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Abstract. Spatial curvature is one of the most fundamental parameters in our current con-
cordance flat ACDM model of the Universe. The goal of this work is to investigate how the
constraint on the spatial curvature is affected by an assumption on the sound horizon scale.
The sound horizon is an essential quantity to use the standard ruler from the Cosmic Mi-
crowave Background (CMB) and Baryon Acoustic Oscillations (BAOs). As an example, we
study the curvature constraint in an axion-like Early Dark Energy (EDE) model in light of
recent cosmological datasets from Planck, the South Pole Telescope (SPT), and the Atacama
Cosmology Telescope (ACT), as well as BAO data compiled in Sloan Digital Sky Survey Data
Release 16. We find that, independent of the CMB datasets, the EDE model parameters are
constrained only by the CMB power spectra as precisely and consistently as the flat case in
previous work, even with the spatial curvature. We also demonstrate that combining CMB
with BAO is extremely powerful to constrain the curvature parameter even with a reduction
of the sound-horizon scale in an EDE model, resulting in Qx = —0.0058 + 0.0031 in the case
of ACT4+BAO after marginalizing over the parameters of the EDE model. This constraint
is as competitive as the Planck+BAOQO result in a ACDM model, Qx = —0.0001 + 0.0018.
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1 Introduction

The spatial curvature of the Universe is one of the most fundamental physical parameters,
and spatial flatness is an essential ingredient of the current concordance ACDM cosmological
model [1]. This work is driven by simple questions; why do we believe that the existing
observational datasets suggest the spatial flatness? To what extent does this question depend
on the assumptions we make in a standard cosmological scenario? These questions are partly
motivated by the Hubble tension [2] which offers us excellent opportunities not only to reveal
new physics but also to challenge any assumptions behind a concordance flat ACDM model.
Many possible solutions to the Hubble tension have been proposed (see [3] for a review).
Not surprisingly, the vast majority of such studies minimally extended the concordance flat
ACDM model (see e.g. [4, 5] for exceptions) so that an extended model is still based on the
success of the concordance model. Nevertheless, it is not trivial whether and how a minimal
extension best explains a series of cosmological observations.

Let us first summarize how spatial curvature is constrained within the context of a
ACDM model. In figure 1, we show a summary of examples from recent measurements. The
spatial curvature is commonly parameterized by a dimensionless parameter, Qx = —c?*K/H}
where ¢ is the speed of light, Hy = 100h [km/s/Mpc| is the Hubble constant, and K is
the curvature parameter. Qg > 0(K < 0), Qx = 0(K = 0), and Qg < 0(K > 0)
correspond to an open, flat, and closed universe, respectively. The spatial curvature cannot be
determined solely by the information from the primary anisotropies of the cosmic microwave
background (CMB, hereafter) due to geometric degeneracy. As discussed in detail in [1],
the CMB temperature and polarization data in Planck preferred the closed universe (Qx =
—0.0441‘8:8%? for TT,TE,EE+lowE) at ~ 30 level. This negative curvature was driven by
a smooth temperature power spectrum at ¢ 2 1000, which essentially degenerates with
the effect of the lensing amplitude, A;, > 1 [6, 7]. The preference of the closed universe
becomes less significant when the Planck temperature and polarization data was combined
with the lensing reconstruction (2x = —0.0106+0.0065) and the Baryon Acoustic Oscillation
(BAO) data (Qx = 0.0007 £ 0.0019) [1]. In addition, ref. [8] showed that Qx = 0.078703%
was obtained only from a recent compilation of the BAO measurements from the Sloan
Digital Sky Survey, combined with a prior on the baryon density, Q,h? (and hence on the
sound horizon scale) from Big Bang Nucleosynthesis and CMB monopole temperature from
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Figure 1. A summary (but highly incomplete examples) of recent measurements (mean with upper
and lower 68% confidence level (C.L.)) of the spatial curvature parameter i after Planck 2018.
We show our main results in this work (red, see section 4), the measurements from the observables
of the cosmic expansion history (cyan), and the measurements combined with information from the
large-scale structure (LSS, magenta). The measurements include Planck [1], Planck after marginalized
over Ay, [7], Planck + Sloan Digital Sky Survey (SDSS) Data Release 12 (DR12) [13], Planck + SDSS
DR16, Planck + SDSS DR16 + Pantheon, Planck + cosmic chornometer (CC) compiled in [14] (V21),
DR16 with a Big Bang Nucleosynthesis prior [8], strong gravitational lensing (SGL) 4+ CC [15] (see
also [16, 17]), Planck + Dark Energy Survey Year 3 (DES Y3) [18], Planck + the full shape analysis
of the galaxy power spectra (P(k)) [19] (see also [20]), the full shape analysis of the galaxy P(k) with
a BBN prior [21], and Planck + the galaxy clustering ratio (CR) [22].



the COBE/FIRAS data. Adding the Planck temperature and polarization data (without
marginalizing over Ap) to the compiled BAO data gave Qi = —0.0001 4 0.0018, which had
no change with the Pantheon Type Ia supernovae [8] (see also [9]). Note that including
the curvature parameter in a ACDM model does not help mitigating the Hubble tension,
since a positive curvature density or open universe is required to reduce the distance to the
CMB last scattering with the angular scale of the sound horizon scale being fixed. It is
important to realize that these results are based on a ACDM model and a standard thermal
history to predict the sound horizon scale (see, e.g., [10-12] and their references therein for
studies in models extended beyond ACDM). We aim to understand how these results and
interpretations are altered when we consider a scenario which alters the sound horizon scale.

