

Draft Genome Sequences of *Flavobacterium coviae* Strains LSU-066-04 and LV-359-01

 <img alt="ORCID icon" data-bbox="8024 238 8038

TABLE 1 Virulence factors predicted to be produced by *F. coviae* LSU-066-04 and *F. coviae* LV-359-01 based on previous studies; percent similarities are to *F. coviae* AL-02-36^T

Gene	Reference	Strain(s) used	<i>Flavobacterium</i> species	LSU-066-04 percent similarity; E value; query cover	LV-359-01 percent similarity; E value; query cover
<i>porV</i>	13, 14	C#2 and MS-FC-4	<i>F. coviae</i> and <i>F. columnare</i>	99.29%; 0.0; 100%	99.29%; 0.0; 100%
<i>gldN</i>	13, 14	C#2, IA-S-4, and MS-FC-4	<i>F. coviae</i> , <i>F. columnare</i> , and <i>F. columnare</i>	98.67%; 0.0; 100%	98.67%; 0.0; 100%
<i>gldK</i>	13	C#2 and IA-S-4	<i>F. coviae</i> and <i>F. columnare</i>	99.78%; 0.0; 100%	100.00%; 0.0; 100%
<i>gldL</i>	13	C#2 and IA-S-4	<i>F. coviae</i> and <i>F. columnare</i>	100.00%; 4e-116; 100%	100.00%; 4e-116; 100%
<i>gldM</i>	13	C#2 and IA-S-4	<i>F. coviae</i> and <i>F. columnare</i>	99.50%; 0.0; 100%	99.50%; 0.0; 100%
<i>sprA</i>	13	C#2 and IA-S-4	<i>F. coviae</i> and <i>F. columnare</i>	99.36%; 0.0; 100%	99.84%; 0.0; 100%
<i>sprE</i>	13	C#2 and IA-S-4	<i>F. coviae</i> and <i>F. columnare</i>	97.44%; 0.0; 100%	97.18%; 0.0; 100%
<i>sprT</i>	13	C#2 and IA-S-4	<i>F. coviae</i> and <i>F. columnare</i>	99.15%; 6e-163; 100%	99.15%; 6e-163; 100%
<i>nirS</i>	15	94-801	<i>F. coviae</i>	100.00%; 0.0; 100%	100.00%; 0.0; 100%
<i>cylA</i>	15	MS-FC-4	<i>F. columnare</i>	100.00%; 0.0; 100%	100.00%; 0.0; 100%
C6N29_11540	14	MS-FC-4	<i>F. columnare</i>	100.00%; 0.0; 100%	100.00%; 0.0; 100%
C6N29_11545	14	MS-FC-4	<i>F. columnare</i>	99.44%; 0.0; 100%	99.37%; 0.0; 100%

To predict the presence of virulence factors in *F. coviae* LSU-066-04 and *F. coviae* LV-359-01, a tBLASTx analysis of each genome was conducted with previously described virulence factors associated with columnaris disease. Interestingly, both *F. coviae* isolates were predicted to carry all of the genes previously determined to have a role in columnaris disease, with high percent similarities to each gene (Table 1). These predicted virulence factors included genes associated with T9SS, denitrification, and anaerobic growth. It is likely that there are many other virulence factors expressed by these *F. coviae* strains, but their functional roles in virulence have not yet been determined. The genome sequences for these two virulent strains LSU-066-04 and LV-359-01 will provide a resource to explore the specific factors that contribute to *F. coviae* virulence and contrast this with virulence factors expressed by the other *Flavobacterium* spp. that cause columnaris disease.

Data availability. This Whole Genome Shotgun project for both LSU-066-04 and LV-359-01 has been deposited at GenBank under the accession numbers [JALDSR0000000000](#) and [JALDSS0000000000](#), respectively. The versions described in this paper are versions [JALDSR0100000000](#) and [JALDSS0100000000](#), respectively. LSU-066-04 is under the BioSample accession number [SAMN26856626](#), and LV-359-01 is under the BioSample accession number [SAMN26856627](#). Both strains are under BioProject accession number [PRJNA818358](#) with the SRA accession numbers [SRX15461022](#) and [SRX1461023](#).

ACKNOWLEDGMENTS

The USDA is an equal opportunity provider and employer. Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the United States Department of Agriculture. This work was supported through USDA-ARS Research Project #6010-32000-027-014-D and Non-Assistance Cooperative Agreement #6010-32000-027-000-S.

