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Abstract4

In reinforcement learning (RL) experiments, participants learn to make rewarding choices5

in response to different stimuli; RL models use outcomes to estimate stimulus-response6

values which change incrementally. RL models consider any response type indiscrim-7

inately, ranging from more concretely defined motor choices (pressing a key with the8

index finger), to more general choices that can be executed in a number of ways (se-9

lecting dinner at the restaurant). But does the learning process vary as a function of10

the choice type? In Experiment 1, we show that it does: participants were slower and11

less accurate in learning correct choices of a general format compared to learning more12

concrete motor actions. Using computational modeling, we show that two mechanisms13

contribute to this. First, there was evidence of irrelevant credit assignment: the values14

of motor actions interfered with the values of other choice dimensions, resulting in more15

incorrect choices when the correct response was not defined by a single motor action; sec-16

ond, information integration for relevant general choices was slower. In Experiment 2, we17

replicated and further extended the findings from Experiment 1 by showing that slowed18

learning was attributable to weaker working memory use, rather than slowed RL learn-19

ing. In both experiments we ruled out the explanation that the difference in performance20

between two condition types was driven by difficulty/different levels of complexity. We21

conclude that defining a more abstract choice space used by multiple learning systems22

for credit assignment recruits executive resources, limiting how much such processes then23
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contribute to fast learning.24

25

Introduction26

The ability to learn rewarding choices from non-rewarding ones lies at the core of suc-27

cessful goal-directed behavior. But what counts as a choice? When a child tries a pink28

yogurt in the left cup and a white yogurt in the right cup, then prefers the right cup, what29

choice should they credit this rewarding outcome to? In their next decision, should they30

repeat their previously rewarding reach to the yogurt on the right, independently of its31

color, or should they figure out where the white yogurt is before reaching for it? Selecting32

the type of yogurt is a more abstract choice: it requires subsequently paying attention33

to the other dimension (where is the white yogurt?) and applying the appropriate motor34

program to execute the choice. Thus, making the more abstract choice additionally in-35

volves less abstract choices, but in this case, only the abstract choice should be credited36

for the yogurt’s tastiness. Knowing the relevant dimension of choice to assign credit to37

is essential when learning. How does choice type impact how we learn?38

The theoretical framework of reinforcement learning (RL) is highly successful for39

studying reward-based learning and credit assignment (Sutton et al., 2018). However,40

RL as a computational model of cognition typically assumes a given action space defined41

by the modeler, which provides the relevant dimensions of the choice space (i.e. either42

the yogurt color or the cup position) - there is no ambiguity in what choices are (i.e. color43

such as pink/white, or side such as left/right), and the nature of the choice space does not44

matter (Rmus et al., 2021). As such, RL experiments in psychology tend to not consider45

the type of choices (a single motor action such as pressing a key with the index finger;46

(Collins et al., 2017; Tai et al., 2012), or the more general selection of a goal stimulus that47

is not tied to a specific motor action (Daw et al., 2011; Foerde et al., 2011; Frank et al.,48

2007)) as important, and researchers use the same models and generalize findings across49

choice types. Recent research has shed some light on how participants might identify50

relevant dimensions of the state and choice space (Farashahi et al., 2017; Niv, 2019);51

however, this research does not address how learning occurs when the learner knows the52

relevant choice space but multiple dimensions of choice are nonetheless available, such as53

in our yogurt example.54

Examining learning of responses when multiple choice dimensions may be relevant is55

important, however, as most of our choices in everyday life are ambiguous: did I pick the56
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white yogurt or the one of the left? In some cases, these dimensions are hierarchically57

interdependent: choices can be represented at multiple levels of abstraction (e.g. have58

breakfast; have yogurt; have pink yogurt; have the yogurt on the right; reach for the59

yogurt on the right side, etc.). In such cases, a choice along a relevant dimension (yogurt60

color) requires a subsequent choice on a reward-irrelevant dimension (position/motor61

action), which then needs to be considered for the choice’s execution, but not credited62

during learning. By contrast, in other cases, some choice dimensions may neither be63

relevant for learning nor for executing the choice – for example, the child should learn64

to fully ignore the color of the plate that the yogurt is on for both their choice and their65

credit assignment.66

Different types of choices may recruit different cognitive/neural mechanisms (Rescorla67

et al., 1967). For example, previous animal models of decision-making suggest that68

the orbitofrontal cortex and the anterior cingulate cortex index choice outcomes for69

goal stimulus choices and motor action choices respectively (Luk et al., 2013). Ventral70

striatum lesions in monkeys impaired learning to choose between rewarding stimuli, but71

not between rewarding motor actions (Rothenhoefer et al., 2017). In humans, recent72

behavioral evidence suggests that the credit assignment process is what differentiates73

learning more relevant choice dimensions from less relevant (here motor) ones (McDougle74

et al., 2016), and that there might be a hierarchical gradation of choices in terms of credit75

assignment. In particular, while people are capable of learning the value of both abstract76

rule choices and concrete action choices in parallel (Ballard et al., 2018; Eckstein et al.,77

2019), they also seem to assign credit to more concrete actions by default when making78

abstract choices that need to be realized through motor actions (Shahar et al., 2019).79

The brain relies on multiple neuro-cognitive systems for decision-making, but whether80

choice format impacts learning similarly across systems remains unexplored. Specifically,81

while RL models provide a useful formalism of learning, they do not easily relate to82

underlying processes. Indeed, RL models are known to summarize multiple processes that83

jointly contribute to learning (Eckstein et al., 2021), such as the brain’s RL mechanism,84

but also episodic memory (Bornstein et al., 2013; Bornstein et al., 2017; Poldrack et al.,85

2001; Vikbladh et al., 2019; Wimmer et al., 2012), or executive functions (Collins et al.,86

2012; Rmus et al., 2021). Here we focus on working memory (WM), which has also87

been shown to contribute to learning alongside RL (Collins et al., 2017; Collins et al.,88

2012; 2018). If choice type matters for learning, does it matter equally for each cognitive89

system that contributes to learning, or differently so?90

In summary, there is a two-fold gap in our understanding of how choice format impacts91

learning. First, when multiple choice dimensions are available but only one is relevant,92
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does the type of the relevant choice dimension impact learning, and if so, through what93

computational mechanisms? We consider, in particular, the important case where one94

relevant choice dimension needs to be executed through a second, irrelevant choice di-95

mension (a motor action); and how this contrasts to learning when one dimension is96

fully irrelevant to both choice and learning. Second, are the differences rooted in the97

brain’s RL system, WM, or both? To address this gap, we designed a task that directly98

compares learning to make choices along two orthogonal dimensions, with different levels99

of generality or interdependence, when there is no ambiguity about which choices are100

relevant to the learning problem. In our task, one choice dimension is a spatial position101

that directly maps onto a consistent motor action, and the other is a more general choice102

dimension, conceptualized as the selection of stimulus goals that constrain a downstream103

selection of an overall irrelevant spatial position and corresponding motor action. In a104

second experiment, we manipulated learning load to separately identify WM and RL con-105

tributions to learning, and investigated with computational modeling how choice matters106

in both systems.107

Our results across two experiments suggest that choice type strongly impacted learn-108

ing, resulting in slower learning when the relevant choice dimension was more general109

and required execution along another dimension. This was in part driven by an incorrect,110

asymmetric credit assignment to less general choices when they were irrelevant. Further-111

more, WM (rather than RL) mechanisms seemed to drive the deficits in performance in112

the more general choice format condition, indicating that defining a more general action113

space, shared by multiple choice systems, recruited limited executive resources. In both114

experiments, we ruled out the simple explanation that the performance difference was115

driven by an effect of difficulty by 1) implementing experimental controls that minimize116

this concern, and 2) ruling out predictions of a pure difficulty effect in analyses and117

modeling.118

Methods119

Participants120

Experiment 1121

Our sample for Experiment 1 consisted of 82 participants (40 female, age mean (SD)122

= 20.5(1.93), age range = 18-30) recruited from the University of California, Berkeley123

Psychology Department’s Research Participation Program (RPP). We based our sam-124
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ple size on samples from previous similar behavioral experiments ((Collins, 2018): 91125

participants; (Collins et al., 2014):85 participants; (Collins et al., 2012):78 participants).126

In accordance with the University of California, Berkeley Institutional Review Board127

policy, participants provided written informed consent before taking part in the study.128

They received course credit for their participation. To ensure that the participants in-129

cluded in analyses were engaged with the task, we set up an exclusion criterion of 0.60130

or greater average accuracy across all task conditions. This cutoff was determined based131

on an elbow point in the group’s overall accuracy in the task (Fig. 12). We excluded 20132

participants based on this criterion, resulting in a total sample of 62 participants for the133

reported analyses.134

Experiment 2135

For the second experiment, we recruited 75 participants (54 female, 1 preferred not to136

answer; age mean (SD) = 20.34(2.4), Age-range=18-34) from the University of Califor-137

nia, Berkeley RPP. One of the prerequisites for participating in Experiment 2 was that138

participants had not previously taken part in Experiment 1. We also relied on previous139

research to decide on the sample size, as in Experiment 1. Participants completed the140

experiment online (De Leeuw, 2015), and received course credit for their participation.141

