®

Check for
updates

Geometric Hitting Set
for Line-Constrained Disks

Gang Liu®™) and Haitao Wang

University of Utah, Salt Lake City, UT 84112, USA
{u0866264,haitao.wang}@utah.edu

Abstract. Given a set P of n weighted points and a set S of m disks in
the plane, the hitting set problem is to compute a subset P’ of points of P
such that each disk contains at least one point of P’ and the total weight
of all points of P’ is minimized. The problem is known to be NP-hard. In
this paper, we consider a line-constrained version of the problem in which
all disks are centered on a line £. We present an O((m +n)log(m +n) +
rlogm) time algorithm for the problem, where k is the number of pairs
of disks that intersect. For the unit-disk case where all disks have the
same radius, the running time can be reduced to O((n+m)log(m+n)).
In addition, we solve the problem in O((m+n)log(m+n)) time in the Lo
and L; metrics, in which a disk is a square and a diamond, respectively.
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1 Introduction

Let S be a set of m disks and P a set of n points in the plane such that each
point of P has a weight. The hitting set problem is to find a subset P,,; C P of
minimum total weight so that each disk of S contains a least one point of P,
(i.e., each disk is hit by a point of P,). The problem is NP-hard even if all disks
have the same radius and all point weights are the same [8,14,17].

In this paper, we consider the line-constrained version of the problem in
which centers of all disks of S are on a line ¢ (e.g., the z-axis). To the best
of our knowledge, this line-constrained problem was not particularly studied
before. We give an algorithm of O((m + n)log(m + n) + xlogm) time, where
k is the number of pairs of disks that intersect. We also present an alternative
algorithm of O(nmlog(m + n)) time. For the unit-disk case where all disks have
the same radius, we give a better algorithm of O((n + m)log(m + n)) time. We
also consider the problem in L., and L; metrics (the original problem is in the
Ly metric), where a disk becomes a square and a diamond, respectively; we solve
the problem in O((m + n)log(m + n)) time in both metrics. The 1D case where
all disks are line segments can also be solved in O((m + n)log(m + n)) time.

This research was supported in part by NSF under Grants CCF-2005323 and CCF-
2300356. A full version of this paper is available at http://arxiv.org/abs/2305.09045.
© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023

P. Morin and S. Suri (Eds.): WADS 2023, LNCS 14079, pp. 574-587, 2023.
https://doi.org/10.1007/978-3-031-38906-1_38



Geometric Hitting Set for Line-Constrained Disks 575

In addition, by a reduction from the element uniqueness problem, we prove an
2((m + n)log(m + n)) time lower bound in the algebraic decision tree model
even for the 1D case (even if all segments have the same length and all points of
P have the same weight). The lower bound implies that our algorithms for the
unit-disk, Lo, L1, and 1D cases are all optimal.

Related Work. The hitting set and many of its variations are fundamental
and have been studied extensively; the problem is usually hard to solve, even
approximately [15]. Hitting set problems in geometric settings have also attracted
much attention and most problems are NP-hard, e.g., [4,5,10,12,16], and some
approximation algorithms are known [10,16].

A “dual” problem is the coverage problem. For our problem, we can define
its dual coverage problem as follows. Given a set P* of n weighted disks and a
set S* of m points, the problem is to find a subset P,, C P* of minimum total
weight so that each point of S* is covered by at least one disk of Pj,. This
problem is also NP-hard [11]. The line-constrained problem was studied before
and polynomial time algorithms were proposed [19]. The time complexities of
the algorithms of [19] match our results in this paper. Specifically, an algorithm
of O((m+n)log(m-+n)+r*logn) time was given in [19] for the Lo metric, where
k* is the number of pairs of disks that intersect [19]; the unit-disk, Lo, L1, and
1D cases were all solved in O((n +m)log(m +n)) time [19]. Other variations of
line-constrained coverage have also been studied, e.g., [1,3,18].

