 
studies deal only with the isotropic, i.e. monopole , component of 
the three-point statistics (Gil-Mar ́ın et al. 2017 ; Slepian et al. 2017 ; 
Pearson & Samushia 2018 ; Sugiyama et al. 2019 ; d’Amico et al. 
2020 ; Cabass et al. 2022a , b ; D’Amico et al. 2022a ; Philcox & Ivanov 
2022 ), and these analyses cannot efficiently constrain the coefficient 
of the non-linear density field shift term. The reason is that in the 
monopole-only analysis, the coefficient of the density fluctuation 
1 The scale dependence of the second-order density fluctuation of dark matter 
is generally decomposed into the growth, shift, and tidal terms (Schmittfull, 
Baldauf & Seljak 2015 ). Ho we ver, due to the condition that the ensemble 
average (infinite space integral) of the dark matter density fluctuation is 
zero, the coefficients of the three terms are related, and there are only two 
independent components. This relation is known to break down when galaxy 
bias effects are taken into account, in which case these three independent 
components must be considered (e.g. Desjacques, Jeong & Schmidt 2018 ). 

shift term degenerates with the parameter σ 8 , which represents 
the amplitude of the dark matter fluctuations (Sugiyama et al. 
2023 ). 

Yamauchi & Sugiyama ( 2022 ) pointed out that the use of non- 
linear velocity fields in addition to non-linear density fields is helpful 
in studying non-linear gravitational effects. The non-linear velocity 
field can be directly constrained by analysing the anisotropic, e.g. 
quadrupole , component of the galaxy three-point statistics. Although 
the analysis of the anisotropic component of the galaxy three-point 
statistic is much less mature than the monopole-only analysis, some 
of us have successfully initiated such efforts. For example, Sugiyama 
et al. ( 2019 ) proposed a new basis for measuring the anisotropic 
bispectra and reported the significant detection of the anisotropic 
component from the galaxy catalogue from the Baryon Oscillation 
Spectroscopic Surv e y Data Release 12 (BOSS DR12; Eisenstein 
et al. 2011 ; Bolton et al. 2012 ; Dawson et al. 2013 ; Alam et al. 2015 ). 
Sugiyama et al. ( 2021 ) analysed the anisotropic component of Baryon 
Acoustic Oscillations (BAOs; Peebles & Yu 1970 ; Sunyaev & Zel- 
dovich 1970 ) using the anisotropic 2PCF and 3PCF on MultiDark- 
Patchy mock simulations (Patchy mock; Kitaura et al. 2016 ; Klypin 
et al. 2016 ) that reproduce the BOSS DR12 galaxy data. D’Amico 
et al. ( 2022b ) performed the first joint analysis of the monopole and 
quadrupole components of the power and bispectra measured from 
BOSS DR12 and constrained the standard cosmological parameters 
in the context of # cold dark matter ( # CDM). Ivanov et al. ( 2023 ) 
presented the results of an anisotropic bispectrum analysis including 
quadrupole and hexadecapole components measured from the BOSS 
DR12 data. In particular, Sugiyama et al. ( 2023 ) applied the analysis 
method of Sugiyama et al. ( 2021 ) to the BOSS galaxy data, based on 
the idea proposed by Yamauchi & Sugiyama ( 2022 ) to constrain the 
effects of gravitational non-linearities arising from DHOST theories 
in a σ 8 -independent manner. 

The aim of this paper is to present, for the first time, an obser- 
vational test of the LSS consistency relation in galaxy clustering 
in BOSS. We mostly follow the analysis method used in Sugiyama 
et al. ( 2023 ; hereafter referred to as S23 ). In order to ensure that 
the obtained results are applicable to as many different situations 
as possible, we propose a general parameterization that includes 
modified gravity theories, multicomponent fluids, and galaxy bias 
effects in the description of non-linear density and velocity fields, 
thus constraining the LSS consistency relation in a broad framework. 
Conversely, when a violation of the LSS consistency relation is 
detected, a more specific model is required to provide a physical 
interpretation of the violation. We also present some specific ex- 
amples of models that are and are not part of the parameterization 
framework used in this paper. 

Our analysis uses a flat # CDM model as the fiducial cosmo- 
logical model with the following parameters: matter density $m0 = 
0.31, Hubble constant h ≡ H 0 / (100 km s −1 Mpc −1 ) = 0 . 676, baryon 
density $b0 h 2 = 0.022, and spectral tilt n s = 0.97, which are 
the same as those used in the final cosmological analysis in the 
BOSS project (Alam et al. 2017 ) and close to the best-fitting 
v alues gi ven by Planck2018 (Aghanim et al. 2020 ). In addition, 
we adopt a value for the total neutrino mass of ∑ 

m ν = 0 . 06 eV , 
which is close to the minimum allowed by neutrino oscillation 
experiments. We use the following publicly available libraries to 
perform theoretical calculations, measure 2PCF and 3PCF from 
galaxy data, and estimate parameter likelihoods using Markov chain 
Monte Carlo (MCMC) methods: MONTE PYTHON (Brinckmann & 
Lesgourgues 2019 ), CLASS (Blas, Lesgourgues & Tram 2011 ), 
CUBA (Hahn 2005 ), FFTW (Frigo & Johnson 2005 ), and FFTLOG 
(Hamilton 2000 ). 
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The structure of this paper is as follows. Section 2 describes 
the theoretical model used in this paper and the parameters to be 
constrained; Section 3 briefly summarizes the data analysis methods; 
Section 4 presents the results of the parameter constraints; Section 5 
concludes the paper; Appendix A summarizes the results of other 
parameters not presented in the main text. 
2  T H E O R E T I C A L  B  ACK G R  O U N D  
2.1 Parameterization of non-linear fluctuations 
In this paper, we consider non-linear effects up to the second order 
in perturbation theory since, in Section 2.4 , we compute the 2PCF 
and 3PCF models based on the tree-level, taking into account non- 
linear damping of the BAO. In Fourier space, the redshift-space 
density fluctuations of galaxies are expressed as (e.g, Bernardeau 
et al. 2002 ) 
δ1 ( k ) = Z 1 ( k ) δm , 1 ( k ) , 
δ2 ( k ) = ∫ d 3 p 1 

(2 π) 3 
∫ 

d 3 p 2 
(2 π) 3 δD ( k − p 1 − p 2 ) 

× Z 2 ( p 1 , p 2 ) δm , 1 ( p 1 ) δm , 1 ( p 2 ) , (1) 
where the numbers in the subscripts mean that the solution is of the 
first and second order in perturbation theory. The δm appearing on 
the right-hand side represents the dark matter density fluctuation. 

The first and second-order kernel functions Z 1 and Z 2 are given by 
(Kaiser 1987 ; Scoccimarro, Couchman & Frieman 1999 ) 

Z 1 ( k ) = b 1 + f ( ̂ k · ˆ n ) 2 , 
Z 2 ( k 1 , k 2 ) = F 2 ( k 1 , k 2 ) + f ( ̂ k · ˆ n ) 2 G 2 ( k 1 , k 2 ) 

+ f ( k · ˆ n ) 
2 

[ 
( ̂ k 1 · ˆ n ) 

k 1 Z 1 ( k 2 ) + ( ̂ k 2 · ˆ n ) 
k 2 Z 1 ( k 1 ) 

] 
, (2) 

where b 1 is the linear bias parameter, f is the linear growth rate 
function, ˆ n is the unit vector that indicates the direction of the line 
of sight, and k = k 1 + k 2 . 

The kernel functions F 2 and G 2 , which represent the second-order 
non-linearity of the galaxy density fluctuation and the divergence of 
the galaxy velocity field, are decomposed into monopole, dipole, and 
quadrupole via the angle between k 1 and k 2 and are called the growth, 
shift, and tidal terms, respectively (Schmittfull et al. 2015 ). We then 
introduce the following parameterization for each coefficient of these 
terms: 

F 2 ( k 1 , k 2 ) = b 1 [F g + F s S( k 1 , k 2 ) + F t T ( k 1 , k 2 ) ] , 
f G 2 ( k 1 , k 2 ) = f [G g + G s S( k 1 , k 2 ) + G t T ( k 1 , k 2 ) ] , (3) 
where the subscripts ‘g’, ‘s’, and ‘t’ stand for ‘growth’, ‘shift’, and 
‘tidal’, respectively. The scale-dependent functions characterizing 
the shift and tidal terms are given by 
S( k 1 , k 2 ) = 1 

2 ( ̂ k 1 · ˆ k 2 ) (k 1 
k 2 + k 2 

k 1 
)

, 
T ( k 1 , k 2 ) = ( ̂ k 1 · ˆ k 2 ) 2 − 1 

3 . (4) 
Since the linear and non-linear fluctuations are proportional to 

σ 8 and σ 2 
8 , respectively, the parameters we focus on will appear in 

a degenerate form with σ 8 , such as ( b 1 σ 8 ), ( f σ 8 ), ( F g σ 8 ), ( F s σ 8 ), 
( F t σ 8 ), ( G g σ 8 ), ( G s σ 8 ), and ( G t σ 8 ). Therefore, we introduce the 
following parameter to remo v e the dependence of σ 8 and express the 
violation of the LSS consistency relation (Yamauchi & Sugiyama 

2022 ; Sugiyama et al. 2023 ): 
E s ≡ ( G s σ8 ) 

( F s σ8 ) . (5) 
This E s parameter satisfies E s = 1 when F s = G s . F or e xample, in 
GR, E s = 1 since F s = G s = 1. On the other hand, E s != 1 is satisfied 
if either F s or G s or both are different from 1, while keeping F s != G s . 
This means that the condition E s != 1 indicates a violation of the LSS 
consistency relation. This is because taking the squeezed limit of 
the bispectrum corresponds to the operation of extracting only these 
shift terms. Note that E s != 1 is a sufficient condition for proving the 
violation of the LSS consistency relation, not a necessary condition, 
since a particular theory may satisfy F s = G s != 1. 
2.2 Consistency relation for the LSS 
In this subsection, we show that the E s parameter is useful for testing 
the violation of the LSS consistency relation. To do this, we focus on 
the bispectrum produced by the galaxy density fluctuations at three 
different redshifts, i.e. 

