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Recent years have seen a movement within the research-based assessment development community towards
item formats that go beyond simple multiple-choice formats. Some have moved towards free-response ques-
tions, particularly at the upper-division level; however, free-response items have the constraint that they must be
scored by hand. To avoid this limitation, some assessment developers have moved toward formats that maintain
the closed-response format, while still providing more nuanced insight into student reasoning. One such for-
mat is known as coupled, multiple response (CMR). This format pairs multiple-choice and multiple-response
formats to allow students to both commit to an answer in addition to selecting options that correspond with
their reasoning. In addition to being machine-scorable, this format allows for more nuanced scoring than simple
right or wrong. However, such nuanced scoring presents a potential challenge with respect to utilizing certain
testing theories to construct validity arguments for the assessment. In particular, Item Response Theory (IRT)
models often assume dichotomously scored items. While polytomous IRT models do exist, each brings with it
certain constraints and limitations. Here, we will explore multiple IRT models and scoring schema using data
from an existing CMR test, with the goal of providing guidance and insight for possible methods for simultane-
ously leveraging the affordances of both the CMR format and IRT models in the context of constructing validity
arguments for research-based assessments.
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I. INTRODUCTION & BACKGROUND

Validated, research-based assessments are a ubiquitous
tool in physics education research (PER) because they pro-
vide insight into student understanding of physics concepts.
These assessments are often used to investigate the efficacy of
instructional strategies, which can inform changes to instruc-
tion to improve students learning [1]. Validated assessment
instruments have been developed for nearly all core physics
content areas [2]. These instruments take a variety of formats
including free-response (e.g., Ref. [3]), multiple-choice (e.g.,
Ref. [4]), and multiple-response (e.g., Ref. [5]). The format
of an assessment has a number of important implications both
for its use and validation. For example, free-response for-
mats provide important insight into students’ reasoning, but
are time and resource intensive to score. Closed-response for-
mats allow for automated scoring, but provide limited insight
into students’ reasoning.

An alternative format that maintains the automated scor-
ing of a closed-response format while still providing some in-
sight into students’ reasoning is known as coupled, multiple-
response (CMR) [6]. The CMR format is characterized by
a multiple-choice question followed by a multiple-response
followup that prompts students to select reasoning elements
that support their answer to the multiple-choice question. In
addition to providing information about students’ reasoning,
the CMR format also allows for flexibility in terms of scor-
ing. For example, students can be scored based on both the
correctness and consistency of their answers. As such, CMR
questions are often scored polytomously.

Polytomous scoring, however, brings with it some con-
strains with respect to assessment validation. For example,
many test theories assume dichotomous scoring schemes [7].
Most common test statistics do have polytomous versions,
but these versions sometimes come with tradeoffs in terms of
statistical power. One place where this tradeoff may be par-
ticularly important is with respect to Item Response Theory
(IRT). IRT is a is a model-based approach to estimating item
and test parameters which posits that a students’ response to
a particular item on an assessment should depend only on
the difficulty of that item and the students’ underlying la-
tent “ability” [8]. A major advantage of IRT stems from the
fact that, if you can craft items for which students’ responses
match the IRT item response function, the resulting estimates
of students’ latent ability and item difficulty will be indepen-
dent [8]. In other words, statistics indicating how difficult
the items are (individually or in aggregate) do not shift when
the assessment is taken by student populations with a differ-
ing distribution of abilities, providing an avenue for produc-
ing test statistics that are independent of the test population.
While there are many IRT models, we will focus here on the
subset of IRT that is known as Rasch analysis. As discussed
later, this is motivated in part to limit the impact of small V.

Both Rasch analysis and the CMR item format have affor-
dances and (sometimes conflicting) constraints with respect
to the development and validation of research-based assess-
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ments. In this paper, we explore methods for applying Rasch
analysis to data from a CMR assessment called the Upper-
level Statistical Mechanics and Thermodynamics Evaluation
for Physics (U-STEP) [9]. The U-STEP is a newly developed
assessment targeting both classical thermodynamics and sta-
tistical mechanics at the upper-division undergraduate level.
The assessment features primarily CMR items that are scored
polytomously based on both correctness and consistency of
students responses. The goal here is not to establish a validity
argument for the U-STEP using IRT. Rather, this analysis is
designed to explore different Rasch models and identify dif-
ferent methods for mapping the scoring of the U-STEP onto
these models with the goal of identifying promising strategies
for leveraging the affordances of both Rasch analysis and the
CMR format for future assessments.