Using the same exclusion criteria as the previous experiment (based on the distribution142

of average accuracy), we excluded 18 participants, resulting in the total sample of 57143

participants.144

Experimental protocol145

Experiment 1146

Learning Blocks. Participants were instructed that they would be playing a card sort-147

ing game, and that on each trial they would sort a card into one of three boxes. Their148

goal was to use reward feedback to learn which box to sort each card into. The boxes149

were labeled with 3 different colors (green, blue and red), and participants chose one of150

the boxes by pressing one of three contiguous keyboard keys (corresponding to the box151

position) with their index, middle and ring finger. Importantly, the color of the boxes152

changed positions on different trials (i.e. the blue box could appear on the right side153

on trial n, and in the middle on trial n+1). Participants received deterministic feedback154

after each selection (+1 if they selected the correct box for the current card, 0 otherwise).155

156
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Before the experiment, participants read detailed instructions and practiced each task157

condition. The task then consisted of 8 blocks, divided into three conditions. Each of158

the three conditions was defined by its distinct sorting rule. In the label condition, the159

correct box for a given card was defined deterministically by the box’s color label (Fig.160

1A). For instance, if the blue box was the correct choice for a given card, participants161

were always supposed to select the blue box in response to that card, regardless of which162

key mapped onto the blue box on a given trial. In the position condition, the correct163

box was defined deterministically by the box’s position (left/middle/right). For example,164

the correct response of a given card would always be achieved by pressing the leftmost165

key with the index finger, regardless of the box color occupying the left position (Fig.166

1B). The sorting rule in the position control condition was identical to the sorting rule in167

the position condition, but the boxes were not tagged with color labels. This condition168

allowed us to assess participants’ baseline performance when only one response type (e.g.169

position, but not the label) was available. Importantly, participants were explicitly told170

the sorting rule (position or label) at the beginning of each block, in order avoid any171

performance variability that may arise as a function of rule inference and uncertainty.172

Following the 8 learning blocks, participants performed two additional tasks; these are173

not the focus of the current paper and are not analyzed here.174

Out of 8 blocks in total, 2 were control condition blocks, 3 were position condition,175

and 3 were label condition. Block order was pseudo-randomized: participants completed176

a control block first and last, while the conditions of blocks 2-7 were randomly chosen177

within subjects, but counterbalanced across subjects. In each block, participants learned178

how to sort 6 different cards; we used a different set of images to represent cards in179

each block. The boxes were labeled with the same 3 colors across all blocks, except180

the position control blocks, where the boxes were not labeled. Participants experienced181

15 repetitions of each card, resulting in 90 trials per block; trial order was pseudo-182

randomized to ensure a uniform distribution of delays between repetitions of the same183

card in a block. We controlled for the card-dependent position-label combinations across184

trials. Specifically, each label occurred in each position an equal number of times (i.e.185

the blue label occurred 5 times on the left, right and middle box for each card). We also186

ensured that the position-label combinations were evenly distributed across the task (i.e.187

the blue-middle combination did not occur only during the first quarter of block trials).188

Single trial structure. On each trial, participants first saw the three boxes with their189

color labels underneath a fixation cross at the center of the screen. After 1 second, the190

card appeared in the center of the screen, replacing the fixation cross. Participants were191
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allowed to press a key only when the card appeared, with a 1-second deadline. Following192

their response, participants received feedback (+1 or 0) that remained on the screen for193

1 second, followed by a 1 second inter-trial interval (fixation cross). This trial structure194

was designed to mitigate the concern that condition-based differences in performance195

might stem from the label condition being more difficult, by giving participants time to196

identify where each color label was positioned. This minimizes a potential advantage of197

the position condition, where participants did not need to know where colors were on198

a trial-by-trial basis in order to make a correct response. Giving participants time to199

identify where each color is positioned prior to card presentation decreases the difference200

between the conditions in terms of difficulty, making this confound less likely.201

We designed the label and position conditions to engage choice processes with different202

degrees of generality. The position condition should capture the less general choice203

process in which the rewarding response is defined by a single motor action, and the204

label is irrelevant to both choice and learning. The label condition, on the other hand,205

captures a more general choice process in which the rewarding response (i.e. choice of206

the correct label) can be made by identifying one of three positions and executing any of207

the three motor actions, depending on where the correct box label is positioned on the208

given trial, such that the other dimension (position) remains irrelevant for learning but209

becomes relevant for choice.210

Experiment 2211

The task design for Experiment 2 was the same as the task design for Experiment 1,212

with one important exception - we varied the number of cards per block between 2 and213

5, for both position and label conditions. This manipulation has previously been shown214

to enable computational modeling to disentangle working memory and reinforcement215

learning processes (Collins et al., 2012).The order of blocks was counterbalanced across216

participants; they completed either label or position blocks first, with the order of set217

sizes randomized for the first completed condition, and then repeated for the second.218

In addition, we removed the control condition, given that we previously observed no219

difference between position and control. Participants completed 4 blocks of position and220

label each, where each block within each condition had a different set size.221
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Figure 1: Experiment design. A) Participants played a card-sorting game with 3 differ-
ent conditions: Label (learning which box color is correct for each card - more general
choice), Position (learning which motor action/position is correct for each card - less gen-
eral choice), Control (identical sorting rules as position condition, but without labeled
boxes). B) We assumed that participants track card-dependent reward history for both
positions and labels, and that both of these contribute to the choice selection process,
sometimes resulting in interference errors. Note that the card-dependent reward history
is cumulative (tracked across all past trials during which the given card was presented,
rather than only one-trial back), but for simplicity of illustration we only show 1-back
trial in the panel B.

Analyses222

Model-independent analyses223

In addition to general diagnostics and standard statistical analyses (see results), we224

sought to analyze participants’ choices and response times (RT) as a function of how225

often each motor action and each label had been rewarded for each card. Specifically,226

we computed card-dependent cumulative reward history (CRH) for both positions P and227

labels L on each trial for a card C, in each condition:228
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CRHP
k (C,P) =

t

Â
k=1

(rk ⇤1(Cardk =C,Choicek = P)

CRHL
k (C,L) =

t

Â
k=1

(rk ⇤1(Cardk =C,Choicek = L), (1)

where rk is the outcome at trial k in the block, and 1 is the indicator function that229

takes a value of 1 if the card and position/label match C and P/L, and 0 otherwise.230

We used this metric to analyze how the integration of two value sources shaped choices231

when choice format was less/more general. In particular, in the example of the position232

condition, the position CRH for a card and its associated correct position indicated the233

past number of correct choices, while the CRH for other positions was 0. By contrast, in234

the same position condition, the label CRH for a card reflected how often each label had235

been rewarded due to this label being in the correct position. All label CRH values in the236

position condition were expected to be close to each other because label positions were237

counterbalanced, but slight differences due to past choice randomness could be predictive238

of biases in future choice. The opposite was true in the label condition.239

To analyze how the value integration for each type of choice shaped decisions, we240

focused on the error trials and computed the proportion of errors driven by the other241

irrelevant choice dimension. We reasoned that if participants were randomly lapsing, any242

of the two possible errors should be equally likely. However, if participants experienced243

value interference, they should be more likely to select the error with the higher CRH244

in the irrelevant dimension. In the label condition, such an interference error would245

look like selecting the position/motor action that was rewarded on the previous trial,246

even though the correct label had switched positions since (Fig. 1B). In the position247

condition, an interference error would occur when participants selected the previously248

rewarded label that had switched positions, instead of the label currently corresponding249

to the position/motor action that is always correct for the given card (Fig. 1B).250

We ran a trial-by-trial analysis using a mixed-effects general linear model to char-251

acterize choices. We used trial-by-trial reward history difference RHD =CRH(chosen)�252

mean(CRH(unchosen)) between chosen and unchosen boxes, for both positions and la-253

bels, and tested whether this discrepancy modulated accuracy and RTs. If participants254

implemented an optimal decision strategy, their accuracy and RTs should increase and255

decrease respectively with an increased RHD in the relevant choice dimension (i.e. label256

RHD in label condition, position RHD in position condition). Alternatively, contribution257

by the irrelevant dimension RHD (i.e. position RHD in label condition or vice versa)258
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would serve as evidence of value interference. Our mixed-effects models had the following259

general structure:260

261

Per f ormance = 1+b1 pRHD+b2lRHD+b3t +b4block+

(1+b1 pRHD+b2lRHD+b3t +b4block|Sub ject), (2)

where pRHD is RHD based on position reward history, and lRHD is RHD based on label262

reward history. Performance can refer to either accuracy (coded as correct/incorrect) or263

response times.264

In the analysis of Experiment 2 data, we also ran mixed-effects models including265

predictors that indexed WM mechanisms (set size and delay between presentations of266

the current stimulus and the most recently rewarded stimulus, which respectively cor-267

respond to indexing capacity and susceptibility to decay properties of WM), and RL268

effects (dimension-relevant, card-dependent reward history, calculated from the cumula-269

tive number of earned points for each card, indexing reward-based learning):270

Per f ormance = 1+bRLRL+bWMWM+btt +bbblock+

(1+bRLRL+bWMWM+btt +bbblock|Sub ject), (3)

where RL corresponds to RL factors such as reward history, and WM corresponds to271