As a working example, we consider an axion-like Early Dark Energy (EDE) model [23].
Among many possible solutions, the EDE model mitigates the Hubble tension by introducing
an additional scalar field prior to the recombination epoch and consequently lowering the
sound horizon scale [24, 25] (see [26-28] for the cosmic birefringence and [29] for the big bang
nucleosynthesis). The EDE model has recently been given close attention because there is
mild evidence of a non-zero EDE component from some observations of the CMB anisotropies.
Refs. [30-32] reported evidence at the ~ 30 level from Atacama Cosmology Telescope (ACT)
and South Pole Telescope (SPT), while refs. [32, 33] showed little evidence from the Planck
data (see also [34, 35] for the discrepancy between the different CMB datasets). In addition,
there is an attempt to introduce a model with both early- and late-time dark energy fields
which could be better fit to CMB, BAO, and Hy dataset [36]. It is worth noting that all
of these previous work assumed spatial flatness for simplicity (see [5, 37] for an exception
and [38] for including the isocurvature perturbation).

In this paper, we will focus mainly on the observables related to the background ex-
pansion through distance measurements, and thus we will not touch upon the large-scale
structure (LSS) or the perturbation part (except CMB). Information from the CMB lensing
is marginalized with Ay being varied. It is well recognized that allowing non-zero EDE is
compensated with higher matter density from the fit to CMB data [32, 33], which may conflict
with the low-lensing (or Sg) tension (see e.g., [39, 40]) as shown by refs. [19, 41-48]. To simul-
taneously resolve the Hubble and Ss tensions, ref. [49] extended an EDE model by varying
the neutrino masses. Also, ref. [50] considered an EDE scenario where the scalar field decays
into extra dark radiation, which could mitigate the Sg tension. Both of these studies showed
that Planck combined with other measurements does not prefer an EDE model over the flat A
CDM model. Furthermore, ref. [51] (see also [52]) measured the distance scale independently
of the BAO from the broadband shape (through the matter-radiation equality) of the galaxy
power spectrum, reporting a somewhat small Hubble constant, Hy = 64.8'_%% kms~! Mpc~!.
Again, we notice that these studies assume spatial flatness. We show some examples of the
Qg constraints with LSS probes in figure 1.

The structure of this paper is as follows. In section 2, we outline a theoretical background
of the observables and physics relevant to this paper. It is followed by section 3 which
describes the method and datasets. In section 4, we report our results, and give elaborated
discussion and summary in section 5.

2 Theoretical background

In this section, we briefly provide a theoretical background on the observables relevant to
this paper. The sound horizon is the comoving distance that a sound wave of the primordial



plasma can travel from the beginning of the universe to the point of the last scattering surface

of CMB photons, defined by
©  dz

= H(z)
where z = 1/a — 1 is the cosmological redshift, a is the scale factor of the universe, and
ze ~ 1090 is the redshift of the CMB last scattering. The sound speed, cs(z), is given by
cs(2)? = ¢2/3{1 + R(2)} where c is the speed of light and R(z) = 3p,(2)/{4p,(2)} is the
baryon-to-photon ratio. The wave propagation is affected by cosmic expansion through the
factor of the Hubble expansion rate, H(z) = a/a. The CMB temperature and polarization
anisotropies allow us to infer the angular size of the sound horizon scale, that is,

rs(ze) = cs(2), (2.1)

rs(24)

0s = . 2.2
S DA(Z*) ( )
Here D 4(z) is the angular diameter distance at z = z,, given by
1 z cd?
D = S —_— 2.3
A@) =173 K[o H(z’)}’ (2:3)

where the comoving distance Sk (x) is obtained as sinh(v/—Kz)/v/—K for K < 0, x for
K = 0, or sin(v/Kz)/VK for K > 0. Notice that Da(z) o« Hy "', independently of the
value of K. A flat ACDM universe provides an excellent fit with the Planck CMB data
with 10005 = 1.04110 4 0.00031 radian and rg(z,) = 144.43 £+ 0.26 Mpc [1]. This leads to
Hy = 67.36 + 0.54km /s/Mpc with Q,, = 0.3153 + 0.0073 [1] which is inconsistent with the
local measurement of the Hubble constant, Hy = 73.30 & 1.04 km /s/Mpc [53].