〈 δ( k 1 ; z 1 ) δ( k 2 ; z 2 ) δ( k 3 ; z 3 ) 〉 
= (2 π ) 3 δD ( k 1 + k 2 + k 3 ) B( k 1 , k 2 ; z 1 , z 2 , z 3 ) , (6) 

and take its squeezed limit k 1 → 0. Note that this subsection is the 
only one in this paper that explicitly denotes the redshift dependence 
in the functions. 

Satisfying the LSS consistency relation means that when taking 
the squeezed limit of the n -point statistics, the effect is described 
only by the contribution of the dark matter displacement vector 
e v aluated at the origin. In real space, the linear displacement vector 
is ( m , 1 ( k ) = ( i k /k 2 ) δm , 1 ( k ), and in redshift space, it is computed by 
a linear transformation as 
( s , 1 ( k ; z) = R ( z) · ( m , 1 ( k ; z) , (7) 
where the transformation matrix R is given by (Matsubara 2008 ) 
[ R ( z) ] ij = I ij + f ( z) ̂  n i ̂  n j , (8) 
where I is the 3D identity matrix, and i , j = 1, 2, 3. 

For simplicity, we consider only the tree-level bispectrum. From 
equation ( 1 ), the non-linear contribution from a wavenumber k 1 or 
k 2 sufficiently smaller than the wavenumber k of interest is given by 
the limit k ) k 1 → 0 or k ) k 2 → 0 and can be written as follows: 
δ2 ( k ; z) → 2 δm , 1 ( k ; z) ∫ d 3 p 

(2 π) Z 2 ( p , k ; z) | p→ 0 δm , 1 ( p ; z) . (9) 
If F s = G s = 1, then 
δ2 ( k ; z) → ( −i k · ( s , 1 ( z)) δ1 ( k ; z) , (10) 
where 
( s , 1 ( z) = ∫ d 3 p 

(2 π) 3 ( s , 1 ( p , z) . (11) 
The abo v e equation represents the inv erse F ourier transform, and ( s , 1 
is the displacement vector at the origin x = 0 and is independent of 
positions. In other words, ( s , 1 can be interpreted as a large-scale 
flow of dark matter through the entire observation region. 

Taking the squeezed limit k 1 → 0 in the bispectrum of equation 
( 6 ), δ( k 1 ; z 1 ) is only correlated with ( s , 1 ( z 2 ) or ( s , 1 ( z 3 ). Therefore, 

〈 δ( k 1 ; z 1 ) δ( k 2 ; z 2 ) δ( k 3 ; z 3 ) 〉 
→ 

k 1 → 0 〈(−i k 2 · (( s , 1 ( z 2 ) − ( s , 1 ( z 3 ) )) δ1 ( k 1 ; z 1 ) 〉
× 〈 δ1 ( k 2 ; z 2 ) δ1 ( k 3 ; z 3 ) 〉 , (12) 
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leading to the LSS consistency relation 
B( k 1 , k 2 ; z 1 , z 2 , z 3 ) 

→ 
k 1 → 0 ˜ Z 1 ( k 1 ; z 1 ) ̃  Z 1 ( k 2 ; z 2 ) ̃  Z 1 ( k 2 ; z 3 ) ˜ P lin ( k 1 ) ˜ P lin ( k 2 ) 
×

{
σ8 ( z 3 ) k 1 · R ( z 3 ) · k 2 

k 2 1 − σ8 ( z 2 ) k 1 · R ( z 2 ) · k 2 
k 2 1 

}
, (13) 

where 
〈 δm , 1 ( k ; z) δm , 1 ( k ′ ; z) 〉 = (2 π ) 3 δD ( k + k ′ ) P lin ( k; z) (14) 
gives the linear matter power spectrum, and ˜ P lin and ˜ Z 1 are defined as 
˜ P lin ( k) = P lin ( k; z ) /σ 2 

8 ( z ) and ˜ Z 1 ( k ; z) = Z 1 ( k ; z) σ8 ( z), respectively. 
On the other hand, if F s != 1 and G s != 1 are allowed, the tree-level 

bispectrum in the squeezed limit can be calculated as 
B( k 1 , k 2 ; z 1 , z 2 , z 3 ) 

→ 
k 1 → 0 ˜ Z 1 ( k 1 ; z 1 ) ̃  Z 1 ( k 2 ; z 2 ) ˜ Z 1 ( k 2 ; z 3 ) ˜ P lin ( k 1 ) ˜ P lin ( k 2 ) 
×

{(
k 1 · k 2 

k 2 1 
)

[ ( F s σ8 )( z 3 ) − ( F s σ8 )( z 2 ) ] 
+ (

( k 1 · ˆ n )( k 2 · ˆ n ) 
k 2 1 

)
[ ( f σ8 )( z 3 ) − ( f σ8 )( z 2 ) ] }

+ ( ˆ k 2 · ˆ n )2 ˜ Z 1 ( k 1 ; z 1 ) (k 1 · k 2 
k 2 1 

)
˜ P lin ( k 1 ) ˜ P lin ( k 2 ) 

×
{

( f σ8 )( z 3 )( F s σ8 )( z 3 ) ( E s ( z 3 ) − 1 ) ˜ Z 1 ( k 2 ; z 2 ) 
− ( f σ8 )( z 2 )( F s σ8 )( z 2 ) ( E s ( z 2 ) − 1 ) ˜ Z 1 ( k 2 ; z 3 ) }. (15) 

Substituting F s = E s = 1 into the abo v e equation giv es equation 
( 13 ). In other words, the LSS consistency relation is broken when 
F s != 1 or E s != 1. Also, as expected, F s only appears in the form 
( F s σ 8 ), indicating that the E s parameter, which does not depend on 
σ 8 , is the most appropriate for investigating the breakdown of the 
LSS consistency relation. Ho we ver, since σ 8 > 0 by definition, ( F s σ 8 
< 0) also implies the breakdown of the LSS consistency relation. 

In actual observations, measuring correlators between galaxy 
density fluctuations at different redshifts is challenging. This is 
because the galaxy density fields at different redshifts are so far 
apart in the radial direction that they cannot be correlated. Therefore, 
it is common to measure the correlators of the galaxy density fields 
at equal time, so that z 1 = z 2 = z 3 . In this case, the right-hand 
side of equation ( 15 ) is al w ays zero, because the remaining k 2 
and k 3 dependencies are exchangeable when the squeezed limit 
k 1 → 0 is taken between k 1 , k 2 , and k 3 , on which the bispectrum 
is symmetrically dependent. This cancellation occurs even if F s 
and G s are scale-dependent functions with exchange symmetry (see 
Section 2.3.9 for an example). Therefore, we propose to constrain 
( F s σ 8 ) and E s directly from the equal-time bispectrum (or 3PCF) 
without taking the squeezed limit. In this case, we simultaneously 
vary ( F g σ 8 ), ( F t σ 8 ), ( G g σ 8 ), and ( G t σ 8 ) as free parameters so that the 
results are valid in as general a situation as possible. More details on 
the physical meaning of these parameters are given in the following 
subsection. 

We will focus only on the results for E s in the main text, but the 
constraint results for the other non-linear parameters, i.e. ( F g σ 8 ), 
( F s σ 8 ), ( F t σ 8 ), ( G g σ 8 ), ( G s σ 8 ), and ( G t σ 8 ), are summarized in 
Appendix A . 