II. RASCH ANALYSIS

In this section, we provide a brief primer on some of the
important aspects of Rasch analysis. The mathematical for-
malism of the Rasch model (also known as the one-parameter
IRT model) assumes the probability of a student answering an
item correctly is determined by a latent trait of the student and
item difficulty. The Rasch model posits the following model
for the probability that a particular student will respond to a
particular item correctly:

1

PO = e

Here, 6; represents the latent trait of interest and has histor-
ically been referred to as the “ability"' of student j and b; is
the difficulty of item ¢. There are several important assump-
tion implicit in the Rasch model including the assumption that
all item discriminations are equal [10]. Additionally, the base
Rasch model assumes dichotomously scored items, though
there are polytomous Rasch models [11]. Finally, Rasch anal-
ysis assumes a unidimensional test.

Rasch analysis requires that student responses match the
model in Eqn. 1, and as with IRT models the fit of the Rasch
model to the data cannot be assumed, but instead must be
evaluated. A variety of fit statistics can provide statistical evi-
dence for model fit and identify mis-fitting items. One benefit
of the Rasch model over other IRT models with more param-
eters is that it requires smaller sample to establish model fit
and provide reliable parameter estimates. Though model fit
depends on both sample size and test length, some have sug-
gested a sample size of at least 200 respondents and 15 items
(the same number of items on the U-STEP) provides suffi-
cient fit statistics [12].
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! Note, “ability" refers to the latent trait that the statistical models quantify.
Fundamentally, however, it is a measure of performance as opposed to
innate ability. This term is used for consistency with the existing literature.
However, this term is potentially problematic, particularly with respect to
the interpretation of performance gaps between subgroups of students.



TABLE I. Information about the two semesters of pilot administra-
tions of the U-STEP used in this study. In all cases, N here refers
to the number of students enrolled rather than the number of re-
sponses. Note the average of institutional response rates does not in-
clude classes with 0% response rate (N=1 for Spring and Fall 2020).

Nistudents per class | Nwdents | Response Rate
Ninstitutions |@Vg. min. max. | total |overall avg.
Fall 2020 10 23 8 86 227 | 715% 73%
Spring 2021 18 19 3 110 | 349 | 82% 91%
III. CONTEXT & METHODS

Data from this study come from two semesters of U-STEP
data collection in upper-division thermal physics courses.
As mentioned previously, the U-STEP has 15 items, most
of which are CMR items. The development and validation
of the U-STEP using Classical Test Theory are reported in
Refs. [9, 13, 14]. An exploratory factor analysis of data from
the U-STEP indicated that the U-STEP’s factor structure is
dominated by a single factor, and thus, the instrument appears
statistically unidimensional.

For this study, we utilize data from two semesters of the pi-
lot data used to establish a validity argument for the U-STEP,
which are summarized in Table 1. Between the two semesters,
we collected a total of N = 455 students responded to the U-
STEP from 27 distinct institutions. In soliciting pilot sites,
we placed emphasis on participation from multiple institu-
tion types serving various student populations. This provided
us with a more representative sample of students. For exam-
ple, our Fall 2020 sample was 20% women and 59% White,
while the Spring 2021 sample was 25% women and only 50%
White. This is a comparable representation of women in our
sample compared to representation in the field of physics; it
is also a lower representation of White students than that in
physics more generally (and a closer reflection of the repre-
sentation of non-Hispanic White people in the US) [15].

Students’ responses were filtered to identify any responses
that could be considered invalid for some reason. For ex-
ample, all responses that took less than 5 min from start to
finish were dropped because 5 minutes is roughly the amount
of time necessary to skim through the exam in full - suggest-
ing that these students did not take the diagnostic seriously.
Additionally, any students who skipped or only partially re-
sponded to 5 or more of the items on the U-STEP were also
dropped from the data set. After these drops, the total num-
ber of responses retained for each semester was N = 164 for
Fall 2020, and N = 277 for Spring 2021, well exceeding the
threshold required to achieve reliable fit statistics.