WM factors such as decay and set size. Note that this is a general structure to demon-272

strate how we structured the mixed-effects model, but set size and decay were entered273

as separate predictors.274

In other words, we explored the effects of interest on a group level, as well as how the275

estimates of these effects vary across individual participants. We included a predictor276

for trial number in this model, to ensure that reduction in RTs is not simply conflated277

with practice effects/task progression. In addition, we added block number as one of the278

regressors, in order to capture overall improvement in performance across the task.279

Computational modeling280

Reinforcement Learning-Working Memory (RL-WM): In order to computationally quan-281

tify the differences in learning processes between the motor choice/general choice condi-282

tions, we used a set of hybrid reinforcement learning (RL) and working memory (WM)283
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models. Our baseline assumption was that in the RL process, participants track and284

update two independent sets of stimulus-action value tables, corresponding to the two285

possible choice spaces: a card-position value table, and a card-label value table. We286

also assumed that the choice policy may reflect a mixture of both the relevant and the287

irrelevant value tables, potentially leading to interference errors when the value of ir-288

relevant choice dimension (position/label) contributes to the choice process (Fig. 2A).289

In addition to the RL module, a WM module allows us to capture the contribution of290

WM to performance. The WM memory module learns fast, but is sensitive to short291

term forgetting and cognitive load, and is thus particularly identifiable in the second292

experiment where the set size varies between 2 and 5 (Collins, 2018; Collins et al., 2012;293

2018). WM also potentially tracks associations between cards and two choice types, and294

like RL, its policy may reflect a mixture of both relevant and irrelevant associations. We295

investigated a range of models to pinpoint the computational mechanisms of divergence296

between the learning processes in the two conditions, by varying the extent to which the297

models allowed for condition-dependent specificity/model-parameters.298

299

RL learning rule300

The RL module assumes incremental learning through a simple delta rule (Sutton et al.,301

2018). Specifically, on each trial t, the values of labels QL(c, l) and positions QP(c, p) for302

the trial’s card c and chosen labels and positions l and p are updated in proportion to303

the reward prediction error:304

QP
t+1(c, p) = QP

t (c, p)+a⇤ (r�QP
t (c, p))

QL
t+1(c, l) = QL

t (c, l)+a⇤ (r�QL
t (c, l)), (4)

where a is the learning rate, and r = 0/1 is the outcome for incorrect and correct305

trials. Q-tables are initialized at 1/3 (3 = total number of positions/labels) at the start306

of each block to reflect initial reward expectation in the absence of information about307

new cards.308

WM learning rule309

Unlike RL, WM processes can encode and retain the previous trial’s information perfectly,310

thus enabling one-shot learning. Note that other cognitive processes (such as episodic311
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memory) could also support one-shot learning and contribute to learning behavior in this312

experiment; however, here, we focus on RL and WM processes only, as our protocol does313

not allow us to disentangle other contributions (Yoo et al., 2022). Following previous314

work (Collins, 2018; Collins et al., 2014; Collins et al., 2012), we model the one-shot315

learning in WM by storing the immediate outcome as the stimulus-response weight:316

W P
t+1(ct , pt) = rt

W L
t+1(ct , lt) = rt , (5)

Prior work in similar tasks (Frank et al., 2007; Gershman, 2015; Katahira, 2018; Niv et317

al., 2012) has shown an asymmetry in learning based on positive/negative feedback, such318

that individuals are less likely to integrate negative feedback while learning rewarding319

responses. Thus, we included a learning bias parameter (0  LB  1), which scales the320

learning rate a by LB when participants observe the negative feedback. We applied LB321

to both RL and WM (for both position and label dimensions, showing only an example322

for position here):323

QP
t+1(c, p) = QP

t (c, p)+LB⇤a⇤ (0�QP
t (c, p))

W P
t+1(c, p) =W P

t (c, p)+LB⇤ (0�W P
t (c, p)), (6)

To capture the phenomenon that maintenance of information in WM is short-term324

and subject to interference, the weights stored in WM are susceptible to decay (f) at325

each trial, which pulls all position and label weights to their initial values (W P0 ,W L0)326

following the application of the WM forgetting rule (5):327

W P
t+1 =W P

t +f⇤ (W P0 �W P
t )

W L
t+1 =W L

t +f⇤ (W L0 �W L
t ), (7)

While information stored in WM decays over time, reflecting the well-documented328

short time-scale of WM maintenance, RL is assumed to be a more robust system that329

is less susceptible to forgetting. Therefore, it is theoretically less justified to include a330

decay mechanism for Q-values. Nevertheless, for completeness, we fit the version of the331

model with a separate decay process in the RL module as well, and confirmed that it332

does not improve the model fit. Thus, in further implementations of the RL-WM model333

we limited decay implementation to the WM module only.334
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Policy335

We used the softmax function to transform WM weights and RL Q-values into choice336

probabilities to produce position choice policies PP
RL and PP

WM:337

PP
RL(p|c) = exp(b⇤QP

t (c, p))
Â3

i=1 exp(b⇤QP
t (c, pi))

PP
WM(p|c) = exp(b⇤W P

t (c, p))
Â3

i=1 exp(b⇤W P
t (c, pi))

, (8)

We applied the same softmax transformation to the label Q- and W-tables to obtain338

the label and choice policies PL
RL and PL

WM. This policy permits the selection of choices339

with higher Q-values/weights with higher probability. The softmax b is the inverse340

temperature parameter, which controls how deterministic the choice process is. For each341

module, the overall choice policy is a mixture of both policies, determined by mixture342

parameters, r:343

PRL(pi|pos.block) = rP ⇤PP
RL(pi)+(1�rP)⇤PL

RL(label(pi))

PWM(pi|pos.block) = rP ⇤PP
WM(pi)+(1�rP)⇤PL

WM(label(pi)), (9)

We apply the same mixture process with mixture weight rL for the label dimension344

blocks:345

PRL(li|lab.block) = rL ⇤PL
RL(li)+(1�rL)⇤PP

RL(position(li))

PWM(li|lab.block) = rL ⇤PL
WM(li)+(1�rL)⇤PP

WM(position(li)), (10)

The RL-WM model posits that choice comes from a weighted mixture of RL and346

WM, where one’s reliance on WM is determined by the WM weight (w) parameter:347

P(p|c) = w⇤PWM(p|c)+(1�w)⇤PRL(p|c)
P(l|c) = w⇤PWM(l|c)+(1�w)⇤PRL(l|c), (11)

where w reflects the likelihood of an item being stored in working memory and is348

proportional to the ratio of capacity parameter (K) and block set size (or number of349

stimuli; ns), scaled by the baseline propensity to rely on WM (w0;Fig 2):350
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w = min(1,
K
ns
)⇤w0 (12)

We further modified the policy to parameterize additional processes. For instance,351

individuals often make value-independent, random lapses in choice while doing the task.352

To capture this property of behavior, we derived a secondary policy by adding a random353

noise parameter in choice selection (Nassar et al., 2016):354

P0 = (1� e)⇤P+ e⇤ 1
nA

, (13)

where nA is the total number of possible actions, 1/nA is the uniform random policy,355

and e is the noise parameter capturing the degree of random lapses.356

We fit the different configurations of the full RL-WM model to the data from Ex-357

periment 2, where we varied set size, which permitted us to modulate WM involvement.358

Note that previous research with experiments including multiple set sizes has shown that359

single process models (such as RL with decay or interference) are insufficient to capture360

set-size effects; indeed, these processes can be decomposed into both pure cognitive load361

and increased forgetting with longer delays between stimuli across set sizes. Thus, in362

Experiment 2, we do not consider RL-only models.363

In the absence of a set-size manipulation, it is not possible to separately identify the364

WM module from the RL module. Thus, in the first experiment, where set size is fixed,365

we only consider the RL module as approximating the joint contributions of both, and366

do not include a WM module. Because the RL module summarizes both RL and WM367

contributions, we add to it a short-term forgetting feature of the RL-WM’s WM module:368

specifically, we implemented decay in Q-values for all cards and all choices at each trial:369

QP
t+1 = QP

t +f⇤ (Q0 �QP
t )

QL
t+1 = QL

t +f⇤ (Q0 �QL
t ), (14)

whereas in the RL-WM model the forgetting parameter is limited to the WM module370

only. The list of baseline parameters for RL-WMmodel (Experiment 2) includes: learning371

rate (a), inverse temperature (b), lapse (e), learning bias (LB), decay (f), capacity (K),372

WM weight (w),and value mixture (r). The baseline RL model (Experiment 1) include373

learning rate (a), inverse temperature (b), lapse (e), learning bias (LB), decay (f) and374

value mixture (r). We explored different model variants by making different parameters375

fixed/varied across conditions. In the RL-WM (Experiment 2) model, the parameters376
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did not vary as a function of set size (i.e. same label/position parameter values for all377

set sizes).378

Model fitting and comparison379

Fitting Procedure. In both Experiment 1 and Experiment 2 modeling, we used maxi-380

mum likelihood estimation to fit participants’ individual parameters to their full sequence381

of choices. All parameters were bound between 0 and 1, with the exception of the b pa-382

rameter, which was fixed to 100 (found to improve parameter identifiability here and in383

previous similar tasks (Master et al., 2020)), and the capacity parameter (K) of Exper-384

iment 2 models, which could take on one of the discrete values between 2-5. To find385

the best fitting parameters, we used 20 random starting points with MATLAB’s fmincon386

optimization function (Wilson et al., 2019).387

Figure 2: A) In Experiment 1 we used RL model variants, which assume incremental,
feedback-driven learning. In Experiment 2, we combined RL andWMmodules, under the
assumption that learning is a weighted interaction between RL and WM systems. B) The
extent to which participants relied on WM was determined by the WM weight parameter
(w), proportional to participants’ WM capacity (K), and inversely proportional to set
size.