Our Approach. We propose a novel and interesting method, dubbed dual trans-
formation, by reducing our hitting set problem to the 1D dual coverage problem
and consequently solve it by applying the 1D dual coverage algorithm of [19].
Indeed, to the best of our knowledge, we are not aware of such a dual trans-
formation in the literature. Two issues arise for this approach: The first one is
to prove a good upper bound on the number of segments in the 1D dual cov-
erage problem and the second is to compute these segments efficiently. These
difficulties are relatively easy to overcome for the 1D, unit-disk, and L, cases.
The challenge, however, is in the L., and Lo cases. Based on many interesting
observations and techniques, we prove an O(n + m) upper bound and present
an O((n + m)log(n 4+ m)) time algorithm to compute these segments for the
Lo case; for the Lo case, we prove an O(m + k) upper bound and derive an
O((n 4+ m)log(n + m) + klogm) time algorithm.

Outline. In Sect. 2, we define notation and some concepts. Section 3 introduces
the dual transformation and solves the 1D, unit-disk, and L; cases. Algorithms
for the L, and Ly cases are presented in Sects. 4 and 5, respectively. The lower
bound proof can be bound in Sect.6. Due to the space limit, many details and
proofs are ommited but can be found in the full paper.

2 Preliminaries

We follow the notation defined in Sect. 1, e.g., P, S, Py, K, £, etc. In this section,
unless otherwise stated, all statements, notation, and concepts are applicable for
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all three metrics, i.e., L1, Lo, and L., as well as the 1D case. Recall that we
assume ¢ is the z-axis, which does not lose generality for the Lo case but is
special for the L and L., cases.

We assume that all points of P are above or on /¢ since if a point p € P is
below ¢, we could replace p by its symmetric point with respect to ¢ and this
would not affect the solution as all disks are centered at ¢. For ease of exposition,
we make a general position assumption that no two points of P have the same
x-coordinate and no point of P lies on the boundary of a disk of S (these cases
can be handled by standard perturbation techniques [9]). We also assume that
each disk of S is hit by at least one point of P since otherwise there would be
no solution (we could check whether this is the case by slightly modifying our
algorithms).

For any point p in the plane, we use z(p) and y(p) to refer to its z- and
y-coordinates, respectively. We sort all points of P in ascending order of their
x-coordinates; let {p1,pa2, - ,pn} be the sorted list.

For any point p € P, we use w(p) to denote its weight. We assume that
w(p) > 0 for each p € P since otherwise one could always include p in the
solution.

We sort all disks of S by their centers from left to right; let s1,s9, -, sm
be the sorted list. For each disk s; € S, let [; and r; denote its leftmost and
rightmost points on ¢, respectively. Note that [; is the leftmost point of s; and 7}
is the rightmost point of s;. More specifically, I; (resp., ;) is the only leftmost
(resp., rightmost) point of s; in the 1D, Ly, and Ly cases. For each of exposition,
we make a general position assumption that no two points of {l;,7; | 1 <7 < m}
are coincident.

For 1 < j; < jo < m, let S[ji1,j2] denote the subset of disks s; € S for all
Jj € [j1, ja]-

We often talk about the relative positions of two geometric objects O; and
O2 (e.g., two points, or a point and a line). We say that Oy is to the left of O if
z(p) < z(p’) holds for any point p € O; and any point p’ € O, and strictly left
means z(p) < x(p'). Similarly, we can define right, above, below, etc.

Non-containment Property. We observe that to solve the problem it suffices
to consider only a subset of S with certain property, called the Non-Containment
subset, defined as follows. We say that a disk of S is redundant if it contains
another disk of S. The Non-Containment subset, denoted by S, is defined as the
subset of § excluding all redundant disks. We have the following observation,
called the Non-Containment property.

Observation 1. (Non-Containment Property) For any two disks s;,s; € §,
x(l;) < x(ly) if and only if x(r;) < x(rj).

Observe that it suffices to work on S instead of S. Indeed, suppose P, is an
optimal solution for S. Then, for any disk s € S\S, there must be a disk s’ € S
such that s contains s’. Hence, any point of P,,; hitting s’ must hit s as well.

We can easily compute S in O(mlogm) time in any metric. Indeed, because
all disks of S are centered at ¢, a disk s; contains another disk s; if and only
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the segment s;, N £ contains the segment s; N £. Hence, it suffices to identify all
redundant segments from {s;N¢ | s; € S}. This can be easily done in O(m logm)
time, e.g., by sweeping endpoints of disks on ¢; we omit the details.

