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Abstract

In reinforcement learning (RL) experiments, participants learn to make rewarding choices
in response to different stimuli; RL models use outcomes to estimate stimulus-response
values which change incrementally. RL models consider any response type indiscrim-
inately, ranging from more concretely defined motor choices (pressing a key with the
index finger), to more general choices that can be executed in a number of ways (se-
lecting dinner at the restaurant). But does the learning process vary as a function of
the choice type? In Experiment 1, we show that it does: participants were slower and
less accurate in learning correct choices of a general format compared to learning more
concrete motor actions. Using computational modeling, we show that two mechanisms
contribute to this. First, there was evidence of irrelevant credit assignment: the values
of motor actions interfered with the values of other choice dimensions, resulting in more
incorrect choices when the correct response was not defined by a single motor action; sec-
ond, information integration for relevant general choices was slower. In Experiment 2, we
replicated and further extended the findings from Experiment 1 by showing that slowed
learning was attributable to weaker working memory use, rather than slowed RL learn-
ing. In both experiments we ruled out the explanation that the difference in performance
between two condition types was driven by difficulty/different levels of complexity. We
conclude that defining a more abstract choice space used by multiple learning systems

for credit assignment recruits executive resources, limiting how much such processes then
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contribute to fast learning.

Introduction

The ability to learn rewarding choices from non-rewarding ones lies at the core of suc-
cessful goal-directed behavior. But what counts as a choice? When a child tries a pink
yogurt in the left cup and a white yogurt in the right cup, then prefers the right cup, what
choice should they credit this rewarding outcome to? In their next decision, should they
repeat their previously rewarding reach to the yogurt on the right, independently of its
color, or should they figure out where the white yogurt is before reaching for it? Selecting
the type of yogurt is a more abstract choice: it requires subsequently paying attention
to the other dimension (where is the white yogurt?) and applying the appropriate motor
program to execute the choice. Thus, making the more abstract choice additionally in-
volves less abstract choices, but in this case, only the abstract choice should be credited
for the yogurt’s tastiness. Knowing the relevant dimension of choice to assign credit to

is essential when learning. How does choice type impact how we learn?

The theoretical framework of reinforcement learning (RL) is highly successful for
studying reward-based learning and credit assignment (Sutton et al., 2018)). However,
RL as a computational model of cognition typically assumes a given action space defined
by the modeler, which provides the relevant dimensions of the choice space (i.e. either
the yogurt color or the cup position) - there is no ambiguity in what choices are (i.e. color
such as pink /white, or side such as left /right), and the nature of the choice space does not
matter (Rmus et al., 2021). As such, RL experiments in psychology tend to not consider
the type of choices (a single motor action such as pressing a key with the index finger;
(Collins et al., 2017; Tai et al., 2012), or the more general selection of a goal stimulus that
is not tied to a specific motor action (Daw et al., 2011; Foerde et al., 2011} [Frank et al.,
2007)) as important, and researchers use the same models and generalize findings across
choice types. Recent research has shed some light on how participants might identify
relevant dimensions of the state and choice space (Farashahi et al., 2017; Niv, 2019);
however, this research does not address how learning occurs when the learner knows the
relevant choice space but multiple dimensions of choice are nonetheless available, such as

in our yogurt example.

Examining learning of responses when multiple choice dimensions may be relevant is

important, however, as most of our choices in everyday life are ambiguous: did I pick the
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white yogurt or the one of the left? In some cases, these dimensions are hierarchically
interdependent: choices can be represented at multiple levels of abstraction (e.g. have
breakfast; have yogurt; have pink yogurt; have the yogurt on the right; reach for the
yogurt on the right side, etc.). In such cases, a choice along a relevant dimension (yogurt
color) requires a subsequent choice on a reward-irrelevant dimension (position/motor
action), which then needs to be considered for the choice’s execution, but not credited
during learning. By contrast, in other cases, some choice dimensions may neither be
relevant for learning nor for executing the choice — for example, the child should learn
to fully ignore the color of the plate that the yogurt is on for both their choice and their

credit assignment.

Different types of choices may recruit different cognitive /neural mechanisms (Rescorla
et al., 1967). For example, previous animal models of decision-making suggest that
the orbitofrontal cortex and the anterior cingulate cortex index choice outcomes for
goal stimulus choices and motor action choices respectively (Luk et al., 2013). Ventral
striatum lesions in monkeys impaired learning to choose between rewarding stimuli, but
not between rewarding motor actions (Rothenhoefer et al., 2017). In humans, recent
behavioral evidence suggests that the credit assignment process is what differentiates
learning more relevant choice dimensions from less relevant (here motor) ones (McDougle
et al., 2016), and that there might be a hierarchical gradation of choices in terms of credit
assignment. In particular, while people are capable of learning the value of both abstract
rule choices and concrete action choices in parallel (Ballard et al., 2018; [Eckstein et al.,
2019), they also seem to assign credit to more concrete actions by default when making

abstract choices that need to be realized through motor actions (Shahar et al., 2019).

The brain relies on multiple neuro-cognitive systems for decision-making, but whether
choice format impacts learning similarly across systems remains unexplored. Specifically,
while RL models provide a useful formalism of learning, they do not easily relate to
underlying processes. Indeed, RL models are known to summarize multiple processes that
jointly contribute to learning (Eckstein et al., 2021), such as the brain’s RL mechanism,
but also episodic memory (Bornstein et al., 2013; Bornstein et al., 2017; Poldrack et al.,
2001; |Vikbladh et al., 2019; Wimmer et al., 2012)), or executive functions (Collins et al.,
2012; Rmus et al., 2021). Here we focus on working memory (WM), which has also
been shown to contribute to learning alongside RL (Collins et al., 2017; (Collins et al.,
2012; [2018). If choice type matters for learning, does it matter equally for each cognitive

system that contributes to learning, or differently so?

In summary, there is a two-fold gap in our understanding of how choice format impacts

learning. First, when multiple choice dimensions are available but only one is relevant,

3



93

94

95

96

97

98

99

100

101

102

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

does the type of the relevant choice dimension impact learning, and if so, through what
computational mechanisms? We consider, in particular, the important case where one
relevant choice dimension needs to be executed through a second, irrelevant choice di-
mension (a motor action); and how this contrasts to learning when one dimension is
fully irrelevant to both choice and learning. Second, are the differences rooted in the
brain’s RL system, WM, or both? To address this gap, we designed a task that directly
compares learning to make choices along two orthogonal dimensions, with different levels
of generality or interdependence, when there is no ambiguity about which choices are
relevant to the learning problem. In our task, one choice dimension is a spatial position
that directly maps onto a consistent motor action, and the other is a more general choice
dimension, conceptualized as the selection of stimulus goals that constrain a downstream
selection of an overall irrelevant spatial position and corresponding motor action. In a
second experiment, we manipulated learning load to separately identify WM and RL con-
tributions to learning, and investigated with computational modeling how choice matters
in both systems.

Our results across two experiments suggest that choice type strongly impacted learn-
ing, resulting in slower learning when the relevant choice dimension was more general
and required execution along another dimension. This was in part driven by an incorrect,
asymmetric credit assignment to less general choices when they were irrelevant. Further-
more, WM (rather than RL) mechanisms seemed to drive the deficits in performance in
the more general choice format condition, indicating that defining a more general action
space, shared by multiple choice systems, recruited limited executive resources. In both
experiments, we ruled out the simple explanation that the performance difference was
driven by an effect of difficulty by 1) implementing experimental controls that minimize
this concern, and 2) ruling out predictions of a pure difficulty effect in analyses and
modeling.