Model validation. To validate whether our models could indeed capture the behavioral388

properties we set out to model, we simulated performance from the best parameter389

estimates for each subject 100 times per subject. We then compared whether the model390

predictions from the simulated data captured the patterns we observed in the actual data391

set.392

These simulations also allowed us to ensure that our fitting procedure could ade-393

quately recover parameters in our experimental context, by fitting the model to the394
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simulated data and evaluating the match between the true simulation parameters and395

recovered parameters fit on simulated data.396

Model comparison. Exploring the full model space would lead to a combinatorial explo-397

sion of models, given the possible variations along all parameters. Thus, to explore the398

model space, we took a systematic approach by starting with the most complex model399

(all parameters varied across conditions), and gradually decreasing model complexity,400

while also monitoring the goodness of model fit. Specifically, we reduced the model401

complexity only if we found that removing a parameter improved the model fit. We402

chose this approach in order to conduct model comparison systematically, testing out403

plausible parameter configurations with varying complexity. We compared the models404

using Akaike Information Criterion (AIC) (Wagenmakers et al., 2004), which evaluates405

model fit using likelihood values and applies a complexity penalty based on the number406

of parameters. To ensure that our models were identifiable with AIC, we computed a407

confusion matrix (Wilson et al., 2019) by creating synthetic data sets from each model,408

fitting each model to the simulated data sets, and performing AIC-based comparison409

where the ground truth was known. This confirmed that AIC was adequately penalizing410

for model complexity in our situation.411

Results412

Experiment 1: Behavioral results413

We first asked whether participants learned differently across experimental conditions.414

Learning curves show that participants learned well in all conditions, as their accuracy415

increased with more exposure to each card (Fig. 3A). A repeated measures one-way416

ANOVA confirmed that there was a main effect of condition (label/position/control)417

on performance (F(2,61) = 97.7, p < .001, h2 = .62). We next tested which specific418

conditions contributed to this significant difference, and found a marginal difference419

between control and position conditions; however, this difference did not reach statistical420

significance (paired t-test: t(61) = 1.61, p = .11, Cohen0s d = .20). This result suggests421

that the additional choice feature (the labels) in the position condition did not have422

a strong impact on the choice process. Performance in the label condition, however,423

was significantly lower than that in the position and the control conditions (paired t-424

test: position: t(61) = 11.1, p < .001, Cohen0s d = 1.42; control: t(61) = 12.9, p < .001,425

Cohen0s d = 1.65).426
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We next examined why label condition performance was worse. We hypothesized427

that choice was not simply noisier in the label condition, but instead that choice might428

be contaminated by the reward history of irrelevant motor choices. To test this hy-429

pothesis, we computed the cumulative card-dependent label/position reward history (see430

methods), and quantified the proportion of error trials in which participants incorrectly431

chose a box with high reward history of an incorrect feature (Fig. 1B). In the position432

condition, participants did not make more interference errors than expected at chance433

level (0.5 for two possible errors) (Fig. 3B; t(61) = .13, p = .89, Cohen0s d = .01). This434

confirms that the presence of labels in the position condition did not impact choice com-435

pared to the control condition. By contrast, in the label condition, the proportion of436

interference errors was significantly higher than chance (Fig. 3B; t(61) = 2.54, p = .01,437

Cohen0s d = .32). Furthermore, the proportion of interference errors in the label condition438

was significantly greater than interference errors in the position condition (t(61) = 2.13,439

p = .03, Cohen0s d = .27). This result suggests an asymmetry in interference between440

different choice spaces, in that the values of less general/motor action choices seem to441

contaminate the more general choice process (but not the other way around). To rule out442

the possibility that the effect we observed was driven by the block/condition order (i.e.443

transfer of incorrect strategy from the previous block), we ran a mixed-effects general444

linear model predicting accuracy with previous vs. current block conditions. The result445

of this analysis showed that participants’ performance was affected by the current block446

condition (p < .001), but not the previous block condition (p = 0.45), thus ruling out or-447

der effects as a possible explanation of our results. In addition, our results were replicated448

in the second experiment (as reported later), where we removed the control condition449

altogether, and counterbalanced the remaining condition blocks such that participants450

could either experience position or label condition blocks first. This further supports the451

conclusion that the observed results are unlikely to be explained by the order effects.452

Next, we performed a trial-by-trial analysis to examine the effect of card/label values453

on correct trials’ reaction times (RT ). For each condition, we used a mixed-effects linear454

model to predict log(RT ) from the reward history difference (RHD) between chosen455

and unchosen choices (see methods), where choice referred to label in one predictor456

and position in the other. The rationale behind this analysis is that if participants457

are engaging in the appropriate decision strategy, then RTs should decrease with the458

higher RHD in the condition-relevant dimension (label or position), because a higher459

RHD means greater evidence in favor of the correct response. On the other hand, in the460

event of interference, we expected participants’ RTs to be modulated by the RHD of the461

incorrect dimension (e.g. position RHD in label condition). We controlled for the trial462
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number in the model.463

As predicted, in models for each condition (position condition model f 2 = .27 ; label464

condition model f 2 = .154), participants’ RTs decreased with increased respective RHD465

(Fig. 3C; label condition: blabel = �.04, p < .001; position condition: bposition = �.06,466

p < .001). Label RHD did not affect the RTs in the position condition (blabel = �.004,467

p = 0.55). Hence, the mixed-effects model aligned with interference errors, confirming468

that participants’ choices were not affected by the presence of an additional feature (the469

labels) in the position condition. On the other hand, the position RHD surprisingly470

increased RTs in the label condition (bposition = .034, p = .001), suggesting that the471

interference of motor action values with label values may have resulted in the delay of472

choices (Fig. 3C). We compared the subject-level b estimates of the effect of incorrect473

dimension RHD on RTs in position and label conditions, and found that the incorrect474

RHD effect was significantly greater in the label condition (paired t-test: t(61)= 3.87, p<475

.001, Cohen0s d = .49), confirming the asymmetry between conditions that was revealed476

in previous analyses.477

Figure 3: Experiment 1 Model-independent results. A) Proportion of correct choices as
a function of number of previous rewards obtained for a given stimulus. Participants
performed worse in the label condition, compared to the position and control conditions.
Performance in the position and control conditions did not differ statistically. B) Asym-
metric value interference: The values of motor actions interfered with values of correct
labels in the label condition, thus resulting in the interference errors, but not the other
way around. C) Mixed-effects regression model shows that the interference of motor
action reward history/values may have resulted in the longer RTs in the label condition.
* indicates statistical significance at p < .05
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Experiment 1: Modeling results478

We used computational modeling to tease apart the mechanisms driving condition effects.479

We fit several variants of reinforcement learning (RL) models, and focus here on 4 models480

that represent the main different theoretical predictions (Fig. 4A; Fig. 4B). The standard481

RL model (M1) assumes no difference between the conditions and serves as a baseline482

that cannot capture the empirical effect of condition. RL model M2 lets learning rates483

depend on condition, and tests the prediction that slower learning with labels is driven484

by different rates of reward integration. Model M3 extends model M2 with an additional485

mechanism, parameterized by the value mixture (rL), that enables the position value to486

influence policy in the label condition.487

Ruling out the difficulty explanation using computational modeling. Model M4, the488

dual-noise model, is an RL model with a condition-dependent noise parameter (e). M4489

captures the hypothesis that the label condition is more difficult, resulting in a noisier490

choice process. Models M1-4 all assume rP = 1, with no influence of labels in position491

blocks. Other models considered separate decay (f) parameters and a free position con-492

dition rP, but did not improve fit.493

494

Model M3 offered the best quantitative fit to the data, as measured by AIC (Fig. 4B).495

Furthermore, only model M3 was able to qualitatively reproduce patterns of behavior.496

Specifically, for each of the models, we simulated synthetic data sets with fit parameters497

and tested whether the model predictions matched the empirical results. We focused on498

2 key data features in our model validation: performance averaged over the stimulus iter-499

ations (learning curves), and asymmetrical interference errors. Model validation showed500

that only the model with 2 learning rates and one r parameter (M3) captured both prop-501

erties of the data (Fig. 4A). These results confirm that the learned value of (irrelevant)502

motor actions influenced the selection of more general label choices. Furthermore, model503

comparison results show that slower learning in the label condition was not due to a504

noisier choice process, but due to a reduced learning rate. Indeed, the position condition505

a was significantly greater than the label condition a (sign test; z = 6.35 p < .001, effect506

size: .81) Fig. 4C). Interestingly, the learning rates in the two conditions were correlated507

(Spearman r = .39,p = .003; Fig. 4C), suggesting that the learning process in the two508

conditions was driven by related underlying mechanisms.509
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Figure 4: Experiment 1: Modeling Results. A) Model validation comparing the observed
data to predictions of tested models; M3 reproduces behavior best. B) Parameters used
in models M1-4 (left); M3 has best group-average AIC. C) Comparison of condition-
dependent learning rates shows that learning rates are correlated, and that label condition
learning rates are significantly lower compared to position condition learning rates.