In what follows, to simplify the notation, we assume S = S, i.e., S does
not have any redundant disk. As such, S has the Non-Containment property
in Observation 1. As will be seen later, the Non-Containment property is very
helpful in designing algorithms.

3 Dual Transformation and the 1D, Unit-Disk, and L,
Problems

By making use of the Non-Containment property of S, we propose a dual trans-
formation that can reduce our hitting set problem on S and P to an instance
of the 1D dual coverage problem. More specifically, we will construct a set S*
of points and a set P* of weighted segments on the z-axis such that an optimal
solution for the coverage problem on S* and P* corresponds to an optimal solu-
tion for our original hitting set problem. We refer to it as the 1D dual coverage
problem. To differentiate from the original hitting set problem on P and S, we
refer to the points of S* as dual points and the segments of P* as dual segments.

As will be seen later, |S*| = m, but |P*| varies depending on the specific
problem. Specifically, |P*| < n for the 1D, unit-disk, and L; cases, |P*| =
O(n+m) for the Lo, case, and |P*| = O(m+ k) for the Ly case. In what follows,
we present the details of the dual transformation by defining S* and P*.

For each disk s; € S, we define a dual point s;f on the x-axis with x-coordinate
equal to j. Define S* as the set of all m points s, s3,..., sk . As such, |S*| = m.

We next define the set P* of dual segments. For each point p; € P, let I; be
the set of indices of the disks of S that are hit by p;. We partition the indices of
I; into maximal intervals of consecutive indices and let Z; be the set of all these
intervals. By definition, for each interval [ji, jo] € Z;, p; hits all disks s; with
J1 < j < j2 but does not hit either s;, 1 or sj,41; we define a dual segment on
the z-axis whose left (resp., right) endpoint has z-coordinate equal to j; (resp.,
Jj2) and whose weight is equal to w(p;) (for convenience, we sometimes also use
the interval [ji, j2] to represent the dual segment and refer to dual segments as
intervals). We say that the dual segment is defined or generated by p;. Let P be
the set of dual segments defined by the intervals of Z;. We define P* = J;"_; P;.
The following observation follows the definition of dual segments.

Observation 2. p; hits a disk s; if and only if a dual segment of P} covers the
dual point s .

Suppose we have an optimal solution P, for the 1D dual coverage problem
on P* and S*, we obtain an optimal solution F,,; for the original hitting set
problem on P and S as follow: for each segment of P ., if it is from P;* for some

opt»
i, then we include p; into P,;.
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Clearly, |S*| = m. We will prove later in this section that |P*| < 1 for
all 1 < ¢ < n in the 1D problem, the unit-disk case, and the L; metric, and
thus |P*| < n for all these cases. Since |P| < 1 for all 1 < i < n, in light
of Observation 2, P,,; constructed above is an optimal solution of the original
hitting set problem. Therefore, one can solve the original hitting set problem for
the above cases with the following three main steps: (1) Compute S* and P*;
(2) apply the algorithm for the 1D dual coverage problem in [19] to compute
Py, which takes O((|S™[+ |P*|)log(]S*|+ |P*|)) time [19]; (3) derive P, from
PJ,;- For the first step, computing S* is straightforward. For P*, we will show
later that for all above three cases (1D, unit-disk, L1), P* can be computed in
O((n +m)log(n+ m)) time. As |S*| = m and |P*| < n, the second step can be
done in O((n+m)log(n+m)) time [19]. As such, the hitting set problem of the
above three cases can be solved in O((n 4+ m)log(n +m)) time.

For the L., metric, we will prove in Sect. 4 that |P*| = O(n+m) but each P}
may have multiple segments. If P has multiple segments, a potential issue is the
following: If two segments of P;* are in P, ,, then the weights of both segments
will be counted in the optimal solution value (i.e., the total weight of all segments
of Po*pt), which corresponds to counting the weight of p; twice in P,,;. To resolve
the issue, we prove in Sect. 4 that even if |P| > 2, at most one dual segment of
P} will appear in any optimal solution P . As such, P, constructed above is an
optimal solution for the original hitting set problem. Besides proving the upper
bound |P*| = O(n + m), another challenge of the L., problem is to compute
P* efficiently, for which we propose an O((n + m)log(n + m)) time algorithm.
Consequently, the Lo, hitting set problem can be solved in O((n+m)log(n+m))
time.