2.3 Specific examples 
In this subsection, we discuss specific examples of models that are 
and are not co v ered by the parameterization introduced in equation 
( 3 ). 
2.3.1 # CDM 
In the # CDM model assuming f 2 = $m , the dark matter density and 
velocity fluctuations give (e.g. Bernardeau et al. 2002 ) 
F g = 17 

21 , F s = 1 , F t = 2 
7 , 

G g = 13 
21 , G s = 1 , G t = 4 

7 . (16) 
More generally, f ∼ $6 / 11 

m is a better approximation in a # CDM 
model. Then, the coefficients of the growth and tidal terms are also 
time-dependent (e.g. Fasiello, Fujita & Vlah 2022 ). In particular, 
the following approximate formulae are given in the case where 
f = $6 / 11 

m (Bouchet et al. 1992 ; Bouchet et al. 1995 ; Yamauchi, 
Yok o yama & Tashiro 2017 ; Yamauchi & Sugiyama 2022 ): 
F g = F s − 2 

3 F t , F s = 1 , F t = 2 
7 $3 / 572 

m , 
G g = G s − 2 

3 G t , G s = 1 , G t = 4 
7 $15 / 1144 

m . (17) 
Note that the growth terms are not independent but are given by 
the shift and tidal terms. The reason is that the second-order kernel 
functions satisfy F 2 ( k , −k ) = 0 and G 2 ( k , −k ) = 0. This condition 
corresponds to the second-order density fluctuation smoothly ap- 
proaching zero on large scales, i.e. δ2 ( k → 0) → 0, which represents 
the natural behaviour as a non-linear effect. 
2.3.2 Horndeski theories 
Horndeski gravity theories are the most general scalar-tensor theory 
with second-order equations of motion for metric tensor and scalar 
fields (Horndeski 1974 ; Deffayet et al. 2011 ; Kobayashi et al. 2011 ). 
In the Horndeski family of theories, the dark matter second-order 
density and velocity fields have time-dependent tidal terms, which 
are found to have a different time evolution than in the # CDM case 
(e.g. Takushima et al. 2014 ), 
F g = F s − 2 

3 F t , F s = 1 , F t = 2 
7 λδ, 

G g = G s − 2 
3 G t , G s = 1 , G t = 4 

7 λθ , (18) 
where λδ and λθ are time-dependent functions, and they are related 
to each other as 
λθ = λδ

[
1 + 1 

2 f d ln λδ

d ln a 
]

(19) 
with a being the scale factor. 

Compared to equation ( 17 ), Yamauchi et al. ( 2017 ) proposed to test 
the non-linearity of Horndeski theories by using the parameterization 
λδ = $ξ

m . (20) 
While it is widely used in linear theory to test modified gravity 
theories by constraining γ = log $m ( f ), this parameterization is an 
extension to non-linear effects. The authors also showed that ξ
contains new information compared to γ in the test of Horndeski 
theories by giving a specific model that satisfies γ = 6/11 and ξ != 
3/573. 
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2.3.3 DHOST theories 
Going beyond Horndeski theories, DHOST theories have been 
recently disco v ered (for re vie ws, Kobayashi 2019 ; Langlois 2019 ). 
Even though DHOST theories have higher-order equations of motion, 
they reduce in the end to a second-order system thanks to the 
de generac y between the kinetic terms of the scalar and metric fields, 
leading to healthy scalar-tensor theories. In the dark matter second- 
order density and velocity fields in these theories, in addition to the 
tidal terms, the shift terms also become time-dependent and deviate 
from the # CDM prediction of 1 (e.g. Hirano et al. 2018 ), 
F g = F s − 2 

3 F t , F s = κδ, F t = 2 
7 λδ, 

G g = G s − 2 
3 G t , G s = κθ , G t = 4 

7 λθ , (21) 
where κδ and κθ are time-dependent functions, and they are related 
via 
κθ = 2 κδ

[
1 + 1 

2 f d ln κδ

d ln a 
]

− 1 . (22) 
Yamauchi & Sugiyama ( 2022 ) proposed the following parameter- 

ization for observationally testing DHOST theories, 
f 
κδ

= $ξf 
m , κθ

κδ

= $ξs 
m , λθ

κδ

= $ξt 
m , (23) 

and pointed out that any non-vanishing value of ξ s can be treated as 
a clear signal of the existence of a gravity theory beyond Horndeski 
theories. S23 constrained these index parameters using the BOSS 
DR12 galaxies and the results are 
− 0 . 907 < ξf < 2 . 447 , 
−1 . 655 < ξt , 
−0 . 504 < ξs (24) 

at the 95 per cent confidence level. Note that the upper bounds on 
ξ t and ξ s are not given because ( λθ / κδ) and ( κθ / κδ) are consistent 
with zero within the 95 per cent error, and ξ t and ξ s can each take 
infinitely large values as ( λθ / κδ) and ( κθ / κδ) approach zero. 

The middle equation in equation ( 23 ) corresponds to the E s 
parameter introduced in equation ( 5 ), i.e. E s = κθ / κδ . Ho we ver, 
while this paper follows the analysis approach of S23 , it is no longer 
restricted to DHOST theories and assumes a more general situation 
that includes effects other than those of modified gravity theories. 
Even if the results of this paper are used to constrain DHOST theories, 
there are two obvious differences with S23 . First, while S23 assumes 
the standard bias theory given in Section 2.3.8 , this paper assumes 
the existence of more general bias parameters in Section 2.3.10 and 
varies all non-linear parameters F g , F s , F t , G g , G s , and G t as free 
parameters. Secondly, the parameterization given in equation ( 23 ) 
implicitly assumes E s > 0, whereas this paper allows ne gativ e E s . 
2.3.4 5D brane-world model 
The normal branch of the 5D Dvali–Gabadadze–Porrati brane-world 
model (nDGP; Dvali, Gabadadze & Porrati 2000 ), which is a kind 
of modified gravity theories with extra dimensions, has been well 
studied. Ho we ver, since the effects of the extra dimension can be 
described ef fecti vely as a scalar field, this brane-world model can be 
subsumed into scalar-tensor theories. 

The nDGP model is characterized by a non-linear function that 
modifies the Poisson equation (e.g. Koyama, Taruya & Hiramatsu 

2009 ; Bose & Koyama 2016 ), 
γ2 ( k 1 , k 2 ) ∝ (1 − ( ˆ k 1 · ˆ k 2 )2 ) = 2 

3 − T ( k 1 , k 2 ) , (25) 
varying the tidal term from GR. Once the tidal term is determined, 
the growth term is also determined by γ2 ( k , −k ) = 0. Thus, the 
nDGP model can be described by a parameterization similar to the 
Horndeski theories in Section 2.3.2 . 
2.3.5 f ( R ) gravity 
In this subsection, we discuss the Hu–Sawicki model (Hu & Saw- 
icki 2007 ) of f ( R ) gravity (see Capozziello & Francaviglia 2008 ; 
Sotiriou & Faraoni 2010 , for re vie ws), which is widely used in 
cosmology. The Hu–Sawicki model predicts non-linear functions 
that modify the Poisson equation as follows (e.g, Koyama et al. 
2009 ; Bose & Koyama 2016 ): 
γ2 ( k 1 , k 2 ) ∝ ( k 12 

aH 
)2 1 

. ( k 12 ) . ( k 1 ) . ( k 2 ) , 
. ( k) = ( k 

a 
)2 

+ H 2 0 ($m0 − 4 a 3 ( $m0 − 1 ) )3 
2 | f R0 | a 9 ( 3 $m0 − 4 ) 2 , (26) 

where k 12 = k 1 + k 2 , H 0 and $m0 are the Hubble parameter and 
the current matter density fraction, respectively, and | f R 0 | is a free 
parameter of the theory. Note that in this model, unlike the other 
models presented in this paper, even linear density fluctuations cannot 
separate the time dependence from the wavenumber dependence. 

The relationship between f ( R ) gravity and scalar-tensor gravity, 
and their possible equi v alence, has been e xtensiv ely studied (e.g. 
Sotiriou 2006 ). In particular, the gravitational non-linear effects 
that are the focus of this paper have been discussed in relation 
to Horndeski theories in Appendix B of Bose & Koyama ( 2016 ). 
Ho we ver, the gravitational non-linearities obtained from the Hu–
Sawicki model differ from those of the Horndeski type discussed 
in Section 2.3.2 . We suspect that this difference is due to the fact 
that the non-linear effects given in Section 2.3.2 focus only on the 
terms for which the spatial deri v ati ve is most acti ve in the quasi- 
static approximation, and neglect the terms corresponding to the 
mass terms of the scalar field, while the f ( R ) gravity model retains 
such terms. Since a detailed proof of this is beyond the scope of this 
paper, we limit ourselves to pointing out that the non-linear effect of 
the Hu–Sawicki model given by equation ( 26 ) does not fit into the 
parameterization framework used in this paper. 
2.3.6 Nearly horizon scales 
This paper focuses on the LSS consistency relation in the sub-horizon 
limit. Thus, even in the GR case, at large scales close to the horizon 
scale, there are additional correction terms for the non-linear effects 
given in Section 2.3.1 , which are derived in the Newtonian limit. For 
example, following Tram et al. ( 2016 ), a correction term proportional 
to ( aH / k ) 2 arises for F g , F s and F t , respectively, and a new scale 
dependence emerges as follows: 
K ( k 1 , k 2 ) ∝ (aH 

k 12 
)2 (

k 1 
k 2 − k 2 

k 1 
)2 

. (27) 
Therefore, the parameterization used in this paper is only valid at 
the sub-horizon scale. See also Creminelli et al. ( 2013 ) for a fully 
relativistic consistency relation. Inomata et al. ( 2023 ) also provide a 
detailed study of squeezed n -point functions in synchronous gauge. 
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2.3.7 Massive neutrinos 
In the remainder of this section, we denote the non-linear parameters 
for dark matter in a gravity theory described in Sections 2.3.1 –2.3.4 
as F (m) 

g , s , t and G (m) 
g , s , t and the additional correction terms for them as 

/F (m) 
g , s , t and /G (m) 

g , s , t : i.e. 
F g , s , t = F (m) 

g , s , t + /F g , s , t , 
G g , s , t = G (m) 

g , s , t + /G g , s , t . (28) 
Massive neutrinos can modify the second-order kernel functions, 

in which case the following correction terms are added to the non- 
linear parameters (Kamalinejad & Slepian 2020 ): 
/F g = 4 