Experiment 2: Behavioral Results510

The results of the first experiment suggest that the choice type affects learning. However,511

given the experimental design, our conclusions could not dissociate whether the difference512

in RL parameters actually reflected a difference in RL mechanisms or in WMmechanisms.513

Recent work (Collins, 2018; Collins et al., 2018), nevertheless, suggest that RL behavior514

recruits other learning systems, such as WM. Hence, the variations that may appear to515

be driven by RL mechanisms might conceal what is actually a WM effect. To address516
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the question of whether the choice definition matters for learning at the level of RL517

or WM, and whether slowed learning stems from slowed WM or RL, we ran a second518

experiment. In Experiment 2, we varied the number of cards (set size) to manipulate WM519

involvement. Furthermore, we fit variants of the RL-WM model to test the contribution520

of WM mechanisms.521

Experiment 2 results replicated findings from Experiment 1, showing that there was a522

main effect of condition (Fig. 5A; repeated measures one-way ANOVA (F(1,56) = 98.95,523

p < .001, h2 = 0.63)). Furthermore, we replicated the pattern of interference errors,524

suggesting that the value of position choices interferes with that of label choices, but not525

the other way around (Fig. 5B; t(55) = 2.89; p = .006, Cohen0s d = .38).526

We next investigated how set size manipulation affected these results. As predicted,527

performance decreased with set size in both conditions (Position: F(3,56) = 11.83, p <528

.001, h2 = .38; Label: F(3,56) = 23.498, p < .001, h2 = .55). There was an interaction529

between set size and condition (F(3,56) = 16.21, p < .001, h2 = .46; Fig. 5A). There was530

a marginal set size effect in interference errors that did not reach significance (F(3,56) =531

2.17, p = .09, h2 = .20; Fig. 5C).532

To better understand the source of the set size effect, we ran a general linear mixed-533

effects model to predict trial-by-trial performance. Our mixed-effects model included534

predictors indexing WM mechanisms (set size and delay between presentations of the535

current stimulus and the most recently rewarded stimulus; indexing capacity and sus-536

ceptibility to decay properties of WM respectively), and RL effects (dimension-relevant,537

card-dependent reward history, calculated from the cumulative number of earned points538

for each card, indexing reward-based learning). We also ran a model which tests for an539

interaction between individual RL/WM factors and the task condition.540

A likelihood ratio test provided evidence in favor of the interaction model over a model541

without interactions (model without interactions f 2 = .42; model with interactions f 2542

= .43; LR p < .05). The interaction model showed that, as expected, participants’ per-543

formance increased as a function of reward history (b = .62, p < .001), and decreased544

as a function of set size (b = �.18, p = .00011). There was no effect of block (b = .04,545

p = .58) or delay (b =�.04, p = .37), suggesting that neither overall task exposure nor546

delay affected performance over and above reward history and set size. The only signif-547

icant interaction term was the condition*reward history interaction (b = .16, p = .01),548

suggesting that the reward history more heavily contributed to an increase in perfor-549

mance in the label condition. To understand our results on a more mechanistic level, we550

turned to computational modeling.551
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Figure 5: Experiment 2 Results. A) Participants’ overall performance varied by set size (a
marker of WM contribution), and was worse in the label condition. B) The asymmetry in
value interference replicated from Experiment 1, showing that values of position choices
interfere with values of label choices, but not the opposite. C) The interference errors
did not vary by set size.

Experiment 2: Modeling results552

The set size manipulation in Experiment 2 enables us to identify distinct contributions of553

RL andWM (Collins et al., 2012) with the full RL-WMmodel (see methods). Briefly, RL-554

WM disentangles an incremental, value-learning process (RL), as well as a rapid-learning,555

but decay-sensitive short-term memory-based decision process (WM). Choice policy is556

a weighted mixture of RL and WM (Fig. 2A,B), where the weighting is proportional557

to one’s WM capacity. In other words, the model architecture posits that if one’s WM558

capacity is low, one might be more likely to rely on RL than WM, especially when559

set size (number of items) is high. We first replicated in Experiment 2 that models560

including only one of those mechanisms could not adequately capture the set size effect,561
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as has been shown before (Collins et al., 2012). We then approached model comparison562

by systematically varying the complexity of the RL-WM model (Fig. 2A), in order to563

establish whether specificity in RL or WM module parameters (or both) is necessary564

to capture the divergence between behavioral patterns in the 2 conditions. Because the565

RL-WM model assumes the policy for choice generation at the level of both RL and WM,566

we also tested if integrating irrelevant dimension interference with a r mixture parameter567

in the policy of RL module or WM module (or both) could best capture our data. We568

were interested in the condition-based dissociation between parameters.569

Exploring all possible parameter combinations was computationally prohibitive. Thus,570

we explored a subset of the most relevant models (see methods; in the main text, we fo-571

cus only on a subset of models; see supplement for other non-winning models - Fig. 9).572

Using AIC comparison, we identified the simplest model which allowed us to capture the573

properties of the data (M1, (Fig. 6A)). In M1, the WM weight (w) and r parameters574

were condition-dependent (with free r parameter for label condition, and position con-575

dition r fixed to 1). Capacity (K), learning rate (a), decay (f), learning bias (LB), noise576

(e) were shared across the 2 conditions - model comparison showed no benefits to making577

them independent (Fig. 9). We further consider 3 other variants of this model: no value578

interference r (M2), r in RL policy alone (M3), and r in WM policy alone (M4) (Fig.579

6A). Last, we consider a control model with condition-dependent e and a, which would580

primarily attribute the decline in label condition performance to noise/RL system (M5).581

Consistent with Experiment 1 results, the AIC comparison revealed that M5 could not582

capture data well, and that M1 without r (M2) fit worse (Fig. 6A), providing additional583

evidence for the necessity of the interference mechanism to capture choice data, and thus,584

the existence of motor value interference in label blocks. However, the AIC comparison585

failed to significantly distinguish between the remaining models M1 (r in RLWM), M3586

(r in RL) and M4 (r in WM) (repeated measures ANOVA: F(2,56) = 2.63,p = .07, h2 =587

.08), though r in RL models fit numerically worse, supporting the idea that we needed588

to include motor value interference in the WM module to account for the results. There-589

fore, we henceforth focus on the simplest model, M1 with condition-dependent w and r590

in RL and WM policy, as this model makes the fewest specific assumptions about RL-591

WM dissociation between the 2 conditions. Note that model comparison results were592

identical (and stronger) when using BIC instead of AIC, and that protected exceedance593

probability supported M1 over other models.594

The M1 model adequately captured the data patterns in 1) learning curves (Fig. 6B),595

2) overall interference errors (Fig. 6C) and 3) interference errors by set size (Fig. 6D).596

Furthermore, the WM weight w was significantly reduced in the label condition compared597
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to the position condition in M1 (Fig. 6E).598

599

Figure 6: (A) AIC comparison allowed us to narrow down the space of models. Models
with condition-specific WM weight (w) fit the best (M1-M4). Removing the mixture
parameter (r) harmed the model fit (M2). A model assuming impairment in RL did not
fit as well (M5). See main text for model specifications. B) Model simulations of the
best model M1 captured the behavioral data patterns. C) Model validation for M1 (r)
and M2 (no r) confirms the necessity of r parameter in capturing the interference error
patterns.)
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Figure 6: D) M1 captured interference errors in different set sizes. We note that the
numerical dip in set size 3 is not statistically significant. While it is unclear why the
model simulations reproduce it, it is possible that it arises from a pattern in the stimulus
sequences, which is used by participants and model simulations. E) Comparison of
condition-dependent parameters shows that w is lower in the label condition.