In all courses, the U-STEP was taken online and typically
outside of normal class time and without use of notes or on-
line resources. For example, many instructors included the
completion of the U-STEP as a portion of their final home-
work assignment for the semester and assigned participation
credit to the students as a portion of the homework assign-
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ment. Additionally, all semesters of data collection with the
assessment overlapped with the COVID-19 pandemic. Thus,
many courses were taught at least partially remotely or online
during all or part of those semesters. This had little impact on
the administration of the assessment, as the intention for the
U-STEP was always for it to be administered in an online for-
mat. However, the disruption caused by the pandemic likely
had impacts on who was enrolled in physics courses as well as
who completed the assessment during this time period. This,
along with the hybrid or remote-nature of courses used for
piloting, may have had impacts on the data collection that are
difficult to quantify.

The basic scoring of the U-STEP was designed to value
both consistency and correctness; thus, it is possible on some
items for a student to answer the MC prompt incorrectly
and still receive some credit if reasoning is consistent with
their incorrect response. While the structure varies between
items, typically the multiple-choice portion of the CMR item
is worth 2 points and the reasoning portion is worth 3 points,
and different items may have multiple reasoning followups.
After summing the total points for the CMR item, the score is
then normalized to 1 point per item resulting in a maximum
total score on the U-STEP of 15 points. The full scoring struc-
ture for each item on the U-STEP can be accessed at Ref. [9].
In the next section we explore several options for utilizing or
modifying the base U-STEP scoring so that it maps onto var-
ious Rasch models, both dichotomous and polytomous. All
analyses described below were conducted in R using a variety
of functions included in the mirt package.

IV. RESULTS & DISCUSSION

In this section, we will first explore options for adapt-
ing the base scoring of the U-STEP into a dichotomous
scheme. Though polytomous Rasch models exist, they re-
quire much larger sample sizes than dichotomous Rasch anal-
yses; smaller sample size restrictions are beneficial for upper-
division courses, which have a relatively small pool of stu-
dents to draw respondents from. Following this dichotomous
analysis, we will also explore polytomous Rasch models.

A. Dichotomous Rasch analysis

We considered 2 possible methods for adapting the poly-
tomous scoring of the U-STEP to a dichotomous scheme.
The most obvious approach might be to require perfectly cor-
rect responses to receive credit for the item. This method
would award 1 point for a students who select only the correct
multiple-choice option and all of the correct/necessary rea-
soning element on the multiple-response portion of the CMR
question with none of the incorrect/unnecessary options, and
0 points for any other response pattern. However, with CMR
items, getting a perfectly correct response is more challeng-
ing than in the case of multiple-choice items since so many
permutations of responses are possible. Indeed, in the case



of one of the U-STEP items, no student in our sample gave
a perfectly correct response; two additional items had only
5-15 students give perfectly correct responses. Such a small
number of correct responses has important implications for
the potential discrimination of the items and thus increases
the likelihood of model misfit due to the assumption of equal
discrimination. Additionally, item statistics from Classical
Test Theory (e.g., item difficulty and discrimination) were
very low, with only a handful of items passing the traditional
thresholds for these parameters [7]. Because of this, we do
not further pursue this dichotomization method for the U-
STEP. We suspect other CMR assessments may run into sim-
ilar difficulties with respect to this scheme.

The second method for dichotomization that we explore is
to set a particular threshold on the score a student must get
on the item to be considered “correct." Here, we test three
different thresholds - 40%, 50%, and 60% - where any student
with a score above the threshold is given 1 point on that item
and any student below is given O points. A 40% threshold
implicitly values correctness over reasoning because for most
items, selecting the correct response to the multiple-choice
portion is enough to get you 40% of the available point for
that item. A 60% threshold, on the other hand, requires at
least some correct reasoning for the majority of items, and
thus implicitly places more emphasis on correct justifications
in addition to correct answers. Correlations between the full
polytomous scoring and the 40%, 50%, and 60% thresholds
are 0.96, 0.97, and 0.96 respectively.

To quantify overall model fit we used an M, statistical
test. This test was proposed by Maydeu-Olivares and Joe [16]
and provides a measure of model fit for the overall assess-
ment. Acceptable model fit is critical to ensuring the re-
liability of model outputs, such as item difficulty and stu-
dent ability. Large M, values correspond to lower p-values
and more model misfit. Additionally, root mean square error
of approximation (RMSEA) and comparative fit index (CFI)
provide another measure of overall fit. Conservative discus-
sions suggest an RMSEA value less than 0.05 indicates a
close fit [17, 18] and CIF values greater than 0.95 indicate
relatively good model fit [19].