For the Ly metric, we will show in Sect.5 that |P*| = O(m + k). Like the
L, case, each P may have multiple segments but we can also prove that P/
can contribute at most one segment to any optimal solution P, ,. Hence, Py
constructed above is an optimal solution for the original hitting set problem. We
present an algorithm that can compute P* in O((n + m)log(n + m) + xlogm)
time. As such, the Ly hitting set problem can be solved in O((m + n)log(m +
n) + klogm) time. Alternatively, a straightforward approach can prove |P*| =
O(nm) and compute P* in O(nm) time; hence, we can also solve the problem
in O(nmlog(n + m)) time.

In the rest of this section, following the above framework, we solve the unit-
disk case. Due to the space limit, the 1D and the L; cases are omitted but can

be found in the full paper.

3.1 The Unit-Disk Case

In the unit-disk case, all disks of S have the same radius. We follow the dual
transformation and have the following lemma.

Lemma 1. In the unit-disk case, |P*| < 1 for any 1 < i < n. In addition, P}
for all 1 < i < n can be computed in O((n + m)log(n + m)) time.
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Proof. Consider a point p; € P. Observe that p; hits a disk s; if and only if the
segment D(p;) N ¢ covers the center of s;, where D(p;) is the unit disk centered
at p;. By definition, the indices of the disks whose centers are covered by the
segment D(p;) N ¢ must be consecutive. Hence, |P| < 1 must hold.

To compute P/, it suffices to determine the disks whose centers are covered
by D(p;)N¢. This can be easily done in O((n+m)log(n+m)) time for all p, € P
(e.g., first sort all disk centers and then do binary search on the sorted list with
the two endpoints of D(p;) N ¢ for each p; € P). O

In light of Lemma 1, using the dual transformation, we have the following
result.

Theorem 1. The line-constrained unit-disk hitting set problem s solvable in
O((n +m)log(n +m)) time.

Note that in both the 1D and the L, cases we can prove results similar to
Lemma 1 and thus solve both cases in O((n + m)log(n +m)) time. The details
are omitted but can be found in the full paper.

4 The L., Metric

In this section, following the dual transformation, we present an O((m +
n)log(m + n)) time algorithm for L., case.

In the L., metric, each disk is a square whose edges are axis-parallel. For a
disk s; € S and a point p; € P, we say that p is vertically above s; if p; is outside
sj and z(l;) < z(p;) < x(ry).

In the Lo, metric, using the dual transformation, it is easy to come up with
an example in which |P}| > 2. Observe that |P;| < [m/2] as the indices of S can
be partitioned into at most [m/2] disjoint maximal intervals. Despite |P*| > 2,
the following critical lemma shows that each P can contribute at most one
segment to any optimal solution of the 1D dual coverage problem on P* and S*.
The proof of the lemma can be found in the full paper.

Lemma 2. In the Lo, metric, for any optimal solution Pj, of the 1D dual
coverage problem on P* and S*, Pj,, contains at most one segment from P} for
any 1 <1< n.

Lemma 2 implies that an optimal solution to the 1D dual coverage problem
on P* and S* still corresponds to an optimal solution of the original hitting
set problem on P and S. As such, it remains to compute the set P* of dual
segments. In what follows, we first prove an upper bound for |P*|.

4.1 Upper Bound for |P*|

As |P¥| < [m/2], an obvious upper bound for |P*| is O(mn). Below we reduce
it to O(m + n).
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Our first observation is that if the same dual segment of P* is defined by
more than one point of P, then we only need to keep the one whose weight is
minimum. In this way, all segments of P* are distinct (i.e., P* is not a multi-set).

We sort all points of P from top to bottom as ¢i,qo,...,q,. For ease of
exposition, we assume that no point of P has the same y-coordinate as the
upper edge of any disk of S. For each 2 < ¢ < n, let S; denote the subset of disks
whose upper edges are between ¢;_1 and ¢;. Let S; denote the subset of disks
whose upper edges are above ¢;. For each 1 <i < n, let m; = |59;].