Overall, the results suggested that the performance decrease in the label condition was600

driven primarily by deficits in WM, specifically by a smaller WM weight w that indexes601

the set-size independent contribution of WM to learning. Therefore, the choice type602

(more/less general) impacted learning, and it seemed to do so by decreasing participants’603

ability to use WM for learning. However, the value interference appeared to be present604

in both RL and WM mechanisms.605

Discussion606

Humans and animals make many types of choices, at multiple levels of generality, where607

some choices are dependent on others. We designed a new experimental protocol to608

investigate whether and how different choice types impact learning. Across two exper-609

iments, behavioral analyses and computational modeling confirmed our prediction that610

the generality of choice type impacts learning, with worse performance for choices that611

do not map onto a simple motor action. Computational modeling revealed two separable612

sources of impairment. First, value learning for relevant choices of a more general type613

was slower, as revealed by smaller learning rates (a) in Experiment 1. Second, choices614

were contaminated by irrelevant motor action values. Experiment 2 examined whether615

this dissociation originated in different neuro-cognitive systems’ contributions to learn-616

ing, namely RL and/or WM. Our results revealed that the reduction in learning speed for617

general-format choices stemmed more from WM than the RL process, with WM weight618

(w) reduced but RL (a) unchanged, when controlling for WM contributions. However,619

the interference of low level values appeared to be present in both mechanisms. The620

selective reduction in WM weight implies that participants’ executive resources might be621

leveraged to define the choice space that is then used by both the RL and WM system; a622

more generalized choice space requires a higher degree of such computation, thus leaving623

reduced resources for actual learning.624

In both experiments, we found an asymmetry in interference between choice types.625

When participants learned to make more general choices (selecting a label) that required626
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a subsequent motor action (pressing the key corresponding to the label’s location), their627

choices were influenced by the irrelevant reward history of motor actions. By contrast,628

when participants learned to make less general choices (the correct response is defined629

by pressing the same key corresponding to the box location), they were not influenced630

by the irrelevant reward history of box labels. This result is consistent with a choice631

hierarchy interpretation, where participants may be unable to turn off credit assignment632

to irrelevant choice dimensions when the realization of their (abstract) choice does involve633

this dimension (Eckstein et al., 2020), but are able to do so when the irrelevant choice634

dimensions are more abstract, as shown here.635

While our results imply that participants exhibit a decision bias towards motor ac-636

tions, we acknowledge that our protocol cannot disambiguate between the motor actions637

themselves and the corresponding spatial location of the boxes. That is, we cannot con-638

firm whether the participants track the value of specific motor actions (index/middle/ring639

finger key press) or of the corresponding box positions (left/middle/right). Hence, a com-640

peting interpretation of our results would be that spatial positions, rather than motor641

actions, are prioritized in tracking value, compared to other visual features such as la-642

bels. To completely rule out this possibility, we would need to modify the current task643

with a condition where the motor actions are not aligned with the specific positions, and644

inspect whether the interference effect persists in such a condition. However, we think645

this account is less likely than a choice abstraction account, which explains our results646

more parsimoniously, without requiring a “special status” for a “position” visual feature.647

Furthermore, animal research supports this interpretation, as it shows differences in648

the neural code of choices, which are defined primarily as motor actions versus more649

abstract choices (Luk et al., 2013; Rothenhoefer et al., 2017). Specifically, these studies650

have utilized recordings from neurons of animals trained to perform a task that con-651

trasted motor action choices with stimulus goal choices, in order to identify the neural652

substrates that differentiate between the two. The results seem to implicate prefrontal653

cortex (PFC), anterior cingulate cortex (ACC), orbitofrontal cortex (OFC), and striatal654

regions (ventral striatum) as areas that differentiate between how choices with different655

levels of abstraction are coded in the brain. Therefore, it is likely that it truly is a disso-656

ciation between motor actions, rather than positions, and more abstract choices that led657

to the interference and the effects we observed in our work. Our results have implications658

for research on hierarchical representations. Specifically, while simple RL algorithms are659

useful to capture reward-based learning, they are commonly criticized because they fail660

to capture the flexibility and richness of human learning. Hierarchical reinforcement661

learning (HRL) was developed in part to address limitations of standard RL (Botvinick662
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et al., 2009; Collins et al., 2013; Stolle et al., 2002; Xia et al., 2021). Previous research663

suggests that the choice space might be hierarchically represented, with the lower level of664

hierarchy consisting of primitive actions, and the higher level consisting of temporally ex-665

tended actions (state-dependent,extended policies), also known as options (Stolle et al.,666

2002). Evidence from this research suggests that hierarchical representations are useful667

for enabling transfer; instead of learning from scratch in the novel context, an agent can668

leverage higher level representations to speed up learning Xia et al., 2021. The trans-669

fer results also suggest that choices at different levels of hierarchy show an asymmetry670

in flexibility in novel contexts (lower level choices being less flexible). Our results are671

consistent with this finding since motor actions seem less flexible and less impacted by672

competing reward information, providing additional supporting claims for hierarchical673

representations in choice space.674

In addition to this, there is evidence of hierarchical representations at the neural level.675

In particular, frontal areas (primarily PFC) and basal ganglia (BG) are also frequently676

investigated as neural mechanisms that support hierarchical reasoning/learning (Collins677

et al., 2013). Converging insights suggest that the cortico-BG loops support represen-678

tations of both low-level associations and abstract rules/task sets, giving rise to latent679

representations that can be used to accelerate learning in novel settings (Collins et al.,680

2013; Eckstein et al., 2019; Stolle et al., 2002; Xia et al., 2021).681

Both experiments implicated overall slowed learning, in addition to value interference,682

in the worse performance for more general choices. Our first experiment (which allowed683

us to test RL models only) implicated the learning rate (usually interpreted as a marker684

of the RL system (Eckstein et al., 2019)) as the mechanism driving the difference between685

conditions with different choice types. However, our second experiment enabled us to686

test the more holistic hybrid model of RL and WM, and revealed that the impairment687

in the more general choice condition likely stemmed from the WM system, rather than688

RL. Previous work has shown that executive function (EF), in its different forms (i.e.689

WM, attention), contributes to RL computations (Collins, 2018; Niv, 2019). The general690

summary of this work is that high-dimensional environments/tasks pose difficulty to RL;691

EF then acts as an information compressor, making the information processing more692

efficient for RL (Rmus et al., 2021). Operating in a more generalized choice space might693

more heavily rely on the contribution of EF (in this case WM) relative to operating694

in the less abstract condition. Therefore, resource-limited WM might be leveraged to695

define the choice space (i.e. relevant features of the choice space, like labels in label696

condition). As a result, the WM weight included in the WM + RL hybrid model, which697

indexes the WM contribution to learning, appears to be reduced in the label condition.698
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Our interpretation of this result is that this reduction in WM contribution may indicate699

that some of participants’ limited WM resources are recruited elsewhere, and specifically700

that it has already been used to define the choice space over which learning and decision701

making occurs.702

While we conclude that WM is used for defining the choice space, consistent with703

prior results on EF contributions to RL computations (Todd et al., 2008), we do not704

make any particular assumptions about how the use of choice space is divided between705

RL and WM once it’s defined. We tested different model variations, with the parameter706

mixing label/position values, to explain value interference at the policy level of RL, WM707

or both. If there was clear evidence in favor of the mixture parameter in either the RL or708

WM policy, it would imply that the policy generation based on choice space is primarily709

driven by that system. However, our model comparison revealed no evidence that the710

mixture parameter is specific to either RL or WM, suggesting that the choice space is711

shared between the two. This will be important to further explore in future research.712

A competing interpretation for our findings of slowed learning for more abstract713

choices is that the label condition required more attention and was more difficult. While714

this is true, we took steps to mitigate this potential confound on two levels - task design715

and modeling. In the task design, we constructed the single trial structure such that716

participants had a chance to see box labels first, before the onset of the card. By717

doing this we aimed to eliminate potential advantages of the position condition, where718

participants do not need to perform an additional process of identifying the label location719

prior to executing the response. Furthermore, our modeling enabled us to validate the720

effects of our task design. Specifically, in both experiments we tested the model with721

condition-dependent noise parameters, which predicts that different noise/difficulty levels722

are what drive the performance difference in our conditions. This model did not fit the723

data well (Experiment 1: Best model AIC > 2 noise model AIC t(56)= -5.179, p=724

3.13e-06, Cohen0s d = .69; Experiment 2: Best model AIC > 2 noise model AIC t(56)=725

-5.05, p= 4.98e-06, Cohen0s d = .67), making it unlikely that difficulty-induced lack of726

attention/motivation could explain our condition effect.727

A competing interpretation of our results might be that participants simply did not728

pay attention to the labels in the position condition, accounting for the observed asym-729

metry. That is, because the labels are not informative for selecting a correct response730

in the position condition, participants might simply not be attending to them at all, as731

opposed to encoding them, with the choice process remaining unaffected by the inter-732

fering information from labels. However, we think this competing account is unlikely,733

for multiple reasons. First, the labels were very salient (colors, and presented prior to734
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the stimulus); thus participants would need to actively avoid them to not perceive them.735