Methods

Participants
Experiment 1

Our sample for Experiment 1 consisted of 82 participants (40 female, age mean (SD)
= 20.5(1.93), age range = 18-30) recruited from the University of California, Berkeley
Psychology Department’s Research Participation Program (RPP). We based our sam-
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ple size on samples from previous similar behavioral experiments ((Collins, 2018): 91
participants; (Collins et al., 2014):85 participants; (Collins et al., 2012):78 participants).
In accordance with the University of California, Berkeley Institutional Review Board
policy, participants provided written informed consent before taking part in the study.
They received course credit for their participation. To ensure that the participants in-
cluded in analyses were engaged with the task, we set up an exclusion criterion of 0.60
or greater average accuracy across all task conditions. This cutoff was determined based
on an elbow point in the group’s overall accuracy in the task (Fig. . We excluded 20
participants based on this criterion, resulting in a total sample of 62 participants for the

reported analyses.

Experiment 2

For the second experiment, we recruited 75 participants (54 female, 1 preferred not to
answer; age mean (SD) = 20.34(2.4), Age-range=18-34) from the University of Califor-
nia, Berkeley RPP. One of the prerequisites for participating in Experiment 2 was that
participants had not previously taken part in Experiment 1. We also relied on previous
research to decide on the sample size, as in Experiment 1. Participants completed the
experiment online (De Leeuw, 2015), and received course credit for their participation.
Using the same exclusion criteria as the previous experiment (based on the distribution
of average accuracy), we excluded 18 participants, resulting in the total sample of 57

participants.

Experimental protocol
Experiment 1

Learning Blocks. Participants were instructed that they would be playing a card sort-
ing game, and that on each trial they would sort a card into one of three boxes. Their
goal was to use reward feedback to learn which box to sort each card into. The boxes
were labeled with 3 different colors (green, blue and red), and participants chose one of
the boxes by pressing one of three contiguous keyboard keys (corresponding to the box
position) with their index, middle and ring finger. Importantly, the color of the boxes
changed positions on different trials (i.e. the blue box could appear on the right side
on trial n, and in the middle on trial n+1). Participants received deterministic feedback

after each selection (41 if they selected the correct box for the current card, 0 otherwise).
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Before the experiment, participants read detailed instructions and practiced each task
condition. The task then consisted of 8 blocks, divided into three conditions. Each of
the three conditions was defined by its distinct sorting rule. In the label condition, the
correct box for a given card was defined deterministically by the box’s color label (Fig.
1JA). For instance, if the blue box was the correct choice for a given card, participants
were always supposed to select the blue box in response to that card, regardless of which
key mapped onto the blue box on a given trial. In the position condition, the correct
box was defined deterministically by the box’s position (left /middle/right). For example,
the correct response of a given card would always be achieved by pressing the leftmost
key with the index finger, regardless of the box color occupying the left position (Fig.
). The sorting rule in the position control condition was identical to the sorting rule in
the position condition, but the boxes were not tagged with color labels. This condition
allowed us to assess participants’ baseline performance when only one response type (e.g.
position, but not the label) was available. Importantly, participants were explicitly told
the sorting rule (position or label) at the beginning of each block, in order avoid any
performance variability that may arise as a function of rule inference and uncertainty.
Following the 8 learning blocks, participants performed two additional tasks; these are

not the focus of the current paper and are not analyzed here.

Out of 8 blocks in total, 2 were control condition blocks, 3 were position condition,
and 3 were label condition. Block order was pseudo-randomized: participants completed
a control block first and last, while the conditions of blocks 2-7 were randomly chosen
within subjects, but counterbalanced across subjects. In each block, participants learned
how to sort 6 different cards; we used a different set of images to represent cards in
each block. The boxes were labeled with the same 3 colors across all blocks, except
the position control blocks, where the boxes were not labeled. Participants experienced
15 repetitions of each card, resulting in 90 trials per block; trial order was pseudo-
randomized to ensure a uniform distribution of delays between repetitions of the same
card in a block. We controlled for the card-dependent position-label combinations across
trials. Specifically, each label occurred in each position an equal number of times (i.e.
the blue label occurred 5 times on the left, right and middle box for each card). We also
ensured that the position-label combinations were evenly distributed across the task (i.e.

the blue-middle combination did not occur only during the first quarter of block trials).

Single trial structure. On each trial, participants first saw the three boxes with their
color labels underneath a fixation cross at the center of the screen. After 1 second, the

card appeared in the center of the screen, replacing the fixation cross. Participants were
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allowed to press a key only when the card appeared, with a 1-second deadline. Following
their response, participants received feedback (41 or 0) that remained on the screen for
1 second, followed by a 1 second inter-trial interval (fixation cross). This trial structure
was designed to mitigate the concern that condition-based differences in performance
might stem from the label condition being more difficult, by giving participants time to
identify where each color label was positioned. This minimizes a potential advantage of
the position condition, where participants did not need to know where colors were on
a trial-by-trial basis in order to make a correct response. Giving participants time to
identify where each color is positioned prior to card presentation decreases the difference

between the conditions in terms of difficulty, making this confound less likely.

We designed the label and position conditions to engage choice processes with different
degrees of generality. The position condition should capture the less general choice
process in which the rewarding response is defined by a single motor action, and the
label is irrelevant to both choice and learning. The label condition, on the other hand,
captures a more general choice process in which the rewarding response (i.e. choice of
the correct label) can be made by identifying one of three positions and executing any of
the three motor actions, depending on where the correct box label is positioned on the
given trial, such that the other dimension (position) remains irrelevant for learning but

becomes relevant for choice.

Experiment 2

The task design for Experiment 2 was the same as the task design for Experiment 1,
with one important exception - we varied the number of cards per block between 2 and
5, for both position and label conditions. This manipulation has previously been shown
to enable computational modeling to disentangle working memory and reinforcement
learning processes (Collins et al., 2012).The order of blocks was counterbalanced across
participants; they completed either label or position blocks first, with the order of set
sizes randomized for the first completed condition, and then repeated for the second.
In addition, we removed the control condition, given that we previously observed no
difference between position and control. Participants completed 4 blocks of position and

label each, where each block within each condition had a different set size.
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Figure 1: Experiment design. A) Participants played a card-sorting game with 3 differ-
ent conditions: Label (learning which box color is correct for each card - more general
choice), Position (learning which motor action/position is correct for each card - less gen-
eral choice), Control (identical sorting rules as position condition, but without labeled
boxes). B) We assumed that participants track card-dependent reward history for both
positions and labels, and that both of these contribute to the choice selection process,
sometimes resulting in interference errors. Note that the card-dependent reward history
is cumulative (tracked across all past trials during which the given card was presented,
rather than only one-trial back), but for simplicity of illustration we only show 1-back

trial in the panel B.

22 Analyses

»s Model-independent analyses

220 In addition to general diagnostics and standard statistical analyses (see results), we
225 sought to analyze participants’ choices and response times (RT) as a function of how
226 often each motor action and each label had been rewarded for each card. Specifically,
227 we computed card-dependent cumulative reward history (CRH) for both positions P and

228 labels L on each trial for a card C, in each condition:
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where r; is the outcome at trial k in the block, and 1 is the indicator function that
takes a value of 1 if the card and position/label match C and P/L, and 0 otherwise.
We used this metric to analyze how the integration of two value sources shaped choices
when choice format was less/more general. In particular, in the example of the position
condition, the position CRH for a card and its associated correct position indicated the
past number of correct choices, while the CRH for other positions was 0. By contrast, in
the same position condition, the label CRH for a card reflected how often each label had
been rewarded due to this label being in the correct position. All label CRH values in the
position condition were expected to be close to each other because label positions were
counterbalanced, but slight differences due to past choice randomness could be predictive

of biases in future choice. The opposite was true in the label condition.