Baryon Acoustic Oscillations (BAOs) can be precisely measured with a galaxy survey
as another standard ruler to measure cosmic expansion at low redshift z < 3. Since we
measure the BAO scale from a three-dimensional galaxy map, a BAO survey allows us to
simultaneously measure

rs(2q)

_Te\zd) d Ao = ro(z)H , 2.4
Da(oma0) an cAzppao = 7s(24)H(2BAO) (2.4)

OBao =
where zpao is the typical redshift of a BAO survey, and z; ~ 1060 is the redshift of the
baryon-dragging epoch that occurs slightly after z.. Planck CMB data provide r4(zq) =
147.09 + 0.26 Mpc in a flat ACDM model.

Since 05 or Op a0 is precisely measured with CMB or BAO and is proportional to r4(z.) Hy
or r4(zq)Hp, one way to alleviate the Hubble tension is to reduce the sound horizon scale
by introducing new physics prior to the CMB last scattering surface. A novel Early Dark
Energy model exactly achieves this, motivated by an extremely light axion-like scalar field
¢ [24]. In general, such a scalar field is modeled with a potential

n
V(g) = m? {1 — cos <9}’> } (2.5)
where f is the decay constant of the scalar field. For the scalar field to be effective before
the CMB epoch, the mass m should be smaller than the mass scale corresponding to the
Hubble horizon scale at CMB, m < 10727 eV /c?, so that the field begins to oscillate around
the potential minimum. Since the potential minimum is locally V' ~ ¢?* where the equation
of state of the field is given by wy = (n — 1)/(n + 1), we consider n = 3 such that the



cosmic expansion is decelerated with wy < 1/3 (or n > 2) and hence the sound horizon
is reduced. The phenomenology of this scalar field can be parameterized by the following
effective parameters: z., critical redshift, which is the redshift at which the EDE contributes
to its maximal fraction, §; = ¢/f, where 6; shows the initial displacement of the scalar
field. The third parameter is fppgp = max(pEpr(z)/pot(z)) which indicates the maximal
fractional contribution to the total energy density of the universe (see, e.g., [33]). Since 6, is
precisely measured by the frequency of the angular power spectra of the CMB temperature
and polarization anisotropies, the EDE parameters are constrained by other physical effects
on the CMB spectra. The most prominent difference from the ACDM case is the reduction
in the diffusion damping scale, which increases the relative power of the CMB spectra at
high ¢ [23].

For our purpose, an EDE model serves as a well-motivated scenario that alters the sound
horizon scales, r5(2x) and 75(z4). In a flat universe, the current dataset allowed fgpg < 0.125
(corresponding to the best-fit value in the ACT case, see figure 2) which reduces both sound
horizon scales by a factor of about 5%. Our main goal is to quantitatively study the impact
of these reduced sound horizon scales on the constraint on the spatial curvature. As a
by-product, we provide the constraint on an EDE model, marginalizing over the spatial
curvature.

3 Method and datasets

We fit the ACDM and EDE models to a series of cosmological data to find the best-fit model
parameters and quantify the statistical uncertainties. Here, we describe our method and the
datasets. Since direct sampling of likelihood functions in a high-dimensional parameter space
is computationally infeasible, we adopt the Markov chain Monte Carlo (MCMC) method
on the basis of Bayesian statistics. Note that, instead of sampling posteriors, one could
look at the profile likelihood and find confidence intervals using the frequentist approach
which helps mitigate projection issues in high-dimensional parameter space [43, 49, 54]. We
perform our series of MCMC sampling using the latest release of publicly available code,
MontePython-v3.5! [55, 56] interfaced with the CLASS_EDE? [33] Boltzmann solver as an
extension to the CLASS® [57, 58] code that accounts for the EDE model. We impose flat
non-informative priors on both ACDM and EDE parameters, except the prior on Ty in
the case of SPT-3G and ACT DRA4 (see the relevant texts below). In the flat ACDM model,
we consider the main cosmological parameters {Qp,h?%, Wedm = Qeamh?, 0, In[101° AL, g, Treio }
that account for the amount of baryon and CDM densities in the Universe, the ratio of the
sound horizon to the angular diameter distance, the normalization amplitude and the spectral
index of the primordial power spectrum, and the reionization optical depth, respectively.
When we consider a non-flat cosmology, we include two additional parameters, {Qk, Ar}.
The reason we add the lensing parameter Ay, is that there exists a degeneracy between Qg
and Ay, in the Planck temperature and polarization data [7] (see their figure 2), and this
helps isolate the lensing information from the dataset we consider (see appendix A for the
results with fixed Az, = 1). Regarding an EDE model, we add three more phenomenological
parameters, {fepg,log g 2,0} using the shooting method described in [25] to map them
to the theoretical parameters {f,m} mentioned in eq. (2.5). In modeling free-streaming

"https://github. com/brinckmann/montepython_public.
*https://github.com/mwt5345/class_ede.
Shttps://github.com/lesgourg/class_public.
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Parameters Prior

1000, (0.5, 10]
In10%4,  [1.61,3.96]
N 0.8, 1.2]
Treio [0.02, None]
Qe [—0.5,0.5]
Ay [0.1,2.1]
logyg 2c [3.1,4.3]
0; 0.1,3.1]
feDE [0.001, 0.5]

Table 1. The assumed ranges of uniform priors.