While we have no direct measure of participants’ attention to the labels, it is unlikely736

that they did not process them at all. Second, there is evidence from previous work737

that participants encode and use information from unattended stimuli, especially when738

the unattended stimuli might be relevant for the reward structure in the task (Gutnisky739

et al., 2009; Sasaki et al., 2010). Therefore, the labels (even if not strongly attended to in740

the position condition) would be a part of the input in the choice process that, according741

to the results, does not strongly impact the choice of the position, which is consistent742

with our interpretation. We thus consider the more probable interpretation to be that743

the participants do perceive and attend to the irrelevant labels, but successfully avoid744

learning their values. However, future work should investigate more directly how much745

attention participants pay to irrelevant labels.746

Another limitation is that our design did not manipulate the degree of value inter-747

ference between the choice dimensions, since we equally counterbalanced the position of748

labels. Instead, introducing a systematic bias such that, in a label block, for example,749

some positions had higher value due to overlapping with correct labels more frequently,750

would provide an opportunity to induce and measure different magnitudes of interference.751

This would be an interesting question to explore in the future.752

Surprisingly, we found that participants’ response times (RT) on correct trials in-753

creased as a function of position reward history difference (RHD) in the label condition.754

This implies that when both label and position sorting rules were in agreement on the755

best choice to make (i.e. the blue box was the correct box, and was in the position that756

had been most rewarded so far), response times tend to be longer (the corresponding ef-757

fect was not observed in the position condition, where label RHD had no effect on RTs).758

This is, therefore, a counterintuitive effect, as we would expect the congruent information759

to accelerate response execution, rather than slow it, as observed here. One possibility760

might be that participants do engage in a form of arbitration between selection of differ-761

ent response types. Specifically, they might be biased to execute the motor action based762

on the reward history difference, as it seems to present itself as a default option based763

on our results. However, because they are informed that the response based on label764

selection is correct for the given block, they might delay the response execution, in order765

to override the default. Nevertheless, this is a speculation - careful modeling of response766

times is required to further explain this effect, which is beyond the scope of this paper.767

This account would also predict the highest degree of conflict in this congruent situation,768

rather than in situations where both rules disagree. It will be an important question to769

solve in future research.770
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Our results highlight the importance of correct credit assignment, and investigation771

of mechanisms which might lead to errors in the credit assignment process. Our results772

are consistent with the previous research suggesting that motor actions might have a773

stronger effect on the choice selection process than is usually considered (Shahar et al.,774

2019). Our modeling approach allowed us to show that the mixture of Q values at775

the policy level is what may lead to the interference effect/incorrect credit assignment.776

However, as of now, we cannot conclusively say whether the mixture happens selectively777

at the policy level of RL, WM or both.778

Identification of correct rewarding responses is a critical building block of adap-779

tive/goal-directed behavior. Impairments in one’s ability to identify the appropriate780

choice space, which is then used for one’s inference process, may consequently result in781

maladaptive/suboptimal behavioral patterns. Our interference effect results suggest that782

some aspects of the choice space might be incorrectly overvalued, thus resulting in choice783

patterns that reflect repeated erroneous selection of incorrect choice types, or an inabil-784

ity to utilize flexible stimulus-response mappings. These kinds of perseverative responses785

are reminiscent of the inability to disengage from certain actions, observed in conditions786

such as obsessive-compulsive disorder (OCD) (Rosa-Alcázar et al., 2020). It would be787

interesting to use our task and computational modeling approach to investigate whether788

the mixture/interference of values at the policy level could also explain the behavior of789

such populations.790

In conclusion, our findings provide evidence that the choice type and how we define a791

choice have important implications for the learning process. The behavioral patterns (i.e.792

value interference from less abstract choices) are consistent with the premises of hierarchy793

in learning and behavior (i.e. lower levels in hierarchy impacting processing in higher794

levels), which has become an increasingly promising topic of research (Collins et al.,795

2013; Eckstein et al., 2020; Stolle et al., 2002). We also demonstrate additional evidence,796

relevant to the definition of the choice space, that EF (specifically WM) contributes to797

RL in reward-driven behaviors (Rmus et al., 2021), further demonstrating the complex798

interplay between various neuro-cognitive systems.799

Acknowledgments800

This work was funded by NSF2020844 to AGEC.801

30



References802

Ballard, I., Miller, E. M., Piantadosi, S. T., Goodman, N. D., & McClure, S. M. (2018).803

Beyond reward prediction errors: Human striatum updates rule values during804

learning. Cerebral Cortex, 28(11), 3965–3975.805

Bornstein, A. M., & Daw, N. D. (2013). Cortical and hippocampal correlates of deliber-806

ation during model-based decisions for rewards in humans. PLoS computational807

biology, 9(12), e1003387.808

Bornstein, A. M., Khaw, M. W., Shohamy, D., & Daw, N. D. (2017). Reminders of past809

choices bias decisions for reward in humans. Nature Communications, 8(1), 1–9.810

Botvinick, M. M., Niv, Y., & Barto, A. G. (2009). Hierarchically organized behavior and811

its neural foundations: A reinforcement learning perspective. Cognition, 113(3),812

262–280.813

Collins, A. G. (2018). The tortoise and the hare: Interactions between reinforcement814

learning and working memory. Journal of cognitive neuroscience, 30(10), 1422–815

1432.816

Collins, A. G., Brown, J. K., Gold, J. M., Waltz, J. A., & Frank, M. J. (2014). Working817

memory contributions to reinforcement learning impairments in schizophrenia.818

Journal of Neuroscience, 34(41), 13747–13756.819

Collins, A. G., Ciullo, B., Frank, M. J., & Badre, D. (2017). Working memory load820

strengthens reward prediction errors. Journal of Neuroscience, 37(16), 4332–4342.821

Collins, A. G., & Frank, M. J. (2012). How much of reinforcement learning is working822

memory, not reinforcement learning? a behavioral, computational, and neuroge-823

netic analysis. European Journal of Neuroscience, 35(7), 1024–1035.824

Collins, A. G., & Frank, M. J. (2013). Cognitive control over learning: Creating, cluster-825

ing, and generalizing task-set structure. Psychological review, 120(1), 190.826

Collins, A. G., & Frank, M. J. (2018). Within-and across-trial dynamics of human eeg827

reveal cooperative interplay between reinforcement learning and working memory.828

Proceedings of the National Academy of Sciences, 115(10), 2502–2507.829

Daw, N. D., Gershman, S. J., Seymour, B., Dayan, P., & Dolan, R. J. (2011). Model-830

based influences on humans’ choices and striatal prediction errors. Neuron, 69(6),831

1204–1215.832

De Leeuw, J. R. (2015). Jspsych: A javascript library for creating behavioral experiments833

in a web browser. Behavior research methods, 47(1), 1–12.834

31



Eckstein, M. K., & Collins, A. G. (2020). Computational evidence for hierarchically struc-835

tured reinforcement learning in humans. Proceedings of the National Academy of836

Sciences, 117(47), 29381–29389.837

Eckstein, M. K., Starr, A., & Bunge, S. A. (2019). How the inference of hierarchical rules838

unfolds over time. Cognition, 185, 151–162.839

Eckstein, M. K., Wilbrecht, L., & Collins, A. G. (2021). What do reinforcement learning840

models measure? interpreting model parameters in cognition and neuroscience.841

Current opinion in behavioral sciences, 41, 128–137.842

Farashahi, S., Rowe, K., Aslami, Z., Lee, D., & Soltani, A. (2017). Feature-based learning843

improves adaptability without compromising precision. Nature communications,844

8(1), 1–16.845

Foerde, K., & Shohamy, D. (2011). Feedback timing modulates brain systems for learning846

in humans. Journal of Neuroscience, 31(37), 13157–13167.847

Frank, M. J., Moustafa, A. A., Haughey, H. M., Curran, T., & Hutchison, K. E. (2007).848

Genetic triple dissociation reveals multiple roles for dopamine in reinforcement849

learning. Proceedings of the National Academy of Sciences, 104(41), 16311–16316.850

Gershman, S. J. (2015). Do learning rates adapt to the distribution of rewards? Psycho-851

nomic bulletin & review, 22(5), 1320–1327.852

Gutnisky, D. A., Hansen, B. J., Iliescu, B. F., & Dragoi, V. (2009). Attention alters visual853

plasticity during exposure-based learning. Current Biology, 19(7), 555–560.854

Katahira, K. (2018). The statistical structures of reinforcement learning with asymmetric855

value updates. Journal of Mathematical Psychology, 87, 31–45.856

Luk, C.-H., & Wallis, J. D. (2013). Choice coding in frontal cortex during stimulus-guided857

or action-guided decision-making. Journal of Neuroscience, 33(5), 1864–1871.858

Master, S. L., Eckstein, M. K., Gotlieb, N., Dahl, R., Wilbrecht, L., & Collins, A. G.859