To analyze how the value integration for each type of choice shaped decisions, we
focused on the error trials and computed the proportion of errors driven by the other
irrelevant choice dimension. We reasoned that if participants were randomly lapsing, any
of the two possible errors should be equally likely. However, if participants experienced
value interference, they should be more likely to select the error with the higher CRH
in the irrelevant dimension. In the label condition, such an interference error would
look like selecting the position/motor action that was rewarded on the previous trial,
even though the correct label had switched positions since (Fig. [IB). In the position
condition, an interference error would occur when participants selected the previously
rewarded label that had switched positions, instead of the label currently corresponding

to the position/motor action that is always correct for the given card (Fig. [IB).

We ran a trial-by-trial analysis using a mixed-effects general linear model to char-
acterize choices. We used trial-by-trial reward history difference RHD = CRH (chosen) —
mean(CRH (unchosen)) between chosen and unchosen boxes, for both positions and la-
bels, and tested whether this discrepancy modulated accuracy and RTs. If participants
implemented an optimal decision strategy, their accuracy and RTs should increase and
decrease respectively with an increased RHD in the relevant choice dimension (i.e. label
RHD in label condition, position RHD in position condition). Alternatively, contribution

by the irrelevant dimension RHD (i.e. position RHD in label condition or vice versa)

9
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would serve as evidence of value interference. Our mixed-effects models had the following

general structure:

Per formance = 1+ B1pRHD + B2lRHD + B3t + Bablock+
(1+B1pRHD + B2lRHD + B3t + Bablock|Sub ject), (2)

where pRHD is RHD based on position reward history, and IRHD is RHD based on label
reward history. Performance can refer to either accuracy (coded as correct/incorrect) or

response times.

In the analysis of Experiment 2 data, we also ran mixed-effects models including
predictors that indexed WM mechanisms (set size and delay between presentations of
the current stimulus and the most recently rewarded stimulus, which respectively cor-
respond to indexing capacity and susceptibility to decay properties of WM), and RL
effects (dimension-relevant, card-dependent reward history, calculated from the cumula-

tive number of earned points for each card, indexing reward-based learning):

Per formance = 1+ BrrRL+ BwyWM + Byt + Bpblock+
(1+ BrLRL+ BwmWM + Byt + Bpblock|Sub ject ), (3)

where RL corresponds to RL factors such as reward history, and WM corresponds to
WM factors such as decay and set size. Note that this is a general structure to demon-
strate how we structured the mixed-effects model, but set size and decay were entered

as separate predictors.

In other words, we explored the effects of interest on a group level, as well as how the
estimates of these effects vary across individual participants. We included a predictor
for trial number in this model, to ensure that reduction in RTs is not simply conflated
with practice effects/task progression. In addition, we added block number as one of the

regressors, in order to capture overall improvement in performance across the task.

Computational modeling

Reinforcement Learning-Working Memory (RL-WM):  In order to computationally quan-
tify the differences in learning processes between the motor choice/general choice condi-

tions, we used a set of hybrid reinforcement learning (RL) and working memory (WM)

10
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models. Our baseline assumption was that in the RL process, participants track and
update two independent sets of stimulus-action value tables, corresponding to the two
possible choice spaces: a card-position value table, and a card-label value table. We
also assumed that the choice policy may reflect a mixture of both the relevant and the
irrelevant value tables, potentially leading to interference errors when the value of ir-
relevant choice dimension (position/label) contributes to the choice process (Fig. [2A).
In addition to the RL module, a WM module allows us to capture the contribution of
WM to performance. The WM memory module learns fast, but is sensitive to short
term forgetting and cognitive load, and is thus particularly identifiable in the second
experiment where the set size varies between 2 and 5 (Collins, 2018} (Collins et al., 2012;
2018). WM also potentially tracks associations between cards and two choice types, and
like RL, its policy may reflect a mixture of both relevant and irrelevant associations. We
investigated a range of models to pinpoint the computational mechanisms of divergence
between the learning processes in the two conditions, by varying the extent to which the

models allowed for condition-dependent specificity /model-parameters.

RL learning rule

The RL module assumes incremental learning through a simple delta rule (Sutton et al.,
2018). Specifically, on each trial ¢, the values of labels Qy(c,) and positions Qp(c, p) for
the trial’s card ¢ and chosen labels and positions / and p are updated in proportion to

the reward prediction error:

Qf+1(cvp) = Qf(C,p) + O (r_ Qf(cap))
Qf—i—l(cvl) = Qf(C,l) + Ok (7‘— QtL(CJ))a (4)

where o is the learning rate, and r = 0/1 is the outcome for incorrect and correct
trials. Q-tables are initialized at 1/3 (3 = total number of positions/labels) at the start
of each block to reflect initial reward expectation in the absence of information about

new cards.

WM learning rule

Unlike RL, WM processes can encode and retain the previous trial’s information perfectly,

thus enabling one-shot learning. Note that other cognitive processes (such as episodic

11
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memory) could also support one-shot learning and contribute to learning behavior in this
experiment; however, here, we focus on RL and WM processes only, as our protocol does
not allow us to disentangle other contributions (Yoo et al., 2022). Following previous
work ((Collins, 2018; (Collins et al., 2014; Collins et al., 2012), we model the one-shot

learning in WM by storing the immediate outcome as the stimulus-response weight:

Wzil(@;Pt) =TI
Wtﬁl(cnlt) =T, (5)

Prior work in similar tasks (Frank et al., 2007; |Gershman, 2015; |[Katahira, 2018; Niv et
al., 2012) has shown an asymmetry in learning based on positive/negative feedback, such
that individuals are less likely to integrate negative feedback while learning rewarding
responses. Thus, we included a learning bias parameter (0 < LB < 1), which scales the
learning rate o by LB when participants observe the negative feedback. We applied LB
to both RL and WM (for both position and label dimensions, showing only an example

for position here):

OF. 1 (c,p) = QF (¢,p) +LBxax (0—0F (¢, p))
Wi (c,p) =WF (c,p) +LB*(0— W (c,p)), (6)

To capture the phenomenon that maintenance of information in WM is short-term
and subject to interference, the weights stored in WM are susceptible to decay (¢) at
each trial, which pulls all position and label weights to their initial values (W, Wo)
following the application of the WM forgetting rule (5):

Wi =W+ ox (W —wp)
Wh =WE+ox (Who —wh), (7)

While information stored in WM decays over time, reflecting the well-documented
short time-scale of WM maintenance, RL is assumed to be a more robust system that
is less susceptible to forgetting. Therefore, it is theoretically less justified to include a
decay mechanism for Q-values. Nevertheless, for completeness, we fit the version of the
model with a separate decay process in the RL module as well, and confirmed that it
does not improve the model fit. Thus, in further implementations of the RL-WM model

we limited decay implementation to the WM module only.
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Policy

We used the softmax function to transform WM weights and RL Q-values into choice

probabilities to produce position choice policies Pk, and P{f,M:

exp (P * fc,
Pre(ple) = Y Z)EE(BQ* Q({’ (IZ,) 1)71'))
exp(BxWr (c
e e p(BxWF(c,p)) (8)

Yiexp(BxWr(c,p))’

We applied the same softmax transformation to the label Q- and W-tables to obtain
the label and choice policies PI%L and PVLVM. This policy permits the selection of choices
with higher Q-values/weights with higher probability. The softmax B is the inverse
temperature parameter, which controls how deterministic the choice process is. For each
module, the overall choice policy is a mixture of both policies, determined by mixture

parameters, p:

Pre(pi|pos.block) = ppx Phy(pi) + (1 — pp) * Py (label (p;))
Pwu(pi|pos.block) = pp Py (pi) + (1 — pp) * Py (label (py)), 9)

We apply the same mixture process with mixture weight py for the label dimension
blocks:

Pre(li|lab.block) = pr x Pk, (I;) + (1 — pr) * Phy (position(1;))
Pwu (li|lab.block) = pr * Py, (1) + (1 — pr) % Py (position(L;)), (10)

The RL-WM model posits that choice comes from a weighted mixture of RL and
WM, where one’s reliance on WM is determined by the WM weight (®) parameter:

P(plc) = @ Pwm(plc) + (1 — @) * Pre(plc)
P(l|c) = o Pwp(l|c) + (1 — o) x Prr(]c), (11)

where ® reflects the likelihood of an item being stored in working memory and is
proportional to the ratio of capacity parameter (K) and block set size (or number of

stimuli; ns), scaled by the baseline propensity to rely on WM (wo;Fig [2)):

13
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K
Ow=min(l,—)*x® 12
min( ’ns)* 0 (12)

We further modified the policy to parameterize additional processes. For instance,
individuals often make value-independent, random lapses in choice while doing the task.
To capture this property of behavior, we derived a secondary policy by adding a random

noise parameter in choice selection (Nassar et al., 2016):

1
PP=(1—g)xP+ex—, (13)
na

where ny is the total number of possible actions, 1/ny4 is the uniform random policy,

and € is the noise parameter capturing the degree of random lapses.