245 f ν, /F s = 0 , /F t = − 6 
245 f ν, 

/G g = − 83 
245 f ν, /G s = −3 

5 f ν, /G t = − 96 
245 f ν, (29) 

where the neutrino density fraction f ν is given by 
f ν = $ν

$m (30) 
with $ν and $m being the neutrino and matter energy densities in 
units of the critical density , respectively . It is important to note that 
the massive neutrinos do not change the shift term of the density 
fluctuation but correct the shift term of the velocity fluctuation. 

Finally, we estimate the extent to which E s deviates from 1 in the 
presence of massive neutrinos. The neutrino density fraction is given 
by (e.g. Takada, Komatsu & Futamase 2006 ) 
f ν = 0 . 05 ( ∑ 

m ν
0 . 658 eV 

)(
0 . 14 
$m h 2 

)
. (31) 

According to current observations, the upper limit for the total 
neutrino mass is ∑ 

m ν ! 0 . 1 eV at 95 per cent confidence level 
(CL) (e.g. Di Valentino, Gariazzo & Mena 2021 ). Consequently, 
substituting ∑ 

m ν = 0 . 1 eV into equation ( 31 ), the expected value 
of E s − 1 = −(3/5) f ν is then 
E s − 1 = −0 . 0046 (∑ 

m ν
0 . 1 eV 

)(
0 . 14 
$m h 2 

)
. (32) 

Thus, the impact of the neutrino masses in E s would be minimal, 
since the 1 σ error for E s obtained from the current BOSS data is 
about 3 in Section 4.2 . Put differently, it would be challenging to 
strongly constrain neutrino masses in the future using only E s . 

2.3.8 Standard bias effects 
In standard bias theory, the non-linear bias parameters connecting 
the galaxy density field and the dark matter density field appear in 
the growth and tidal terms of the density fluctuations. Thus, they are 
added to F g and F t as follows (for a review, see Desjacques et al. 
2018 ): 
/F g = 1 

2 b 2 b 1 , /F t = b t 
b 1 , (33) 

where b 2 and b t denote the local non-linear bias parameter and 
the tidal bias parameter, respectively. In this case, the condition 
F 2 ( k , −k ) = 0, which is satisfied in the absence of the bias effect, 
does not hold, and F g should be treated as an independent parameter, 
while G g remains dependent. 

2.3.9 Relative velocities 
The relativ e v elocity effects of baryons and cold dark matter, together 
with a corresponding bias parameter, enter the galaxy density 
fluctuation with a quadratic form (Dalal, Pen & Seljak 2010 ). The 
resulting shift term is modified in the second-order density fluctuation 
(Yoo et al. 2011 ), 
/F s = −b r 

b 1 T rv ( k 1 ) T rv ( k 2 ) T m ( k 1 ) T m ( k 2 ) , (34) 
where b r denotes the relativ e v elocity bias parameter, T rv is the 
relativ e v elocity transfer function, and T m is the dark matter transfer 
function. This relativ e v elocity effect on galaxy clustering has been 
measured using galaxy power spectra and 3PCFs, but its signature 
has not yet been detected (Yoo & Seljak 2013 ; Beutler et al. 2016 ; 
Slepian et al. 2018 ). 

The relativ e v elocity effect is obtained by the ratio of the rel- 
ativ e v elocity to the dark matter transfer functions T rv ( k )/ T m ( k ), 
which is scale-dependent and therefore does not fit into the pa- 
rameterization framework of this paper. Ho we ver, if a signal with 
E s != 1 is detected, a correct physical interpretation would re- 
quire a reanalysis to account for this possible relative velocity 
effect. 

2.3.10 Extended bias effects 
In this paper, we discuss the possibility of extended bias theories. For 
example, in specific gravity theories, such as DHOST theories, the 
coefficient of the density fluctuation shift term F s deviates from 1, 
violating the LSS consistency relation. On the other hand, Fujita & 
Vlah ( 2020 ) showed that the standard bias theory is reproduced in 
theories that satisfy the LSS consistency relation. In other words, 
for DHOST theories with F s != 1, there may be an additional bias 
effect in F s . Since the shift term is described by the product of the 
displacement vector and the density fluctuation, the bias of the shift 
term may be related to the bias effect of the displacement vector. 
Furthermore, since the time deri v ati ve of the displacement vector 
is a velocity field, the bias effect of the displacement vector may 
induce the bias effect of linear and non-linear velocity fields (see 
also section 9.12 in S23 ). 

Based on the abo v e considerations, we assume that bias effects 
occur for all non-linear parameters, 
/F g = 1 

2 b 2 b 1 , /F s = b s 
b 1 , /F t = b t 

b 1 , 
/G g = 1 

2 b v2 , /G s = b vs , /G t = b vt , (35) 
where b s is the shift bias in the second-order density fluctuation, 
and b v2 , b vs , and b vt are the non-linear local bias, shift bias, and 
tidal bias in the velocity fluctuation. In such an extended bias theory, 
the condition G 2 ( k , −k ) = 0 no longer holds, and G g should also 
be treated as an independent parameter. Since the assumption of a 
linear velocity bias does not change the form of equation ( 2 ), but only 
multiplies the velocity bias parameter b v by f , we implicitly assume a 
linear velocity bias and use f as it is. Of course, numerical experiments 
such as N -body simulations of dark matter, including effects such 
as DHOST theories, are needed to verify this consideration. Such 
studies are left as future work. 
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2.4 Bispectrum and 3PCF models 
The leading order galaxy power spectrum and bispectrum in pertur- 
bation theory are given by 

P ( k ) = [ Z 1 ( k )] 2 P lin ( k) , 
B( k 1 , k 2 ) = 2 Z 2 ( k 1 , k 2 ) Z 1 ( k 1 ) Z 1 ( k 2 ) P lin ( k 1 ) P lin ( k 2 ) 

+ ( k 1 ↔ k 3 ) + ( k 2 ↔ k 3 ) , (36) 
where k 1 + k 2 + k 3 = 0. 

The theoretical models in equation ( 36 ) work well in principle on 
large scales around and abo v e 100 h −1 Mpc , but the y cannot describe 
the non-linear decay of the signal of the Baryon Acoustic Oscillations 
(BAOs; Peebles & Yu 1970 ; Sunyaev & Zeldovich 1970 ) that occurs 
around 100 h −1 Mpc . In order to include the effects of the non-linear 
decay of the BAO, while preserving the form of the leading-order 
solutions of the power spectrum and the bispectrum, we use the 
following theoretical models, which are obtained by re-summing 
the IR modes appearing in the expansion via perturbation theory 
(Eisenstein, Seo & White 2007 ; Sugiyama et al. 2021 ), 

P ( k ) = [ Z 1 ( k ) ] 2 [D 2 ( k ) P w ( k) + P nw ( k) ] , 
B( k 1 , k 2 ) = 2 Z 2 ( k 1 , k 2 ) Z 1 ( k 1 ) Z 1 ( k 2 ) 

×
{ 

D ( k 1 ) D ( k 2 ) D ( k 3 ) P w ( k 1 ) P w ( k 2 ) 
+ D 2 ( k 1 ) P w ( k 1 ) P nw ( k 2 ) + D 2 ( k 2 ) P nw ( k 1 ) P w ( k 2 ) 
+ P nw ( k 1 ) P nw ( k 2 ) } 

+ ( k 1 ↔ k 3 ) + ( k 2 ↔ k 3 ) , (37) 
where P lin is decomposed into two parts: the ‘no-wiggle (nw)’ part 
P nw , which is a smooth version of P lin with the baryon oscillations 
remo v ed (Eisenstein & Hu 1998 ), and the ‘wiggle (w)’ part defined as 
P w = P lin − P nw . The non-linear BAO degradation is represented by 
the 2D Gaussian damping factor derived from a differential motion 
of Lagrangian displacements (Eisenstein et al. 2007 ; Crocce & 
Scoccimarro 2008 ; Matsubara 2008 ): 
D( k ) = exp ( 