We partition the indices of disks of S7 into a set Z; of maximal intervals.
Clearly, |Z1| < mj. The next lemma shows that other than the dual segments

corresponding to the intervals in 77, ¢; can generate at most two dual segments
in P*.

Lemma 3. The number of dual segments of P*\Z; defined by ¢ is at most 2.

Proof. Assume to the contrary that ¢; defines three intervals [j1, j1], [j2, 73], and
73, 75] in P*\Z;, with j1 < j2 and j5 < js3. By definition, Z; must have an
interval, denoted by Iy, that strictly contains [j, j;.| (i-e., [jk, 1] C Ix), for each
1 < k < 3. Then, I must contain an index j that is not in [j1, 71]U[j2, 75]U[J3, 75
with j1 < j < js (e.g., see Fig.1). As such, ¢; does not hit s;. Also, since j € I,
s; is in 7.

I Iy I3

Fig. 1. Tllustrating a schematic view of the intervals [ji, j;] and I for 1 < k < 3.

Since j1 < j < js, due to the Non-Containment property of S, z(l,;) < z(l;,)
and z(rj;) < z(rj). As qi hits both s and sj,, we have z(l;,) < x(p1) < z(rj;).
Hence, we obtain z(l;) < x(q1) < x(r;). Since g1 does not hit s;, the upper
edge of s; must be below ¢;. But this implies that s; is not in S;, which incurs
contradiction. O

Now we consider the disks of S; and the dual segments defined by ¢o. For each
disk s; of Sa, we update the intervals of Z; by adding the index j, as follows. Note
that by definition, intervals of 7; are pairwise disjoint and no interval contains j.

1. If neither j + 1 nor j — 1 is in any interval of Z;, then we add [j, j| as a new
interval to Z;.

2. If j+1 is contained in an interval I € 7Z; while 7 —1 is not, then 5+ 1 must be
the left endpoint of I. In this case, we add j to I to obtain a new interval I’
(which has j as its left endpoint) and add I” to Zy; but we still keep [ in Z;.
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3. Symmetrically, if j — 1 is contained in an interval I € 7Z; while j + 1 is not,
then we add j to I to obtain a new interval I’ and add I’ to Z; we still keep
I in Il.

4. If both j+1 and j —1 are contained in intervals of Z;, they must be contained
in two intervals, respectively; we merge these two intervals into a new interval
by padding j in between and adding the new interval to Z;. We still keep the
two original intervals in Z;.

Let Z{ denote the updated set Z; after the above operation. Clearly, |Z]| <
|Z1| + 1.

We process all disks s; € Sy as above; let Zy be the resulting set of intervals.
It holds that |Zs| < |Z1| 4 |S2| < m1 + mso. Also observe that for any interval I
of indices of disks of S U S5 such that I is not in Zs, 7o must have an interval
I’ such that I C I’ (i.e., I C I’ but I # I'). Using this property, by exactly the
same analysis as Lemma 3, we can show that other than the intervals in 75, ¢
can generate at most two intervals in P*. Since Z; C Z5, combining Lemma 3,
we obtain that other than the intervals of Z,, the number of intervals of P*
generated by ¢; and g2 is at most 4.

We process disks of S; and point ¢; in the same way as above for all 1 =

3,4,...,n. Following the same argument, we can show that for each ¢, we obtain
an interval set Z; with Z,_y C Z; and |Z;| < Y ,_, my, and other than the
intervals of Z;, the number of intervals of P* generated by {q1,q2,...,q;} is at

most 2¢. In particular, |Z,,| < >"}'_, my < m, and other than the intervals of Z,,,
the number of intervals of P* generated by P = {q1,q2,...,¢,} is at most 2n.
We thus achieve the following conclusion.

Lemma 4. In the Lo, metric, |P*| < 2n+ m.

4.2 Computing P*

Using Lemma 4, we present an algorithm that computes P* in O((n+m) log(n+
m)) time.