neutrinos, we take into account the Planck collaboration convention as two massless species
and one massive with M, = 0.06eV. In our analysis, we adopt the effective number of
relativistic degrees of freedom to its standard model prediction as Neg = 3.046. To compute
the non-linear matter power spectrum we use Halofit [59, 60] for CMB lensing, although
again the information from CMB lensing is minimized by being marginalized over Aj. The
default prior choice is given in table 1. Moreover, depending on the choice of the data set
we use, we have additional nuisance parameters. For example, for the case of the full Planck
2018 likelihood, we have 47 nuisance parameters that would be added to our multidimensional
parameter space. For the case of SPT-3G 2018 likelihood, we have 20 nuisance parameters.
In the case of the ACT DRA4 likelihood, we only have one nuisance parameter which stands
for the polarization efficiency. To analyze the chains and produce plots, we use the GetDist?
Python package [61]. We consider chains to be sufficiently converged, checking the Gelman-
Rubin criterion |R — 1| < 0.05.°
In this work, we adopt the following datasets:

Planck 2018: We consider the multifrequency TT, TE, and EE power spectra and covari-
ances from Planck PR3 (2018)°¢ [1, 62, 63], including the publicly available P1ik_HM
high-/¢ likelihood consisting of 30 < £ < 2508 for TT and 30 < /£ < 1996 for TE and EE
spectra, and also from the Commander likelihood, we consider low-¢ (2 < ¢ < 29) TT
data. In addition, we include the Planck reconstructed CMB lensing potential power
spectrum [64]. The gravitational lensing of the CMB has been detected by a high (400)
statistical significance in Planck 2018 [64]. The multipole range of the Planck lensing
power spectrum covers 8 < ¢ < 400. In summary, we use Planck-high-¢ TTTEEE +
Planck-low-¢ TT + Planck-low-¢ EE + Planck-lensing, which we refer to this combina-
tion as “Planck”.

Planck £ < 650: When we use SPT-3G or ACT DR4 instead of Planck 2018, we combine
the Planck TT data at ¢ < 650. For this purpose, we use the full P1ik likelihood

‘https://getdist.readthedocs.io/.

5Note that, in the case EDE 4+ Qx + A, model using SPT combination of dataset without additional BAO
dataset we consider the convergence to |[R — 1| < 0.1 due to the degeneracy of large number of parameters.

Shttp://pla.esac.esa.int/pla/#cosmology.
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rather than the P1lik_lite version to change the range of the multipole. This choice
is motivated by the fact that Planck 2018 is fully consistent with WMAP [65] up to
this multipole [66] and that our results can be fairly compared with previous SPT
and ACT results [30, 32]. We also add a Gaussian prior on the optical depth as
Treio = 0.065 £ 0.015, following [30, 67].

SPT-3G: We use the most updated SPT-3G data from 2020 data release [68] which includes

EE and TE power spectra spanning over the angular multipole range, 300 < ¢ < 3000,
from observations of a 1500 deg? survey field in three frequency bands centered at 95,
150, and 220 GHz.” We adopt the publicly available full SPT-3G likelihood [68] for the
MontePython environment® [70]. The likelihood function marginalizes posteriors over
the super-smaple lensing parameter, the terms representing Galactic dust emission,
polarized dust and the noise from the radio galaxies along with the all-sky calibration
of temperature and polarization [68]. We refer to this SPT-3G with Planck ¢ < 650
(including the Tyejo prior) as “SPT”.

ACT DR4: We use the latest version of ACT data from the fourth data release, ACT

DR4, [71] from the 20132016 survey covering > 15000 deg? including multi-frequency
temperature and polarization measurements. The TT, TE and EE power spectra
have already been marginalized over various uncertainities such as foreground emis-
sion and systematic errors. We use the MontePython support for the publicly available
actpollite dr4 likelihood implemented in pyactlike.” The range of multipoles for
TE and EE power spectra spans over 326 < ¢ < 4325 while the T'T power spectrum
covers 576 < ¢ < 4325 [67]. The only nuisance parameter in this likelihood is the overall
polarization efficiency. We call this ACT DR4 data with Planck ¢ < 650 (including the
Treio DPrior) as “ACT”.

Baryon Acoustic Oscillations (BAOs): We consider the following datasets from BAO

survey as a probe of the cosmic expansion history at low redshifts; the 6df galaxy
redshift survey at zgpao = 0.106 [72], the Sloan Digital Sky Survey (SDSS) Data
Release (DR) 7 main galaxy sample at zgao = 0.15 [73], and data compiled from
the SDSS DR16 Baryon Baryon Oscillation Spectroscopic Survey (BOSS) [13] and ex-
tended BOSS (eBOSS) measurements [8, 74, 75] that include Luminous Red Galaxy
sample at zpao = 0.38, 0.51 and 0.698,'° the QSO sample at z = 1.48,'! (note that for
these two aformaentioned cases the covariance matrices have been marginalized over
the fos measurements), and also the Lya x Lya,'? and Lya x QSO measurements
at z = 2.334.13 Note that we do not include the BAO measurement for the eBOSS
Emission Line Galaxy as its contribution to the fit is minor. In this work we do not
consider the redshift-space distortion or full-shape galaxy power spectrum.