REFERENCES

- LaFrentz BR, García JC, Waldbieser GC, Evenhuis JP, Loch TP, Liles MR, Wong FS, Chang SF. 2018. Identification of four distinct phylogenetic groups in *Flavobacterium columnare* with fish host associations. *Front Microbiol* 9:452. <https://doi.org/10.3389/fmicb.2018.00452>.
- LaFrentz BR, Králová S, Burbick CR, Alexander TL, Phillips CW, Griffin MJ, Waldbieser GC, García JC, de Alexandre Sebastião F, Soto E, Loch TP, Liles MR, Snekvik KR. 2022. The fish pathogen *Flavobacterium columnare* represents four distinct species: *Flavobacterium columnare*, *Flavobacterium coviae* sp. nov., *Flavobacterium davisii* sp. nov. and *Flavobacterium oreochromis* sp. nov., and emended description of *Flavobacterium columnare*. *Syst Appl Microbiol* 45:126293. <https://doi.org/10.1016/j.syapm.2021.126293>.
- Declercq AM, Haesebrouck F, Van den Broeck W, Bossier P, Decostere A. 2013. Columnaris disease in fish: a review with emphasis on bacterium-host interactions. *Vet Res* 44:27. <https://doi.org/10.1186/1297-9716-44-27>.
- Arias CR, Welker TL, Shoemaker CA, Abernathy JW, Klesius PH. 2004. Genetic fingerprinting of *Flavobacterium columnare* isolates from cultured fish. *J Appl Microbiol* 97:421-428. <https://doi.org/10.1111/j.1365-2672.2004.02314.x>.
- Beck BH, Li C, Farmer BD, Barnett LM, Lange MD, Peatman E. 2016. A comparison of high- and low-virulence *Flavobacterium columnare* strains reveals differences in iron acquisition components and responses to iron restriction. *J Fish Dis* 39:259-268. <https://doi.org/10.1111/jfd.12343>.
- Shoemaker CA, Arias CR, Klesius PH, Welker TL. 2005. Technique for identifying *Flavobacterium columnare* using whole-cell fatty acid profiles. *J Aquat Anim Health* 17:267-274. <https://doi.org/10.1577/H04-0341>.
- Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. 2015. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. *Genome Res* 25:1043-1055. <https://doi.org/10.1101/gr.186072.114>.

8. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M, Meyer F, Olsen GJ, Olson R, Osterman AL, Overbeek RA, McNeil LK, Paarmann D, Paczian T, Parrello B, Pusch GD, Reich C, Stevens R, Vassieva O, Vonstein V, Wilke A, Zagnitko O. 2008. The RAST Server: rapid annotations using subsystems technology. *BMC Genomics* 9:75. <https://doi.org/10.1186/1471-2164-9-75>.
9. Lee I, Ouk Kim Y, Park S-C, Chun J. 2016. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. *Int J Syst Evol Microbiol* 66:1100–1103. <https://doi.org/10.1099/ijsem.0.000760>.
10. Meier-Kolthoff JP, Carbasse JS, Peinado-Olarte RL, Göker M. 2022. TYGS and LPSN: a database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. *Nucleic Acids Res* 50:D801–D807. <https://doi.org/10.1093/nar/gkab902>.
11. Chun J, Rainey FAY. 2014. Integrating genomics into the taxonomy and systematics of the Bacteria and Archaea. *Int J Syst Evol Microbiol* 64: 316–324. <https://doi.org/10.1099/ijss.0.054171-0>.
12. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P, Tiedje JMY. 2007. DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. *Int J Syst Evol Microbiol* 57:81–91. <https://doi.org/10.1099/ijss.0.64483-0>.
13. Li N, Zhu Y, LaFrentz BR, Evenhuis JP, Hunnicutt DW, Conrad RA, Barbier P, Gullstrand CW, Roets JE, Powers JL, Kulkarni SS, Erbes DH, García JC, Nie P, McBride MJ. 2017. The type IX secretion system is required for virulence of the fish pathogen *Flavobacterium columnare*. *Appl Environ Microbiol* 83:e01769-17. <https://doi.org/10.1128/AEM.01769-17>.
14. Thunes NC, Conrad RA, Mohammed HH, Zhu Y, Barbier P, Evenhuis JP, Perez-Pascual D, Ghigo J-M, Lipscomb RS, Schneider JR, Li N, Erbes DH, Birkett C, LaFrentz BR, Welch TJ, McBride MJ. 2022. Type IX secretion system effectors and virulence of the model *Flavobacterium columnare* strain MS-FC-4. *Appl Environ Microbiol* 88:e01705-21. <https://doi.org/10.1128/aem.01705-21>.
15. Abdelhamed H, Nho SW, Karsi A, Lawrence ML. 2021. The role of denitrification genes in anaerobic growth and virulence of *Flavobacterium columnare*. *J Appl Microbiol* 130:1062–1074. <https://doi.org/10.1111/jam.14855>.