Table II presents fit statistics for each of these three thresh-
olds. All three thresholds result in contradictory conclusions
as to model fit with all indicating misfit according to the M,
statistic but reasonable fit according to RMSEA and CIF. Item
fit statistics identified 3 misfitting items for the 40% thresh-
old and 2 for each of the 50% and 60% thresholds (S — X2,
p < 0.05). For the 40% threshold, removal of the 3 misfitting
items resulted in no further misfitting items, but did not mean-
ingfully change overall fit statistics. For the 50% threshold,
removal of the 2 misfitting items resulted in an improvement
in overall fit statistics (though M5 still detected overall mis-
fit), but also resulted in another item with significant misfit.
Further removal of this item resulted in no significant item
or overall misfit suggesting that the 50% threshold matched
the Rasch model upon the removal of the 3 items with signif-
icant model misfit. For the 60% threshold, removal of the 2
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TABLE II. Overall assessment fit statistics using three thresholds
for dichotomizing data. Significant misfit is indicated by p<0.05.
Root mean square error of approximation (RMSEA) less than 0.05
indicates a relatively good model fit; comparative fit index (CFI)
values greater than 0.95 indicate good model fit [20].

M, p |RMSEA CFI
40% Threshold | 155 <0.001| 0.033 0.968
50% Threshold 159 <0.001| 0.035 0.964
60% Threshold 149 0.003 | 0.031 0.971

misfitting items resulted in acceptable overall model fit.

B. Polytomous Rasch analysis

Another approach to analysing data from CMR items with
Rasch analysis is to simply utilize one of the polytomous
Rasch models. Here, we explore the Partial Credit Model
(PCM), which as its name implies was born from traditional
IRT to account for partial credit. The PCM in particular (as
opposed to the generalized partial credit model) is a variant
of the Rasch model. While the use of a polytomous model
like the PCM has the benefit of preserving the full scoring
scheme of the CMR format (or something close), analysis
with polytomous models typically require larger datasets to
achieve reliable parameter estimates and fit statistics. For ex-
ample, literature suggests that use of the PCM model requires
very large sample sizes (e.g., close to 1,000 respondents) [21].
The dataset for the U-STEP is not even half this size, sug-
gesting that this approach is not appropriate for the U-STEP.
However, with this caveat, in this section, we will still present
analysis of the U-STEP data set using the PCM in order to
demonstrate the process, highlight some of the challenges,
and explore potential options to overcome them.

The PCM was developed by Masters in 1982 [22]. For
the PCM, one assumes the maximum possible score can be
achieved by going through steps of other score “categories”
defined by the amount of partial credit. In the example pro-
vided in his 1982 paper, there is a math problem with 3 parts
and thus four possible scores achievable: 0, 1,2, and 3. These
are the score categories, and from them, there are 3 steps that
can be taken to achieve the maximum score: going from score
0 — 1, from score 1 — 2, and from score 2 — 3. For each
step in this progression, there is a difficulty associated with
the step, which is not necessarily the same for each step. For
example, going from 0 — 1 may be easier than going from
2 — 3, resulting in different difficulty values. Essentially, the
PCM treats each “step” as a dichotomous item, which can
either be correct and progress a score to the next step (e.g.,
1 — 2), or incorrect and leave a score at the latter step (e.g.,
remain at score of 1). Each of these steps is then modeled
using the Rasch model (i.e., Eqn. 1), producing a difficulty
value for each step. It is worth noting that the PCM may op-
erate on the assumption that scores are ordinal, and thus build
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FIG. 1. PCM item response category characteristic curves for an
example U-STEP item. Each curve is labeled with its associated
score, ranging from 1 to 5, and its shape is described by Eqn. 1.

on each other. However, this is not the case for all U-STEP
items, especially those composed of multiple CMR pairs.