(2020). Disentangling the systems contributing to changes in learning during ado-860

lescence. Developmental cognitive neuroscience, 41, 100732.861

McDougle, S. D., Boggess, M. J., Crossley, M. J., Parvin, D., Ivry, R. B., & Taylor,862

J. A. (2016). Credit assignment in movement-dependent reinforcement learning.863

Proceedings of the National Academy of Sciences, 113(24), 6797–6802.864

Nassar, M. R., & Frank, M. J. (2016). Taming the beast: Extracting generalizable knowl-865

edge from computational models of cognition. Current opinion in behavioral sci-866

ences, 11, 49–54.867

Niv, Y. (2019). Learning task-state representations. Nature neuroscience, 22(10), 1544–868

1553.869

32



Niv, Y., Edlund, J. A., Dayan, P., & O’Doherty, J. P. (2012). Neural prediction errors870

reveal a risk-sensitive reinforcement-learning process in the human brain. Journal871

of Neuroscience, 32(2), 551–562.872

Poldrack, R. A., Clark, J., Paré-Blagoev, E. a., Shohamy, D., Creso Moyano, J., Myers,873

C., & Gluck, M. A. (2001). Interactive memory systems in the human brain.874

Nature, 414(6863), 546–550.875

Rescorla, R. A., & Solomon, R. L. (1967). Two-process learning theory: Relationships876

between pavlovian conditioning and instrumental learning. Psychological review,877

74(3), 151.878

Rmus, M., McDougle, S. D., & Collins, A. G. (2021). The role of executive function in879

shaping reinforcement learning. Current Opinion in Behavioral Sciences, 38, 66–880

73.881

Rosa-Alcázar, Á., Olivares-Olivares, P. J., Martı́nez-Esparza, I. C., Parada-Navas, J. L.,882

Rosa-Alcázar, A. I., & Olivares-Rodrı́guez, J. (2020). Cognitive flexibility and883

response inhibition in patients with obsessive-compulsive disorder and generalized884

anxiety disorder. International Journal of Clinical and Health Psychology, 20(1),885

20–28.886

Rothenhoefer, K. M., Costa, V. D., Bartolo, R., Vicario-Feliciano, R., Murray, E. A., &887

Averbeck, B. B. (2017). Effects of ventral striatum lesions on stimulus-based versus888

action-based reinforcement learning. Journal of Neuroscience, 37(29), 6902–6914.889

Sasaki, Y., Nanez, J. E., & Watanabe, T. (2010). Advances in visual perceptual learning890

and plasticity. Nature Reviews Neuroscience, 11(1), 53–60.891

Shahar, N., Moran, R., Hauser, T. U., Kievit, R. A., McNamee, D., Moutoussis, M.,892

Consortium, N., & Dolan, R. J. (2019). Credit assignment to state-independent893

task representations and its relationship with model-based decision making. Pro-894

ceedings of the National Academy of Sciences, 116(32), 15871–15876.895

Stolle, M., & Precup, D. (2002). Learning options in reinforcement learning. International896

Symposium on abstraction, reformulation, and approximation, 212–223.897

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction second898

edition. Adaptive computation and machine learning: The MIT Press, Cambridge,899

MA and London.900

Tai, L.-H., Lee, A. M., Benavidez, N., Bonci, A., & Wilbrecht, L. (2012). Transient901

stimulation of distinct subpopulations of striatal neurons mimics changes in action902

value. Nature neuroscience, 15(9), 1281–1289.903

33



Todd, M., Niv, Y., & Cohen, J. D. (2008). Learning to use working memory in partially904

observable environments through dopaminergic reinforcement. Advances in neural905

information processing systems, 21.906

Vikbladh, O. M., Meager, M. R., King, J., Blackmon, K., Devinsky, O., Shohamy, D.,907

Burgess, N., & Daw, N. D. (2019). Hippocampal contributions to model-based908

planning and spatial memory. Neuron, 102(3), 683–693.909

Wagenmakers, E.-J., & Farrell, S. (2004). Aic model selection using akaike weights. Psy-910

chonomic bulletin & review, 11(1), 192–196.911

Wilson, R. C., & Collins, A. G. (2019). Ten simple rules for the computational modeling912

of behavioral data. Elife, 8, e49547.913

Wimmer, G. E., & Shohamy, D. (2012). Preference by association: How memory mech-914

anisms in the hippocampus bias decisions. Science, 338(6104), 270–273.915

Xia, L., & Collins, A. G. (2021). Temporal and state abstractions for efficient learning,916

transfer, and composition in humans. Psychological Review, 128(4), 643.917

Yoo, A. H., & Collins, A. G. (2022). How working memory and reinforcement learning918

are intertwined: A cognitive, neural, and computational perspective. Journal of919

Cognitive Neuroscience, 34(4), 551–568.920

Supplementary materials921

Experiment 1 additional model comparisons. We tested whether an additional decay922
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conditions and free softmax temperature parameter improved the fit to the data. These924

models did not improve the fit compared to M3 (our winning model).925
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Figure 7: Additional models tested in Experiment 1.

Experiment 1 confusion matrix. To demonstrate the identifiability of our models (i.e.926

models are meaningfully different from one another), we simulated the data from each927

model on 62 iterations (number of participants). We used best parameter estimates for928

each participant to create a synthetic data set on each iteration. We then fitted each929

of the models to each simulated data set with 20 random starting points, to match the930

fitting procedure to participants’ data. Next, we computed the proportion of the times931

each model fit the best. If the models are identifiable, the model the data was simulated932

from should fit the best on most iterations (i.e. the matrix should have the highest933

proportion of best fit values on its diagonal). The confusion matrix showed that our934

models are identifiable.935
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Figure 8: Confusion matrix of the main models tested in Experiment 1.

In our second experiment, we fit a considerable range of models, starting with the936

most complex (all RL + WM parameters condition-dependent), to the simplest (all937

parameters shared across conditions). We systematically varied the complexity of the938

model, while monitoring the model fit/complexity tradeoff using AIC scores, in order to939

test which parameters are necessary for capturing the difference between the conditions940

while also making sure our models are not overfitting (Fig. 9).941
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Figure 9: AIC comparison of models tested in Experiment 2. Here we show the difference
in individual AIC scores between M3, and all other models that were tested.

Experiment 2 Confusion Matrix. We tested the identifiability of our models in Experi-942

ment 2 by creating a confusion matrix, similarly to Experiment 1Wilson et al., 2019. We943

constructed two different confusion matrices, which test for identifiability of our model944

along 2 different dimensions. Our first confusion matrix allowed us to test whether the945

models with different placements of the r parameter (i.e. with wrong choice dimension946

policy mixture in RL, WM or both) are meaningfully dissociable. The confusion matrix947

shows that the models with mixture r in RL and WM policy can be dissociated (Fig. 10).948

The data simulated from the model with r parameter in both WM and RL policy was fit949

equally well by that model and the model with r in WM policy alone. This is consistent950

with our results, as model comparison revealed that AIC scores did not meaningfully951
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differ between these two models. Note that the models included in the confusion matrix952

are nested models (differing by at most 1 parameter), or in the case of the second con-953

fusion matrix, identical models in terms of number of parameters, but with different rho954

parameter placements. Therefore, we did not expect the AIC scores to be considerably955

different for paired model fits paired with data simulated across different models.956

Figure 10: Confusion Matrix 1. Proportion of times the models fitted different simulated
data sets best, based on cross-fit AIC scores for models with different placement of r
paramater.

Our second confusion matrix tested whether we can dissociate the model we con-957

verged on in the main text (M1, w with RL-WM r) from variations of model with 1)958

no r parameter, and 2) shared WM weight w. Our results showed that our models are959

mostly identifiable, with an exception of M2 (Fig. 11). However, M2 cannot produce the960

observed qualitative error patterns, providing another method to rule out this model.961
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Figure 11: Confusion Matrix 2. Proportion of times the models fitted different simulated
data sets best, based on cross-fit AIC scores for models with condition dependent r and
w parameters (M1), condition dependent w (M2), and condition dependent r.

39



Figure 12: Exclusion criteria based on the task performance. We averaged accuracy
across all conditions. Based on the “elbow point”, most participants’ performance is
above .60, so we used .60 as criteria for exclusion.
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Figure 13: Parameter recovery for the best models in Experiment 1 and Experiment 2.
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Figure 14: Parameter recovery for the best models in Experiment 1 and Experiment 2.

M1 M2 M3 M4 M5

0.20 0.18 0.19 0.22 0.18
962

Table 1. Protected Exceedance Probability of tested models in Experiment 2, computed963

based on AIC evidence. Bayes Omnibus Risk BOR (indexing the probability that model964

frequencies are equal) = 0.94, which suggests that frequency is not strongly differentiable965

between models.966

M1 M2 M3 M4 M5

1 0 0 0 0
967

Table 2. Since BIC provided stronger differentiation between models, we computed the968

protected exceedance probability based on BIC evidence. Bayes Omnibus Risk (BOR) =969
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1.29e�12, with PXP(M1) = 1,suggests that M1 has the highest frequency.970
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