−
k 2 (1 − µ2 ) σ2 

⊥ + k 2 µ2 σ2 
‖ 

2 
) 

, (38) 
where µ = ˆ k · ˆ n . We compute the radial and transverse components 
of the smoothing parameters, σ⊥ and σ ! , using the Zel’dovich 
approximation (Zel’Dovich 1970 ; Crocce & Scoccimarro 2008 ; 
Matsubara 2008 ): 
σ2 

⊥ = 1 
3 
∫ 

dp 
2 π2 P lin ( p) , 

σ2 
‖ = (1 + f ) 2 σ2 

⊥ . (39) 
We decompose the power spectrum into multipole components 

using Legendre polynomial functions L 0 (e.g. Hamilton 1997 ), 
P ( k ) = ∑ 

0 P 0 ( k) L 0 ( ̂ k · ˆ n ) . (40) 
The multipole components of the power spectrum are then related to 
those of the 2PCF by a 1D Hankel transformation, 
ξ0 ( r) = i 0 ∫ dk k 2 

2 π2 j 0 ( rk) P 0 ( k) , (41) 
where j 0 is the 0 -th order spherical Bessel function. The multipole 
index 0 refers to the expansion with respect to the line-of-sight 
dependence due to the Redshift Space Distortion effect (RSD; Kaiser 
1987 ) and the Alcock–Paczy ́nski effect (AP; Alcock & Paczy ́nski 
1979 ). The components with 0 = 0, 2, and 4 are called monopole, 
quadrupole, and hexadecapole, respectively; the components with 0 
> 0 are caused only by the RSD effect and the AP effect. 

We adopt the decomposition formalism of the bispectrum into 
multipole components using tri-polar spherical harmonic (TripoSH) 
base functions (Sugiyama et al. 2019 ), 
B( k 1 , k 2 ) = ∑ 

0 1 + 0 2 + 0 = even B 0 1 0 2 0 ( k 1 , k 2 ) S 0 1 0 2 0 ( ̂ k 1 , ̂  k 2 , ̂  n ) , (42) 
where the TripoSH base functions are given by 
S 0 1 0 2 0 ( ̂ k 1 , ̂  k 2 , ̂  n ) = 4 π

h 0 1 0 2 0 
∑ 

m 1 m 2 m 
(

0 1 0 2 0 
m 1 m 2 m 

)

× Y 0 1 m 1 ( ̂ k 1 ) Y 0 2 m 2 ( ̂ k 2 ) Y 0m ( ̂  n ) , 
with 
h 0 1 0 2 0 = √ 

(2 0 1 + 1)(2 0 2 + 1)(2 0 + 1) 
4 π

(
0 1 0 2 0 
0 0 0 

)
. (43) 

The multipole components of the bispectrum are then related to those 
of the 3PCF by a 2D Hankel transformation, 
ζ0 1 0 2 0 ( r 1 , r 2 ) = i 0 1 + 0 2 ∫ dk 1 k 2 1 

2 π2 ∫ 
dk 2 k 2 2 
2 π2 

× j 0 1 ( r 1 k 1 ) j 0 2 ( r 2 k 2 ) B 0 1 0 2 0 ( k 1 , k 2 ) . (44) 
The multipole index 0 appearing in B 0 1 0 2 0 or ζ0 1 0 2 0 is associated with 
the multipole expansion w.r.t. the line of sight, just as the index 0 in 
the power spectrum, P 0 . 
2.5 Theor etical pr edictions 
Fig. 1 shows how the multipole components of the 3PCF are affected 
when the coefficients of the shift terms for density and velocity 
fluctuations, i.e. F s and G s , are changed from 1. Since Section 4.2 
will show that the 1 σ error for E s is about 3, we add ±3 to the E s = 
1 value in # CDM to compute the cases where E s = −2 and E s = 4. 
In other words, we compute the four cases for ( F s = 0.25, G s = 1.0), 
( F s = −0.5, G s = 1.0), ( F s = 1.0, G s = 4.0), and ( F s = 1.0, G s = 
−2.0). 

Focusing on the monopole components, i.e. ζ 000 and ζ 110 , the 
effect of changing the value of F s is more significant than when G s 
is changed. This result suggests that the monopole component can 
constrain F s well. Next, we look at the quadrupole components, i.e. 
ζ 202 and ζ 112 . Again, the change in F s can affect them more than in 
G s , but the difference is less than for the monopole component. This 
fact means that G s or E s is determined in the quadrupole component 
after F s has been determined in the monopole component. 

Of course, in the actual MCMC analysis, not only F s and G s 
are varied, but also F g , F t , G g , and G t . The influence of all these 
parameters on the 3PCF multipole can be seen in figs 1–2 of S23 . 
3  DATA  ANALYSI S  M E T H O D O L O G Y  
Our data analysis methods are summarized below. See S23 for details. 

(i) To simplify the correction for window function effects, the 
2PCF and the 3PCF are used instead of the power spectrum and the 
bispectrum in Fourier space, following Sugiyama et al. ( 2021 , 2023 ). 

(ii) Only large scales in the range 80 h −1 Mpc ≤ r ≤ 150 h −1 Mpc 
are used, where the 2PCF and 3PCF models ( 37 ) are expected to work 
well. This expectation has been confirmed in the context of GR by 
Sugiyama et al. ( 2021 ). Hirano et al. ( 2020 ) has shown that when 
the shift term deviates from 1, ultra-violet divergence appears in 
the non-linear correction term in the power spectrum, i.e. referred 
to as the one-loop term, leading to unattainable converged values. 
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Figure 1. Multipole components of the 3PCF, i.e. ζ 000 , ζ 110 , ζ 202 , and ζ 112 , 
at z = 0.61, calculated from the theoretical model in equation ( 37 ), when the 
coefficients of the shift terms of the density or velocity fluctuations, i.e. F s or 
G s , vary from 1. The results are shown for F s = G s = 1 (black solid), F s = 
0.25 and G s = 1 (blue solid), F s = −0.5 and G s = 1 (magenta solid), F s = 
1 and G s = 4.0 (blue dashed), F s = 1 and G s = −2.0 (magenta dashed). For 
the sake of simplicity, the plot is made as a function of r 1 = r 2 = r . The 
cosmological parameters used to draw this plot are given in Section 1 , and 
the assumed linear bias is b 1 = 2, and the assumed non-linear biases are zero, 
i.e. b 2 = b t = 0. 

Therefore, we expect similar behavior in the bispectrum and focus 
only on scales larger than 80 h −1 Mpc , where the loop correction 
term will not make a significant contribution. 

(iii) The bin widths are 5 h −1 Mpc for the 2PCF and 10 h −1 Mpc 
for the 3PCF; the 3PCF has a wider bin width than the 2PCF to reduce 
the number of data bins. These bin widths are the same as those used 
in Sugiyama et al. ( 2021 ) for the anisotropic BAO analysis using the 
2PCF and 3PCF. 

(iv) The multipole components of the 2PCF and 3PCF used in 
the analysis are ξ 0 , ξ 2 , ζ 000 , ζ 110 , ζ 202 , and ζ 112 . In particular, ζ 000 , 
ζ 110 , and ζ 112 are only considered for r 1 ≥ r 2 since ζ0 1 0 2 0 ( r 1 , r 2 ) = 
ζ0 2 0 1 0 ( r 2 , r 1 ). In this case, the total number of data bins is 202. 

(v) The multipole components of the 2PCF and 3PCF are mea- 
sured using an FFT 2 -based estimator (Sugiyama et al. 2019 ). The 
theoretical models for the 2PCF and 3PCF are then computed 
according to section 4 in S23 , taking into account the window 
function effect. 

(vi) The eight parameters constrained in this analysis are ( b 1 σ 8 ), 
( f σ 8 ), ( F g σ 8 ), ( F s σ 8 ), ( F t σ 8 ), ( G g σ 8 ), E s , and ( G t σ 8 ); the constraint 
on the E s parameter is the main result in this paper. 

(vii) The AP effect (Alcock & Paczy ́nski 1979 ) is ignored in our 
analysis. Ho we ver, the AP ef fect can be determined by the 2PCF at a 
few per cent and is not expected to significantly affect the constraint 
results for the parameters that characterize the non-linear fluctuations 
of interest in this paper, such as E s . 