We do not include the distance ladder measurement of the Hubble constant, Hy =

73.2+ 1.4km/s/Mpc [2] in our fit, but compare it with the inferred values. Moreover, since

"Note that, while we prepare this work, the SPT-3G T'T measurement has been recently released and we
do include it in this work [69].

8h‘ctps
9https
Dpttps
.dat.
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://github.
://github.

com/ksardase/SPT3G-montepython.
com/ACTCollaboration/pyactlike
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com/CobayaSampler/bao_data/blob/master/sdss_DR16_BAOplus_QSO_FSBAO_DMDHfs8

com/CobayaSampler/bao_data/blob/master/sdss_DR16_LYAUTO_BAO_DMDHgrid.txt.
com/CobayaSampler/bao_data/blob/master/sdss_DR16_LYxQSO_BAO_DMDHgrid.txt.
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Figure 2. 1D and 2D posterior distributions (68% and 95% C.L. for the 2D contours) of various
cosmological parameters in a flat universe for both ACDM and EDE models. Here we only use the
CMB datasets, Planck (cyan/brown for EDE/ACDM), SPT (blue/orange), and ACT (gray/purple).
Hereafter, Hy = 73.2km/s/Mpc in [2] and r4(z,) = 144.43 Mpc in the fidicual flat ACDM fit [1] are
shown as references (vertical dashed lines).

our primary interests are the observables relevant to the sound horizon scale, we do not
include the data from Pantheon Type Ia supernovae. Previous studies show that the impact
of the Pantheon data is generally minor when combined with the BAO data (see e.g., figure 1
and [11]).

4 Results

We begin with the results of the fit with the CMB datasets only for the flat ACDM and EDE
models in figure 2. The purpose of showing figure 2 is a sanity check that we have successfully



Planck+BAO ACT+BAO SPT+BAO Planck ACT SPT

fee 0.04475007  0.138TGGE 0.107FGG3 | 0.033%0GE  0132°0G: 00867503
0.942 1.443 1.144 1.149 1.468 1.033

0; 2.1097) 95z 1.51871 3% 1.56971 170 1.86871 341 1.4857130% 1.55475932
logyo(zc) 3.693%0563 325100350 350270y | 3733%03, 32417045 3573705,

Ho[km/s/Mpc] | 69.26479571 7213971237 7173271615 | 6493172380 62.8747124%%  62.113133557
Qx —0.0009%5:6015  —0.0058¥0631  —0.00327G5053 | —0.010515:0057  —0.0508¥778 0063570055

7s(2:) [Mpc] 14278672172 138.1981558%  139.45015357 | 14354015 71T 138.3+4310 140.61175-474

Table 2. The constraints on key cosmological parameters for the curved-EDE (EDE + Qg + Ar)
+(upper 68%limit—mean)
—(mean—lower 68%limit)
where “mean” refers to the mean value of the marginalized posterior distribution.

model. Each column corresponds to different dataset. Each value quoted as mean

reproduced the previous work; our fits in the flat ACDM are in excellent agreement with the
previous work. Consistently with [68],wedm (and rs(z4)) in the flat ACDM model for SPT
is slightly smaller than that for Planck and ACT. In the EDE model, Planck disfavors non-
zero fgpg, while ACT and SPT somewhat prefer non-zero values, fgpg < 0.218(0.199) at
95% C.L. for ACT (SPT). Non-zero fgpg in ACT or SPT leads to reduction in the sound
horizon scale, rs(z,) while 65 is kept nearly fixed, yielding higher values of Hy than flat
ACDM cases [32, 33].

Next, we present the CMB results including the spatial curvature in figure 3. The
constraints on fgpg with these CMB datasets are not affected by Qx and Ay and remain
similar to the flat case in figure 2. Meanwhile, we confirm the degeneracy among Qg , Ar,
and Hy as expected, giving weak constraints on these parameters only with the CMB data.
However, the impact of the EDE model paramaters on the g constraints is minor [5]. We
have curvature constraints with the CMB datasets even after marginalizing the EDE model
parameters; Q = —0.0105700072 for Planck, Qg = —0.050870 (11 for ACT, and Qx =
—0.063570:0932 for SPT (see also table 2). The reason why Planck constrains Q better than
ACT and SPT is that we combine with the reconstructed CMB lensing in Planck. Without
the Planck CMB lensing, the Planck constraint on Qp is degraded from AQgx ~ 0.0066
to AQx ~ 0.0488 in the ACDM case (see also [1]). To understand why the EDE model
paramaters are constrained even with Qg , we present the CMB angular power spectra and
their residuals from the Planck ACDM best-fit model in the left panel of figure 4. Top,
middle, and bottom panels show the residuals from TT, TE, and EE spectra, respectively. If
the data deviates from zero in each panel, a model may be required to include physics beyond
the Planck ACDM model. Solid and dashed curves show the ACT best-fit curves in EDE and
EDE + Qg + Ap models. We only show the ACT best-fit as it prefers the largest fgpg. As
demonstrated by the two curves, including 2k in the EDE model does not affect the acoustic
feature of the CMB spectra and consequently has little impact on the EDE parameters. This
is not surprising, since ()i is constrained by the CMB mainly through 6, with the sound
horizon fixed. We mitigate information from CMB lensing by marginalizing Aj..