We fit the different configurations of the full RL-WM model to the data from Ex-
periment 2, where we varied set size, which permitted us to modulate WM involvement.
Note that previous research with experiments including multiple set sizes has shown that
single process models (such as RL with decay or interference) are insufficient to capture
set-size effects; indeed, these processes can be decomposed into both pure cognitive load
and increased forgetting with longer delays between stimuli across set sizes. Thus, in

Experiment 2, we do not consider RL-only models.

In the absence of a set-size manipulation, it is not possible to separately identify the
WM module from the RL module. Thus, in the first experiment, where set size is fixed,
we only consider the RL module as approximating the joint contributions of both, and
do not include a WM module. Because the RLL module summarizes both RL and WM
contributions, we add to it a short-term forgetting feature of the RL-WM’s WM module:

specifically, we implemented decay in QQ-values for all cards and all choices at each trial:

Ol 1 =07 +9%(Q—0F)
O | = OF + 0% (00— 0F), (14)

whereas in the RL-WM model the forgetting parameter is limited to the WM module
only. The list of baseline parameters for RL-WM model (Experiment 2) includes: learning
rate (@), inverse temperature (), lapse (€), learning bias (LB), decay (¢), capacity (K),
WM weight (®),and value mixture (p). The baseline RL model (Experiment 1) include
learning rate (o), inverse temperature (f), lapse (€), learning bias (LB), decay (¢) and
value mixture (p). We explored different model variants by making different parameters

fixed /varied across conditions. In the RL-WM (Experiment 2) model, the parameters
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did not vary as a function of set size (i.e. same label/position parameter values for all

set sizes).

Model fitting and comparison

Fitting Procedure. In both Experiment 1 and Experiment 2 modeling, we used maxi-
mum likelihood estimation to fit participants’ individual parameters to their full sequence
of choices. All parameters were bound between 0 and 1, with the exception of the  pa-
rameter, which was fixed to 100 (found to improve parameter identifiability here and in
previous similar tasks (Master et al., 2020)), and the capacity parameter (K) of Exper-
iment 2 models, which could take on one of the discrete values between 2-5. To find
the best fitting parameters, we used 20 random starting points with MATLAB’s fmincon

optimization function (Wilson et al., 2019).

Capacity (K) =2 Capacity (K) = 4

Reinforcement Learning Working Memory | ! H

091 ? 091 ‘;\

— 081 1\ 081 ' \

Label Position Label Position '\ '
f v | T [ V| T v EARNA o7 ;

(c,l) [RPE Q°(c| L g |\ \ | N\
RPE Q (‘c,\) " (I P, RPE Fmgmg(\f//(lc,l) Ri&ﬂgﬂyﬂg@ﬁ(}ap) osf 1 06 '
* * 051 | 05 H
(1-w) [~ + W ——] 350 3. ;
— - Y T 03] ! N 031 H
P(label | ¢, lab.block) P(position | ¢, pos.block) P(label | c, lab.block) P(position | ¢, pos.block) : :
= p,’pllabel) + (1-p,) * p(position) = p,"P(position) + (1-p,) * p(label) = p,"pllabel) + (1-p,) * p(position) = p,"P(position) + (1-p,) * p(label) 021 | — w,=.9 02 H

0. w,=.7 o

' 0 '
2 3 4 5 2 3 4 5
set size set size

w=min(1,K/ns)*w

Figure 2: A) In Experiment 1 we used RL model variants, which assume incremental,
feedback-driven learning. In Experiment 2, we combined RL and WM modules, under the
assumption that learning is a weighted interaction between RL and WM systems. B) The
extent to which participants relied on WM was determined by the WM weight parameter
(), proportional to participants” WM capacity (K), and inversely proportional to set

size.

Model validation. To validate whether our models could indeed capture the behavioral
properties we set out to model, we simulated performance from the best parameter
estimates for each subject 100 times per subject. We then compared whether the model
predictions from the simulated data captured the patterns we observed in the actual data

set.

These simulations also allowed us to ensure that our fitting procedure could ade-

quately recover parameters in our experimental context, by fitting the model to the
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simulated data and evaluating the match between the true simulation parameters and

recovered parameters fit on simulated data.

Model comparison. Exploring the full model space would lead to a combinatorial explo-
sion of models, given the possible variations along all parameters. Thus, to explore the
model space, we took a systematic approach by starting with the most complex model
(all parameters varied across conditions), and gradually decreasing model complexity,
while also monitoring the goodness of model fit. Specifically, we reduced the model
complexity only if we found that removing a parameter improved the model fit. We
chose this approach in order to conduct model comparison systematically, testing out
plausible parameter configurations with varying complexity. We compared the models
using Akaike Information Criterion (AIC) (Wagenmakers et al., 2004), which evaluates
model fit using likelihood values and applies a complexity penalty based on the number
of parameters. To ensure that our models were identifiable with AIC, we computed a
confusion matrix (Wilson et al., 2019) by creating synthetic data sets from each model,
fitting each model to the simulated data sets, and performing AIC-based comparison
where the ground truth was known. This confirmed that AIC was adequately penalizing

for model complexity in our situation.

Results

Experiment 1: Behavioral results

We first asked whether participants learned differently across experimental conditions.
Learning curves show that participants learned well in all conditions, as their accuracy
increased with more exposure to each card (Fig. [3]A). A repeated measures one-way
ANOVA confirmed that there was a main effect of condition (label/position/control)
on performance (F(2,61) =97.7, p < .001, n?> = .62). We next tested which specific
conditions contributed to this significant difference, and found a marginal difference
between control and position conditions; however, this difference did not reach statistical
significance (paired t-test: £#(61) = 1.61, p = .11, Cohen’s d = .20). This result suggests
that the additional choice feature (the labels) in the position condition did not have
a strong impact on the choice process. Performance in the label condition, however,
was significantly lower than that in the position and the control conditions (paired t-
test: position: 7(61) =11.1, p < .001, Cohen's d = 1.42; control: ¢(61) = 12.9, p < .001,
Cohen's d = 1.65).
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We next examined why label condition performance was worse. We hypothesized
that choice was not simply noisier in the label condition, but instead that choice might
be contaminated by the reward history of irrelevant motor choices. To test this hy-
pothesis, we computed the cumulative card-dependent label /position reward history (see
methods), and quantified the proportion of error trials in which participants incorrectly
chose a box with high reward history of an incorrect feature (Fig. [IB). In the position
condition, participants did not make more interference errors than expected at chance
level (0.5 for two possible errors) (Fig. [3B; #(61) = .13, p = .89, Cohen’s d = .01). This
confirms that the presence of labels in the position condition did not impact choice com-
pared to the control condition. By contrast, in the label condition, the proportion of
interference errors was significantly higher than chance (Fig. [3B; 1(61) = 2.54, p = .01,
Cohen's d = .32). Furthermore, the proportion of interference errors in the label condition
was significantly greater than interference errors in the position condition (¢(61) =2.13,
p = .03, Cohen's d = .27). This result suggests an asymmetry in interference between
different choice spaces, in that the values of less general/motor action choices seem to
contaminate the more general choice process (but not the other way around). To rule out
the possibility that the effect we observed was driven by the block/condition order (i.e.
transfer of incorrect strategy from the previous block), we ran a mixed-effects general
linear model predicting accuracy with previous vs. current block conditions. The result
of this analysis showed that participants’ performance was affected by the current block
condition (p < .001), but not the previous block condition (p = 0.45), thus ruling out or-
der effects as a possible explanation of our results. In addition, our results were replicated
in the second experiment (as reported later), where we removed the control condition
altogether, and counterbalanced the remaining condition blocks such that participants
could either experience position or label condition blocks first. This further supports the

conclusion that the observed results are unlikely to be explained by the order effects.