Despite this possible concern, exploratory PCM analyses
were conducted for the 15 U-STEP items using the Itm pack-
age in R. This analysis yielded complicated results in many
instances, due to the many number of score categories within
different items. For example, item 11 on the U-STEP, which
was composed of 3 CMR pairs and allowed for half-integer
points for some reasoning selections, had 27 possible score
categories. Thus, this item had 26 difficulty values, one for
each score step. PCM analysis of the raw U-STEP scores
resulted in fit statistics that were consistent with acceptable
overall model fit; however, given the small dataset, these
statistics should not be interpreted as robust.

To provide an example of the output of PCM analysis,
Fig. 1 provides the item characteristic curves for one item on
the U-STEP. This particular example had 5 steps due to its 6
possible score categories: 0, 1, 2, 3,4, and 5. Each curve rep-
resents the probability of a student with a particular ability pa-
rameter receiving the associated score of 1, 2, 3, 4, or 5. No-
tably, the curve for achieving a score of 5 closely matches the
expected pattern described by Eqn. 1, with higher-ability stu-
dents have a higher probability of receiving the highest possi-
ble score. Similarly, the curve for a score of 1 takes a similar
shape with opposite directionality; this indicates that lower-
ability students have a higher probability of only making the
lowest-level step (0—1). The curves representing scores of 2,
3, and 4 have peaks that gradually shift towards higher abil-
ities, indicating that students need higher ability levels in or-
der to achieve the progressively increasing scores, suggesting
some conceptual alignment of responses to the model.

One of the primary challenges to using PCM for CMR
items is, thus, concerns about having too many score cate-
gories to either provide meaningful item parameters or abil-
ity estimates. One possible strategy to address this is to re-
duce the number of score categories by binning students raw
CMR scores into smaller steps. To investigate the impact of
reducing the number of score categories for PCM analysis,
we revised the item scoring such that possible scores for each
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item could take on only one of three possible values: 0, 1,
and 2. The traditional (5pt) CMR items were scored such
that 1 point was awarded for a correct MC selection and 1
point was awarded for a minimum of half-correct reasoning
and 2 points for fully correct reasoning. Scoring for paired
CMR items was more nuanced and varied by item but still
produced at most 3 score categories. Analysis of model fit
showed statistically significant model misfit (x2, p = 0.1).
Again, the validity of these statistics for the U-STEP in par-
ticular are questionable due to the smaller N of the current
U-STEP dataset.

V.  CONCLUSIONS & LIMITATIONS

In this paper, we explored methods for utilizing Rasch
analysis to analyze assessment using the CMR format, which
feature polytomous item scores. We explored two different
methods for structuring the analysis - dichotmization of the
scores and use of polytomous models - using example data
from an upper-division thermal physics assessment.

Our results suggest that dichotomization using a threshold
value may be a promising approach for producing valid abil-
ity and item difficulty parameters using Rasch analysis. For
the U-STEP, in particular, the 60% threshold appears the most
robust, with this threshold requiring the fewest dropped items
to achieve model fit. Dichotomization based on the full poly-
tomous scoring has the advantage of requiring smaller data
sets to produce valid parameters and fit statistics, and there-
for would be useful for assessments targeting smaller stu-
dent populations. Polytomous Rasch models may also be a
promising approach for assessments that have datasets of suf-
ficient size. However, depending on the fine grained nature of
the assessment’s CMR scoring scheme, it may be necessary
to revisit the scoring scheme or bin students scores in order
to maximize the number of students in each scoring category
and produce more actionable student ability estimates.

This work has important limitations. The U-STEP, was not
designed with IRT analysis in mind; thus, there is no a priori
reason to assume students’ responses should match the Rasch
model. Additionally, the smaller data set of responses to
the U-STEP, while large considering it targets upper-division
physics population, is still small relative to what is necessary
for polytomous Rasch models. Thus, the findings reported
here should be interpreted as exploratory and not as evidence
that any particular model is or is not valid for analysis of data
from CMR assessments. This analysis serves as a foundation
for assessment developers interested in leveraging the affor-
dances of both IRT and the CMR format.

ACKNOWLEDGMENTS

This work was supported by funding from the Center for
STEM Learning and the Department of Physics at University
of Colorado Boudler, and the National Science Foundation
DUE Grant No. 2013332.



[1] Adrian Madsen, Sarah B McKagan, and Eleanor C Sayre, “Re-
source letter rbai-1: research-based assessment instruments in
physics and astronomy,” American Journal of Physics 85, 245—
264 (2017).