For each segment I € P*, let w(I) denote its weight. We say that a segment
I of P* is redundant if there is another segment I’ such that I C I’ and w(I) >
w(l’). Clearly, any redundant segment of P* cannot be used in any optimal
solution for the 1D dual coverage problem on S* and P*. A segment of P* is
non-redundant if it is not redundant.

In the following algorithm, we will compute a subset F; of P* such that
segments of P*\Pj are all redundant (i.e., the segments of P* that are not
computed by the algorithm are all redundant and thus are useless). We will
show that each segment reported by the algorithm belongs to P* and thus the
total number of reported segments is at most 2n +m by Lemma 4. We will show
that the algorithm spends O(log(n + m)) time reporting one segment and each
segment is reported only once; this guarantees the O((n +m)log(n+m)) upper
bound of the runtime of the algorithm.
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Fig. 2. Tllustrating le (the red points) and sz (the blue points). Only the upper edges
of disks are shown. The numbers are the indices of disks. (Color figure online)

For each disk s; € S, we use y(s;) to denote the y-coordinate of the upper
edge of s;.

Our algorithm has m iterations. In the j-th iteration, it computes all segments
in P;, where P is the set of all non-redundant segments of P* whose starting
indices are j, although it is possible that some redundant segments with starting
index 7 may also be computed. Points of P defining these segments must be inside
s5; let P; denote the set of points of P inside s;. We partition P; into two subsets
(e.g., see Fig. 2): le consists of points of P; to the left of r;_; and Pj2 consists of
points of P; to the right of ;_;. We will compute dual segments of P defined
by le and Pj2 separately; one reason for doing so is that when computing dual
segments defined by a point of le, we need to additionally check whether this
point also hits s;_; (if yes, such a dual segment does not exist in P* and thus will
not be reported). In the following, we first describe the algorithm for le since
the algorithm for Pj2 is basically the same but simpler. Note that our algorithm
does not need to explicitly determine the points of P or P?; rather we will build
some data structures that can implicitly determine them during certain queries.

If the upper edge of s;_; is higher than that of s;, then all points of le are
in s;_; and thus no point of le defines any dual segment of P* starting from j.
Indeed, assume to the contrary that a point p; € le defines such a dual segment
[7,7']. Then, since p; is in s;_1, [j,j’] cannot be a maximal interval of indices
of disks hit by p; and thus cannot be a dual segment defined by p;. In what
follows, we assume that the upper edge of s;_; is lower than that of s;. In this
case, it suffices to only consider points of le above s;_; since points below the
upper edge of s;_; (and thus are inside s;_1) cannot define any dual segments
due to the same reason as above. Nevertheless, our algorithm does not need to
explicitly determine these points.

We start with performing the following rightward segment dragging query:
Drag the vertical segment x(l;) % [y(s;-1),y(s;)] rightwards until a point p € P
and return p (e.g., see Fig.3). Such a segment dragging query can be answered
in O(logn) time after O(nlogn) time preprocessing on P (e.g., using Chazelle’s
result [6] one can build a data structure of O(n) space in O(nlogn) time such that
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Fig. 3. Illustrating the rightward segment dragging query: the green dashed segment
is the dragged segment x(l;) X [y(s;—1),y(s;)]. (Color figure online)

each query can be answered in O(logn) time; alternatively, if one is satisfied with
an O(nlogn) space data structure, then an easier solution is to use fractional
cascading [7] and one can build a data structure in O(nlogn) time and space
with O(logn) query time). If the query does not return any point or if the query
returns a point p with z(p) > z(r;_1), then le does not have any point above
sj—1 and we are done with the algorithm for le. Otherwise, suppose the query
returns a point p with z(p) < z(r;_1); we proceed as follows.

We perform the following maz-range query on p: Compute the largest index
k such that all disks in S[j, k] are hit by p (e.g., in Fig.3, k = j + 2). We will
show later in Lemma 5 that after O(mlogm) time and O(m) space processing,
each such query can be answered in O(logm) time. Such an index k must exist
as s; is hit by p. Observe that [j,k] is a dual segment in P* defined by p.
However, the weight of [j, k] may not be equal to w(p), because it is possible
that a point with smaller weight also defines [j, k]. Our next step is to determine
the minimum-weight point that defines [, k.