Thus, it is crucial to combine the CMB data with other low-redshift probes to break
the degeneracy and improve the CMB curvature constraints. In figures 5, 6, and 7, we
compare the CMB only result with the case combined with BAO for Planck, ACT, and
SPT, respectively. Not surprisingly, adding BAO to the CMB data is extremely powerful
to precisely measure Qp; Qx = —0.0009730019 for Planck+BAO, Qx = —0.005815:003; for
ACT+BAO, and Qg = —0.003270 0052 for SPT+BAO. It is interesting to confirm that the
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Figure 3. 1D and 2D posterior distributions (68% and 95% C.L. for the 2D contours) of various
cosmological parameters in a curved universe for both ACDM and EDE models. Here we only use the
CMB datasets, Planck (cyan/brown for EDE/ACDM), SPT (blue/orange), and ACT (gray/purple).
We show Qg = 0 as a reference (vertical dashed line).

current CMB4+BAO data prefer Qi = 0 within 95% C.L. even after marginalizing over the
EDE parameters and hence the sound horizon scale. Since both the sound-horizon scales
rs(z+) and r5(zg) are reduced by the existence of EDE by a similar amount, this result
suggests that the paremeters important for the late-time universe such as Qg and €2, are
mainly determined by the relative ratio of two standard rulers at two distinct epochs from
the CMB and BAOs. To demonstrate this, we show in figure 4 the ratio of the sound horizon
scale for EDE + Qg + Ar, model with respect to the best-fit Planck ACDM. The middle panel
shows the low-redshift BAO measurements, while the right panel shows the 05 constraints
of the same curved EDE model for Planck, ACT, and SPT measurements. The green curve
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SPT-3G and ACT measurements with respect to the flat ACDM best-fit in Planck. Right Panel: the
ratio of the sound horizon scale (egs. (2.2), (2.4)) measurements in EDE+Q g + A, model with respect
to the Planck flat ACDM. Red data points in the left panel show the low-redshift BAO measurements
from DR16 and the right panel shows the CMB measurements. The green curve represents the
EDE + Qg + Ap, best-fit model in the light of the ACT4+BAO datasets. Black dashed/dotted-dashed
curve shows the same model with slightly larger/smaller values for Q.

is our best-fit curved EDE model for ACT, equivalent to the best-fit for the green contours
in figure 6. The black dashed/dotted-dashed curves show the EDE + Qg + Ar model with
slightly larger/smaller values for Q. Note that, since the y axis is divided by the sound
horizon, the reduction of the sound horizon is taken into account. The relative comparison
between the CMB and BAO data points is crucial to break the degeneracies and therefore
to precisely constrain Q.

Table 3 shows the x? values for the best-fit ACDM, ACDM + Qx + A, EDE and
EDE + Qg + A;, models with the contribution of each single likelihood. Looking at the
Ax?/(d.o.f.) values at the bottom of the table, both flat-EDE and curved-EDE best-fit
models, no matter which CMB data we use, shows an improvement over the best-fit ACDM
model. This behavior remains the same when we include the BAO data. The EDE+ Qg+ A
model is slightly favored by the Planck CMB data rather than ACT or SPT. When we take
BAO dataset into account the model still shows improvement against the ACDM model.

Accurate determination of Qg and 2, with BAO data has a nonnegligible impact on
other parameters by breaking degeneracies. Qx and 2, are correlated with Hy through
geometric degeneracy positively and negatively, respectively. Therefore, a higher Qg (or
smaller Q,,) in CMB+BAO than CMB only generally leads to a higher Hy. The Hy value
in Planck+BAO is not as high as the distance ladder measurement (the dashed vertical
line), while those in ACT+BAO and SPT+BAO are more consistent with them. This result
is driven by the preferred value in fgpg and hence how much the sound horizon scale is
reduced. Interestingly, the ACT+BAO posterior has a peak at non-zero fgpg consistently
with the CMB-only case, while the SPT case has a notable (but statistically insignificant)
shift in fgpg. To understand the reason behind this, we compare the ACT and SPT results in
figure 8. The peak of Q,,, for the SPT data only is slightly deviated from the value preferred
by BAO, resulting in a lower value of weqm. Since weam and fepg are positively correlated,
the preferred value of fgpg becomes smaller than the case without BAO. On the contrary,
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this is not the case for ACT, as the peak of €2, for ACT remains unchanged with or without
the addition of BAO.