Next, we performed a trial-by-trial analysis to examine the effect of card/label values
on correct trials’ reaction times (RT). For each condition, we used a mixed-effects linear
model to predict log(RT) from the reward history difference (RHD) between chosen
and unchosen choices (see methods), where choice referred to label in one predictor
and position in the other. The rationale behind this analysis is that if participants
are engaging in the appropriate decision strategy, then RTs should decrease with the
higher RHD in the condition-relevant dimension (label or position), because a higher
RHD means greater evidence in favor of the correct response. On the other hand, in the
event of interference, we expected participants’ RTs to be modulated by the RHD of the

incorrect dimension (e.g. position RHD in label condition). We controlled for the trial
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number in the model.

As predicted, in models for each condition (position condition model f2 = .27 ; label
condition model f? = .154), participants’ RTs decreased with increased respective RHD
(Fig. ; label condition: Bimpe = —.04, p < .001; position condition: PBpsition = —.06,
p <.001). Label RHD did not affect the RTs in the position condition (Bgpe; = —.004,
p =0.55). Hence, the mixed-effects model aligned with interference errors, confirming
that participants’ choices were not affected by the presence of an additional feature (the
labels) in the position condition. On the other hand, the position RHD surprisingly
increased RTs in the label condition (Bposirion = 034, p = .001), suggesting that the
interference of motor action values with label values may have resulted in the delay of
choices (Fig. ) We compared the subject-level B estimates of the effect of incorrect
dimension RHD on RTs in position and label conditions, and found that the incorrect
RHD effect was significantly greater in the label condition (paired t-test: #1(61) =3.87, p <
001, Cohen's d = .49), confirming the asymmetry between conditions that was revealed

in previous analyses.

A) B) C)
Performance of%rt]g:?:r:r\::iegfrirs RT evidence of interference errors
1 0.64 0.25 1
e 1(61) =2.13,
0.95 — b 1 p=.03
. /
0.9 — 17 a
¥ P 2 g

0.85- % S R g
T 081 8 =4 — e
] o 9 .
§ 0.754 2054 c o
a S ol s @ A

0.7 H K " :

0.65 8 @ | 2 8

061 & .

/ A
17/ Position
0551 | Label | W Position A Relevant RHD
05 04 W Label 02 O lIrrelevant RHD
1 2 3 4 5 6 7 8 9 10 ’ Label errors  Position errors Position Label
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Figure 3: Experiment 1 Model-independent results. A) Proportion of correct choices as
a function of number of previous rewards obtained for a given stimulus. Participants
performed worse in the label condition, compared to the position and control conditions.
Performance in the position and control conditions did not differ statistically. B) Asym-
metric value interference: The values of motor actions interfered with values of correct
labels in the label condition, thus resulting in the interference errors, but not the other
way around. C) Mixed-effects regression model shows that the interference of motor
action reward history/values may have resulted in the longer RTs in the label condition.

* indicates statistical significance at p < .05
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Experiment 1: Modeling results

We used computational modeling to tease apart the mechanisms driving condition effects.
We fit several variants of reinforcement learning (RL) models, and focus here on 4 models
that represent the main different theoretical predictions (Fig. [4lA; Fig. iB). The standard
RL model (M1) assumes no difference between the conditions and serves as a baseline
that cannot capture the empirical effect of condition. RL model M2 lets learning rates
depend on condition, and tests the prediction that slower learning with labels is driven
by different rates of reward integration. Model M3 extends model M2 with an additional
mechanism, parameterized by the value mixture (pz), that enables the position value to

influence policy in the label condition.

Ruling out the difficulty explanation using computational modeling. Model M4, the
dual-noise model, is an RL model with a condition-dependent noise parameter (g). M4
captures the hypothesis that the label condition is more difficult, resulting in a noisier
choice process. Models M1-4 all assume pp = 1, with no influence of labels in position
blocks. Other models considered separate decay (¢) parameters and a free position con-

dition pp, but did not improve fit.

Model M3 offered the best quantitative fit to the data, as measured by AIC (Fig. [B).
Furthermore, only model M3 was able to qualitatively reproduce patterns of behavior.
Specifically, for each of the models, we simulated synthetic data sets with fit parameters
and tested whether the model predictions matched the empirical results. We focused on
2 key data features in our model validation: performance averaged over the stimulus iter-
ations (learning curves), and asymmetrical interference errors. Model validation showed
that only the model with 2 learning rates and one p parameter (M3) captured both prop-
erties of the data (Fig. [JA). These results confirm that the learned value of (irrelevant)
motor actions influenced the selection of more general label choices. Furthermore, model
comparison results show that slower learning in the label condition was not due to a
noisier choice process, but due to a reduced learning rate. Indeed, the position condition
o was significantly greater than the label condition a (sign test; z = 6.35 p < .001, effect
size: .81) Fig. ) Interestingly, the learning rates in the two conditions were correlated
(Spearman p =.39,p = .003; Fig. ), suggesting that the learning process in the two

conditions was driven by related underlying mechanisms.
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Figure 4: Experiment 1: Modeling Results. A) Model validation comparing the observed
data to predictions of tested models; M3 reproduces behavior best. B) Parameters used
in models M1-4 (left); M3 has best group-average AIC. C) Comparison of condition-
dependent learning rates shows that learning rates are correlated, and that label condition

learning rates are significantly lower compared to position condition learning rates.

Experiment 2: Behavioral Results

The results of the first experiment suggest that the choice type affects learning. However,
given the experimental design, our conclusions could not dissociate whether the difference
in RL parameters actually reflected a difference in RL mechanisms or in WM mechanisms.
Recent work (Collins, 2018; |Collins et al., 2018), nevertheless, suggest that RL behavior
recruits other learning systems, such as WM. Hence, the variations that may appear to

be driven by RL mechanisms might conceal what is actually a WM effect. To address
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the question of whether the choice definition matters for learning at the level of RL
or WM, and whether slowed learning stems from slowed WM or RL, we ran a second
experiment. In Experiment 2, we varied the number of cards (set size) to manipulate WM
involvement. Furthermore, we fit variants of the RL-WM model to test the contribution

of WM mechanisms.

Experiment 2 results replicated findings from Experiment 1, showing that there was a
main effect of condition (Fig. [flA; repeated measures one-way ANOVA (F(1,56) =98.95,
p < .001, n? = 0.63)). Furthermore, we replicated the pattern of interference errors,
suggesting that the value of position choices interferes with that of label choices, but not
the other way around (Fig. |§[B; 1(55) =2.89; p=.006, Cohen's d = .38).