We perform a range-minima query on [j, k]: Find the lowest disk among all
disks in S[j, k] (e.g., in Fig. 3, 541 is the answer to the query). This can be easily
done in O(logm) time with O(m) space and O(mlogm) time preprocessing.
Indeed, we can build a binary search tree on the upper edges of all disks of S with
their y-coordinates as keys and have each node storing the lowest disk among
all leaves in the subtree rooted at the node. A better but more complicated
solution is to build a range-minima data structure on the y-coordinates of the
upper edges of all disks in O(m) time and each query can be answered in O(1)
time [2,13]. However, the binary search tree solution is sufficient for our purpose.
Let y* be the y-coordinate of the upper edge of the disk returned by the query.

We next perform the following downward min-weight point query for the
horizontal segment [z(l),z(r;—1)] X y*: Find the minimum weight point of P
below the segment (e.g., see Fig.4). We will show later in Lemma 6 that after
O(nlogn) time and space preprocessing, each query can be answered in O(logn)
time. Let p’ be the point returned by the query. If p’ = p, then we report [j, k]
as a dual segment with weight equal to w(p). Otherwise, if p’ is inside s;_1 or
Sk+1, then [7, k] is a redundant dual segment (because a dual segment defined by
p’ strictly contains [j, k] and w(p’) < w(p)) and thus we do not need to report
it. In any case, we proceed as follows.
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Fig. 4. Illustrating the downward min-weight point query (with & = j + 2): the green
dashed segment is the dragged segment [z(l;), z(rj—1)] X y*. The numbers besides the
points are their weights. The answer to the query is p’, whose weight is 3. (Color figure
online)
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Fig. 5. llustrating the rightwards segment dragging query: the green dashed segment
is the dragged segment z(lx+1) X [y(s;-1),y’]. (Color figure online)

The above basically determines that [j, k] is a dual segment in P*. Next,
we determine those dual segments [j, k'] with &’ > k. If such a segment exists,
the interval [j, k'] must contain index k + 1. Hence, we next consider sgyi. If
Y(sp+1) > y(sj—1), then let ¥’ = min{y*, y(sx+1)}; we perform a rightward
segment dragging query with the vertical segment z(lx41) X [y(s;-1),y'] (e.g.,
see Fig. 5) and then repeat the above algorithm. If y(sx+1) < y(s,-1), then points
of le above s;_; are also above 5,41 and thus no point of le can generate any
dual segment [j, k'] with ¥’ > k and thus we are done with the algorithm on le.

For time analysis, we charge the time of the above five queries to the interval
[, k], which is in P*. Note that [j, k] will not be charged again in future because
future queries in the j-th iteration will be charged to [j, k'] for some k&’ > k and
future queries in the j’-th iteration for any j’ > j will be charged to [j’, k”]. As
such, each dual segment of P* is charged O(1) times in the entire algorithm. As
each query takes O(log(n + m)) time, the total time of all queries in the entire
algorithm is O(|P*|log(n 4+ m)), which is ((n + m)log(n + m)) by Lemma 4.

Proofs of Lemmas 5 and 6 are in the full paper.

Lemma 5. With O(mlogm) time and O(m) space preprocessing on S, each
max-range query can be answered in O(logm) time.
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U >{ 4

Fig. 6. lllustrating an initial face f with Fig.7. A non-initial face f with leftmost
leftmost vertex u. vertex u and its opposite face f’.

Lemma 6. With O(nlogn) time and space preprocessing on P, each downward
min-weight point query can be answered in O(logn) time.

This finishes the description of the algorithm for le. The algorithm for sz
is similar with the following minor changes. First, when doing each rightward
segment dragging query, the lower endpoint of the query vertical segment is at
—oo instead of y(s;_1). Second, when the downward min-weight point query
returns a point, we do not have to check whether it is in s;_; anymore. The
rest of the algorithm is the same. In this way, all non-redundant intervals of
P* starting at index j can be computed. As analyzed above, the runtime of the
entire algorithm is bounded by O((n + m)log(n + m)).

As such, using the dual transformation, we have the following result.