5 Summary and discussion

In this work, our main interest is to derive the constraint on the spatial curvature from the
cosmic expansion history in a cosmological scenario with non-standard sound horizon scale.
More specifically, we use recent CMB datasets from Planck, ACT, and SPT as well as the
most updated BAO measurement from SDSS DR16 in both of which the change in the sound
horizon scale would impact the inference on the spatial curvature parameter. As a working
example, we adopt an axion-like EDE model which attracts attention in the community
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Figure 6. The same as figure 5 but with ACT only (magenta) and ACT+BAO (green).

in light of the Hubble tension. We extend our EDE cosmological parameter space by the
spatial curvature and the lensing amplitude to use the information from the cosmic expansion
history. Our main findings are highlighted as follows:

e We find that, independent of the CMB datasets, the EDE model parameters are con-
strained only by the CMB power spectra as precisely as the flat case in previous work,
even with Qg and Ay. Although Planck disfavors non-zero fgpg, ACT and SPT alone
prefer non-zero value, frpp < 0.218(0.199) at 95% C.L. for ACT (SPT), (see figure 3
and table 2). Not surprisingly, the constraints on Qg and Hj are weakly constrained
by any CMB-only cases due to the geometric degeneracy.

o We demonstrate that combining CMB with BAO is extremely powerful to constrain
the spatial curvature even with the reduction of the sound horizon scales. In the case of
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ACT which prefers the largest amount of fgpg ~ 0.14 which reduces the sound horizon
scales by about 5%, we obtain Qi = —0.0058 + 0.0031 after marginalizing over the
EDE parameters. This constraint is as competitive as the Planck + DR16 BAO result
in a ACDM model, Qg = —0.0056 &+ 0.0018 [8] (see figures 1, 4, 5-7 and table 2).

Let us clarify the difference between our work and similar other work. Ref. [5] studied an
EDE model that included Qg and Ay, using the Planck data and obtained Qx = —0.0007 &+
0.0020 when they combined with the SDSS DR12 BAO data. Although this is in excellent
agreement with our result for a similar case, Q = —0.0009700015, there are a few minor
differences between the two works. First, they consider Planck only, while we also study
ACT and SPT. Second, their prediction of the EDE model is based on an approximated
method implemented in CAMB to solve the linear perturbation equation for an EDE scalar
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Dataset ACDM ACDM + Qg + AL EDE EDE+Qx + AL
ACT DR4 (TTH+TE+EE) 287.3 287.3 253.4 274.7
SPT-3G (TE+EE) 1127.3 1127.8 1124.6 1123.3
Planck 2018 low ¢ TT (ACT, SPT, Planck) (21.7,20.3,23.5) (21.5,20.1,22.7) (21.5,20.0,20.4) (21.4,20.0,20.9)
Planck 2018 low ¢ EE (ACT, SPT, Planck) (396.4,396.6, 396.2) (396.3,396.0,397.1) (396.4,396.0, 396.5) (396.5,396.0, 395.7)
Planck 2018 TT (fyax = 650), (ACT, SI'T) (255.7,254.5) (255.5,254.3) (253.4,251.5) (251.8,255.3)
Planck 2018 high ¢ (TT+TE+EE) 2350.2 2347.1 2350.4 2342.0

Planck 2018 Lensing 8.9 9.5 10.0 9.6

BAO 6dF (ACT, SPT, Planck) (0.05, 0.07, 0.05) (0.02, 0.07, 0.03) (0.03, 0.04, 0.06) (0.03, 0.03, 0.03)
BAO MGS DR7 (ACT, SPT, Planck) (1.1, 2.2, 1.3) (141, 2.3, 1.8) (2.25, 2.3, 1.5) (2.3, 1.8, 1.5)
BAO BOSS DR12 (ACT, SPT, Planck) (4.3, 3.6, 3.9) (4.02, 3.7, 4.3) (3.5, 3.7, 3.7) (4.02, 1.0, 3.7)
BAO eBOSS DR14 Lya-auto (ACT, , Planck) (1.7, 1.3, 1.5) (1.4, 2.5) (1.3, 1.4) (1.1, 1.4)
BAO eBOSS DR14 Lya-cross (ACT, , Planck) (4.7 , 4.4) (4.3, 5.1) (4.2, 1.4) (3.7, 1.3)
BAO eBOSS DR14 Lya-combined (ACT, , Planck) (5.1, 4.3, 4.8) (4.7, 4.7) (4.4 A4.7) (3.7, 4.6)
BAO eBOSS DR16 LyaxLya (ACT, SPT, Planck) (0.9, 0.7, 0.8) 0.7, 0.6,1.2) (0.7, 0.6, 0.8) (0.5, 0.6, 0.7)
BAO eBOSS DR16 LyaxQSO (ACT, , Planck) (1.6, 1.3, 1.5) (1.4, 1.3, 1.8) (1.4, 1.5) (1.02, 1.4)
BAO eBOSS DR16 QSO (ACT, , Planck) (0.6, 0.5, 0.5) 0.5 , 0.3) (0.6, 0.5) (0.2, 0.5)
Total x2 (CMB) (ACT, SPT, Planck) (961.3, L 2778.8) | (960.8, L 2776.5) | (945.02, 2777.3) | (944.8, , 2768.2)
Total x? (CMB+BAO) (ACT, ST, Planck) (981.4, ,2798.8) | (979.9, ,2795.8) | (968.5, ,2795.8) | (962.3, , 2788.2)
Ax?/(d.of.) (CMB) (ACT, SP'T, Planck) (—0.003, ,0.09) | (—0.09, L 0.02) | (~0.00, L —0.14)
Ax?/(d.o.f.) (CMB+BAO) (ACT, , Planck) (—0.008, , —0.03) (=0.07, , —0.04) | (=0.1, , —0.13)