We next investigated how set size manipulation affected these results. As predicted,
performance decreased with set size in both conditions (Position: F(3,56) = 11.83, p <
001, n2 = .38; Label: F(3,56) =23.498, p <.001, 12> = .55). There was an interaction
between set size and condition (F(3,56) = 16.21, p < .001, n? = .46; Fig. ) There was
a marginal set size effect in interference errors that did not reach significance (F(3,56) =
2.17, p=.09, 02 = .20; Fig. [5C).

To better understand the source of the set size effect, we ran a general linear mixed-
effects model to predict trial-by-trial performance. Our mixed-effects model included
predictors indexing WM mechanisms (set size and delay between presentations of the
current stimulus and the most recently rewarded stimulus; indexing capacity and sus-
ceptibility to decay properties of WM respectively), and RL effects (dimension-relevant,
card-dependent reward history, calculated from the cumulative number of earned points
for each card, indexing reward-based learning). We also ran a model which tests for an

interaction between individual RL/WM factors and the task condition.

A likelihood ratio test provided evidence in favor of the interaction model over a model
without interactions (model without interactions f> = .42; model with interactions f2
= 43; LR p < .05). The interaction model showed that, as expected, participants’ per-
formance increased as a function of reward history (B = .62, p < .001), and decreased
as a function of set size (B = —.18, p =.00011). There was no effect of block (B = .04,
p=.58) or delay (B=—.04, p=.37), suggesting that neither overall task exposure nor
delay affected performance over and above reward history and set size. The only signif-
icant interaction term was the condition*reward history interaction (B = .16, p = .01),
suggesting that the reward history more heavily contributed to an increase in perfor-
mance in the label condition. To understand our results on a more mechanistic level, we

turned to computational modeling.
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Figure 5: Experiment 2 Results. A) Participants’ overall performance varied by set size (a
marker of WM contribution), and was worse in the label condition. B) The asymmetry in
value interference replicated from Experiment 1, showing that values of position choices
interfere with values of label choices, but not the opposite. C) The interference errors

did not vary by set size.

Experiment 2: Modeling results

The set size manipulation in Experiment 2 enables us to identify distinct contributions of
RL and WM (Collins et al., 2012) with the full RL-WM model (see methods). Briefly, RL-

WM disentangles an incremental, value-learning process (RL), as well as a rapid-learning,

but decay-sensitive short-term memory-based decision process (WM). Choice policy is
a weighted mixture of RL and WM (Fig. [2A,B), where the weighting is proportional
to one’s WM capacity. In other words, the model architecture posits that if one’s WM
capacity is low, one might be more likely to rely on RL than WM, especially when
set size (number of items) is high. We first replicated in Experiment 2 that models

including only one of those mechanisms could not adequately capture the set size effect,
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as has been shown before (Collins et al., 2012)). We then approached model comparison
by systematically varying the complexity of the RL-WM model (Fig. [2A), in order to
establish whether specificity in RL or WM module parameters (or both) is necessary
to capture the divergence between behavioral patterns in the 2 conditions. Because the
RL-WM model assumes the policy for choice generation at the level of both RL and WM,
we also tested if integrating irrelevant dimension interference with a p mixture parameter
in the policy of RL module or WM module (or both) could best capture our data. We

were interested in the condition-based dissociation between parameters.

Exploring all possible parameter combinations was computationally prohibitive. Thus,
we explored a subset of the most relevant models (see methods; in the main text, we fo-
cus only on a subset of models; see supplement for other non-winning models - Fig. E[)
Using AIC comparison, we identified the simplest model which allowed us to capture the
properties of the data (M1, (Fig. [fA)). In M1, the WM weight () and p parameters
were condition-dependent (with free p parameter for label condition, and position con-
dition p fixed to 1). Capacity (K), learning rate (a), decay (¢), learning bias (LB), noise
(€) were shared across the 2 conditions - model comparison showed no benefits to making
them independent (Fig. E[) We further consider 3 other variants of this model: no value
interference p (M2), p in RL policy alone (M3), and p in WM policy alone (M4) (Fig.
@A) Last, we consider a control model with condition-dependent € and o, which would
primarily attribute the decline in label condition performance to noise/RL system (M5).
Consistent with Experiment 1 results, the AIC comparison revealed that M5 could not
capture data well, and that M1 without p (M2) fit worse (Fig. [6A), providing additional
evidence for the necessity of the interference mechanism to capture choice data, and thus,
the existence of motor value interference in label blocks. However, the AIC comparison
failed to significantly distinguish between the remaining models M1 (p in RLWM), M3
(p in RL) and M4 (p in WM) (repeated measures ANOVA: F(2,56) =2.63,p = .07, 1> =
.08), though p in RL models fit numerically worse, supporting the idea that we needed
to include motor value interference in the WM module to account for the results. There-
fore, we henceforth focus on the simplest model, M1 with condition-dependent ® and p
in RL and WM policy, as this model makes the fewest specific assumptions about RL-
WM dissociation between the 2 conditions. Note that model comparison results were
identical (and stronger) when using BIC instead of AIC, and that protected exceedance

probability supported M1 over other models.

The M1 model adequately captured the data patterns in 1) learning curves (Fig. [6B),
2) overall interference errors (Fig. [6IC) and 3) interference errors by set size (Fig. [6D).

Furthermore, the WM weight ® was significantly reduced in the label condition compared
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Figure 6: (A) AIC comparison allowed us to narrow down the space of models. Models
with condition-specific WM weight (o) fit the best (M1-M4). Removing the mixture
parameter (p) harmed the model fit (M2). A model assuming impairment in RL did not
fit as well (M5). See main text for model specifications. B) Model simulations of the
best model M1 captured the behavioral data patterns. C) Model validation for M1 (p)
and M2 (no p) confirms the necessity of p parameter in capturing the interference error
patterns.)

24



600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

Figure 6: D) M1 captured interference errors in different set sizes. We note that the
numerical dip in set size 3 is not statistically significant. While it is unclear why the
model simulations reproduce it, it is possible that it arises from a pattern in the stimulus
sequences, which is used by participants and model simulations. E) Comparison of

condition-dependent parameters shows that ® is lower in the label condition.

Overall, the results suggested that the performance decrease in the label condition was
driven primarily by deficits in WM, specifically by a smaller WM weight ® that indexes
the set-size independent contribution of WM to learning. Therefore, the choice type
(more/less general) impacted learning, and it seemed to do so by decreasing participants’
ability to use WM for learning. However, the value interference appeared to be present
in both RL and WM mechanisms.

Discussion

Humans and animals make many types of choices, at multiple levels of generality, where
some choices are dependent on others. We designed a new experimental protocol to
investigate whether and how different choice types impact learning. Across two exper-
iments, behavioral analyses and computational modeling confirmed our prediction that
the generality of choice type impacts learning, with worse performance for choices that
do not map onto a simple motor action. Computational modeling revealed two separable
sources of impairment. First, value learning for relevant choices of a more general type
was slower, as revealed by smaller learning rates (o) in Experiment 1. Second, choices
were contaminated by irrelevant motor action values. Experiment 2 examined whether
this dissociation originated in different neuro-cognitive systems’ contributions to learn-
ing, namely RL and /or WM. Our results revealed that the reduction in learning speed for
general-format choices stemmed more from WM than the RL process, with WM weight
() reduced but RL (o) unchanged, when controlling for WM contributions. However,
the interference of low level values appeared to be present in both mechanisms. The
selective reduction in WM weight implies that participants’ executive resources might be
leveraged to define the choice space that is then used by both the RL and WM system; a
more generalized choice space requires a higher degree of such computation, thus leaving

reduced resources for actual learning.

In both experiments, we found an asymmetry in interference between choice types.