(viii) The galaxy data used in the analysis is the final galaxy 
clustering dataset, Data Release 12 (DR12; Alam et al. 2015 ) from 
the Baryon Oscillation Spectroscopic Surv e y (BOSS; Eisenstein 
et al. 2011 ; Bolton et al. 2012 ; Dawson et al. 2013 ). The BOSS 
surv e y includes four galaxy samples, CMASS, LOWZ, LOWZ2, 
and LOWZ3, which are combined into a single sample (Reid et al. 
2016 ). This combined DR12 sample co v ers the redshift range z = 
0.2–0.75 and is divided into the two redshift bins, 0.2 < z < 0.5 and 
0.5 < z < 0.75, which have the mean redshifts z = 0.38 and z = 
0.61, respectively. Furthermore, the DR12 sample is observed across 
two galactic hemispheres, the Northern and Southern Galactic Caps, 
called NGC and SGC respectively. Thus, the four galaxy samples 
considered in our analysis are NGC at z = 0.38, SGC at z = 0.38, 
NGC at z = 0.61, and SGC at z = 0.61. 

(ix) The 2PCF and 3PCF covariance matrices are computed by 
measuring the 2PCF and 3PCF from the publicly available 2048 
MultiDark-Patchy mock catalogues (Patchy mocks; Kitaura et al. 
2016 ; Klypin et al. 2016 ). 

(x) For the NGC and SGC galaxy samples at z = 0.38, the p - 
values calculated from the best parameter values obtained by our 
analysis are less than 0.05, indicating that the theoretical 3PCF model 
does not fit the measurements well. The fact that such discrepancies 
between the data and the model occur even in a general parameter 
space suggests that this is likely to be an indication of systematics. 
Unfortunately, the reason for this cannot be identified in this paper. 
Therefore, following section 8 in S23 , we multiplied the 3PCF 
covariance matrices measured from the NGC and SGC at z = 0.38 
by a phenomenological pre-factor of 1.15 and 1.25, respectively, 
to increase the final p -value obtained. However, we found that this 
manipulation had little effect on the final E s -constraint. This suggests 
that the de generac y between the parameters is the main limitation 
of our analysis, rather than the 15–25 per cent changes in the 3PCF 
covariance matrices. 

2 F ast F ourier Transform 
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Figure 2. Multipole components of the 3PCF, i.e. ζ 000 , ζ 110 , ζ 202 , and ζ 112 , measured from the NGC and SGC samples at z = 0.38 (blue points). For the sake 
of simplicity, these plots are shown as a function of r 1 = r 2 = r , even though the actual MCMC analysis also uses the case r 1 != r 2 . The error bars are the 
standard deviation of the 3PCF measurements computed from 2048 Patchy mocks. The orange error bars are the rescaled ones described in (x) of Section 3 , 
which are used in the MCMC analysis. Also plotted are the theoretical models computed from the best-fitting parameter values obtained from the MCMC 
analysis (magenta lines); they are shown as solid lines at the scales r ≥ 80 h −1 Mpc used in the analysis, and as dashed lines at smaller scales. 
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Figure 3. Same as Fig. 2 , except that the results at z = 0.61 are shown. 
(xi) The Hartlap [equation (17) in Hartlap, Simon & Schneider 

2007 ] and M 1 [square root of equation (18) in Perci v al et al. 2014 ] 
factors are used to correct for the effect of errors in the covariance 
matrix, computed from a finite number of mock catalogues, on the 

final parameter errors. The M 2 factor [square root of equation (22) 
in Perci v al et al. 2014 ], obtained by combining the Hartlap and 
M 1 factors, is M 2 = 1.105 in our analysis, close enough to 1 for 
conserv ati ve data analysis. 
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(xii) The flat prior distribution of the parameter of interest is 
determined based on the error from a Fisher analysis, performed in 
the same setting as the main analysis. The fiducial parameter value 
θfid , assumed in performing the Fisher analysis, is calculated from 
the cosmological parameters introduced in Section 1 and the linear 
bias parameter b 1 = 2. With the standard deviation of the parameters 
obtained by the Fisher analysis being σ fisher ( θ ), then θfid ± 5 σfid ( θ ) 
is used as the flat prior distribution. 

(xiii) The likelihood of the parameters is computed using the 
MCMC algorithm implemented in MONTE PYTHON (Brinckmann & 
Lesgourgues 2019 ). We ensure the convergence of each MCMC chain 
by imposing R − 1 ! O(10 −4 ), where R is the standard Gelman–
Rubin criteria (Gelman & Rubin 1992 ). 
The convergence of the results is also checked through the following 
method. First, eight independent MCMC chains are generated, and 
the mean and standard deviation of the E s parameter, ( E s ) mean and 
( E s ) std , are calculated from each chain. Next, the standard deviation 
of the mean, (( E s ) mean ) std , and the mean of the standard deviation, 
(( E s ) std ) mean , are calculated from the eight mean values and standard 
deviations. Finally, the ratio (( E s ) mean ) std /(( E s ) std ) mean is checked to be 
less than 10 per cent. Our final E s constraint is obtained by combining 
all eight chains into a single chain. 
4  RESULTS  
4.1 Measurements 
Figs 2 and 3 show the multipole components of the 3PCF measured 
from the BOSS DR12 galaxies and the corresponding theoretical 
models calculated with the best-fitting parameters in Table A1 . For 
the monopole components ( ζ 000 and ζ 110 ), a BAO peak is expected 
to appear around 100 h −1 Mpc . For example, ζ 000 and ζ 110 measured 
from NGC at z = 0.38 show a relatively clear BAO signal (see Fig. 2 , 
upper left two panels), but the BAO signal is not seen in some galaxy 
samples. Also, as noted by S23 and discussed in (x) of Section 3 , 
ζ 000 measured from SGC at z = 0.38 shows statistically significant 
differences from the theoretical model on large scales (see Fig. 2 , 
upper right-hand panel). 

Although the 3PCF multipole, ζ0 1 0 2 0 , is a function of r 1 and r 2 , only 
the case r 1 = r 2 is plotted here to simplify the figure; see figs 12–19 
in S23 for the results for r 1 != r 2 . 
4.2 Constraints on E s 
Fig. 4 shows the 1D marginalized posterior probability distributions 
for E s , and Table 1 summarizes the results of constraining E s 
computed from the posteriors. The results presented in this table 
show the results of constraining E s separately for the four BOSS 
samples and a combination of these results. 

The E s constraint results from each sample of BOSS galaxies are 
helpful, for example, in constraining models that v ary the coef ficient 
of the shift term from 1, as presented in Sections 2.3.3 , 2.3.7 , 2.3.9 , 
and 2.3.10 . 

On the other hand, from the point of view of examining the 
violation of the LSS consistency relation, it is also useful to combine 
all four galaxy samples to see if E s is consistent with E s = 1. Such an 
analysis is possible because the predicted E s value for any sample of 
galaxies and at any redshift is al w ays E s = 1 if the LSS consistency 
relation is satisfied. The E s value obtained in this analysis is no longer 
meaningful as a physical parameter, but is interpreted as a parameter 

Figur e 4. 1D mar ginalized posterior probability distributions for E s . Results 
are shown for NGC at z = 0.38 (blue), SGC at z = 0.38 (orange), NGC at 
z = 0.61 (green), SGC at z = 0.61 (red), and the four samples combined 
(magenta). A vertical line with E s = 1 (black dashed line) is also plotted, 
indicating that the consistency relation is satisfied. 
for testing the LSS consistency relation. As a result, we obtain 
E s = −0 . 92 + 3 . 13 

−3 . 26 (45) 
at the 1 σ level. This result indicates that the present analysis using 
the BOSS galaxy data does not violate the LSS consistency relation 
within the statistical error of the data. 
4.3 Comparison with the results of the Fisher analysis 
Table 1 shows that the errors obtained for each galaxy sample are 
larger than those predicted by the Fisher analysis, while the combined 
sample yields a constraint close to the Fisher estimate. This is because 
the tail of the posterior distribution function obtained for each galaxy 
sample is more widely spread out than the Gaussian function assumed 
in the Fisher analysis. On the other hand, when the four galaxy 
samples are combined, the posterior distribution function approaches 
the Gaussian function due to the central limit theorem; see Fig. 5 for 
a comparison of the posterior distribution function of E s and the 
Gaussian distribution function. 
4.4 Discussions for future research 
In anticipation of future surv e ys, it is important to note that the 
magnitude of statistical errors is inversely proportional to the square 
root of the surv e y volume. Thus, it naturally follows that the larger the 
surv e y volume, the smaller the resulting errors. Currently, the volume 
of the BOSS data being used in this paper is roughly 4 ( h −1 Gpc) 3 . 
By comparison, the surv e y volume of the Dark Energy Spectroscopic 
Instrument (DESI; DESI Collaboration 2016 ) 3 is expected to reach 
∼ 40 ( h −1 Gpc) 3 , which is ten times that of BOSS. Moreo v er, it is 
projected that by combining various galaxy surv e ys, such as Euclid 
(Laureijs et al. 2011 ) 4 and the Subaru Prime Focus Spectrograph 
(PFS; Takada et al. 2014 ), 5 we can anticipate an impro v ement in the 
current constraint results by a factor of 3-4. 
3 http:// desi.lbl.gov/ 
4 www.euclid-ec.org 
5 https:// pfs.ipmu.jp/ index.html 
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Table 1. Means, standard deviations, and ±1 σ errors (68.27 per cent CL) calculated from the E s posteriors 
shown in Fig. 4 . 