Table 3. Best-fit x? values for ACDM, ACDM + Qx + Ay, EDE and EDE + Qg + Ay, models
are presented in each column. Different combinations of CMB datasets (upper panel) are as follows:
full Planck: Planck-high-¢ (TT+TE+EE) + Planck-low-¢ TT + Planck-low-¢ EE + Planck-lensing. ACT:
ACT DR4 (TT+TE+EE) + Planck-low-¢ TT + Planck-low-£ EE 4 Planck TT ({p,ax = 650). SPT: SPT-3G
(TE+EE) + Planck-low-¢ TT + Planck-low-¢ EE + Planck TT ({;ax = 650). The x? values represented
in the upper panel show the best-fit values for only CMB runs while the middle panel values come
from the (CMB+4BAO) analysis. Note that the Gaussian prior on 7 is applied in all analyses apart
from the full Planck results. The x? best-fit values for some likelihoods that have been used for
different data combinations such as ACT, SPT and Planck are shown in purple, orange and cyan
respectively. The lower panel shows the total x2 value for each CMB or CMB+BAO analysis. The
Ax? values present the differences between the best-fit x? value and the ACDM model in each CMB
and CMB+BAO case.

field [25]. Instead, we adopt the exact method implemented in CLASS for an EDE model,
following [32, 33]. In fact, we have tested the approximate method in CAMB and confirmed
that we were unable to reproduce the previous work for ACT and SPT in [32, 33]. However,
the impact of the approximation on the Planck case is minor, since Planck does not prefer
nonzero fgpg. Finally, they vary the equation-of-state parameter for the late-time dark
energy, w, while we fix it with the cosmological constant, w = —1. As ref. [5] showed
in their figure 2, a degeneracy between Qx and w is expected to some extent, but their
Planck+BAO result is in perfect agreement with w = —1. Along the similar line, there
are similar studies which consider different dark energy scenarios which become prominent
well after the recombination (see e.g., [11, 45, 76-83]). We leave the impact of these other
extended parameters on the spatial curvature for future work.

As motivated by figure 4, it is desirable to obtain more accurate and precise data from
CMB such as LiteBird, CMB-S4, and the Simons Array (see e.g., [84] for a recent review)
as well as the BAO data filling at z 2 1 such as Hobby-Eberly Telescope Dark Energy
Experiment [85], Dark Energy Spectroscopic Instrument [86], Prime Focus Spectrograph [87],
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Figure 8. The same results from figures 6 and 7 are combined for a clear comparison.

and Roman Space Telescope [88]. These new datasets will lead to a more precise and accurate
constraint on the spatial curvature of the Universe (see e.g., [89-92]).
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A Planck results with fixed A; =1

In this appendix, we present our results for the full Planck dataset and we compare the pos-
teriors with the fixed and varied Ay, parameter. Our focus in this work was mainly on how
the spatial curvature is constrained by distance measurements from the sound horizon scale
in CMB and BAO measurements when the sound horizon is reduced by an EDE model. By
varying the Ay parameter, we marginalized the information from the CMB lensing. Nonethe-
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Figure 9. 1D and 2D posterior distributions (68% and 95% C.L. for the 2D contours) of various
cosmological parameters in a curved universe for both ACDM and EDE models using Planck CMB
dataset. Green and yellow contours demonstrate the results for Ay = 1, in EDE and ACDM models
respectively.

less, since Planck TT prefers the Ay, value to be larger than one, we show the Planck results
when we fix it to Ay = 1. Figure 9, shows a comparison between EDE and ACDM curved
model posteriors with and without fixing Ay parameter. The cyan and brown contours are
the EDE and ACDM models when the A, parameter is being varied (equivalent to the same
color contours in figure 3) while in green and yellow contours we fix A7 = 1. The constrains
on x parameter in the case of EDE model changes from Qx = —0.0105 + 0.0066 (for
varied Ar) to Qx = —0.0098 + 0.0068 (for fixed Ar). The Hy parameter is constrained as
Hy = 64.93 + 2.57 (for varied Ar) and Hy = 64.37 £ 2.50 (for fixed Ar). The constraint
on fgpg parameter would changes from fgpg = 0.033 £ 0.026 (in the case of varied Ar) to
fepe = 0.016 + 0.013 (fixed Ar). We also present a comparison between EDE + Qg + A
and EDE + Qg models in light of the full Planck + BAO dataset in figure 10. These results
show that fixing the value of Aj parameter lowers the mean value of the fgpg parameter
and reduces errors from fgpg = 0.044 & 0.030 to fgpg = 0.022 & 0.017 while increasing
the mean value of the Q parameters and reducing errors from Qi = —0.0009 + 0.0019 to
Qx = 0.0003 + 0.0018.
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