When participants learned to make more general choices (selecting a label) that required
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a subsequent motor action (pressing the key corresponding to the label’s location), their
choices were influenced by the irrelevant reward history of motor actions. By contrast,
when participants learned to make less general choices (the correct response is defined
by pressing the same key corresponding to the box location), they were not influenced
by the irrelevant reward history of box labels. This result is consistent with a choice
hierarchy interpretation, where participants may be unable to turn off credit assignment
to irrelevant choice dimensions when the realization of their (abstract) choice does involve
this dimension (Eckstein et al., 2020), but are able to do so when the irrelevant choice

dimensions are more abstract, as shown here.

While our results imply that participants exhibit a decision bias towards motor ac-
tions, we acknowledge that our protocol cannot disambiguate between the motor actions
themselves and the corresponding spatial location of the boxes. That is, we cannot con-
firm whether the participants track the value of specific motor actions (index/middle/ring
finger key press) or of the corresponding box positions (left /middle/right). Hence, a com-
peting interpretation of our results would be that spatial positions, rather than motor
actions, are prioritized in tracking value, compared to other visual features such as la-
bels. To completely rule out this possibility, we would need to modify the current task
with a condition where the motor actions are not aligned with the specific positions, and
inspect whether the interference effect persists in such a condition. However, we think
this account is less likely than a choice abstraction account, which explains our results

more parsimoniously, without requiring a “special status” for a “position” visual feature.

Furthermore, animal research supports this interpretation, as it shows differences in
the neural code of choices, which are defined primarily as motor actions versus more
abstract choices (Luk et al., 2013; Rothenhoefer et al., 2017). Specifically, these studies
have utilized recordings from neurons of animals trained to perform a task that con-
trasted motor action choices with stimulus goal choices, in order to identify the neural
substrates that differentiate between the two. The results seem to implicate prefrontal
cortex (PFC), anterior cingulate cortex (ACC), orbitofrontal cortex (OFC), and striatal
regions (ventral striatum) as areas that differentiate between how choices with different
levels of abstraction are coded in the brain. Therefore, it is likely that it truly is a disso-
ciation between motor actions, rather than positions, and more abstract choices that led
to the interference and the effects we observed in our work. Our results have implications
for research on hierarchical representations. Specifically, while simple RL algorithms are
useful to capture reward-based learning, they are commonly criticized because they fail
to capture the flexibility and richness of human learning. Hierarchical reinforcement

learning (HRL) was developed in part to address limitations of standard RL (Botvinick
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et al., 2009; Collins et al., 2013; Stolle et al., 2002; Xia et al., 2021). Previous research
suggests that the choice space might be hierarchically represented, with the lower level of
hierarchy consisting of primitive actions, and the higher level consisting of temporally ex-
tended actions (state-dependent,extended policies), also known as options (Stolle et al.,
2002). Evidence from this research suggests that hierarchical representations are useful
for enabling transfer; instead of learning from scratch in the novel context, an agent can
leverage higher level representations to speed up learning Xia et al., 2021. The trans-
fer results also suggest that choices at different levels of hierarchy show an asymmetry
in flexibility in novel contexts (lower level choices being less flexible). Our results are
consistent with this finding since motor actions seem less flexible and less impacted by
competing reward information, providing additional supporting claims for hierarchical

representations in choice space.

In addition to this, there is evidence of hierarchical representations at the neural level.
In particular, frontal areas (primarily PFC) and basal ganglia (BG) are also frequently
investigated as neural mechanisms that support hierarchical reasoning/learning (Collins
et al., 2013). Converging insights suggest that the cortico-BG loops support represen-
tations of both low-level associations and abstract rules/task sets, giving rise to latent
representations that can be used to accelerate learning in novel settings (Collins et al.,
2013; Eckstein et al., 2019; Stolle et al., 2002; Xia et al., 2021).

Both experiments implicated overall slowed learning, in addition to value interference,
in the worse performance for more general choices. Our first experiment (which allowed
us to test RL models only) implicated the learning rate (usually interpreted as a marker
of the RL system (Eckstein et al., 2019)) as the mechanism driving the difference between
conditions with different choice types. However, our second experiment enabled us to
test the more holistic hybrid model of RL and WM, and revealed that the impairment
in the more general choice condition likely stemmed from the WM system, rather than
RL. Previous work has shown that executive function (EF), in its different forms (i.e.
WM, attention), contributes to RL computations (Collins, 2018; [Niv, 2019). The general
summary of this work is that high-dimensional environments/tasks pose difficulty to RL;
EF then acts as an information compressor, making the information processing more
efficient for RL (Rmus et al., 2021)). Operating in a more generalized choice space might
more heavily rely on the contribution of EF (in this case WM) relative to operating
in the less abstract condition. Therefore, resource-limited WM might be leveraged to
define the choice space (i.e. relevant features of the choice space, like labels in label
condition). As a result, the WM weight included in the WM + RL hybrid model, which

indexes the WM contribution to learning, appears to be reduced in the label condition.
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Our interpretation of this result is that this reduction in WM contribution may indicate
that some of participants’ limited WM resources are recruited elsewhere, and specifically
that it has already been used to define the choice space over which learning and decision

making occurs.

While we conclude that WM is used for defining the choice space, consistent with
prior results on EF contributions to RL computations (Todd et al., 2008)), we do not
make any particular assumptions about how the use of choice space is divided between
RL and WM once it’s defined. We tested different model variations, with the parameter
mixing label/position values, to explain value interference at the policy level of RL, WM
or both. If there was clear evidence in favor of the mixture parameter in either the RL or
WM policy, it would imply that the policy generation based on choice space is primarily
driven by that system. However, our model comparison revealed no evidence that the
mixture parameter is specific to either RL or WM, suggesting that the choice space is

shared between the two. This will be important to further explore in future research.

A competing interpretation for our findings of slowed learning for more abstract
choices is that the label condition required more attention and was more difficult. While
this is true, we took steps to mitigate this potential confound on two levels - task design
and modeling. In the task design, we constructed the single trial structure such that
participants had a chance to see box labels first, before the onset of the card. By
doing this we aimed to eliminate potential advantages of the position condition, where
participants do not need to perform an additional process of identifying the label location
prior to executing the response. Furthermore, our modeling enabled us to validate the
effects of our task design. Specifically, in both experiments we tested the model with
condition-dependent noise parameters, which predicts that different noise/difficulty levels
are what drive the performance difference in our conditions. This model did not fit the
data well (Experiment 1: Best model AIC > 2 noise model AIC t(56)= -5.179, p=
3.13e-06, Cohen's d = .69; Experiment 2: Best model AIC > 2 noise model AIC t(56)=
-5.05, p= 4.98¢-06, Cohen's d = .67), making it unlikely that difficulty-induced lack of

attention/motivation could explain our condition effect.

A competing interpretation of our results might be that participants simply did not
pay attention to the labels in the position condition, accounting for the observed asym-
metry. That is, because the labels are not informative for selecting a correct response
in the position condition, participants might simply not be attending to them at all, as
opposed to encoding them, with the choice process remaining unaffected by the inter-
fering information from labels. However, we think this competing account is unlikely,

for multiple reasons. First, the labels were very salient (colors, and presented prior to
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the stimulus); thus participants would need to actively avoid them to not perceive them.
While we have no direct measure of participants’ attention to the labels, it is unlikely
that they did not process them at all. Second, there is evidence from previous work
that participants encode and use information from unattended stimuli, especially when
the unattended stimuli might be relevant for the reward structure in the task (Gutnisky
et al., 2009; [Sasaki et al., 2010)). Therefore, the labels (even if not strongly attended to in
the position condition) would be a part of the input in the choice process that, according
to the results, does not strongly impact the choice of the position, which is consistent
with our interpretation. We thus consider the more probable interpretation to be that
the participants do perceive and attend to the irrelevant labels, but successfully avoid
learning their values. However, future work should investigate more directly how much

attention participants pay to irrelevant labels.