( E s ) mean ( E s ) std (fisher) ( E s ) −1 σ ( E s ) + 1 σ χ2 
min / DoF ( p -value) 

NGC at z = 0.38 0.44 9 . 85 (5 . 40) −8.93 8.32 207.2/194 (0.245) 
SGC at z = 0.38 −1.69 16 . 08 (8 . 80) −12.21 15.13 199.3/194 (0.382) 
NGC at z = 0.61 −1.42 11 . 89 (6 . 95) −9.77 9.93 216.6/194 (0.128) 
SGC at z = 0.61 −7.32 23 . 93 (11 . 6) −19.44 24.78 203.9/194 (0.299) 
Combined four samples −0.92 3 . 72 (3 . 64) −3.26 3.13 - 
Results are shown for each galaxy sample and for the four samples combined. The standard deviations of 
the parameters predicted by the Fisher analysis are given in round brackets. The rightmost column shows 
the reduced χ2 computed from the best-fitting parameter values, and the corresponding p -values, where the 
degrees of freedom (DoF) are 202 − 8 = 194. 

Figure 5. Same as Fig. 4 , except that the Gaussian distribution functions 
assumed in the Fisher analysis are also plotted simultaneously as dashed 
lines. For clarity of display, only two cases are plotted, NGC at z = 0.38 and 
the combined sample. The Gaussian distributions are plotted with the mean 
v alue gi ven in the ( E s ) mean column of Table 1 and the standard deviation 
predicted by the Fisher analysis input. 

Furthermore, as demonstrated by Sugiyama et al. ( 2020 ), the shot 
noise effect determined by the galaxy number density is crucial in 
assessing statistical errors in the galaxy bispectrum and 3PCF. For 
example, in the BOSS case, it was shown in sections 5 and 7 of 
S23 that a smaller v olume b ut high-density sample at z = 0.38 
can impose stronger constraints on the non-linear parameters ( 3 ) 
using the 3PCF measurement compared to a larger volume but low- 
density sample at z = 0.61. Indeed, in this paper, the E s results 
obtained in Table 1 show smaller errors for the z = 0.38 sample 
than for the z = 0.61 case. Although the galaxy number density 
for BOSS is ∼ 3 × 10 −4 ( h −1 Mpc ) −3 , for DESI it can reach up to 
∼ 7 × 10 −4 ( h −1 Mpc ) −3 , depending on the redshift bin, enabling 
us to anticipate better constraints on E s , beyond the actual volume 
differences. 

The prediction of the constraint results for the non-linear pa- 
rameters using information on smaller scales than those used in 
this paper was carried out by the Fisher analysis in section 7 of 
S23 in the context of DHOST theories. In that case, for example, 
the coefficient G s σ 8 of the shift term in the non-linear velocity 
field is expected to have ∼6 times better error improvement when 
using up to 30 h −1 Mpc , compared to our current analysis using 
scales greater than 80 h −1 Mpc . This dramatic impro v ement in 
parameter constraints through the use of small scales serves as a 

strong moti v ation to further de velop theoretical bispectrum models 
applicable to smaller scales. 

The use of more multipole components than the four multipole 
components ( ζ 000 , ζ 110 , ζ 202 , and ζ 112 ) of the 3PCF used in this 
paper is also expected to improve the constraint results for E s and 
the other non-linear parameters. 

Finally, note that although all six non-linear parameters ( 3 ) are 
varied in this paper to consider as general a situation as possible, the 
number of free parameters to be varied is reduced in many cases when 
actually constraining the specific models presented in Section 2.3 . 
F or e xample, for the constraints on neutrino masses in Section 2.3.7 , 
assuming the standard bias effects in Section 2.3.8 , all the growth, 
shift, and tidal terms of the non-linear velocity field can be used to 
constrain the neutrino mass. The results will therefore be better than 
the constraint results in this paper, which use only E s . 
5  C O N C L U S I O N S  
This paper is the first work to test the consistency relation for the 
LSS from actual galaxy clustering data. We have made this analysis 
possible through a joint analysis of anisotropic 2PCFs and 3PCFs 
measured from the BOSS DR12 galaxy data. While the anisotropic 
component of the 3PCF (or bispectrum) has mainly been used to 
impro v e the results of the 2PCF-only analysis (e.g. Sugiyama et al. 
2021 ; D’Amico et al. 2022b ; Ivanov et al. 2023 ), the results of 
this paper open a ne w observ ational windo w for anisotropic 3PCF 
analysis. 

The LSS consistency relation relates the three-point statistics 
in the squeezed limit to the two-point statistics. The squeezed 
limit corresponds to extracting only the shift terms that appear in 
the second-order density and velocity fluctuations, and the LSS 
consistency relation is satisfied when the coefficients of the shift 
terms, denoted F s and G s ( 3 ), are F s = G s = 1. Conversely, the LSS 
consistency relation breaks down when F s and G s deviate from 1, e.g. 
due to multicomponent fluids, modified gravity, and their associated 
bias ef fects. Ho we v er, among the three symmetric wav enumbers, k 1 , 
k 2 , and k 3 , on which the bispectrum depends, taking the squeezed 
limit k 1 → 0, the dependence of the remaining k 2 and k 3 becomes 
exchange symmetric, cancelling the coefficient modifications of the 
shift terms and behaving as if the LSS consistency relation were 
satisfied (Crisostomi et al. 2020 ). Furthermore, we pointed out in 
Section 2.1 that the coefficients of the shift terms are degenerate 
with the parameter σ 8 and appear in the form of ( F s σ 8 ) and ( G s σ 8 ), 
so we cannot directly constrain F s and G s . 

Two crucial ideas for solving the problems in the abo v e paragraph 
are presented in Sections 2.1 and 2.2 . The first idea is to test the 
LSS consistency relation independently of σ 8 by defining the E s 
parameter ( 5 ) as the ratio of ( G s σ 8 ) to ( F s σ 8 ) and checking whether 
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E s deviates from 1. Note that E s != 1 is a sufficient but not a necessary 
condition for showing a violation of the LSS consistency relation, 
since there may be theories that satisfy F s = G s != 1. The second 
idea is to ensure that our results hold in as many different situations 
as possible, we constrain E s in a general parameter space framework 
with the coefficients of the growth, tidal, and shift terms as free 
parameters. Section 2.3 pro vides e xamples of models that are and 
are not included in our proposed parameterization. 

This analysis requires information about the non-linearity of the 
velocity field, which requires dealing with the anisotropic component 
of the galaxy three-point statistic caused by the RSD effect. In this 
paper, we adopt a method of decomposing the anisotropic 3PCF using 
the TripoSH basis function in Section 2.4 . This analysis method has 
been established in a series of papers by Sugiyama et al. ( 2019 , 
2021 , 2023 ). In particular, our analysis method is similar to the one 
used in Sugiyama et al. ( 2023 ) to test DHOST theories from BOSS 
galaxies, except for the different parameters treated. Therefore, those 
interested in learning more about the analysis methods discussed in 
Section 3 are referred to that paper. 

We have constrained E s from two perspectives using the four 
galaxy samples from BOSS DR12. The first is a constraint on E s 
from each galaxy sample that allows a physical interpretation by a 
specific model, as presented in Section 2.3 . The second focuses on 
the violation of the LSS consistency relation and examines whether 
E s deviates from 1 using the combined four samples. In this case, E s 
is no longer interpreted as a physical parameter but as a parameter 
for testing the LSS consistency relation. In both cases, the results 
are consistent with E s = 1 within the 1 σ error, as shown in Table 1 . 
In particular, in the second case we obtained E s = −0 . 92 + 3 . 13 

−3 . 26 . The 
results of this paper indicate that the LSS consistency relation is not 
violated within the statistical errors of the data in this analysis using 
the BOSS galaxy data. 

In the future, several extensions can be made. First, it should be 
possible to include more 3PCF multipole components in the analysis. 
Secondly, the AP effect should be included in the analysis, and 
de generac y relations between parameters with the AP effect should 
be considered. Finally, an attempt should be also made to impro v e 
the theoretical model of the 3PCF to include information at smaller 
scales. While attempting these impro v ements, the present analysis 
can be directly applied to upcoming spectroscopic galaxy surv e ys, 
such as DESI, Euclid, and PFS. 
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APPENDI X  A :  OT H E R  N O N - L I N E A R  
PA R A M E T E R S  
While the main text focuses only on the results for E s , this ap- 
pendix summarizes the results for the other parameters [see (vi) in 
Section 3 ] that were varied simultaneously in the MCMC analysis. 
Results for G s σ 8 are also reported as G s σ8 = ( F s σ8 ) E s . Table A1 
shows the best-fitting values, means, and standard deviations ob- 
tained from the four BOSS samples for the two parameters appearing 
in linear theory ( b 1 σ 8 and f σ 8 ) and for the six non-linear parameters 
( F g σ 8 , F s σ 8 , F t σ 8 , G g σ 8 , G s σ 8 , G t σ 8 ). The covariance matrices 
for these parameters are shown in Table A2 . For illustration, the 
marginalized 1D and 2D posteriors of the parameters are plotted for 
NGC at z = 0.38. The results presented in Tables A1 and A2 should 
not only be used to test the LSS consistency relation, which is the 
subject of this paper but can also be used directly to constrain the 
various specific models presented in Section 2.3 . 