Theorem 2. The line-constrained Lo, hitting set can be solved in O((n +
m)log(n +m)) time.

5 The L, Case — A Sketch

Due to the space limit, we only sketch our result for the Ly case; the full details
can be found in the full paper.

As in the Lo, case, |Pf| > 2 is possible and |P}| < [m/2]. We first prove a
lemma similar to Lemma 2, following a similar proof scheme. As such, it suffices
to find an optimal solution to the 1D dual coverage problem on P* and S*.

Upper bound for |P*|. We then prove the upper bound |P*| = O(m + k),
where k is the number of pairs of disks of S that intersect. To this end, we
consider the arrangement A of the boundaries of all disks of S in the half-plane
above £. An easy but critical observation is that points of P located in the same
face of A define the same subset of dual segments of P*. As such, it suffices to
consider the dual segments defined by all faces of A.

We define initial faces of A. Roughly speaking, a face is an initial face if its
leftmost vertex is on ¢ (e.g., see Fig.6).

We define a directed graph G as follows. The faces of A form the node set of
G. There is an edge from a node f’ to another node f if the face f is a non-initial
face and f’ is the opposite face of f (i.e., the rightmost vertex of f’ is the leftmost
vertex of f; e.g., in Fig. 7, there is a directed edge from f’ to f). Since each face
of A has only one leftmost vertex and only one rightmost vertex, each node G
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has at most one incoming edge and at most one outgoing edge. Also, each initial
face does not have an incoming edge while each non-initial face must have an
incoming edge. As such, GG is actually composed of a set of directed paths, each
of which has an initial face as the first node.

For each face f € A, let P*(f) denote the subset of the dual segments of P*
generated by f (i.e., generated by any point in f). Our goal is to obtain an upper
bound for |J;¢ 4 P*(f)|, which is an upper bound for |[P*| as P* C (J,;c 4 P*(f)-
To this end, we first show that |P*(f)| = 1 for each initial face f and we then
show that for any two adjacent faces f’ and f in any path of G, the symmetric
difference of P*(f) and P*(f’) is O(1). As such, we can obtain |P*| = O(m + k)
as A has O(m + k) faces.

Computing P*. To compute the set P*, following the above idea, it suffices to
compute the dual segments generated by all faces of A (or equivalently, generated
by all nodes of the graph ). The main idea is to directly compute for each path
7 € G the dual segments defined by the initial face of m and then for each non-
initial face f € m, determine P*(f) indirectly based on P*(f’), where f’ is the
predecessor face of f in 7. To this end, after constructing A and G and other
preprocessing, we first show that P*(f) for each initial face f can be computed
in O(logm) time, and we then show that P*(f) can be determined in O(logm)
time based on P*(f’), where f’ is the predecessor face of f in 7, for each path
7 of G. As such, P* can be computed in O(nlog(n + m) + (m + k) logm) time.
Consequently, using the dual transformation, the Lo hitting set problem on P
and S can be solved in O((n + m)log(n +m) + klogm) time.

6 Lower Bound

We can prove an 2((n + m)log(n + m)) time lower bound for the problem
even for the 1D unit-disk case (i.e., all segments have the same length), by a
simple reduction from the element uniqueness problem (Pedersen and Wang [19]
used a similar approach to prove the same lower bound for the 1D coverage
problem). Indeed, the element uniqueness problem is to decide whether a set
X = {x1,x2,...,2zn5} of N numbers are distinct. We construct an instance of
the 1D unit-disk hitting set problem with a point set P and a segment set S
on the z-axis ¢ as follows. For each x; € X, we create a point p; on ¢ with
z-coordinate equal to z; and create a segment on ¢ that is the point p; itself.
Let P={p; | 1 <i < N} and S the set of segments defined above (and thus
all segments have the same length); then |P| = |S| = N. We set the weights of
all points of P to 1. Observe that the elements of X are distinct if and only if
the total weight of points in an optimal solution to the 1D unit disk hitting set
problem on P and S is n. As the element uniqueness problem has an 2(N log N)
time lower bound under the algebraic decision tree model, 2((n+m)log(n+m))
is a lower bound for our 1D unit disk hitting set problem.
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