Another limitation is that our design did not manipulate the degree of value inter-
ference between the choice dimensions, since we equally counterbalanced the position of
labels. Instead, introducing a systematic bias such that, in a label block, for example,
some positions had higher value due to overlapping with correct labels more frequently,
would provide an opportunity to induce and measure different magnitudes of interference.

This would be an interesting question to explore in the future.

Surprisingly, we found that participants’ response times (RT) on correct trials in-
creased as a function of position reward history difference (RHD) in the label condition.
This implies that when both label and position sorting rules were in agreement on the
best choice to make (i.e. the blue box was the correct box, and was in the position that
had been most rewarded so far), response times tend to be longer (the corresponding ef-
fect was not observed in the position condition, where label RHD had no effect on RTS).
This is, therefore, a counterintuitive effect, as we would expect the congruent information
to accelerate response execution, rather than slow it, as observed here. One possibility
might be that participants do engage in a form of arbitration between selection of differ-
ent response types. Specifically, they might be biased to execute the motor action based
on the reward history difference, as it seems to present itself as a default option based
on our results. However, because they are informed that the response based on label
selection is correct for the given block, they might delay the response execution, in order
to override the default. Nevertheless, this is a speculation - careful modeling of response
times is required to further explain this effect, which is beyond the scope of this paper.
This account would also predict the highest degree of conflict in this congruent situation,
rather than in situations where both rules disagree. It will be an important question to

solve in future research.
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Our results highlight the importance of correct credit assignment, and investigation
of mechanisms which might lead to errors in the credit assignment process. Our results
are consistent with the previous research suggesting that motor actions might have a
stronger effect on the choice selection process than is usually considered (Shahar et al.,
2019). Our modeling approach allowed us to show that the mixture of Q values at
the policy level is what may lead to the interference effect/incorrect credit assignment.
However, as of now, we cannot conclusively say whether the mixture happens selectively
at the policy level of RL, WM or both.

Identification of correct rewarding responses is a critical building block of adap-
tive/goal-directed behavior. Impairments in one’s ability to identify the appropriate
choice space, which is then used for one’s inference process, may consequently result in
maladaptive/suboptimal behavioral patterns. Our interference effect results suggest that
some aspects of the choice space might be incorrectly overvalued, thus resulting in choice
patterns that reflect repeated erroneous selection of incorrect choice types, or an inabil-
ity to utilize flexible stimulus-response mappings. These kinds of perseverative responses
are reminiscent of the inability to disengage from certain actions, observed in conditions
such as obsessive-compulsive disorder (OCD) (Rosa-Alcazar et al., 2020). It would be
interesting to use our task and computational modeling approach to investigate whether
the mixture/interference of values at the policy level could also explain the behavior of

such populations.

In conclusion, our findings provide evidence that the choice type and how we define a
choice have important implications for the learning process. The behavioral patterns (i.e.
value interference from less abstract choices) are consistent with the premises of hierarchy
in learning and behavior (i.e. lower levels in hierarchy impacting processing in higher
levels), which has become an increasingly promising topic of research (Collins et al.,
2013; Eckstein et al., 2020; Stolle et al., 2002). We also demonstrate additional evidence,
relevant to the definition of the choice space, that EF (specifically WM) contributes to
RL in reward-driven behaviors (Rmus et al., 2021)), further demonstrating the complex

interplay between various neuro-cognitive systems.
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Supplementary materials

Experiment 1 additional model comparisons. We tested whether an additional decay
parameter, an additional mixture parameter, a mixture parameter shared across the two
conditions and free softmax temperature parameter improved the fit to the data. These

models did not improve the fit compared to M3 (our winning model).
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Figure 7: Additional models tested in Experiment 1.

Experiment 1 confusion matrix. To demonstrate the identifiability of our models (i.e.
models are meaningfully different from one another), we simulated the data from each
model on 62 iterations (number of participants). We used best parameter estimates for
each participant to create a synthetic data set on each iteration. We then fitted each
of the models to each simulated data set with 20 random starting points, to match the
fitting procedure to participants’ data. Next, we computed the proportion of the times
each model fit the best. If the models are identifiable, the model the data was simulated
from should fit the best on most iterations (i.e. the matrix should have the highest
proportion of best fit values on its diagonal). The confusion matrix showed that our

models are identifiable.
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Figure 8: Confusion matrix of the main models tested in Experiment 1.

In our second experiment, we fit a considerable range of models, starting with the
most complex (all RL + WM parameters condition-dependent), to the simplest (all
parameters shared across conditions). We systematically varied the complexity of the
model, while monitoring the model fit/complexity tradeoff using AIC scores, in order to
test which parameters are necessary for capturing the difference between the conditions

while also making sure our models are not overfitting (Fig. E[)
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Figure 9: AIC comparison of models tested in Experiment 2. Here we show the difference

in individual AIC scores between M3, and all other models that were tested.

Experiment 2 Confusion Matrix. We tested the identifiability of our models in Experi-

ment 2 by creating a confusion matrix, similarly to Experiment 1Wilson et al., 2019, We

constructed two different confusion matrices, which test for identifiability of our model
along 2 different dimensions. Our first confusion matrix allowed us to test whether the
models with different placements of the p parameter (i.e. with wrong choice dimension
policy mixture in RL, WM or both) are meaningfully dissociable. The confusion matrix
shows that the models with mixture p in RL and WM policy can be dissociated (Fig. .
The data simulated from the model with p parameter in both WM and RL policy was fit
equally well by that model and the model with p in WM policy alone. This is consistent

with our results, as model comparison revealed that AIC scores did not meaningfully
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are nested models (differing by at most 1 parameter), or in the case of the second con-
fusion matrix, identical models in terms of number of parameters, but with different rho
parameter placements. Therefore, we did not expect the AIC scores to be considerably

different for paired model fits paired with data simulated across different models.

AIC confusion matrix
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Figure 10: Confusion Matrix 1. Proportion of times the models fitted different simulated
data sets best, based on cross-fit AIC scores for models with different placement of p

paramater.

Our second confusion matrix tested whether we can dissociate the model we con-
verged on in the main text (M1, ® with RL-WM p) from variations of model with 1)
no p parameter, and 2) shared WM weight ®. Our results showed that our models are
mostly identifiable, with an exception of M2 (Fig. . However, M2 cannot produce the

observed qualitative error patterns, providing another method to rule out this model.
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AIC confusion matrix

0.6
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w (no p) -
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p (shared w)

Simulated model

Figure 11: Confusion Matrix 2. Proportion of times the models fitted different simulated
data sets best, based on cross-fit AIC scores for models with condition dependent p and
® parameters (M1), condition dependent ® (M2), and condition dependent p.
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Figure 12: Exclusion criteria based on the task performance. We averaged accuracy

across all conditions. Based on the “elbow point”, most participants’ performance is

above .60, so we used .60 as criteria for exclusion.
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Figure 13: Parameter recovery for the best models in Experiment 1 and Experiment 2.
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Figure 14: Parameter recovery for the best models in Experiment 1 and Experiment 2.

M1 M2 M3 M4 M5

0.20 0.18 0.19 0.22 0.18

Table 1. Protected Exceedance Probability of tested models in Experiment 2, computed
based on AIC evidence. Bayes Omnibus Risk BOR (indexing the probability that model
frequencies are equal) = 0.94, which suggests that frequency is not strongly differentiable

between models.

M1 M2 M3 M4 M5
1 0 0 0 0

Table 2. Since BIC provided stronger differentiation between models, we computed the

protected exceedance probability based on BIC evidence. Bayes Omnibus Risk (BOR) =
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o0 1.29¢ — 12, with PXP(M1) = 1,suggests that M1 has the highest frequency.
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