In addition to the E s != 1 condition, it can also be argued that a 
signal F s σ 8 < 0 is a violation of the LSS consistency relation if it is 
found (see Section 2.2 ). Therefore, the results on F s σ 8 from Table A1 
are summarized as follows: 
F s σ8 = 

 
   
   

0 . 715 ± 0 . 685 ( NGC at z = 0 . 38 ) 
0 . 656 ± 1 . 62 ( SGC at z = 0 . 38 ) 
0 . 883 ± 0 . 845 ( NGC at z = 0 . 61 ) 
0 . 612 ± 1 . 18 ( SGC at z = 0 . 61 ) 

. (A1) 
As shown abo v e, since F s σ 8 < 0 cannot be statistically significant, 
it can be concluded that no violation of the LSS consistency relation 
was found in the current analysis. 
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Table A1. Best-fitting values, means, and standard deviations for ( b 1 σ 8 ), ( f σ 8 ), ( F g σ 8 ), ( F s σ 8 ), ( F t σ 8 ), ( G g σ 8 ), ( G s σ 8 ), 
and ( G t σ 8 ) obtained in the joint analysis of the 2PCF and the 3PCF using the four BOSS samples. 

NGC at z = 0.38 
b 1 σ 8 f σ 8 F g σ 8 F s σ 8 F t σ 8 G g σ 8 G s σ 8 G t σ 8 

Best- 
fitting 1.35 0.469 1.20 0.753 −0.109 −1.80 −0.0987 2.00 
Mean 1.23 0.433 1.32 0.715 −0.0191 −2.47 0.53 2.75 
Std. 0.18 0.107 0.715 0.685 0.452 2.54 4.43 2.08 

SGC at z = 0.38 
b 1 σ 8 f σ 8 F g σ 8 F s σ 8 F t σ 8 G g σ 8 G s σ 8 G t σ 8 

Best- 
fitting 1.19 0.569 0.142 1.65 −1.25 5.58 2.12 −0.613 
Mean 0.627 0.681 0.907 0.656 −0.47 4.35 4.93 −1.36 
Std. 0.316 0.263 2.38 1.62 1.37 4.71 12.7 5.34 

NGC at z = 0.61 
b 1 σ 8 f σ 8 F g σ 8 F s σ 8 F t σ 8 G g σ 8 G s σ 8 G t σ 8 

Best- 
fitting 1.27 0.366 0.107 0.911 −0.191 3.24 −0.882 0.00682 
Mean 1.08 0.361 −0.0782 0.883 0.0875 2.91 −0.633 0.393 
Std. 0.158 0.109 0.868 0.845 0.574 3.05 7.85 2.7 

SGC at z = 0.61 
b 1 σ 8 f σ 8 F g σ 8 F s σ 8 F t σ 8 G g σ 8 G s σ 8 G t σ 8 

Best- 
fitting 1.27 0.266 1.45 −0.294 1.37 5.34 5.96 −9.76 
Mean 0.943 0.312 1.41 0.612 1.73 3.8 0.0212 −6.57 
Std. 0.235 0.168 1.93 1.18 1.12 6.81 25.3 4.24 
The results for ( G s σ 8 ) = ( F s σ 8 ) E s have been obtained from the MCMC chain of E s and ( F s σ 8 ). 
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Table A2. Covariance matrices for ( b 1 σ 8 ), ( f σ 8 ), ( F g σ 8 ), ( F s σ 8 ), ( F t σ 8 ), ( G g σ 8 ), ( G s σ 8 ), and 
( G t σ 8 ) obtained in the joint analysis of the 2PCF and the 3PCF using the four BOSS samples. 

NGC at z = 0.38 
b 1 σ 8 f σ 8 F g σ 8 F s σ 8 F t σ 8 G g σ 8 G s σ 8 G t σ 8 

b 1 σ 8 0.0318 −0.0109 −0.0192 −0.028 0.00321 −0.0864 −0.161 −0.0477 
f σ 8 −0.0109 0.0112 0.00192 0.00325 −0.000899 0.0823 −0.0241 −0.0288 
F g σ 8 −0.0192 0.00192 0.521 0.0496 0.151 −0.968 −0.425 −0.103 
F s σ 8 −0.028 0.00325 0.0496 0.593 −0.236 0.155 −1.02 0.404 
F t σ 8 0.00321 

−0.000899 0.151 −0.236 0.22 −0.313 0.0416 −0.327 
G g σ 8 −0.0864 0.0823 −0.968 0.155 −0.313 6.26 3.64 −1.58 
G s σ 8 −0.161 −0.0241 −0.425 −1.02 0.0416 3.64 20.4 −4.52 
G t σ 8 −0.0477 −0.0288 −0.103 0.404 −0.327 −1.58 −4.52 4.09 

SGC at z = 0.38 
b 1 σ 8 f σ 8 F g σ 8 F s σ 8 F t σ 8 G g σ 8 G s σ 8 G t σ 8 

b 1 σ 8 0.0865 −0.0422 0.0464 0.0969 −0.0934 −0.0671 −0.279 0.0788 
f σ 8 −0.0422 0.0631 −0.0558 −0.0621 0.0296 0.00688 −0.404 −0.202 
F g σ 8 0.0464 −0.0558 4.51 0.296 0.435 −3.5 −0.245 0.0227 
F s σ 8 0.0969 −0.0621 0.296 3.31 −0.516 0.433 −3.37 −0.0595 
F t σ 8 −0.0934 0.0296 0.435 −0.516 1.99 −0.549 −0.63 −1.27 
G g σ 8 −0.0671 0.00688 −3.5 0.433 −0.549 22.5 12.6 −11.5 
G s σ 8 −0.279 −0.404 −0.245 −3.37 −0.63 12.6 171 −17.9 
G t σ 8 0.0788 −0.202 0.0227 −0.0595 −1.27 −11.5 −17.9 27.6 

NGC at z = 0.61 
b 1 σ 8 f σ 8 F g σ 8 F s σ 8 F t σ 8 G g σ 8 G s σ 8 G t σ 8 

b 1 σ 8 0.024 −0.00748 0.0309 −0.0267 −0.018 −0.0598 −0.0707 −0.0294 
f σ 8 −0.00748 0.0117 −0.0141 −0.00346 0.00278 0.0298 0.0602 0.00315 
F g σ 8 0.0309 −0.0141 0.806 0.0312 0.204 −1.49 −0.814 −0.332 
F s σ 8 −0.0267 −0.00346 0.0312 0.894 −0.311 0.00472 −2.62 0.776 
F t σ 8 −0.018 0.00278 0.204 −0.311 0.37 −0.317 0.347 −0.705 
G g σ 8 −0.0598 0.0298 −1.49 0.00472 −0.317 9.46 6.37 −2.09 
G s σ 8 −0.0707 0.0602 −0.814 −2.62 0.347 6.37 43.3 −10.1 
G t σ 8 −0.0294 0.00315 −0.332 0.776 −0.705 −2.09 −10.1 7.75 

SGC at z = 0.61 
b 1 σ 8 f σ 8 F g σ 8 F s σ 8 F t σ 8 G g σ 8 G s σ 8 G t σ 8 

b 1 σ 8 0.0576 −0.0196 0.0903 −0.0844 −0.0668 −0.116 −0.625 −0.171 
f σ 8 −0.0196 0.0298 −0.0581 −0.0324 0.0214 0.135 1.19 −0.0697 
F g σ 8 0.0903 −0.0581 3.99 0.155 0.508 −5.36 −4.29 −0.585 
F s σ 8 −0.0844 −0.0324 0.155 2.6 −0.453 −0.126 −13.3 1.39 
F t σ 8 −0.0668 0.0214 0.508 −0.453 1.14 −0.607 −0.467 −1.1 
G g σ 8 −0.116 0.135 −5.36 −0.126 −0.607 44.9 24.5 −6.81 
G s σ 8 −0.625 1.19 −4.29 −13.3 −0.467 24.5 651 −33.1 
G t σ 8 −0.171 −0.0697 −0.585 1.39 −1.1 −6.81 −33.1 26.6 
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Figur e A1. Mar ginalized 2D and 1D posteriors of the parameters ( b 1 σ 8 ), ( f σ 8 ), ( F g σ 8 ), ( F s σ 8 ), ( F t σ 8 ), ( G g σ 8 ), ( G s σ 8 ), and ( G t σ 8 ). The contours indicate 
68.27 per cent and 95.45 per cent confidence levels. The result is for NGC at z = 0.38. 
This paper has been typeset from a T E X/L A T E X file prepared by the author. 
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