[2] https://www.physport.org/assessments/, (2015).

[3] Marcos D. Caballero, Leanne Doughty, Anna M. Turnbull,

Rachel E. Pepper, and Steven J. Pollock, “Assessing learn-

ing outcomes in middle-division classical mechanics: The

colorado classical mechanics and math methods instrument,”

Phys. Rev. Phys. Educ. Res. 13, 010118 (2017).

Homeyra R. Sadaghiani and Steven J. Pollock, “Quantum

mechanics concept assessment: Development and validation

study,” Phys. Rev. ST Phys. Educ. Res. 11, 010110 (2015).

Suzanne White Brahmia, Alexis Olsho, Trevor I. Smith, An-

drew Boudreaux, Philip Eaton, and Charlotte Zimmerman,

“Physics inventory of quantitative literacy: A tool for assessing

mathematical reasoning in introductory physics,” Phys. Rev.

Phys. Educ. Res. 17, 020129 (2021).

Bethany R. Wilcox and Steven J. Pollock, “Coupled multiple-

response versus free-response conceptual assessment: An ex-

ample from upper-division physics,” Phys. Rev. ST Phys. Educ.

Res 10, 020124 (2014).

Paula Engelhardt, “An introduction to classical test theory as

applied to conceptual multiple-choice tests,” in Getting Started
in PER, Vol. 2 (2009).
[8] Frances M Yang et al., “Item response theory for measurement
validity,” Shanghai Archives of Psychiatry 26, 171 (2014).
[9] Katherine Rainey, Upper-Division Thermal Physics Assess-
ment Development and the Impacts of Race & Gender on
STEM Participation, Dissertation, University of Colorado
Boulder (2021).
[10] Georg Rasch, Probabilistic models for some intelligence and
attainment tests. (ERIC, 1993).

[11] Michael L Nering and Remo Ostini, Handbook of polytomous
item response theory models (Taylor & Francis, 2011).

[12] Michael R Harwell and Janine E Janosky, “An empirical study

[4

—

[5

—

[6

—_

[7

—

493

of the effects of small datasets and varying prior variances
on item parameter estimation in bilog,” Applied psychological
measurement 15, 279-291 (1991).
Katherine D. Rainey, Michael Vignal, and Bethany R. Wilcox,
“Designing upper-division thermal physics assessment items
informed by faculty perspectives of key content coverage,”
Phys. Rev. Phys. Educ. Res. 16, 020113 (2020).
Katherine D. Rainey, Michael Vignal, and Bethany R. Wilcox,
“Validation of a coupled, multiple response assessment for
upper-division thermal physics,” Under Review: Phys. Rev.
Phys. Educ. Res..
[15] National Science Foundation, “Women, minorities, and per-
sons with disabilities in science and engineering,” (2017).
[16] Albert Maydeu-Olivares and Harry Joe, “Limited-and full-
information estimation and goodness-of-fit testing in 2 n con-
tingency tables: A unified framework,” Journal of the Ameri-
can Statistical Association 100, 1009—1020 (2005).
[17] Michael W Browne, Robert Cudeck, Kenneth A Bollen, and
J Scott Long, “Testing structural equation models,” (1993).
[18] Karl G Joreskog and Dag S6rbom, LISREL 8: Structural equa-
tion modeling with the SIMPLIS command language (Scientific
Software International, 1993).
Li-tze Hu and Peter M Bentler, “Cutoff criteria for fit indexes in
covariance structure analysis: Conventional criteria versus new
alternatives,” Structural equation modeling: a multidisciplinary
journal 6, 1-55 (1999).
Yan Xia and Yanyun Yang, “Rmsea, cfi, and tli in structural
equation modeling with ordered categorical data: The story
they tell depends on the estimation methods,” Behavior re-
search methods 51, 409-428 (2019).
Tanja Kutscher, Michael Eid, and Claudia Crayen, “Sam-
ple size requirements for applying mixed polytomous item re-
sponse models: results of a monte carlo simulation study,”
Frontiers in psychology 10, 2494 (2019).
Geoff N Masters, “Partial credit model,” in Handbook of Item
Response Theory, Volume One (Chapman and Hall/CRC, 2016)
pp. 137-154.

[13]

[14]

[19]

[20]

(21]

[22]



